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EXPERIMENTAL LATERAL VIBRATION CFLARACTERISTICS 

AN EIGHT-CABLE SUSPENSION =STEM 

By John S. Mxson and John J. Catherine 
Langley Research Center 

Resonant frequencies, mode shapes, and damping of a 1/5-scale dynamic model 
of t he  Saturn SA-1 vehicle are presented f o r  two values of s t i f fnes s  of t h e  
eight-cable suspension system and f o r  weight conditions simulating f l i g h t  times 
of t he  fu l l - sca le  vehicle from l i f t - o f f  t o  booster burnout. The eight-cable 
suspension system used i n  t h i s  investigation w a s  designed t o  simulate the  sus- 
pension used i n  the  ground vibration survey of a fu l l - sca le  Saturn vehicle so 
t h a t  model and ful l -scale  vibration resu l t s  could be compared on a "same sus- 
pension" basis. 

It i s  shown herein t h a t  t he  damping of t he  model i s  about t he  same with the  
eight-cable suspension as with t h e  two-cable suspension previously used, and 
t h a t  t he  first bending mode frequency and rocking mode frequency are higher with 
the  eight-cable suspension. The frequencies of t h e  higher modes were not appre- 
ciably affected by suspension-system changes. The f i rs t  bending mode frequency 
and t i p  amplitude exhibited nonl inear i t ies  s i m i l a r  t o  those obtained w i t h  t he  
two-cable suspension. 
decreased the  first bending mode frequency by about 4 percent, which i s  about 
t he  same magnitude as the  increase of first bending mode frequency caused by 
s t i f fen ing  the  suspension system. 

An increase of shaker force from 13 pounds t o  38 pounds 

INTRODUCTION 

A n  investigation of t he  vibration character is t ics  of a 1/5-scale dynamic 

The purpose of t h i s  investigation i s  t o  es tabl ish the  f e a s i b i l i t y  of 
rep l ica  of t he  Saturn SA-1 vehicle has been undertaken a t  Langley Research 
Center. 
using dynamically scaled models t o  obtain vibration data which are necessary 
f o r  the design of complex launch vehicle structures and control systems. I n  
the  i n i t i a l  phase of t h i s  investigation, t h e  resonant vibration frequencies 
and the  associated mode shapes and damping of t he  1/5-scale model of Saturn with 
the  model supported by a two-cable suspension system. The results of t h i s  i n i -  
t i a l  phase of t he  investigation are presented i n  reference 1 and are shown i n  
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reference 2 t o  be i n  reasonable agreement with mode shapes and frequencies of 
the ful l -scale  Saturn, i n  s p i t e  of differences between the two-cable suspension 
used i n  the  tests of t h e  1/5-scale model and the  eight-cable suspension used i n  
t h e  tests of t h e  ful l -scale  vehicle. The.vibration character is t ics  of t he  fu l l -  
scale  Saturn vibration tes t  vehicle are described i n  reference 3 .  

I n  the  phase of t h e  Saturn model investigation described i n  t h i s  report, 
the ef fec ts  of suspension-system variat ions on the  vibrat ion character is t ics  of 
t h e  Saturn model have been studied. The resonant frequencies, mode shapes, and 
damping of t he  l/?-scale Saturn model have been determined with the  model sup- 
ported by an eight-cable suspension system. D a t a  were obtained f o r  two values 
of t h e  suspension-system s t i f fnes s  and f o r  a range of weight conditions simu- 
lating flight t i m e  of t h e  ful l -scale  vehicle from l i f t - o f f  t o  booster burnout. 
The eight-cable suspension used i n  t h i s  phase of the  Saturn model investigation 
w a s  designed t o  simulate the  suspension used i n  the  ground vibration survey of 
a fu l l - sca le  Saturn vehicle so  t h a t  model and ful l -scale  vibration r e su l t s  could 
be compared on a "same suspensiont' basis. 

I n  t h i s  report  the  1/5-scale Saturn model, t he  eight-cable suspension sys- 
tem, and the  procedure f o r  determination of the  mode shapes, frequencies, and 
damping of t h e  model are described; and comparisons of these results with 
r e su l t s  from the  model tests with the  two-cable suspension system are  presented. 
The vibration character is t ics  of the  model presented herein are compared i n  
reference 4 with resu l t s  of t h e  fu l l - sca le  vibrat ion t e s t s .  

DESCRIPTION OF THE 1/5-scm SATURN MODEG 

The 1/5-scale model of Saturn SA-1 i s  shown suspended i n  the vibration t e s t  
tower i n  f igure 1, and a sketch of t he  model showing i t s  dimensions and the  
nomenclature used herein i s  shown i n  f igure 2. A detai led description of the 
model i s  given i n  reference 1. 

The Saturn model i s  388.6 inches (32 f t . ,  4.6 i n . )  i n  overal l  length, and 
weighs about 7,400 pounds when bal las ted t o  simulate the  l i f t - o f f  weight condi- 
t ion.  It consists of three stages and a conical payload section; the  booster 
diameter i s  52 inches. Water w a s  used i n  t h e  model t o  simulate the  m a s s  of the 
f u e l  and lox; and t o  account f o r  t he  density difference between water and f u e l  
o r  lox, t he  model water l eve l  w a s  adjusted t o  obtain a properly scaled t o t a l  
weight. 

The pr incipal  load-carrying s t ructure  of t he  booster (f irst)  stage of the 
model consists of a 21-inch-diameter center tank which i s  firmly attached a t  
t he  lower end t o  t h e  ba r re l  and outrigger structure,  and at  the  upper end t o  
t h e  spider beam and second-stage adapter s t ructure .  E i g h t  14-inch-diameter 
outer tanks are arranged around the  center tank and are attached t o  the outrig- 
gers  and spider beam by two jo in ts  a t  each end of each tank. The ful l -scale  
Saturn i s  designed t o  carry l iqu id  oxygen i n  the  center tank and i n  four alter- 
nating outer tanks having upper jo in t s  which can be adjusted t o  transmit lon- 
g i tud ina l  loads, and thus share the  load with the  center tank. The other four 
outer  tanks of t he  ful l -scale  Saturn carry f u e l  and have an upper jo in t  which 
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w i l l  not transmit longitudinal load. I n  t h i s  report, t he  model outer tanks 
having the  type of upper jo in t  which w i l l  transmit longitudinal loads w i l l  be 
referred t o  as "lox" tanks, and the  outer tanks having the  type of upper jo in t  
which w i l l  not transmit longitudinal loads w i l l  be referred t o  as "fuel" tanks. 

The second stage consists of a cyl indrical  outer s h e l l  which i s  connected 
by means of eight radial truss assemblies t o  an inner water ba l l a s t  tank. The 
second stage i s  attached a t  t he  lower end t o  the  second-stage adapter s t ructure  
.only a t  the  junctures of t h e  eight rad ia l  t russes  with the  outer she l l .  The 
outer she l l  thus forms the  pr incipal  s t ruc tura l  member of t h e  second stage; it 
supports the weight of the  ba l l a s t  tank, which makes up 70 percent of the  second- 
stage weight when water f i l l e d ,  and the  weight of t he  t h i r d  stage and payload 
section. 
supports t he  nose-cone w e i g h t  of 14 pounds, which includes t h e  weight of a 
simulated payload. 

The t h i r d  stage consists simply of a w a t e r  ba l l a s t  tank which a l so  

APPARATUS 

Eight-Cable Suspension System 

A view of t he  Saturn model showing the  eight-cable suspension system i s  
presented i n  f igure 3,  and a sketch showing pertinent suspension-system dimen- 
sions i s  shown i n  f igure 4. The term "eight cable" i s  used as a convenient 
name f o r  t h i s  suspension, the  pr incipal  feature  of which i s  the support of the 
model by cables attached at  the  ends of the  outriggers. For the  model t e s t s  
described herein, cables were attached t o  each of t he  eight outriggers. The 
cables a re  t i l t e d  outward from the  model t o  allow adequate clearance f o r  t he  
support r ing attachments. The system w a s  designed with the  cables attached a t  
equal intervals  around the  support ring so  t h a t  the  points where the  cables 
a t tach t o  the  support ring and the  outrigger would l i e  i n  ve r t i ca l  planes 
through the  model longitudinal center l i ne .  A close-up view showing the attach- 
ment of the cables t o  the  outriggers i s  shown i n  f igure 5 .  It can be seen tha t  
t h i s  suspension does not introduce any appreciable r e s t r a in t  between the outrig- 
gers i n  comparison with the  res t ra in t  imposed by t h e  support yoke of t he  two- 
cable suspension (shown i n  f i g .  7 of ref .  1). 

A pa ra l l e l  bank of s ix  springs i n  ser ies  with each cable s e t  i s  used t o  
reduce the  r e s t r a in t  imposed on the  model by the  suspension. Two ser ies  of 
t e s t s  are reported herein; one with the springs i n  the spring banks and the  

second with each spring replaced by a r ig id  1- inch by 1/4 inch cross section, 

2- inches Long steel  l ink .  Turnbuckles i n  se r i e s  with the  cables w e r e  used t o  

l eve l  t h e  model, center it i n  the  vibration tower, and d is t r ibu te  the weight 
evenly among t h e  eight support points. Total model weight and weight dis t r ibu-  
t i o n  (among support points)  w a s  determined from load c e l l s  i n  series with the  
cables and springs as shown i n  f igure  4. The springbanks, turnbuckle, and load 
c e l l s  are shown from above i n  f igure 6(a) and from below i n  f igure 6(b) .  

G 
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The springs were calibrated individually and t h e i r  spring constants were 
found t o  be 9 0  pounds per inch, with a spread among springs of EL4 pounds per 
inch. The springs were assembled i n  the banks select ively on the basis of 
spring constant so t h a t  a l l  springbanks would have as nearly as possible the  
same overal l  spring constant. The cable assemblies, including the  outrigger 
attachment link, a p a i r  of cables, and a heavy l i n k  simulating the lower spring- 
bank block, were a lso calibrated.  The load-deflection curves were found t o  be 
nonlinear. Cable spring constants f o r  various load invervals are  given i n  the 
following t ab le  : 

- . .. . -. 

Cable constant, lb/inch 
~~ . ~ ~ - 

5,550 
500 t o  6,060 
700 t o  goo 6,670 

7,150 goo t o  1,100 
~. .. _ _  ~ ~ . 

The values f o r  all eight cable pa i r s  a r e  within k3.5 percent of the  given 
value. 

I n  designing t h i s  suspension system t o  simulate the suspension used t o  sup- 
port  the fu l l - sca le  Saturn vibrat ion t e s t  vehicle, two fac tors  were considered. 
F i r s t ,  it w a s  considered important t o  support the  model at  the ends of t he  
outriggers as the  ful l -scale  vehicle w a s  supported; therefore, the load paths 
would be the same f o r  model and fu l l - sca le  vehicles.  Second, it w a s  considered 
important t o  maintain on the  model the same r a t i o  of t he  f i rs t  bending mode f r e -  
quency t o  the  r ig id  body rocking mode frequency as existed i n  the fu l l - sca le  
vibrat ion t e s t s .  It w a s  found t h a t  t h i s  r a t i o  w a s  best  duplicated by replacing 
the  springs i n  the  springbank by r ig id  s t e e l  links. 

Shaker System 

An electromagnetic shaker having a capacity of 50 vector pounds of force 
It w a s  oriented t o  apply the force i n  a plane 

I n  a l l  the  t e s t s  reported herein, 
w a s  used t o  vibrate  the  model. 
containing two opposite booster f u e l  tanks. 
the  shaker force w a s  applied through a block attached t o  the bottom of the  cor- 
rugated bar re l  as shown i n  f igure 7. With t h i s  arrangement, the shaker force 
w a s  applied at  s t a t ion  20, t he  gimbal plane. Shaker force w a s  recorded from 
the  output of the load c e l l  shown i n  f igure 7. 
force w a s  determined from a counter operating on the  shaker armature current. 

The frequency of the  exci ta t ion 

Instrumentation 

Vibration deflections, frequency, and damping of the  model were deter-  
mined from unbonded strain-gage accelerometers having natural  frequencies 
ranging from 90 cycles per second t o  300 cycles per  second and damping of about 
two-thirds of the  c r i t i c a l  damping. The locat ion of the accelerometers fixed 
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t o  the  model are shown i n  f igure 8 and typ ica l  accelerometer ins ta l la t ions  on 
t h e  model a re  shown i n  figures 5, 6, and 7. 
erometers, an accelerometer provided with a vacuum attachment, such as described 
i n  reference 5, w a s  used as a portable pickup t o  determine the  direct ion of 
motion of t he  outer booster tanks. The accelerometer outputs, i n  addition t o  
t h e  shaker load c e l l  output, w a s  recorded on an oscillograph. 

I n  addition t o  these fixed accel- 

I n  addition t o  t h e  instrumentation required t o  measure dynamic response, 
s t r a i n  gages were placed on a l l  four booster outer lox tanks t o  measure s t a t i c  
longitudinal load. Four s t r a i n  gages were placed around the  periphery of the  
midstation of each tank and were used t o  measure the  compressive load resulting 
from adjustment of t he  lox  tank upper jo in ts .  

PROCEDURE 

For each suspension configuration (spring o r  l ink) ,  the  turnbuckles w e r e  
adjusted u n t i l  the  model w a s  ve r t i ca l  (checked by t r a n s i t ) ,  centered i n  the  
tower structure, and t h e  w e i g h t  divided as evenly as possib1e.amon.g a l l  eight 
suspension points.  The lox tank upper jo in ts  were adjusted u n t i l  t he  outer lox 
tanks supported 40 percent of the  upper-stage weight. The remaining 60 percent 
w a s  supported by the  booster center l ox  tank. 
of the  she l l  vibration modes and thus decrease t h e i r  interference with the  
bending modes, a pressure of 5 pounds per square inch w a s  maintained i n  the  
third-stage and booster outer tanks, and 10 pounds per square inch i n  the  
booster center lox tank. 

I n  order t o  raise t h e  frequencies 

For a l l  tests reported herein, the  second and t h i r d  stages of the  model 
were maintained fully bal las ted with water, and d i f fe ren t  vehicle configura- 
t i ons  were obtained by varylng the  water l eve l  i n  the  booster. Results were 
obtained f o r  f i v e  water leve ls  with the  spring suspension and three water leve ls  
with the  l i n k  suspension. 
table.  These values do not include the  weight of t he  outrigger attachment l inks  
(2.0 pounds each), t he  cables (5.0 pounds f o r  each pair) ,  o r  t h e  spring banks 
(23.3 pounds each). 

!I'he measured model weight i s  given i n  the  following 

suspension TI 
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The water l e v e l  at the  l i f t - o f f  weight condition i s  termed the  100-percent- 
f u l l  condition; the booster tanks are  not completely f u l l  i n  t h i s  condition. 
The designations of t h e  other weight conditions a r e  given i n  terms of percent 
of the  l i f t - o f f  w e i g h t .  

A t  each weight condition f o r  both suspensions, t he  rigid-body suspension 
system frequencies and mode shapes were determined, and the  results a re  shown 
i n  tab le  I. 
deflect ion at  s t a t ion  60 divided by the  def lect ion at s t a t ion  386 because the 
suspension-system mode shapes were s t r a igh t  l i n e s  within the  accuracy of the  
instruments . 

The mode shapes given i n  t ab le  I are presented i n  terms of t h e  

. The approximate frequencies of t he  model resonances were determined by 
varying the  frequency of the  shaker input force  from about 10 cycles per second 
t o  about 50 cycles per second while recording the  outputs of t he  fixed accel- 
erometers on an oscillograph. Each resonance thus discovered w a s  then careful ly  
tuned i n  and t h e  frequency, mode shape, and damping recorded. The frequency and 
mode shapes were determined from the  fixed accelerometers and the  outer tank 
motions were determined by means of t h e  portable accelerometer. The damping of 
the  model w a s  obtained by cutt ing the  input s ignal  t o  the shaker a t  the resonant 
frequency of i n t e r e s t  and recording the output of selected fixed accelerometers 
on the  oscillograph. The amplitudes were read from the  oscillograph and plot ted 
on semi-logarithmic paper and a s t ra ight  l i n e  f a i r ed  through the  points.  
damping f ac to r  g w a s  obtained from the  relat ion:  

The 

g = -  XO log, - 
M Xn 

where 

n number of cycles 

XO i n i t i a l  vibration amplitude 

Xn amplitude a f t e r  n cycles 

RESULTS AND DISCUSSION 

Frequencies, Mode Shapes, and Damping 

The experimentally determined resonant frequencies and the  associated 
damping of the  l/?-scale Saturn model with the  eight- cable suspension system 
a re  summarized i n  t ab le  11. The var ia t ion of the  resonant frequencies with 
booster water l e v e l  i s  presented i n  f igure 9. 
f igures  10 t o  16. 

The mode shapes a re  presented i n  

I n  f igure  9 resonant frequencies of the  Saturn model a re  presented from 
the  t e s t s  with the  eight-cable spring suspension, the  eight-cable l i n k  suspen- 
sion, and the  two-cable suspension (obtained from ref. 1). A s  a convenient way 
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t o  make the var ia t ion of frequency with water l e v e l  ea s i e r  t o  see, the curves 
shown i n  t h i s  f igure were f a i r ed  through the  frequencies of modes obtained with 
the  eight-cable spring suspension ( the  c i rcu lar  symbols) whose shapes have the 
same character is t ics  f o r  the  various booster water leve ls .  ( A t  the 48-percent- 
f u l l  water level,  no second bending mode w a s  ident i f ied  with the  spring suspen- 
sions; therefore, the curves were f a i r ed  through the  frequencies obtained with 
the  eight-cable l i n k  suspension.) 
at  approximately the  same frequency f o r  d i f fe ren t  suspension systems and f o r  a 
given booster water l eve l  had the same general character is t ics .  For example, 
the  mode shapes associated with the curve designated i n  f igure 9 as "first 
bending mode" a re  shown i n  f igure 10 t o  have the same general shape f o r  both 
suspension systems and f o r  all booster water leve ls .  If the  convention of ref- 
erence 1 i s  followed, t h i s  mode is  termed a bending mode because the  booster 
outer tank deflections a re  predominantly i n  the  same direct ion with about the 
same amplitude as the  deflection of the center tank. 
bending because of i t s  resemblance t o  the  first bending mode of a uniform beam. 
Figures 11 and 12  show t h a t  each c lus te r  mode has the  same general characteris- 
t i c s  f o r  both suspensions and f o r  t he  various booster water levels .  
modes a re  so  named, a l s o  following the  convention of reference 1, because the 
booster-outer-tank deflections a re  predominantly i n  the  opposite direct ion from 
the deflections of the  center tank. 
i s  distinguished from the  second c lus te r  mode, shown i n  f igure 12, by the  s m a l l  
curvature i n  the  center-line def lect ion of t he  first c lus te r  mode compared with 
the  la rge  curvature of the  center-line def lect ion of t he  second c lus te r  mode. 
A t  booster water leve ls  up t o  48 percent full,  t he  Saturn model exhibited two 
separate responses with mode shapes which could be called second bending modes. 
One group of these modes i s  designated "second bending mode, group 1," and i s  
shown i n  f igure 13, and the  second group i s  designated "second bending mode, 
group 2"" and i s  shown i n  f igure 14.  Figures 13 and 14  show t h a t  the  booster- 
outer-tank deflections i n  both groups of modes a re  predominantly i n  the  same 
direct ion as the  center-tank def lect ion and, thus, i n  the  convention of refer-  
ence 1, both groups of modes are bending modes. 
separated in to  the  groups on the basis of the mode shape of the second-stage 
inner tank. 
small curvature i n  the  second-stage inner tank, and those placed i n  group 2 
had la rger  curvature i n  t h e  second-stage inner tank. 
mode which had a somewhat d i f fe ren t  shape f o r  the d i f fe ren t  suspensions, i s  
shown i n  f igure l3(a). The mode shown i n  f igure l3 (b)  f o r  a l i nk  suspension 
has large curvature i n  the  second-stage inner tank but w a s  included i n  group 1 
because i t s  frequency w a s  nearly ident ica l  t o  t h a t  of t he  corresponding mode 
with the  spring suspension, shown i n  f igure l3(a) f o r  a spring suspension. 
Figures 13 and 14 both show la rge  differences between the  def lect ion of t he  
second-stage inner tank ( the  triangular symbols) and the second-stage outer 
s h e l l  ( the  c i rcu lar  symbols between s ta t ions  196 and 280). 
a t t r ibu ted  t o  s h e l l  motion i n  the second stage such as described i n  reference 1. 
The outstanding charac te r i s t ic  shared by the  outer tank modes, shown i n  f ig -  
ure 15, i s  the la rge  deflections of the booster outer tanks compared with the 
def lect ion of the center l i n e .  The miscellaneous mode shapes shown i n  f ig-  
ure 16 a re  associated with the  resonances which appeared only at  one weight con- 
dit ion; the  frequencies of these modes a re  shown i n  f igure 9 without any fa i red  
curves. 

I n  nearly every case the  mode shapes obtained 

The mode i s  termed "first" 

The c lus te r  

The f i r s t  c lus te r  mode, shown i n  f igure 11, 

For t h i s  report the modes were 

The mode shapes placed i n  group l w e r e  those which had re la t ive ly  

A n  exception, and a l so  a 

This e f f ec t  is  

7 



Comparison of t h e  number of modes ident i f ied  with t h e  two-cable suspension 
( the  square symbols i n  f i g .  9) with the  number ident i f ied  with the  eight-cable 
spring suspension ( the  c i rcu lar  symbols) shows t h a t  about 10 more modes w e r e  
ident i f ied  with the  eight-cable suspension. This difference i s  thought t o  be 
due primarily t o  grea te r  instrument coverage rather  than t o  a difference of sus- 
pension. 
shaker frequency over t h e  desired range while t he  outputs of the  fixed accel- 
erometers were recorded. For the  two cable tests the  model had accelerometers 
fixed only t o  the booster center tank and the  upper stages; however, f o r  the  
eight-cable tests there were additional accelerometers f ixed t o  the  booster 
outer  tanks. Thus, modes which consisted primarily of outer tank motion, with 
s m a l l  center-line motion, would not be as easily discovered i n  the  two-cable 
tests (with no outer tank accelerometer) as i n  the  eight-cable tests. 
t i o n  of t he  mode shapes associated with the  frequencies which were ident i f ied 
i n  the  eight-cable t e s t s  but not i n  the  two-cable tests ( the  outer-tank modes, 
f i g .  13, f o r  example) shows t h i s  t o  be the  case; most of these modes exhibit 
l a rge  outer tank deflections and re la t ive ly  s m a l l  center-line deflection. 

The tes t  procedure with both suspensions consisted of a sweep of 

Examina- 

The ef fec t  of suspension system changes on the  frequency of the  first 
bending mode i s  shown i n  f igure 9. Comparison of t he  frequencies obtained f o r  
t h e  first bending mode with the  two-cable suspension ( the  square symbols) with 
those obtained with the  eight-cable-spring suspension ( the  c i rcu lar  symbols) 
shows a m a x i m u m  increase of about 4.6 percent. The eight-cable-link suspension 
i s  shown t o  increase the  first vehicle bending mode frequency by about 10 per- 
cent over t he  two-cable frequencies. The r a t io s  of t he  rigid-body rocking f re -  
quency t o  the  first bending mode frequency f o r  t he  two-cable suspension, the 
eight-cable spring, and the  eight-cable l i n k  suspensions were 0.02, 0.08, and 
0.15, respectively. 
suspension indicates t h a t  t he  f i rs t  vehicle bending mode frequency obtained 
with two-cable suspension has t h e  s m a l l e s t  suspension ef fec ts  and i s  the  near- 
est of these three t o  t h e  free-free frequency of t h e  model. The f a c t  t h a t  the 
frequencies of t he  higher modes shown i n  figure 9 do not display any consistent 
var ia t ion with suspension-system changes indicates  t h a t  the  suspension system 
has l i t t l e  e f fec t  on the  frequencies of these higher modes. 

The f ac t  t ha t  t h i s  r a t i o  i s  the  smallest f o r  t he  two-cable 

I n  tab le  I11 values of the  damping fac tor  g are given f o r  t he  f irst  four 
pr incipal  modes at  f i v e  weight conditions with the  two-cable suspension and 
with the  eight-cable suspension with springs and with l inks .  Where two values 
of g a re  given f o r  a par t icu lar  mode, w e i g h t  condition, and suspension, the  
l a rge r  value w a s  measured ear ly  i n  the  decrement whereas the  smaller value w a s  
measured a f t e r  t h e  vibration amplitude had decreased considerably. 
t ab l e  I11 shows t h a t  t he  model damping decreased as the  vibration amplitude 
decreased. Two values of damping are shown i n  t ab le  111 for several modes with 
both suspension systems which indicate t h a t  the  var ia t ion of damping with vibra- 
t i o n  amplitude is  not primarily a suspension-system effect .  
shows t h a t  f o r  most modes the  damping values obtained with the two different  
suspensions are of t he  same order of magnitude. 

Thus, 

Table 111 also 
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Nonlinear EPfects 

i 

. A short investigation of the  e f fec t  of shaker-force magnitude on the model 
response i n  the  frequency range of t he  first bending mode has been conducted and 
some of t he  r e su l t s  a r e  shown i n  f igure 17. The var ia t ionwi th  frequency of 
the  r a t i o  of t i p  def lect ion t o  shaker force i s  shown f o r  shaker input forces of 
13 and 38 pounds f o r  t he  eight-cable suspension with springs ( f i g .  l 7 ( a ) )  and 
f o r  t he  eight-cable suspension with links ( f ig .  l 7 ( b ) ) .  
t h a t  the  e f fec t  of the  force increase from 13 t o  38 pounds i s  t o  decrease the 
magnitude of the peak and t o  s h i f t  the  frequency of the  peak from 10.65 cycles 
per second t o  10.2 cycles per second. 
force w a s  a l so  reported i n  reference 1 with the  two-cable suspension system. 
The decrease of frequency shown i n  figure l7(a) i s  about 4 percent, which is  
about the  same magnitude as the  difference shown i n  f igure 9 between the  f i r s t  
mode frequencies obtained with the  two-cable and eight-cable spring suspensions. 
(The first-mode frequencies shown i n  f igure 9 were obtained with shaker force . 
inputs of l e s s  than 18 pounds except f o r  the first mode with the  two-cable sus- 
pension system at  the  booster empty and f u l l  conditions.) A more complicated 
e f f ec t  of shaker force var ia t ion  i s  shown i n  f igure l7 (b ) .  
a re  three d i s t i n c t  amplitude peaks, and the increase of force not only s h i f t s  
the frequency of each peak downward but a l so  changes the magnitude of each peak 
d i f fe ren t ly .  Thus, with the highest peak taken as the  first mode, the increase 
of force from 13 pounds t o  38 pounds decreased the  frequency from 11.6 t o  
10.8 cycles per second, a change of about 7 percent. It can be concluded from 
f igure 17 t h a t  changes of the  input force can cause var ia t ions of the  f i r s t  
bending mode frequency which a re  about the  same magnitude as  changes caused by 
suspension system changes. 

Figure l7(a)  shows 

A decrease of frequency with increase of 

For each force there  

Frequency-response curves were a l so  obtained with the  booster 75 percent 

The maximum deflect ion i n  inches per pound and the cor- 
f u l l ,  and t h e i r  overal l  appearance w a s  similar t o  the appearance of the  curves 
shown i n  f igure l7(a).  
responding frequency obtained from these curves, as well as the  curves of f ig-  
ure 17, are shown i n  the following table:  

Weight, 
percent f u l l  

75 
75 
100 
100 
100 
100 

75 
75 
100 
100 

Force, 
l b  pe&, 1 deflection, 

i n .  /lb 

Frequency of 

CPS 

I Eight- cable l i n k  suspension 

12.8 
12-93 
ll.10 
11.6 
10.8 
11.6 

0.0044 

.0024 

.0030 

.0018 

Eight-cable spring suspension I 
13 
38 

. 13 
38 

12 * 35 
11.80 
10.65 
10.2 

9 



This t ab le  shows t h a t  f o r  both suspension systems and both weight condi- 
t i ons  the e f f ec t  of increasing the  shaker force i s  t o  decrease the  frequency at 
the  maximum deflection, and t o  e i the r  not change o r  decrease the  maxi” deflec- 
t i o n  i n  inches per  pound. These nonlinear e f f ec t s  are similar i n  character t o  
those obtained from t h e  m o d e l  with the  two-cable suspension (described i n  
ref. 1); therefore, the  nonl inear i t ies  are not en t i r e ly  caused by a par t icu lar  
suspension system o r  by some charac te r i s t ic  of a pa r t i cu la r  weight condition. 

CONCUTDING REMARKS 

An investigation of t he  vibrat ion charac te r i s t ics  of a 1/5-scale model of 
the  Saturn SA-1 vehicle supported by an eight-cable suspension system has been 
performed at  Langley Research Center and the  r e s u l t s  are reported herein. The 
suspension system used i n  t h i s  investigation w a s  designed t o  simulate the sus- 
pension used i n  the  vibrat ion survey of a fu l l - sca le  Saturn a t  Marshall Space 
Fl ight  Center . 

Comparisons a re  presented herein of t he  frequencies and damping of t he  
model with an eight-cable suspension with those obtained with a two-cable sus- 
pension. 
damping with both suspensions and the  first bending mode frequency increased as 
the  rigid-body rocking frequency w a s  increased. 
quency w a s  lowest with the  two-cable suspension, w a s  about 4.6 percent higher 
with the  eight-cable spring suspension, and w a s  about 10 percent higher w i t h  the  
eight-cable l i n k  suspension; the respective values of t he  r a t i o  of the  r ig id  
body rocking frequency t o  the  first bending mode frequency were 0.02, 0.08, 
and 0.13. The first bending mode frequency obtained with the  two-cable suspen- 
sion has the  smallest suspension e f f ec t s  (because the  rocking-bending frequency 
r a t i o  i s  smallest)  and i s  therefore the nearest of these three  t o  the  free-free 
frequency of the  model. 
by the  suspension-system changes. 

These comparisons show t h a t  t he  model had approximately the  same 

The first bending mode f re -  

The higher mode frequencies appeared t o  be unaffected 

The resonant frequency and t i p  amplitude of the  first bending mode of the  
model with the  eight-cable suspension a re  shown t o  exhibit  nonlinear charac- 
t e r i s t i c s  similar t o  those obtained from the  model with the  two-cable suspen- 
sion. An increase of shaker force from 13 pounds t o  38 pounds decreased the 
f irst  bending mode frequency by about 4 percent, which is  about the  same magni- 
tude as t h e  increase of first-mode frequency caused by s t i f fen ing  t h e  suspension 
system. , 

, 
Langley Research Center, 

National Aeronautics and Space Administration, 
Langley Station, Hampton, Va., June 5, 1964. 
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TABU I.- RIGID BODY MODES OF THE l/5-SCKIX SATURN MODEL 

WITH THE EXGHT-CABLE SUSPENSION 

I Pendulum mode 

Weight 

hP tY 

Rocking mode 

1 5 percent 

1.60 
~ 2.50 

1.00 

0.95 
1.85 

~~- 

48 percent full 

'75 percent f 'ull  

100 percent f u l l  

Suspension 

5 
Spring 
Link 

Frequency, 

0.93 

0.93 
1.76 

- 

GO 
(*I 

-0.92 
-1.00 

-0.62 

- .43 

= ____ 

.- 

-0.44 

-0.40 

-0.36 
-.30 

~~ __ 
*., 

X6f Deflection at s t a t ion  60 divided by def lect ion at s t a t ion  386. 

1 2  

- . 



TABLE 11.- OF FREQUPNCIES AND DAMPING OF TBE l/>-SCALE SATURN MODEL WITH THE EIGHT-CABLE SUSPENSION SYSTpl 

Frequency, Damping, Frequency, 
CPS 

Mode 
C P S  

Frequency, Damping, Frequency, Damping, Damping, Frequency, Damping, 
g .-, CPS 

Spring suspension Spring Link Spring Link Spring Link Spring suspension Spring Link Spring Link 

Fuel tank no. 1 

F i r s t  bending 

F i r s t  bending 
and ou te r  
tank 

Booster 

F i r s t  c l u s t e r  

Second c l u s t e r  

Second bending 

Second bending 

Second bending 
and ou te r  
tank 

Outer tank 
second 
bending 

\Third bending I ---- 

25.2 

13.8 

2 l . O  

-___ 
31.8 

47.0 

38.5 

43.7 

29.6 

---- 

---- 
50.4 

0.006 

* .os ,  .016 

.013 

spring Link 

----- 0.01 

0.030 . o i  
_ _ _ _ _  ----- 

----- A 
*The l a r g e  value of g was measured f o r  l a r g e  values  of decaying amplitude; t h e  s m a l l  value of g was measured f o r  smaller  amplitudes. 



TABLE: 111.- COMPARISON OF DAMPING OF l/?-SCALE SATURN MODEL 

Booster, 
empty 

(burnout ) 

WITH TWO-CABLE: AND EXGEI'-CBIX SUSPENSIONS 

Booster, 
Booster, 48 percent 

25 percent f u l l  
f u l l  ( m a x i "  Q) 

Values given are f o r  g = 1 

Fi r s t  bending mode 

Booster, 
75 percent 

Full 

Booster, 
100 percent 

fu l l  
( l i f t o f f )  

Two-cable 
Eight-cable: Spring 

Link 

r 1 Two-cable 
Eight-cable: Spring 

Link 

0.030, 0.017 
*.032, .015 

.030 

* I 

1 

F i r s t  c luster  mode 

*0.033, 0.025 ~ 

01 
.030 

* 0.025, 0.015 
,021 

~~ ~~~ 

Second cluster  mode 
I I 1 I I 

*o .022, 0.016 
0 012 

0 . 014 
.015 
.018 

Second bending mode 

Two-cable 
E i g h t  -cable: Spring 

Link 

*O. 039, 0.019 
.017 

The large value of g was measured f o r  large values of decaying amplitude; the small * 
value of g was  measured f o r  smaller amplitudes. 



Figure 1.- The 1/5-scale Saturn model suspended i n  vibration t e s t ing  tower. L-61-4079 



I 

I 
I 

I , 1 1 1  ,, , , ., , . , .___.... . . ~ 

1 -  
I 

Model station, in. 

177.9 

37.9 

21.0 

0 

Payload nose cone 

Third - stage water ballast 
tank, 24-inch diameter 

Third -stage adapter structure 

Second -stage outer shell, 
+-inch diameter 

Second -stage water ballast 
tank, 22-inch diameter 

Second -stage adapter structure 
Spider beam 

Booster tanks, 52 inches 
overall diameter 

Corrugated barrel and 
outrigger structure 

Engines 

Figure 2. - General configuration dimensions, and nomenclature of l/g-scale model of  Saturn SA-1. 
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L-62-5089 .i 
Figure 3 . -  Booster a rea  of 1/5-scale Saturn model showing eight-cable suspension system. I 



29.8" 
I 

Spider beam + 

Support ring + 

Booster tanks J 

I 

I 

I 

1 

Barrel dnd 
outrigger 
structure 

I - 25.4" - 

t I E 

- 

- Load cel 

- Springs 

- Cables 

134.5" 

/ - Outrigger 
attachment 
link 

- Station 24.4 

Figure 4.- Eight-cable suspension-system dimensions. All dimensions are in inches. 
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Figure 5.- Eight-cable suspension attachments to outriggers of 1/5-scale Saturn model. L-62-5095.1 



(a )  Top view. L-62-5099.1 

(b)  Bottom view. L-62-5098.1 

Figure 6.- Spring bank area of eight-cable suspension. 



L-62-5100 .i 
Figure 7.- B a r r e l  area of 1/5-scale Saturn model showing shaker-rod attachment. 

~ 
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D Accelerometer - Shaker direction 

Model station, in. 

Section B-B 

148 

I I O  

62 

Engine 

A t 
View A-A 

Figure.8.- Location of accelerometers on 1/5-scale Saturn model for tests with the eight-cable 
suspension. 
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Suspension 
0 Two-cable (ref. I )  

I Figure 

0 spring 
A link 

Eight- cable { 
Third cluster 

( fig. I6 (b)) 
0 

(fig. I6 (a) )  \ -  

Third bending 
(fig. 16(g)) 

Outer- tank 
second bending 
(fig. I6(e), I6(f)) 

Second bending 
Group I 
( fig. 13) 

Second cluster 
( fig. 12) 

First cluster 
( fig. I I ) 

First bending 
( fig. IO) 

I -  1 1 1 I I 
0 20 40 60 80 100 

Booster water level, percent full 

9.- Variation of resonant frequencies .of the  l/5-scale Saturn model with booster water level .  
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0 40 80 

1 0 Booster tank 3 
1 o Engine 

1 160 

I 
I 

I 

I 
I 

.I 
k 

1 
I 

200 

o Center line 
Second-stage inner tank 

~ o Booster tank I 
~ o Booster tank 2 

240 28( 320 36 
Model station, in. 

(a) Booster tank empty; spring suspension. 

0 40 80 120 160 ~ 200 240 280 320 360 400 

Frequency: 14.0 cps 
Damping, g: 0.035, 0.017 
Force: 15.19 Ib 
Tip deflection: 0.0504 in. 

(1.01 G units) 

+ 
Station 58 

Frequency: 14.7 cps 
Damping, g: 0.035, 0.023 
Force: 9.05 Ib 
Tip deflection: 0.0299 in. 

(0.66 G units) 

Station 60 

Model station, in. 

(b )  Booster tank empty; link suspension. 

Figure 10.- F i r s t  bending mode of 1/5-scale Saturn model. 
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l o [  
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5 E  

p - O / I  

- 5 1  

I 

2 1  
$ I  

-10, 
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) Center line I I  
i Second-stoge inner tank# 
) Outer tank I 
> Outer tank 2 
3 Outer tank 3 
> Engine 

40 80 I20 160 200 240 280 320 360 400 
Model station, in. 

( c )  Booster tank 25 percent full; spring suspension. 

Figure 10.- Continued. 

Frequency: 13.8 cps 
Damping, g: 0.031, 0.017 
Force: 15.67 Ib 
Tip deflection: 0.0401 in. 

(0.78 G units) 

6 
Station 53 
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I .o 

l l l l l l  

! inner tank 
I 
2 
3 

0 40 80 120 160 200 240 280 
! .  I. 
360 400 

6 
Frequency: 13.6 cps 
Dampingi g:  0.035, 0.011 
Force: 10.8 Ib 
Tip deflection: 0.032 in. 

(0.60 G units) 

r 
Station 60 

Model station, in. 

(a) Booster tank 48 percent W; spring suspension. 

320 360 
Model station, in. 

( e )  Booster tank 48 percent full; link suspension. 

Figure 10.- Continued. 

. 

Frequency: 14.1 cps 
Force: 9.2 Ib 
Tip deflection: 0.027 in. 

(0.55 G units) 

Statio!! 50 

400 
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. . . .  
o center line 
A Second-stage inner tonk 
0 Bwster tonk I 
0 Booster tank 2 
0 Booster tank 3 
0 Engine 

0 40 80 120 160 200 240 280 320 360 400 
Model station, in. 

Frequency: 12.3 cps 
Domping, g: 0.037, 0.015 
Force: 17.6 Ib 
Tip deflection: 0.052 in. 

(0.8 G units) 

4 
Station 50 

(f) Booster tank 75 percent h; spring suspension. 

Figure 10.- Continued. 
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A Second-staae 
o Booster t a k  I 
o Booster tank 2 

Booster tank 3 
o Engine 

I ! l ! l  

inner tank 

320 36 ) 200 240 28( 
Model station, in 

( g )  Booster tank W; spring suspension. 

120 160 200 240 280 32( 
Model station. in. 

Frequency: 10.7 cps 
Damping; g: 0.031 
Force: 17.0 Ib 
Tip deflection 0.061 in. 

(0.71 G units) 

+ 
Station 60 

400 

Frequency: 11.7 cps 
Damping; g: 0.01 
Force. 9.6 Ib 
Tip deflection. 0.031 in. 

(0.44 G units) 

1 
Station 60 

60 400 

(h)  Booster tank full; l i nk  suspension. 

Figure 10.- Concluded. 
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80 I20 160 200 

I I I I I I I I I I l l  
o Center line 
A Second-stage inner tonk 
0 Boaster tank I 
0 Booster tank 2 
0 Booster tonk 3 
0 Engine 

240 280 320 360 400 

Frequency: 31.8 cps 
Damping, 9: 0.022 
Force: 15.9 Ib 
Deflection of tank 2 

at station 110: 0.013 in. 
(1.31 G units) 

! 
Station 58 

Model station, in 

(a) Booster tank 25 percent full; spring suspension. 

Figure ll.- F i r s t  c lus te r  mode of 1/5-scale Saturn model. 
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(b) Booster tank 
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160 200 2 4 0  280 
Model station, in. 

360 . 4 0 0  

8 percent f'~ll; spring suspensic- 

0 40 80 120 160 200 240 2 8 0  320 360 400 
Model station, in. 

( c )  Booster tank 48 percent full; link suspension. 

Figure ll.- Continued. 

Frequency: 25.5 cps 
Damping; g: 0.031 
Force: 10.5 Ib 
Tip deflection, 0.0044 in. 

(0.29 G units) 

Frequency: 26.3 cps 
Force: 9.6 Ib 
Tip deflection: 0.0033 in. 

(0.235 G units) 

n 

t 
Station 70 
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80 I20 I60 x)O 240 280 320 360 400 
Model station, In 

( a )  Booster tank 75 percent full; spring suspension. 

Figure 11.- Continued. 

Frequency: 20.75 cps 
Damping, g: 0.021 
Force: 18.2 Ib 
Tip deflection: 0.007in. 

(0.31 G units) 

t 
Station 60 
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( e )  Booster tank 100 percent full; spring suspension. 

0 40 80 120 160 200 240 280 320 360 400 
Model station, in. 

Frequency: 18.65 cps 
Damping; g :  0.028, 0.017 
Force: 17.6 Ib 
Tip deflection. 0.0068 in. 

(0.24 G units) 

t 
Station 68 

Frequency: 18.9 cps 
Force: 11.5 Ib 
Tip deflection: 0.0027 in. 

(0.10 G units) 

I 
Station 70 

( f )  Booster tank 100 percent f b l l ;  l i nk  suspension. 

Figure 11.- Concluded. 
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40 

I I I I I I l l  
Center line 
Second -stage inner 
Booster tank I 
Booster tank 2 
I r tank 

(a) Booster tank 25 percent full; spring suspension. 

Figure 12.- Second c lus t e r  modes of 1/5-scale Saturn model. 

Frequency: 470 cps 
Damping, g. 0.013 
Force: 13.7 Ib 
TIP deflection. 00019 in. 

(0 .43  G units) 

t 
Stotion 78 

80 120 160 200 240 280 320 360 400 
Model station, in 
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Frequency: 34.7 cps 
Damping, g :  0.01 
Force: 17.3 Ib 
Tip deflection: 0.00065 in. 

(0.08 G units) 
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Statio; 70 

0 40 80 120 160 200 240 280 320 360 400 
Model station, in. 

( e )  Booster tank 48 percent full; l i nk  suspension. 

Figure 12.- Continued. 

Frequency: 35.0 cps 
Force: 10.7 Ib 
Tip deflection: 0.0004 in. 

(0.05 G units) 

4 
Station 78 
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I I I I I I I I I I I  
Center line 
Second-stoge inner tank 
Booster tank I 
Booster tank 2 
Booster tank 3 
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0 40 80 I6C 240 280 320 360 400 
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Frequency: 27.7 cps 
Domping, g: 0.014 
Force: 16.7 lb 
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(0.44 G units) 
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(a) Booster tank 75 percent full; spring suspension. 

Figure 12.- Continued. 
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Model station, in. 

( e )  Booster tank 100 percent full; spring suspension. 
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320 360 400 
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Damping, g: 0.015 
Farce: 15.8 Ib 
Tip deflection: 0.0029 in. 
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( f )  Booster tank 100 percent full; l i nk  suspension. 

Figure 12.- Concluded. 
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Figure 13.- Second bending mode of 1/5-scale Saturn model. Group 1. 
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Figure 13.- Continued. 
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Figure 13.- Continued. 

Frequency: 38 5 cps 
Force: 13.0 Ib 
Tip deflection: 000073 in. 

(0.1 I G units) - 
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Figure 13.- Continued. 
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Figure 13.- Concluded. 
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Figure 14.- Second bending mode of l/>-scale Saturn model. Group 2. 
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Figure 14.- Continued. 
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Figure 14.- Concluded. 

Frequency: 43.4 cps 
Force. 12.7 Ib 
TIP deflection. 0.00052 in 

(O.IOG units) 
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(b) Booster tank 25 percent fWL; spring suspension; outer tank only. 

Figure 15.- Outer-tank modes of 1/5-scde Saturn model. 
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Figure 15.- Continued. 
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Figure 15.- Concluded. 

Frequency: 9. I cps 
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Deflection of tonk I 

at station I IO: 0.079 in. 
(0.67 G units) 
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Station 58 

Frequency: 9. I cps 
Damping, g : 0.008 
Force: 14.0 Ib 
Deflection of tank I 

at station 110: 0,069 in. 
(0.58 G units) 
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(b)  Booster tank 25 percent f'ull; spring suspension; t h i r d  c lus te r  mode. 

Figure 16.- Miscellaneous modes. 
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(a) Booster tank 48 percent full; booster mode; l i n k  suspension. 

Figure 16.- Continued. 
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( f )  Booster tank full; outer-tank second bending mode; l i n k  suspension. 

Figure 16. - Continued. 
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Figure 17.- Frequency response of Saturn model. 
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