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RADIOMETRIC OBSERVATIONS OF THE EARTH'S HORIZON 

FROM ALTITUDES BETWEEN 300 AND 600 KILOMETERS 

By Thomas B. McKee, Ruth I. Whitman, 
and Charles D. Engle 

Langley Research Center 

SUMMARY 

Results from theoret ical  calculations and experimental measurements of sun- 
lit horizons i n  the middle u l t rav io le t  region ( 0 . 2 3 ~  t o  0 . 3 ~ ) ~  the v is ib le  
region ( 0 . 2 9 ~  t o  1.0~) and the near infrared region ( 0 . 7 5 ~  t o  3 . 0 ~ )  are pre- 
sented. Experimental measurements a re  presented i n  the f a r  infrared region 
( 1 . 8 ~  t o  2 5 ~ ) .  
flown on a Javelin rocket from the NASA Wallops Station. 

The data were obtained with a four-channel radiometer which w a s  

Results indicate the horizons i n  the 0 . 7 5 ~  t o  3 . 0 ~  spectral  band are  
strongly affected by clouds. Horizons i n  the  0 . 2 9 ~  t o  1.0~ spectral  band are  
located a t  s l igh t ly  higher a l t i tudes  than those of the 0 . 7 5 ~  t o  3 . 0 ~  spectral  
band and f o r  t h i s  measurement were probably produced principally by scattering. 

I n  the 0 . 2 3 ~  t o  0 . 2 9 ~  spectral  band the horizons were a t  a l t i tudes  signif- 
icantly higher than e i ther  those of 0 . 2 9 ~  t o  1.0~ or 0 . 7 5 ~  t o  3.011. 
zons were probably formed by scattering i n  the presence of atmospheric ozone. 
Theory predicts the  peak of t h i s  ul t raviolet  horizon prof i le  t o  be a t  approxi- 
mately 58 km. 
a wide variation which indicated an effective temperature difference. 
extreme effect ive temperatures measured a re  2O5O K and 270° K. 

These hori- 

The horizons measured i n  the  1 . 8 ~  t o  2 5 ~  spectral  band exhibited 
The 

INTRODUCTION 

Along with the capabili ty of sending instruments and man above the atmos- 
phere t o  make physical observations comes the necessity of determining the 
orientation and position of space vehicles. 
v ic in i ty  of the earth, the  earth itself i s  a potent ia l  navigational aid.  Deter- 
minable character is t ic  of the  earth 's  apparent horizon such as thermal emissions 
of atmospheric constituents, the ear th 's  thermal emission, scattered sunlight, 
o r  nonthermal atmospheric emissions could be used. Since the accuracy of deter- 
mining orientation i s  dependent upon the  s t a b i l i t y  and location of t he  physical 
character is t ics  t o  be u t i l i zed  (as  well as on the  accuracy with which the meas- 
urement can be made and processed), it i s  desirable t o  make both theoret ical  
calculations and experimental measurements of the ear th 's  apparent horizon. 

When a space vehicle i s  i n  the 



Measurements of the apparent horizon can a l so  aid i n  studies of processes i n  
t he  high atmosphere which may not be observable from the  ground due t o  absorp- 
t i o n  i n  the atmosphere. 
from space across the  ear th 's  horizon, a horizon gradient or prof i le  is 
observed. For orientation purposes the idea l  would be f o r  the horizon prof i le  
t o  be invariant with sun position, meteorological conditions, geographic loca- 
tion, o r  solar  act ivi ty .  

A s  an instrument sensi t ive t o  radiant energy scans 

This paper presents resu l t s  of daytime horizon measurements i n  four broad 
spectral  bands which extend from the  middle u l t rav io le t  t o  the f a r  infrared: 
0 . 2 3 ~  t o  0.29~1, 0 . 3 ~  t o  l.Op, 0 . 7 5 ~  t o  3.0p, and 1.8~ t o  2 5 ~ .  
obtained with a four-channel radiometer which was flown on a Javelin rocket 
from the NASA Wallops Station. 

The data were 

Part  of the data presented i n  the present paper 
was 
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previously discussed i n  reference 1. 

SYMBOLS 

clear  aperture area of radiometer, em2 

area of emitter i n  calibration, em2 

focal  length of calibration mirror, cm 

opt ical  gain produced by collecting mirror, dimensionless 

spectral  transmission of f i l t e r  i n  thermopile, dimensionless 

effective irradiance on thermopile, W/cm2 

minimum a l t i t ude  of l i n e  of sight, km 

m a x i "  detector responsivity, V/W 

radiance, W/cm*-sr 

spectral  radiance, W/ em2- s r- p 

effective power on detector, W 

radius of earth, km 

spectral  r e f l ec t iv i ty  of calibration mirror, dimensionless 

temperature, OK 

spectral  response of radiometer, dimensionless 

signal voltage, v 



A wavelength, p 

u) f i e l d  of view of radiometer, sr 

Subscripts: 

C calibration 

A wavelength 

1 short wavelength l i m i t  of spectral  band 

2 long wavelength l i m i t  of spectral  band 

DISCUSSION 

Energy Sources 

A general discussion of the  earth 's  apparent horizon can be separated 
according t o  energy sources. 
solar  energy, (2)  t e r r e s t r i a l  and atmospheric thermal energy, and (3) other 
atmospheric emissions - t ha t  is, aurora and airglow. Since the spectral  range 
of the measurements i s  from approximately 0 . 2 ~  t o  25p, the discussion of the 
horizon w i l l  be limited t o  tha t  region. The solar  energy curve approximates a 
blackbody tha t  peaks a t  0 . 4 6 ~  ( f ig .  1 and p. 16-15 of re f .  2) and has 99 percent 
of i t s  energy occurring between 0 . 2 ~  and 3 . 9 ~ .  The thermal emission of a 300° K 
blackbody i s  approximately equivalent t o  that of the  earth, peaks at  9 . 7 ~ ~  and 
has 83.5 percent of i t s  energy at  wavelengths l e s s  than 25p. From 0.2p t o  2p 
the  daylight horizon i s  principally due t o  solar  energy. I n  the 2p t o  5p region 
both sources can contribute t o  the horizon, and from 5p t o  2'5p the horizon i s  
due t o  t e r r e s t r i a l  and atmospheric thermal energy. The aurora and airglow can 
cause horizons a t  various wavelengths which l i e  primarily between 0 . 2 ~  and 5p. 
The dis t inct ion between aurora and airglow is nebulous and depends strongly 
upon the  geographical location and the  quantity or  magnitudes of the emissions. 
Auroras a re  often defined as localized phenomena and as  such do not have the 
s t a b i l i t y  or  the  predictabi l i ty  required i n  an application t o  horizon sensing; 
thus, only a i rg la r  i s  discussed i n  the  present paper. The airglow l ines  dis- 
cussed could be enhanced by auroral ac t iv i ty .  

Three such sources are (1) scattered and reflected 

The first source of energy discussed i s  the  solar  energy tha t  i s  scattered 
i n  the atmosphere and reflected from e i ther  clouds o r  the earth. 
ents a r e  produced by reflections and scattering. Since noctilucent clouds a re  
localized and relat ively rare, reflections from them are  not considered. A s  a 
first approximation, scat ter ing i n  tha t  layer  above the  cloud and dust layer may 
be considered as  Rayleigh and varies approximately with the  inverse fourth power 
of wavelength. 
a plane pa ra l l e l  atmosphere due t o  Rayleigh scattering shows the variation of 
radiance with opt ical  path and solar  orientation. 

Horizon gradi- 

Reference 3 which discusses the radiance emerging from the top of 

I n  figure 1, curves a re  shown 
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,outside the atmosphere 
2.0 

A t  sea level  with extinction by scattering 

/ A t  sea level with extinction by scattering and absorption 

Wavelength, microns 

Figure 1.- Spectral  energy curves related t o  the  sun. (From re f .  2 . )  

f o r  t he  solar  spectral  irradiances outside t h e  atmosphere, at sea l eve l  with 
extinction by scattering, and a t  sea l eve l  with extinction by scat ter ing and 
absorption. 
t i c a l  dis t r ibut ion of t h e  absorbing component. 
a r e  water vapor ( HzO), carbon dioxide ( C02), and ozone ( 03) . 

The amount of attenuation i s  a function of t h e  t o t a l  amount and ver- 
The primary absorbing molecules 

The second source of energy i s  t h e  thermal radiation from t he  ear th  and 
atmosphere. 
t h i s  radiation i s  select ively absorbed by some of %he constituents of t he  atmos- 
sphere. Part  of t he  ear th ' s  thermal energy i s  l o s t  d i r ec t ly  t o  space and par t  
i s  absorbed by t h e  atmosphere t h a t  a lso e m i t s  thermal energy. Horizon gradients 
are formed by thermal radiation from the  clouds, H20, Cog, and 03 i n  t he  atmos- 
phere and t h e  earth.  Figure 2 shows the  spec t ra l  d i s t r ibu t ion  of energy emitted 
from a 3000 K blackbody which i s  not unreasonable for t h e  earth.  
are the  spectral  regions i n  which H20, C02, and 03 are active.  
strongly i n  the  region from 18p t o  beyond loop and i n  a band centered at  6.511. 
Carbon dioxide has two important bands centered at  4 . 3 ~  and 1511. 
ra ther  narrow band centered at  9 . 6 ~ .  
G?.5p, having high transmission values, are cal led atmospheric windows. There 
are also a number of smaller windows between 1p and !5p. Discussions of radia- 
t i v e  t ransfer  and numerical data f o r  t he  infrared are given i n  reference 4.  

The ear th  radiates as a blackbody according t o  i t s  temperature and 

A l s o  shown 
Water absorbs 

Ozone has a 
The regions from 8p t o  9p and 10.3~ t o  
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The t h i r d  source of 
energy considered is  the  
atmospheric emissions (air- 
glow) tha t  are  not of thermal 
origin.  (See ref .  5.) Since 
airglow i s  an excitation 
phenomenon of unique atoms o r  
molecules, the a l t i tudes  
which sa t i s fy  both the  phys- 
i c a l  and chemical require- 
ments f o r  t he  emfssion of a 
unique wavelength form a nar- 
row layer  about the  earth. 
The a l t i tudes  associated with 
airglow emissions a re  above 
those levels  t ha t  a re  
affected by ground weather 
conditions. The airglow 
emissions may show patchy 
structures tha t  change with 
time. A horizon gradient 
formed by scanning through 
an airglow layer  w i l l  be a t  a 
higher a l t i t ude  and much 
smaller radiance than a scat- 
ter ing horizon. When the 
horizon i s  sunl i t  the  radi- 
ance due t o  scattering may 
obscure the airglow emis- 
sions. Airglow has been 
studied primarily a t  night 
and a t  twilight because the 

Figure 2.- Spectral  shape of 300' K blackbody 
with approximate absorption regions of R20, 
C02, and 03. 

scattered solar  energy in te r fe rs  with measurements made from the ground i n  the 
daytime. 
glow have commenced since it i s  possible t o  distinguish day airglow from scat-  
tered energy by polarization characterist ics.  
and airglow i s  unpolarized ( r e f .  6). 
have been ident i f ied i n  the  airglow only a few of the more intense ones a re  
mentioned because the  in tens i t ies  from the airglow are  very small. 
intense l ines  are  the 01 green l i n e  at  5577 A, the 01 red doublet a t  6300 A 
and 6364 8, and the  N a I  doublet at  5890 8 and 5896 2. The major band systems 
ident i f ied and the  wavelength range of major energy emission a re  the Herzberg 
bands of 02 ( 0 . 2 ~  t o  O.?p), the  OH Meinel bands (0.511 t o  5.0p), and the 02 

atmospheric bands (0.71 t o  0.9~) .  
already been ident i f ied i n  the  day airglow and a l l  of the  night airglow emis- 
sions should be present i n  the  day airglow even though t h e i r  in tens i t ies  c o u l ~  
be e i ther  enhanced o r  diminished dependent upon t h e i r  production mechanism. 

Recently, though, observations made from the ground of the day air- 

Scattered energy i s  polarized 
O f  the  many spectral  l ines  and bands tha t  

The most 
0 0 

Some of the  night airglow emissions have 
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Predicted Horizons 

Some horizon properties can be predicted f o r  the spectral  bands which 
were measured i n  t h i s  experiment. 
0.29~ t o  1.@, 0.7511 t o  3 . 0 ~ )  and 1.8~ t o  2 5 ~ .  
space t o  earth, the instrument's l i ne  of sight must instantaneously have a min- 
i" alti tude.  Figure 3 shows the geometry of a conical scan. The earth has 
a radius r, and an individual l i n e  of sight passes the earth at  a minimum 
a l t i t ude  h. 

These spectral  bands were 0.231.1. t o  0 . 2 9 ~ ~  
A s  an instrument scans from 

Scattering and airglow can produce horizons, o r  limbs, i n  the  0 . 2 3 ~  t o  
0 . 2 9 ~  spectral  band of the  u l t rav io le t .  
02 has been detected at  an a l t i t ude  of approximately 90 km by rocket-borne 
instrumentation at  night ( re f .  7). 
tudes. In  t h i s  spectral  band l i t t l e  solar  energy reaches the earth because of 
absorption by ozone 03. 
i n  the ozone layer  instead of an  immediate reemission. 
of the atmosphere due t o  primary Rayleigh scattering i n  the presence of 03 i s  
given i n  reference 8. I n  f igure 13 of reference 8, theoret ical  limbs i n  the 
band from 0.22~ t o  0 . 2 9 ~  are  shown f o r  these conditions: vehicle azimuth, 
lOl.5O; vehicle zenith, 20°; sun azimuth, 171.2'; sun zenith, 57.15'; vehicle 
a t t i tude,  450 km; and look angle, 650. The theoret ical  l i m b ,  including absorp- 
t i o n  due t o  ozone, from figure 13 of reference 8 i s  reproduced i n  figure 4. 
The geometric conditions f o r  t h i s  theoret ical  prof i le  are  similar t o  those 
encountered i n  f l ight ;  therefore, the prof i les  have been designated northern 
and southern horizon accordingly. 
the peak radiances a re  functions of the  t o t a l  mount and ver t ica l  dis t r ibut ion 

Airglow due t o  the Herzberg bands of 

Scattering produces limbs at  l a t e r  a l t i -  

The absorbed solar  e n e r a  causes a r i s e  i n  temperature 
The calculated radiance 

(See f i g .  3 .  ) The magnitude and a l t i tude  of 

of 03 as well as the  geometric conditions 
( r e f .  8) .  These theoret ical  l i m b  pro- 
f i l e s  had maximum radiance at  approxi- 
mately 58 km, and the difference i n  peak 
radiance between the northern and south- 
ern horizon was due primarily t o  sun 
orientation. 

.ical 

A l i m b  profile,  i n  the  spectral  
region from 0.22~ t o  O.29~, t ha t  exhibits 
a def in i te  peak should be useful f o r  
horizon def ini t ion because the peak 
occurs a t  a high enough a l t i tude  t o  be 
unaffected by meteorological conditions 
i n  the low atmosphere. 
variations of the peak radiance due t o  
03 variations are  not known. Measure- 
ments reported i n  reference 9 indicate 
no measurable radiances exis t  a t  night 
i n  t h i s  spectral  region, but the instru- 
ment w a s  not sensit ive enough t o  respond 
t o  night airglow. 

The a l t i tude  

cente 
of 

earth 

\ 

ways 
Figure 3. -  Flight geometry. 
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I n  the spectral  band from 0 . 2 9 ~  t o  l.Op, both 
airglow emissions and scattering cause horizon pro- 
f i l e s .  Airglow produces a horizon at  higher alti- 
tude than the scattering but on a sunl i t  limb the 
radiance due t o  scattering i s  much larger  than the 
radiance due t o  airglow. A theoret ical  horizon 
prof i le  due t o  primary Rayleigh scattering with no 
absorption has been computed f o r  the band from 
0 . 2 9 ~  t o  1.Op by using equations from reference 8 
and the same geometry conditions as used previously 
f o r  figure 4; t h i s  prof i le  i s  presented i n  figure 5. 
The curve shows a rapidly increasing radiance with 
decreasing a l t i tude  u n t i l  15 km where the  slope 
starts t o  change and a plateau i s  reached by 7 km. 
Since clouds occur a t  a l t i tudes  greater than 10 km, 
t h i s  prof i le  could be affected by loca l  weather con- 
dit ions.  The difference i n  the  radiance between the 
northern horizon and southern horizon i s  primarily 
due t o  the sun's position. 

I n  the band from 0 . 7 5 ~  t o  3.Op, the absorption 
by H20 and C02 causes the spectral  shape of t he  
radiation from the  horizon to d i f f e r  considerably 
from tha t  of the sun's emission. Airglow emission 
from OH i s  very strong i n  t h i s  region but does not 
approach tha t  of reflected sunlight. A theoret ical  
horizon prof i le  i n  the  region from 0 . 7 5 ~  t o  3.Op 
f o r  primary Rayleigh scattering i s  shown i n  f ig-  
ure 6. (Geometric conditions used i n  the calcula- 

Minimum altitude at line of sight, Irm 

Figure 4.- Theoretical 
horizon prof i le  f o r  
primary Rayleigh 
scat ter ing with 
absorption by ozone 
i n  spectral  band from 
0.22p t o  0.29p. 

m e  

I 100 

t i o n  a re  the  same as those previously discussed.) 
and C02 occurring i n  t h i s  band i s  not included i n  t h i s  calculation. Since the 
scattering prof i le  shows no peak or  plateau above 5 km, the termination of the 
prof i le  woad be caused by reflections from the earth or  clouds; therefore, the 
horizon would undoubtedly be dependent on cloud conditions. 

The absorption due t o  H20, 02, 

I n  the band from 1.8~ t o  25p, the horizon would be caused primarily by 
emission of H20, COP, 
m i n i m a l  f o r  wavelengths greater  than 6p. 
thermal radiation f o r  the 6 . 5 ~  H20 band, 9 . 6 ~  03 band, 1 0 . 7 5 ~  t o  11.751.1. window, 
15p C02 band, and .the rotat ional  water band (2111 t o  l25p) were reported i n  ref- 
erence 10. 
2lp t o  l25p water region are  the  most promising wavelength regions t o  find a 
s table  horizon f o r  horizon sensing. The 6 . 3 ~  H20 band and atmospheric window 
regions a re  variable and they depend on water content and cloud conditions. 
reference 11 a cr i te r ion  f o r  horizon scanner system performance i s  developed, 
and with the use of existing theoret ical  horizon prof i les  the author of refer- 
ence 11 concludes tha t  the l5p  Cog band i s  the best  region f o r  horizon defini- 
t ion .  
on clouds and water content of the atmosphere. 

03, and the earth since the sun and airglow effects  are  
Computed horizon prof i les  due t o  

The authors of reference 10 conclude tha t  the l 5 p  C02 band and the 

In  

The band from 1.8p t o  25p used i n  the  present investigation i s  dependent 
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M i n i m a ,  altitude of line of s i g h t ,  !an M i n i m  altitude of line of sight, loo 

w a s  
The 
w a s  
and 

Figure 5.- Theoretical horizon prof i le  
for primary Rayleigh scattering i n  
spectral  band from 0 . 2 9 ~  t o  1.0~, 
assuming no absorption. 

EXPERIMESTTAL PROCEDURE 

Figure 6.- Theoretical horizon 
p ro f i l e  f o r  primary Rayleigh 
scattering i n  spectral  band 
from 0.7511 t o  3.0~1, assuming 
no absorption. 

A four-channel radiometer flown as a payload on a four-stage Javelin rocket 
launched from NASA Wallops Station on November 17, 1961, a t  11:06 a.m. EST. 
vehicle w a s  spin s tabi l ized at  600 r p m  and then a yo-yo type despin system 
used t o  reduce the spin ra te  fo r  the  experiment. 
a residual spin of 400 r p m  resulted instead of the desired ra te  of 40 r p m .  

Despin was not successful, 

Spin r a t e  decreased steadily-from 400 r p m  t o  300 rpm i n  a period of 240 seconds. 
Horizons were observed from vehicle a l t i tudes  under 300 km t o  a peak of 610 km. 

Geometry f o r  the experiment i s  i l l u s t r a t ed  i n  f igure 3 .  
of the radiometer was fixed at  6 5 O  with respect t o  the rear  of the rocket. 
the  rocket spun, the  l i nes  of sight of the radiometer formed elements of a cone; 
thus, the scan geometry i s  the intersection of a cone and a sphere i n  which 
approximately half of the cone actually intersects  the sphere. The a t t i tude  
(angle between spin axis and loca l  horizontal) of the rocket was between 7 8 O  
and 840 during the  time the  horizons were observed. Attitude was determined from 
the  geometry by using the  radius of the earth, half-angle of the cone, a l t i tude  
of the rocket (radar), and the  fract ion of a r o l l  cycle f o r  which the radiometer . 

The optical  axis 
A s  

8 
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viewed the earth. The actual data then 
showed the  radiometer looking at space, 
horizon, earth, horizon, and space i n  a 
cyclic fashion. 

Instrument at  ion 

The instrument package which was 
attached d i rec t ly  t o  the fourth-stage 
rocket motor carried the four-channel 
radiometer and i t s  support equipment 
plus instruments t o  determine the per- 
formance of the  vehicle. Figure 7 
shows the instrument section jus t  
p r ior  t o  ins ta l la t ion  on the  rocket 
motor. The four channels of the  radi- 
ometer a r e  optically alined. 

A s  an opt ical  instrument the 
radiometer i s  a simple unsophisticated 
l ight-collecting device. Radiometer 
character is t ics  are  given i n  table  I. 
Optical s t ructure  of the  radiometer is  
i l l u s t r a t ed  i n  figure 8. Figure 8(a) 
shows the  construction f o r  the  near 
infrared (NIR) ,  v i s ib le  (VIS), and f a r  
infrared (FIR) channels. Light enters 

~ 6 1 - 8 2 4 3  
Figure 7.- Photograph of instrument section. 

TABLE I.- RADIOMETER CHARACTERISTICS 

- 
Spect ra l  

band 

Focal length 

Aperture 

Detect o r  

F i l t e r  

Channel time 
constant 

F ie ld  of 
view 

w 
0 . 2 3 ~  t o  0.29~ 

25.4 cm 

7.60-~m 
diameter 

Photomultiplier 
- -. 

Composite 
f i l ter1 

<O.OOOj sec 

0.220 by 0.22O 

VIS 

0 . 2 9 ~  t o  LOP 

23.4 cm 

7.60-CUI 

~ 

diameter 

PbS 
(1 mm by 1 mm) 

Color f i l t e r  
(2.54 

<O.OOO3 sec 

3.22O by 0.22O 

25.4 cm 

7.60-~m 
diameter 

PbS 
(1 mm by 1 mm) 

Color f i l t e r  
(2.54 "1 
<O.OOO3 sec 

0.22O by 0.22" 

FIR 

1.8~ t o  25p 

7.60 cm 

7.60-~m 
diameter 

The mi s t o r  
bolometer 

(1 mm by 1 mm) 

Germanium 
(1 "1 

0.001 sec 

0.75O by 0.75O 

k o n t a i n s  1iiSOq.6H20 (8 mm) , Polyvinyl a lcohol  incorporating cat ion X, 
w transmit t ing color f i l t e r  (3 mm), and quartz ( 6  mm). (See ref. 12.)  
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t he  aperture, i s  reflected by the 
parabolic mirror, and is  focused 
on the detector which is  located 
a t  the focal  point and supported 
by a spider ( f ig .  7). 
each spider serves as a conduit 
f o r  necessary e l ec t r i ca l  connec- 
t ions.  A thermistor t o  measure 
the  operating temperature of the 
detector i s  a l so  located on the  
spider. For the NIR, VIS, and FIR 
the  detector dimensions and the 
focal  lengths define the f i e l d  of 
view. 
VIS are  placed a t  the aperture 
whereas the  FTR has a f i l t e r  
attached t o  the detector. Fig- 
ure 8(b) shows the  middle ul t ra-  
violet  (W)  channel which has a 4 5 O  
f la t  mirror held i n  the converging 
beam which re f lec ts  t he  l i g h t  
through a f i e l d  stop a t  the  focal  
point and then onto the detector. 
An opt ical  f i l t e r  i s  placed between 
the f i e l d  stop and the  detector. A 
quartz window i s  a l so  placed i n  the 
aperture t o  help provide a sea l  for 

One leg  of 

Optical f i l ters f o r  N I R  and 

(a)  NIR, VIS, and FIR channels. 

Detector D 
(b) W channel. 

Figure 8.- Optical system. 

t he  nose section which i s  pressurized. 
the FIR than i n  the  NIR, VIS, and W i n  order t ha t  suff ic ient  energy could be 
obtained f o r  recording purposes. Transmissions of the opt ical  f i l t e r s  a re  shown 
i n  figure 9. A f i l t e r  similar t o  the composite f i l t e r  i s  discussed i n  refer- 
ence 12. 

A la rger  f i e l d  of view was necessary i n  

Typical spectral  responses of the detectors are  indicated i n  figure 10. 

The FIR channel employed an AC amplifier which had suff ic ient  high frequency 
response t o  reproduce the  required signal, but had insufficient low frequency 
response t o  maintain the signal without droop. The W, NIR,  and VIS channels 
were d i rec t ly  coupled and, thus, capable of providing a signal without droop. 

The telemeter system used w a s  a standard FM-FM system i n  which a voltage 
input i s  converted t o  a frequency by a voltage osci l la tor ;  eight channels of 
telemetry were used. The four radiometer and three accelerometer channels were 
telemetered continuously while the remaining channel was commutated between the  
four thermistors used t o  measure the temperature of each detector. Each therm- 
i s t o r  w a s  sampled 2.4 times per second. 

Calibration 

The object of the calibration w a s  t o  r e l a t e  the, received telemetry signals 
I n  t h i s  section the  methods used t o  calibrate t o  radiances measured i n  f l i gh t .  

the  FIR and VIS channels are  discussed. 
W and N I R  channels, sufficient confidence i n  the absolute radiances w a s  not 
attained; consequently, only relat ive radiances .are presented. A general 

Because of conditions peculiar t o  the 
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Figure 10.- Relative spectral  response of detectors.  

discussion of calibration procedures, apparatus, and problems is  given i n  refer- 
ence 13. 
be focused on the detector at the  focal  point, t he  calibration sources were 
opt ical ly  moved t o  in f in i ty  by placing them at the focal  point of a parabolic 
mirror. 
s ize  w a s  smaller than the detecting elements. Figure 11 I l lus t r a t e s  the opti- 
ca l  setup for calibration. 
opt ical  axis of the  calibration mirror as possible without interfer ing with 
the radiometer. A collecting mirror was placed i n  f ront  of the radiometer. 
This mirror collected energy i n  the  para l le l  beam onto a thermopile for meas- 
uring the  irradiance at the  aperture of the  radiometer because the thermopile 

Since sources were not large enough t o  f i l l  the  f i e l d  of view and t o  

The radiometer w a s  placed i n  the result ing pa ra l l e l  beam, and the image 

The calibration source w a s  placed as close t o  the 
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Thermopile 

u== - .- mirror 

Radiometer El 
Cal ibra t ion  mirror I 

sourre 

Figure 11.- Sketch of op t ica l  system f o r  calibration. 

w a s  not sensi t ive enough t o  measure d i rec t ly  t h e  irradiance of the  beam. The 
thermopile w a s  calibrated by t h e  manufacturer using a standard carbon lamp. 
The quartz window of the  thermopile transmitted radiation from 0 . 2 ~  t o  4 . 5 ~ .  
The second mirror w a s  removed after the  measurement with the  thermopile w a s  made. 

Radiant energy from t h e  cal ibrat ion mirror and t h e  background around the  
cal ibrat ion source could contribute t o  the  pa ra l l e l  beam and thus t o  the  radiom- 
e t e r  output. This radiation i s  thermal i n  or igin and of about 300' K since t h a t  
w a s  approximately t h e  temperature of t h e  darkened room during calibration. There 
w a s  not enough energy t o  cause noticeable e r ro r  i n  t h e  V I S  channel; t he  F I R  cal i -  
bration source w a s  chopped and on ly  t h e  change i n  energy w a s  measured. 

The object of t he  f l i g h t  measurement w a s  t o  determine the  radiance within 
a spectral  band which w a s  . 

N = L:2 Nh dh 

During f l i g h t  t h e  effect ive power on t h e  detector when t h e  f i e l d  of view w a s  
f i l l e d  w a s  

The result ing voltage w a s  

where k i s  not necessarily constant f o r  a l l  values of P. 

During cal ibrat ion t h e  effect ive power and voltage were 

12 



I 

The F I R  channel was calibrated by using a blackbody a t  1273O K; thus, 
Nc,h(T,A) w a s  known. Variations i n  irradiance at the radiometer aperture were 
accomplished by changing the  emitting area of the  blackbody. 
a, A, f, and ph were measured. The spectral  response of the radiometer t A  
w a s  formed by the  product of the characterist ics of the  radiometer f i l t e r ,  m i r -  
ror, and detector. Effective power Pc was computed from equation (4)  and Vc 
w a s  measured. From these data, a curve of PC a s  a function of Vc w a s  drawn. 
Since the same detector and electronics were used i n  flight and calibration, 
k = kc and P = Pc. Thus, a curve f o r  Pc against Vc is  the same as a curve 
f o r  P against V. Next the assumption w a s  made tha t  i n  the  f l i gh t  measurement 
the  radiometer viewed a blackbody Nh(T,A) of temperature T. For each value 
of T there is  a value of P (eq. ( 2 ) )  and, consequently, one for  V. A curve 
f o r  T against V w a s  drawn. The radiance w a s  determined by integrating Nh 
f o r  A 1  t o  A2 f o r  a par t icular  temperature. 

I n  equation ( 4 ) ~  

A tungsten lamp w a s  used t o  cal ibrate  the VIS channel. Color temperature 
of the  la.mp w a s  determined with an opt ical  pyrometer t o  be 3072' K. 
w a s  placed i n  a box with a blower f o r  cooling and radiated through a 0.318-cm- 
diameter hole f o r  a source area. 
placing different  combinations of neutral  density f i l t e r s  i n  front of the  lamp 
aperture. Consequently, the symbol a i n  equation (4)  i s  a c t u a l l y t h e  area of 
the  aperture times the transmission of the neutral  density f i l t e r  which was con- 
sidered a constant over the  wavelength region of in te res t .  I n  equation (4 )  a l l  
terms are  known except Nc,h, but the normalized shape of N c , ~  i s  known; the 
absolute values of 

The lamp 

Variations were made i n  the beam irradiance by 

Nc,h may be determined with the aid of a measurement. 

The irradiance measured by use of a thermopile placed i n  the converging 
beam of the  collecting mirror which introduced an opt ical  gain of G ( f ig .  11) 
was 

Since H, a, f, G, 9, and gh were measured and the spectral  shape 
of Nc,h w a s  known, the absolute values of Nc,h may be determined with the 
a id  of a graphical integration. 

The absolute N c , ~  w a s  next used t o  evaluate equation (4)  f o r  Pc. From 
these data a curve f o r  Pc a s  a function of VC w a s  drawn. Again Pc = P and 
Vc = V. Finally, a spectral  shape w a s  assumed f o r  Nh i n  equation (2).  A 
spectral  shape equivalent t o  tha t  of a 58000 K blackbody w a s  chosen. 
ner ident ical  t o  tha t  used t o  evaluate equation (7) fo r  
be evaluated fo r  Nh fo r  each value of P. Upon the integration of Nh 

I n  a man- 
N c , ~ ,  equation (3)  may 
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between h i  and h2 a curve of N as a function of V w a s  drawn which w a s  
t he  f inal  calibration curve. 

PRESENTATION OF DATA 

The vehicle flew i n  an easter ly  direction from the NASA Wallops Station and 
rolled i n  such a manner tha t  the  f i e lds  of view swept onto the earth i n  the 
v ic in i ty  of the G u l f  of Mexico, swept out across the  Atlantic Ocean, and then off 
the  earth near the Great Lakes and Hudson Bay. For convenience the  gradients 
occurring while going onto the earth w i l l  henceforth be called southern horizons 
and those occurring while going from earth t o  space w i l l  be called northern hori- 
zons. Figure 12 shows the  area i n  which the scans occurred, the areas i n  which 
a l l  horizon regions occurred, and the ground-based observations f o r  the  cloud 
cover conditions i n  tha t  area. A s  previously stated, theory indicates t ha t  loca l  
cloud conditions at  the  horizon can a f fec t  the  gradients i n  the  N I R  and VIS chan- 
nels. 
the data. 

Consequently, a knowledge of cloud cover a ids  i n  the interpretation of 

Flight Records 

Any change i n  horizon radiance due t o  increased rocket a l t i tudes  w a s  com- 
pletely obscured by the  changes i n  horizon radiances caused by observing differ-  
ent geographical locations on the  earth from approximately the same socket a l t i -  
tude. Shown i n  figure 13 are  typical  f l i g h t  records chosen t o  i l l u s t r a t e  
pertinent features. A t  the  top of these records i s  a coded time signal with a 
time response of 1000 cps. 
channel, then the four data channels. The NIR and VIS channels displayed s i m -  
i lar  characterist ics during the on-earth portion of the scan; t h i s  i s  not unex- 
pected since the  spectral  regions overlap and the opt ical  depths of the atmos- 
phere i n  these regions are  low enough t o  make reflections from the  ear th 's  
surface and from clouds dominate the outcoming radiance. The ver t ica l  l i n e  i n  
f igure l3(a) i s  drawn t o  point out one of the  many instances when peaks i n  the 
N I R  and VIS were i n  near coincidence with a peak i n  the W and a dip i n  the FIR. 
This was quite standard but i n  other examples the  W and FIR responses would 
s h i f t  i n  relationship t o  the  N I R  and VIS peaks indicating tha t  the phenomenon did 
not have the same shape i n  a l l  the spectral  bands or  t ha t  the integrated effect  
due t o  the 'd i f fe ren t  s i z e  of view i n  the  FIR channel could resul t  i n  a displace- 
ment of the  maximum indicated energy change. The on-earth peak i n  the NIR,  VIS, 
and W regions are  due t o  ref lect ion instead of scattering phenomena. In  the FIR 
channel the signal decrease w a s  probably caused by a highly ref lect ive cloud or  
earth surface tha t  w a s  a lso cold. Signal changes occurring during the on-earth 
portion of the scan i n  the NIR,  VIS, and FIR channels were competitive with the 
horizon gradient; t h i s  w a s  not t rue  i n  the W channel. In the W channel a t  no 
time w a s  the  signal below 20 percent of the maximum radiance but i n  the VIS chan- 
ne l  the signal approached 10 percent of m a x i "  anrplitude at  times and i n  the N I R  
channel the signal approached the  noise level .  These values indicate tha t  there .  
were steeper gradients and larger  changes i n  magnitude i n  the VIS and N I R  chan- 
nels than i n  the  W channel and that there w a s  most var iab i l i ty  i n  signal 
strength i n  the  N I R  channel and l eas t  i n  the  W channel. 
approaches the  horizon from space the W channel i s  the first t o  respond then, 

Imediately below the  time signal i s  an accelerometer 

A s  the radiometer 
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Figure 12.- Summation of total cloud cover in scanned regions. 



JV io.. jr :o o..'/P: 

(a )  Vehicle a l t i t ude  of 300 km. 

Figure 13.- Samples of telemeter record. 

i n  order, the FIR, VIS, and VIR channels. When scanning from earth t o  space the 
responses terminate i n  the reverse order. 
channel w a s  so much larger  than tha t  of the  other three channels, it w a s  -0s- 
sible t o  attach a significance t o  i t s  re la t ive  location. It w a s  possible t o  
read the time difference between any two events t o  within 0.0005 sec. 
the  relat ive alinement of t he  radiometers could produce time errors no greater 
than 0.001 sec. The time differences between the i n i t i a l  responses of the UV,  
VIS, and MIR channels were always greater than 0.001 sec indicating tha t  the W 
channel responded t o  an energy source higher i n  the  atmosphere than did the VIS 
channel and it i n  turn responded t o  an energy leve l  at a higher a l t i tude  than the 
N I R  channel. 
channel had been completed a second gradient nearly coincident with the VIS 
response occurred. The data showed tha t  there w a s  a different  effective diameter 
of t he  ear th  i n  the  W channel than there w a s  i n  t he  N I R  channel or  VIS channel. 

The FIR radiation was not chopped even though the  FIR channel w a s  AC coupled 
so radiance changes were recorded accurately, but the signals f o r  regions of non- 
varying o r  slowly varying radiance levels  could not be held. The frequency 
response of the AC coupled c i rcu i t  allowed a slowly varying signal t o  decay 
toward the reference voltage level .  The high spin r a t e  coupled wi%h the slow 
decay i n  the amplifier due t o  previous signal variations resulted i n  northern 
horizon gradients occurring while the  amplifier w a s  decaying. 
signal enhanced the d i f f icu l ty  of detemining where the  horizon gradients 
started.  
the  southern horizon. 

Since the  f i e l d  of view of the  FIR 

Errors i n  

I n  pract ical ly  every instance a f t e r  the i n i t i a l  gradient i n  the W 

This decaying 

The signal decay i n  the  FIR channel i s  most obvious immediately after 
(See f ig .  l3( c )  . ) 

Differences i n  signal leve l  and gradient definit ion at  the same a l t i t ude  
a re  observed. (Compare f ig .  13(b) with 13(c) and f ig .  l3 (d)  with l3(e).) 
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Figure 13.- Continued. 
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Figure 13.- Concluded. 
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A l l  the  horizon gradients, except the FIR northern horizon gradient which i s  
always poorly defined, were well defined i n  figures l3(b)  and (a). Figures l3( c )  
and (e )  show tha t  the N I R  southern horizon lacks the  def ini t ion previously noted. 
I n  figure l3(d),  the signal rises out of the  noise l eve l  and s e t t l e s  back into 
the  noise leve l  quite rapidly i n  the VIS and N I R  channels, whereas the W chan- 
nel  indicates a gradual r ise .  
northern gradient t o  a space reference i n  the W channel quite w e l l .  
gradual return could indicate a possible high atmospheric effect .  

Figure l3(a) shows the  gradual return of the 
This 

From an i n i t i a l  view of the  data it w a s  evident t ha t  each scan would nearly 
repeat i t s e l f  every 13 or  14 r o l l  cycles. 
spinning bodies precess, indicated tha t  the  vehicle completed between 13 and 14 
rotations per precession cycle. 
cycles, consisting of l3,scanning cycles each, w a s  chosen. The a l t i t ude  dif-  
ference between precession cycles w a s  approximately 50 km and data sampling 
s tar ted at  nearly 300 km. 

This fact, plus the knowledge tha t  

For purposes of data reduction 7 precession 

Two areas of importance t o  the study of horizon def ini t ion tha t  a re  not 
presented herein are  the position of the  gradients with respect t o  the sol id  
ear th  and an a l t i tude  measure of the duration of t he  gradients. These resul ts  
a re  not available a t  t h i s  time. 

Horizons 

Horizon data a re  presented i n  figures 14 t o  17. The radiances f o r  the  V I S  
and F I R  horizons a re  given i n  figures 15 and 17. 
given f o r  the N I R  horizon ( f ig .  14)  and W horizon (f ig .  16) since problems have 
ar isen which indicate possible errors i n  the  calibration of these channels. 
The magnitudes of the relat ive radiance scales i n  figures 14 and 16 are  arbi- 
t rary.  
ern and northern horizons. 

Only relat ive radiances are 

Figure 14 shows the  dis t r ibut ion of re la t ive  radiances of the N I R  south- 

Since scattering produces no termination of the horizon pr ior  t o  cloud 
levels  i n  the  NIR, the  variation of re la t ive  radiance by a factor  of more than 
4 i n  the  southern horizon could have been caused by i r regular  cloud cover. 

A r a t i o  of the  southern mean t o  the northern mean of the  measured data i s  
0.58 whereas the  r a t i o  of the  calculated radiances at  5 km is  0.59 ( f ig .  6). 
This r a t i o  i s  important because it is  produced by the  positiqn of the sun which 
a f fec ts  t he  scattering angle i n  Rayleigh scattering. There i s  no reason f o r  
sunlight reflected from clouds o r  the  earth t o  have a similar sens i t iv i ty  t o  
solar position; so the agreement of the r a t i o  of the southern t o  northern horizon 
mean values with theory along with t h e  large standard deviations leads one t o  
conclude tha t  scattering is  important i n  the  horizon formation but clouds cause 
large variations. 
times d i f f i c u l t  t o  determine i n  the  NIR.  
southern horizon gradient, but f igure l3(e) shows an instance where a small 
plateau occurred and then the signal increased t o  a peak. 
plateau w a s  read as the  termination of the  gradient. I n  general, the  first 
major slope change a f t e r  the  basic slope of the  prof i le  w a s  established is  

The point at  which the  horizon gradient terminated i s  some- 
Figure l3(a) shows a very clean NIR 

The beginning of the 
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(a) Southern horizon. (b)  Northern horizon. 

Figure 14.- Distribution of re la t ive  radiances observed for N I R  ( 0 . 7 5 ~  to 3.0~). 
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Figure 15.- Distribution of radiances observed f o r  VIS ( 0 . 3 ~  to 1.0~). 

20 



I 

13 

12 

11 

10 

1 9 -  

2 8 -  z 
I 7 -  

% 6 -  
4 E 5 -  
a 

I , -  

3 -  

2 -  

1 -  

0 

:loorthem horizon mean, 0.87 
siandard devia t ion ,  0.04 I southern horizon mean, 0.51 

Standard devia t ion ,  0.04 l 4  r 
- 
- 

- 
- 

.3  

I 

.I, .5 .6 
, n  

. 7  

101.5' 2 1.5' 
5.0 2 30 

175.5' 1.5' 
570 0.20 

65' 
Nav. 17, 1961 

l6:06 GHT 

26 Northern horizon mean, 2.67 X W/cm2-sr 
S tandyd devia t ion ,  0.38 X W/Cm2-Sr 

20 i 
southern horizon mean, 6.1 x 
Slandard devia t ion ,  0.57 X W/cm2-sr 

W/cm2-sr d 16 

Vehicle heading azimuth 
Vehicle heading zenith 
Sun azimuth 

Half-angle of cone 

101.5' 2 1.5' 

175.5O 2 1.5' 
90 _t 30 

570 2 0.20 
65' 

No". 17, 1961 
16:06 CMT 

~ r i i a n c e ,  W/c"-sr Relative rndinnre 

Figure 16.- Distribution of re la t ive  radiances 
observed for W ( 0 . 2 3 ~  t o  0 . 2 9 ~ )  northern 
and southern horizon. 

Figure 17.- Distribution of radiances 
Observed for FIR (1.8~ t o  25p) 
northern and southern horizon. 

interpreted as the  termination of the horizon gradient. 
t ions  of the re la t ive  radiances observed the  N I R  spectral  band i s  a poor one t o  
use f o r  horizon definit ion.  This conclusion does not exclude the possibi l i ty  
of an NIR airglow horizon above the one measured here since a greater sensi- 
t i v i t y  i s  necessary f o r  such a measurement. 

With the large varia- 

Radiances of the southern and northern horizons i n  the VIS channel a re  
shown i n  figures l5( a)  and ( b )  . 
a factor  of 2, and the values f o r  the northern and southern horizons a re  nearly 
the same. The mean radiance f o r  the southern horizon is  1.23 x 
and the theoret ical  radiance from figure 5 i s  1.30 x 10-2 W/cm2-sr. 
northern horizon the mean radiance i s  1.48 x 10-2 W/cmZ-sr and the theoret ical  
radiance from figure 5 i s  1.75 X 

1.48 x 10-2 W/cmP-sr i s  comparable t o  a diffuse ref lect ion of 46 percent which 
i s  quite reasonable f o r  certain clouds. 
measurement i s  estimated t o  be k3O percent. Notice tha t  the mean radiance for  
t he  northern horizon i s  s l igh t ly  higher than tha t  f o r  the southern horizon as 
predicted by primary scattering. 
mean i s  0.83, whereas primary scattering predicts 0.75. 
when compared t o  the  me& radiances a re  smaller f o r  the VIS than f o r  the NIR, 
and the  extremes of radiances observed are  a lso smaller than f o r  the NIR. I n  
addition the VIS horizon is  at a s l igh t ly  higher a l t i tude  than the NIR horizon 
as seen i n  figure 13. 
zon w a s  principally caused by scattering even though reflections from clouds 
could yield comparable radiance levels .  

The spread i n  radiances observed i s  l e s s  than 

W/cm2-sr 
For the 

W/cm2-sr. A radiance of 

The maximum er ror  f o r  an individual 

The r a t i o  of the  southern mean t o  the northern 
The standard deviations 

All these f a c t s  lead t o  the conclusion tha t  the V I S  hori- 

If the horizon peak radiance i s  taken 
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t o  be about 10 km (as predicted i n  f ig .  5 ) ,  then clouds could def in i te ly  affect 
a measurement of this  type. 

The W re la t ive  radiances (fig.  16) f o r  t h e  northern and southern horizons 
are def in i te ly  different .  
horizon is  la rger  than tha t  of t h e  southern horizon i s  predicted by primary 
scat ter ing theory. 
t h e  radiometer with respect t o  the  sun and earth.  The r a t i o  of t he  southern 
peak t o  t h e  northern peak i s  0.63 f o r  calculations and 0.59 f o r  t he  measured 
data. 
southern horizons indicated a s tab le  condition. The ve r t i ca l  d i s t r ibu t ion  of 
ozone plays a ro le  i n  determining the  magnitude and a l t i t ude  location of t he  
prof i le ,  and it i s  known tha t  t he  d is t r ibu t ion  of ozone varies with t i m e  and 
geographical location. 
feature  of any horizon gradients measured. 

The f a c t  that t h e  r e l a t ive  radiance of t he  northern 

(See f ig .  4.) This difference i s  due t o  the  orientation of 

The re la t ive ly  s m a l l  var ia t ion of r e l a t ive  radiance at both northern and 

The peak of t he  W horizon p ro f i l e  i s  the  most obvious 

The FIR radiances ( f i g .  17) from the  northern and southern horizons are 
s ignif icant ly  separated but, i n  contrast with the  W, the  FIR southern horizon 
has a higher radiance than the  northern horizon. Since a temperature can be 
associated with t h e  FIR horizons, t he  southern horizon i s  warmer than the  north- 
e rn  horizon. 
southern horizon i s  equivalent t o  2570 K; likewise, t he  mean radiance of 
2.67 x 10-3 W/cm2-sr of t he  northern horizon i s  equivalent t o  2l5O K. 
deviations of 0.57 x 10-5 W/cm2-sr and 0.38 x 10-3 W/cm2-sr f o r  t he  southern 
and northern horizons correspond t o  5 O  K and 60 K. The maximum er ror  f o r  an 
individual radiance measurement i s  estimated t o  be k3O percent. Theoretical 
computations of horizon gradients i n  reference 10 indicate effect ive temperatures 
i n  t h i s  same range. The temperature extremes measured were 270° K f o r  t h e  south- 
ern horizon and 205O K f o r  t h e  northern horizon. 
ances f o r  t he  northern and southern horizons i s  interpreted as a temperature dif-  
ference, t h i s  spectral  band should have horizons dependent on meteorological con- 
d i t ions  which m i g h t  make it a poor band f o r  horizon def ini t ion.  

A s  a comparison t h e  mean radiance of 6.1 x 10-3 W/cm2-sr of t he  

Standard 

Since the  difference i n  radi- 

CONCLUDING REMARKS 

Measurements of t h e  sunl i t  horizons of t h e  ear th  were made i n  t h e  four 
spectral  bands: 
(VIS); 0 . 7 5 ~  t o  3.Op, near infrared (NIR); and 1.811 t o  25p, far  infrared (FIR). 
The four-channel radiometer w a s  flown on a Javelin vehicle from NASA Wallops 
Station. 

0.2311 t o  O.-p, middle u l t rav io le t  (W); 0.2911 t o  l.Op, v i s ib l e  

Theoretical considerations indicate t h a t  t he  NIR region would be radically 
affected by loca l  weather conditions since t h e  a l t i t ude  of the horizon peak 
radiance i s  l o w  enough t o  make the  ref lect ion of clouds change the  measured 
radiances. The factor-of-four var ia t ion i n  the  measured re la t ive  radiances of 
t h e  NIR region tends t o  substantiate t he  f ac t  t h a t  l oca l  meteorological condi- 
t i ons  determine the  horizon; therefore, t he  pred ic tab i l i ty  of the  horizon i n  
t h i s  region would be poor. 
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I n  the  VIS region t h e  horizons predicted by primary scat ter ing occur a t  
an a l t i t ude  where they could be affected by the  re la t ive ly  high clouds occurring 
above an a l t i t ude  of 10 km. The radiances predicted by primary Rayleigh scat- 
tering i n  the  VIS region agree quite w e l l  with t h e  measured radiances but both 
these f a l l  i n  a region where the  energy could also come from cloud reflections.  
The al t i tude of t he  VIS horizon w a s  greater  than t h a t  of t he  NIR horizon and 
because t h e  measured radiances varied by a fac tor  of 2 i n  the  VIS region instead 
of by a fac tor  of 4 as i n  t h e  N I R  region, it i s  believed t h a t  clouds affect  t he  
VIS horizon less than the  NIR region; thus, primary scat ter ing i s  more important 
i n  t he  VIS band than i n  t h e  N I H  band. 

The theore t ica l  horizon i n  t he  W band depends upon the  ozone distribution, 
and f o r  a typ ica l  d i s t r ibu t ion  t h e  peak radiance of t h e  horizon prof i le  occurs 
at  9 km, w e l l  above cloud a l t i tudes .  
occurred w e l l  above e i the r  t he  N I R  horizon or  t he  VIS horizon and evidence indi- 
cates t ha t  t h i s  w a s  a scat ter ing peak even though no determination of the  actual  
radiances could be made. With more information about the  ozone content of the  
atmosphere and i t s  distribution, t he  sunlit W horizon could be a predictable 
and possibly a re la t ive ly  s table  horizon. 

The measured radiance peaks i n  t h e  W 

A def in i te  radiance and hence temperature difference existed between the  
northern and southern horizons i n  the  F'IR spectral  region. 
temperatures rawing  from 205' K t o  270° K were probably caused by cloud dis- 
t r ibu t ions  and ve r t i ca l  temperature s t ructure  which indicates t ha t  t he  horizon 
p ro f i l e  i n  t h i s  FIR band i s  d i f f i c u l t  t o  predict  and subject t o  large changes. 

Effective blackbody 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va.,  August 27, 1964. 
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