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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PERFORMANCE COMPARISON AT MACH NUMBERS 1.8 AND 2.0 OF FULL-
SCALE AND QUARTER-SCALE TRANSLATING-SPIKE INLETS

By Donald P. Hearth, Bernhard H. Anderson
and Murray Dryer

SUMMARY

The performance of a full-scale translating-spike inlet was ob-
tained at Mach numbers of 1.8 and 2.0 and at angles of attack from o°
to 6°. Comparisons were made between the full-scale production inlet
configuration and a geometrically similar quarter-scale model.

The inlet pressure-recovery, cowl pressure-distribution, and
compressor-face distortion characteristics of the full-scale inlet
agreed fairly well with the quarter-scale results. In addition, the
results indicated that bleeding around the periphery ahead of the
compressor-face station improved pressure recovery and compressor-face
distortion, especially at angle of attack.

INTRODUCTION

Full-scale-inlet performance estimates are usually determined from
data derived from small-scale tests. To fully evaluate inlet configura-
tions, it is desirable to investigate the full-scale production version
at the simulated flight conditions in order to determine any inlet per-
formance differences between the full-scale and quarter-scale versions.

Included herein are the results of an investigation conducted in
the 10- by 10-foot supersonic wind tunnel at the NACA Lewis laboratory
on a full-scale production nacelle. The axial-symmetric inlet employed
a translating spike and a blunt lip. Two versions of the inlet have
been studied in quarter scale, and the results are reported in refer-
ences 1 and 2. This report discusses the inlet performance results and
compares them with the results of the geometrically similar quarter-
scale model (ref. 2). The inlet stability characteristics of the full-
scale and quarter-scale configurations are inclgﬁed in reference 3. In-
let performance and compressor-fap§ distortioﬁs’ﬁor ancther full-scale
configuration are reported in references 4 and‘5S.
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Data were obtained at angles of attack of 0°, 3°, and 6° and at free-

stream Mach numbers of 1.8 and 2.0. Testing at free-stream Mach numbers
below the facility limit of 2.0 was achieved by the use of compression
plates located upstream of the nacelle.

SYMBOLS

The following symbols are used in this report:

flow area, sq ft
capture area, 5.0741 sq ft

drag coefficient, D/quc
P - Po

pressure coefficient, 3
0

drag, 1b

Mach number

mass flow; slugs/sec

total inlet mass flow, ny + mg, slugs/sec
total pressure, lb/éq ft

static pressure, lb/sq ft

dynamic pressure, % pMz, lb/sq ft

radius
corrected airflow parameter, lb/éec

weight flow, 1b/sec
angle of attack, deg
ratio of specific heats for air, 1.4

ratio of total pressure to NACA standard sea-level static
pressure of 2116 1b/sq ft

ratio of free-stream total temperature to NACA standard sea-level
static temperature of 518.7° R
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07 spike-position parameter (angle between diffuser axis and line
Joining apex of cone to vertical tangent of cowl lip), deg

Subscripts:

a additive

av average

c cowl pressure

max maximum

min minimum

S subinlet

0 free stream

1 cowl lip station

2 compressor-face station

APPARATUS AND PROCEDURE

The inlet nacelle configuration was installed in the 10- by 10-foot
supersonic wind tunnel as shown in figure l(a). Data were obtained at
free-stream Mach numbers of 2.0 and 1.8 and at angles of attack of 09,
30, and 6°. Testing the model at Mach numbers below the facility limit
of 2.0 was achieved by means of compression plates mounted as shown in
figure l(b). The principle of operation of these compression plates is
the same as that discussed in reference 6.

The inlet consisted of a 25° half-angle spike, which could be
translated for airflow regulation, and a blunt-lip cowl. Details of the
inlet and compressor-face instrumentation are shown in figure 2. The
flow-area variation (fig. 3) and the internal geometry of the inlet
(with the exception of the subinlets) were the same as those of the
quarter-scale-inlet model reported in reference 2. Although the outside
contour of the quarter-scale model was not the same as the bottom of the
production nacelle, it was identical to the top of the nacelle (fig.
Z(a)). The bulge on the bottom of the full-scale nacelle provided space
for engine accessories. OStatic-pressure instrumentation was installed
on the spike and cowl lip to provide additive and cowl pressure drag.

The full-scale inlet had three subiniets mounted around the periph-
ery of the main inlet (fig. 4). These inlets provided air for engine
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0il coolers and the ejector. For the cold-flow configuration, however,
the subinlet airflow was bled out of the base around the exit plug. The
subinlet throats were choked at all times, thus simulating the condition
with engine operation. Pressure instrumentation was installed in all
three subinlets. The pressure measurements indicated that each subinlet
handled about 3 percent of the total main-inlet flow.

Airflow was varied with a choked exit plug and was measured by the
static-pressure survey at the plug entrance shown in figure 1. A flow
coefficient of 0.978 was used.

RESULTS AND DISCUSSION

The performance of the subinlets during critical operation of the
main inlet is presented in figure 5. When the spike was retracted at
zero angle of attack, the pressure recovery decreased rapidly because of
the lower energy air around the main-inlet periphery. As the angle of
attack was increased, the bottom subinlet handled extremely low-energy
air as anticipated. Most of the data was taken with the subinlets open;
however, a spot check was made with the subinlets closed at the down-
stream end. A comparison of the profiles in figure 6 indicates that the
subinlets removed low-energy air around the periphery, thereby improving
both distortion and the mean total pressure. At a 6° angle of attack,
flow separation from the bottom of the cowl was removed by the bottom
subinlet.

Figures 7 and 8 present the inlet performance data for free-stream
Mach numbers of 1.8 and 2.0 at angles of attack of 0°, 3°, and 6°. The
results are presented in terms of total inlet (engine plus subinlets)
mass flow and are compared with the quarter-scale results (ref. 2). 1If
the experimental accuracy and the effect of the subinlets are considered,
the agreement is good. The effect of spike extension on peak pressure
recovery (equal to the critical value for this inlet configuration) and
on critical flow distortion are shown in figure 9. As noted previously,
the performance of the full-scale configuration agreed closely with the
quarter-scale results. However, the full-scale-inlet pressure recovery
did not increase as rapidly with spike extension as did that of the
quarter-scale model. The effectiveness of the subinlets in reducing
distortion and in increasing pressure recovery, especially at angle of
attack, is apparent in figures 7 and 9(a).

The inlet performance data presented 1n figures 5 to 9 were obtsained
at a free-stream Reynolds number of 6. 8x106 (based on cowl-lip diameter).
Varying the Reynolds number from 1. 7x106 to 9.2x106 did not affect the
inlet performance when the inlet was not pulsing. The effect of Reynolds
number on inlet stability is reported in reference 3.
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Because of the blunt cowl lip of the inlet, the cowl pressure drag
assumes added importance. A comparison of representative cowl pressure
distribution on top of the nacelle for the full-scale inlet and the
quarter-scale model is given in figure 10. Reasonably good agreement
was obtained, and therefore the integrated cowl pressure drags might be
expected to agree. However, as shown in figure 11, the pressure drags
obtained in this test were lower than those reported in reference 2.
This difference is probably due to more accurate fairing of the pressure
distribution curves near the stagnation point for the full-scale inlet.
Because of differences in the sizes of the two configurations, more in-
strumentation for the full-scale configuration was installed in this
important region. The measured variation of the stagnation point on the
full-scale inlet is presented in figure 12.

Additive drag was computed by means of the method outlined in ref-
erence 7. Pressures on the spike and cowl were measured and integrated,
while pressure recoveries at-the 1lip were assumed. Allowance for the
effect of normal- and oblique-shock locations on the assumed pressure
recovery was made. In addition, an average flow direction at the cowl
was used. The results are presented in figure 13 and are compared with
the theoretical normal-shock and oblique-shock values (ref. 7). For a
given spike position, the drag increased with spillage at the same rate
as the theoretical normal-shock drag. However, for critical operation,
the additive drag decreased as the spike was extended to a spike-position
parameter of 38.3°, even though the amount of spillage increased. This
can be seen qualitatively in figure 14, which shows that, as the spike
was extended, the blunt-lip detachment shock moved closer to the cowl
lip, thus reducing the amount of normal-shock spillage. The associated
normal-shock additive-drag decrease apparently was large enough to more
than compensate for the increase in oblique-shock additive drag.

SUMMARY OF RESULTS

The following results were observed in an investigation of a full-
scale translating-spike inlet at free-stream Mach numbers of 1.8 and 2.0.

1. Bypassing air from around the periphery ahead of the engine-face
station resulted in an increase in inlet pressure recovery and a decrease
in distortion, especially at angle of attack.

2. Inlet pressure recovery and compressor-face distortion agreed
fairly well between the full-scale production inlet and a geometrically
similar quarter-scale model.

3. Although cowl pressure distribution for the quarter-scale and
full-scale inlet configurations agreed reasonably well, the integrated
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pressure drags were gomewhat different. This resulted from more accurate
fairing of the pressure distribution curves in the region of the stagna-
tion point for the full-scale configuration.

4. Measured critical additive drag decreased with spike extension

even though the total spillage was increased. This effect was due to a
decrease in normal-shock spillage around the blunt 1lip as the spike was
extended.

Lewis Flight Propulsion Laboratory

National Advisory Committee for Aeronautics
Cleveland, Ohio, May 20, 1957
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Outgide cowl 1lip

Parallel to nacelle §

Jo f
r\\\\\\“-_____ \ 4______,__———””’f£;ide cowl 1lip

1
|
Station O

Lip coordinates

0 0 0

.010 .030 .036
.025 047 .084
.050 .065 .118
.100 .092 .159
.150 .114 .195
.200 .131 .225
.250 .146 .250
. 300 .158 .276
.400 .176 .318
.500 .188 .360
.600 .196 «399
.T720 .200 431

.800 .450

.900 AT4
1.000 492
1.250 .537
1.500 .564
1.750 .585
2.000 ¢ .596
2.160 .600

(b) Blunt 1ip.
Figure 2. - Concluded. Inlet details. (A1l dimensions in inches.)
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Figure 4. - Main

inlet showing circumferential

NACA RM ES57D16

location of subinlets.
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Ratio of average subinlet total pressure to average compressor-face total pressure, Ps/Pz
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Supinlet location,
ddvnstream view
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a
Horizontal §
L2
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1.0
\o
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(a) Angle of attack, 0°.
1.1
1.0
\\ S —
.9 \ \
\\ b
O N
.8 \
Yo
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(b) Angle of attack, 30.
1.1
D"\r\_
1.0 <
e
o ™~
9 AN
. \\
\\
8 O N |o
N
7
37 38 39 40 41 42 43
Spike-position parameter, 61, deg
(c) Angle of attack, 6°.
Figure 5. - Performance of subinlets during critical

operation of main inlet. Free-stream Mach number,

2.0.
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/——Subinlet

Angle of attack, 09; Angle of attack, 0°;

splke-position param- spike-position param-
eter, 37.40; distor- eter, 37.40; distor-

tion, 12.0 percent tlon, 9.4 percent

Angle of attack, 0°; Angle of attack, 0°;

spike-position param- splke-position param-
eter, 41.6°; distor- eter, 41.6°; distor-

tion, 11.1 percent tion, 10.9 percent

Angle of attack, 6°; Angle of attack, 6%
splke-position param- splke-position param-
eter, 41.6°: distor- eter, 41.6°; distor-
tion, 18.2 percent tion, 12.0 percent
(a) Subinlets closed. (b) Subinlets open.

Figure 6. - Effect of subinlets on local total-pressure recovery
profiles at compressor face. Inlet operating near critical

condition.
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Compressor-face distortion,

Inlet total-pressure recovery,

- Pz,min

Pz,ma.x

z2,av

Figure 7. - Concluded.

Inlet mass-flow ratio, ml/mo

(c) Angle of attack, 6°.

scale results at free-stream Mach number of 2.0.
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Model
Full scale, subinlets
open |
0 Full scale, subinlets
closed
- ==~ Quarter scale
(ref. 2)
.3| Spike-position
parameter, 6,, 41.6 \\ 42.6
degi 4[ A .\‘
39.9 Critical D/ Y
.2 5 N ,5},4// O~‘\c
/) N\ -
//' i \9{\ ;f/
y’ o)
1 A \b'(f Critical
Critical Critical
0
140 160 140 160 180 120 140 160 180
W _‘[9
Inlet corrected airflow, LSE—Z’ lb/sec
.0 T T
W
1 2
F B, 1b/sec
.9 L
/ V
/
L ‘:c& / /
/l 7/ /] gy //
4  / 7 A W
8 / 130 , L s
140 / AN /
| 150 | | 140 ey / |
T 140V P t
150 /] o %
160 150 {60 |
7 .8 .9 T .8 9 7 .8 .9 1.0

Full-scale inlet performence compared with quarter-
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Figure 8. - Concluded. Full-scale inlet
performance compared with gquarter-scale
results at free-stream Mach number of
1.8.
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NACA RM ESTD16

Pressure coefficlent, Cp

[ X2 X X J

2.0 Circumferential position

Vertical — o

tangent

1.6 Roowl 11p

Seclid symbols indicate
quarter-scale model

o l ® o0 o

(a) Spike-position parameter, 41.6

1.6

=
N

__—-q<"1gp-

a

-

0 ®

(b) Spike-position parameter, 39.9°.

(c) Spike position parameter, 37.4°.

Figure 10. - Comparison of full-scale and quarter-scale pressure distributions on
cowl 1ip at supercritical inlet operation. Free-stream Mach number, 2.0; angle
of attack, 0°.
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Figure 11. - Comparison of
full-scale and quarter-
scale cowl pressure
drags. Free-stream Mach
number, 2.0; angle of
attack, 0°.
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Figure 12. - Effect of mass-flow ratio on location of
stagnation point on blunt lip. Free-stream Mach
number, 2.0; angle of attack, 0°.




Additive drag coefficient, Cd,a
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Spike posi-
tion param-
eter, 64,
deg
o 37 .4
(] 38.3
6 <o 39.9
A 41.6
\ Theoretical
5 \\ spillage
’ \ (ref. 7)
\
\ —~--- Oblique shock
\ —-— Normal shock
A
<>A
NN\
.3 \\ \\
\\ \
AW
2 A\
. Qb \t N
- N X\ N
~ ‘ 5*53 \\\
1 =~ R\
<Rk
T \ \
Critical operation3 \\-
b
o [ \§

.6 A .8 .9 1.0
Mass-flow ratio, ml/mo

Figure 13. - Additive-drag characteris-
tics. Free-stream Mach number, 2.0;
angle of attack, 0°.
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Spike-position parameter, Spike-position parameter, Spike-position parameter,
37.4°; inlet mass-flow 39.99%; inlet mass-flow 41.60; inlet mass-flow
ratio, 0.810 ratio, 0.870 ratio, 0.880

(a) Free-stream Mach number, 2.0.

Spike-position parameter, Spike-position parameter, OSpike-position parameter,

38.205 inlet mass-flow 40.79; inlet mass-flow 42.205 inlet mass-flow
ratio, 0.762 ratio, 0.800 ratio, 0.800
(b) Free-stream Mach number, 1.8. C-44755

Figure 14. - Schlieren photos for critical operation. Angle of attack, o°.
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