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Abstract 

It i s  estimated t h a t  la rge  quant i t ies  of lunar  planetary p ic tures  are 

t o  be obtained from forthcoming experiments. The processing of p ic tures  through 

d i g i t a l  computer techniques of fe rs  one p o s s i b i l i t y  f o r  handling the  l a rge  number 

of p ic tures  which are t o  r e s u l t  from these experiments. 

report  on a t h e o r e t i c a l  and experimental study of techniques f o r  processing 

p i c tu re s .  

This report  i s  the  f i n a l  

An ou t l ine  is presented of possible l i n e a r  and non-linear t h e o r e t i c a l  

work which can be made applicable t o  processing lunar and planetary p ic tures .  

The t h e o r e t i c a l  material of t h i s  report i s  l i m i t e d  t o  l i n e a r  processing. The 

mater ia l  deals  with explo i t ing  the  geometry of p ic tures  p r inc ipa l ly  through t h e  

assumption of s t a t i s t i c a l l y  s ta t ionary  proper t ies  under t r ans l a t ion  and ro t a t ion .  

P ic tures  a re  defined as functions of one index where the  index is  a 2-dimensional 

vector corresponding t o  t h e  2-dimensional coordinates of t h e  p ic ture .  This nota- 

t i o n  makes it possible  t o  handle pictures  i n  t h e  conventional l-dimensional nota- 

t i o n  of c l a s s i c a l  processing theory w h i l e  preserving the  2-dimensional proper t ies  

of t h e  p ic ture .  

processing, matr ts, cor re la t ion  W c t i o n s ,  s t a t iona ry  and symmetry pro- 

p e r t i e s  optimum l h e a r  processing, trivial processing, orthogonal preprocessing, 

minimum e r ro r ,  minimization with a constraint ,  preprocessing with predict ion,  

quant izat ion,  and convergence of i t e r a t i v e  computations. 

The repol..t deals  w i t h  Pepresentation of the p ic tures ,  l i n e a r  

The experimental work of t h i s  repor t  tests t h e  t h e o r e t i c a l  r e s u l t s  f o r  

complexity, usefulness, and correctness. 

capable of producing 

corresponding t o  the  6 faces of t he  cube onto which the  shades of br ightness  were 

pasted. 

Craters Eratosthenes and Archimedes i n  15 x 19 f i e l d s  of elements. A r t i f i c i a l  

p i c tu re s  were a l s o  constructed having controlled cor re la t ion  funct ions.  A number 

of experiments were performed with these p ic tures  t o  ex t r ac t  i n  an optimum manner 

another desired p ic ture .  A va r i e ty  of FORTRAN programs are included f o r  eventually 

performing t h e  processing computations on a d i g i t a l  computer. 

An experimental capab i l i t y  w a s  developed 

p ic tures  with up t o  750 elements i n  6 shades of br ightness  

This capab i l i t y  w a s  then used i n  the  experimental representation of t h e  
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I n t  roduc t ion 

The successful extract ion of s ign i f icant  da ta  from lunar and planetary 

t e l ev i s ion  pictures  requires  t h e  survey and comprehension of present ly  known tech- 

niques a s  wel l  as the  development of new techniques p a r t i c u l a r l y  directed a t  t e l e -  

v i s ion  processing. 

the  f i e l d  of processing pictures .  Much of the  material of t h e  report  comes from 

This report  deals with theo re t i ca l  and experimental work i n  

3 previous reports  19 . 
The t h e o r e t i c a l  work i s  directed a t  producing techniques fo r  ex t rac t ing  

Pre-processing of data e i t h e r  before transmission or subsequent t o  transmission* 

t e l ev i s ion  p ic tures  has the  poss ib i l i t y  of minimizing the  transmission channel r e -  

quirements or maximizing the  use of t h e  transmission channel when t h e  channel i s  

fixed and inf lex ib le .  Subsequent processing of t e l ev i s ion  p ic tures  a f t e r  t r ans  - 
mission permits an organization of the da ta  i n t o  a form which i s  more meaningful 

as a f i n a l  product and a l s o  permits hypothesis t e s t i n g  f o r  t he  ex t rac t ion  of hy- 

po the t i ca l  data  from the  p ic tures .  

The quantity of data  t o  be gathered from lunar p ic tu re  experiments re- 

i c  reduction and the automatic design of prototype reduction 

t h e  p ic tures  w i l l  be used s o l e l y  f o r  mapping areas where only 

ently avai lable .  Sc i en t i f i c  e f fo r t s ,  however, w i l l  be d i rec ted  

a t  measuring the  density d i s t r ibu t ion  of c r a t e r  r a d i i  and typing the  debris  around 

the  c r a t e r s  as wel l  as within the  crater .  

t he  p o s s i b i l i t y  of dist inguishing between comet and a s t e ro id  impacts as wel l  as 

the  p o s s i b i l i t y  of the  recognition of volcanic c ra t e r s .  Similar c r a t e r  s tud ies  

w i l l  be performed on the  s c i e n t i f i c  experiments d i rec ted  a t  the  Planet Mercury. 

Knowledge of t h e  c r a t e r  s t ruc tu re  has 
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Geological' s tudies  w i l l  be in te res ted  i n  the  uniformity and roughness of t h e  

surface s t ruc ture  as well  as the c l a s s i f i ca t ion  of t h e  surface geology. 

Theoretical  Studies 

Television pictures  are normally thought of as a sequence of pictures  

capable of displaying moving objects.  

and planetary experiments is much broader than t h i s  concept. 

tures w i l l  be individual ly  dis t i l ic t ive 

Some of the p ic tures  will be r e l a t ed  t o  others t h r  observation of substan- 

t i a l l y  the  same experiment from di f fe ren t  d i r e c t i o  nd d i f fe ren t  t i m e s .  

s e t s  of pictures  require simoltaneous processing which i s  considerably d i f f e ren t  

than tha t  required f o r  t he  processing of a sequence of pictures  of mwing objects.  

The use of te lev is ion  pictures  i n  lunar 

Many of t h e  pic-  

an8 vi11 require appropriate processing. 

Many optimum processing techniques are present ly  known f o r  t h e  proc- 

essing of telemetry. 

essing of p i c t o r i a l  data.  

techniques d i r e c t l y  applicable t o  processing t e l ev i s ion  p ic tures  with pa r t i cu la r  

emphasis on t h e  use of d i g i t a l  computation f a c i l i t i e s  f o r  processing pictures 

Very few of these methods have ever been used i n  the  proc- 

The following theo re t i ca l  areas develop a number of 

transmission. The areas are l i s t e d  in order of increasing 

Linear Special  F i l t e r in& based on previously measured cor re la t ion  

functions can be used t o  preprocess data t o  reduce i t s  quant i ty  as w e l l  as t o  post- 

process data t o  remove random i r r e g u l a r i t i e s  such as noise and t o  enhance various 

e f f ec t s  f o r  possible l a t e r  detection. 

t h i s  report  deals with t h i s  area. 

phone Laboratories and i s  reported i n  references 7, 13, 1 4  and 24. Much of the  

t h e o r e t i c a l  work i n  1 dimension a s  presented i n  references 11 and 16 i s  changed 

i n t o  2 dimensions i n  t h i s  report .  The concepts of ro ta t ion  and t r ans l a t ion  have 

an expanded meaning i n  2 dimensions. 

Most of t he  theo re t i ca l  work presented i n  

Some of t h e  or ig ina l  work w a s  done by B e l l  Tele- 
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Linear Learning Processes introduce t h e  concept of measuring para- 

meters from s e t s  of hypothetically charac te r i s t ic  data.  The development of an 

i n t e l l i g e n t  learning process has the  poss ib i l i t y  of replacing the heu r i s t i c  

guessing which has normally accompanied p ic ture  processing i n  the past .  

ideas of References 1, and 4 have t h e  p o s s i b i l i t y  of being applicable.  

approaches a re  contained i n  References 8, 13, and 25. 

The 

Other 

Nonlinear Spat ia l  F i l t e r i n g  and Learning is  directed at  processing t h e  

The shades-of-gray sca le  i s  defined inherent nonlinear propert ies  of a picture.  

as the  l o g a r i t h m  of t h e  brightness scale t o  correspond t o  the human preception 

of r e l a t ive  changes i n  the  grey levels  A t h e r  than the  absolute changes i n  the  

leve ls .  The brightness scale  a l s o  has an upper and lower bound. I n  order t o  

handle these nonlinear e f f e c t s  and possibly others,  it is  necessary t o  ser iously 

study techniques of nonlinear processing. Much of the  bas ic  theory i s  contained 

i n  Reference 27. Examples of the  implementation of t h i s  theory w i l l  be found i n  

References, 3, 6, 9 ,  17, and 20.  

Sequential F i l t e r i n g  of Pictures which a r e  correlated with one another 

i n  sequence is an  expansion of the  amount of data  used i n  t h e  processing of a 

single point of a picture .  

it may be desirable  t o  process the  movement and change of objects i n  the  p ic tures .  

The material of References 12 and 23 has possible appl icat ion.  

The theory i s  applicable t o  scanning systems where 

Extraction of t he  presence or absence of data i n  a picture  from only a 

hypothetical  knowledge of what t he  data i s  t o  look l i k e  i s  an area pa r t i cu la r ly  

directed toward t h e  d i sc re t e  recognition or re jec t ion  of t he  presence of data i n  

t h e  picture  under observation. 

t o  control  of experiments and the  acceptance of va l id  commands. 

references 5 ,  8, and 18 can be applied t o  t h i s  subject.  

The techniques of t h i s  area are a l s o  applicable 

The material of 
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Linear Analog Techniques provide an a l t e r n a t e  means of processing pic-  

t u re s .  Most t heo re t i ca l  work r e s u l t s  i n  d iscre te  processing on a d i g i t a l  com- 

puter.  

t h e  poss ib i l i t y  of producing simple l inear  equipment which may work a t  consider- 

ably higher speeds than can be obtained with d i g i t a l  equipment. The o r ig ina l  

work i s  contained i n  Reference 26. 

A number of multi-dimensional analog techniques a l s o  e x i s t  which have 

Further work i s  i n  References 2, and 28. 

The following theo re t i ca l  and experimental work develops and tests 

a number of l i n e a r  techniques t o  handle t h e  two-dimensional aspects of pictures 

so that the  goemetry of t h e  picture  can be retained i n  two dimensions r a the r  i n  

one dimension where a considerable amount of theory i s  present ly  w e l l  known. 

Representat ion of a Picture  

The following theo re t i ca l  development has 2 objectives:  1. t o  rep- 

r e s e n t - a  p ic ture  and i ts  processing i n  c l a s s i c a l  vector and matrix notation, 

and 2. t o  preserve the  2-dimensional propert ies  of t h e  picture .  

A sampled picture  i s  represented by the  row vector  x having elements 

x 
and i = (a,b) are 2-dimensional vectors. 
t o  w r i t e  t he  elements of a row vector sequent ia l ly  i n  one row. However, i n  t h e  

notation of t h i s  report  a row vector i s  wr i t ten  i n  a geometrical form, each of 

t he  elements of t h e  index vector indicat ing t h e  geometrical posi t ion of t he  cor- 

responding row vector element. The elements of t h e  representation of x then 

correspond geometrically t o  the picture t h a t  they represent.  

resentat ion of a row vector  is  then 

corresponding t o  the  samples of the p ic ture  where the  ind ic ies  1 = (1,l) L'i 
I n  c l a s s i c a l  notation, it i s  customary 

A possible rep- 

x = pl,i] = Pi] = X 11 12 x13 x14 X 

X 21 22 x23 x24 

x31 x32 x33 x34 

X 
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Linear Processing 

A second p ic ture  y can be obtained f romthe  p i c tu re  x by l i n e a r l y  

weighting and adding the elementsof x t o  form t h e  elements of the  p ic ture  y .  

Notationally, the new p ic tu re  i s  computed by t h e  matrix formula 

where 

The summation i s  over a l l  the values of t h e  index i. I n  r e a l i t y ,  t h i s  is a 

double summklon. I€ is repregented here as a single sum because of i t s  simpli- 

c i t y  and i t s  s i m i l a r i t y  t o  the  c l a s s i c a l  matrix notation of the  matrix product. 

Linear processing can be used t o  produce an i so l a t ed  point i n  a p ic -  

t u r e  or t o  approximate some desired r e s u l t  based on t h e  data contained i n  t h e  

processed p ic ture .  

Matrix Transposition 

The row vector x i s  a degenerate form of a matrix h having elements 

where the indices  i and j a re  2-dimensional vectors .  The transpose ht of hi, j 

[ I  t The transpose x 

Note t h a t  t h e  indices  have been transposed, not t h e  elements of t h e  vector rep- 

resenting the indices .  

as f o r  the row vector x. 

of t h e  row vector x = xlJi i s  defined t o  be a column vector .  

The representation of the  column vector xt i s  t h e  same 

X r1 31 x32 22 x33 x23 x34 "" 
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The i t h  row of t h e  m a t r i x  h i s  t h e  row vector [hi, j! containing 

f o r  which i is t h e  f irst  index. I n  a l i k e  manner t h e  a l l  t he  elements hi A r 9 

j t h  column of t h e  matrix h i s  t h e  column vector h containing a l l t h e  e l e -  1 i , j J  
ments h f o r  which j i s  the  second index. 

i , j  

The vector indices  i = (a,b) and j = (c,d) are equal when the i r  cor- 

responding elements a re  equal. The addition of indices i s  a l s o  element by element. 

equa l i ty  of indices:  i = j +7 a = c and b = d 

addi t ion of indices:  k = i + j  <-7 k = (a*, bid)  

The sum, f ,  of 2 matrices h and k i n  t h i s  no ta t ion  is  the matrix of 

elements equal t o  t h e  sum of elements having i d e n t i c a l  indices .  

f = h + k  

where 

[ f .  . ]  = Ch + ki 1 
= , J  i, j , j  

The sum of the  two pictures  x and y i s  t h e  sample-by-sample sum of 

t he  p i c tu re s .  

Product of Linear Transformations 

processing of p ic tures  by the  r e l a t ions  

and then by z = yg 

leads t o  the  product of t h e  matrices h and g s ince subs t i t u t ion  of y i n t o  t h e  

equation f o r  z produces the re la t ion  

z = xhg = xc 

where c = hg. 
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In terms of elements, the matrix equations a re  

so t h a t  by subs t i tu t ion  
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where 

The product of t h e  matrices is  thus a sum over the  column index j of t h e  first 

matrix h and .t x j of the  second matrix g. 

A square m a . i x  h is  one which has an equal number of row and column 
indices.  The diagonal of a square matrix i s  the  set of elements for which the  

row and column indices  are ident ica l .  The i d e n t i t y  matrix I is  then defined t o  

be the  one which i s  1 on t h e  diagonal and 0 elsewhere. 

[Tl,j = [Ei, j] where '1, j 
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Correlation Functions 

The cross-correlation function 'pxz between t h e  p ic tures  x and z 
i s  defined as the matrix product. 

where the bar denotes t h e  ensemble average of each element i n  the matrix product 
t x z. Due t o  the t ransposi t ion,  there i s  only one index, 1 = (l,l), over which 

the  summation i s  performed. 

It should be  noted t h a t  t h e  two pictures  x and z can have a d i f f e ren t  number of 

samples and a r e  not r e s t r i c t e d  t o  being the  same geometrical s i ze .  

cor re la t ion  function of a picture  x w i t h  i t s e l f  i s  h o r n  as the  auto-correlation 

funct ion. 

The c ross -  

- 7  
i 

- - [.. i,j] = r l x i , l x l , j  1 = b i x j  i 

I n  this 2-dimensional notation, the cor re la t ion  functions have many of 
The the same properties as the classical one-dimensional cor re la t ion  funct ions.  

t ranspos i t ion  of the cross-carrelat ion function between x and z produces t h e  

cross-correlation between z and x. 

The auto-correlation i s  also i t s  own transpose. 

= to t 
%x xx 
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S t a t i s t i c a l  independence between the two p ic tures  produces the  re- 

sults t h a t  t he  cross-correlat ion function i s  t h e  matrix product of t h e  mean 

values of t he  pictures  

-t- x and z s t a t i s t i c a l l y  independent t 
= x z = x z  'pxz 

where the  mean value of t he  p ic ture  x i s  the  row vector  made up of t h e  mean 

value of each sample of t h e  picture .  I n  t h e  pa r t i cu la r  c8se where t h e  pic-  

t u r e s  are s t a t i s t i c a l l y  independent and one of them has a zero mean, t h e  cross- 

correlat ion function i s  zero. 

The auto-correlat ion of the sum of two p ic tures  x and y i s  the  sum 

of t h e  individual  auto-correlations and t h e  two cross -correlations.  

Q Vn + Qm + 9xy + 

Wheye t h e  pietareg are s ta t i s t ; i ca l ly  independent and one has a zero mean, the 

auto-correlati.  f €%e sum is then just the slun of the indivi8Uat auto- 
cor re la t ion  functions. 

+ QYY Q = <pxx 

The correlat ion f'unction 

ments a l l  having 

has many uses. 

x x  1 3  

the  same standard 

of a p ic ture  made up of  independent e l e -  

deviation u and mean m i s  an example which 
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The cor re la t ion  function i s  then 

= u I + m U  2 2 
'pxx 

where I i s  the iden t i ty  matrix and U i s  the  u n i t  matrix of a l l  1's. 

The cross-correlation function between two p ic tures  y and y l i n e a r l y  1 2 
obtained from pictures  x, and x is a matrix operation on t h e  cross-correlat ion 2 I 

2' functions between xl. and x 

I n  t h e  case where t h e  pictures  

y2 x2h2 + % 

x and x have zero mean t h e  cross-correlat ion 1 2 
function cp has the pa r t i cu la r ly  simple form 

y1y2 
. .  

A fu r the r  s implif icat ion occurs i n  the computation of t h e  auto-correlation func- 

t i o n  'p of the  p ic ture  y obtained from the picture  x when t h e  p ic ture  x is  made 

up of independent, zero-mean elements. 

cor re la t ion  function of t he  p ic ture  y i s  

YY 
2 I n  t h i s  case, 'pxx = u I so t h a t  t h e  auto- 

2 t  t = a h h + k k .  
cpYY 

An example of t he  use of l i nea r  processing theory i s  i n  the  construc- 

t i o n  of an a r t i f i c i a l  picture  from a random number t ab le .  

are of ten used i n  experiments where it i s  necessary t o  know and control the 

propert ies  of t h e  pictures .  

A r t i f i c i a l  p ic tures  
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If it i s  desired t o  construct an art if  i ' c ia l  p ic ture  with a prescribed 

auto-correlat ion function cp 

symmetrically factor ing the  matrix 50 
transform a s t a t i s t i c a l l y  independent p ic ture  in to  an a r t i f i c i a l  p ic ture  having 

t h i s  cor re la t ion  function. 

are not present ly  known. 

a one-dimensional technique i s  avai lable  f o r  
YY 

t o  obtain a l i n e a r  process h which w i l l  
YY 

The two-dimensional implications of t h i s  technique 

A l a t e r  sect ion descr ibes  experiments i n  a r t i f i c i a l l y  c rea t ing  corre- 

la ted  p i c tu re s  from random n&er t ab le s  and l i n e a r  processing. 

Posi t ive Defini te  Condition 

An ensemble of p ic tures  x i s  defined t o  be l i n e a r l y  dependent whenever 

there  e x i s t s  a nont r iv ia l  l i n e a r  process h of t he  p ic ture  x about i t s  mean L 
which w i l l  produce a one-element picture  y = x ' h  having a zero cor re la t ion  

function. - 
2 

Q Y Y = y  = O s  - 
x '  = x - x. 

A set of pictues in which the s m  t w o  samples are always identical 

is an exanple of an ensemble of l inear dependent pictures. When t h e  ensemble of 

Broducing 

p ic tures  is  not l i n e a r l y  dependent, it i s  defined t o  be linearly independent. 

I n  t h e  case of an ensemble of l i n e a r  independent pictures,every l i n e a r  process h 

a one-element picture  has a pos i t ive  valued cor re la t ion  function 

- t .  - h q x l x , h  > 0 f o r  every h .  
VYY 

An auto-correlation matrix thus is  defined t o  be pos i t i ve  d e f i n i t e  

whenever it i s  obtained from an ensemble of l i n e a r i t y  independent p ic tures .  

Where t h e  matrix i s  pos i t ive  de f in i t e ,  t h e  determinant Icp I w i l l  be non-zero. xx 
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The implication of the picture x being l i n e a r l y  dependent i s  t h a t  at 
l e a s t  one sample xi i s  e s sen t i a l ly  computable from the  r e s t  of the  p ic ture .  

def in i t ion ,  i f  x i s  l i nea r ly  dependent, there  ex i s t s  a non- t r iv ia l  h such t h a t  
By 

where 

This implies t h a t  y i s  e s sen t i a l ly  zero. 

Since a t  l e a s t  one of the elements of h has t o  be non-zero, assume tha t  

h f 0. This produces the resul t  t h a t  
1,1 

Thus, i n  the  case where the  auto-correlation matrix Qn has a zero determinant 

lqml = 0, the  auto-correlation matrix i s  non-positive d e f i n i t e  s o  t h a t  the  

c ture  a r e  l inear ly  dependent. A t  l e a s t  one of t he  samples 

can be produced from others.  In ' the  case of an auto-correlat ion f'unction 
d IqxI = '0, it is always possible t o  drop +he de- 

pendent samples with a l i n e a r  process h so as t o  produce a p ic ture  w '  = x 'h  with 

a smaller number of l i nea r  independent samples and an auto-correlation function 

which is  posi t ive de f in i t e  and having a non-zero determinant. QW'W' 

The new pic ture  w '  w i l l  contain a l l  of the information contained i n  the  o r i -  

g ina l  p ic ture  x s ince the  l i nea r ly  dependent samples a r e  computa'ble from the  

l i n e a r l y  independent samples. 
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Stat ionary Correlation Functions 

The i n i t i a l  def in i t ion  of the cor re la t ion  function 

Qxz = [Fj] 
permitted each element i n  t h e  matrix (0 t o  have a d i f f e ren t  value. I n  many 

p r a c t i c a l  s i t ua t ions  the  correlat ion function w i l l  be independent of both t r ans -  

lettion and ro ta t ion ,  and dependent only on the distance of separat ion between 

xz 

the  elements x and z . 
i j 

The cor re la t ion  function qxz i s  defined t o  be s ta t ionary  wheh the ele- 
ments of i t s  matrix are functions only of t h e  difference between the  indices.  A 

s ta t ionary  cor re la t ion  function i s  thus independent of t r ans l a t ion  but not of ro-  

ta t ion .  Whenever qXz = 1-1 i s  stationary,  there  e x i s t s  qxz(k) such t h a t  
L J 

Qxz(k) = xizi+k i s  independent of the index i. The addi t ion and subtract ion of 
indices i s  a vector  addi t icn  and subtraction. A stakionary cross-correlat ion func- 

t i o n  satisfies t h e  r e l a t ion  

The s ta t ionary  auto-correlation function 4pxx satisfies t h e  pehttion 

i 

\'9 
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Symmetric Correlation Functions 

The four  elements xll, x12, x31, x32 of the  p ic ture  

I2 X 

22 X 

- x32 

X42 

X 

x33 

x43 .-i 
normally have, a corre la t ion  function such t h a t  

horizontal  

- v e r t i c a l  x31 - x12 x32 

diagonal 

The f i rs t  two re la t ions  a re  s ta t ionary r e l a t ions .  

t he  difference i n  indices (1,2) - (1,l) on t h e  l e f t  and (3,2) - (3 , l )  on t h e  

r igh t ,  are t h e  same. 
the  difference of t on the l e f t  is (2, 1) and on t r i g h t  (2,- 1) 

I n  order to inch& t he  diagonal symmetry of the correlation, a sta- 

In  the  horizontal  r e l a t ion  

re la t ion  i s  not a s ta t ionary  r e l a t ion  s ince 

t ionary  cor re la t ion  function is defined t o  be symmetric whenever the  cor re la t ion  

function is  a function of' the  magnitude of t h e  elements of t he  differences be- 

tween the  indices.  

metric then p(kl) = cp(k2) whenever k 1 = (al, bl) and k2 = (a2, b2) such t h a t  

lal\ = 1 a21 and (bll = Ib2 I .  
function, it is said t o  be symmetric. 

That is ,  if the s ta t ionary  cor re la t ion  function p(k) is sym- 

When t h i s  property holds f o r  the  e n t i r e  cor re la t ion  



, 
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Distance 

Further r e s t r i c t i o n s  can be placed upon a s ta t ionary  cor re la t ion  func- 

t i o n  by specifying t h a t  t he  correlation i s  only a function of t he  distance be- 

tween the elements being correlated. 

having indices i = (il,i2) and j = (jl, j,) i s  defined t o  be 

The distance d between t h e  p ic ture  elements 

il - j,) 2 + (i2 - 3,) 2 

TWO curre la t ion  elements are d e f b e d  t o  be equal whenever they are the  cor re la t ion  , 

function of p ic ture  elements separated by t he  same distance.  

A fur ther  modification can be made by specifying the distance measured 

i n  terms of an e l l i p se .  

t i o n  of scanned t e l ev i s ion  pictures where the scanning process introduces a d i s -  

t o r t i o n  i n t o  the  correlat ion f’unction. 

This modification should have some use i n  the considera- 

Stat ionary and Symmetric Matrix Products 

It would seem i n t u i t i v e  that the matrix product of s ta t ionary and sym- 

metric matrices would a l s o  be stat ionary and symmetric. It i s  fortunate t h a t  

t h i s  i s  the case since It makes it possible t o  construct invariant  s-tric 
processing itevices .ub€ch are a function of the distance and di rec t ion  from the 
par t icu lar  picture  element which i s  t o  be constructed. 

Whenever t h e  matrices h and g are s ta t ionary ,  t h e i r  matrix product 

c = hg i s  a l s o  s ta t ionary.  That is i f  

where h i s  a function of t he  difference j - i  and g i s  a function of the  difference 
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k- j ,  then c i s  a function of the  difference k - i .  

I n  terms of t h e  differences between the indices k- i  = r and k-j  = s t h e  matrix 

product becomes t h e  famil iar  convolution formulas. 

= [ h(r -s )  4 
1 

= [ z h ( r + s )  g ( - s )  1 
S 

c ( d  

[E h ( s ' )  g ( r - s ' )  

A s l i g h t l y  more useful  formular i n  computation i s  

c (d 

Thus t o  compute t h e  element e(.), the f i e l d  of elements of g i s  re f lec ted  through 

t h e  o r ig in  ana correspondingly multiplied and sunned with t h e  f i e l d  of elements h 

For eiwrIp3.e where the matrices are s t a r t i n g  at the appropriate e 2 e n t  h(r). 

fo 

t h e  f i e l d  of g i s  r e f l ec t ed  t o  give 

=0 0 

g1,o go, 0 

g1,1 go, 1 

0 .  

h 

0 
1,o 

0 

0 

0 

g =  D 

go, I 

go, 0 

0 
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The term c 

f i e l d s  and summing. 

of the  product i s  obtained by d i r e c t l y  multiplying the  
0,o 

hO,1° 
O'O 1 

L L 

- - h o , O  g0,o + h-l,O g 1,o + hO,-l g0,1 

The ca lcu la t ion  of the  element c of t h e  product i s  obtained by moving 

t he  f i e l d  g(  -s) t o  t he  element h, , , multiplying the  f i e l d s ,  and summing. 
1 7 1  

- - 
11 C 

1?1 - 
hO,l g1,o O g0,o 

0.0 

h O  -190 

h O  0.0 0, -1 

+ hl,O go,1 ho,O g l , l  + hO,l g1,o 

1 O * O  
- - 

Further calculat ions would produce the  matrix 

f 
I 

L C C 0,-1 1,-1 

. . . 

.~ ~ 

. ..< 
... . _.. 

where on ly  the  non-zero terms have been indicated.  

These are  convenient formulas f o r  both hand computation and 

machine computation. 
Born the  matrix expression it can be shown t h a t  the product of two 

matrices h and g which a re  t h e i r  own transpose (ht = h and gt = g) ,  t h a t  t h e  

product c = hg i s  not necessar i ly  a l s o  i t s  own transpose. 

ct = gtht = gh f hg = c 
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However, when the matricee IT@ dependent only on the clifferenee between the i r  
indices and thus s ta t ionary ,  the p s ~ d u c t  w i l l  be i t s  own transpose when the  

fac tors  are  t h e i r  own transposes.  

pose h when h ( s )  = h( - s ) .  

A s ta t ionary  matrix h = h(s) i s  i t s  own t rans-  
t Thus, from the convolution formulas 

1 J 

where t he  first step is the change of var iable  s '  = -s and t h e  second s t ep  

i s  the  use of the  self transpose property on the  fac tors  h and g. 

A similar r e s u l t  i s  t h a t  the  product of s ta t ionary  symmetric m t r i c e s  

i s  also symmetric. 

under r e f l ec t ion  of any of t he  elements of  the  vector  representing the  index 

difference.  

t ionary  m t r i x  g = [ g ( s ) ]  is  symmetric i n  the  f irst  dimension when [ g ( s ) ]  =[,(sf)]. 

For example 

A s ta t ionary  matrix i s  symmetric when it i s  invariant  

That i s ,  where the indices s = (a,b) and s '  = (-a,b), the  sta- 

1 

i s  symmetric i n  the  horizontal  dimension and not i n  the  v e r t i c a l  dimension. 

Where both the s ta t ionary fac tors  of a product have a pa r t i cu la r  

symmetry, the  product a l so  has tha t  symmetry. 

a r e  

I n  pa r t i cu la r  where the  indices  

s = (a,b) r = (c ,d)  

s '  = (-a,b) 

the matrix product i s  

r' = (-c,d) 
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where the  f i r s t  s t ep  i s  a change i n  t h e  order of summation and the  second 

s t ep  i s  the  use of t h e  symmetry property of the  f ac to r s  h and g. 

It should be noted t h a t  f u l l y  symmetric s ta t ionary  matrices have 

t h e  s e l f  transpose property. Thus, i n  t he  matrix product, t h e  f ie lds  can be 

mult ipl ied d i r e c t l y  together without a r e f l ec t ion  where both of t he  fac tors  

are symmetric i n  both dimensions. 

Construction of a Correlated Picture 

An in t e re s t ing  example of t h e  product of symmetric s ta t ionary  

matrices i s  the  processing of a zero-mean p ic ture  x whose elements are un- 

correlated t o  obtain the p ic ture  y = xh. The cor re la t ion  function Cp f o r  

t h e  p i c tu re  x is 
xx 

2 % = a  I 

The cor re la t ion  function cp of the second p ic ture  y i s  then 
YY 

L 

A spec i f i c  example of a s ta t ionary  symmetric matrix h is  

The. matrix nultiplication thexl produces the corre la t ion  f'unction 

2 = r J  'pyy 

2 
' W  I 

This cor re la t ion  is  then both s ta t ionary  and symmetric. The 

normalize cor re la t ion  is  p lo t ted  i n  Figure 1 f o r  several  values of w. 

The m a x i m u m  $# occurs f o r  w = 1/2. 
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Figure 1, Theoretical Correlation as a Function of 
Distance f o r  various Weighting Coefficients of 

t h e  Linear Process y = xh 

Experimentally t h e  uncorrelated p ic ture  of Figure 2 w a s  processed 

with the  s t a t iona ry  processor 

corresponding t o  t h e  weighting coef f ic ien t  w = 112. This processing produced 

the  cor re la ted  p ic ture  i n  Figure 3. The smoothness of Figure 3 i s  an indica-  

t i o n  of t h e  cor re la t ion  i n  contrast t o  t he  sharpness of t he  independent p ic ture  

of Figure 2. 
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Figure 2. An Wncorrefated Picture 

Figure 3 .  A Correlated Picture Obtained by Processing the Uncorrelated 
Picture of Figure 2 

I '  f 
P 
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Desired Pictures  
I 

Linear processing of t h e  picture  x produces another p ic ture  y which , 

may have one sample or  many. 

directed a t  obtaining a t h i r d  picture  z ,  which i s  known as t h e  desired p ic -  I 

tu re ,  as i n  Figure 4. 

Normally, t h e  processing of t h e  p ic ture  x i s  
I 

Processed 
Picture  y 

Desired 
Picture  z 

FXgure 4. Picture  Processing Directed at 
Obtaining the  Desired Picture  z.  

Exact construction of  t h e  desired p ic ture  z from the  p ic ture  x i s  

normally prohibited by the  inherent random differences ex i s t ing  between x and z. 
I 

The e r r o r  picture  i n  t h e  processing i s  defined as the  difference between the  

pickures y and z. l 
I 

e = y-z. 

The mean squared e r ro r  of each sample of t he  e r r o r  p ic ture  is  t h e  

diagonal of t h e  auto-correlation of the error pic ture  

'Pee 

Optimum Processing 

One approach t o  t he  construction of a p ic ture  y as close t o  t h e  pic-  

ture z i s  t o  make the  squared e r ro r  between each sample of t h e  two p ic tures  y 

and z as small as possible.  I n  t h e  case where the  process i s  a l i n e a r  process, 

t h e  process can be represented by the matrix re la t ion  
y = x ' h ' f  k 
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where h and k are optimum matrices t o  be specif ied and x '  is  t h e  difference 

between t h e  p ic ture  x and the  mean picture  F, x '  = 

mean square e r ro r  

- 
x - x. Variation of t h e  

produces the.:relation 

wee = 2 (aht x t t+  akt) (x 'h + k - 2) 
t 

= 2ah ( ' ~ ~ ~ ~ : ~ h -  qxl,) 

- + 2akt (k - z )  

The two re l a t ions  

are su f f i c i en t  t o  minimize each diagonal element i n  the e r r o r  cor re la t ion  matrix 

qee. 
IS.'. 36: close t o  each element of the desired picture  z as can-be possible us& 

l inear  processing. 

This implies that i n  the  mean square, each element of t h e  produced picture;y 

The processing which produces a minimum mean squared e r r o r  for each 

element i s  thus 

-1 
Y = x' 5 0 x , x l  (PXlZ + z  

This solut ion assumes t h a t  the auto-correlation (pxlxl  has an inverse.  

case where t h e  auto-correlation (ox 
i s  zero indicat ing t h a t  it i s  not posit ive de f in i t e .  I n  t h i s  case, there  e x i s t s  

a l i n e a r  process h which eliminates a set of samples l i n e a r l y  dependent upon t h e  

In  the 

has no inverse, t he  determinant 19x,xl I 

3 

I 

0 
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r e s t  of the samples. The new s e t  of l i n e a r l y  independent samples w contains 

a l l  of t h e  information of t he  or ig ina l  set of samples. The optimum process 

i s  then 
- 

3 . 2  Qwlw' Qw'z y = w '  

- = x' h [h t ~ ~ , ~ , h ] - '  ht(px,z + z 

where use has been made of t h e  r e l a t ion  

W '  = x'h 

Simple Example 

A simple example of l inear  processing r e s u l t s  from t h e  consideration 

of p ic tures  z which have had s ta t is t ical ly- independent  zero-mean noise  added 

t o  them. The p ic ture  t o  be processed i s  then 

x = z + n  

and t h e  desired p i c tu re  is z. The auto-correlation of t h e  p i c tu re  i s  t h e  sum 

orre la t fon  'funCtiuns of t he  desfred- picture z and the noise n 

and the  cross-correlat ion 'p between t h e  p i c tu re  x and t h e  desired p ic ture  xz 
z i s  - - -  t t t 

= x z = z z + n z -  'pxz - Qzz 

The mean value of t h e  p i c tu re  x i s  equal t o  t h e  mean value of t h e  desired 

p i c tu re  z 
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The optimum process is thus, 

-1 -1 
= x' (1 + vztzt qn,, + z 

where 
- - 

Z' = z-z and x' = x-x, 

Fpr small values of noise the process is approximately 

-I 
'pz ' z  1 'pnn y ' =  x - X' 

This is a useful result in picture processing since it essentially represents 

a slight "touching up" of the o r i g i n a l  picture x by the picture -x' qz lz l  qnn. 
Under normal operation of the transmission facilities, noise is usually small and 

-1 

statistically-independent, zero-mean. 

At the other extreme, where the picture is predominantly lost in the 
noise, the optimwn processor is 

In the case of a one sample picture, the processing should be 

- 
y = x' + z 

p11+ 51 

where 

(bz lz l  = cP,,l and 'Pnn = ru,,3 



. 
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I n  the  case of a two sample picture ,  t he  process i s  t h e  following 

operation i n  terms of c l a s s i c a l  matrix operations. 

where 

and 

Qnn =E- 
I n  t h e  case where the  experimental p ic ture  x and desired p ic ture  z 

are s ta t ionary,  t h e  processing device using t h e  optimum h and k i s  a l s o  a 

s ta t ionary  device. Under t h e  s ta t ionary condition, h i s  found from the  solu- 

t i o n  of t h e  set of equations 

o r  



. 
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Since there is only one element in the stationary matrix k, the ma- 
Also, since the matrix h is the product of the matrices 

and pxtz are 
In like manner the matrix h will be a function of distance when 

trix k is symmetric. 
and cp -1 it will be symmetric when the matrices cp 

VX'X' x' z' x'x' 
symmetric. 

the matrices Cp and qj are functions of distance. Further simplification 
results in the equations for h where the matrices h, Cp 

tions of only distance. 

thus require only me equation. 

x'x' x'z 
and 'pxlz are funa- x'x' 

A l l  the h's at a particular distance are equal and 

That is the s e t  of equations 

needs to be solved for only distinct distances in the index s. 

In particular, for the auto correlation matrix 

and crosscorrelation matrix 

- - [Y "4 Y] 
9x1 z 

0 

the equations for the linear processor 
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= L u  'poho + +lhl 0 
are 

Solution of these equations produce the coef f ic ien ts  

SGC 203R-4 
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Generalization of t h i s  solution indicates  t h a t  a l l  coef f ic ien ts  a t  

t he  same dis tance a re  equal. The number of simultaneous equations i n  t h e  solu- 

t i o n  f o r  t h e  coef f ic ien ts  i s  equal t o  the  nuTIlber of d i s t i n c t  dis tances .  

is  a pa r t i cu la r ly  p rac t i ca l  r e su l t  i n  t h a t  it indicates  that the first  s t e p  

i n  the  l i n e a r  processing t h e  p ic ture  x i s  t o  f i rs t  add a l l  t h e  samples a t  a 

pa r t i cu la r  dis tance.  This produces a computational reduction of about four 

for rectangular gr ids  and up t o  twelve f o r  hexagonal gr ids .  

"his 

The hexagonal 

mtrix of Figure s a computation reduction of 7 /2 .  

h =  

F'IGURE 5 .  A Linear Processor Based on a Hexagonal Matrix 



. 
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The coef f ic ien ts  for  the  hexagonal l i nea r  process a r e  

$('Po + *q + +pj + 4 - 6ol(Pl 

Po((oo + 

2 h =  
0 

+ 2 V )  + [PJ - 601 
1 w p 0  - ao'pl 

2 h i  = 
'p,((oo + *l + 2 ( o n  + (o& - 

for- every sample in the l i nea r  
processing 

y = x ' h + Y  

where 

-1 
h = (PXfX' (PXfZ 

The use of any other process 

y = x'  (h + hs) + (E + ks) 

produces the auto-correlat ion of the error picture 

t t 
(pee = e e = [x ' (h  + hs) + 6 + kg)-z] [x ' (h  + hs) + ( y  + kg)-z] 

where the  diagonal e n t r i e s  a re  the squared sample e r ro r s .  

with the expres s ionqx ,x ,h  =qxrZ , the  e r ro r  is  

After some reduction 
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t ) ('z + ks) - ('it + kxt) - z - -t z ('z + ks) - + ('zt + k6 Qee - 9 z z  

Due t o  the  pos i t ive  d e f i n i t e  condition, t he  diagonal e n t r i e s  of the  term 

h and k k a re  always posi t ive except where h = 0 and k6 = 0. t 
PX'X' 6 6 6  6 

Thus, f o r  a l i n e a r  independent picture  x', the  mean e r r o r  i s  uniquely ob- 

tained by the optimum process 

y = x 'h  + 'z 

where 
-1 - 

h = pXlx1 pXlz and x1 = x-x. 

The minimum mean error is the diagonal of the expression 

t - 
'pee - ( P z I z l  - h'P,',lh 

-1 
= c p  2'2' - Q& Q X l X l  (bxlz' 
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I n  the  case of independent additive noise, the  minimum e r r o r  is 

ee 
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h - 
- Qnn 

The minimum e r ro r  i n  the one sample picture of a previous sec t ion  is 

I n  t h e  two sample pictures ,  t he  minimum e r ro r  i s  

2 - - p11( allu22- 5 2  ) + all (P11P22 - P;2)2 - 2 
1 min e 

+ u )2 (p11 + 011) (P22 + 5 2 )  - ( P 1 2  12 

I n  the  case of s ta t ionary  correlat ion functions i n  ro ta t ion ,  the minimum error 

for t he  two coef f ic ien t  rectangular grid i s  

- - w h - h l h l  min Pee - s o z l z l  0 0  

and for the  two coef f ic ien t  hexagonal gr id ,  

min ‘r, - - W h - h l h l  
ree  - ( P z ’ z ’  0 0  
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Tr iv i a l  Processing 

The uniqueness of the  solution t o  the  optimum processing can be used 

t o  ident i fy  t h e  type of pictures  which require no l i nea r  processing other than 

possibly a change i n  scaling. 

i n  scal ing the o r ig ina l  picture  i s  

The l inea r  process which i s  r e s t r i c t ed  t o  a change 

y = x'd + z 
where d i s  a diagonal matrix of constants which amplifies each sample independ- 

ent ly .  I n  t h e  case where the  matrix d represents t he  optimum l inea r  process, 

-1 
d =Px'x' sox'z' 

Since d i s  the  unique solution, the only pictures  f o r  which a change i n  scal ing 

i s  the  optimum process a re  where there ex i s t s  a diagonal matrix d such that 

Tais m3ans t h a t  a necessary and suf f ic ien t  condition i s  t h a t  each column of 

i s  some multiple of the corresponding column of (0 . Vx'x' x' z 

[ i t h  column of cp ] d .  = [ i t h  column of cp ] every i x 'x '  1 x '  z 

The mean error i n  t h i s  case is 
- - a :ktz 2 

min = ~ z ~ z '  e 

As an example, t h e  processing of a picture  z which has added t o  it correlated 

noise having a correlat ion function 9 equal t o  a multiple k of the  correla- nn 
t i o n  function qzlzl of the  picture  z would be processed by a simple change i n  

scaling. I n  t h i s  case, 
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so  t h a t  t h e  optimum process i s  

the  minimum e r r o r  i s  then 

. *  
Orthogonal Pre-processing 
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Another approach t o  l i n e a r  processing r e s u l t s  from t h e  construction 

of an orthogonal maxtrix Q column-wise composed of t h e  normalized eigenvectors '  

of t he  cor re la t ion  matrix 'p I n  pa r t i cu la r  , x'x '  - 
~ ~ f ~ i  Q = QX 

where 

qi. 

i s  t h e  diagonal matrix of eigenvalues Xi corresponding t o  t h e  eigenvectors 

The normal orthogonal property of t h e  eigenvectors ind ica tes  t h a t  

---Linear pree-processing ~f the p i c tu re  x with t h e  matrix Q p r d u c e s  t h e  

p ic ture  x = XQ which has the  auto-correlation funct ion 
9 

I 
= x u~ = Q'x"~ Q = Q pXx Q = 'px x 9 9  9 9  

and a crosscor re la t ion  funct ion 

t t t  t 
' p x z = x  z = Q  x z = Q c p  . 9 XZ 

9 
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Subsequent optimum l i n e a r  processing of t h e  new pic ture  x requires t h a t  
q 

the  mean error  is  then 

The use of orthogonal proeessing appears t o  be of use i n  pre- 

p o c e s s i n g  p ic tures  t o  obtain t tu re  x which i s  compose 

having zero c rosscor re la t ion  and auto-correlation . Present 

mental use of t h i s  type of pre-processing i s  l imited by t h e  necessi ty  t o  ob- 

t a i n  the  matrix of eigenvectors &. 

9' 
i 

A Stat ionary &ample 

A p a r t i c u l a r l y  usefu l  experimental example of s ta t ionary  l i n e a r  pro- 

cessing is the recovery of a correlated p ic ture  from a composite p ic ture  of 

t he  correlated p i c tu re  added t o  an uncorrelated p ic ture .  

could be Mne mu1f of iri-dee transmission of a camelated picture being cor- 

The composite p ic ture  

ise,haVing a frequency bandwidth corresponding te the 

sampling r a t e  of the plcC e .  Another example fs the recovery of t h e  uncor- 

re la ted  p ic ture  from the  composite picture  of t he  sum of the  correlated p ic ture  

and uncorrelated p i c tu re .  

p ic ture  being corrupted by a f luc tua t ing  exposure l e v e l  r e su l t i ng  i n  a corre- 

la ted  b i a s  being added t o  the picture .  

This second s i t u a t i o n  corresponds t o  a high-grade 



SPACE- GENE= CORPORATION SGC 203R-4 
.Page 36 

The correlated picture  t o  be used i n  t h i s  example i s  the  a r t i f i c i a l l y  

constructed one of a previous example. The picture  had zero-mean and the  sta- 

t ionary  correlat ion function 

where w = 

114 

1 112 

2 1 1/4 

/2 was used i n  order t o  produce the  h,ghest va,Je of normalized cqr- 

r e l a t i o n  a t  a dis tance of 1 sample. 

t he  correlated picture  also had zero-mean and a s ta t ionary  cor re la t ion  function 

composed of only one non-zero element. 

The uncorrelated p ic ture  t o  be added t o  

I 

Since these two p ic tures  are independent of each other,  the composite p ic ture  

made from t h e i r  sum has a correlat ion function equal t o  the sum of the  corre- 

l a t i o n  functions (ol and 'p2. - 
1/4 

112 

L 
The composite p ic ture  was then used t o  recover e i t h e r  the  correlated p ic ture  

o r  t h e  uncorrelated p ic ture .  
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Since t h e  p ic tures  a re  zero-mean and independent, t h e  crosscorrelat ion 

between t h e  composite p ic ture  x and t h e  correlated p ic ture  z i s  cp , t he  1 1 1 9x1 z 

corre la t ion  function of t h e  correlated p ic ture .  A similar re la t ionship  holds 

f o r  t he  independent picture  z 2' 
- 

'pxz - 'p, 1 

The matrix equations t o  be solved are then 

Since the correl&.im fuwt%ons +x,xT a& pi &re stat;iowry and s-tric, th? 
solut ion h t o  t h e  equations i s  a l s o  s ta t ionary and symmetric. 

h =  

h2 

hl 

h2 hl hO 

hl 

- 
h J2 

h J2 

- h2 

h J2 
hl 

h J2 

By the direct appl tcat ion of-the method for  matrix multiplication the follaTing 

set of equations i s  obtained: 

2 ( 2 + a  ) h o +  4 hl + 2 h0 + h2 = 2 2 a 

h = 1  0 
or 2 2 ' h  + 2 

P h 

1/2 ho + 

1/4 h + 

+ (13/4 + a ) hl + 
0 

h2 = 112 0 2 hl + (5/2 + a 2 ) hJ2 + 

0 2 + (2 + a ) h2 = 1/4 hl + 0 
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Only one equation i s  needed for  each of the  elements of the matrix h.  

The other equations a r e  i d e n t i c a l  t o  these and thus produce no new equations. 

Since the  so lu t ion  of t h i s  s e t  of equations i s  the  unique solut ion t o  the  opt i -  

mization of t he  l i n e a r  processor, elements of h a re  zero a t  g rea te r  dis tance 

than the extent of t he  cor re la t ion  functions cp 
and desired p ic tures .  I n  t h i s  case 

and c p x , z  of the  experimental x'x' 

h = O  d d > 2  

Figure 8 i s  the  composite picture  representing the  addi t ion  of t he  

correlated p ic ture ,  Figure 6, and t h e  uncorrelated p ic ture ,  Figure 7. 
t i o n  was performed with a 

the  uncorrelated p ic ture  had a cp 

The correlated p i c tu re  i s  thus the dominant p ic ture  i n  t h e  composite p ic ture .  

The addi- 
2 2 = 1 so t h a t  t he  correlated p ic ture  had a qoo = 20 , 

2 2 
= U , and the  composite had a qoo = 30 . 

00 

The recovered correlated picture  i s  F'igure 9 and the  recovered uncor- 

re la ted  p ic ture  i s  Figure 10. 

is recovered with b e t t e r  re la t ive '  precis ion than the  uncorrelated picture .  

is i n t e r e s t i n g  t u  note U I E O P  appearance of the recovered uncorrefated 

picture from t h e  highlr corre'iated composite picture .  

As t o  be expected t h e  dominant correlated p i c tu re  

It 
- .  

The minimum recovery e r ro r  for l i n e a r  processing of addi t ive  p ic tures  

i s  the  diagonal of t he  cor re la t ion  function of the e r r o r  p ic ture .  

where h(2)  i s  the  optimum processor used t o  recover the second p ic ture  and h (1 1 
i s  the  optimum processor used t o  recover the  f i rs t  p ic ture .  The recovery e r r o r  
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2 
Figure 6 .  Desired CorrelatedPicture  z Figure 7. Desired Uncorrelated Picture  z 

1 

o s i t e  Picture  x of the Sum of t he  Correlated Picture  z1 md 

Uncorrelatelt 2 

Figure 9. Recovered Correlated Picture y from the  Composite Picture  1 

Figure 10. Recovered Uncorrelated Picture  y from the  Composite Picture  2 , 
, 
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i s  the same f o r  e i the r  p ic ture  recovered. The correlated and uncorrelated 

p ic tures  were both recovered with a theo re t i ca l  e r ro r  of .52a . However, t h e  

desired correlated picture  had a variance of 20 while t h e  desired uncorre- 

2 

2 

2 la ted  p ic ture  had a variance of  CY , 
of t he  correlated p ic ture .  

Behavior of t h e  Linear Processor 

A general  so lu t ion  of the  

processor can be worked out through 

which indicates  a b e t t e r  r e l a t i v e  recovery 

se t  of l i n e a r  equattons of t h e  optimum 

some for tunate  cancel la t ions and f ac to r i -  

zations.  For the  recovery of t h e  correlated picture ,  t he  h ' s  are 



SPACE-GENERAL CORPORATION SGC 203P-4 
Page 41 

The h ' s  for  the  recovery of t he  uncorrelated p ic ture  are c lose ly  r e l a t ed .  

are 

They 

a2 - 3/4 
a* + 1 

2 

hl 
+ a 

l - t a  hL2) 31 2 

A s  t o  be expected t h e  sum of t h e  two recovered p ic tures  y 

the  sum x of the  correlated p ic ture  z 

and y2 i s  equal t o  1 
and t h e  uncorrelated p i c tu re  z2. 1 

= xIh(') + x ' h  (2 1 
y1 + y2 

= z1 + z* 

where 9 X ' X '  = 'pl + 'p2 



. 

SPACE-GENERAL C~PORATION SGC 203B-4 
Page 42 

The behavior of t h e  h ' s  used t o  recover the  correlated p ic ture  is  

plot ted i n  Figure 11. 

cessor r e l i e s  pr inc ipa l ly  on the  picture  element being processed t o  produce 

the  processed element. (ho 1, hl M hR h2 0). A t  higher l eve l s  of 

corruption the  processor r e l i e s  more on the  elements near t h e  element being 

processed ra ther  than on the  element i t s e l f .  

Where the  additive corruption i s  negl igible ,  t he  pro- 

The behavior of t he  h ' s  i n  the recovery of the  uncorrelated picture  

is  plot ted i n  Figure 12. Tt appears tha-l; a t  a l l  l eve l s  of corruption, the 

processor makes use of t he  elements clustered around the element being processed. - 
2 t 

For recovery of e i t h e r  picture  the  theo re t i ca l  recovery e r ro r  e i s  

computed t o  be 

Figure 13. is  a p l o t  of t h i s  e r ror ,  a2h (I), normalized by the  variance of the 

recovered correlated picture. If h is optimum, the-var iance  of the recovered 

picture can be calculated by the formula 

0 

2 2  The variance of the uncorrelated picture ,  a u , normalized by the variance of 

t he  composite p ic ture  (2 + a ) cr 

of the  amount of e r ro r  present i n  the composite p ic ture  x from which the pro- 

cessed p ic ture  y is  obtained. 

2 2  i s  a l s o  plot ted i n  Figure 13 as an ind ica t ion  
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Figure 11. Coefficients of t he  O p t i m u m  Linear Processor f o r  the 
Recovery of the Correlated Picture  

. . .  
.. . . . . - - -  , 

. .  
. .. . 

. *>.._ 

Figure 12. Coefficients of the  O p t i m u m  Linear Processor f o r  the 
Recovery of the  Uncorrelated Picture  



SPACE-GEXEEUL CORPORATION SGC 203R-4 
Page 44 

FIGURE 13. Normalized Recovery Error 

Processing t h e  Crater Archimedes - .  5 . - -  

Eztheer .experimental 
c r a t e r  Archimedes, Figure 14.  
and addi t ive noise of half  the 

mrk was performed on a sampled p ic tu re  of the 

Figure 13 i s  a composite pic ture  of t h e  c r a t e r  
variance of the  o r ig ina l  p ic ture .  Optimum l in -  

ea r  processing then produced Figure 16, which appears t o  be a decided improve- 

ment over t he  corrupted p ic ture  of t he  c ra t e r .  
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Figure 14 .  The Crater Archimedes i n  287 Samples of S ix  Shades of Brightness 
_ 1  

.. . .I .. I . .  

Figure 15. Corruption of the Picture of Archimedes with Additive Independent 
Noise Having a Variance of Half the  Variance of the Original 

Picture  

Figure 16 .  Recovery of the Picture of the Crater Archimedes with an Optimum 
Linear Processor 
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The p ic ture  of t he  c ra te r  had the normalized cor re la t ion  function 

.08 

.32 .34 .32 

.08 .54 1 .54 . 
.32 .54 .32 

.08 - 
which i s  plot ted i n  Figure 17 as a function of dis tance.  

- _  

Figure 17. Correlation Function of t h e  Crater Archimedes 
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Addition of an independent noise picture  with a variance of half  that, 

of t h e  o r ig ina l  pict.ure produces the following set of equations for t he  deter-  

mination of t he  optimum processor. 

1.50 h + 2.16 hl + 1.28 h 

0.54 h + 2.22 hl + 1.08 h 

0.32 ho + 1-08 hl + 1.66 h 

0.08 h + 0.54 hl + 0.64 h 

+ 0-32 h2 = 1.00 

+ 0.54 h2 = 0.54 

+ 0064 h = O"32 

+ le30 h2 = 0.08 

0 J2 
0 J2 

J2 2 

0 J2 
which has- i o n  

ho = .47 

hl = .12 

h = .O4 J2 
% = -.03 

The la rge  value of ho indicates  a ra ther  poor suppression of t he  e r ro r .  

t he  experimental r e s u l t s  indicate  a sa t i s fac tory  re ten t ion  of p ic ture  fea tures .  

However, 

Perhaps, then, mean-square e r ro r  is not a good indicator  of damage done t o  a 
_ _  

pictw noise. 

Suppression of E r r o r s  

The experiment with a r t i f i c i a l  pictures  produced very l i t t l e  suppres- 

s ion  of independent addi t ive errors. 

t h a t  t h e  n a e r  of processed samples was qui te  s m a l l  and t h e  p ic ture  was only 

correlated over a small distance.  

This i s  t o  be expected when it i s  considered 

An upper bound can be obtained f o r  the  amount of suppression of addi- 

tive independent noise by assuming a highly correlated desired p ic ture .  

cor re la t ion  function of  the  desired p ic ture  z i s  assumed t o  be o2 times the  un i t  

matrix of a l l  1's. The cor re la t ion  function of t h e  independent noise i s  assumed 

The 
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2 2  to be u a times the identity matrix of a 1 on the diagonal. A l l  the equations 

for the coefficients of the processing matrix h are identical so that all the 
coefficients are equal. The equation for the single coefficient is then 

( n + a ) h o = l  .2 or 1 
n + a  2 

h =  
0 

where there is a total of n coefficients in the matrix h. The variance of the 

error in the optimum recovery is then 

which should be normalized by the variance of the recovered picture 

n 2 
0 - - 

2 n + a  

Thus 
c 

2 a 
n 

2 
- -  - -  e 

'PYY 
2 2  In contrast, the variance of the error a u in the original picture 

2 2  normalized by the variance (l+a ) u of the picture is 

2 'pnn a 

'pxx l + a  
- = -  

2 
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Tnese two re l a t ions  a r e  plot ted i n  Figure 18 for a processor operating on five 
samples. 

i s  obtained f o r  s m a l l  r e l a t ive  levels  of noise. As t he  noise becomes larger 

the l i n e a r  processing breaks down and produces no improvement i n  the  r e l a t i v e  

qua l i ty  of t he  p ic ture .  

A suppression of the independent noise by a f ac to r  of 5 in variance 

10 T e d  Limits to the S m e s s f o n  of Additive 
Vrrtse b r a  L i m s p  Pracessor Operating on 5 Pic ture  Samples 

The upper bound on the  suppression of independent noise indicates  

t h a t  the  suppression i n  magnitude of e r ro r  i s  inversely propwt iona l  t o  the  

square root of the  number of samples. Thus, i n  order t o  obtain a suppression 

i n  magnitude by a fac tor  of  10 the processor requires a t  least,100 samples t o  
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reconstruct one element i n  the  picture .  

sen t ly  unknown, as the  bound given above i s  computed under t h e  assumption of 

a per fec t ly  correlated picture .  

compute the  e r r o r  for a more r e a l i s t i c  type of cor re la t ion  i s  unknown. 

computation will require a t r i c k  i n  the inversion of the  cor re la t ion  matrix. 

The ac tua l  number of samples i s  pre- 

Whether or not it i s  possible t o  theo re t i ca l ly  

The 

Minimization with a Constraint 

I n  the  optimum processing o f  p ic tures  it i s  or ten desirable  t o  sca le  

the  resu l tan t  p ic tures  t o  a par t icu lar  cont ras t  by having the standard deviat ion 

_equa l  t o  the s t a d a r d  deviation of t h e  desired p ie ture .  

square error between t h e  resu l tan t  p ic ture  and the 3 e w  

si red p ic ture  subject t o  t h e  constraint  t h a t  the  resu l tan t  p ic ture  have t h e  same 

standard deviat ion as the  desired picture  resu1t.s i n  a l i n e a r  scal ing of t he  

p ic ture  produced under an unconstrained optimization. 

The standard deviation is  given by t h e  diagonal terms of t h e  correla- 

t i o n  function of t he  zero-mean var iables  

d iag .  <p = constant 
y ~ y t  = d i a g *  Q z ' z '  

._ 

The minimizat2cm is then of the diagonal element-s of the  matrix 

u = < p  ee + h(Py'y '  

where A i s  an undetermined constant and (b i s  the  e r ro r  cor re la t ion  matrix ee 

Y 
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The assumption t h a t  t he  output y i s  obtained by a l i n e a r  process on t h e  input 

x requires  t h a t  

y = x ' h  + k y '  = x ' h  

- 
where x' = x-x and y '  = y-y. 

Variation of t he  matrix U produces t h e  r e s u l t  

+ 2 akt[k - l] 
A s u f f i c i e n t  condition f o r  zero va r i a t ion  of t h e  diagonal elements of t h e  matr ix  

U i s  t h a t  

and k = z  

This i s  t h e  same so lu t ion  t h a t  was  obtained f o r  the  unconstrained optimization 

except f o r  a sca l ing  of t he  output p i c tu re s  y, producing t h e  desired standard 

deviat ion.  
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Pre-Processing with Prediction 

One method of t ransmit t ing a p ic ture  with a sequence of independent 

samples, i s  t o  sequent ia l ly  scan the picture ,  predict  t he  next element t o  be 

scanned, measure the  predict ion error ,  and transmit t he  e r r o r  from which the 

p ic ture  can be reconstructed with a similar predict ion.  

Theoret ical ly  t h i s  method w i l l  p rec ise ly  produce a r ep l i ca  of t h e  

o r ig ina l  p ic ture .  I n  those cases where it i s  possible  t o  do high qua l i ty  pre- 

diction, considerable reduc%ion can be obtained i n  the t o t a l  amount of data 

which must be transmitted.  

Quantization of t he  transmitted sequence of e r r o r s  introduces a guan- 

t i z a t i o n  d r i f t  i n t o  t h e  reconstruction process. This d r i f t  prevents the  system 

from running f o r  any reasonable length of t i m e  without having t o  be r e s e t .  

This sec t ion  describes a method of predict ion and reconstruct ion f r o m  

quantized e r ro r s  i n  such a manner as  t o  avoid t h e  quantization d r i f t  i n  the re- 

construction of t he  data .  

The p ic ture  i s  t o  be reconstructed as i n  Figure 19 where the  next 

element i n  the  scan i s  predicted from t h e  previously reconstructed p ic ture  and 

modified by ' a d i n g  the  e r ro r  t o  t h i s  predict ion.  

Quanti zed 
E r r  or 

.A r Recovered 
Addition 1 Pic ture  

Figure 19. The Reconstruction of a P ic ture  from Quantized 
Predict  ion Error  
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The predic t ion  e r r o r  i s  obtained as i n  Figure 20 by quantizing the  

e r r o r  between t h e  a c t u a l  p ic ture  and t h e  predicted p i c tu re  based upon a recon- 

s t ruc t ion  from t h e  quantized e r r o r .  

manner as it i s  reconstructed i n  Figure 19. The predic t ion  of t h e  p i c tu re  i s  

then based upon t h e  reconstructed picture  r a the r  than t h e  p ic ture  which i s  t o  

be t ransmit ted.  

from t h e  a c t u a l  p i c tu re .  

The p i c tu re  i s  f irst  recovered i n  the  same 

The e r ro r  i s  obtained by subtracting t h e  predicted p i c tu re  

Transmission 

Predicted Element Recovered Pic ture  

Egure 20, Processing a P ic ture  t o  Obtain a Quantized 
Prediction Error 

The quantized e r r o r s  a re  t h e o r e t i c a l l y  a sequence of l i n e a r l y  inde- 

pendent samples. 

ing  a sequence of independent samples i n t o  a binary Huffman Code'' having a 

maximum entropy per d i g i t .  

nary b i t s  which must be transmitted i n  t ransmi t t ing  a p i c tu re .  Further use of 

various block coding techniques as may be found i n  Reference 22 w i l l  produce 

the  necessary r e l i a b i l i t y  i n  t h e  transmission of t h e  binary da t a  t o  insure 

r e l i a b l e  reconstruction of t he  p ic ture .  

A l a t e r  sec t ion  presents  a F O R M  subroutine f o r  transform- 

This code e s s e n t i a l l y  minimizes t h e  amount of b i -  
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Prediction 

The theory of optimum l inear  processing provides a means of construc- 

A preceding Section showed t h a t  the  optimum l i n e a r  processor t i n g  a pred ic tor .  

for processing the  p ic ture  x t o  obtain the  predict ion of t h e  element z w a s  

y = x ' h + k  

where - 
x ' = x - x  

k = Z  
- 

and 

A preceding example used the  s t a t iona ry  cor re la t ion  matrix 

2 
( p x l x l  = CY 

The crosscor re la t ion  matrix between t h e  previously scanned port ion of t he  pic- 1 
t u r e  and the  next sample i s  then 

2 
= C Y  'px'z 
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where X marks the  center  of t he  matrix. The matrix product (6 h i s  obtained . x x' 
from the  formula 

= L: (pxlx,( ' )  h ( r + d  
r 

where the  pred ic t ing  processor has the matrix 

5 
h 

- 

- 

h6 

3 h2 h4 

hl 

h 

X 

where again X marks t h e  center  of the matrix. 

t o  the mosscorrelation produces the  following set of equations for t h e  de te r -  

mination of' the coef f ic ien ts  i n  the  matrix of t he  processor h. 

Equating t h e  mat r ix  product 

+ l/2h2 

+ 2 h2 

h2 

h2 

+ 

h2 

5 + h 
3 

3 

3 

+ h  

+ h +  

+ 2 h + 1/4h4 + 1/2h5 

+ 1/4hj + 2 h4 

h4 

3 
+ 1/2h 

+ l / 2h j  + 1/2h4 
5 + 2 h  

= 1  

= 1  

= 112 

= 112 

= 114 
= 114 
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Solution of t h i s  s e t  of equations would then produce the  coef f ic ien ts  f o r  the  

predictor .  

An approximate so lu t ion  can e a s i l y  be obtained by assuming t h a t  

h = 0 so t h a t  h = h and h = h6. The t h i r d  order s e t  of equations r e su l t s  4 1 2  5 
i n  t h e  solut ion 

h =  

-112 

0 -:;: :" ] 
The power i n  the  predict ion e r r o r  i s  obtained by the  formula 

, Quantization of Pictures  

Experimentally a picture  is sampled on a regular  g i rd .  It i s  custo- 

m a r y  -Za hi& q z d 3 . Q ~  pictures t o  use anywhere from 32 t o  128 brightness leve ls  

i n  the ~ W z a $ 2 a n : o f  -%he samples. Due t o  the  l imi t a t ion  i n  experimental equip- 

t u re s  presented i n  t h i s  report are quantized i n  6 brightness l eve ls  

(black, 2&, @, 6&, 8&, and w h i t e ) .  

from the  formula 

The shade of grey g can be computed 

= - logJ2 
where b is the  brightness l eve l .  The grey scale  and brightness leve ls  have the  

r e l a t ion  
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A geometrical pa t te rn  i s  formed by the  r e l a t ive  brightness of t he  

elements of the  p ic ture  r a the r  than by the  precise  brightness l e v e l s .  The tone 

of the  picture  is the  mean value o f  the  brightness leve ls .  The standard devia- 

t i o n  is  a measure of the contrast .  I n  numerous geometrical cases, it i s  des i r -  

able t o  represent a s e t  of pictures with a uniform mean and standard deviation 

of brightness l eve l s .  

The processing of pictures with l i n e a r  and non-linear processors pro- 

duces a s e t  of numbers which normally extend beyond the  0-1 range of the br ight-  

ness 3evels. Several methods a re  avai lable  f o r  quantizing a set of numbers s o  

t h a t  they can be represented i n  a f i n i t e  number of brightness l e v e l s .  

method senting a p ic ture  with quantized brightness IS 

is  t o  d i s t r i b u t e  the quantization l eve l s  so t h a t  a l l  l eve ls  are  represented with 

equal frequency of occurrence. 

Another method of representing a p ic ture  i s  t o  l i n e a r l y  d i s t r i b u t e  the 

This is the  method normally quantization s teps  over the  range of sample values.  

used i n  quantizing the samples of an experimental p ic ture .  However, pictures  

which a re  the r e s u l t  of numerical processing, tend t o  have a few excessively 

small and l a rge  values which produce an excessive range. Linearly d i s t r ibu t ing  

this excessive range produces a p i c tu re  with m o s t  

an- step near *. 
The quantization of the p ic tures  i n  t h i s  report  is based on a l i n e a r  

m s e  pictures have very little con 

system which d i s t r ibu te s  the four  center  shades of brightness (2&, 40$, 60$, 
8&) between plus and- minus one standard deviat ion i n  brightness about the  mean 

value of the  p ic ture .  A l l  values below and above one standard deviation a re  

J 
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made respect ively black and white. 

as  applied t o  uniform and Gaussian d i s t r ibu t ions .  

t he  mean frequency of occurrence of brightness l eve l s  i s  

Figure 21  depicts  t h i s  type of quantization 

For these two d i s t r ibu t ions  

Brightness Level Uniform Distr ibut ion Gauss ian Distr ibut ion 

Black .212 * 159 
20% .144 .150 

.144 

.I44 

.I44 

.191 

.191 
,191 

mite .212 159 

The frequency of occurrence of each of the  s i x  l eve l s  i s  very close t o  

116 = .167. 

The correlated p ic ture  of Figure 3 had t h e  d i s t r ibu t ion  of brightness 

Linear quantization between the  standard deviations l eve l s  shown i n  Figure 22. 

produces the  r e s u l t s  of Figure 3 which c l ea r ly  show the  cor re la t ion  of t he  

p ic ture .  

The pr inc ipa l  disadvantage of t h i s  method of representat ion is i n  the  

emparison of different pictures having d i f f e ren t  standard deviations. Pictttres 

are p&sented as though they had the stme standard deviations. The &GP€f;dbn- of 
the  p ic tures  i n  Figure 6 and 7 t o  give t h a t  of Figure 8 is  an example. 

6, 7, and 8 have r e l a t i v e  standard deviations of fi 1 a n d 6  Their standard 

deviations a re  normalized s o  t h a t  a r e l a t i v e  comparison of brightness l e v e l s  can- 

not be d i r e c t l y  made. 

t i n g  geometrical pa t te rns  with a high degree of contrast  i n  a f a i r l y  l i n e a r  

manne r . 

Figure 

The method, however, does provide a simple way of represen- 

Figures 23 and 24 are examples of t h i s  type  of quantization i n  the  rep- 

resenta t ion  of the c r a t e r  Eratosthenes. The white area i n  the  center  is  an il- 

luminated inner w a l l  which cas t s  the dark shadow extending t o  the  edge of the  

Figure.  The measured cor re la t ion  function i s  Figure 25. 
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Figure 22. Distr ibinion 0; R c d  Ijmber’s o€ Llie Correlated Picture  of Figure 3 
Along ,,i2Lll LP-C . ~ . i , l z a t i o n  Used i i i  i t s  Representation 

Figure 21. Q i’ a Picture lnto Six  Brig ness Levels i n  Relation 
si311 acd UniL’orm Dis t r ibu t ion  
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Figure 23.  The Crater Eratostenes i n  6 Brightness Levels 

Figure 24.  The Crater Eratostenes i n  6 Brightness Levels Distributed 
About the Mean Plus and Minus One Standard Deviation 
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Figure 25,  Stationary Correlation Function of t h e  Crater Eratostenes 

Machine Programming 

The experimental work of t h i s  report  w a s  performed by hand computa- 

The amDunt of computation for  a very simple p ic ture  i s  a t  the l i m i t  of t i o n .  

computation. 

of t h i s  t heo re t i ca l  work has been t o  cast it 

i n  a notation which can be e a s i l y  programmed and run on a la rge  automatic com- 

puting machine. 

puting a l i n e a r  processor f o r  suppressing undesired e r ro r s .  

flow chart  of a proposed experiment dealing with the  removal of redundancy fromI 

a p i c tu re  p r io r  t o  transmission. 

Figure 26 represents t h e  flow char t s  of t he  experiment i n  com- 

Figure 27 i s  the 
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Generat e Quantize and 

Pic?.ures x 2  q a n a  z2 
R s d  Out 

e 

Experiment a l ly  

Qt;* + 4 k a  
Cornput e 

Linear Quantize and 
Process 
with h 
to gat 9 

* 
Read Out i n  

M st ance 
Term8 O f  

Figure 26. Flow Chart of an Experiment of the Suppression of 
Undesirable Noise 
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‘r . 
Linear Compute 
PI’OC088 4 

with h E 2  
t o  get x L 

Figure 27. Flow Chart of an Experiment i n  Removing the Redundancy 
from a Picture  

-. 
Quantize and  

i Read Out 
X 
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FORT" Subroutines 

The following subroutines have been wr i t ten  t o  f a c i l i t a t e  t he  experi- 

mental work i n  p ic ture  processing. 

ence 21  f o r  most IBM 709 and 7090 compilers i s  used. 

The FORTR N convention contained i n  Refer- 

Crosscorrelation of Two Pictures  

The crosscorrelat ion of the p ic ture  X and Y i s  p a r t i c u l a r l y  use fu l  

i n  the design of optimum processors. 

are assumed ta be of t h e  same dimension as i n  Figure 28. 
I n  the  following program these  p i c tu re s  

X ( 1 , J )  and Y ( 1 , J )  

I = l , M  J = l,N 
t M 

Figure 28, The Number of Elements i n  a Picture  

The cor re la t ion  t o  be calculated experimentally has the dimensions of Figure 29. 

The dimensions should be odd numbers due t o  the s ingle  value of the cor re la t ion  

a t  t h e  or ig in ,  (MO, NO) = ( MC+1 N C + L  , 
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C ( K , L )  
K = 1 ,MC L = 1 , N C  

Figure 29, The Number of Elements i n  t h e  Correlation Function 

The crosscor re la t ion  i s  computed by t h e  formula 

M N  

MNL, / >  C(K,L) = - '- (X(I,J)-XAVG) :: (Y(I  + K - MO,J + L - NO)-YAVG) 
1=1 J=1 

I n  those cases where t h e  indices  of Y a r e  beyond the  range of t h e  p ic ture ,  t h e  

average value of Y i s  used r e su l t i ng  i n  a zero t e r m  being added i n t o  t h e  

summation. 
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SUBROUTINE CRCOR (C, MC, NC, X, XAVG, Y, YAVG, M, N )  

D I M E E X O N  X (46,461 , Y(416,4#), C (46,416) 
DO 1 I = l , M  

DO 1 J = l , N  

X(I,J)  = X(I , J )  - XAVG 

Y ( 1 , J )  = Y ( 1 , J )  - YAVG 

T = M s N  

MO = (MC+1)/2 

m-= fm+1.)/2 
DO 4 K = 1,MC 

DO 4 L = 1 ,NC 

C(K,L)  = 6.6 
DO 3 I = l,M 
DO 3 J = l , N  

I Y  = I+K-MO 

JY = J+L-NO 

IF (W 3,3,2 
IF (Jy) 3 ,3 ,2  

2 ,2 ,3  

IF  (JY-N) 2,2,3 

2 C(K,L) = C(K,L) + X(I , J )  ::. Y(IY,JY)  

3 CONTINUE 

4 C ( K , L )  = C(K,L)/T 

RETURN 
EM> 

FORTRAN P r o g r a m  for C a l c u l a t i n g  the  C r o s s c o r r e l a t i o n  of Two Pictures  X and Y 
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YES 

Figure 30.  Flow Diagram for the Crosscorrelation of 2 Pictures 
. .  
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The matrix product 

c = hg 

where c(r) = h(s) g(r-s) 

is computed on the assumption that the dimension of each matrix is M x N with 
appropriate subscripts. 

S 

The center is considered to be the integer part of 

(MO, NO) = (y, 
The computation of the 

M"H 

C(I,J) =c H(K,L) 
K=l L = l  

_ I  

product is then 

'k G ( I - MCO + E O  - K + MHO, J - NCO + NGO - L + " 0 )  

where the sumnation is only over the mutual range of H and G. 

. .. . - .. . . . 
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FORTRAN P r o g r a m  for C a l c u l a t i n g  the  Matrix Product 

SUBROUTINE MATRIX (H, MH, NH, G, MG, NG, C, MC, NC) 

D=SIm H (46,416), G (46,4151, c (46, 46) 
MHO = (m+1)/2 

"0 = (NH+1)/2 

MGO = (m+1)/2 

MCO = (MC+1)/2 

NGO = (NG+1)/2 

NCO = (NC+1) /2  

SGC 20313-4 
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p 1 0 = ~ + ! & 3 0 - ~  

NO = NGO + NHO - NCO 

DO 2 I = 1,MC 
DO 2 J = 1,NC 

C ( 1 , J )  = @.@ 
DO 2 K = 1,MK 
DO 2 L = 1," 

K G = I - K + M O  
L G = J - L + N O  
IF (E) 2,2,1 

IF &+) 2,2,1 
IF (KG - MG) 1,1,2 

IF (IG - NG) 1,1,2 

1 C(I,J) = C(I,J) + H(K,L) :K G(KG,LG) 

2 CONTINUE 

RETURN 

m 
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C A L L  MATRIX w 

Figure 31. Flow Diagram of Siationary Matrix Multiplication 

~ _ _ _ _ _  
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The conversion of a set of words i n t o  another set of words 

having m a x i m u m  entropy per d i g i t  i s  a coding problem f o r  which an 

exact solut ion i s  known i n  terms of an algorithm. 

The frequency of occurrence of the o r ig ina l  words a r e  

i n i t i a l l y  l isted from the  smallest t o  t he  la rges t .  

program assumes that the  ordering process has already been performed. 

The first two words a r e  distinguished by a 0 f o r  the first and a 1 

fo r  the  second. They a r e  then combined and t r ea t ed  as  a s ing le  word. 

The following 

The algorithm proceeds by reordering t h e  new set of' words 

dis t inguishing the first two words with a 0-1 and combining. 

word i s  built up as  a sequence of  0's and 1's depending upon the 
algorithm . 

Each 

A n  index matrix provides t h e  correspondence between the  

ordered s e t  of frequencies and the  o r ig ina l  s e t  of words. The matrix 

ind ica tes  that the f irst ,  second, and fourth words a r e  associated 

with the  first frequency. 

second frequency. 

t o  know which of the o r ig ina l  words are t o  be distinguished by 

0's and 1's. 

The th i rd  and s ix th  are associated with the  

With t h i s  type of index matrix it i s  then possible 

The program s tores  the  code words reversed from r i g h t  t o  

l e f t  with a 1 signifying the end of the word. 

obtained from the decimal representation by expressing the  representation 

i n  binary, reversing the ordering and dropping the terminall. 

The code words can be 
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A simpler program may be possible by using the  concept of "low 

order pairing." 

the  t ab le  without any reordering or moving of the r e s t  of t he  table .  

A set of low order words are paired and moved up in to  
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FORTRAN PROGRAM FOR CONSTRUCTING A HUFFMAN CODE (CONTINUED) 

34 K = I<+1 

35 mQ (io = S 
36 Do 37 J = l,N 

37 INDEX ( K , J )  = X ( J )  

38 K = K+1 
39 L = L-1 

40 DO 44 I = K,L 

41 I K  = I+1 
42 FREQ (I) = FREQ ( I K )  

43 Do 44 J = l , N  

44 INDEX ( K , J )  = INDEX ( I K , J )  

45 PRINT 49 (WORD (I)/ I = 1,N) 
46 STOP 
47 FORMAT 

48 FORMAT 
49 FORMAT 

SGC 233R-4 
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. -  

. . .  . .. . . ._ ... . . .  . I "_ 

. . ,  -. 

I 

. \ 7  
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K = K + 1  
L = L-1 

SPAm-GENERAL CclRPORATION 

4 
MOVE FREQ(1) 

AND INDM(1,J) 
I = K,L 

INDEX (I,J) 
WORD (I) [,j 

e 

SUM INDM 0 
AND FRJQ 

4 
FIND K AND 
SEll K = K-3 

Figure 72, Flow Magram for the Construction of a H u f f m a n  Code 
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Additional FORTRAN Subroutines 

The following subroutines r e m i n  ye t  t o  be wr i t ten :  

1. Quantization f o r  Display 

This subroutine should compute t h e  quantization constants and 

then quantize t h e  p ic ture ,  perhaps as it i s  being read out of t h e  machine. 

Provision should be made f o r  enter ing t h e  subroutine with t h e  constants already 

given as may be t h e  case i n  fixed scal ing.  

2. Picture Generatian 

Several randuxri rluii&ei- rcit’lries ELX neec?ec? fer producing a r t i f i -  

c i a l  p ic tures  with known proper t ies .  Uniform, and Gaussian d i s t r i b u t i o n s  with 

zero mean should be the  most useful.  

3 .  Theoretical  Correlation Computation 

This i s  t h e  computation of t h e  co r re l a t ion  matrix based on t h e  

l i n e a r  processing of a p i c tu re  having a specif ied co r re l a t ion  matrix. 

4. opt$rmun Solution 

Based on the  input comela t ion  function p and t h e  cross- 
x ’x ’  

co r re l a t ion  function cp 

t h e  so lu t ion  of a set of simultaneous l i nea r  equations. 

t he  optimum processor should be obtained. This i s  x ’  2’ 
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CONVERGENCE OF I-lJERA!CIW S Y S W  

One method of designing optimal processing systems I s  

through i t e r a t i v e  approximations. 

is used t o  cmpute a be t t e r  approximation I t e r a t i v e l y  u n t i l  t he  

optimal system is obtained. Sakrison(2?) has considered an i t e r a t i v e  

design of a spec i f i c  optimal system. This sec t ion  considers some 

of t be  basic elements of h?-s analysis of t h e  convergence of a system 

t o  an optimal system. 

A n  approximation t o  the  system 

NORMS 

I n  order t o  consider t he  convergence of m iterative 
system t o  an optimal system it i s  necessary t o  have some measure of 
the e r ro r  between the approximation X and the optimum system G- 
measure I s  known as the  - norm Et where t denotes the  sequence of 
approximations. 

t he  case of a s ing le  var iable  or the average inner product of t h e  

e r ro r  I n  the case of a multiple variable system. 

The 

A very usefu l  norm i s  t h e  average squared e r ro r  i n  

Other norms are based on weighting functions of t h e  e r ro r  such that 

Et > O  X f 0 -  

E t = O  X = e .  

The behavtor of the nom I s  o f p a r t i c u l a r  importance I n  

describing the  convergence of the approximation t o  optimal systerhs. 

In those cases where t h e  norm can be described by the  flrst order 

difference equation 

hEt c a t + b  E - t t  

hEt = Et+l - Et 

q u i t e  a b i t  can be said about the convergence based on the propert ies  

of the coef f ic ien ts  at and bt. 
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!Che existence of the  difference equation which can be 
e x p l i c i t l y  solved is the  most important Idea of t h i s  approach. 

Where El is t he  solut ion of the  difference equation 

= at + bt E; 

and E is t h e  ac tua l  norm which satisfies the  difference r e l a t ion  t 
&E at + bt Et t -  

the  nom Et is bounded by the  solution E; 

Et I El. 
and a l l  t whenever 0 - < 1 + bt 

If t h i s  were not so, then there  would e x i s t  a T f o r  which 

%+l ' %+l 

5 5 %  
and 

The difference equations produce the r e l a t ions  

Subtraction produces the  inequal i ty  

<eT+1 - 5 (l+bT) (ET - 

which is a contradiction under the assumption t h a t  1 + bT > 0 since 
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Thus f o r  all i t e r a t i o n e  t, the  norm Et i e  lese than or  equal t o  
the  solut ion E$ of the  difference equation. 

SOLUTION OF TBE ITRST ORDER DIF’FEREmCE EQUA!l“OM 

The first order difference equation 

AE; = a + b t  E: t 
has the  general  solut ion 

t 

I n  the  pa r t i cu la r  case where b i s  t h e  constant b and a is  t h e  constant a J i 
raised t o  the  i t h  power, the  solut ion has the  closed form 

i where a = a i 

This so lu t ion  

where 
a 

l+b 
- 

It i s  easy t o  

t + l  a 
1 - (m) 

= (l+b)t a + EA (1 + b)t+l 

b = b  
j 

canverges . -  t o  zero  approximately 

- - ... (1 + bJt 

< 1  a n d O < ( l + b ) < l  

as  

see t h a t  i f  t = 0, the  general  solut ion gives t h e  

cor r e  c t s olu t  i on 

Ei = a. + EA (1 +bo) 
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By induction, t he  so lu t ion  f o r  t i s  assumed correct  

t-1 
t-1 t-1 

= l a  ll ( l + b j )  + EA n ( 1 + b )  
j=i+l j=o J 

i=o  
E; 

From t h e  difference equation the  solut ion f o r  t + 1 i s  found t o  be 

= a + E; (1 + bt) Et+l t 

Subst i tut ion of E: produces the r e l a t ion  

t t t 

= 1 a i=o  
fl (1 + b  ) + E* n (1 + b j )  

j=i+l j oj=o 

Which i s  the r e l a t i o n  f o r  t h e  general solut ion of E; . 

Another property of the  first order difference equation, 

which makes it usef'ul i n  the analysis of i t e r a t i v e  convergence, i s  that 

the  so lu t ion  Et  converges t o  zero whenever the coef f ic ien ts  s a t i s f y  t 
the constraints  

a > O  i -  

a, 

C a i  = A < . ,  
i=o  
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( l + b ) <  
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E 

3 -  

The logarithm of the  second tern of the  general  so lu t ion  produces 

sequence of re la t ions  
t 

This implles t h a t  

t 
Urn B~ II 
t- j=o 

(1 + bj) = o 

Considerably more m3thematical r igor  I s  needed t o  show that the  first 
t e r n  of the general so lu t ion  a l so  comerges t o  zero. 

proof is one which shuws t h a t  f o r  e-iery E > 0 there  e x i s t  a T such t h a t  

A su f f i c i en t  

(1 + bj) < E I t t 

1 ai j 3+ l  
i=o  

for every t greater thaa T. 

The proof needa se-reral  s teps .  F i r s t ,  s ince 0 < 1 + b .(: 1, 3 -  - 
t 

(1 + b ) e 1 and since the ai 2 0 there exists some I such that 
j J + l  3 -  

for every t . 
These inequa l i t i e s  imply that 
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The second part of the  proof r e s u l t s  from knowing t h a t  the  product 

converges t o  zero. 

every t > T 

That i s ,  there  ex is t s  8 o m  T such that for  

This inequal i ty  produces the  r e l a t ion  that  

I 

i=o  

Thus t h e  t o t a l  sum from 0 t o  I and I + 1 t o  t is  l e s s  than E 

whenever t ' T. 

The rate a t  which It converges t o  zero depends on t h e  par t icu lar  

coefficf ents  of €he- dffference equation. 

This implies that t h e  second term converges t o  zero. 

PROPERTTES OF !FEE ITERATION 

An example of the use of the  first order difference equation 

is i n  the calculat ion of a norm equal t o  t h e  inner product of the  

e r r o r  between the system parameters X and the  optimum parameters 8 

r 7 

En - e)  (Xn - e)] 

The iterative procedure f o r  the  determination of t h e  process is 
an I t e r a t i v e  correction 
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The error i s  then 

- e  = x n - e + E n  'n+l 

so t h a t  t he  norm i s  
r 

En+l = En + Average t c n  . cn + 2(xn - O).En}  

This is then a difference equation of t he  norm. 

hEn = Average {en cn + 2 ( X n  - 

I n  those cases where there  e x i s t s  appropriate a and bn such t h a t  n 

r 
+ 2(xn - 5 an + bn E, ten E n Average 

The behador  of the norm En can be analyzed qui te  e f fec t ive ly  with 

the  solut ion of the  difference epuation. 
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