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Construction of Nonlinear Programming Test Problems*

by

J. B. Rosen and S. Suzuki

In order to test a nonlinear programming algorithm it is very

*xsef%.il to be able to construct test problems with known optimum solutions.

The purpose of this note is to describe a simple procedure for constricting

such test problems. We will describe the procedure for a concave maxi-

mization problem subject to concave constraints.

The concave maximization problem is

max [qo(x) Ihi (x) ? 0, i = 1, 2, *..' k),
x

where x e e, and V(x) and hi ;x) are real valued concave functions of

x. The procedure will be described for qp(x) = @(x) + ex, and

hi(x) = qi(x) + bi, i = 1, ... k, where 8(x) and gi (x), i = 1, ... k

are any selected differentiable concave functions of x, c is a vector

e Bm and the b. are scalars.1

Ste-- I

Choose any 20 F IF as a desired optimutm point, and any set
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of ui > 0, i - 1, ... k,	 as the corresponding optimum dual solution.

That is, we first specify the primal and dual solution to the problem.
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Step II

Choose b i , i = 1, .., .., so that h i (x°) = 0 for u  > 0

and hi(e > 0 for u i 0. Note that ui > 0 means that the

ith constraint is active.

Step III

Let

k

k
This choice satisfies the Kuhn-Tucker condition (7,p(e) + F xPVh, (x°) = O,

.	 i-1
and therefore ensues that x° is an opti;nur, s-..'Int.inn t== the ^-_iicav,

4

0programming problem.

He will illustrate this procedure by applying it to the quadratic

problem where	 O(x) = -e % x,	 qi (x) = x-*q..x + aix, and the

i = O, 1, ... k, are negative semi-definite matrices.

Example (quadratic problem with four variables and three constraints)

Let

1 0	 0	 0 1	 0	 0	 0 -1 0	 0	 0

0 -1	 0	 0 0	 -1	 0	 0 0 -2	 0	 0
q,

20 0	 -2	 0 0	 0	 -1	 0 0 0	 -1	 0

(0 - 0	 0	 -1), 0	 0	 0	 -1 .0 , 0 0	 0	 -2 ,
If

-2 0	 0	 0 -1	 rV -2

0 -1	 0	 0 1 0 1
a =

1
a =2 a30 0	 -1	 0 -1 0 0

0 0	 0	 0, 1, 1 1

2



Step I

Let x° = 0

1

2

-1

and u° _ ' 1 r

0

2

Step II

h1()°)=e'Q2x°+aix° +b l 	+bl

Since u  > 02 b  = 8.

h2 (i ) =x° Q2  +d2x° +b2 = -9+ b2

Since u2 = 0, ve choose b2 10 so that h2(x°) = 1 > 0.

b3 (10 	 x° +a3' i& +b3,=-5+b3

Since u3 > 0, b3 = 5

Step III

c=

	

[2)&2,1

x°1+ r

2.,&2

xl + 1	 +2 4xi + 2	 5

	

  - 1	 23° - 1	 5

-'&3
	213 + 1	 2x3	 21

1	 2^°4 -1 	 0 -1 	 1-7)

The constructed problem is:

minilrize	 go = -xi - x2- 2x3 -x4 + 5x1 + 5x2 + 21x3 - 7X4
subject to

-x1 -x2- x3 -x4-	 xl + 	 x2 - x3 +x4 +8>0

-xl -2x2 - x3 -2x4 + xi	 + x4 +10 > 0

-2x1 -x2 - x3 -2x1 + x2
	

+ x4 + 5 > 0

and has as its optimum function value q)(xs ) = 44.
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