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MARKED INFLUENCE OF CRYSTAL STRUCTURE ON THE FRICTION 

AND WEAR CHARACTERISTICS OF COBALT AND COBALT-BASE 

UOYS IN VACUUM TO M I U I M E ~OF MERCURY 

I - POLYCRYSTALLINE AND SINGLE CRYSTAL COBALT 

by Donald H. Buckley and Robert L. Johnson 

Lewis Research Center 

SUMMARY 

F r i c t i o n  and wear c h a r a c t e r i s t i c s  were determined f o r  po lyc rys t a l l i ne  co
b a l t  s l i d i n g  on var ious  ma te r i a l s  (po lyc rys t a l l i ne  cobal t ,  440-C, 52100, and 
aluminum oxide) i n  vacuum mm Hg). The inf luence of c r y s t a l  transforma
t i o n  on the f r i c t i o n  and wear c h a r a c t e r i s t i c s  of coba l t  were determined by  
varying s l i d i n g  v e l o c i t y  and ambient temperature. The e f f e c t  of o r i e n t a t i o n  
of s ing le -c rys t a l  coba l t  s l i d i n g  on po lyc rys t a l l i ne  coba l t  w a s  a l s o  determined. 
F r i c t i o n  and wear experiments were conducted a t  s l i d i n g  v e l o c i t i e s  t o  2000 f ee t  
per  minute and ambient temperatures t o  850' F. Bo-th po lyc rys t a l l i ne  and o r i 
ented s ing le  c r y s t a l s  of coba l t  were the  r i d e r  specimens (3/16-in. -rad. hemi

1sphere) s l i d i n g  on f l a t  2--inch-diameter d i sks  of var ious  materials. Fac to r s2 
s tudied were the inf luences  of c r y s t a l  t ransformation and s ing le  c r y s t a l  o r i 
en ta t ion  on t h e  f r i c t i o n  and wear c h a r a c t e r i s t i c s  of cobal t .  

The r e s u l t s  of t he  inves t iga t ion  ind ica t e  t h a t  c r y s t a l  t ransformation i n  
coba l t  markedly inf luences  f r i c t i o n  and w e a r  c h a r a c t e r i s t i c s  i n  vacuum. The 
hexagonal c r y s t a l  form of coba l t  exhib i ted  much lower f r i c t i o n  and wear char
a c t e r i s t i c s  than  the face-centered-cubic form. With s ing le  c r y s t a l s  of cobal t ,  
o r i e n t a t i o n  inf luenced f r i c t i o n  proper t ies .  The f r i c t i o n  c o e f f i c i e n t  i n  vacuum 
w a s  less  f o r  t h e  0001 plane or ien ted  p a r a l l e l  t o  the d i r e c t i o n  of s l i d i n g  than  
for the 1100 plane or ien ted  paral le l  t o  the d i r e c t i o n  of sliding. 

INTRODUCTION 

The s e l e c t i o n  of materials f o r  use i n  space l u b r i c a t i o n  systems r equ i r e s  
a c a r e f u l  considerat ion of bo th  l u b r i c a n t s  and metals, or a l loys ,  used as the 
mechanical components of these systems. The l a c k  of oxygen encountered a t  t h e  
low ambient pressures  of the environment of space can result  i n  high f r i c t i o n ,  
m e t a l  t r a n s f e r ,  and complete welding of m e t a l  components i n  contac t  should 
fa i lure  (by evaporation, decomposition, or wearing away) of t he  lub r i can t  OCCUT. 
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One approach to obtaining a l l o y s  with good f r i c t i o n  and wear cha rac t e r i s 
t i c s  i s  that of incorpora t ing  l u b r i c a t i n g  microconst i tuents  d i r e c t l y  i n t o  con
ven t iona l  a l l o y  s t r u c t u r e s  ( r e f s .  1 t o  5). M S O  of i n t e r e s t  i s  examination of 
t h e  inf luence of elemental  p rope r t i e s  of metals such as c r y s t a l  s t r u c t u r e  and 
phases on their f r i c t i o n  and wear c h a r a c t e r i s t i c s  i n  vacuum. For example, it 
i s  demonstrated i n  re ference  6 that with r a r e  e a r t h  and r e l a t e d  metals which 
undergo c r y s t a l  t ransformations t h e  hexagonal c r y s t a l  forms of t hese  metals 
e x h i b i t  much b e t t e r  f r i c t i o n  and wear c h a r a c t e r i s t i c s  and l e s s  metal  transfer I 

than  cubic forms of t he  same metals. 

Cobalt and cobal t -containing a l l o y s  have been shown to have good f r i c t i o n  
and wear c h a r a c t e r i s t i c s  ( r e f .  7 )  and have been examined f o r  bear ing ( r e f .  8 )  
and s e a l  app l i ca t ions  (ref. 9 ) .  Cobalt a t  room temperature ex is t s  i n  a hexag
onal  close-packed form and transforms to a face-centered-cubic s t ruc tu re  a t  
7 3 4 O  t o  800' F ( r e f s .  10 t o  19) .  Cobalt tends to e x i s t ,  however, as a mixture 
of two a l l o t r o p e s  over a wide range of temperatures with the  hexagonal form 
predominating below the  transformation temperature and the  face-centered-cubic 
form above t h a t  temperature. The t ransformation i s  s luggish,  which probably 
accounts f o r  the  wide v a r i a t i o n s  i n  d a t a  reported f o r  i t s  phys ica l  p rope r t i e s  
( r e f .  10) .  Because of t he  des i r ab le  f r i c t i o n  and wear c h a r a c t e r i s t i c s  obtained 
with t h e  hexagonal forms of some metals i n  reference 3, it w a s  decided to ex
amine the  f r i c t i o n  and wear c h a r a c t e r i s t i c s  of cobal t  i n  vacuum. I n  a vacuum 
t h e  inf luence of surface contaminants, such as oxides and adsorbed gases, i s  
appreciably reduced and, therefore ,  a more c r i t i c a l  evaluat ion of t h e  r o l e  of 
c r y s t a l  s t ruc tu re  on f r i c t i o n  and wear p rope r t i e s  can be gained. 

%is inves t iga t ion  was the re fo re  conducted t o  determine i n  vacuum (1)the  
e f f e c t  of t h e  c r y s t a l  s t r u c t u r e  of cobal t  on i t s  f r i c t i o n ,  wear, and metal-
t r a n s f e r  c h a r a c t e r i s t i c s ;  and ( 2 )  t h e  e f f e c t  of s ing le  c r y s t a l  o r i en ta t ion  on 
these  proper t ies .  

APPARATUS AND PROCEDURE 

The apparatus  used i n  t h i s  i nves t iga t ion  i s  shown i n  f i g u r e  1. The bas ic  
1elements of t he  apparatus  were the  specimens (a  2--in.-diam. f l a t  d i s k  and a2 

3/16-in.-rad. r i d e r )  mounted i n  a vacuum chamber. The d isk  specimen w a s  dr iven 
through a magnetic d r ive  coupling. 

inch a p a r t  wi th  a 0.030-inch diaphragm between magnet faces .  


The coupling had two 20-pole magnets 0.150 
The d r i v e r  mag

ne t  t h a t  w a s  ou ts ide  the vacuum system was coupled t o  a hydraul ic  motor. The 
second magnet was completely covered with a n icke l -a l loy  housing and w a s  
mounted on one end of the  sha f t  wi th in  the  chamber ( f ig .  1). The end of t he  
s h a f t  t h a t  w a s  opposi te  t h e  magnet contained the  d isk  specimen. 

The r i d e r  specimen w a s  supported i n  the  specimen chamber by an arm t h a t  
w a s  mounted by gimbals and bellows t o  the  chamber. A l inkage a t  t h e  end of the  
r e t a i n i n g  arm, away from the  r i d e r  specimen, w a s  connected t o  a s t ra in-gage 
assembly. The assembly w a s  used to measure f r i c t i o n a l  force.  Load w a s  appl ied 
through a dead-weight loading system. 

Attached to t he  lower end of t h e  specimen chamber was a 400-l i ter-per
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Heating coi l  of 0.040-in. 
tantalum wire positioned 
about circumferential 
edge of disk specimen-, 

heater support-\ 
/

'Chromel-Alumel thermocouple 
positioned in center of 3/4-in.
long r ider specimen 

Heating element 

Bake out heaters *To sorption pump (zeolite) 

1 

To ion pump CD-7876 

Figure 1. - High-vacuum fr ict ion and wear apparatus. 

second ion iza t ion  pump and a mechanical forepump w i t h  l iqu id-n i t rogen  cold 
t raps .  The pressure  i n  the  chamber w a s  measured adjacent  t o  the  specimen with 
a cold cathode ion iza t ion  gage. I n  t h e  same plane 3 s  t h e  specimens and i on i 
za t ion  gage was a diatron-type mass spectrometer (not  shown i n  f i g .  1) f o r  de
terminat ion of gases  present  i n  the  vacuum system. A 20-foot-long s t a i n l e s s -
s t e e l  c o i l  of 3/16-inch-diameter tubing w a s  used f o r  l iqu id-n i t rogen  and 
l iquid-hel ium cryopumping of the  vacuum system. 

I n  experiments where e x t e r n a l  hea t ing  of t he  specimens w a s  required,  a 
wire-wound tantalum hea ter  was placed adjacent  t o  the  c i rcumferent ia l  edge of 
t h e  d i s k  specimen ( f i g .  1). A thermocouple w a s  i n se r t ed  i n  the  r i d e r  and t h e  
bulk specimen temperature recorded. No attempt was  made t o  record in t e r f ace  
temperatures . 

Specimen Preparat ion 

The po lyc rys t a l l i ne  cobal t  used i n  t h i s  i nves t iga t ion  w a s  prepared from 
e l e c t r o l y t i c  cobalt .  E l e c t r o l y t i c  cobal t  chips were packed i n t o  a zirconium 
oxide c ruc ib l e  and placed i n t o  an  induct ion vacuum furnace,  which w a s  then 
evacuated. The furnace w a s  then back- f i l l ed  w i t h  d ry  argon, and t he  cobal t  w a s  
r a i s e d  t o  a temperature of 2800' F. The cobal t  w a s  then  poured i n t o  a copper 
mold and cooled t o  room temperature. The chemical ana lys i s  of t he  r e s u l t i n g  
cas t ing  i s  presented i n  t a b l e  I. The n icke l  and t h e  i r o n  specimens used i n  t h i s  
i nves t iga t ion  were prepared i n  a s i m i l a r  manner. After  they  were machined t o  
requi red  dimensions and surface f in i sh ing ,  t h e  coba l t  specimens were heat-
t r e a t e d  f o r  4 hours a t  700° F t o  minimize t h e  concentrat ion of face-centered 
form. This p a r t i c u l a r  hea t  t reatment  w a s  employed because, as s t a t ed  i n  
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TABU3 I. - COMPOSITION OF COBALT USED 

I N  FRICTION AND WEAR STUDIES 

Element PercentI 
Oxygen 
Zirconium 
Nickel 
I r o n  
Copper 
Carbon 

0.026 

.02 
.02 
.01 

.03 
.0094 

re ference  1 7 ,  t h e  amount of face-centered-cubic s t r u c t u r e  t h a t  may be present  
a t  room temperature can vary from 5 t o  30 volume percent  depending upon the 
thermal h i s t o r y  of the material. 

Specimen F in i sh  and Cleaning Procedure 

The d i s k  and the r i d e r  specimens used i n  f r i c t i o n  and wear experiments 
were f in i shed  t o  a roughness of 4 t o  8 microinches. Before each experiment, 
t h e  d i sk  and t h e  r i d e r  were given t h e  same prepara tory  t reatment:  

(1)A thorough r i n s i n g  wi th  acetone t o  remove o i l  and grease 

( 2 )  A pol i sh ing  w i t h  moist  l ev iga ted  alumina on a s o f t  po l i sh ing  c l o t h  

(3)  A thorough r i n s i n g  with t a p  water followed by d i s t i l l e d  water 

For each experiment, a new s e t  of specimens was used. 

RESULTS AND DISCUSSION 

Cobalt S l id ing  on Cobalt 

F r i c t i o n  and wear experiments were conducted with r e c a s t  and hea t - t r ea t ed  
cobal t .  Hereinaf ter  t hese  specimens w i l l  be r e f e r r e d  t o  as cobal t .  Some f r i c 
t i o n  experiments were  conducted i n  vacuum w i t h  coba l t  s l i d i n g  on cobal t .  Ex
periments were conducted t o  determine f r i c t i o n  c h a r a c t e r i s t i c s  bo th  as a func
t i o n  of s l i d i n g  v e l o c i t y  and of ambient temperature. The result.s obtained i n  
these  experiments are presented i n  f i g u r e s  2 and 3. I n  f i g u r e  2 an increase  i n  
s l i d i n g  v e l o c i t y  r e s u l t e d  i n  an increase  i n  f r i c t i o n  c o e f f i c i e n t  a t  1500 f e e t  
per  minute. The increase  i n  c o e f f i c i e n t  of f r i c t i o n  a t  th i s  s l i d i n g  v e l o c i t y  
i s  bel ieved to be due t o  the  t ransformation of coba l t  from the  hexagonal cry
s ta l  form t o  the face-centered cubic s t ruc ture .  The transformation, however, 
i s  bel ieved t o  r e f l e c t  a t ransformation of only t h e  r i d e r  specimen from the 
hexagonal t o  t h e  cubic form. I n  these  f r i c t i o n  s tud ie s  t h e  r i d e r  specimen i s  
i n  continuous s l i d i n g  contac t  and r ep resen t s  only one-twentieth of t h e  mass of 
t h e  d i sk  specimen; consequently, it experiences much higher bulk  temperatures 
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than  t h e  d i s k  specimen, which i s  
Presumed to be hex- i n  i n t e rmi t t en t  contact.  A t  s l i d 

ing  v e l o c i t i e s  below 1200 f e e t  per  
minute, a predominantly hexagonal 

L(Presumed to be face- c r y s t a l  form i s  s l i d i n g  on a pre
centered-cubic struc- dominantly hexagonal c r y s t a l  form. 

-ture  sliding on hex- A t  s l i d i n g  v e l o c i t i e s  i n  excess of 
, agonal 1500 f e e t  per minute, a predomi

nantl y  face  -c entered- cub ic struc 
ture i s  s l i d i n g  on a predominantly 
hexagonal c r y s t a l  form. Bulk 
rider-specimen temperatures mea

' 0  sured during the  experiment were 
670' F a t  1250 f e e t  per minute and 
770' F a t  1500 f e e t  per  minute 
( f i g .  2 ) .  A t  t h e  higher s l i d i n g  
ve loc i ty ,  t he  temperature of t h e  
r i d e r  w a s  i n  t he  region assoc ia ted  
wi th  t h e  c r y s t a l  transformation 
( r e f s .  10 t o  1 2 )  from hexagonal t o  
face-centered-cubic cobal t .  

F r i c t i o n  da ta  obtained f o r  
cobal t  s l i d i n g  on cobal t  a t  var 
ious  ambient temperatures a r e  pre

800 1200 1600 2OOO 2400 sented i n  f i g u r e  3. The c o e f f i -
Sliding velocity, f t lmin c i e n t  of f r i c t i o n  f o r  cobal t  s l i d -

Figure 2. -Coefficient of fr ict ion and r ider specimen temperatures at i ng  on cobal t  w a s  approximately
var i  us sl iding velocities for cobalt sl iding on cobalt in vacuum 0.3 a t  ambient temperatures t o(10-8 mm Hg). Load, 1OOOgrams. 

550' F i n  vacuum. Above 
l l l l l l l 

- o R u n  in sequence f o r 7  hr 
Q Repeated w i th  new speci

- mens for wear deter
minations 

- Obtained after specimens 
m l e d  to room tem

1. 

L 

s 
U.-
I..-L 

0 .  c

E 

u

E

8
- .  

Rider temperature, O F  

Figure 3. -Coeff icient of f r ic t ion $ vari!ys 
sl iding o n  cobalt in vacuum (10- to 10 
velocity, 390 feet per minute. 

I 1 1 1 I 	 550° F, t he  f r i c t i o n  coe f f i 
c i e n t  began t o  increase very 
rapidly.  A t  a n  ambient tem
pera ture  of 850' F (above t h e  
temperature for c r y s t a l  
t ransformation) ,  a f r i c t i o n  
coe f f i c i en t  of 1 .5  w a s  r e 
corded; subsequently, com
p l e t e  welding of t he  d i sk  and 

o n  face-centered-	 the  r i d e r  specimen occurred. 
A t  temperatures below 550' F, 
t he  hexagonal c r y s t a l  form of 
coba l t  is  s l i d i n g  on t h e  hex
agonal c r y s t a l  form of co
bal t .  Above 550° F, t he  i n 
f luence of the  t ransformation 
i s  observed; above 850° F, 
face-centered-cubic cobal t  i s  
s l i d i n g  on face-centered
cubic cobalt .  

ambient temperatures for cobalt 
mm Hg). Load, loo0 grams; sl iding 
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It i s  of i n t e r e s t  t o  note  that  i n  s l i d i n g  v e l o c i t y  experiments where only 
one of t he  specimens (the r i d e r )  transformed from t h e  hexagonal t o  t h e  face
centered-cubic s t ruc tu re ,  the maximum f r i c t i o n  c o e f f i c i e n t  obtained w a s  0 .7 .  
I n  the increas ing  temperature experiments, however, where the temperature of 
bo th  specimens reached t h e  t ransformation temperature, the f r i c t i o n  coe f f i c i en t  
w a s  1 .5  with complete welding occurring. With cobal t  s l i d i n g  on cobal t ,  t h e  
results of t hese  experiments i nd ica t e  tha t  (1)t h e  lowest c o e f f i c i e n t  of f r i c 
t i o n  i s  obtained w i t h  t h e  hexagonal c r y s t a l  form s l i d i n g  on the hexagonal crys
t a l  form, ( 2 )  in termediate  va lues  are obtained with t h e  face-centered-cubic 
form s l i d i n g  on hexagonal form, and (3) the  maximum f r i c t i o n  c o e f f i c i e n t s  are 
obtained with complete welding for t h e  face-centered-cubic s t ruc tu re  s l i d i n g  
on t h e  face-centered-cubic form. 

The c r y s t a l  t ransformation f o r  cobal t  i s  r e v e r s i b l e  as ind ica ted  i n  r e f 
erences 10 and 16  to 18. This  r e v e r s i b l e  na ture  of t h e  t ransformation i s  r e 
f l e c t e d  i n  t h e  f r i c t i o n  da ta  po in t  shown i n  f i g u r e  3 a t  75' F a f t e r  t h e  speci
mens were cooled slowly i n  vacuum from 850' F. 

Separate wear experiments were conducted a t  two ambient temperatures (500' 
and 7 0 3 O  F)  with cobal t  s l i d i n g  on cobal t  i n  order  to determine t h e  inf luence 
of t he  t ransformation on wear. The r i d e r  wear va lues  obtained a t  these  two 
temperatures a r e  a l s o  presented i n  f i g u r e  3; photomicrographs and surface-
p r o f i l e  t r a c e s  of t h e  d i sk  su r faces  are presented i n  f i g u r e  4. The r i d e r  wear 
ra te  a t  500' F w a s  7.0X10-l' cubic inch per  f o o t  of s l i d i n g  as compared with 
6. 5oX10-9 cubic inch  pe r  foo t  of s l i d i n g  a t  700' F, o r  d i f fe rence  i n  wear of 
100. Wear w a s  measured a t  700' F r a t h e r  than  a t  850' F because of t h e  complete 
welding obtained a t  850' F. 

0.025 in. 
I - 1 

0.025 in. 

(a) Temperature, 500" F; measured rider wear rate, 7.0X10-11 (b )  Temperature, 700" F; measured rider wear rate, 6.50X10-9 
cubic i n c h  per foot of sliding. cubic i n c h  per foot of sliding. 

Figure 4. - Photomicrographs and surface profile traces of disks of cobalt sliding on cobalt in vacuum Hg) at two rider temperatures. Load, 
loo0 grams; sliding velocity, 390 feet per minute; run duration, 1 hour. 
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It i s  very important t o  note t h a t  t h e  poin t  i n  both the s l id ing-ve loc i ty  
and ambient-temperature curves a t  which f r i c t i o n  begins  t o  increase  i s  below t h e  
a c t u a l  t ransformation temperature. This e f f e c t  i s  be l ieved  t o  r e s u l t  because 
t h e  temperature near t h e  i n t e r f a c e  and a t  t h e  p o s i t i o n  of t h e  thermocouple i n  
the r i d e r  d i f f e r .  W i t h  very c a r e f u l  pos i t ion ing  of thermocouples, it may be 
poss ib l e  t o  determine accu ra t e ly  c r y s t a l  t ransformation temperatures from f r i c 
t i o n  data .  

I n  t h e  photomicrograph of f i g u r e  4 ( a ) ,  m e t a l  appears t o  have been trans
f e r r e d  t o  t h e  d i s k  surface.  This occurrence is ,  however, merely p l a s t i c  flow, 
as d is t inguished  from metal  t r a n s f e r  as  observed i n  both t h e  photomicrographs 
and t h e  sur face  p r o f i l e  t r a c e  of f igu re  4(b) .  

F r i c t i o n  da ta  were obtained f o r  a cobal t  r i d e r  s l i d i n g  on a f i l m  (0.001 
i n . )  of e l ec t rop la t ed  cobal t  on a cobalt-base a l l o y  d i s k  ( f i g .  5) .  The f r i c 

1 	 centered-cubic on 
hexagonal s t ructure 

I 

, I , ,  1 , , 1 

1 i P resumed  to be hexagonali o n  hexagonal s t ructure 

~~ ~~~ 
0 200 4W 6W 800 1000 1200 1400 1600 

Sliding velocity, f t lmin 
Figure 5. - Coefficient of f r ic t ion for cobalt sl iding on f i lm of electroplated cobalt on cobalt-

base alloy in vacuum (loq mm Hg). Load, 1000 grams; no external specimen heating. 

t i o n  va lues  very c lose ly  
p a r a l l e l  those obtained 
wi th  cobal t  s l i d i n g  on 
coba l t  ( f i g .  2 ) .  The 
s l i d i n g  velocity , how
ever,  a t  which a f r i c 
t i o n  increase i s  noted 
has  sh i f t ed  t o  a lower 
value. This s h i f t  i s  
be l ieved  t o  be due t o  
t h e  b e t t e r  thermal con
duct ion c h a r a c t e r i s t i c s  
of t h e  pure cobal t  d i sk  
(0.165 and 0.019 ca l /  
(cm/sec/cmZ/°C) f o r  eo
b a l t  and cobalt-base 
a l loy ,  r e spec t ive ly ) .  

Cobalt S l id ing  on 440-C S t a i n l e s s  S t e e l  

I n  order  t o  determine t h e  inf luence of t he  c r y s t a l  t ransformation of co
b a l t  on f r i c t i o n  c o e f f i c i e n t  when cobal t  i s  s l i d i n g  on sur faces  other  than  co
b a l t ,  some f r i c t i o n  and wear experiments were conducted wi th  e l e c t r o l y t i c  co
b a l t  s l i d i n g  on 440-C s t a i n l e s s  s t e e l  i n  vacuum. The r e s u l t s  obtained i n  some 
of t hese  experiments a r e  presented i n  f igu re  6. W i t h  coba l t  s l i d i n g  on 440-C 
a t  low s l i d i n g  v e l o c i t i e s ,  a hexagonal c r y s t a l l i n e  material i s  s l i d i n g  on a 
body-centered-cubic s t ruc tu re .  Examination of the f r i c t i o n  da ta  of f igu re  6, 
however, i nd ica t e s  a f r i c t i o n  c o e f f i c i e n t  of 0.3 t o  0.4, t h e  same value ob
t a ined  i n  f i g u r e s  2, 3, and 5 w i t h  hexagonal cobal t  s l i d i n g  on hexagonal cobalt .  
Chemical ana lys i s  of the d i s k  surface upon completion of such experiments re
vealed the  presence of a t r a n s f e r  f i l m  of cobal t  on the 440-C disk.  The f r i c 
t i o n  da ta  then  a t  s l i d i n g  v e l o c i t i e s  below 500 f ee t  pe r  minute r e f l e c t  hex
agonal  coba l t  s l i d i n g  on a t h i n  f i lm of cobalt .  A t  s l i d i n g  v e l o c i t i e s  i n  ex
ces s  of 500 fee t  pe r  minute, t h e  c r y s t a l  t ransformation of cobal t  occurs; ul
t imate ly ,  face-centered-cubic coba l t  s l i d i n g  on body-centered-cubic 440-C a t  
1000 fee t  pe r  minute i s  obtained. The cobal t  t r a n s f e r  f i lm ( f ig .  7 ( a ) )  m a y  not  

7 
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Figure 6. - Coefficient of friction for cobalt, i ron,  and nickel sliding on 440% 
stainless steel i n  vacuum mm Hg) at various sliding velocities. Load, 
loo0 grams: no external specimen heating. 

r e t a i n  i t s  con t inu i ty  upon 
t ransformation of c r y s t a l  
s t r u c t u r e  i n  t h e  r i d e r  speci
men. With th i cke r  coba l t  
films, as i n  f i g u r e  5, th is  
l ack  of con t inu i ty  i s  not ob
served. 

v 

Rider-wear rates were 
measured a t  two s l i d i n g  veloc

ti t i e s ,  200 and 1000 f e e t  per  
minute, i n  an at tempt  t o  de
termine t h e  inf luence of crys
t a l  t ransformation on wear. 
A s  ind ica ted  i n  f i g u r e  6, t h e  
r i d e r  wear r a t e  a t  1000 f e e t  
per minute w a s  near ly  twice 
t h a t  obtained at 200 f e e t  per  
minute. Although t h e  wear 
r a t e  a t  t h e  high v e l o c i t y  i s  
not as l a r g e  as an t i c ipa t ed ,  
appreciable  metal  t r a n s f e r  
occurred a t  1000 f e e t  per  min
u te  with a continuous back
and-for th  t r a n s f e r  of metal  
from r i d e r  t o  d i sk  surface,  
which i s  not r e f l e c t e d  i n  t h e  

wear value. Photomicrographs of t he  d i sk  wear a reas  toge ther  with sur face  pro
f i l e  t r a c e s  f o r  t h e  440-C d i sk  sur faces  are presented i n  f i g u r e  7. The p res 
ence of cobal t  mass- t ransferred t o  t h e  440-C surface a t  1000 f e e t  per  minute i s  
ind ica ted  by t h e  surface p r o f i l e  t r a c e  of f i g u r e  7 (b ) ;  t he  t h i n  f i lm t r a n s f e r  
i s  ind ica ted  by f i g u r e  7 ( a ) .  

For comparison, f r i c t i o n  da ta  were a l s o  obtained f o r  two metals w i t h  cubic 
s t r u c t u r e s  ( i r o n  and n i cke l )  s l i d i n g  on 440-C. The r e s u l t s  obtained with these  
two metals a r e  a l s o  presented i n  f i g u r e  6. With i r o n  (99.9 percent )  s l i d i n g  on 
440-C t he  i n i t i a l  coe f f i c i en t  of f r i c t i o n  of 0.7 increased t o  1.4, a t  which 
time complete welding of t he  i r o n  with t h e  440-C d i sk  occurred. m e  experiment 
with n i cke l  (99.9 percent )  was s t a r t e d  a t  a higher  s l i d i n g  v e l o c i t y  because of 
t he  extreme d i f f i c u l t y  encountered a t  lower speeds i n  obtaining r ep resen ta t ive  
f r i c t i o n  values. A t  250 f e e t  per  minute,, however, a f r i c t i o n  c o e f f i c i e n t  of 
2.0 w a s  measured, s h o r t l y  a f t e r  which complete welding of t he  r i d e r  and t h e  
d isk  occurred. When t h e  specimens welded, t he  magnetic d r ive  of t he  apparatus  
began s l ipping.  These r e s u l t s  i nd ica t e  t h a t  t h e  close-packed hexagonal metal  
cobal t  has  superior  f r i c t i o n  p rope r t i e s  i n  vacuum when s l i d i n g  on 440-C as com
pared wi th  the  cubic metals n i c k e l  and iron. 

I n  order t o  obta in  some knowledge of what inf luence surface temperatures 
have on t h e  s t r u c t u r e s  of t he  f r i c t i o n  specimens used i n  t h i s  inves t iga t ion ,  
t h e  i r o n  and cobal t  r i d e r  specimens t h a t  s l i d  aga ins t  440-C d i s k s  were sec
t ioned through t h e  cen te r  and mounted and photomicrographs of t he  i n t e r f a c e  
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(a) Sliding velocity, 200 feet per minute. (b) Sliding velocity, 1000 feet per minute. 

Figure 7. - Photomicrographs and surface profi le traces of 440-C stainless steel disk wear surfaces. Rider specimen, cobalt; load, 1000 grams; 
temperature, 75" F; run duration, 1hour .  

region were taken. Photomicrographs of the  i r o n  and cobal t  r i d e r s  a r e  shown i n  
f i g u r e s  8 and 9. I n  f i g u r e  8 a l a rge  amount of p l a s t i c  flow appears t o  have 
occurred i n  the  s l i d i n g  process,  as evidenced by the  streamers of metal pro
j e c t i n g  from the  t r a i l i n g  edge of t h e  r i d e r  specimen (photomicrograph A). When 
t h e  i n t e r f a c e  region w a s  sectioned and etched, t he  g ra in  boundaries of t h e  bulk  
r i d e r  specimen appeared (photomicrographs B and C ) .  I n  t he  immediate i n t e r f a c e  
a rea  and i n  the  t r a i l i n g  metal  streamers,  an "amorphous-type" s t ruc tu re  i s  
evidenced. If the  a rea  immediately adjacent  t o  the  s l i d i n g  in t e r f ace  i s  ex
amined under higher magnification (photomicrograph D ) ,  t h e  i r o n  s t r u c t u r e s  
appear t o  change t o  a n  amorphous s t a t e .  A s imi l a r  type s t ruc tu re  i s  observed 
f o r  t h e  cobal t - r ider  specimen i n  f igu re  9. 

The presence of a reg ion  a t  the  i n t e r f a c e  where g ra ins  a r e  reduced t o  
s m a l l  c r y s t a l l i t e s  or t o  an  amorphous s t a t e  i s  extremely in t e re s t ing .  The 
Beilby concept of an amorphous fi lm generated during t h e  pol ishing process has  
i n  recent  years  been put  a s ide  i n  favor  of a theory of extremely s m a l l  crys
t a l l i t e  s i z e  beyond the  de t ec t ion  of even e l e c t r o n  d i f f r a c t i o n .  More recent  
work, however, with metastable s t ruc tu re  seems t o  subs t an t i a t e  t h e  ex is tence  of 
such a f i l m .  The indiv idua l  c r y s t a l s  i n  a po lyc rys t a l l i ne  ma te r i a l  may range 
i n  s i z e  from macroscopic dimensions down t o  t h e  u n i t  of s t ruc ture .  It i s  then  
somewhat obvious t h a t  t he re  can be no r egu la r  r e p e t i t i o n  i n  t h e  atomic p a t t e r n  

9 
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Figure 8. - Photomicrographs of high-purity i ron rider specimen. 

i f  t h e  c r y s t a l l i t e  s i z e  i s  of t he  order of one s t r u c t u r a l  u n i t ,  and the  crys
t a l l i n i t y  would r e a l l y  be  zero a t  t he  lower l i m i t  of c r y s t a l l i t e  s ize .  I f  Lhis 
i s  t r u e ,  t he  amorphous, or Beilby layer ,  concept and t h a t  o f  s m a l l  c r y s t a l l i t e  l 
s i z e  are for a l l  p r a c t i c a l  purposes the  same. I 

I n  order t o  determine whether t h e  s t ruc tu re  generated i n  t h e  process  of 
s l i d i n g  i n  f i g u r e  8 w a s  c r y s t a l l i n e  or amorphous, an X-ray d i f f r a c t i o n  p a t t e r n  I 

was taken of t h i s  region. The X-ray p a t t e r n  revealed t h a t  the ma te r i a l  which 
appears t o  l a c k  d i s t i n c t  g r a i n  boundaries was i n  f a c t  c r y s t a l l i n e .  

Cobalt S l id ing  on 52100 Alloy 

An a l l o y  f r equen t ly  used i n  the  bear ing indus t ry  i s  52100. I n  order t o  
ga in  some ins igh t  i n t o  t h e  t ransformation behavior of coba l t  s l i d i n g  on an 
a l l o y  o ther  than  440-C, some f r i c t i o n  experiments were conducted f o r  cobal t  I 
10 1 
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Figure 9. - Photomicrographs of cobalt r ider speciinen at sliding interface region. 

s l i d i n g  on 52100 a t  var ious  
s l i d i n g  v e l o c i t i e s .  The r e 
s u l t s  obtained i n  these  exper
iments a r e  presented i n  f i g 
ure 10. The f r i c t i o n  experi
ments were conducted both i n  
a i r  a t  760 mi l l imeters  of mer
cury and i n  vacuum (lo-' mm 
Hg) .  I n  vacuum, t h e  f r i c t i o n  
coe f f i c i en t  for cobal t  s l i d i n g  
on 52100 a'& s l i d i n g  v e l o c i t i e s  
of 600 f e e t  per  minute and less  
w a s  approximately 0.2. Chem
i c a l  t e s t s  of the  sur face  of 
t he  52100 d i sk  upon completion 
of t he  f r i c t i o n  experiment r e 
vealed t h e  presence of a co
b a l t  t r a n s f e r  f i l m  on 52100. 
J u s t ,  as was experienced with 
440-C, t he  s l i d i n g  p a i r  i s  
e s s e n t i a l l y  cobal t  i n  i t s  hex
agonal form s l i d i n g  on a t h i n  
cobal t  t r a n s f e r  film. A t  a 
s l i d i n g  ve loc i ty  of 800 fee t  
per  minute, t h e  f r i c t i o n  coef
f i c i e n t  increased t o  0.95 with 
t h e  assumed c r y s t a l  t r ans fo r 
mation of cobal t  t o  t h e  face
centered-cubic form. The 
t ransformation i s  gradual  as 
ind ica ted  i n  f i g u r e  11. With 
44-0-Cd i sk  surfaces ,  t h e  change 
w a s  more rapid.  The reason f o r  
t h e  downward t rend  ( f ig .  10) a t  
s l i d i n g  v e l o c i t i e s  i n  excess of 
1000 f e e t  pe r  minute i s  not 
f u l l y  understood. 

It i s  i n t e r e s t i n g  t o  note i n  the  s l i d i n g  ve loc i ty  experiments i n  vacuum 
tha t  the thermal conduct ivi ty  of the  d i sk  ma te r i a l  seems t o  inf luence t h e  r i d e r  
specimens transformation. With cobal t  s l i d i n g  on cobal t ,  t h e  f r i c t i o n  i n 
creased a t  s l i d i n g  v e l o c i t i e s  i n  excess of  1250 f e e t  per  minute. The 52100 and 
440-C disk  mater ia l s  a r e  poorer conductors than pure cobal t  ( thermal conduc
t i v i t y :  cobal t ,  0.165; 52100, 0.093; and 440-C,0.048 ca l / (  cm2/cm/oC/sec) ), 
and t h e  transformation the re fo re  occurs a t  lower s l i d i n g  v e l o c i t i e s  (approxi
mately 600 f t /min)  because of t he  higher  i n t e r f a c e  temperature. 

I n  order t o  determine i f  t h e  c r y s t a l  t ransformation of cobal t  influenced 
the  f r i c t i o n  coe f f i c i en t  when t r a n s f e r  surface f i l m s  previously formed i n  vacuum 
were present ,  f r i c t i o n  da ta  were obtained f o r  cobal t  s l i d i n g  on 52100 i n  dry air  
( f i g .  l O ( a ) ) .  The c o e f f i c i e n t  of f r i c t i o n  decreases  with increas ing  s l i d i n g  

11 
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same reg ion  of s l i d i n g  veloc 

i t y  as noted i n  t h e  vacuum 

experiment. It i s  very i n  

t e r e s t i n g  t o  compare t h e  f r i c  

t i o n  d a t a  obtained i n  air  

with  coba l t  s l i d i n g  on 52100 I 


with those  of re ference  7 f o r  

cobal t  s l i d i n g  on coba l t  a t  L 


n

var ious  ambien t  temper ature s 
i n  air. These d a t a  of ref
erence 7 are s i m i l a r  t o  those 
obtained i n  t h i s  inves t iga
t ion .  It must be ind ica ted  
t h a t  t h e  f r i c t i o n  d a t a  ob
t a ined  i n  t h e  present  inves
t i g a t i o n  were obtained with 
specimens t h a t  had been pre
v ious ly  run i n  vacuum t o  
al low f o r  a t r a n s f e r  f i lm of 
cobal t  t o  form on t h e  52100. 
I n  re ference  7 varying t h e  
ambient temperature seems t o  
have produced t h e  same e f f e c t  
observed i n  t h i s  i nves t iga 

0 200 600 800 1 1203 1400 t i o n  by varying s l i d i n g  veloc-
Sliding velocity, Wmin i t y .  Although t h e  changes i n  

(b) In vacuum mm Hg). 
f r i c t i o n  p rope r t i e s  i n  a i r  are 
not marked, they  do i nd ica t e  

Figure 10. - Coefficient of f r ic t ion for cobalt sliding on 52100 at various sliding t h e  t ransformation of cobal t .  
velocities in a i r  and in vacuum mm Hg). Load, IO00 grams; no external 
specimen heating. 

Cobalt S l id ing  on Aluminum Oxide 

Since during t h e  s l i d i n g  of a metal on a metal  i n  t h e  absence of surface 
oxides s t rong  adhesion between t h e  two metal  sur faces  can occur, it w a s  decided 
t o  examine cobal t  i n  s l i d i n g  contac t  with a nonmetal (aluminum oxide)  t o  as
c e r t a i n  t h e  inf luence of a nonmetal on t h e  c r y s t a l  t ransformation of cobal t .  
F r i c t i o n  d a t a  were obtained with a coba l t  r i d e r  s l i d i n g  on a s o l i d  aluminum 
oxide d i s k  i n  vacuum ( f i g .  1 2 ) .  These d a t a  d i d  not r e f l e c t  t h e  c r y s t a l  t r a n s - I 

I 
formation of cobal t .  Aluminum oxide has  a thermal conduct ivi ty  of 0.00613 ( c a l /  
( cm2/cm/oC/sec) ) as compared with 0.093 and 0.048 ( ca l / (  cm2/cm/oC/sec) ) f o r  
52100 and 440-C, respec t ive ly .  Since thermal conduct iv i ty  of t h e  d i sk  surface 
e x e r t s  an  inf luence  on t h e  s l i d i n g  ve loc i ty  at which t ransformation i s  observed, 
a change i n  f r i c t i o n  should have been observed wi th  aluminum oxide a t  a s l i d i n g  
ve loc i ty  lower than  t h a t  a t  which it occurred with 52100 and 440-C. 

With metals s l i d i n g  on metals,  t h e  s t rong  bonds of adhesion assoc ia ted  
wi th  m e t a l  s t r u c t u r e s  can develop. I n  aluminum oxide, which i s  thermodynami
c a l l y  s t ab le ,  however, t h e  aluminum meta l l i c  i on  i s  surrounded by oxygen ions,  
and, as a r e s u l t ,  t h e  aluminum ions  do not have an opportuni ty  t o  form s t rong  

1 2  
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Figure 12. - Coefficient of f r ic t ion for cobalt rider sliding on al.uminum oxide 
disk in vacuum mm Hg). Load, 1OOOgrams; no  external specimen 
heating. 

It i s  i n t e r e s t i n g  t o  note 
t h e  wear a rea  of t he  aluminum 
oxide d i s k  and t h e  r i d e r  speci
men i n  the  photographs of f i g 
ure 1 2 .  Examination of t he  d i sk  
specimen wear a rea  revealed t h e  
presence of some t r ans fe r r ed  
cobal t  bel ieved t o  be t h e  re
s u l t  of mechanical t r a n s f e r .  
The cobal t  r i d e r  specimen has  
l a r g e  streamers 0-S metal 
a t tached t h a t  formed during t h e  
course of s l id ing .  These 
streamers,  when examined m i 
c roscopica l ly  a t  high magnif i
cat ions,  were revealed to have 
r e s u l t e d  from p l a s t i c  flow of 
m e t a l .  They were not composed 
of d i s c r e t e  p a r t i c l e s .  
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Oriented Cobalt S ingle  Crystals 

It has  been demonstrated i n  the l i terature  (refs. 20 and 21) t h a t  var ious  
c r y s t a l  sur faces  of copper e x h i b i t  d i f f e rences  i n  f r i c t i o n  c h a r a c t e r i s t i c s .  If 
such d i f f e rences  e x i s t  f o r  a cubic m e t a l  l i k e  copper, they  must a l s o  ex is t  f o r  
hexagonal metals such as cobal t .  For hexagonal metals  i n  which t h e r e  are s t rong  
tendencies  f o r  o r i en ta t ion ,  knowledge of t h e  func t ion  c h a r a c t e r i s t i c s  of var ious  
planes would be he lpfu l .  

Since c r y s t a l  s t r u c t u r e  inf luences  t h e  f r i c t i o n  c h a r a c t e r i s t i c s  of cobal t ,  
t h e  inf luence of o r i e n t a t i o n  effects  on a s ing le  c r y s t a l  of cobal t  w a s  inves
t iga ted .  It i s  known t h a t  close-packed hexagonal metals with l a t t i c e  dimensions 
giving c/a r a t i o s  of 1.633 s l i p  i n  compression along t h e  0001 b a s a l  plane 
( f i g .  13). If t h e  c r y s t a l  dimensions are such t h a t  t h e  c/a r a t i o  i s  less  than 

1.633, s l i p  can occur along planes o ther  than  t h e  
0001 b a s a l  plane. F r i c t i o n  da ta  were obtained 

r KO1 Basal plane 	 f o r  two s ing le  c r y s t a l s  of cobal t  s l i d i n g  on poly
c r y s t a l l i n e  cobal t .  One r i d e r  specimen was o r i 
ented with t h e  0001 b a s a l  plane p a r a l l e l  t o  t h e  
d i r e c t i o n  of s l i d i n g  and t h e  o ther  with t h e  1100 
plane p a r a l l e l  t o  t h e  d i r e c t i o n  of s l id ing .  The 
devia t ion  w a s  tZO as indica ted  by the  s ing le-
c r y s t a l  suppl ier .  "he s ing le  c r y s t a l s  were ex
amined a t  a low speed (4 .5  f t /min)  and a t  a l i g h t  
load ( 2 5 0  g )  t o  i n h i b i t  conversion to t h e  poly
c r y s t a l l i n e  state ( f i g .  1 4 ( a ) ) .  When t h e  0001 
b a s a l  plane was  p a r a l l e l  t o  t he  d i r e c t i o n  of s l i d 
ing, t h e  f i n a l  f r i c t i o n  c o e f f i c i e n t  w a s  lower than  
t h a t  obtained with t h e  1100 plane p a r a l l e l  t o  t h e  
d i r e c t i o n  of s l id ing .  The i n i t i a l l y  high f r i c t i o n  
(>0.6) f o r  t h e  0001 plane or ien ted  c r y s t a l  and t h e  
i n i t i a l l y  low f r i c t i o n  f o r  t h e  (1100) or ien ted  
c r y s t a l  may be due t o  o r i e n t a t i o n  deviat ions.  

I n  hexagonal close-packed metals having c / a
r a t i o s  of less  than 1.633, t he  l a t t i c e  i s  com-

Figure 13. - Hexagonal crystal. pressed along t h e  C - a x i s ,  which tends t o  make t h e  
b a s a l  planes less  favorable  f o r  s l i p  inasmuch as 

t h e  compression reduces the  in t e rp l ana r  spacing. It has  been experimentally 
demonstrated f o r  t i t an ium (a  m e t a l  wi th  a c/a r a t i o  of l e s s  than 1.633) t h a t  
s l i p  occurs i n  the  (1120)close-packed d i r e c t i o n  when t h e  1070 plane i s  h ighly  
s t r e s sed  ( r e f s .  22 and 23). It i s  s t a t e d  i n  re ference  22 t h a t  t h e  s l i p  planes 
f o r  t i t an ium a r e  (lOi0) and (lOi1) and t h a t  no matter  how complex t h e  deforma- t 
t i o n  i n  no case w a s  s l i p  on the  0001 b a s a l  plane. 

J
Metals l i k e  magnesium and cobal t  a r e ,  however, bo rde r l ine  cases  with ref

erence t o  modes of s l i p .  Both metals have c/a r a t i o s  of 1 . 6 2  o r  very c lose  t o  
t h e  normal 1.633 requi red  f o r  b a s a l  s l i p .  These metals may, therefore ,  have one 
or two modes of s l i p .  Reference 24 ind ica t e s  t h a t  f o r  magnesium b a s a l  s l i p  oc
cu r s  almost exc lus ive ly  a t  room temperature, while a t  e leva ted  'cemperatures both 
pyramidal and b a s a l  s l i p  occw.  A similar mechanism may p r e v a i l  f o r  cobal t  with 
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LO basal s l i p  a t  room temperature 
( ref .  2 5 ) .  The f r i c t i o n  da ta  
of f i g u r e  1 4 ( a )  would seem t o  

.8 	 subs t an t i a t e  t h i s  mechanism, 
s ince f r i c t i o n  w a s  lower f o r  
s l i p  along t h e  (0001)o r  b a s a l  

.6 plane i n  cobal t .  

The load  of 250 grams 
.4 used i n  f i g u r e  14 w a s  de l ib

e r a t e l y  kept  l i g h t  t o  avoid--V r e c r y s t a l l i z a t i o n .  The f r i c -L 
.2 t i o n  values  obtained with t h e  

c-t 250-gram load were higher  than  
V.-

B o 
c those obtained with poly 


(a) Load, 250 grams. c r y s t a l l i n e  cobal t  i n  previous 
f i g u r e s  with a 1000-gram load. 

Plank or i lnted I The load  w a s  t he re fo re  in .6 1 I I I 1 1 I 1 ,L,tld 
parallel to direction creased t o  1000 grams, and 

f r i c t i o n  da ta  were obtained 
with t h e  two s ing le  c r y s t a l  
o r i en ta t ions  used i n  f i g 
ure 1 4 ( a ) .  The r e s u l t s  ob
t a ined  a r e  presented i n  f i g 

le1 to  direction 1 i ' ure 14 (b ) .  With increasedLj loads t h e  f r i c t i o n  c o e f f i c i e n t  
0 10 20 30 40 50 60 70 decreased f o r  both or ien ta-

Time, min  t i ons ;  t h e  b a s a l  s l i p  or ien ta
(b) Load, 1000 grams. t i o n  gave the  lowest f r i c t i o n  

coe f f i c i en t .  The d i f f e rencesFigure 14. -Coefficient of f r ic t ion for single-crystal cobalt sliding on  polycrystal-
i n  f r i c t i o n  between f i g u r e sl i ne  cobalt in vacuum mm Hg). Sliding velocity, 4.5 feet per minute; 

ambient temperature, 75O F. 1 4 ( a )  and ( b )  are bel ieved t o  
be due t o  r e c r y s t a l l i z a t i o n  

a t  t h e  in t e r f ace  i n  t h e  experiment of f i g u r e  14 (b )  with a po lyc rys t a l l i ne  f i l m  
at the  in te r face .  

SUMMARY OF RESULTS 

From t h e  f r i c t i o n  and wear data obtained i n  t h i s  i nves t iga t ion  of cobal t  
and cobal t  a l l o y s  i n  s l i d i n g  f r i c t i o n  experiments i n  vacuum, t h e  following sm
mary remarks can be  made: 

1. The c r y s t a l  s t r u c t u r e  of cobal t  markedly influenced i t s  f r i c t i o n ,  wear, 
and m e t a l  t r a n s f e r  c h a r a c t e r i s t i c s  i n  vacuum. The hexagonal c r y s t a l  form ex
h i b i t e d  much b e t t e r  p rope r t i e s  than  t h e  face-centered cubic s t ruc ture .  

2. Minimum f r i c t i o n  values  were obtained with hexagonal cobal t  s l i d i n g  on 
hexagonal cobal t ,  in termediate  values  wi th  t h e  cubic s t r u c t u r e  s l i d i n g  on hex
agonal, and maximum f r i c t i o n  values with cubic cobal t  s l i d i n g  on cubic cobal t .  
W e a r  was  a l s o  lower f o r  t h e  hexagonal coba l t  s l i d i n g  on hexagonal cobal t .  
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3. Differences i n  f r i c t i o n  were observed f o r  coba l t  s l i d i n g  on 52100 i n  
a i r  for t h e  two c r y s t a l  forms; t h e  results, however, were  not as marked as 
those  observed i n  vacuum. 

4. For s i n g l e  c r y s t a l s  of cobal t  s l i d i n g  on p o l y c r y s t a l l i n e  cobal t ,  a 
lower f r i c t i o n  value was obtained with t h e  s ing le  c r y s t a l  o r ien ted  with t h e  
0001 plane p a r a l l e l  to t h e  d i r e c t i o n  of s l i d i n g  than  wi th  t h e  1100 plane o r i 
ented i n  the same d i r ec t ion .  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, September 16, 1964 
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