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Introduction

.' equations, the stability theory of compact invariant sets, (which may be

. By Liapunov stedility (or Just stsbility) of the compact invariant set
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In the study of topological properties of ordinary differential

regarded as generalizations of critical points and limit cycles) plays aA
central role, While a multiplicity of stadbility conditions have been

developed, the most prominent are Liapunov stebility and esymptotic stebility.
. . f L]

M, we mean that every orbit: starting sufficiently close to M will rem.i.n

in a neighborhood of M. The set M is asymptotically stable if it is
stable, and 1s also an "sttractor” - that is, all orbits in a neighborhood =

A(M) of M approach M,
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| . R
5 By means of Liapunov functions and other techniques, asymptotic ‘ .
| . .

;stability has been intensively studied in the literature of differential

equstions. It seems reasomsble, therefore, to study the properties of 2

attractors, without explicitly assuming stability, This is the object of the .
Ppresent work, ' d - ~ .

In sections 1 a.nd 2 we review some of the"ba.sic notions of dynamical

PIBTEN:

;systems and stability theory and dlscuss several examples of attractors. In S ;
section 3 we use the prolongation of a point, and its close relative, the )
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and Space Administration under Contract NASw-8L45.
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prolongational limit set of an orbit, to clarify thé connection bet;.ween
attractors and stabilit.y. For example, theorem 1 tells us that the
prolongation of an attractor is always asymptdtically stable, with the
same région of attraction, and theorems 4 end 5 give necessary and |
sufficient conditions for stabilify of an attractor. Theorem 5 casts some

1light on Zubov'!s (erronecus) stability conditiom,

The concluding section concerns the assunmtioﬁ that thé prolonga~
tiopal limit set of A(M) - M is contained in M. In certain importaut
cases this is qui'valent to asymptotic stability. Our final result is
that this unmion (suitably localized) is "in general” valid for
attractors, - ' | |

As far as ve know, the only previcus systematic study of
sttractors 1s a paper of Pinchas Mendelson [5]. In his paper, he gives an
exa.n:pl.e of an unstable attractor in the plane, which we discuss in
section 2, A number of our results, (for example, theoremsl and 6) are
similar to Mendelson's, However for the seke of ccunpletenéss, a.nd since
Mendelson's proofs depend, in part, on an unpublished manﬁscript, ve prove
all our results here.

We wish to thank Mr, Carlos Perellcf for useful discussions, -
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1. Notations and Elementary Cmcegﬁa.

In what follows, X denotes a locally compact metric space

vith metric 4. If M( X and x € X, Ve write

d(x, ¥) = inf la(x, y) | y e W, s(M, r) = (x e xja(x, M) < 1),

B(M, r) = {xe x| ax, M) S.r].,

(, ) = B, r) - M, 7).

The closure of M w:ln be dencted by R, and its baundu'y,
Rn(T=0, v 3

If, for each x ¢ x,’.p(x)‘ 1s a subset of x," and AC X, tﬁ
o(A) = p[qy(a) |aea .

. ’ + - .
R denotes the real numbers, and R and R the non-negative and

non-positive reals, respect}:lvely.

A contimuous map T of the product space XX R 1into X Adefines

a dynamical system or flow on X 1if the two following conditiomns are

satisfied:
(1) #{x, 0) =x for all x € X,

(11) w(wlx, t,), t;) =7(x, t) +t;) foreall t), t,€R xeX
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' We remark that for every fixed t the map u(x, t) i a.

topological map of X onto itself, so that 7 defines a group of .

homeamorphisms. For a given x, the set y(x) = n(x, R) 1s called

the trajectory or orbit through x. The sets y'(x) = 7{x, R') and
r(x) = n(x, ") are céﬂ.led, respectively, the positive and negative
semi-orbits through x. The standard example of a dynamical system 18 .
given by the qolutidng of a different;ial sysfem dx/dt' = £(x), vhere
xeK', fcR" and f satisfies conditions to insure the existence,

un:lqueness,' continuous dependence on the initial value, and unlimited

extendability of solutions [6].

Asubset N of X is sald to be jpvarisst iz, (M) = ¥,

'and positively (negatively) tmvartant 1f F00 =x (00 =N,

The positive or cmega limit set of an orbit y(x) is. the set
A'(x) comsisting of all points y in X such that there is a sequence
[tn} of reals vith t -+ and mx, t)) +¥. It is readily verified

that
+ —_—— [1__‘_ : ;
A(x) = nly(m(x, t))]t € R =nly(n(x, t))]|t 2 t),
for any real t o? and, using the contipnuity of the map w, that
+ + +,
r(x) = r(x) u a'(x).

The nega.tiv-e or alpha limit set A™(x) of an orbit ¥x) 1s

defined similarly: y € A"(x) 1if and only if there is a sequence (tn]'

with t'n -+-o and 7(x, tn) - Y. The analogous expressions for A (x) anmd 7 (X) are,

are, of course, valid,

o oAt 8 o
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2. 8tability, Attractors, and Stable Attractors.

From now on, M will denote a non-empty compact invariant

subset of Xo ¢
The set M 1s said to be

(a) (positively) stable, if, for each € >0, there is a

8 >0 such that r"(y) C s(u, ¢€) vhenever y € s(M, 8).

(v) a (positive) attractor, if, for some 8>0, ye s(y, 8)
tapltes A'(y) 15 & non-empty subset.of M.

(c) (positively) asymptoticelly steble if it is a stabdle attrector -
that 1s, if both (s) end (b) are satisfied,

Negative stability and negative attractors can also de defined, but
ve will not be concerned with them here, Therefore, in the future, we will
onit the adjective "positive" when reterring to stability and abtractorﬁ.

By the region of attraction A(M) of the set M (which need not be
an attractor) we mean the union of all trajectories with the property that
their positive limit sets are non-empty and conmtained in M. Then M 18 an

" attractor if and only if A(M) is a neighborhood of M.

Lemma 1. If M 1is an attractor, then A(M) 1is an open invariant

Proof. The invariance is obviocus from the definition. In ordexr to

show that A(M) is open, choose 8 >0 such that s(M, 8) C A(M).

L AL P
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If y ¢ A(M), there exists 7v>0 such that w(y, 7) € 8(}, 8) - M,
vhich 1s open. Thus there is a neighborhood N of m(y, t) such that

NC 8(M, 8) - M. Due to the contimity of w, the set u(N, -t) 1is

+
_ & neighborhood of y, and since Atm) C M, ve have A (7(R, -1)) =

= A*(N) C M. Tmus w(K, -v) C A(M), vhich shows that A(M) 1s indeed open.

As we remarked in the introduction, steble attractors have
been studied extensively in the literature, It 1s appropriete at this
point, therefore, to meirtion several examples cf unstable attractoras.

Consider a dyna.pica.l system on & l-sphere with a single critical
poimt P, the complement of P being a single orbit both limit sets
of vhich coincide with P, Obviously, P 1s an unstedle attractor.

'oenermy,nunemtmmonocmmn T a.nascriticdpoint

P, such that A (r) =A(y) = (Pl, a path momogon, An analogous example
exists on the torus: A closed orbit is approached spira.uy in both the

positive and negative senses by all other orbits.

It is somewhat more difficult to find unstable attractors in

' non-~compact spaces. ' An instructive example in the plane was provided by

Mendelson [5], .(Figure 1). There is & single critical point (P} and 1f
xe Ra, A+(x) = {P}). There is a patb monogon consisting of {r} and an
orbit 7y, which bounds a "nodal rezion" N; that is, an invariant set
consisting of orbits tending to P in both senses, The orbits ocutside N

bave empty alpha limit sets, {’) ‘san unstable attractor because of the
nodal region Ne |
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A simple analytical -exa.mple of an unstable attractor is given
by the following pair of differential equations (in polar coordinates)s

There are two critical points, the origin and the point (3, 0).

Moreover, the unit circle conmstitutes a path monogon, An easy analysis
shows that in both examples the solutions outside the path monogons are
topological]y equivalent, In the present case, the flow inside the unit
circle is obtained, qualitatively, by a reflection at the mt”einle.
Consequently, the point (1, 0) 1s an unsteble ettractor, the regica of

sttraction being the plane without the crigin (Figure 2),

Be Prol. tion and the Prol tional Iimit

If xeX, the (first) (positive )m_ma_t_iln_of x, dencted
by n(x), 18 the set ’

+, .
px) = 0 ¥alz, ) .
- €>0
It 18 easy to see that yeD+(x) 1f and only if there are
sequences {x) in X and [t] of non-negative reals such that
x, »x end 'u( t) oY

_ Obviously, D (x) contains the positive orbit closure r(x)e In

general, (x) is a proper subset of D(x). Forexa.mple,let P de

a saddle point _o:t a plane dynamical system and let n, r3 be the orbits.

tending to P as ¢ - 4w, and s W thos:tgndingto P ags ¢ whacmy

Then the prolongation of any point x on Y, or *r3 contains, besides its

positive orbit closure, the two paths 1y, Ty

.. .-

e - e K4
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The prolongation has been intensively studied in a series of yapers,

[, 2], 7] , [8]. Here we only require the f‘ollcwing lennna;:

Lemma 2, (1) If M 1is a compact subset of X then D (M) =
=y (o (x)]x e M 1s closed and positively invariant.

(11) The compact invariant set M is stable if and only
i ') = |
Proofs (1) follows easily from the definitions. For the proof of
(11), see [8], p.3M1. | |

It turns out to be useful, in the stuly of mnctm; to
single axt:cmunlubue ofthnmlonption. ¢ :cx, the

'wmu x, dencted by Ap(z), 1s the set of all

yeX, mhfhstthmexj.lt sequences (x) 'in x, (¢} of reals,
vith t_-»+m, such thet x -»x, and 'n(xn, tn) -+ e

The prolongational limit set occupies a position with respect

to the prolongmbim, analogous to that of the omega limit set relative

to the positive orbit closure, Indeed we have
Lemma 3, let x¢X Then . -
(1) 2'(x) = r'(x) y (%)
(11) A;;(x) = n(n*(n(x,t))ﬁ e R - (o' (n(x, )]t = t )

.for any real e

(111) A;(x) 1s (positively and negatively) invariant.
(1) Ir tcr, Afalx, t)) = Af(x).

(campare (1) and (1i) with the representations of 1'+(x_) and

A+(x) glven in the preceding section)
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Proof, (1) amd (111) ere immediate consequences of the
definition., To prove (1i) observe first that A;(x) is certainly contained
+ .
in both expressions on the righte If ¥ e D (7(x,t)), for all
(sufficiently large) t, thenfor any t, and any € >0 there is a
£>0 and an x! ¢ X, with d(x, x') < e such that a(y, m{x!, t + 1)) < e.

Tt follows immedistely that y e A;(x). Finally,
At 9) = ntoatatey ), e e®
= ¥ (u(x,t + 8)s ¢ n} - n[n*(u(;; e))|s ¢ B
FUENE 'm.n proves (1v):

Note that (1iv) tells us that it 1s meaningful to speak of the

~ prolongational limit set of an orbit,

In the case of the Mendelson example, the prolongational limit set of
the orbit marked 1y, in figure 1 consists of the path monogon {(Fpl u rr
We shall see later that this phencmenon is typical of unstable attractors.

Now we proceed to a deeper study of the prolongationsl limit set
and attractors. The next two lemmas will be used constently. .

Lemma b, If xeX and meA(x), then An(x)c D(o).
(consequently Ap(x) C p'(A" (=)

Proof, let y e An(x). Then there are setuences (x ] and {t]
with .xn-ox, t vto, and w(x, tn) »y. Sinc: me A (x), there 15 &
sequence [‘l‘n] with T -« such ttat n(x, T ) @ We may suppose
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withwt. loss of genmerality that tn - T, >0 for each n, Consider

the sequences [ﬂ(xn, rl)l ’ {‘n(xn, 1'2)] y sec o By contimity of w,

ve have w(x, 7,) »7(x, 7,) for each fixed k. We mey choose subsequences -
1

(xt) of {x) -with the property: a(w(x}, 7)), mx, v )) s < end

a(m{x " tn) » m(x, 'rn)) S% for m% r where x; =X o The sequence

['n'(x;, T n)] tends to . Indeed, d('n‘(x;l, T,),0) S d(u(x!'l, ), ‘u(xé 7))

+ alulx, 1), o) S 5 + a(n(x, 7,); @) »0. Note further, that if

(t;‘] 18 the subsequence of {tnl corresponding to the subsequence

{x;!l of {x], then t! - Ty >0 for each n. Also, since (n(xs, t;)]' is

a subsequence of [n'(xn, tn)] s 1t follows that ‘u(x;, t!) +y. But

w(x}, +2) - u('u(x"‘, ), t) - 7)), end since w(xl, 7)) ~o el

t; -1 >0, ve have y ¢ :Df(m). This ccopletes the proof,

lemma %, Jet M be an sttractor and let ¢ >O0. Then there
exists T >0 such that D'(M)C 7(B(M, €), [0, T1).

Proof, let € >0, By decreasing € if neceséary, we may suppose
that- B(M, €) 1s a compact subset of A(M). For x e H(M, ¢), define:
7(x) = inr {t > 0]n(x, t) C B(M, €)); since x e A(M), =(x) 1s definea.
get T = {sup 1(x)|x ¢ H(M, €)}. We show T <« If this is not the case
there 18 a sequence [xn] in HE(M, €) for which 'r(xn) -+ o, We may suppose
x -+x e M, c). let 7>0 suwhthat w(x, 7) e 8(M, €)o Then, 1f n
18 sufficiently large w(xn, 7) ¢ 8(M, €), and it ~ollows that -t(xn) <1,
vhich comtradicts w(x ) < Nowlet y ¢ D+(M) - B(M, €)e Then there are

sequences {x ]} amd (t )} with x —+xeM, and t 20 such that
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‘l'(xn, tn)'-» yo Then, fc;r all sufficiently large n, there 1s an .
By 0<s <t suchthat nx, s )C By, ), and u(x, t) { BN, €)
for ln<t Stn. By the first parb of this proof, 0<tn- 8n<'1"o
Then u(x, t ) =#(n(x,, s), t - &) e'ﬂ(B(M,. €), [0y T]). ‘- Therefore,
y ¢ "(B(M, €), [0, T]), since this set is closed,

Theorem 1, let M Dbe an attractor. Then D'(M) is a compset
inveriant set which is a steble attractor, Its region of attraction

A(D+(»H)) coincides with A(M). Moreover D*(M) 1s the smallest steble

attractor containing 'M.

Proof, By lemma 5, p'(M) 1s & closed subset of the coupet
set 1(3(!4, o), [0, 71), so D'() is compacts .let X c X, ¥ ¢ n’(:),
asd ¢ eR Them %y, &) ¢ qD'(x), &) -mm v A=), #)C uua,(:)c 2’ (W)
(lemma 3). This shovs D (10 is invariant,

Nov, D *tn) € w(Bln, ©), [0, 1) C u(A(M), R) = A(M). That 1-,
A(M) 18 an open neighborhood of D (n) , and, since A(M) 1s invariant,
every trajectory tending to D (n) is contained in A(M) This proves
that A(D (m)) = A(M).

To show D'(M) 1s stable, cbserve first that A'(D'(M)) C A*(A(M))C M.
Nov, 12 5 ¢ D'(M), D'(z) = ¥'(2) v a7 (2)C D'(M) v 2'(a"(2)) C D00 v D) -
= p'(M), by lemmas 3 and k. That 1s D'(D'(M)) C D(M), end, by lemm 2,
p'(M) 1s stable, '

Finally, let M, be any set such that uC M C (M) Then
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b0 ¢ 5°0) € 500 = '), smd 5*(m) = ).

- +
If N, 1is stable, then ¥, =D'(M;) = D'(M): The proof is
conpleted,

Theorem 2, JIf M 1s an attractor and y e D (M) s then
A(y) nuFo.

Proof, If yeM, A(y)C M, since M 1s compact mva.rlant.
Buppose y ¢ Ms' If e‘>0, there is, by lezma 5, @ t <0 such that
#(y, t) e B(M, ¢€). Let [tn] be a sequence of negative reals such tm
7y, t;) +x ¢ Mo If this sequence 1s bounded belov, it follozs thot
“y) A x f o, wvhich controdicts the invarience of M. Thorofore
c-.-o,un:ca(v)nn. | SR

It is not 1a¢mnltmtmtthc n2gative limit set of & point of
pY(M) 1s contained antirely in N, as the following example of en
attractor on a torus shows (This exe.mple is due to Carlos Pere].lo)

Consider a flow on a torus containins a path monogon which consists
of a critical point P and & path Tor where Y is not contractible into
P. Buppose that all other orbits approach this path monogon spirally in the -
negative sense ard tend to P in the positive sense (Figure 3).- Thege
conditiops deteriine the flow topologicelly. The orbit L and another one,
which we denote 'b' rl, together split the neighborhood of P into three
regions, two of whith are hyperbolic (1.e,, contain no complete semi-orbits),
the third parabolic (c_omisting of positive semi-orbits) (Figure L), .Evidently
P 1s an unstabdble a.ttr: vtor, its proloniation being the whole torus, because
P 1is a negative limit plmt of“every ot.er orbit. On the other ha.ml, the
négative limit sets of the4 *~bits outsidi. the path monogon contain the orbit

T, 8s vell as P
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However, we do have the follcwing.

Theorem 3, Consider a dynemical system defined in & plamar region
by the system of differential equations

t'f(x,py)
¥ = elx, 3)

Suppose M 1s a compact commected attractor, and let x ¢ D'(N).

A(x)C M

Proofy Iet xeD'(M), x£ M Let yeA'(x) .and suppose, if
possible, y 4 Mo Certainly y 1is not @ criticel point, nor is
¥ ¢ x). For 1f y \m‘scriticdpom, ve would have A(Y) ={NCxn
since D'(M) 1s in the Tegion of sttraction of M (thecrem 1), Again,
y € f(x) vould imply that f(x) 1s recurrent, hence periodic, and again
Y € M. Therefore y 1is a regular point and vy £ fx). mtixis’casevecan
draw & transversal ¢ through y, such that y(x) will intersect ¢
in a monotone sequence of points {Pn), (Pn] -y as n - [6]l The
portion of the semi-orbit 7y (x) between any two successive points, s;y P
and P,, of this sequence and the part of the transversal between them form
a Jordan curve J. This cirve divides the plane into two connected sets A
and B which are disjoint, The two sets A(x) and A+(x)' are connected,
([6] chapter V), so nm“@':'be"cémunﬂ fn A, the other in - Bi.

A+(x) and A"(x) ave therefore disjoint, Since M 1s compact,
we can assume that the segné:;{':;of t Joining P, and P

2
Then M and J are disjoint. Unce M 1s also comnected, amd -

A S
A

does not meet M,

LY .

—




A'(x)C M, M 1s contained either in A or B, vhichever comtains -
A+(x). Thus A(x) and M are disjoint, This however contredicts
theorem 2, The proof is completed,

The authors strongly suspect that it 1is possible to dispense
with the differentiability hypothesis in this theorem.

Kow, we address ourselves to ths problem of findipz corditions

under which an attractor is stable,

Theorem k., Jlet M bYe a compact invarient set, QeL M_is a
stable attractor if and only if there 1s & nelshborhood U _of M guch
tat AJU)C Mo Znthis casejthesevof xeX fwrwddh
Af(x)C ¥ golpoides with M.

m I N 48 & stable sttractar, and x ¢ A(N), thnn,by
lema b, A7(x)C 2MA"(x)) C %00 = ki

. Conversely, 1f © haneighborhooa of M such that
AD(U)C M, and x ¢ U, then A(x)( An(x)Cl(, 80 M ie an attractor.
If xeM, them D (x) = r(x) v An(x)C XU AD(U)C M. .This shows stabiuty.

‘We have alrea.dy_shown that AD(A(H))C M I An(x)C ¥, then
A+(x) C A;(x)C M, and x ¢ A(M)s The proof ie completed,

In [9], Zubov stated that a necessary and sufficient condition for
stability of the compact invariant set M is that X contain no alpha limit
points of orbits outside M. Tiis condition is obv..ously necessary for

stability of M, However, Meniclson and Bass (3] chserved that it is not in
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general sufficient, (In order to give s correct condition, Bass intro-
duced the notion of a strongly negatively linked sequence of saddle

sets, vhich in our terminology means ‘a sequence of closed invariant sets,
each of vhich contains in its. prolongation all its successors). Our
next theorem shows that in the case of an attractor, Zubov's condition is
indeed necessary and sufficlent. |

Theorem 5, Let M bde an attractor. Then the following are
equivalent '

(1) X gs stevie, .
('a') A(ld sogtaips noggh_g Lmit poizts of orb ;ﬁ @ M) -x |
(5) X somtatos mo alshe limtt poists of orbits 13 AN -

(1) w(2)s et = e‘ Aw) - n, amd we y ¢ A7(s) n A(N).
Then, since M 1s stable, = ¢ A (y)C AJ(A(M))C M, by theorem b This
18 a contradiction, ' '

Obviocusly, (2) implies (3).(3) = (1), 1Ir M iq not steble, there
18 a yen"(n) - M. Now (3) tells us that A™(y) N M = 6. But this

contradicts theorem 2,

4, The Mhesis (3.

By definition, & ccmpact invariant sef. M 1s an attractor if and only
12 A"U - M) C M for some meigiborhood U .>f M. Kow, the analogous
condition A;(U - M) C M is certainly neceetary for asymptotic stability of
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M, as theorem b shows. On the other hand, consideration of our first

example of an unstable attractor (the path monogon on the 1 sphere)-

shows that this condition does not in general imply that an attractor is

stable. Nevertheless, this condition has some interesting consequences, and,
as ve shall see (theorem 7 and corollary 1) does imply asymptotic stability
under reasonable hypotheses, '

Now, suppose our condition is satisfied; then there 1s a neighborhood
U of M for which A;(U - M)C M. Then, if we write A'(M) = A(M) - X,
and sz ¢ A*(M), there 18 & ¢ >0 such that (s, t) ¢ U, Nov
AY(s) = A(nlz, £)) C AU - WC M, at 15, AZ(A"(M)C 35 we cad2
thts hypothests (£, |

In order to state our first result concerning hypothesis (ff) ve
require & fev definitions. A Qynamical system tna space Y 1s sald to
be Enl___lennble 17 there 18 a set 8C Y vhich intersects every orbit of
the dynamical syeten, and a homeomorphism h of Y omto 8 X R such that
n(u(x, t)) = (x, t), for x e 8. In[4], 1t is shom that a dypamical system

is pen.lleuzable if and only if it is dispersive - that is, if TR !,‘

there are neighborhoods 01 and U2 of 4% and Yo respectively and’

a positive mmber T such thet wU,, t) NT, =& for t 2 T. It is easy
. | | . A
to see that this is equivalent to the requirement that An(y) =¢ for

.a.ll y € Yo Using this characterization of a parallelizable dynamical systen,

we may obtain a condition equivalent to ({f).
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Theorem 6. Let M be an ettractor, Then (f) holds if
apd only if A'(M) 18 parcllelizable,

Proofs If (f) holds, AD(A (M) nA(M)C MnA"(M) =0,
and A (M) is parallelizeble, -Suppose A (M) is parsllelizsble, and

let x ¢ A"(M)e Then An (x) CMuUdA(M). Fow r(x) UM 1s campact,

and thus possesses a compact neighborhood K with K n d A(M) = @.

Row, by & fundamental property of the prolongation ([1], p. 456),

D' (x)C K, or n*(x) N 3K £ 0. Using the representation D'(x) =
o= (x) U An(x) s Ve see that the latter possi‘bility is excluded, Hence

p'(x)C K, ama An(x)c Kn(uamdn

Theorem 7, Jgt M be ap sttractor for which ({f) h&!&! Suppode
slsothst D'(M) FX, spdthot X" =X - N js copnocted, Then X 4t
Proofs If M 1is not stable, D =D'(M) - N s non mpty. Now
D* 1s closed fn X", any, stwe X* 1s comected X* - D 1s not elosed
tn X'. Stnee D'(M) #X, X -D' 0. Hence, there 188 yeo' am
& sequence (yn}' in X - D such thet Y, »¥. Since A(D*(M)) =
A(M) 1s open (lemma 1) ve may suppose Y, € A(M). Choose ¢ >0 so that
(1) B(M, ¢) ana B(D'(M), €) are camacty (11) y § 8(M, ¢), am
(111) B(D+(M), e)C AM). Fow y e A(D+(M)) - n*(u), and since n*(u)
1s asymptotically stable, A'(yn) n A(M) = ¢ (theorems 1 and 5). Then
there i8 a sequence [tn] of.reals with t - -» such that
v, n, t)e B(p'(M), €). Since (" (1) s €) 18 compact, we may suppose
"y, t) »x* ¢ H(D(M), €)o Hov, x*eA'(M). But yeAfx), an
Y § Mo This contradicts (§).
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" Prom theorems 1 and 7 ve immediately obtains

Corollary 1, let M be an attractor for which (ff) holds.

If X is not campact and X =x- M 1is connected, then M 18 stableg.

In the Mendelson example hypothesis (#) is of course not
satisfied; indeed as we observed earlier 1If xe 1, A;(x) =5V (r).
If we consider the dyna.nica.l system obtained by deleting the ordbit 7Y%
then (#) 1s satisfied, although (P} 1s still not steble. This is not &
'counterexan@le t.o corollary 1, however, since the phase space nz -%
is not locally campact. .

, Finally, ve show that the condition (ff) 1s, 1in & sense,
“gemeric" for attractors, That is, the set of X ¢ A'(X) for vhich
A;(_z) € % is sparse in tho category semse, To show this, vo require several
Lemma 6, The set of pairs (x, y) "such that y e A;(x) is

closed in X x X That 1s, 1f {x} amd (y ) are sequences in X with
R AR A;(xn); X -X, ¥y -7, then ye A;(x)- | '

| The proof follows easily fram the definition of prolonga‘l.:i.om.l .
limit set and is therefore cmitted. '

lemma 7. let M be an attractor and let U bde open in X,

men aH(U) = [x ¢ A" | AJ(x)C U] 18 open.

Proof, If A#(U) 18 not open, there is an X ¢ A’(U) , enda

sequence [xn) such that x ¢ A#(U) s 80d X -ox; let
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s + . + ® +
Y, € An(xn) N (X - U)e Now Y, € AD(xn) C AD(A (M)) C (M), since
D*(M) is asymptotically stable., Since D+(M) 18 compact, we may suppose
Y, 7 € p'(M). Since Y, $U, v¢§U. But the previous lemma tells '

. .
us that y € AD(x) ( U. This is a contradiction.

lemma 8, Iet M De an attractor, and let N be an open
neighborhood of M with NC A(M). Then A#(N) is open and dense in
*
- A (M)

Proof, That A#(N) 18 open has Just been shown, Iet K bde
& closed neighborhood of M such that KC N, and let U be a non-empty
open set in A(M)e Choose a sequence of reals (t} suchthat ¢, o
sod let U, -[x¢u|u(x, t) ¢K, for tat]. Since N 1is en actractor,

g=yun ard b tha 'In-h-. aatasory theorem thare is an 1 l\lﬂh that

L LY n’ —a——e Wy - Tesvwggwme wemw = LlISLiE 4AS

W, =izt un is non~empty. Then vr(wn, t)( K, for t,:tn, and it
follows easily that A;(x) CkCH, for xeW,. But xe¢ Wn( ﬁiC 1
This proves A’(N) 1s demse in _i_*(m). ' '

Now ve can easily obtain the result we prcmisedéalrlier.’

. ' _ . A
Theorem. Let M be an attractor, Then [x ¢ A'(w) |AD(x) (M
is a first category set in AT(M)e '
Proof. let C '-‘[x A*(M)I +(x)q s(m, 3)1 D= 1,200 o
(] n € AD 9 n 9 ] '..0 L ]
Each cn is nowhere dense (since, by lemma 8, its complement is open and

-+
dense), and U ¢, = [x € AlM)]a(x) @ ). The proof is completed.
.n’l,a’... '
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