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ABSTRACT
| aola\("

Pressure distributions over the surfaces of a thin
paraboloid of revolution adjacent to a ground plane have been
measured. Data are presented for solid, rim-porous, and uni-
formly porous paraboloidal surfaces at several angular attitudes
relative té the ground plane. Integrations of these pressure data
over the areas are compared with directly-measured force and
moment data. A strong localized edge-loading was found for the
solid surface configuration when nearly edge-on to the wind;
surface porosity relieved this condition. This material com-
prises a more détailed presentation of the results from a wind-

loads test on paraboloidal reflector antenna models, previously

I

summarized in JPL Internal Memorandum CP-3.

JPL CP-4




- INTERNAL MEMORANDUM JPL CP-4

I. INTRODUCTION

One of the design criteria for a paraboloidal reflector directional antenna
is reflecting surface position accuracy. This accuracy requirement originates
from reflected radio-frequency beam considerations, and is essentially pro-
portional to operating frequencies and independent of reflector diameter. In
order to realize the apparent benefits of larger antenna reflector diameters,
without imposing restrictive upper frequency limitations, an increasingly care-
ful examination must be made of all the factors affecting this surface position,

One contributing factor to the elastic deflection of the paraboloidal
reflecting surface and its supporting structure consists of wind-load distribu-
tion over the surface. A portion of the wind tunnel model test to determine wind
loads for structural design purposes was, therefore, devoted to measuring
pressure distributions over.the paraboloidal surface. This paper presents data
resulting from the pressure-measurement phase of that test.

Reference 1 summarizés the referenced wind tunnel test performed in
the Northrop Subsonic Wind Tunnel in November, 1961. The reader is referred
to that Paper for an over-all description of the test equipment, procedures, and

nomenclature definitions.

II. TEST DESCRIPTION

Figures 1 and 2 consist of photographs of the pressure-distribution-
measurement model. This model consisted of a specially instrumented parabo-
loidal reflector, otherwise identical to one of the 18-in. -diam models used for

-2 -
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the direct force-moment measurements. It was mounted in the wind tunnel test
section in the same position and on the same support strﬁt as the force-moment
models. Tests were performed under the same condition, nominally 95-1b/ft2
dynamic pressure at atmospheric static pressure, yielding a reflector-diameter
Reynolds No. 2.7 x 106,

The baraboloidal reflector had a focal-length-to-diametier ratio of 0. 330,
corresponding to a depth-to-diameter ratio of 0.1894. The thickness of this
reflector was 0. 007 of the diameter except where the pressure tubes (soldered
to the surface) protruded. The basic configuration had a uniform surface
porosity of 25% (except for the center 4-in. -diam hub mounting area), consisting
of evenly spaced holes with a diameter equal to 0. 021 of the reflector diameter.
The porosity hole-diameter Reynolds No. was 5.6 x 104. Two other configura-
tions were also tested; one with a solid-surface reflector, and one 25% porous
on the outside 1/4 of the radius.‘ These two were simulated by applying
pressure-sensitive tape to both sides of the porous surface of the first configur-’
ation, and carefully cutting away the tape around the pressure taps. It was
inferred from previous portions of the force-moment data, that the surface
roughness resulting from this tape would not appreciably effect the resulting
data.

Pressures were measured at twenty-two locations on opposite halves of
the convex and concave surfaces of the paraboloidal reflector (Fig. 3). This
spacing was chosen to roughly represent equal areas per pressure orifice. The

inset on Fig. 2 shows the detail of the pressure taps; the metal tubing was

soldered to the opposite surface of the reflector. Figure 2 shows the plastic
-3 -
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tubing connected to the metal tubes and leading down through the floor of the
wind tunnel test section. Two scanivalves (pneumatic switches), located imme-
diately under the floor, incorporated +1 psig pressure transducers from which
digitized data were automatically recorded. The reference pressures from the
tunnel static and total pressure piezometer rings were also connected to these
scanivalves and were used in reducing the data to coefficient form. During data
reduction, these data were corrected for tunnel static and total pressure cali-

brations.
III. PRESENTATION OF RESULTS

Data were obtained for model attitudes, with regard to the wind direction,
throughout the range of pitch and yaw angles (corresponding to elevation and
azimuth angles, respectively). Only the portions of it taken at 0- and 180-deg
yaw angles throughout the pitch-angle range are being presented here. The
remainder of this data, in rough unchecked form, can be made available on
specific request, By means of the side-to-side symmetry, the data is presented
exclusively for the O-deg yaw angle; some of it originated from 180-deg yaw
angle and all of it can be interpreted for the latter condition (Fig. 4).

The measured pressures were reduced to the conventional aerodynamic
pressure coefficient* form with no tunnel test-section blockage correc‘tions being

applied. In all cases these pressures were read two or more nonconsecutive

*Definition of terms used in this report are listed in the Nomenclature.
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times. Erroneous values were rejected by cross-plotting and inspection and

the remaining values averaged. These remaining valueé displayed a coefficient
scatter bandwidth of as much as 0. 05 when the flow was steady. This band
increased to as much as 0.21 when the flow (and probably forces) were obviously
pulsating or on the edge of a relatively steep gradient.

Tables 1, 2 and 3 present tabulations of the resulting pressure coeffi-
cients Cp and the difference of the pressure coefficients ACp for corresponding
positions on the concave and convex surfaces of the reflector (from opposite
halves by symmetry). The tabulations are arranged by position on the surface,
reflector angular attitude, and reflector surface porosity. Figure 3 defines
these surface positions, while Fig. 4 defines the model angular attitudes and
should further clarify the surface pattern positions at the various model atti-
tudes.

Figures 5 through 21 present in graphical form the pressure-coefficient
difference (ACp) across the reflector surface., The abscissas on these plotsare’
the full diametral lines shown in the corresponding colors of Fig. 3, the side-
to-side symmetry mentioned above again being applicable.

The integral of the pressure coefficient over any closed surface (with
proper regard for vector orientation and moment arm as applicable), repre-
sents the major component of the force or moment on that body. Based on a
perfect mathematical paraboloid of revolution with zero thickness and no sup-
port, these averaged experimental pressure-coefficient differences have been

integrated on a digital computer, utilizing mathematical higher-order curve

fairing between data points. (Note that these mathematical fairings used for
-5 -
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integrations are not necessarily coincident with the fairings shown on Fig. 5
through 21). The results of these integrations are shown in Fig. 26 through 28.
Line fairings of the data from corresponding configurations and model attitudes
of the directly-measured force and moment phase of the test are presented in
the same colors for comparison.

Throughout this report, experimental results from the pressure data
are shown as symbols. Intermediate fairings are judged the best based on com-

parisons with other types of data from this work and other reports.

IV. DISCUSSION OF RESULTS

Comparison of the results of pressure-data integrations with the directly
measured force-mement data is made in Fig. 26 to 28,

Three factors have contributed to the lack of comparisons shown, over
and above experimental scatter in both sets of data:

1. Such pressure integrations do not include any contributions
from skin friction (i.e., the friction '"drag' of the air com-
ponent blowing locally parallel to the surfaces). In most
cases, this contribution is small relative to the pressure-
area contribution. Analysis of this contribution is quite diffi-
cult for the configurations in question as the flow-field is not
well defined. It is significant to note that contributions from
skin friction would be affected by surface roughness, and the

force-moment phase of the test indicated that surface rough-

ness had little effect on the over-all forces and moments.
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2. As noted above, the pressure integrations are based on an
ideally shaped surface, and specifically do not include effects
of the model reflector thickness, supporting device, center
distortion (due to the mounting) and model imperfections.

3. The geometric positions at which pressures were measured
may not have yielded continuously adequate definition for
such integrations. This is particularly true in the case of
localized pressure peaks (Fig. 6) on the edge of the solid
surface reflector at approximately 105 deg. The effect is
probably greatest for the pitch-moment coefficient compari-
sons where the moment arm contribution aggrevates edge
effects.

The discrepancies itemized above should have little effect on the load distribu-
tion curves; as a consequence, the comparisons of Fig. 26, 27, and 28 are con-
sidered satisfactory.

In the case of porous surfaces, another féctor arises. Around each hole
of the porosity, there will be a nonuniform local surface-pressure field, char-
acteristic of flow through the hole. As the inset on Fig. 2 shows, the pressure
taps were located midway between porosity holes. The problem then arises of
how to perform the pressure-area integration without the details of this local
phenomena.

Based on comparisons of the integrated pressure data for axial force,
with the corresponding directly-measured axial force, it appears that the best

comparisons are obtained by using the remaining solid area; i.e., in the case
-7 -
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of the 25% uniformly porous configuration, 75% of the aperture area. However,
in the case of the normal force, the best comparisons are obtained by using the
total area and disregarding the porosity. This approach can be somewhat justi-
fied by the following viewpoint: for axial force, the vector direction is most
nearly perpendicular to the surface, while for normal force, it is most nearly
parallel, When the component of interest is almost perpendicular to the surface,
the air will "leak'' through the holes, causing a load reduction. However, when
the component of interest is nearly parallel to the surface, the porosity merely
acts as surface roughness. All the comparisons shown for axial force and the
axial force component of pitch moment incorporate a 75% factor (one minus the
porosity) for porous areas and 100% factor for the solid areas. The 100% factor
was used for the normal force and normal force component of pitch moment
independent of the porosity. This approach may not be entirely adequate near
the border of the porosity in the rim porous configuration, where the plotted
pressure coefficient differences suggest the possibility of a discontinuity (Fig.
10 through 14); however, it seems to be the best currently available for esti-
mating local wind-load distributions in this area.

As previously stated, Fig. 6 shows a strong pressure-difference peak
near the edge of the solid surface rAeflector at a 60-deg pitch angle. Inspection
of the corresponding pressure coefficients in Table 1 shows that this is the
result of a strong negative pressure on the convex (downwind) surface. Com-
parisons of the pressure-data integrations with the directly-measured force and

moment data (Fig. 26 to 28) show somewhat less satisfactory correlation at 60-

deg pitch angle than for the other model attitudes. This comparatively poor
-8 -
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correlation is probably related to the localized pressure peak and aggrevated by
the large spacing of the pressure orifices.

The presence of this pressure peak and the shape of the force-and-
moment curves in this region may be related to a not uncommon aerodynamic
phenomena. The parabola, as defined by a focal-length-to-diameter ratio of
0.330, is edge-on to the wind (at infinity) at a pitch angle of 53 deg. The flow-
field modification caused by the remainder of the parabola will locally alter this
angle by a few degrees. An essentially linear relationship between pitch angle
and the forces and moments may be seen in Fig. 26 to 28, particularly for the
solid-surface reflector between pitch angles of 55 and 80 deg. In this region,
the reflector surface is acting much as a thin-edged circular-arc lifting airfoil;
95 deg corresponding to the positive lift-stall wing condition, and 80 deg to the
negative lift-stall wing condition., The force-and-moment peaks observed in the
vicinity of 60 deg then must correspond to positive wing stall on a thin leading-
edge- wing. Initial leading-edge separation, with an attendant localized high
negative-pressure peak, is typical in such cases. The air 'leaking' through a
porous surface has an effect similar to thickening and rounding the sharp lead-
ing edge, thus alleviating this leading-edge stall condition.

The above discussion of the wing-leading-edge-stall phenomena has been
confirmed by another technique. Figures 22 through 25 present photographs of
the model being tested with short tufts of yarn scotch-taped to the reflector sur-
faces. These tufts respond to the wind adjacent to the surface, and thereby

visually indicate the direction of the local air flow. Observe the rows of tufts

immediately above and below the reflector mounting hub near the upwind edge of
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the reflector. As the antenna was yawed from 55 through 65 deg (by symmetry,
equivalent to pitch angles of 35 through 65 deg for which equivalent photographs
were not obtained), progressively more of the tufts are blown in a predominantly
downstream direction indicating normal attached flow. The tufts near the lead-
ing edge (shown blowing upstream) indicate a region of "'abnormal'' flow that is
the separated region of the Aleading-edge-stall. Several of the tufts right at the
leading edge were apparently entangled in the tape and are shown immovable,.

The discussion of leading-edge separation applies almost exclusively to
the solid-surface reflector. As may be seen by comparing Fig. 6 and 11, the
presence of surface porosity on the rim alleviates these pressure peaks. Fig-
ures 26 to 28 show a corresponding smoothing and peak reduction of the forces
and moments in this region. The air, with a relatively low velocity energy
after 'leaking' through these porosity holes, provides a smoothing cushion to
the flow over the downwind side of the wing or the paraboloidal reflector surface;

No data are available to show the effect of structural members near the
convex surface of the reflector on such pressure peaks. Comparisons of force
and moment data from this test (not currently published) make it appear that the
simulated structure (Fig. 3, Ref. 1) on a solid surface reflector does not allevi-
ate this problem and‘rnay aggrevate it.

The results of integrating this pressure-distribution data have i)een
utilized in another way. The faired line data of Fig. 28 shows an appreciable
positive pitching moment at 0 deg pitch angle. The pressure distributions of

Fig. 5, 10, and 15 show that this pitching moment should be slightly negative,

as confirmed by the results of the integrations. If the reflector had been tested
| - 10 -
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far from any surface, this pitch moment would have been zero due to symmetry.
Any pitch moment actually présent must, therefore, be aue to some combina-
tion of ground plane flow restraint and/or bounaary layer resulting from the
ground plane. With regard to pitching moment, these two effects may have
opposite signs, but the ground plane effect probably would dominate.

As mentioned earlier, data are presented in this paper exclusively for
0- and 180-deg yaw angles. Based on comparisons (Fig. 9, Ref. 1), the pres-
ence of the ground plane appears to have a moderately small influence. Assum-
ing that this moderate influence may be extended to include pressure distribu-
tions, the recorded data of this paper may be applied with like accuracy to any
antenna angular attitudes where the spherical sum of the yaw and pitch angles

are equal to the pitch angle.
V. SUMMARY

The wind load distribution data presented in this paper are primarily
intended for direct use by designers. Analysis of the data points out several
interesting features:

1. Wind loads per unit surface area fall off toward the edge of
the reflector surface for most reflector angular attitudes.
This feature should be beneficial from structural integrity
or elastic deformation aspects.

2. Rim porosity of the reflector surface will contribute to

decreasing the wind loads at the edge of the surface.

- 11 -
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3.

Rim porosity of the reflector surface largely eliminates the
high pressure peaks occurring at particular model attitudes
near the edge of the reflector, which are characteristic of
sharp-leading-edge curved aerodynamic surfaces.
Comparisons of the directly-measured force-and-moment
data withl the results of integrating the pressure data over
the area lends credence to both sets of data and points out

problem areas in the directly-measured pitch-moment data.

-12 -
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NOMENCLATURE

Definition of Pressure Coefficients
1. Conventional aerodynamic pressure coefficients (as used in this paper) in

any consistent units are:

- (local surface static pressure) - (ambient static barometric pressure)
(wind velocity dynamic pressure)

Cp

2. Pressure coefficient differences then become:

_ (concave surface static pressure) - (convex surface static pressure)
| (wind velocity dynamic pressure)

AC

in any consistent uniis at corresponding positions on the concave and convex
sides of the reflector surface, When the Cp is shown as positive, the wind
loads are pushing the paraboloidal surface back toward its supporting struc-
ture (if present, as in the case of most field installations).

3. Wind velocity dynamic pressure is:

(ambient static air density) (wind velocity)?
2

A table of the wind velocity dynamic pressure, covering usual wind veloci-

ties for a sea-level NACA Standard Day, is presented for convenience:

- 13 -
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Wind velocity
(mi/hr)

10
20
30
40

50
60
70
80
90

100
110
120

Dynamic pressure
(1b/ft2)

- 14 -

N = OO

12

25.
.94
36.

30

.00
.26
. 02
.30
.09

.39
.21
.26
16.
20.

37
71

58

83
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)i§d Pressure orifice

L e 3,

[
3

Focal length
Diameter

25% uniform surface porosity

Fig. 1. Pressure Distribution Measurement Model in Wind Tunnel Test Section.
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Fig. 2. Pressure Distribution Measurement Model Showing

Pressure Taps and Tubing.
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Ground surface

Looking into concave face at zero pitch and yaw angles

<] Ppressure tap on cancave surface
» pressure tap on convex surface

0 signifies angular position of pressure taps
R /D signifies radial position of pressure taps

Fig., 3. Pressure tap locations on model
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Solid surface reflector
Pitch angle » 0°

. Yaw angle = 0°
' Focal

+2.0

&
(]

&
o

Pressure coefficient difference, ACp

T

"

113

i
!

i

it

b
i jHE

TT———

o= 0° to00° Radial digtance 0 = 90° to 180°

Fig. 5. Pressure coefficient difference across a thin parabolodial surface
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+2.8

75°

15°
45°

¢

185°

135°¢
105°

+2.0 }-- - -

+1.8 o e e

Pressure coefficient difference, ACp

+1. (] e AP S S S

v oot
B T e ]

' . ' * § Voo

H H 1 :

b

OG-S S

. 5 SN

+0, 8

0.50
@ = 0° to 90°

Radial distance

Diameter

9 = 90° to 180°

Fig. 6. Pressure coefficient difference across a thin parabolodial surface
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+1,0

+0.5
2,
3)
q
g 0
=4
Q
|9
&
E<)
E Solid surface reflector
g Pitch angle = 90°
§ Yaw angle = 0°
[ E' !
fo. . Focal length _
a 0.5 Bk © T Diameter 0.330
i ;
| 3
~ o

I R TR
- Angular position
15°  165°
i 45°  135°
-1.0 F ' 5T 1037
-LS
0.50 0,25 0 0.2% 0.50
8 = 0° to 90° Radial distance @ = 90° to 180°
Diameter

Fig. 7. Pressure Coefficient Difference Across a Thin Paraboloidal Solid
Surface, Pitch Angle 90°,
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+0.8
el
-
. ; ..‘
‘ R
Q.
Q
q
¢ -0.8
(V]
[
2
°
§ Solid surface reflector
& Pitch angle = 130°
8 Yaw angle = 0°
g Focal length
5 -L0 Di el 0,330
[}
| 3
Ry
4
O 15° 165°
0O 45° 135°
LS Jﬂ O 15t 1058
-2.0
0.50 0.38 0 0.28 0.50
0 o ¢* to 80 Radial distance 0 = D0° to 180°
Diameter

Fig. 8, Pressure Coefficient Difference Across a Thin Paraboloidal Solid
Surface, Pitch Angle 120°,
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 Solid surfece reflector
Pitch angle = 180°
Yaw angle = 0°
0
(="
Q
q
g -0.8
7]
[
&
ES
i)
V]
G
@
[}
(9
Q@
| %
3 -LO
w
o
By
-1.5
-2.0
0.50 0.28 0 0,25 0.50
Radial distance 9 = 90° to 180°
- t 00’ S —————
$=0t Diameter

Fig. 9. Pressure Coefficient Difference Across a Thin Paraboloidal Solid
Surface, Pitch Angle 180°,
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L_ ] .
23% —ele Solid surface 25% —on
+2.5 porosit e ey sy

Pressure coefficient difference, AC’

+2.0

+1.5

Y

+.0 =
R EOE R o B
=~ Porous rim surface reflector "i .
: Pitch angle = 0° e
Yaw angle = 0° R B
' e .
Focal length | .0
P
+0,5 S
e
s
0
0.50 0.25 0 0.25
Radial distance
0 = 0° to 90° s e 9 = 90° to 180°
° Diameter

Fig. 10, Pressure Coefficient Difference Across a Thin Paraboloidal

Porous Rim Surface, Pitch Angle 0°
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| ! -
fo— 354, —oyo- Solid surface —rb— 259,
":- L] R i pol‘oll!y
+2.0

Pressure coefficient difference, ACp

+1.5

+L0

Porous rim surface reflector
Pitch angle = 80°

Yaw angle = 0°
% = 0.330
+0, 5
v
0.50 0.25 0 0.25 0.50
9 = 0° t0 00 &‘%_ﬁ:‘:_a% 0 = 90° to 180°

Fig. 11. Pressure Coefficient Difference Across a Thin Paraboloidal

Porous Rim Surface, Pitch Angle 60°,
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Pressure coefficient difference, ACp

b 255 e Solid surface

+L0 | porosity
+0.8
0
-0.5
Porous rim surface reflector
Pitch angle = 90°
Yaw angle = 0° x :
Focal hm : , - : T e EERg o
Diameter 0.330 SEE s
BENE S0k EEES s e
-1,0 il
Angular position
O 15° 165°
0O 45° 135°
Y S (T
-1.8 & RS : CELETT i : i
0. 50 o. 25 o o. 25
@ = 0° to 9O° Radial distance o = 90° to 180°
-Diameter

Fig. 12. Pressure Coefficient Difference Across a Thin Paraboloidal
Porous Rim Surface, Pitch Angle 90°
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o 351,--4: Solid surface q.—l 351,.—.'
+°.s : 134 & s 3355 R385 3333 RIS RS SHEE

porosity porosity

.....

P e

j N Porous rim surface reflector
Pitch angle = 120°

Yaw angle = 0°

Pressure coefficient difference, ACp

]
r
°
Peopr————
4 1

T—

Focal
Diameter 0.330

-L5

O 45° 135°

O 75T 10s°
2,0 Rl S S LR e S

0.50 0.25 0 0.25 0.50
@ = 0° to 90° Radial distance 0 = 90° to 180°
Diameter "

Fig. 13. Pressure Coefficient Difference Across a Thin Paraboloidal
Porous Rim Surface, Pitch Angle 120°,
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Pressure coefficient difference, ACp

Solid surface olo— 25%

T T gwmgz::—rgg | poroesity
e
E
: Yaw angle = 0° _
-0.5 : ETEer
k + = J Hi
ii:- z f“‘" i =3 =
o ' O T i 5 S
= i ‘ :
L0 =a = 2 % S=EhE =
E.M = S ‘ = = Fp : £

o

l!q!%ﬂml!l!"l!
/
4% iﬁ

eisisiace
b §3
£ 4
3% 14

¥
ity

pb- b
i

0. 50 0.25 0 0.35

Radial distance 9 = 90° to 180°

@ = 0 to 90°
Diameter

Fig. 14, Pressure Coefficient Difference Across a Thin Paraboloidal
Porous Rim Surface, Pitch Angle 180°,
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Fig. 15. Pressure Coefficient Difference Across a Thin Paraboloidal
Uniformly Porous Surface, Pitch Angle 0°,
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Fig. 16, Pressure Coefficient Difference Across a Thin Paraboloidal
Uniformly Porous Surface, Pitch Angle 30°,
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Fig. 17. Pressure Coefficient Difference Across a Thin Paraboloidal
Uniformly Porous Surface, Pitch Angle 60°,
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Fig. 18. Pressure Coefficient Difference Across a Thin Paraboloidal
Uniformly Porous Surface, Pitch Angle 80°,
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Fig. 19. Pressure Coefficient Difference Across a Thin Paraboloidal

Uniformly Porous Surface, Pitch Angle 120°,
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Fig. 20. Pressure Coefficient Difference Across a Thin Paraboloidal
Uniformly Porous Surface, Pitch Angle 150°,
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Fig. 21. Pressure Coefficient Difference Across a Thin Paraboloidal
Uniformly Porous Surface, Pitch Angle 180°,
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Fig. 22. Antenna Model Being Tested with Yarn Tufts on Convex Surface
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Fig. 23. Antenna Model Being Tested with Yarn Tufts on Convex Surface
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Fig. 24. Antenna Model Being Tested with Yarn Tufts on Convex Surface
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Fig. 25, Antenna Model Being Tested with Yarn Tufts on Convex Surface
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