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Lewis Research Center 

SUMMARY 

This report derives and investigates the partial differential equation governing the 
transient temperature distribution of a thin-walled sphere in the conditions of outer 
space. 
energy transfer. A source, such as the Sun, radiates energy to the sphere, and the 
sphere radiates energy to  a sink, such as outer space, at some background temperature. 
Energy is transferred within the sphere wall by conduction. 

and approximations of the complete solution are given. 
case it is possible to deduce the rapid growth of the temperature distribution on the 
sphere and the symmetry connected with it. 

of the sphere with time both in the case of a constant specific heat and in the case of a 
temperature dependent (Debye model) specific heat. 
cooling down in the absence of a radiating source. 

The sphere is initially at a uniform temperature and then subjected to radiant 

Formulas a r e  derived for cases  when the differential equation can be approximated, 
From the solutions for a special 

In addition, formulas are derived for the variation of the average temperature level 

These formulas also apply to a body 

I NTRO DU CTI ON 

In the study of objects outside the Earth's atmosphere, the role of thermal radiation 
has become increasingly important. Since convective heat transfer is no longer a factor, 
a body's temperature level and temperature distribution are determined by radiative 
energy transfer both to  and from the body and by conduction within the body itself. For  a 
vehicle o r  satellite encircling the Earth, the temperature depends on whether the object 
is exposed to the Sun or  is in the Earth's shadow. For  this reason, the transient tem- 



perature distribution of the object is of interest because of the effect it may have on the 
behavior of the vehicle and its content. 

these (described in ref. l), the temperatures and other characteristics of models have 
been examined. For such tests as well as for space vehicles, it is important to  have a 
transient theory in addition to the steady state to compare with experimental results. 
The time required to approximate steady-state conditions can then be estimated. Also, 
characteristics of the model, such as surface emissivity and absorptivity, can be meas- 
ured by comparing the experimental data to the theoretical values. 

This report examines the nonlinear partial differential equation that governs the 
transient temperature distribution of an object in space. Because the transient tempera- 
ture  may cover a wide range before steady-state conditions a r e  achieved, the precise 
variation of specific heat with temperature can be quite significant in many cases.  The 
Debye model for the specific heat was used to account for this variation. 

The object is taken to be a sphere, although the results on the variation of average 
temperature with time are applicable to other objects as well. 

Since an exact solution for the complete nonlinear equation is not known, various ap- 
proximations are used to investigate cases  that have physical significance; from them, 
an approximation of the complete solution is given. 

Various facilities have been developed to simulate the conditions in space. In one of 

No ndi me ns iona I izat io n of Energy Equation 

In deriving the partial differential equation that governs the transient temperature 
distribution of a sphere, the following assumptions a r e  made. 

(1) The sphere has a uniform initial temperature T:. 
(2) The background temperature T* 
(3) The walls of the sphere a r e  so thin that the inside and outside temperatures at a 

(4) All energy transfer to the sphere is by parallel radiation from a single source. 
(5) Lambert's cosine law governs absorption. 
(6) The wall material has an absorptivity and an emissivity that a r e  independent of 

(7) Internal radiation is not considered so  that the temperature variation on the 

Consider the elemental volume in figure 1. 

is constant. 
SP 

point a r e  identical. 

temperature and wavelength. 

sphere will be affected only by conduction in the wall. 

element may be expressed by the following partial differential equation (ref. 2): 
The energy balance per unit time for  the 

kb a k i n  8 E*) - - T*4 + a@ cos e q(e)  ( 1) 
aT* - 

SP 
pbC* - - 

at* r2s in  e ae 
2 
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Figure 1. - Notation for sphere. 

where 

(All symbols a r e  defined in appendix A. ) Equation (1) 
may be made nondimensional by selecting a reference 
temperature and time. A convenient normalizing tem- 
perature TZ based on infinite thermal conductivity 
and steady-state conditions is defined as follows (see 
appendix B): 

A reference time t; may be defined as follows: 

The nondimensional quantities then become 

x = COS e kb 
E l =  

r 2 EUT, *3 

Using these quantities results in 

C aT(xy t, = a E( 1 - x 2 ) aT(x ’ t) ] - k4(x ,  t) - Ttp] + 4(l - Ttp)xq(x) 
a t  ax ax 

where 

- -  

O f o r - l < x < O  

d x )  = 

3 
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Analys is  of I n i t i a l  Temperature Development 

Linearization of energy equation. - To linearize the T4 t e r m  in equation (2), con- 
sider the initial departure from a uniform temperature To = Tz/T:. In the range where 
this departure is small, assume that 

T = TO(l  + 6) 

where 6 << 1. Since 

2 .  the linearized equation (neglecting te rms  of order  6 ) 1s 

In general, the conductivity k and, therefore, the conduction parameter p will 
For  the present small  departure from uniform temperature, depend on temperature. 

however, p can be assumed to be constant. 

case To = 0 is treated in appendix D. ) The solution is 
Equation (3) is solved in appendix C for  the case of constant specific heat. (The 

1 - 2t (p+2T:)/j 
T(x, t) = To + - (1 - Ti )  (1 - 

4T 

W 

-t[p2j(2j + 1) + 4T:]/c 
('e } (4) 

j= 1 

where 

- a(a - 1) . . . (a - i + 1) 
i! 

Figure 2 gives a plot of this solution in the case p = 15 and To = Tsp = 0. 

4 
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Figure 2. -Transient temperature distribution on sphere at various times for constant specific heat. Conduction p r a m -  
eter, 15; To = TSp = 0. 

Range of validity. - The linearization of the T4 t e rm in equation (2) is a valid ap- 
proximation only in a range where the departure from the initial temperature is small. 
To estimate the range of validity, 16 I can be restricted to values less than a particular 
value d, where d is chosen to  provide the desired accuracy in approximating T4 by 
T:( 1 + 4d). 

Two particular cases  for which this restriction is satisfied are derived in appen- 
dix D. 
t ime t < T = cdTo/4, the departure 6 is such that 16 I < d, except for To = 0, which is 
also discussed in appendix D. 

In the other case, i f  To is near 1, then a limit on the conduction parameter p 

guarantees validity of the solution curves for all time. Whenever p > (29/24d) - (2/3) 
and To = 1, the departure 6 is such that 16 I < d. In this case, letting t - =O results 
in the following steady-state distribution for the sphere: 

The first is a limit in t ime for which the solution curve is valid. Whenever the 

(4j + J-)P2j(x) 
T(x) = l im T(x, t) = 1 + ( 5) 

t--.o 3 pj(2j + 1) + 2 

j= 1 

For T = 0 this is identical with the distribution derived in reference 2. Equation (5) SP 
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is used in figure 2 for  comparison with the initial development of the temperature distri- 
bution. 

Analys is  for Large Conduct iv i ty Case 

If the sphere has a large enough conductivity, then the variation in temperature 
about an average temperature would be expected to be small. To examine this situation, 
an average temperature defined by 

can be used. 
Integrating both sides of the original partial differential equation (eq. (2)) yields 

1 - - 1 / k4(x,t)  - T 4 ] d x +  2(1 - T4 ) s ' x q ( x ) d x  
SP SP -1 

-1 
2 

1 
= 0 - 1 f T4(x,t)dx + 1 

2 -1 

Assume that at any given time the temperature differences on the sphere a r e  small  
because of the large value of p. Then a perturbation technique similar to that used to 
get equation (3) can be used, that is, let 

T(x, t) = T(t) + E(X, t) ~ ( x ,  t) % 161 << T 

Then 

4 = T (t) + 0 + O(S2) 

4 = T (t) 

6 



In general, the specific heat c may depend on temperature; however, since the 
temperature differences on the sphere at any given time a r e  assumed to be small, 
ac(T)/ax = 0 for -1 < - -  x < 1 at any given time. Therefore, integrating by parts results 
in 

By substituting this into equation ( 6 ) ,  the equation for the average temperature becomes 

(7) 
dT(t) 4 c(T) --= 1 - T (t) 
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Figure 3. -Var iat ion of average temperature w i th  time for constani 
specific heat. 

If the radiating source is absent (i. e . ,  
@ = 0), then the temperature on the sphere 
remains uniform. In this special case, 
equation (2) with the same nondimension- 
alization reduces immediately to equa- 
tion (7). Therefore the solutions of this 
section apply also to this special case. 

Solution for constant specific heat. - 
If c(T) is taken as a constant c, then 
equation (7) for the average temperature 
can be solved directly. The solution is 

where Co is determined from the initial 
temperature by t(To) = 0. The branch of 
the solution where 0 < - T < 1 applies if  
To < 1. If To > 1, the branch where 
T > 1 applies. 

Figure 3 is a graph of this solution for 
the cases  To = 0, To = 0.3, and To = 2. 
Solutions for other initial temperatu- les can 
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be obtained simply by translating the time axis. 
is exactly the curve for To = 0 with the abscissa shifted to  the right by 

For example, the curve for To = 0.3 

t 1 -1 1 1 . 3 -  o.3 - = - tan  
c 2  4 0.7 

(0.3) + - In - - 

Solution for Debye specific heat. - In general, the specific heat c may depend on 
temperature. In order to examine this cace, the Debye model for specific heat will be 
used since it represents a good approximation for many materials, such as elemental 
metals. 

cluding references 3 and 4. The agreement of the Debye model with experimental re -  
sults is also discussed in these references. Tables of Debye characteristic tempera- 
tures  @* for elemental metals and some crystals can be found in references 3 and 4. 
For the lower temperature range, the characteristics are presented more completely in 
reference 5 .  

The theory and formulas used a r e  derived in most statistical mechanics texts, in- 

The specific heat for the Debye model is given by 

O*/T* 
x 4  

e x  dx c* = 3 c q z , 3 /  0 

(eX - 1) 2 

where O* is the Debye characteristic temperature. Since c = c*/cz and T*/O* = 

T/O, the time variational equation (7) for large conductivity becomes 

3 -  ( T ) . r T  eXx4 d x - = l - T  dT 4 
0 2 dt 

(eX - 1) 0 

The solution to this equation, derived in appendix E, is 

n=O 

X 

I1 2n + 3 

(9) 

m 1 
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where Co is determined by boundary conditions; m = (n - 1)/2 or  m = (n - 2)/2 de- 
pending on whether n is odd or even, except when n = 0, in which case the summation 
on j is omitted and gn are the following nonzero modified Bernoulli numbers (altered 
by setting Bo = -1): 

- 
B o =  -1  

1 - 
B3 =z 

1 - 1 - 
B1 = B 2 = 3 0  

5 - 1 - 
B 4 = 3 0  B5 =a 

If To > 1, the branch of the solution where T > 1 applies. If O/27r < To < 1, the so- 
lution holds where 0/2n < T < l. 

Appendix E outlines a method for  obtaining a solution for smaller values of T. The 
Debye 
where 

2.0 

1.6 

1.4 
I- 

Y T 
c*(T) is given approximately by 

approximation shall be used for very low temperatures (say T*/O* < 1/6) 

Nondiinensional Debye 
characteristic , 

i I tempera t u  re, 
0 

C* T* T With c = - and = G, the time variational 

equation (7) becomes 
c*, 

which can be solved explicitly to yield 

(11) 

Figure 4 is a graph of the average tempera- 
ture  for various Debye specific heats. For 
To = 0, formula (11) is used up to T/O = 1/6 
and formula (10) from there on. 
Co in formula (10) is determined from the 
boundary condition when T/O = 1/6. 

The constant 

Nondimensional time, t 

Figure 4. -Variat ion of average temperature with t ime 
for various Debye specific heats. 
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Approximate Solut ion for  Space-Dependent Temperature 

Expressions for the average temperature of the sphere for large conductivity have 
been developed in the preceding section. An approximation to the spatial distribution of 
temperature, also for  large conductivity, can be found as follows. From equation (5), 
which is valid for p > (29/24d) - (2/3) and constant spherical heat, the temperature dif- 
ference between points symmetric with respect to the 0 = 7r/2 plane at steady state can 
be expressed as 

- J=1 

Since the Legendre polynomials P (x) a r e  even functions, 2j 

2 ~ ( 1  - Tsp) 4 2 ~ ( 1  - Tsp) 4 
N T(x) - T(-X) = - 

For large p, the same temperature difference as a function of time can be expressed 
from appendix C as follows (where again the even Legendre polynomials drop out): 

T(x, t) - T(-X, t) = 
P 

Define the ratio of these two temperature differences as the ratio of formation R(x, t), 
that is, 

R(x,t) = T(x, t) - T(-X, t) 
T(x) - T(-X) 

From equations (12) to (14), the ratio is 

(15) 
-2pt/c R(x,t) = 1 - e 

The fact that R(x, t) is independent of x indicates that the temperature distribution on 
the sphere grows in proportion to  the steady-state distribution. 

is valid provided p is always large p > (29/24d) - (2/3). Figure 5 illustrates the 
Expression (15) is valid in the same range that the approximate solution (eq. (4)) 

10 
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ratio of formation for several  values of the conduction parameter p and initial tem- 
perature To. Figure 5(a) shows that the distribution depends mostly upon the conduc- 
tion parameter p when p is large and To is small. The time required to approach 
the steady state for various 1-1 values is shown in figure 5(b). 

The fact that R(x,t) is independent of x indicates that, in the temperature expan- 
sion, 

T(x, t) = T(t) + E(X, t) 

it should be possible to express E(X, t) as a separable function of x and t. Such a sep- 
arability is shown for  constant specific heat in the following section. 

appendix C to be 
Solution for constant specific heat. - The temperature for this case is shown in 

m 

T(x, t) = T(t) + 2 (1 - Pl(x) + 1 ~ '-'&E( " )  - k - e -  4i+1 2!J i(2i+l)t/c] pZi(x) (16a) 
4 1 - T  

i (2i  + 1) i + l  P P 
i= 1 
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For large p ,  equation (5) is 

4 1 - T  
T(x) = 1 + 

P 3 P  i(2i + 1) 

i= 1 

and 

T(x, t) = T(t) + (1 - e [T(x) - 11 
co 

For large p, the last te rms  can be neglected in comparison to the other terms. Con- 
sequently, 

T(x,t) = T(t) + (1 - [T(x) - 11 
which is the desired separable form of the temperature distribution. The time depend- 
ent portion of E(X, t) is seen to be equal to R(x, t) from equation (15). 

Solution for Debye specific heat. - In general, the specific heat will not be a con- 
stant but may be assumed to follow a Debye model. To approximate the complete solu- 
tion in this case, a solution of the same type as that used in the constant specific heat 
case should be used. 

In order to justify the form of equation (17) for a Debye specific heat, it should be 
stated that the conduction has been assumed large so  that at  any instant the temperature 
does not vary greatly on the sphere. Therefore at any instant the specific heat is nearly 
constant for the sphere. As a result, the departure from the average temperature can 
be calculated at any given time by equation (17). 

and T 
results for constant specific heat, while figure 6(b) shows the results for Debye specific 
heat. 

Figure 6 illustrates a sample calculation using equation (17) for the case p = 15 
= 0 for two initial temperatures, To = 0 and To = 2. Figure 6(a) shows the 

SP 
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Figure 6. -Transient temperature distribution on sphere. Conduction param ... r, 15; nondimensional background tempera- 
ture, 0. 

CONCLUDING REMARKS 

The equation governing the transient temperature distribution on a sphere in space 
was solved for certain cases  wherein the perturbation of the temperature is small com- 
pared to some space independent value. 
temperature of the sphere, and in another case, it was the average temperature. In the 
first case, the validity of the approximation was limited by the time; that is, as time in- 
creases ,  the temperature may depart significantly from the initial temperature. In the 
latter case, the validity was also limited by the conductivity, which must be large in or- 
der  to  keep the space variation of temperature small. 

In the second case, a ratio of formation (eq. (15)) was shown to be independent of x. 
Hence, the solution T(x,t) could reasonably be written as two t e rms  - the superposition 
of a time-dependent average temperature and a space- and time-dependent perturbation. 
As a result of this analysis, at least two conclusions can be drawn: 

(1) The assumption of a temperature-dependent specific heat (Debye model), as 
opposed to a constant specific heat, in general, will give a different theoretical curve 

In one case, this temperature was the initial 
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for  the transient temperature distribution. Both the rate of change and the temperature 
level may be different. For temperatures greater than the Debye characteristic tem- 
perature, the differences are negligible; however, for lower temperatures, the differ- 
ences become significant. As expected, the differences become most significant for 
temperatures near absolute zero. 

distribution on the sphere is obtained very rapidly in comparison with the time to 
approach the average steady-state temperature level. 

(2) When the conduction is large (e. g., p - > lo), the form of the final temperature 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, December 22, 1964. 
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APPENDIX A 

SYMBOLS 

projected a rea  for parallel radi- 
ation source 

total surface a rea  

area of surface receiving radia- 
tion 

modified Bernoulli number 

wall thickness 

nondimensional specific heat, 
C*/C., 

actual specific heat 

classical specific heat (3R for 
elemental material) 

maximum allowable perturbation 
(e. g. ,  d = 0.1) 

thermal conductivity 
2 te rms  of order of 6 

Legendre polynomial 

ratio of formation (defined by 

eq. (14)) 

radius of sphere 

ave rage temperature 

equilibrium temperature 

nondimensional temperature, 
T*/T* 

00 

nondimensional uniform initial 
temperature 

no ndi mensional background te  m- 
per atur e 

actual absolute temperature 

actual uniform initial absolute 
temperature 

actual background absolute tem- 
per atur e 

reference temperature (defined 

by eq. (B4) 
nondimensional time, t*/tF 

actual time 
reference time, pbcz/wT$ 3 

COS e 
absorptivity (defined in eq. (B2)) 

absorptivity for  radiation at 
angle e 

perturbation 

total hemispherical emissivity 

temperature departure 

variable in eq. (E3) 

nondimensional Debye character- 
istic temperature, O*/TZ 

Debye characteristic tempera- 
tur e 

colatitude angle 

conduction parameter, 
2 3  kb/r EUTZ 

density 

Stefan- Bolt z mann constant 

characteristic time 

source flux density 
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APPENDIX B 

DETERMINATION OF REFERENCE TEMPERATURE 

The following treatment (see fig. 7) is similar to  that used in reference 2. An in- 
finitely conducting, opaque sphere radiating to a sink at temperature T* while receiv- 

ing radiation from a source, has an equilibrium temperature TZ that 
may be determined by the following form of the principle of energy 

SPY 

a*@ dA@ = 4 €0 (TZ4 - Tgp ") dAt 
L a  

(B1) 
A 

If E is defined as the total hemispherical emissivity for the sur-  
face and 

Fiqure 7. - Emittinq and 
absorbing areas for 
sphere subjected to 
radiation flux @. 

then equation (Bl)  becomes 

a@ = - Gc 
AP 

- T;;) 

For the sphere 
used in the derivations is defined by 

= 4nr2 and $ = m2, so that the reference temperature TZ to be 

A special case occurs when the radiating source is absent or not considered. Then 
a@ = 0, and the normalization is just Pw = Tgp. 
treated in appendix F. 

The case when TZ = T* = 0 is 
SP 
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APPENDIX C 

SOLUTION TO LINEARIZED PARTIAL DIFFERENTIAL EQUATION 

ASSUMING CONSTANT SPECIFIC HEAT 

The linearized differential equation is the following: 

Assume that the specific heat is a constant, and let the sphere be initially at a uniform 
temperature (i. e . ,  T(x, 0) = To). 

Apply the Laplace transformation with respect to t, and define 

Then proceed formally 

3 1 4 4 4  4 
c [sg(x, s) - To] = - 4Tgg(X, S )  + - ( 3T0 + Tsp) + - (1 - Tsp)XT(X) 

ax ax S S 

(C 1) 
Substitute 

3 4 4  
Y(X, S) = S(SC + 4TO)g(x, S )  - (sCTO + 3TO + T SP ) 

Then equation (C 1) becomes 

lJ Ll1 - x2) 
ax 1 = y(x, s )  - 4(1 - Tsp)x~(7(:r) 4 

S C  + 4To 3 ax 

The function xq(x) may be expanded in a series of Legendre polynomials 

." 
j =O 

where 

17 



l l l 1 1 l l 1 l 1 l 1 1 1 1 1 l l l l l 1 1 1 l l l l 1 l l 1  I I I l l  I 

(;) - - a(a - I). . .(a - i + 1) 
i? 

Also write 

Then, for constant p,  

I-1 E ai(s) i(l - x2) Pi(xj = ai(s)Pi(x) - 2(1 - Tsp)P1(x) 4 
3 

S C  -I- 4To 
i = O  i=O 

00 

The Legendre polynomials satisfy 

The ref ore, 

00 00 

ai(s)Pi(x) + 2(1 - T 4 )P1(x) 
ai(s)i(i + l)Pi(x) = - c SP c i=O i = O  

I-1 
3 

S C  + 4To 

+ - 2 (1 - T4 ) E (43 + I)( )P2j(') 
SP 

3 j + l  
j =O 

Since the Legendre polynomials form a complete orthogonal set  on -1 < - -  x < 
coefficients may be equated; then 

18 



ao(s) = 1 - T:P 

3 2sc + 8T0 

3 s c  + 2p + 4T0 

4 
a1(s) = (1 - Tsp) 

and for j > 1 - 

3 
S C  + 4To 

sc + p2j(2j + 1) + 4T0 3 
a2j(s) = - 2 (1 - T 4 )(4j + 1) 

3 SP 

Now 

3 (sc  + 4Ti)P2j(x) 2sc + 8T0 

sc  + 2p + 4T0 x + 2 F,( j + l  )(4j + 1) s c  + p2j(2j + 1) + 4T0 3 
Y(X,S) = (1 - T 

3 3  

j = l  

and 

4 
2 4 1  - Tsp) 

s(sc  + 4TO) 3 s(sc + 2p + 4TO) 3 

4 scTO + 3T0 + 1 
g(x,s) = + 

(4j + 1)Pzj(x) 
(C 7) 

2 
3 3 

+- (1 -  T4 SP )F, ( ) - 

j + s [sc + p2j(2j + 1) + 4TO] 
j = l  

The inverse transform yields 

19 



- 2( p + 2 T i )  t/c 1 1 

4Ti  
T(x,t) = To +-(I - 

- [p  2j( j+l)+4T:] i c  } (4) 
(4j + 1)P2j(x) 

3 
pj(2j + 1) + 2T0 

- 

; ) + 
j + 1 

3 

j = l  

where 

- a(a - 1). . . (a - i + 1) 
(?) - i! 

__ 

Since this expression converges uniformly in x for all t > - 0 and satisfies equation (3), 
it is indeed the solution. 

If equation (2) is now linearized with T(x, t) = T(t) + E ( X ,  t) where E ( X ,  t) << T(t) and 
cT* + T = 1 (eq. (7)), the equation for E becomes 4 

c = p 2 k l  - x2) - (1 - TZp) [l - 4xv(x)] - 4T3(t)e(x,t) (C8) 
ax a t  ax L 

If it is assumed that 

then 

4 
SP 

al = 2(1 - T ) exp - 

a. = 0 

and the coefficients of the even terms a re  
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i 3 pi(2i + 1) + 2T (t) dt 
3 C 

i 3 1-1 i(2i + 1) + 2T (t) dt dt 
C 

3 and all other ai are zero. If 1-1 >> T (t) and if c is constant, then 

T(x, t) - T( -x, t) = E(X, t) - E( -x, t) 

2x(1 - Tsp) 4 (1 - e-21-1t/c) 
- - 

I-1 

and the coefficients a2i can be evaluated. 
the form given by equation (16a). 

For  this situation, T(x, t) can be written in 
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APPENDIX D 

RANGE OF VALIDITY FOR LINEARIZED SOLUTION 

The purpose of this appendix is to derive conditions under which the linearization of 
equation (2) gives a good approximation. Therefore, res t r ic t  6 = (T - To)/To such 
that 16 I < d, where d is chosen to provide any desired degree of approximation to the 
exact solution for  To > 0. (The exceptional case To = 0 is also examined.) 

If t is small, equation (4) yields 

2 where the O(t ) t e rms  a r e  negative. Thus 

61 < ( 1 + 2 + 1 ) L = - -  4 t  I -  
Toe To c 

Set (4/To)(t/c) = d and 7 = cdTo/4. Then t < 7 = cdTo/4 implies 16 I < d. 

always be valid. 
If the initial temperature is near 1, then for certain values of p, equation (4) will 

That is, if  To = 1, then equation (4) leads to 

M 

+ .  . . 5 3 -- - l +  
y + 2 8(3p + 2) 32(5y + 1) 

5 < 3 + -  29 1 
2 
3 

( : ) 3 p : 2 - 2 4  P + -  

<- 3 +  
3 y  -I- 6 8(3p + 2) - 

- 

Set (29/24)/[p + (2/3)] = d; then y > (29/24d) - (2/3) implies [ 6 I < d. 
For the special case To = 0, a different approach must be taken to approximate the 
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4 solution to equation (2). Rather than letting T = To(l + 6), the t e rm T is assumed to 
be negligible. In this case, equations (2) and (3) are identical and the method of appen- 
dix C gives the solution 

T(x,t) = $ + "  P (1 - Tip) (1 - e 

j = l  

This solution is the same as that obtained by taking the limit of equation (4) as To ap- 
proaches zero. To determine when T4 can be neglected, all the t e rms  in equation (2) 
can be evaluated from equation (Dl). For small  values of t, they may be written as 

4 
-T4(x, t) = -(;? [1 + ~ X V ( X )  (1 - Tip)] 

c - -  aT T i P  = (1 - T:,) [l + ~ X V ( X )  (1 - T&)] 
a t  

f 00 

j + l  ax ax 
j=O 

Therefore, in order that T4 be negligible in equation (2) it must be negligible compared 
to the larger of the other terms.  Thus, since the te rm given by equation (D3) is greater 
than the te rms  given by equation (D4), the condition that T4 is negligible becomes 

4 
t - Tsp -<< ~ _ _ _ _ _ _ _  
C 

1 + 4x?7(x) (1 - Tip) 

Then the approximation T4 = 0 is consistent and can be considered valid. 

I 
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APPENDIX E 

SOLUTION TO EQUATION FOR AVERAGE TEMPERATURE 

WITH DEBYE SPECIFIC HEAT 

To evaluate equation (9) first evaluate 

2 Consider ezz4/(ez - 1) 
poles at z = 3~27mi (n = 1, 2, 3, . . .) and a removable singularity at z = 0. Therefore, 
the power ser ies  of the function about z = 0 has a radius of convergence of 28. The 
convergence is uniform in any smaller circle s o  that equation (El)  can be integrated 
termwise; the resulting ser ies  converges for 1 z 1 < 27r. Thus a purely formal pro- 
cedure may be followed, and the resulting ser ies  will converge for I z I < 27r. Thus 

as a function of the complex variable z. The function has 

4 
- = 1 z4 csch2(f) Z 

2 4  
e z  - - 

2 4  

Integrating along any path in I z I < 271 results in 
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= -1 c4 coth g + 2 Jc z3 coth(;)dz 
2 2 0 

(-l)n - 2n+3 + 2 J' (-l)n+14 - 2n+2dz 
= 2 -Bn< (2n) ! (2n)? BnZ 

n=O n=O 0 =z (-l)n 2n - 1- 2n+3 
(2n)! 2n + 3 *n< 

n=O 

- 
where Bn are the modified Bernoulli numbers defined in the text. 
sion coth u can be found in ref. 6.) 

0 to O/T < 27r. Then 

(The series expan- 

Since the integration is independent of path for I z I < 27r, let the path be z = x from 

The differential equation (eq. (9)), therefore, becomes 

The solution to equation (E5) is given as equation (10) in the text. 
To obtain the solution for smaller  values of T, equation (E2) can be expanded in a 
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ser ies  about a large value of z on the positive rea l  axis rather than the origin. Then 
the radius of convergence will be larger and include larger values of O/T. The rest of 
the aforementioned method could then be applied. 
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APPENDIX F 

EQUATION WHEN T: = 0 

The case TZ = 0 occurs only in the absence of a radiating source and then only 
when T* = 0. Since the initial temperature is uniform and there  is no radiating source, 
there is no conduction and equation (1) becomes 

SP 

The solutions for the various assumptions concerning specific heat a r e  found easily 
without nondimensionalizing. They are as follows: 

For constant specific heat: 

For Debye specific heat (general case) : 

where 

Co is determined by boundary conditions, O* is the Debye characteristic temperature, 
and Bn are the nonzero Bernoulli numbers Bn altered by setting ko = -1. The solu- 
tion is valid for T* > 0*/27r. 

For Debye specific heat with the T3 law: 
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