EAGLE-PICHER THE EAGLE - PICHER COMPANY • COUPLES DEPARTMENT: JOPLIN, MISSOURI | GPO PRICE | \$ | | |---------------|-----------------|--| | OTS PRICE(S) | \$: | | | Hard copy (H | ic) <u>2.00</u> | | | Microfiche (M | 1F) 150 | | | # O # | N 65 12499 | • | |-------|-------------------------------|------------| | 3 | (ACCESSION NUMBER) | (2) | | ē | <i>₹.2</i> | (THRU) | | Ė | (PAGES) | | | ž | 4.0 - 0 | (CODE) | | Ā | (NASA CR OR TMX OR AD NUMBER) | (CATEGORY) | INVESTIGATIONS LEADING TO THE DEVELOPMENT OF A PRIMARY ZINC-SILVER OXIDE BATTERY OF IMPROVED PERFORMANCE CHARACTERISTICS SUMMARY REPORT NO. 3 Contract No. NAS 8-5493 Control Number TP3-83728 (1F) CPB 13-1600-63 GEORGE C. MARSHALL SPACE FLIGHT CENTER Huntsville, Alabama Reporting Period 1 July 1964 through 30 September 1964 Date of Report: 31 October 1964 THE EAGLE-PICHER COMPANY COUPLES DEPARTMENT Joplin, Missouri Prepared by: Bill R. Hawkins B. R. Hawkins, Project Engineer # TABLE OF CONTENTS | | | Page | |------|--|------| | I. | PURPOSE | 67 | | II. | ABSTRACT | 68 | | III. | FACTUAL DATA AND DISCUSSION | 69 | | | A. General | 69 | | | B. Separator Materials | 69 | | | 1. Design Factors | 69 | | | 2. Discussion of Separator Treatments | 73 | | | 3. Conclusions | 74 | | | C. Utilization of the Zinc Plate | 75 | | | D. Failure Modes of the Zinc-Silver Oxide System | 75 | | | E. Preliminary Design Study | 76 | | IV. | SUMMARY AND CONCLUSIONS | 78 | | v. | PROGRAM FOR THE NEXT INTERVAL | 78 | | VI. | PERSONNEL | 79 | | | APPENDIX | | | | References cited in this report | | | | References which are available | | | | Master Schedule | | | | Abstract Card | | | | Distribution List | | | | | | | | TABLES | | | | No. I | 75 | | | | | | | FIGURES | | | | No. 1 - Effect of discharge current density upon maximum mono- | | | | valent plateau voltage | 70 | | | No. 2 - Effect of semipermeable membrane on discharge voltage. | 71 | | | No. 3 - Typical effect of construction variables upon cell | | | | capacity | 72 | | | No. 4 - Effect of activated life on discharge voltage | 77 | #### I. PURPOSE The immediate objective during this extended contract period shall be the design of a zinc-silver oxide cell capable of activated stand periods and recharge abilities as follows: - A. Stand period (or useful life) thirty days - B. Stand temperature 90° F - C. Cycle capability six cycles in thirty days - 1. Five cycles removing 25% depth - 2. A final discharge of 100% capacity - D. Battery voltage during discharge 28 ± 2.0 volts (1.40 \pm 0.10 volts per cell) Related studies will be carried out as required to achieve this goal. #### II. ABSTRACT 12499 Effort is being made to develop a cell design capable of limited cycle life while retaining the high rate and high density characteristics of the primary zinc-silver oxide system. A literature search has been carried out with emphasis on references pertinent to improved separator systems. A preliminary design study has been begun to determine more specifically the areas subject to design modification. Studies relative to optimization of the zinc plate densities over the Husha useful range of discharge current densities have also been begun. # III. FACTUAL DATA AND DISCUSSION #### A. General The zinc-silver oxide system has been investigated extensively as indicated by the references included in the appendix. Specific studies have included individual investigations of both electrodes, as well as separator materials. Segments of other studies have dealt with electrolyte concentration and additives. It is indicated that it is possible to construct highly reliable, high energy density, primary zinc-silver oxide batteries, while reliability of the secondary battery comes at the expense of either battery energy density or high rate capabilities. Yet it is possible to construct zinc-silver oxide batteries, either vented or sealed, capable of a considerable number of cycles. (1, 3) The goal of this program shall be the design of a cell capable of limited cycle life while retaining the high energy density and close voltage regulation features characteristic of the primary system. It appears that utilization of the cathode and anode active materials has essentially reached a plateau, although references occasionally mention the application of chemical additives or other innovations. For instance, Dirkse (2) has discussed the addition of palladium to the positive electrode, as have Landers and Keralla. (3) It is anticipated, therefore, that the most advantageous approach will involve the assimilation and application of technique and knowledge revealed in the pertinent references. This is perhaps most true of evaluation of separators and methods of their improvement, because of programs which have dealt largely or entirely with separator studies. #### B. Separator Materials #### 1. Design Factors As silver migration, dendritic zinc growths, dissolution of zinc, and separator degradation remain limiting factors in the operation of secondary zinc-silver oxide cells, a great amount of study has been accomplished in recent years relative to separators. Almost all silver zinc development programs have included phases of study devoted either to screening or special treatment of separator materials and the selection of the optimum combination thereof. To understand the importance of selecting the optimum separator combination, it is only necessary to examine the function of this material and the effect of multiple layers upon cell energy density and voltage regulation characteristics. As indicated by Figure No. 1, equilibrium cell voltage during discharge can be represented by an essentially linear function of current density based upon the total superficial area of the positive group (if all other design factors are held constant). Figure No. 2 indicates possible effects of quantity of separator material in a cell upon discharge voltage at constant current density. Figure No. 3 relates the effects of varying the number of plates and quantity of separation in a cell upon the possible capacity in the cell. These three figures indicate the problems of design involved in optimizing the design of a cell for a specific application. 9 **.** ON A MASSING | | | | | | | | | иñ. | | | 111 | | | النا | | Hi | 14: = | 1 | | | | | | 1 | 1 | | F 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | |---------|-------|-----------------------|--|--------------|------|------|-------|-------|----------|----------|--------|------|------|-------------------|-------|-------|--------|----------|------|------|-------|----------------------|-------|----------|------|-------|--|-------|------| | 1 | 141- | | | | | | | | | | | | | ļ. j. | | | | | | | | | ļ | | 1-1- | | | | 1111 | 1 | | | | | | | | | | 圃 | 黚 | | | | | 44 | | | | | | | | | | | | | 間 | III | 1 | | | | | | FILI | | | Fil | باز | مابع | | | | | | | | HI | 11:1 | | H | | | 里 | HD. | 111 | 44 | | | | | | | | | | | 7 | | | | | | | 圃 | | | | ili. | | | | | | | 1 | | | | | | | | | | | | | 4 | | | | | | | | | | Hill | | | | H | | | | | | | 正 | | 1111 | | | 讍 | | 1 | | | | | | | | | | 讄 | | | | | | | H | | | | | | | | H | İ | | | | 1 | 7 | | | | | 7 | | | | | | | | | liili | | | 1 | | | 1134 | | | |
 | | | † - | | | | | | | | | | | | 1111 | 1 | 1 | 1 | Ų | | | | | | | | 鼺 | 膰 | | | | 19 | | | | | | | | | | | | | | | | 1 | | | 7 | H | 1 | X | | | | | | | | | 翻 | | | | SKAL PHRMFABIE MEMBRA | | ####
| | | | | | | | | | | | | i | | 17 | | | | | | | | | | | | | | E | ARGE VOLTAGE | | | | | | | | HH | | | | 1 | | H | H | | | | | | | | | | | | | | 7 | ABI | OF.1 | | | | | | | 1. | | | 1111 | | | | | Ħ | | | | | | | | | | | | | | 2 | RY. | EV | | | | | II-H | 111 | | | | | 腊 | 48 0 | 19 | 8 | | | | | | | | | | | | | | | | | 9 | | | | | | | | | | 뻬 | | | | 8 | À | 黚 | | | | | 6 | 黚 | 뻬 | | # † | | P | F±! | 1 : - | | +111 | | | | | | | | | | | | | | | | | | 9 8 | 2 0 | o | | | | | | | | | - <u>-</u> | | | | 1111 | 1.11 | 11.1 | | | | | | | | | 1111 | | | | | 7 | | 7 | | | | | | | | | | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | | | 11. | | | | | 魽 | | | | | | | | | | | | 9 | ve . | | | | | | | | | i i i | | | | | ji: | | | | | | | | | | | Ħ | H | | | n
A | | | | 1111 | | | | | LT.! | | | | 111 | | | | | | | 14.0 | | | | | | | ĬÌ | 1 | | | 2 = 2 Layers regillo | | | | | | | | | | ijij, | | | | | | | | ii ii | 71.1 | įijŗ | | | | | | | | | | | | | | | | | CV C | 1111 | +1-1-1-1 | 1-11 | | | | | | | | | | | | | | | | | | | # 1 | | | | 7 | | Î | X | 1 | | I | | 1 | | | | | | | | | 圃 | | 1 - 1 - | | | | | | | +1:+ | | | 1111 | | | ⊥ • | 1 | 5 | | | | ď | | c | | - | Į.⊅Ç | | | | | | | | 11:11 | :+ | iii ii | | | H | | | | 1111 | 1111 | | | | | | | | | | | | | | | 1 | | | | | | | | | 1111 | | ++1+ | | | | | | | | | | | | | | | | | | لنندد | للنيد | لننب | <u> </u> | المنتب | تببب | - 7 | - 1111 | لنيتي | تتنيب | لتنب | דנינע | umi | نبيب | للنند | النلالة | LILL | لللب |
шЦ | للنلد | utill | للللت | كنند | Cello. Gello. r wraps Oe II Cello. Very frequently, a battery application demands an average cell voltage within definite limits, such as 1.40 ± 0.10 volts. If longer activated life is required, a common method of achieving this aim is the use of a more membranous separator. The greater thickness of separator may be sufficient to demand an increase in number of plates to offset the adverse effect of increased separation upon cell voltage and voltage regulation. As indicated by Figure No. 3, this in turn decreases the possible cell capacity and energy density. These practical design criteria reveal the importance of selecting the optimum separator system and the use of this system such that limited cycle life may be obtained without making the sacrifices outlined above. # 2. Discussion of Separator Treatments Many studies have included screening tests which reflect the relative abilities of prospective separator materials to meet one or more of the requirements of an acceptable product. The criteria used commonly considered in evaluating separators include the following: - A. Dimensional changes upon wetting - B. Electrolyte retention or absorptivity - C. Degradation of the material in caustic solution - D. Ability to retard silver transport - E. Resistance to oxidation - F. Electrical resistance - G. Physical strength Some of these properties have been evaluated and reported for most of the commonly available commercial products. The use of glycerine-free cellulosic membranes has been widely followed by makers of secondary alkaline cells because of the ability to retard silver transport and their relatively low electrical resistance, as well as their low cost and ready availability. However, because of the degradation of these materials in caustic and oxidizing environments, many attempts to find substitutes or to improve the properties of cellulosics have been made. One treatment of cellulosic materials which has been widely reported is the deposition of silver within the material by use of formaldehyde or other reducing agent. (4) It has been reported that such treatment may reduce swelling but has little or no effect upon oxidation resistance as determined by attack of alkaline permanganate solution. (5) Studies have resulted in data relating the progressive deterioration of cellophane in KOH/ZnO systems under oxygen, including the depolymerization of the material as a function of time and temperature. It was found that the maximum degree of swelling of cellophane and, hence, the greatest degree of attack upon cellophane, occurs in KOH concentrations ranging from 26-33 percent by weight. (5) Another manufacturer has reported data describing the loss of strength of cellophane in caustic solutions at temperatures down to -35° C. (6) Among the treatments of cellophane have been addition of grafts of styrene and isopropylacrylamide monomers as well as methacrylic acid. (5, 7) Indications are that these treatments may not greatly increase the resistance to KOH attack without undue increase in the electrical resistance of the membrane. One of the more recent treatments has been that of cellophane by antioxidants such as m- and p-phenylenediamine. It has been indicated that such treatments may result in remarkably improved oxidation resistance while electrical resistance remains essentially unchanged (about 0.010 ohm-inch for the membrane tested). However, this decreased reactivity of the membrane caused inability to retard silver transport. It is now concluded that a separator should be able to react with dissolved and colloidal silver in order to prevent its migration. (2, 5, 6) Later reports from Electric Storage Battery Company indicate that an isocyanate treatment of cellulosics may hold some promise. Preliminary indications were that results might include improved strength retention and greater oxidation resistance at the expense of slightly increased electrical resistance. Recently, attempts have been made to evaluate or study separator systems by means of radioactive tracer techniques. (2) This involves measuring the rate of transport of an isotope of silver through the system under study. However, Dirkse verified that this means of evaluation is confused by the fact that cellulosic materials effectively remove dissolved and colloidal silver from the electrolyte. Therefore, very little silver passes through a "fresh" cellulosic membrane (assuming no grafting or special treatment of the membrane). Again, it is implied that only reactive membranes are capable of preventing silver transport. ## 3. Conclusions In view of the difficulty observed in obtaining reproducible results relative to silver loading of membranes and transport through membranes, it is doubtful that any mathematical description or prediction can be formulated to estimate accurately the processes which occur in a cell. This is true for several reasons: - 1. Only under the most exacting conditions can compression of expanding or "swelling" materials be held at a constant level. This implies variation in the mean pore size, microscopic surface area, and rate of chemical attack, as well as electrical resistance. - 2. Silver transport undoubtedly varies with the "age" of a reactive membrane. This age would be reflected by the state of degradation and quantity of silver already held by the membrane. - 3. Zincate concentration in the electrolyte probably also affects silver transport. - 4. Certain membranes, notably irradiated inerts, appear susceptible to wrinkling, or local overlap. - 5. If considerable quantities of "open" separators are employed in a cell, bulk movement of the electrolyte, as well as ionic transport, may be a considerable factor in the movement of silver and zinc throughout the cell. The apparent conclusion is that at the present state-of-the-art, screening tests only allow the rejection of poor materials on the basis of comparison to acceptable products. For example, it may be decided that a product having an electrical resistance three times that of cellophane does not justify further evaluation. However, it may not be possible to assert that a material which passes a single screening test will perform desirably in a cell. It is likely that factors such as pore size and distribution or other characteristics not easily measured are important. Until testing procedures are further refined, the final step in testing a separator system will involve employing it in a cell. ## C. Utilization of the Zinc Plate Studies reported earlier indicated the beneficial effect of lower apparent densities upon discharge efficiencies of the zinc plate. Since a density of 40 grams per cubic inch, the lowest investigated, proved to give the greatest efficiency, data have been extended over a range of 36-58 grams per cubic inch. As the less dense material requires greater volume, it is apparent that for optimization it is also necessary to examine the volume factor. Table No. I contains data relevant to this study. TABLE NO. I | PLATE
THICKNESS
(inches) | APPARENT
DENSITY
(gm/in ³) | PERCENT
EFFICIENCY | AMPERE-HOURS PER MILLI-INCH | |--------------------------------|--|-----------------------|-----------------------------| | 0.030 | 36 | 52.1 | 0.00796 | | 0.028 | 40 | 48.4 | 0.0079 | | 0.024 | 46 | 42.4 | 0.00796 | | 0.022 | 51 | 33.9 | 0.0069 | | 0.020 | 58 | 28.8 | 0.0065 | These data were obtained specifically for a zinc plate weight of 1.01 grams per square inch, and for a current density of 0.27 ampere per square inch of surface area. Plates were discharged against a considerable excess of positive material and these data represent the average of five "runs". It is apparent that at the lower densities, the increase in plate efficiency is offset by the plate thickness, so that no advantage is gained on a volume basis. As such data are dependent upon current densities, it is planned to attain sufficient data to allow optimization over the practical range of discharge rates. ## D. Failure Modes of the Zinc-Silver Oxide System There are several modes of failure or loss of capacity associated with the zinc-silver oxide system. These include the following: - 1. Loss of oxygen from the positive plate: Divalent silver oxide is thermodynamically unstable in caustic solutions. Aside from other reactions the eventual decomposition of the higher oxide of silver will cause considerable loss of capacity from a positive plate which contains little or no metallic silver. - 2. Loss of silver to the electrolyte and separator material: Cellulosic membranes effectively remove ionic and colloidal silver from the electrolyte. Less reactive materials also impede the transport of silver to some extent and accumulate silver in the process. A small amount of silver also remains in solution as governed by the solubility product of the species. Silver may be removed from the solution by the separator or zinc plate depending upon the efficiency of the separator system in use. As the silver content of the electrolyte tends to be renewed so long as the oxidized form lasts, it is obvious that a separator system must represent optimum conditions of electrical and physical performance. - 3. Contamination of the electrolyte by zincate and carbonate: The effects of such contaminations apparently have not been fully evaluated. It would seem, however, that such additions would affect the impedance of the cell, resulting in the reduced availability of electrochemical energy at the higher voltage levels. This would cause imparied voltage control and reduced acceptable capacity. Figure No. 4 indicates the effect of stand upon voltage control and capacity. While the capacity for the subject cell to an end voltage of 1.30 volts decreased by nearly 20%, the capacity to a 1.10 volt cutoff decreased by less than 13%. One phase of study will involve the determination of cell impedance as a
function of activated life, as well as the resistance of separator materials having undergone silver accumulation and physical degradation. - 4. <u>Internal shorting</u>: Penetration of the separator system by either metallic silver or dendritic growths may provide conductive paths and therefore, self-discharge of the cell. # E. Preliminary Design Study A set of cells has been constructed for the purpose of estimating the capabilities of a design similar to the prototype cell design presented at the conclusion of the original contract period. The only major change was the use of silver grid in both the positive and negative plates. Data are not yet sufficiently complete to compare to the design objective as stated. Cells have been discharged to 1.30 volts to determine average cell capacity, followed by discharges of 25% of this capacity after intervals of one and six days. Stand temperature is 90° F. The remaining discharges will be conducted and the data presented in the next progress report. #### IV. SUMMARY AND CONCLUSIONS A number of references have been compiled and most examined for relevance to this contract. It is apparent that appropriate cell designs are capable of numerous cycles, at the expense of the high energy density characteristics of the primary zinc-silver oxide system. It is hoped to arrive at a design which will allow limited cycle life at +90° F without compromising the high rate capabilities and energy density of the primary system. Tests have been begun to estimate the cycle ability of cells similar in design to those constructed at the end of the original contract period. At this time three cycles have been conducted over a period of twelve days. Utilization of the active materials is not currently being improved appreciably. It is indicated, however, that zinc material density may be regulated to allow the determination of the optimum quantity of zinc for a specific condition of service. As confirmed earlier (see Final Report, this contract), density of the negative material is a significant design factor with respect to charge retention on activated stand. Data presented in this report reveal that on initial discharges, at least, the benefits of zinc densities lower than 45 grams/inch³ may be offset by the greater volume required by the anode active materials. These data were obtained at a specific current density and tests are being initiated to extend these data to cover the range of useful current densities. The selection of the optimum combination of separator materials for a specific application is important in view of the effects of multiple layers upon voltage magnitude and regulation as well as cell capacity. Several researchers have concluded that a reactive membrane, such as cellophane, is necessary to prevent silver transport. The literature includes preparation of membranes and treatments of membranes too numerous to itemize. Certain treatments which are indicated to be beneficial, such as the isocyanate treatment of cellophane, will be evaluated with respect to attaining the design goal. ## V. PROGRAM FOR THE NEXT INTERVAL Effort will be made to regain some of the slippage indicated in the Master Schedule included in the Appendix. This will include effort in the following specific areas: - 1. Survey of the current literature will be continued. - 2. Attempts will be made to locate thinner suitable separator materials, both membranous and "open" types. - 3. Optimization studies relating to zinc efficiency as affected by apparent density of the material and discharge current density will continue. - 4. A program will be outlined which will allow estimation of the operting and reliability characteristics of the final cell design. - 5. Studies relating to the effects of various electrolyte additives will be initiated. - 6. The preliminary design study will be completed. # VI. PERSONNEL The following totals of man-hours have been expended during the contract period: Engineering ------ 2381 hours Technical ----- 2894 hours TOTAL 5275 hours APPENDIX ## REFERENCES CITED IN THIS REPORT - (1) Contract AF 33(616)-7529, Cook Electric Company, "Evaluation of Alkaline Cells" - (2) Contract AF 33(615)-1236, Dirkse, T. P., "Silver Migration and Transport Mechanism Studies in Silver-Zinc Batteries" - (3) Contract AF 33(600)-41600, Delco-Remy, "Development of Sealed Silver Oxide-Zinc Secondary Batteries" - (4) U. S. Patent 3,091,554, among others - (5) Contract NAS 5-2860, Electric Storage Battery Company, "Alkaline Battery Separator Study" - (6) Contract DA-36-039-AMC-02238(E), Yardney Electric Company, "Development of the Sealed Zinc-Silver Oxide Secondary Battery System", March 31, 1964 - (7) Tuwiner, S. B., <u>Diffusion and Membrane Technology</u>, Reinhold Publishing Corporation, 1962, (Lib. Cong. No. 62-20783) ## REFERENCES WHICH ARE AVAILABLE - 'Mechanism of Processes in Silver Electrode of a STS Storage Battery", U. N. Flerov, Zh. Prekl. Khim. 36, 1980-7, 1963 (60, 1331a) - "Inv. of Silver-Zinc Storage Battery Radioactive Zinc (65) Isotope", T. Z. Palagyi, J.E.S. 108, 201-3, 1961 (56, 8440) - "The Effect of Amalgamating Agent on Electrolyte Parameters and Their Stability in Zinc/Manganese Cells", T. Fabiuonmicius, Mokslas ir Tecknika, 1961, pp. 35-6 (55, 24310) - "Mechanism of Cathodic Reduction of Zinc Oxide Phase Layers on Zinc Electrode", A. I. Oshe, et al, Zhur. Fig. Khim. 35, 1641-2, 1961 (56, 261) - "Mechanism of the Effect of an Asymmetric Alternating Current in Charging Zinc-Silver Battery on Shape of Discharge Curve", V. V. Romanov, Zhur. Preklad. Khim. 34, 1312-16, 1961 (55, 6197 i; 17294 i) - "Effect of Periodic Reverse Current and Pulsating Current on Electro. Deposition of Zinc from Zincate Solution", G. Bek, et al, Zhur. Preklad Khim. 34, 2020-7, 1961 (56, 1284) - "Hydrogen Overvoltage on Zinc Electrode in Alkaline Solutions. Effect of KOH Concentration", Z. Z. Iofa, et al, Zhur. Fig. Khim. 35, 1571-7, 1961 (55, 25546) - "Cathodic Behavior of AgO in Alkaline Solution", T. P. Dirkse, J.E.S. 107, 859-64, 1960 (55, 2306) - "Kinetics of Ag/Ag+ Electrode", H. Genscher, Proc. Int. Comm. Electro-Chem. Ther-modynam. & Kinet. 9th, 1959, 352-61, Germ. (54, 3001) - "Oxidation of Silver Electrode in Alkaline Solutions", T. P. Dirkse, J.E.S. 106, 920-5, 1959 (54, 2045) - "Oxide on Silver Electrode Conductivity", C. P. Wales, J.E.S. <u>106</u>, 885-90, 1950 (54, 93) - "Silver Peroxide-Zinc Alkaline Cells", P. F. Bruns, et al, Ind. & Eng. Chem. 50, 1273-8, 1958 (53, 904 b) - "Separators for the Silver Peroxide/Zinc Alkaline Battery", Bruins, et al, Ind. Eng. Chem. 48, 381-5 (1963) (50, 7621 g) - "The AgO-Ag2O Electrode in Alkaline Solution", T. P. Dirkse, J.E.S. 109, 173-7 (1962) - "Voltage Potential of Oxide and Oxygen Chemisorption Layers on Silver", H. Galer & H. Reinbardi, Z. Electrochem. 64, 414-21 (1960), (50, 15020) - "Structure of the Charged AgO Electrode in Zn/Ag Storage Battery", V. V. Romanov, Zhur. Preklad. Khim. 33, 2071-8 (1960) (55, 17294) - "Solubility and Stability of AgO in Alkaline Electrolytes", R. F. Amlie, P. Renshi, J.E.S. 108, 813-19 (1961) (56, 1278) - "The Ag-AgO Electrolyte", D. D. Cahon, et al, J.E.S. 107, 725-31, 1960 (54, 23995) - "Absorption of Hydrogen & Oxygen on Electrode Surfaces", R. F. Amlie, et al, J.E.S. 108, 377-83, 1961 (55, 14120) - "Electro. Properties & Kinetics of Electrode Reactions", R. J. Brodd, J. Res. National Bureau of Standards 65A, 275-82 (1961) (55, 25535) - "Chemical & Physicochem. Evolution of Zinc as to its Suitability for Manufacture of Storage Batteries", L. Pesthy, Kohaszati, Lapole 15, 262-7, 1960, Ibid. 317-23 (54, 23994) - "Anode Passivation of Zinc in Alkaline Solutions", T. I. Papova, et al, Doklady. Akad. Nauk. SSSR 132, 639-42, 1960 (56,262) - "Factors Decreasing the Capacity of Zinc Electrodes in Alkali-Zinc Storage Battery", V. N. Flerov, Zhur. Preklad. Khim. 33, 140-6, 1960 (54, 9544; 53, 17719 h) - "Improvement of Some Characteristics of the Zinc-Silver Storage Battery", V. V. Romanov, Bestnik. Elektroprom. 31, 26-9, 1960 (55, 6198) - "Influence of Aging Processes on the Working Alkali Zinc Cells", V. N. Flerov, Trudy. Chekvertogo. Soveschaniya. Tlektrkhim, Moscow 1966, 768-72 (54, 9542) - "Investigation of Silver-Zinc Alkali Storage Battery by Aid of Radioactive Isotopes", T. Z. Palogyi, J.E.S. 106, 846, 1959 - "Composition and Properties of Saturated Solutions of ZnO in KOH", J.E.S. 106, 846, 1959 - "Equilibrium Conditions on a Zinc Electrode in Alkaline Solution Saturated with Zincate", E. A. Mendzharitski and V. S. Bagotskii, Doklady. Akad. Nauk. SSSR 128, 575-7, 1959 (55, 8117) - "Corrosion of the Electrode in the Silver-Zinc Alkali Cell", T. P. Dirkse & F. DeHaan, J.E.S. 105, 311, 1958 - "Duration of Activity of Ag/Zn Batteries", L. Kiss (Budapest) Magyar Kem. Folyiorat 64, 17-19, 1958 (52, 11629) - "Electrolytic Oxidation of Zinc in Alkaline Solutions", T. P. Dirkse, J.E.S. 102, 492-501, 1954 - "Processes Taking Place on the Zinc Electrolyte of an Alkaline Cell", Z. A. Iofa, et al, Zhur. Preklad. Khim. 22, 983-94, 1949 (46, 4397) - "Silver-Zinc Secondary Battery Investigation", 3rd Quarterly, J. J. Lander and J. A. Kerella (April 1963), Contract No. AF 33(657)-8943, 2nd Quarterly (January 1963) - "Design and Construction of Yardney Primary Battery BA(X-R)/U", Final Report (November 1960), Contract No. DA-36-039-sc-73157 - "The Silver-Silver Oxide Electride, Part 2, Anodization at 0 and 20° C in Alkaline Solutions", C. P. Wales (May 1962) NRL Report #5768 - "The State of Development of Silver Oxide-Zinc and Nickel-Cadmium Batteries", R. W. Shult and W. T. Stafford (February 1960), STL/TR-60-0000-0934 - "Chemically Heated Zinc-Silver Oxide Battery", Report No. 1, J. J. Holchek, et al, (September 1962), Catalyst Research Corp., Contract No. DA-36-039-sc-90812 - "High Rate Cycling Behavior of the Silver Electrode", T. P. Dirkse, (April 1963), Nonr-1682(01) - "Test Report on Sealed Silver Oxide-Zinc
Secondary Cells", (February 1962), Delco-Remy, Contract No. AF 33(600)-41600 - "Development and Reliability Investigations of Zinc-Silver Oxide Missile Batteries", N. T. Wilburn, Proc. 11th Ann. Batt. Res. and Dev. Conference (1957), p. 58 - "Separator Material for Special Purpose Batteries (Ag/Zn)", P. F. Bruins, Proc. 11th Ann. Batt. Res. and Dev. Conference (1957), p. 62 - "Characterization of Zinc-Silver Oxide Molten Electrolyte Cell Systems", D. J. Doan, Proc. 11th Ann. Batt. Res. and Dev. Conference (1957), p. 64 - "Zinc-Silver Oxide Batteries (Primary)", N. T. Wilburn, Proc. 10th Ann. Batt. Res. and Dev. Conference (1958), p. 20 - "Zinc-Silver Oxide Battery (Secondary)", P. Howard, Proc. 10th Ann. Batt. Res. and Dev. Conference (1958), p. 41 - "Battery Separators", H. H. Bieber, Proc. 9th Annual Batt. Res. and Dev. Conference (1955), No. 1115 - "Zinc-Silver Oxide Secondary Battery", J. S. Bone, Proc. 9th Ann. Batt. Res. and Dev. Conference (1955), No. 1045 - "Zinc-Silver Oxide Secondary Battery", P. L. Howard, Proc. 9th Ann. Batt. Res. and Dev. Conference (1955), No.1105 - "Zinc-Silver Oxide Batteries for Special Applications", R. Goodrich, Symposium on Batteries (1958), English Paper No. 99 - "Technical Problems Associated with the Silver-Zinc Battery", C. L. Chapman, Symposium on Batteries (1958), English Paper No. (f) - "Automatically Activated Zinc-Silver Oxide Batteries", Symposium, Battery Research and Development Conference (1958), pp. 37-57 - "Silver Oxide Secondary Batteries", P. L. Howard, F. Solomon, 13th Ann. Power Sources Conference (1959), p. 92 - "Sealed Zinc-Silver Oxide Secondary Batteries", J. C. Duddy, J. T. Arms, 14th Ann. Power Sources Conference (1960), p. 84 - "Non-Reserve Silver Oxide Cell", R. Amile, P. Ruetschi, 14th Annual Power Sources Conference (1960), p. 120 - "Sealed Zinc-Silver Oxide Batteries (Secondary)", J. J. Lander, 14th Ann. Power Sources Conference (1960) - "Reliability Program on High-Rate Zinc-Silver Oxide Batteries (Secondary)", N. T. Wilburn, 14th Ann. Power Sources Conference (1960) - "Sealed Zinc-Silver Oxide Batteries (Secondary)", J. A. Kerella and J. J. Lander, 16th Ann. Power Sources Conference (1962), p. 105 - "Zinc-Silver Oxide (Primary) Batteries for Space Applications", E. M. Morse, D. L. Lawson, 16th Ann. Power Sources Conference (1962), p. 127 - "Zinc-Silver Oxide Non-Reserve Battery", G. M. Wylie, 16th Ann. Power Sources Conference (1962), p. 130 - "Sealed Zinc-Silver Oxide (Secondary) Batteries", J. A. Kerella and J. J. Lander, 17th Annual Power Sources Conference (1963), p. 116 - "Separators for Alkaline Batteries (Secondary)", T. P. Dirkse, 17th Ann. Power Sources Conference (1963), p. 118 - "Low Rate Sealed Zinc-Silver Oxide Batteries", D. B. Colbeck, 17th Ann. Power Sources Conference (1963), p. 135 - "The Stability and Solubility of AgO in Alkaline Solutions", T. P. Dirkse and B. Wiers (September 1958), Contract Nonr 1682(1) - "Investigation of AgO Primary Batteries", Final Report (September 1961), G. M. Wylie, et al, Contract No. DA-36-039-sc-78319 - "Automatically Activated Zinc-Silver Oxide Battery", Report No. 5, J. J. Holchek, et al, Contract No. DA-36-039-sc-85361 - "Automatically Activated Zinc-Silver Oxide Battery", Report No. 2, J. J. Holchek, et al, Contract No. DA-36-039-sc-85361 - "The Silver Oxide-Zinc Alkaline Primary Cell, Part V, Comparison of KOH, CsOH and RbOH Electrolytes", C. M. Shepherd and H. C. Langelan, NRL Report 5635 - "Silver Oxide-Zinc Battery Program", J. Rhyne, Jr., (May 1961), Contract No. AF 33(600)-41600 - "Investigation of AgO Primary Batteries, Final Report (September 1961), G. M. Wylie, et al, Contract No. DA-36-039-sc-78319 - "Thermodynamics of the Zinc-Silver Oxide Cell", Royal Aircraft Establishment (February 1958), Report No. Chem. 515 - "The Zinc-Silver Oxide Cell, Low Temperature Operation without Auxiliary Heating", (December 1958), I. A. Denison, et al, Contract No. DA-506-01-010 - "Silver Oxide-Zinc Alkaline Storage Batteries: Effect of Float and Normal Charges on Capacity and Related Characteristics", C. P. Wales (August 1958), NRL Report No. 5167 - "On Electrode Phenomena of Ag/AgO System in Alkaline Battery", Hoshizawa and Takehira, Department of Industrial Chemistry, Faculty of Engineering, Koyoto University, Koyoto, Japan - "Investigation of AgO Primary Batteries", 4th Quarterly (June 1960), P. Ruetschi, et al, Contract No. DA-36-039-sc-78319 - "Thermal Coefficients of EMF of the Silver (I) and the Silver (II) Oxide Zinc 45% KOH Systems", S. Hills, J.E.S. August 1961, pp. 810-11 - "The Formation of Di and Trivalent Silver on a Rotating Disc Electrode in Alkaline Solutions", Y.U.V. Pleshave, Proc. Academy of Science 117, 1-6 p. 739-741 - "Light Weight High-Drain Zinc-Silver Oxide Battery", G. R. Snyder, (August 1960), TR-859, Contract No. DA-3N06-01-010 - "The State of Development of AgO-Zn and Ni-Cd Batteries", R. W. Shult, W. T. Stafford, STL/TR-60-0000-09034 - "Sealed Zinc-Silver Oxide Secondary Batteries", J. C. Duddy and J. T. Arms, Proc. 14th Ann. Power Sources Conference, p. 84 - "Solubility of Ag₂0", H. L. Johnston, F. Cuta, and A. B. Garrett, J.A.C.S. <u>55</u>, 2311-25 (1933) - "The Stability and Solubility of AgO in Alkaline Solutions", T. P. Dirkse and B. Wiers, J.E.S. 106, 284 (1959) - "Investigation of AgO Primary Batteries", P. Ruetschi and R. Amlie, 1st Quarterly Report (1 June 1959 31 August 1959), Contract No. DA-36-039-sc-78318, Electric Storage Battery Company - "Investigation of AgO Frimary Batteries", P. Ruetschi and R. Amlie, 2nd Quarterly Report (1 September 1959 30 November 1959), Contract No. DA-36-039-sc-78318, Electric Storage Battery Company - "Investigation of AgO Primary Batteries", P. Ruetschi and R. Amlie, 3rd Quarterly Report (1 December 1959 29 February 1960), Contract No. DA-36-039-sc-78318, Electric Storage Battery Company - "Accumulator", H. G. Andre, U. S. Patent 2,317,711, April 27, 1943 - "Silver and Zinc Accumulator with Insoluble Negative Electrode and Invariable Electrolyte", H. G. Andre, U. S. Patent 2,594,709, April 29, 1952 - "Zinc-Silver Accumulator", H. G. Andre, U. S. Patent 2,594,710, April 29, 1952 - "Zinc-Silver Accumulator", H. G. Andre, U. S. Patent 2,594,711, April 29, 1952 - "Silver and Zinc Accumulator Having an Insoluble Negative Electrode", H. G. Andre, U. S. Patent 2,594,712 - "Electric Accumulator", H. G. Andre, U. S. Patent 2,594,713, April 29, 1952 - "Electrical Accumulator", H. G. Andre, U. S. Patent 2,669,594, February 16, 1954 - "Electric Battery", C.L.C. Chapman, U. S. Patent 2,719,874, October 4, 1955 - "Rechargeable Battery", M. N. Yardney, U. S. Patent 2,610,219, September 9, 1952 - "Interelectrode Separator for Rechargeable Batteries", M. N. Yardney and M. E. Kagan, U. S. Patent 2,635,127, April 14, 1953 - "Investigation of Battery Separator Materials", P. F. Bruins, et al, Final and 4th Quarterly Report (July 1, 1957 September 30, 1957), Contract No. DA-36-039-sc-73120, Polytechnic Institute of Brooklyn - "Silver Peroxide-Zinc Cells: Polymeric Membrane Separators", H. H. Bieber, P. F. Bruins and H. P. Gregor, Ind. Eng. Chem. Vol. 50, No. 9, 1273-8, 1956 - "Separators for the Silver Peroxide-Zinc-Alkaline Battery", R. C. Shair, P. F. Bruins and H. P. Gregor, Ind. Eng. Chem. Vol. 48, No. 3, 381-5, 1956 - "The Nature of the Zinc Containing Ion in Strongly Alkaline Solutions", T. P. Dirkse, J.E.S. 101, 328, 1954 - "A Study of Alkaline Solutions of Zinc Oxide", T. P. Dirkse, C. Postmus, and R. Vandenbasch, J.A.C.S. 76, 6022 (1954) - "Electrolytic Oxidation of Zinc in Alkaline Solutions", T. P. Dirkse, J.E.S. 102, 497 (1955) - 'The Polarographic Behavior of Zinc in Strongly Alkaline Solutions", T. P. Dirkse, Z. Physik. Chem. N. F. 5, 1 (1955) - "Composition and Properties of Saturated Solution of ZnO in KOH", T. P. Dirkse, J.E.S. 106, 1954 (1959) - "The Growth of Zinc Dendrites in Some Swelling Polymers", T. A. Kryulova, Proceedings of the 4th Soviet Conference on Electrochemistry, October 1956 - "Battery Electrolyte", M. Mendelsoln and C. Horowitz, U. S. Patent 2,872,362, February 3, 1959 - "Inhibitors of Aging in Sodium Zincate Solutions", V. N. Flerov, Zhur. Priklad. Khim. 29, 1779-85 (1956) C.A. 51, 7211 (1957) - "The Aging Process of 'Super Saturated' Zincate Solutions", V. N. Flerov, Zhur. Fiz. Khim. 31, 49-54 (1957) - "The Effect of Continuously Changing Potential on the Silver Electrode in Alkaline Solutions", T. P. Dirkse and D. B. DeVries, J. Phys. Chem. 63, 107 (1959) - "Oxides on the Silver Electrode", C. P. Wales and J. Burbank, NRL Report 5298, May 15, 1959, U. S. Naval Research Laboratory, Washington, D. C. - "Oxides on the Silver Electrode", C. P. Wales and J. Burbank, J.E.C.S. 106, 885 (1959) - "Silver Oxide-Zinc Alkaline Storage Batteries: Effect of Float and Normal Changes on Capacity and Related Characteristics", C. P. Wales, NRL Report 5167, August 11, 1958, U. S. Naval Research Laboratory, Washington, D. C. - The Oxidation States of the Elements and Their Potentials in Aqueous Solutions,, W. M. Latimer, 2nd Ed. Prentice-Hall, Inc. N.Y. (1952) - Electrochemistry Volume I, H. J. Creighton and W. A. Koehler, John Wiley & Sons, p. 253 - Introduction to Chemistry, S. Glasstone, D. Van Nostrand Co., p. 466 - "A Study of the Zinc-Nobel Metal Couple in Alkaline Solutions", T. P. Dirkse and E. G. Vrieland, J.E.S. 106, 997 (1959) - 'Valence Electrions of Silver", J. M. Adams, Z. Physik. 52, 882 (1928) - "Oxygen Isotope Effects at Anodes", M. Anbar and H. Taube, J.A.C.S. 78, 3252 (1956) - "Zinc-Alkali Storage Battery", H. Andre, Bull. Soc. Franc. Elec. (6) 1, 132-46 (1941 C.A. 37, 1939) - "Electric Storage Battery", H. G. Andre, U. S. Patent 2,757,222, July 31, 1956 - "Method of Making Electric Accumulators", H. G. Andre, U. S. Patent 2,611,792, September 23, 1952 - 'Method of Forming Electric Accumulators", H. G. Andre, U. S. Patent 2,594,714, April 29, 1952 - "Battery Electrode and Process for Making Same", A. S.
Berchielli, U. S. Patent 2,754,348, July 10, 1956 - "Some Physico-Chemical Evidence of the Bivalency of Silver", Nath Sen Binayendra, Current Sci. (India) 17, 182-3 (1948) C.A. 43, 10a - "A Study of the Silver I Oxide-Silver II Oxide Electrode", J. F. Bonk and A. B. Garrett, J.E.S. 106, 612-15 (1959) - H. Bracken, Kgl. Norshe, Vrdenskab. Selskab. Foch. 7, 143-6 (1935) C.A. 29, 4647-5 - "Electrode for Electric Batteries and Method of Making Same", O. H. Brill and F. Solomon, U. S. Patent 2,654,795, October 6, 1953 - "Zinc Alkali Storage Battery", Chloride Electrical Storage Company, Ltd., Brit. Pat. 470,240, August 11, 1937, C.A. 32, 863 - "Electrometric Studies of the Precipitation of Hydroxides", H. T. S. Britton, J.C.S. 127, 2110-59 (1925) - "Electrometric Study of the Reactions Between Alkalies and Silver Nitrate Solutions", H. T. S. Britton, J.C.S. 127, 2956-70 (1925) C.A. 20, 1770-1 - M. N. Brown, Trans. Am. Electrochem. Soc. 30, 327-46 (1916) - Paul F. Bruins, Quarterly Report #1, (February 1 April 30, 1951), Contract No. DA-36-039-sc-5425 - "Electrode Bearing Current Distribution Network and Method of Producing Same", C.L.C. Chapman, U. S. Patent 2,776,331, January 1, 1957 - "Investigation of Conductive Plastics for Use in Batteries", S. A. Corren and A. S. Louis, 12th Quarterly Progress Report (Final), 15 April 1957 August 1957, Contract No. DA-36-039-sc-64463, Markite Company - "Depolarizer Material for Primary Cells", A. F. Daniel, U. S. Patent 2,678,343, May 11, 1954 - "The Absolute Sizes of Certain Univalent and Bivalent Ions", W. P. Davey, Phys. Rev. 19, 248-51 (1922) C.A. 17, 2207-9 - "Precision Measurements of the Lattice Constants of Pure Metals", W. P. Davey, Phys. Rev. 23, 292 (1924), C.A. 19, 1798-4 - "Potential pH Diagrams of Silver", P. Delahay, M. Pourboix, and P. Von-Rysselheaghe, J.E.S. 98, 65-7 (1951) - "Silver Oxide:Zinc Cell", I. A. Dennison and P. L. Howard, U. S. Patent 2,513,-292, July 4, 1950, C.A. 44, 9280a - "Silver Oxide Zinc Alkali Primary Cell", I. A. Dennison, Preprint of Electrochem. Soc. No. 20 and 26, Vol. 90 - "The Solubility of Zn(OH)₂ in KOH", V. V. Deshpaude and M. B. Kabaldi, J. Univ. Bombay 21, Sec. A, Pt. 3, 14-21 (1952), C.A. 46, 11063e - "Solubility of Zinc Hydroxide in Sodium Hydroxide and Ammonium Hydroxide", H. G. Dietrich and J. Johnston, J.A.C.S. 49, 1419-31 (1927) - "Freliminary Investigation of the Silver Oxide-Zinc-Alkali Primary Battery", T. P. Dirkse, NRL Report P-2129, Naval Research Laboratory, Washington, D. C. - T. P. Dirkse, NRL Report 2244, March 1944, U. S. Naval Research Laboratory, Washington, D. C. - "The Silver Oxide-Zinc-Alkalai System as the Basis for a Secondary Battery", T. P. Dirkse, NRL Report P-2431, February 1945, Naval Research Laboratories, Washington, D. C. - "The Silver Oxide Electrode", T. P. Dirkse, J.E.S. 106, 453 (1959) - "The Oxidation of the Silver Electrode in Alkaline Solutions", T. P. Dirkse, Technical Report No. 8 (May 1, 1959), Contract No. Nonr 1682(01) - "The Oxidation of the Silver Electrode in Alkaline Solutions", T. P. Dirkse, J.E.S. 106, 920 (1959) - "Corrosion of the Zinc Electrode in the Silver-Zinc-Alkali Cell", T. P. Dirkse and F. DeHaan, J.E.S. 105, 311, 1958 - "Corrosion of the Zinc Electrode in the Silver-Zinc-Alkali Cell", T. P. Dirkse and F. DeHaan, Technical Report No. 5 (November 1, 1957), Contract No. Nonr 1682(01) - "Electrolytic Transition of Ag₂0 to AgO in Alkaline Solutions", T. P. Dirkse and G. J. Werkema, J.E.S. 106, 88 (1959) - "Negative Electrode for Silver-Zinc Batteries", J. Doyen, U. S. Patent 2,876,678, January 6, 1959 - M. S. Ebert, E. L. Rodowskar and J. C. W. Frazer, J.A.C.S. 55, 3056-7, 1933 - "Battery Component", J. B. Eisen, U. S. Patent 2,679,546, May 25, 1954 - "Gravity Field Effects on Zinc Anode Discharge in Alkaline Media", M. Eisenberg, H. F. Bauman, and D. M. Brettner, LMSD Report No. 480464, October 19, 1959, Contract No. Nord 17017, Lockheed Missiles and Space Div., Lockheed Aircraft Corp., Sunnyvale, Calif. - "An Evaluation of the Gassing Characteristics of a Silver-Zinc and of a Lead Acid Battery", J. V. Ekberg, Report No. NA-56-115 (January 31, 1956), Contract No. AF 33(600)-22305, North American Aviation, Inc. - "Zinc Alkali Primary Cell", G. S. Engle, Brit. Pat. #3,861, February 14, 1913, C.A. 8, 2533 - R. Fauire, Comp. Redn. 210, 398-400 (1940) C.A. 34, 3555² - 'The Conversion of Solid Substances in Liquids: On the Various Modifications of the Zinc Hydroxides', W. Feitknecht, Helv. Chim. Acta. 13, 314-45 (1930) - "Kinetics of Silver (1) Silver II Exchange Reaction", B. M. Gordon and A. C. Wahl, J.A.C.S. 80, 273-6 (1958) - "A Study of the Application of Ion Exchange to Electronic Batteries", Harry P. Gregor, Final Progress Report (15 June 1953 31 August 1954), Contract No. NObs 62383, BuShips, Dept. of Navy Index No. NS-677-095, Polytechnic Institute of Brooklyn - "A Reproducible and Stable Silver-Silver Oxide Electrode", W. J. Hamer and D. N. Craig, J.E.S. 104, 206-11 (1957) - "Zinc Alkali Primary Cell", G. W. Heise, U. S. Patent 2,077,561, April 20, 1937, C.A. 31, 3797 - G. W. Heise and A. Schumacher, U. S. Patent 2,077,562 - 'Reaction between Silver and Persulfuric Acid", G. I. Higson, J. C. S. 119, 2048-55 (1921) C.A. 16, 1054-5 - "A Study of the Action of Alkalies on Certain Zinc Salts by Means of the Hydrogen Electrode", J. H. Hildebrand and W. G. Bowers, J.A.C.S. 38, 785-8 (1916) - "Electrode for Electric Batteries", P. L. Howard, U. S. Patent 2,724,734, November 22, 1955 - "Stability of the Silver Nucleus", J. Kaplan, Z. Physik. 52, 883, (1928) C.A. 23, 1565-1 - "Silver-Zinc-Alkali Secondary Battery", K. Konoshita, J. Electrochem. Assn. Japan 3, 341-9 (1935) C.A. 2502 - "Silver-Alkali Battery II", K. Konoshita, Bull. Chem. Soc. Japan 12, 366-76 (1937) C.A. 32, 55 - "Silver-Alkali Battery I", K. Konoshita, Bull. Chem. Soc. Japan 12, 164-72 (1937) C.A. 31, 6977 - "Solubility of Zinc Hydroxide in Alkalies", O. Klein, Z. Anorg. Chem. 74, 157-69 (1912) - "The Magnetism of Bivalent Silver Compounds", W. Klemm, Z. Anorg. Allgem. Chem. 201, 32-2 (1931) C.A. 26, 887-9 - "Hydrolysis of Zinc Sulfate Solutions", I. M. Kolthoff and T. Kameda, J.A.C.S. 53, 832-42 (1931) - "The Galvanic Cell", K. Kordesch and F. Martinola, Mh. Chem. 84, 39, 53 (1953) C.A. 47, 6278 - "The Determination of the Solubility of Silver Oxides in Alkaline Solutions by the Method of Radioactive Indicators", L. D. Kovba and N. A. Balashova, Zhur. Neorg. Khim. 4, 225-6 (1959) C.A. 53, 11952 i (1959) - "The Amphoteric Character of Silver Hydroxide", E. Lane, Z. Anorg. Allgem. Chem. 165, 325-63 (1927) C.A. 21, 3795-2 - "Primary Battery Depolarizer and Method of Making Same", H. E. Lawson, U. S. Patent 2,528, 891, November 7, 1950 - "Investigation of Silver Oxide-Zinc Alkaline Storage Batteries Models HR05 and ALHR-1", Harold Lichtenstein, Final Report (August 9, 1951) R. Material Lab., New York Naval Shipyard, Report 5239-5 - "Nucleus Formation in Supersaturated Salt Solutions at the Anodic Passivation of Zinc, Cadmium and Lead", W. Lorenz, Z. Physik. Chem. (Frankfurt. 20, 95-102 (1959) C.A. 54, 1128h) - "The Free Energy of Formation of ZnO", C. G. Maier, G. S. Parks and C. T. Anderson, J.A.C.S. 48, 2564-76 (1926) - "Electrochemical Determination of Thermodynamic Constants of Oxides of Several Metals", I. A. Makolkin, J. Phys. Chem. (USSR) 16, 13-17 (1942) C.A. 37, 2641-7 - "The Caustic Soda Primary Battery", M. L. Martus, Trans. Electrochem. Soc. 53, 175-93 (1928) - "Zinc Alkali Primary Cell", M. L. Martus and E. H. Becker, U. S. Patent 2,018,563, October 22, 1936, C.A. 30, 30 - "Alkaline Type Silver Cell", R. S. Mautner and S. Rosenberg, U. S. Patent 2,701,-271, February 1, 1955 - 'Method for Analysis of Solutions Containing Zinc Hydroxide and NaOH", S. M. Mehta and M. B. Katadi, J. Univ. of Bombay 10, Pt. 3, 69-81 (1941) C.A. 36, 40536 - "Separator for Alkaline Batteries", M. Mendelsoln, U. S. Patent 2,858,353, October 28, 1958 - 'The Solubility of Zinc Hydroxide in Alkalies", J. Moir, Proc. of the Chemical Soc. 21, 310-11 (1905) - "Paramagnetism of Bivalent Silver", G. T. Morgan and S. Sugden, Nature 128, 31 (1931) C.A. 25, 4749-3 - "On the Nature of Silver Superoxide", A. B. Neiding and I. A. Kazarnovski, Doklady, Akademiii Nauk. USSR Vol. 78, No. 4, 713-716 (1951) - "The Equilibrium of Silver Oxide and AgCl with Aqueous KCl and KOH", R. F. Neuton, J. Am. Chem. Soc. 50, 3258-61 (1928) - 'Recent Work on Overvoltage", E. Newberry, Men. Proc. Manchester Lit. Phil. Soc. 61, Parts II and III, Mem. No. 9, C.A. 12, 2496-4 - "The Crystal Structure of Several Oxides", P. Niggli, Z. Krist 57, 253-99 (1922) C.A. 17, 2525-2 - "Passivation of a Zinc Electrode in Galvanic Elements with Alkaline Electrolytes", Z. Ya Nikitina, Zhur. Priklad. Khim. 31, 218-16 (1958) C.A. 52, 10765d (1958) - "Argentic Salts in Acid Solution I. The Oxidation and Reduction Reactions", A. A. Noyes, J. L. Hoard, and K. S. Pitzer, J.A.C.S. 57, 1221-1229 (1935) - "II. The Oxidation of Argentic Salts", A. A. Noyes, K. S. Pitzer and C. L. Dunn, J.A.C.S. 57, 1229-1237 (1935) - "III. Oxidation Potential of the Argenteous-Artentic Salts in HNO₃ Solution", A.A. Noyes and A. Kossiakoff, J.A.C.S. 57, 1232-1242 (1935) - "IV. The Kinetics of the Reduction by Water and the Formation of Ozone by Argentic Silver in HNO3 Solution", A. A. Noyes, C. D. Coryll, F. Stitt and A. Kossiakoff, J.A.C.S. 59, 1316-1325 (1937) - 'V. The Oxidation Potentials, Equilibria with Higher Silver Oxides and the Formation of Nitrate Complexes", A. A. Noyes, D. DeValut, C. D. Coryell and T. J. Deahl, J.A.C.S. 59, 1326-1337 (1937) - "Zinc-Alkali Primary Cell", H. D. Nyberg, U. S. Patent 1,624,845, April 12, 1927 C.A. 21, 1767 - "Investigation on the Silver Zinc Alkaline Storage Battery by Means of Radioactive Isotopes", T. Z. Palagyi, J.E.S. 106, 846 (1959) - "Zinc Battery", P. Pauton, French Patent 804,411, October 23, 1936, C.A. 31, 3395 - "The Formation of Bi and Trivalent
Silver on Rotating Disc Electrodes in Alkaline Solution", Yu V. Pleskov, Koklady Akad. Nauk. SSSR 117, 645-8 (1957) C.A. 52, 12617 g - "Null Point Charge of Copper and Silver", M. A. Proskurnin, J. Physc. Chem. (USSR) 3, 91-6 (1932) C.A. 27, 12-7 - "A Null Point of the Charge on Silver", M. Proskurnin and A. Frumkin, Z. Phys. Chem. Abt. A. 155, 29-40 (1931) C.A. 25, 5100-6 - "Battery", L. E. Pucher, U. S. Patent 2,786,089, March 19, 1957 - "Electric Battery", L. E. Pucher, W. A. Cunningham and J. F. Szabo, U. S. Patent 2,833,845, May 6, 1958 - "Positive Electrodes for Electric Batteries and Method of Making Same", L. E. Pucher, W. A. Cunningham and J. F. Szabo, U. S. Patent 2,850,555, September 2, 1958 - "Investigation of Oxygen Covered Silver and Platinum by Volta Potentials and Charging Currents", G. Radlein, Z. Elektrochem. 61, 727-33 (1957), C.A. 16156 d (1957) - "Solubility of Zinc in Alkalies", V. I. Rodionova, Uchenye Zapiski Moskiv. Gosudarst, Pedagog. Inst. Im. V. I. Henia. 99, 221-6 (1957) C.A. 54, (1960) - "The Absolute Affinity of Benzoic Acid and of the Three Toluic Acids for the Same Base", H. N. K. Rordam, Kgl. Danske Vrdenskab, Seskab, Math.-fys Medd. 3, No. 7 (1920) C.A. 16, 2442-7 - "Hydrogen Overvoltage and Electrode Material. A Theoretical Analysis", P. Ruetschi and P. Delahay, J. Chem. Physics 23, 195-199 (1955) - "Influence of Electrode Material on Oxygen Overvoltage. A Theoretical Analysis", P. Ruetschi and P. Delahay, J. Chem. Physics 23, 556-560 (1955) - "Potential at Zero Charge for Reversible and Ideal Polarized Electrodes", P. Ruetschi and P. Delahay, J. Chem. Physics 23, 697-699 (1955) - "Potentiostatic Studies on Zinc", I. Sanghi and M. Fleishmann, Electrochm. Acta. 1, 161-76 (1959) C.A. 54, 1121 c - "Electrochemical Behavior of Zinc in Alkaline Solution. II. Constant Overvoltage. Measurements", I. Sanghi and M. Fleishmann, Proc. Indian Acad. Sci. 49A, 6-24, (1959) C.A. 53, 14777 g - "Positive Plate for Batteries", J. Salauze, U. S. Patent 2,833,847, May 6, 1958 - "A New Galvanic Cell, Zinc Negative", Ricardo Salcedo, Anales. Fis. Quim. (Madrid) 41, 321-36 (1945) C.A. 41, 4385 - "Crystal Structure of Silver Oxide", V. Scatturin, P. Bellon and R. Zannetti, Ricerca Sci. 27, 2163-72 (1957) C.A. 52, 35B - "The Permeability of Metal Walls to Gases", Schad. Glas. v. App. 26, 109-10 (1942) C.A. 38, 3526-1 - "Electric Battery Plate", R. F. Scheuerle and G. T. Mahon, U. S. Patent 2,862,985, December 2, 1958 - "The Silver Oxide-Zinc Alkaline Primary Cell", C. M. Shepherd, July 1, 1949, NRL Report No. C-3478 (Part I) - "The Silver Oxide-Zinc Alkaline Primary Cell. Part IV. Anode Characteristics of Zinc Alloys", C. M. Shepherd, NRL Report 4885, February 8, 1957, U. S. Naval Research Laboratory, Washington, D. C. - "Theoretical Design of Primary and Secondary Cells", C. M. Shepherd, NRL Report 5211, December 29, 1958, Naval Research Laboratory, Washington, D. C. (Part I) - 'The Solution of Oxygen in Silver", J. H. Simons, J. Phys. Chem. 36, 652-7 (1932) C.A. 26, 1850-9 - "Electrode for Electric Battery", T. Solomon, U. S. Patent 2,818,462, December 31, 1957 - "Separators for Electric Batteries", F. Solomon, U. S. Patent 2,858,352, October 28, 1958 - "The Diffusion of Oxygen Through Silver", L. Spencer, J. Chem. Soc. 123, 2124-8 (1923) - "Crystal Structure of Silver III Oxide", B. Stehlik, P. Weidenthaler and J. Vlach, Chem. Listy 52, 2230-6 (1958) C.A. 53, 5809f (1959) - "Zinc-Alkali Storage Battery I.", S. Tanaka, J. Electrochem. Assoc. Japan 1, 149-53 (1933) C.A. 28, 714 - "Combined Electrolytic Barrier and Electrolyte", W. H. Taylor, U. S. Patent 2,647,-938, August 4, 1953 - "Surface Phenomena II, The Relation Between Overvoltages of Hydrogen with Pure Metals and Certain Properties of Metals", A. Thiel and W. Hammerschmidt, Z. anorg. allgem. Chem. 132, 15-35 (1923) C.A. 1940-9 - "The Investigation of New Electrochemical Systems", A. B. Tripler, W. T. Buckingham, L. D. McGraw and C. P. Faust (1 March 1953 1 September 1955) Contract No. DA-36-039-sc-42682, Department of Army Project No. 3-99-09-022, Battelle Memorial Institute - "A Method of Increasing the Accuracy of the Debyescherrer Photographs", A. S. Van-Arkel, Z. Krist. 67, 235-8 (1928) C.A. 23, 2863-9 - "Hydrous Zinc Oxide, III. Conductometric Studies on Precipitation of the Hydrous Oxide for ZnSO Solution with NaOH", K. C. Varshney and A. K. Key, Proc. Nat'l. Acad. Lci. India. Sec. A, 26, Pt. 3, 256-60 (1957) C.A. 53, 6736 i (1959) - "The Mechanism of Photochemical Processes on Ag-Ag₂O Electrodes", V. I. Veselov-skii, Zhur. Fiz. Khim. 22, 1302-11 (1948) C.A. 43, 2503 f - "Galvanic Cell", H. P. H. Walz, U. S. Patent 2,646,458, July 21, 1953 - Watson, J. Chem. Soc. 89, 578-83 (1906) - N.C.P. Weber, Trans. Am. Electrochem. Soc. 32, 391-404 (1917) - "Amphoteric Metallic Hydroxides", J. K. Wood, J. Chem. Soc. 1910, 878-90 - "The Crystal Structure of Silver Oxide", R. W. G. Wyckoff, Am. J. Sci. 3, 184-8 (1922) - Yardney Laboratories, Inc., Quarterly Report Project Flywheel, February 12 to May 11, 1952, Contract No. bs (53306) - 'Rechargeable Battery", M. N. Yardney, U. S. Patent 2,601,133, June 17, 1952 - "Battery Terminal Connection Method", M. N. Yardney, U. S. Patent 2,753,620, July 10, 1956 - "Catalysis by the Silver Ion of the Oxidation of Chromic Salts by Peroxysulfuric Acid. The Existence of Trivalent Silver Compounds", Don M. Yost, J.A.C.S. 48, 152-164 (1926) - "Alkaline Battery Grid", H. E. Zahn, U. S. Patent 2,694,100, November 9, 1954 # MASTER SCHEDULE CONTRACT Extension & Modification of Contr. NAS 8-5493 TO EXTEND THE CAPABILITIES OF THE PROGRAM PRIMARY ZINC-SILVER OXIDE SYSTEM Technical Approach REFERENCE - P.O. DATE PREPARED Lief Hurhing APPROVED FMM APPROVED #IS | ACTIVITIES | 1 2 3 4 5 6 7 8 9 10 11 12 | MILESTONES | |--|--
--| | | | | | | | | | LITERATURE SURVEY | | | | Continue of Case Continue | | and the second s | | ANALISIS AND PLANNING | | | | Proliminary Coll Desion | | The state of s | | | | | | DEVELOPMENT STUDIES | | | | Separator Evaluation | | The state of s | | Special Plate Treatments | | Bertrad von sectorsmine inc. is a serial description of the sector th | | Zinc Density Studies | | The state of s | | Plate Construction | | Processing and the second of t | | Electrolyte Studies | | The second secon | | Gassing Studies | | | | | | | | CELL AND BATTERY CONSTRUCTION | | | | Element Design | | | | Hardware Design | | * | | Prototype Cells | | The state of s | | Prototype Batteries | | Minimum remains to the state of | | The state of s | | | | TESTING | | | | Prototype Cells | | | | Prototype Batteries | | | | | | | | RELIABILITY EVALUATION | | | | Drift Analysis | | | | Modes & Rates of Wailure | | The state of s | | on Prototyne Battery | | | | | | | | The state of s | The state of s | | | | | | | | | | | 43S | Schedule | | | O. L. | Progress | | | Kev Company of the Co | 1810n | | AFTER GO-AHEAD | | | | | | THE EAGLE PICHER COMPANY | | CALENDAR | | | | EMS-I | · · · · · · · · · · · · · · · · · · · | | | | | | # DISTRIBUTION LIST NASA CONTRACT NO. NAS 8-5493 National Aeronautics & Space Adm. Washington, D.C. 20546 Attn: Miss Millie Ruda, Code AFSS-LD Walter C. Scott, Code RPP Ernest M. Cohn, Code RPP James R. Miles, Code SL A. M. Andrus, Code FC John L. Sloop, Code RP National Aeronautics & Space Adm. Ames Research Center Moffett Field, California Attn: A. S. Hertzog National Aeronautics & Space Adm. Goddard Space Flight Center Greenbelt, Maryland Attn: Thomas Hennigan Joseph Sherfey National Aeronautics & Space Adm. Langley Research Center Langley Station Hampton, Virginia Attn: Harry Ricker National Aeronautics & Space Adm. Lewis Research Center 21000 Brookpark Road Cleveland 35, Ohio Attn: Robert Miller N. D. Sanders Martin J. Saari Robert L. Cummings National Aeronautics & Space Adm. Manned Space Craft Center Houston 1, Texas Attn: William Dusenbury Robert Cohen National Aeronautics & Space Adm. Marshall Space Flight Center Huntsville, Alabama Attn: Philip Youngblood M-ASTR-E Charles B. Graff M-ASTR-EC Jet Propulsion Laboratory 4800 Oak Grove Drive (3) Pasadena, California Attn: Aiji Uchiyama U. S. Army Engineer R&D Labs. Fort Belvoir, Virginia Attn: B. C. Almaula Electrical Power Branch U.S. Army Engineer R&D Labs. Fort Monmouth, New Jersey Attn: David Linden (Code SELRA/SL-PS) Dr.Adolph Fischbach (Code SELRA/SL-PS) U.S. Army R&D Liaison Group (9851 DV) APO 757 New York, New York Attn: Chief, Chemistry Branch U.S. Army Research Office Physical Sciences Division 3045 Columbia Pike Arlington, Virginia Harry Diamond Labs. Room 300, Building 92 Connecticut Avenue & Van Ness St., N.W. Washington, D.C. Attn: Robert Goodrich Army Materiel Command Research Division AMCRD-RSCM T-7 Washington 25, D.C. Attn: John W. Crellin Natick Labs. Clothing & Organic Materials Division Natick, Massachusetts Attn: Leo A. Spano Robert N. Walsh U.S. Army TRECOM Physical Sciences Group Fort Eustis, Virginia Attn: Dr. R. L. Echols (SMOFE-PSG) Leonard M. Bartone (SMOFE-ADS) # DISTRIBUTION LIST (con't.) NASA CONTRACT NO. NAS 8-5493 U.S. Army Research Office Box CM, Duke Station Durham, North Carolina Attn: Paul Greer Dr. Wilhelm Jorgensen U.S. Army Mobility Command Research Division Center Line, Michigan Attn: O. Renius (AMSMO-RR) Hq., U.S. Army Materiel Command Development Division Washington 25, D.C. Attn: Marshall D. Aiken (AMCRD-DE-MO-P) Office of Naval Research Department of the Navy Washington 25, D.C. Attn: Dr. Ralph Roberts Dr. J. C. White H. W. Fox (Code 425) Bureau of Naval Weapons Department of the Navy Washington 25, D.C. Attn: Whitwell T. Beatson(Code RAAE-52) Naval Ammunition Depot Crane, Indiana Attn: E. Bruess Bureau of Ships Department of the Navy Washington 25, D.C. Attn: Bernard B. Rosenbaum (Code 340) C. F. Viglotti (Code 660) James B. Trout (Code 660S) Naval Ordnance Laboratory Department of the Navy Corona, California Attn: Mr. William C. Spindler(Code 441) Naval Ordnance Laboratory Department of the Navy Silver Spring, Maryland Attn: Philip B. Cole (Code WB) Wright-Patterson AFB Aeronautical Systems Division Ohio Attn: George W. Sherman AF Cambridge Lab. L. G. Hanscom Field Bedford, Massachusetts Attn: CRZE CROTR Francis X. Doherty Commander (CRO) Rome Air Development Center, ESD Griffiss AFB, New York Attn: Commander (RAALD) Frank J. Mollura (RASSM) Hq., USAF (AFRST-PM) Washington 25, D.C. Attn: Lt.Col. William G. Alexander Capt. William H. Ritchie Space Systems Division Attn: SSZAE-11 Air Force Unit Post Office Los Angeles 45, California Capt. William Hoover Air Force Ballistic Missile Division Attn: WEZYA-21 Air Force Unit Post Office Los Angeles 45, California Office of the Deputy Commander AFSC for Aerospace Systems United States Air Force Los Angeles 45, California Attn: W. J. Bennison Mr. Charles F. Yost Asst. Director, Material Sciences Advanced Research Projects Agency The Pentagon, Room 3E 153 Washington 25, D.C. # DISTRIBUTION LIST (con't.) NASA CONTRACT NO. NAS 8-5493 U.S. Atomic Energy Commission Auxiliary Power Branch (SNAP) Division of Reactor Development Washington 25, D.C. Lt. Col. John H. Anderson Advanced Space Reactor Branch Division of Reactor Development U.S. Atomic Energy Commission Washington 25, D.C. Mr. Donald B. Hoatson Army Reactors, DRD U.S. Atomic Energy Commission Washington 25, D.C. Defense Documentation Center Hqs. Cameron Station, Building 5 5010 Duke Street Alexandria 4. Virginia National Bureau of Standards Washington 25, D.C. Attn: Dr. W. J. Hamer Power Information Center University of Pennsylvania Moore School Building 200 South 33rd Street Philadelphia 4, Pennsylvania Office of Technical Services Department of Commerce Washington 25, D.C. 20009 Aerospace Corporation Post Office Box 95085 Los Angeles 45, California Attn: Library Bell Laboratories Murray Hill, New Jersey Attn: U. B. Thomas Boeing Airplane Company Seattle, Washington Attn: Henry Oman Burgess Battery Company Freeport, Illinois Attn: Dr. Howard J. Strauss Calvin College Grand Rapids, Michigan Attn: Prof. T. P. Dirkse Delco Remy Division General Motors Corporation Anderson, Indiana Attn: Dr. J. J. Lander Electric Storage Battery Company Missile Battery Division Raleigh, North Carolina Attn: A. Chreitzberg Dr. Arthur Fleischer 466 South Center Street Orange, New Jersey C & D Batteries Division of Electric Autolite Company Conshohocken, Pennsylvania Attn: Dr. Eugene Willihnganz Electrochimica Corporation 1140 O'Brien Drive Menlo Park, California Attn: Dr. Morris Eisenberg General Electric Company Battery Products Section Post Office Box 114 Gainesville, Florida Attn: I. M. Schulman General Motors Corporation Box T Santa Barbara, California Attn: Dr. C. R. Russell Globe Union Inc. 900 East Keefe Avenue Milwaukee, Wisconsin Attn: Dr. C. K. Morehouse # DISTRIBUTION LIST (con't.) NASA CONTRACT NO. NAS 8-5493 Gould-National Batteries, Inc. Engineering and Research Center 2630 University Avenue, S.E. Minneapolis 14, Minnesota Attn: J. F. Donahue Gulton Industries Alkaline Battery Division Metuchen, New Jersey Attn: Dr. Robert Shair Inland Testing Laboratories Dayton, Ohio Attn: W. Ingling Johns Hopkins University Applied Physics Laboratory 8621 Georgia Avenue Silver Spring, Maryland Attn: Richard Cole Hughes Aircraft Corporation Power Systems & Test Operations Dept. Building 366, M.S. 524 P. O. Box 90919, Airport Station Los Angeles, California 90009 Attn: Mr. R. B. Robinson Livingston Electronic Corporation Route 309 opposite Springhouse Quarry Montgomeryville, Pennsylvania Attn: William F. Meyers Lockheed Aircraft Corporation 1123 North Mathilda Avenue Sunnyvale, California Attn: Charles Burell P. R. Mallory & Company Technical Services
Laboratories Indianapolis 6, Indiana Attn: A. S. Doty Monsanto Research Corporation Everette 49, Massachusetts Attn: Dr. J. O. Smith North American Aviation 12214 Lakewood Boulevard Downey, California Attn: Burton M. Otzinger Dr. John Owen Post Office Box 87 Bloomfield, New Jersey Radiation Applications Incorporated 36-40 37th Street Long Island City 1, New York Attn: Munroe F. Pofcher Radio Corporation of America Astro Division Heightstown, New Jersey Attn: Seymour Winkler Radio Corporation of America Post Office Box 800 Princeton, New Jersey Attn: Paul Wiener Sonotone Corporation Saw Mill River Road Elmsford, New York Attn: A. Mundel Space Technology Laboratories, Inc. 1 Space Park Redondo Beach, California 90277 Attn: Dr. A. Krausz Power Sources Division Telecomputing Corporation Denver, Colorado Attn: J. Sibilia University of Pennsylvania Electrochemistry Laboratory Philadelphia 4, Pennsylvania Attn: Prof. J. O'M. Bockris Yardney Electric Corporation 40-52 Leonard Street New York 13, New York Attn: Dr. Paul Howard National Aeronautics & Space Adm. Ames Research Center Pioneer Project Moffett Field, California Attn: James R. Swain