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1. INTRODUCTION

Considerable interest exists within the Government in research programs

aimed at developing safe, reliable and efficient hypersonic air-breathing

engines. A previous feasibility and preliminary design study (reference 1)

showed it was feasible to flight test experimental ramjet engines on the X-15

airplane. To aid in such an experimental ramjet test program, a list of desired

fii_ht test measurements was identified by the NASA Flight Research Center,

(re£erence 2). In September, 1964, the General Electric Company was awarded a

four month contract, NAS4-715, to evaluate these measurements and to specifically:

a. provide a conceptual design of a thrust/drag measuring device;

_. define and provide conceptual designs of other advanced instrumentation

requiring development;

c. identify commercially available components; and

d. formulate an overall plan to provide the flight instrumentation for

ramjet tests.

The results of this program are reported in three volumes: Volume l,
"Summary, Costs, and Schedules", Volume 2, "Preliminary Design of In-Flight

Thrust/Drac Measuring Device", and Volume 3, "Conceptual Design of Measurement

Systems".

This report includes a technical discussion of instrumentation systems

and techniques, applicable for fuel, static pressure, structure and exhaust gas

measurements with conclusions and recommendations.

2. SUMMARY

A four month program NAS4-715 to study the instrumentation requirements for

an experimental hypersonic ramjet to be flight tested on the X-15 A-2 airplane

has been completed.

In conducting the study, major guidelines were provided by the NASA Flight

Research Center and included the following:

a° A desired measurements list identifying engine variables, number

of measurements of each, possible engine location of sensor and

desired accuracy. (Table 1)

b. A weight limitation of fifty pounds for engine mounted instrumentation.

c. Minimum and maximum altitude trajectories of the proposed X-15A-2

flights and corresponding environmental conditions.

d. Current on-board recording capability of the X-15 airplane.
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3, TECHNICAL DISCUSSION OF INSTRUMENTATION

SYSTEMS AND TECHNIQUES

3.1.0 Fuel Measurements

3.1.1 LH 2 Fuel Flow

3.1.1.1 Requirements

It is expected that the mass flow measurement of liquid hydrogen will

play an important part in the determination of ramjet performance

during flight test. For this reason_ considerable effort was directed

toward identifying meter requirements and calibration procedures. In

order to satisfy accuracy and dependability requirements for the flow

measurement_ the flowmeter selected should meet the following

specifications.

a. Adaptable to the existing i_ inch_ vacuum-jacketed line.

b. Vacuum-jacketed to prevent heat leakage.

c. Volume not to exceed 5 inches in diameter and 16 inches in length,

including vacuum jacket.

d. Overall range of 0-5#/sec. with repeatability of ±.05#/sac.

e. Dynamic frequency response of 0-I0 cps.

f. 0-5V DC eutput _r _ignal compatible with TM.

g. Capable of installaticn upstream of shutoff and refill valves

in X-15o

h. Capable ef passing l-phase_ 2-phase_ or slug flow either direction

without damage.

i. Minimum operational life of six hours over a 2-year period.

j Require low pressure dr_p.

k Capable of retaining calibre±on for a 6-month period.

1 Withstand ±60 mils amplitude vibration 10-55 cps.

m Withstand ±i0 "G _ acceleration 55-2000 cps.

n Suitable for flight test application°

o Operate from either 2-phase II5V (il.iV) 400 cycles !4 cycles

or 28V DC unregul_ted.

p. Operate with up to 450 psig pressure.

q. Capable of being removed and replaced or repaired and calibrated

and reinstalled within a 2-week period.

r. Lightweight.

4
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3.1.1.2 Meter Selection

There are two problems associated with liquid hydrogen flow

metering which make it difficult to provide accurate measurements:

a. Compressibility

b. Two phase flow.

Liquid hydrogen is a highly compressible liquid whose density

varies considerably with both temperature and pressure. Average

measurements of :liquidthydrogen densiZy a_fos_:the: fuel pipe are

extremely diffi£ult because of the existing profiles ....

Since the LH 2 in the X-15 will be pressurized at 330 psig and

vacuum-jacketed throughout, very little if any 2-phase flow will be

present during flight. However, during the refueling, purging, or

cool-down operation, some 2-phase flow can and probably will exist.

This flow can be non-homogeneous and can be present as slug flow,

annular flow, or in an indiscrimate flow mixture of liquid and vapor.

These conditions could cause high velocity gas flow in both directions

and high, short duration, pressure surges. The flowmeter selected

must be ruggedly built and not susceptible to overspeed or damage due

to high velocity gas flow in either direction. It must produce

reliable output readings even though some 2-phase flow does exist.

It is suspected that 2-phase flow can be caused by certain levels

of vibration although this seems highly improbable with the high

operating pressure.

A fairly extensive review of flow meters is included in references

3 and 4. Reference S provides information dealing specifically with

cryogenic instrumentation.

Three principal types of meters were selected for consideration

in the program.

Volumetric Flowmeters (differential - pressure meter)

Orifices and venturies have been investigated for use as cryogenic

flow meters (references 6 and 7). In considering the requirements

as identified in section 3:.1.1.1. there are several disadvantages

which cannot be overcome.

b°

Flow rate is pro@ortiona-1 to the square root of pr,essure:drop.

Consequently a _l_,;rang¢ of ten _o_!d re sg_ iDa 90rrCspoD_ing

pressure drop variation o,f: one hundred;

Orifices arC relatively inefficient in that they dissipate relaLively

large amounts of energy.



Volumetric Flowmeters (differential-pressure meter) cont'd

c. Flow must be single phase° Liquid to gas conversion can occur if velocity

is high enough through the meter.

do Mass flow measurement requires complex measurement of hydrogen pressure and

temperature for density compensation.

Volumetric Flowmeters (Turbine Type)

Turbine type flowmeters Were considered during the study; however, they

are susceptible to damage due to high velocity gas flow, and both temperature

and pressure must be sensed very accurately in order to calculate mass flow

rate. Magnetic braking devices and bypass valve systems have been used in

certain applications to prevent rotor overspeed, but the general concensus of

opinion of the participants of the 1963 Cryogenics Engineering Conference

Seminar on Flow Measurements (see Reference 8) was that magnetic brakes and

other overspeed protective means were inadequate. Greater complexity with

reduced reliability as well as potential errors have caused people to avoid

the6e methods whenever possible. Figures 1 and 2 are plots of probable errors

in the conversion of volumetric flow to mass flow due to temperature and

pressure errors. Inaccuracies of this magnitude are not tolerable on this

program.

Mass Flow Meters

The state of the art in mass flowmeters has advanced to the point where

they are practical and should be used on this program. (See table 2) Mass

flow of liquid hydrogen can be measured directly to a high degree of accuracy

without the necessity of recording temperature and pressure. They are of a

size and weight which is not prohibitive even with the required vacuum jacket

and can be made to have a 0-5V DC output voltage which is compatible with the

data acquisition equipment that is going to be used. Dynamic flow calibrations

have not been made on these instruments at this time, and therefore frequency

response can only be estimated.

Four manufacturers build liquid hydrogen mass flowmeters that could

possibily be used in this system. The General Electric Company, Potter

Aeronautical Corporation, Waugh-Foxboro, and Bendix-Pioneer all have LH 2 mass

flowmeters in various stages of development. The liquid hydrogen range of

one to five pounds per second is apparently within the current state of the art

and possibly one-half to five pounds per second, with a repeatability of

better than the ±1% requirement, even with some 2-phase flow. The 330 psig

operating pressure is not a problem nor is the requirement to permit filling

through the same line (reverse flow through meter).
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TABLE 2

LIQUID HYDROGEN FLOWMETER SUMMARY

DESIGN CRITERIA BENDIX

i. Adaptable to 1-1/2 inch vacuum jacketed yes
line

2. Designed within a volume less than yes

5" dia. & 16" long including

vacuum jacket.

3 Range of 0-5 @/sec. LH 2 yes

4. Repeatability of ±.05 #/sec. yes

5. Dynamic frequency response of 0-i0 cps yes

6. Passing 1-phase, 2-phase, or slug yes

flow either direction without

damage.

7 Min. operational life of 2 hrs. yes

over 2 year span.

8. Compatible input power requirements yes

9. Compatible output signal yes

I0. Low pressure drop yes

ii. Able to hold calibration for 6 months yes

12. Withstand ±60 mils amp vib. 10-55 cps ?

±i0 "G" accel. 55-2000 cps.

13. Constructed as aircraft hardware ?

14. Operate with up to 450 psig pressure yes

15. Vac. jacketing yes

Go mo

yes

yes

1-5

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

POTTER

yes

yes

1-5

yes

no

no

yes

yes

yes

yes

yes

?

?

yes

yes

WAUGH

yes

yes

1-5

yes

no

no

yes

yes

yes

yes

yes

?

?

yes

yes
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Conversion Error for Volumeto Mass

Flow Calculations per Degree Fluid
Temperature Uncertainty (Para - hydrogen)
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Conversion Error for Volumeto Mass

Flow Calculations per i0 psi Fluid

Pressure Undertainty (Para - hydrogen)

Figure 2
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Mass Flow Meters - cont'd

However, they indicate that more work with vibration and 2-phase flow

is necessary before most of them will commit themselves as to how

their instruments will perform under these conditions. Little has

been done to vac%um-jacket these units, but it is possible to do

this and still beef a size and weight compatible with the X-15.

Figures 3,4,_a and_5b are basic outline sketches of these

meters.

Figure 3 is the GE angular-momentum true mass flowmeter with

bypass. This unit was originally designed for reading hydrocarbon

mass:fuel flow in jet aircraft and has been flown with considerable

success on the B-47, B-52, KC-135, and many other aircraft. It

works on the angular-momentum principle and responds directly to

true mass rate of flow. No auxiliary equipment is required to measure

and compensate for temperature and pressure. No amount of 2-phase

flow will damage this meter in any way even though the design flow

rate is greatly exceeded.

10

For the ranges desired, a bypass element is used with this

flowmeter. It is a conventional orifice plate in the main pipeline

which diverts a fixed fraction of the total flow from the sensor.

Major design emphasis is placed on maximum reliability to eliminate

hazards to the installation, in addition to ensuring long maintenance

free life. Factors contributing to the utility of design include

small physical dimensions, materials' compatibility, and low

pressure drop.

The flow sensor is the primary detector of this liquid hydrogen

measurement system. Its function is to develop a voltage signal

proportional to total mass rate of flow. A predetermined but fixed

fraction of total flow passes through the sensor.

The flow sensor comprises five basic elements: an impeller,

a turbine, a turbine-restraining element, an electromechanical

transducer element, and an impeller drive mechanism. (see Fig. 6)

The primary hydraulic flow-sensing elements are the impeller and

turbine. They are similar rotors placed coaxially end to end with

small axial Spacing, the impeller being disposed upstream of the

turbine. Each rotor consists of a pair of concentric cylinders with

radial vanes and/or thin-walled tubes dividing the annular space

between them into a number of parallel flow passages. These rotors

are enclosed in a common cylindrical housing. Radial c1_arances

are small enough to prevent appreciable fluid flow around them.

The impeller and turbine are rotatably supported through ball bearings

on a common shaft. High quality ball bearings are selected on the basis

of service-proven operating characteristics under cryogenic environ-

mental conditions.
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Mass Flow Meters - cont'd

The basic simplicity of design is a major factor contributing to precise

concentricity and axial alignment of the critical flow sensing elements.

In addition, this approach effectively minimizes the influences of bearing

friction, viscosity, and upstream disturbances of the fluid flow pattern.

Experience has shown that such design considerations are highly significant

in ensuring maximum accuracy, reliability, and long maintenance_free life.

(Reference 9)

The turbine restraining element is a spiral spring of essentially conventional

mechanical design. Materials are selected for compatibility with cryogenic

environments in addition to the stringent operational requirements always

imposed on such elements. A substantial reduction in criticalness is

realized through use of a telemetering transducer that requires only moderate

angular deflection in conjunction with a high turbine torque. These factors

permit a relatively stiff spring, resulting in maximum resistance to the

mechanical abuse associated with high levels of vibration and shock,

The electromechanical transducer is a brushless position -to-voltage type

pickoff. Features of this element include extreme simplicity in both

electrical and mechanical design, elimination not only of sliding electrical

contacts (brushes and sliprings), but also removal of all electrical connections

and conductors to regions entirely outside the fluid flow passages, incorpora-

tion of the rotating member as an integral part of the turbine structure,

and ease of adjustment, maintenance, and serviceability. Such characteristics

greatly enhance flexibility, accuracy, and reliability.

The impeller is driven by a permanent magnet-type synchronous motor energized

by 2-phase, low-frequency AC electrical power° The entire impeller-drive

mechanism comprises only the 4-pole motor stator and the rotor. The stator

assembly is mounted outside the sensor housing, similar to that of the

telemetering element. The rotor is simply a hollow cylindrical permanent

magnet, diametrically magnetized and mounted as an integral part of the

impeller.

Extreme simplicity is the outstanding characteristic of this design. All

electric connections and wiring are isolated from the fluid without recourse

to auxiliary means for motion transmission such as flexible diaphragms,

rotating seals, or magnetic couplings. The basic arrangement of electrical

components eliminates the need for fluid seals except for those otherwise

associated with assembly or pipe conn_tion procedures. There is no gearing

either external to, or immersed.in, the fluid and there are only four bearings,

two for each rotor, of a design service-proven in cryogenic environments.

The unique impeller drive-motor design has been in production in the

General Electric mass flowmeter transmitter° Although designed for conventional

hydrocarbon fuels, this transmitter has recently been subjected to flow tests

with liquid nitrogen and liquid hydrogen. (Reference 9)
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Mass Flow Meters - cont'd

Relative to accuracy, the performance was precisely that to be expected under

comparable hydraulic flow conditions with ordinary fuels. A shift due to

thermoelastic spring properties was observed, as expected, but the cryogenic

environment has no observable influence on hydraulic characteristics. The

shift observed is a systematic error that is eliminated in the LH 2 calibration

factor. During more than 40 hours accumulated operating time, the unit

functioned without failure of any kind and no deterioration was observed

upon completion of tests.

The impeller motor is energized by a precision frequency controlled

power source to maintain constant speed. Each unit mass of fluid in

transit emerges from the impeller flow passage and enters the turbine

flow passage with constant angular momentum. In passing through the turbine

this fluid momentum is reduced to zero. In consequence of Newton's Law, the

fluid exerts on the turbine a mechanical torque proportional to mass flow rate

independently of physical properties of the fluid such as viscosity, density,

and environmental conditions.

The turbine is restrained by the spring to deflect through an angle

proportional to fluid momentum torque. The pickoff develops a voltage

proportional to deflection, and therefore proportional to mass flow rate as

required. This unit is designed to maintain turbulent flow conditions in the

sensor and bypass over the operating range, thus does not require a straighten-

ing section of line in front of it. The General Electric mass flowmeter will

meet all of the requirements for steady state conditions which last for

periods of,5 to 1 sec. duration but fails to meet the frequency response

required. This unit could be used if the required frequency response was of

the order of from one to two cps rather than i0 cps. Units of this type have

been in production and have much background from the viewpoint of application

and testing. Little if any improvement in frequency response characteristics

of this meter are possible.

Figure 4 is a 2-inch Pottermeter, Series 3000, which has been designed

for liquid hydrogen with a range of 99 to 505 GPM (1-5 lbs./sec.). This

meter incorporates a rotor having two sets of turbine blades with different

blade angles coupled by a spring and capable of relative angular motion

with respect to each other. As a result of the blade angle difference, the

two sets of blades tend to rotate at different speeds but cannot because

of the spring coupling. Thus, they take an angular displacement with respect

to each other, the magnitude of which is proportional to the flow momentum.

However, the rotor assembly considered as a unit functions as a volumetric

turbine meter, rotating at a speed proportional to the average fluid

velocity.
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Mass Flow Meters - cont'd

Thus, by measuring the elapsed time taken for the phase-angle displacement
to traverse a reference point as sensed by the two magnetic pickoffs, a direct

measure of mass flow rate is effected. Both of the signals would have to be

telemetered, received, and discriminated before any intelligence could be

obtained from them or an airborne converter could easily be developed with

a 0-5V DC output.

This meter would be approximately 15 inches long and 5 inches in diameter,
with an offset for the two sensors of about 3 to 4 inches. The above dimensions

include a vacuum jacket. The weight would be in the neighborhood of 25 pounds.

The manufacturer does not claim operation of this unit at flow rates lower
than 99 G.P.M.

This unit has been tested at Wyle Laboratories in Norco, California, with

good results (Reference 10) when up to 11% of gaseous helium was introduced to

simulate two-phase flow. Pressure drop is 1.2 p.s.i.d. Meter design requires

a 2" diameter section to meet flow requirements and in addition, a 30" straight

section of pipe is required ahead of the meter in order to maintain accuracy.
In the current X-15 installation, this would require removal of the left wing.

Figure 5a is a basic outline of a 2 inch Waugh-Foxboro constant torque

mass flowmeter, Model FM 32-400. This meter utilizes a single turbine which

is driven with a constant torque. The turbine then turns at a speed proportional

to mass rate of flow of the fluid passing through it. This signal is sensed by

a conventional magnetic pickup coil and can be converted with equipment already

developed for airborne use such as Foxboro Converter, Model FR-320, with O-5V DC

output. This flowmeter was designed originally for fuel truck use rather than

aircraft. It is a rugged instrument that is not susceptible to overspeed.

Figure 5b is a Bendix mass flowmeter which operates on a null balance

capacitance principle. Bendix feels that they can make this unit to be the

size indicated, which includes a vacuum jacket. The only unit made so far was

for NASA-Huntsville on Contract NAS 8-5218, as a prototype for ground use only.

This was a 3-inch meter, 8 inches in diameter, and 11 inches long. It is claimed

to have excellent response time, high accuracy and not to be affected by any

amount of 2-phase flow. It uses a wire screen sensing element supported by a

system of levers and diaphragms which eliminate all sliding or rotating friction.

A null-detecting element is used which permits null error correction to be

initiated within microseconds after the element departs from its null position.

Thus, this flowmeter has a basic design which solves the frequency response-

limiting characteristics of the rotating element type flowmeters.

The system measures flow rate by making two separate measurements on the

fluid passing through a pipe (a) density of the fluid, and (b) integrated

force the fluid exerts upon a screen placed in the flow stream.
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Mass Flow Meters - cont'd

These separate analogs are multiplied together to obtain an analog of mass

flow rate. This analog is later integrated with time to obtain a total flow

indication. The attractive features of these system elements are that they:

a. Are unaffected by 2-phase flow.

b. Require only microseconds to detect small errors.

c. Are not subject to overspeed or damage.

This unit also incorporates a counter-balance so that the transducer is to

a large degree insensitive to the intensity, frequency, or orientation of body

acceleration forces. As originally designed, the prototype meter was intended

for ground use, with further study and design needed to meet the requirements

for flight. Design goals are .1% full scale accuracy, bette_ than i00 cps

frequency response and reduced size for airborne use.

No airborne signal conversion equipment has been developed but could be

with a compatible 0-5V DC output.

The Bendix-Pioneer central mass flowmeter appears to be the only meter

capable of meeting all requirements for liquid hydrogen flow as identified in

Section 3.1.1.

3.1.1.3 Installation

The liquid hydrogen flow sensor can be mounted in the fuselage on the left

side of the X-15 between the leading and trailing edge of the left wing. Signal

conditioning or power supply can be mounted in the instrumentation bay.

3.1.1.4 Calibration

W. J. Alspach and T. M. Flynn of the National Bureau of Standards (ref. 8)

indicate that predictable water/cryogen correlation of calibration is highly

improbable. Therefore it is recommended that the calibration of the LH 2 sensor

be made using LH 2 and a mockup of the fuel plumbing system in which it will be

used. A 15 point calibration should be made 'every six months.

Wyle Laboratories have an excellent liquid hydrogen facility for meter

calibration with accuracies on the order of .1%. They have been performing

steady state flow calibrations and tests for some time at 80 psig. The

pressure used in the X-15 LH 2 system will be 330 psig. It is unknown at this

time whether it will be necessary to calibrate this unit at its operating

pressure. A description of the Wyle facilities is included in Appendix 1.
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3.1.2 Pyrophoric Fuel Flow

3.1.2.1 Meter Selection

A true mass flow meter could also be made for a pyrophoric fuel such as

pentaborane with the range and accuracies necessary and eliminate the need for

recording temperature and pressure of this fuel. To determine the mass rate of

flow, true mass flow rate would be sensed by this unit and recorded on one data

channel; however, a volumetric meter would certainly satisfy the accuracy

requirements and be _uch less expensive. Cox, Potter, Waugh, and many others

make volumetric flowmeters which could be used with pentaborane.

3.1.2.2 Calibration

Calibration of this unit with the pyrophoric fuel selected will be possible

with ±2% of point accuracy on the flow stand presently under construction at

Edwards Air Force Rocket site.

Some development work to obtain compatible materials and some testing to

determine what bearings should be used will probably be necessary. Many

precautions will have to be taken for ground handling of pyrophoric fuels

because it is a highly toxic and volatile liquid.

3.1.3 Hydrogen Pressure Measurement

Measurement of liquid hydrogen pressure is a requirement for hypersonic

ramjet testing, primarily to determine hydrogen thermodynamic conditions and

fuel system performance. The anticipated requirements are:

a. Range 300 - 500 psia

b. Accuracy ±5 psia

c. Frequency 0-3 cps

These objectives are feasible if certain constraints are placed on the instru-

mentation particularly with respect to location of the transducer.

The measurement may be accomplished by locating the transducer in one of

three ways:

a. Immersing it in the hydrogen transfer line in the X-15 or ramjet.

(Figure 7)

b. Boss-mounting on the ramjet line. (Figure 8)

c. Remote mounting in the ramjet thermally-lagged instrumentation

package.
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3.1.3.1 Sensor Immersion

Liquid hydrogen will provide an exceptionally stable environment for an

immersed transducer (Ref. 12). The only requirement is to supply a transducer

that has a known calibration at this temperature. Electro-mechanical compensa-

tion:is available that would provide nearly the same zero and sensitivity

levels at both room temperature and LH 2 temperatures. A relatively large error

of repeatability on multiple thermal shocks between room temperature and LH 2

has been observed. The Bureau of Standards (ref. 13) reports errors in the

order of I% from this cause. Apparently there is appreciable mechanical or

electrical unstability within the normal transducer. An expected error

analysis for this type environment, assuming laboratory calibration of LH 2

temperature and computer correction of the calibration fol_ows:

Source Error

(%F. s. )

Lab calibration errors ±0.i

Aircraft installation unknown ±0.9

Thermal Shift-10°R ±0.i

Hysteresis ±0.25

Vibration - i0 G ±0.27

Non-repeatability(multiple thermal ±i.0

shock)

PCM Drift ±i.0

Non-linearity ±0.5

Single thermal shock Nil

While this transducer location poses an installation problem, it is the recom-

mended way to obtain hydrogen thermodynamic state.

Another requirement on the ramjet is the measurement of the pressure after

the fuel control to evaluate control and surge problems, and thermodynamic

state of hydrogen. To simplify installation and weight in the ramjet, either

a boss-mounted transducer or a remote mounted unit is possible.

3.1.3.2 RemdZe Mounting

While the remote mounted transducer is more accurate, it imposes surge

oscillation, safety, and weight problems which are not acceptable. Additional

lines in the liquid hydrogen flow system should be looked at with care before

installation for possible leakage at couplings and for fatigue failure. If

negative and positive"G" occur, surges will appear because of LH 2 vaporization

as the liquid-gas interface is displaced.

3.1.3.3 Boss Mounter

The practical solution to transient pressure measurements in the liquid

hydrogen line is utilization of the transducer mounted on a boss. This will

provide good data as long as sufficient cooling time exists before the ramjet

operation to insure thermal stability. Thermal transients can cause large

errors.
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3.1.3,3. Boss Mounter - cont'd

A thermal step from roomtemperature to LN 2 with the state of the art transducers

resulted in errors as high as 12% of full scale at a test conducted by the

National Bureau of Standards. (ref. 13) Foam insulation sprayed on the trans-

ducer after installation would decrease this problem. Some data available

from the National Bureau of Standards (ref. 13) indicates transducer response

times in the order of two seconds, but the test conditions were different enough

to question its application to the ramjet. Temperature monitoring of the trans-

ducer would reduce the uncertainty by establishing that steady state temperature

conditions are present. When this is established, errors of less than 4% of

full scale can be surmised from the manufacturer's bulletin without corrections

from temperature information.

Transducers when purchased should specify calibration at room and LH 2

temperatures with at least three temperature cycles to establish stability.

Calibration curves should be supplied at room temperature and LH 2 temperatures.

Some vendors have utilized GHe to temperature compensate and extrapolated the

calibration curves to 36°R.

Calibration of cryogenic transducers should be periodically made at room

temperature in the calibration laboratory. Any deviation from its previous

value above 1% F.S. should require recalibration at cryogenic temperatures.

3.1.4 Hydrogen Temperature Measurements

3.1.4.1 Requirements (36°R - 60°R)

Measurement of liquid hydrogen temperature in the environment of the X-15

and the ramjet greatly restricts the choice of thermometers. For measurements

in the liquid state, the requirements include:

Measurement range:

Accuracy:

Frequency Response:

Maximum velocity of hydrogen:

Diameter of cryogenic line:

Weight:

36°R to 60°R

+1 °R

0-3 cps

90-100 ft./sec.

1-1/2"

At a minimum

3.1.4.2 Types of Sensors

Some types of thermometers considered to accomplish these requirements

are:

a. Gas thermometers

b. Vapor-pressure thermometers

c. Magnetic thermometers

d. Thermoelectric thermometers

e. Quartz crystal thermometers

f. Resistance thermometers.
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Types of sensors - cont'd

a. Gas Thermometers

This approach uses knowledge of the gas state to measure: temperature.

A known volume of gas at cold temperature is contained in a closed

system. The pressure is measured and temperature is calculated,

knowing the particular gas characteristics along with pressure and

volume. It is suitable for long time static measurements and achieves

an accuracy of ±0.09K. It is quite useful as a secondary standard

over a range of 75°R - 162°R. using helium gas.

b. Vapor Pressure Thermometers

Vapor pressure thermometers consist of a bulb partly filled with

a liquid or solid, with vapor in equilibrium with the condensed phase

connected to a pressure measuring instrument. This is an excellent

secondary standard using the physical properties of the material to

establish boiling point temperature. It is suitable for calibrating

thermocouples and platinum resistance thermometers over limited ranges

of temperature. For instance the liquid He vapor pressure thermometer

is used between 3°R - 7.5°R.

c. Magnetic Thermometers

This approach is utilized primarily for temperatures below 1.8°R,

which is near the lower limit for a vapor pressure thermometer using the

gas. These low temperatures are determined by measuring the magnetic

susceptibility of a para-magnetic salt. This requires a very elaborate

system and is used for work to determine temperatures close to

absolute zero.

d. Thermoelectric Thermometers

Of the many ways to measure cryogenic temperatures, thermocouples

are the simplest, disturb the stream the least, and have the fastest

response. Unfortunately thermocouples do have shortcomings that limit

their use for making cryogenic temperatures and the greatest one is

the low microvolt per degree output. Several thermocouples have been

calibrated from 5°R up to the values reported in NBS circular 561.

Typical output range from 3-15 microvolts per degree R in the

36°R-60°R range. This low output per degree makes it imperative

that the wire be homogeneous over its entire length and prohibits

the use of plugs, connections, or any substitution of one wire for

another.
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Thermoelectric Thermometers - cont'd

Small changes in temperature of the reference junction also affects the

accuracy. For instance, for a 492°R reference the microvolts per degree of

chromel/alumel is approximately 22 microvolts/l°R. At 36°R, the value is

2.2 microvolts/l°R. For every .l°R error of the reference junction

a l°R error would be observed in the final temperature determination.

Thermopiles (several thermocouples in series) can be used to

a good advantage to measure differential temperatures. However, it is

important to know the reference temperature very accurately and the

non-linearity of the thermocouples add problems to this method of

measurement.

e. Quartz Crystal Thermometers

A quartz crystal applied in a resonant circuit can result in a

rather linear light weight temperature sensitive probe in the cryogenic

region. The signal conditioning can be provided in an output format

that would be suitable to the X-15 data system, requiring a single

tape track to record the temperature sensitive frequency signal along

with the use of an accurately timed clock track to process the data.

In the present designs the crystal is enclosed in a gas filled

envelope and the crystal must be brought to the cryogenic temperature.

This results in a long time constant instrument. Its typical charac-

teristics are:

Type:

Temperature range:

Resolution:

Linearity:

Repeatability:

Response time:

Quartz crystal temperature sensor

36°R to 765°R

36°R to 90°R _+.018°R

90°R to 765°R+_.0063°R

+0.2°K nonlinearity 135°R to 162°R

.036°R

3-5 seconds

Probe power consumption: Less than 20 MW

Output power: 1/2 watt minimum

Output impedance: 50 ohms

Weight: sensor 4 ounces

Signal condi-

tioner 16 ounces - Instrumentation compartment
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f. Resistance Thermometer

The property of variable resistivity in materials with temperature

can result in some rather rugged, sensitive and accurate thermometers.

The suitability of a particular material to provide a satisfactory

measurement in flight depends upon many factors:

a. Resistivity that is reasonably linear with temperature.

b. Resistivity stability.

c. High sensitivity.

d. Insensitivity to environment

e. Mechanical suitability°

No one material exhibits all these characteristics over the entire

temperature range. Materials that can be used as resistance thermometers

can be divided into pure metals, alloys, and compounds that are semi-

conductors. Pure metals and alloys usually exhibit a positive

temperature coefficient of resistance and become less sensitive at

lower temperatures. Pb, In, Pt, Cu, Au-Ag have and are being used

by different experimentors. Lead and iIndium have been used

to 13°R and 6°R (ref.15) but must have special handling. Platinum

has exhibited the best properties above 18°R and is used in the

standards, calorimetry and missile fields. The semi-conductors usually

have a negative temperature coefficient and have excellent sensitivity

over very short temperature ranges. Carbon resistors and thermistors

are available that have temperature coefficients of 1000 MV/I°R in

specified ranges. Temperature range of this family of detectors is

from 7°R - 200°R. (ref.16) Problems have been experienced such as

reproducibility with thermal cycling and atmospheric exposure. A

recent dev_opment in this field has been the doped germanium crystal.

It has been used successfully from 2°R - 200°R. (ref.17)

3.1:4.3 Sensor Selection

In evaluating the different sensors for the application of

measuring hydrogen temperatures in the range of 36°R-60°R, the following

factors were considered:

a. Simplicity.

b. Response time.

c. Compatibility with the PCM recording system.

d. Accuracy.

Gas, vapor pressure, and magnetic thermometers involve complicated

systems that are more applicable to special laboratory problems

such as standard laboratories than to missile applications. The slow

time response eliminated the quartz crystal for this application.
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Sensor Selection - cont'd

For the final analysis, three systems were considered. One, a stable and

reproducible commercially available semiconductor, a doped germanium crystal.

Two, a platinum_resistor thermometer with a I000 ohms resistance at 492°R.

Three, a thermocouple system using either the most sensitive gold-cobalt

thermocouple or the more conventional chromel-alumel thermocouple.

All systems were normalized for use on the X-15 Pulse Code Modulation system.

The output of all systems were limited to ±15 milllvolts in the 36°R-S0°R range.

This was done by reducing the current flowing %hrough the detectors so that the

maximum signal did not exceed ±15 millivolts.

The three systems are plotted on figure 9. It is obvious if a least count

of 60 microvolts for thePCM is used as one of the criteria that none of the

thermocouple systems are sensitive enough to meet the I°R accuracy.

The platinum resistance thermometer has more sensitivity above 45°R and

less sensitivity below 45°R than the germanium resistor. For the 30°R-60°R

range, the lowest sensitivity for the Pt resistance thermometer is 250 M_/I°R
and i00 M_/I°R for the germanium resistor.

The most probable working range for the pumping system would fix the criti-

cal temperature measurements to be in the 40°R-59°R range. The platinum

resistance thermometer is equal, or superior to, the germanium crystal in this

range. The platinum resistance thermometer is recommended for this application.

3.1.4.4 Error Analysis

The error analysis for a selected commercial platinum resistance thermo-

meter is summarized below for a 36°R measurement. A temperature of 36°R will

result in the largest error.

Dynamic Random Systematic

Error Source Error °R Error °R Error

Sensor Calibration

Interpolation

Repeatability

-Frequency - 3 cps

System Calibration

Interchangability

Recovery

Stem Conduction

Power Supply

Signal Conditioning

+0.17

±0.05

±0. i0

±0.18

0.016

1.50

± .005

± .02

± .01
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Error Analysis - cont'd

The root mean square value of the random and dynamic error is ±0.31°R.

This is well within the requirements of the system of ±I°R. It should

be pointed out that there is no way to insure that the probe will

measure the average temperature of the hydrogen in the pipe. If the

temperature profile in the pipe is large_ the error could be greater
than I°R.

Calibration and Interpolation Error

Calibration of the probe should be conducted at 491°R_ 139°R,

and 7.29°R accurate to 0.04°R. The low temperature points are in addition

to the normal specifications. Vendors will supply computer printout

on interpolated data in groups of 20 points which are accurate to ±0.1°R,

which can be charged as random error. In view of the range required,

the 20 resistance temperature points should be from 35°R in 2 ° increments

to 73°R. This information will permit a resistance box to substitute

in the calibration of the aircraft PCM system.

Recovery Error

Frictional heating effect in a moving liquid can result in a

temperature rise on a probe. The theory has been investigated in detail

for only a few specialized cases. Flow parallel to a flat plate in

laminar conditions is well described. Using the conditions of LH 2

at 90.6 ft./sec._ an estimate heat rise of .01°R can be calculated.

While this cannot be applied directly to the configuration of a round

probe with a high Reynolds number, a rough idea of the magnitude is

obtained. The use of a velocity guard to decrease this type of

error will result in a degraded frequency response.

Stem Conduction Error

In this application the magnitude of stem conduction error for

a probe in LH2 at 36°R primarily depends on the heat transfer resistance

between the external stem and the surrounding atmospheric medium.

The error has been estimated for the Rosemount #I50MA6 probe in air

at 5 ft./sec, and ambient pressure. It is a systematic error in the

order of +.03°R. The solution requires insulated coating to eliminate

cryogeniO pumping. A light coat of rigid foam will be sufficient to

acheive these conditions. The error will decrease with altitude to

an insignificant value under test conditions.

Power Supply and Signal Conditioning Error

The signal conditioning with a single resistor as previously discussed

provides a minimum error. The X-15 instrumentation power supply can

contribute error. A variation of 0.1% F.S. in the supply will contribute

a random error in the order of 0.02°R.
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3.1.4.4 Error Analysis - cont'd

Power Supply and Signal Conditioning Error - cont'd

Selection of the resistor material requires a near zero temperature

coefficient material to make error from this cause small. For example, the use

of manganin wire varied over 72°F results in a temperature uncertainty of

approximately 0.01°R.

Insulation and Shunting Error

Any resistance shunting the probe will have an effect of decreasing

sensitivity and will result in a systematic error which can be largely eliminated

by system calibration. The specification of input impedance on the PCM system

is.200,O00 ohms. An uncertainty in impedance of this value will result in an
error of .005°R.

Repeatability Error

Repeatability of platinum probes over repeated cycling of temperature is

as good as 0.18°R. This is a random error.

Frequency Response Error

The time constant for a typical probe in LH2 flowing at 91.6 feet/second

is 0.016 seconds. This gives a frequency response.

1
F- - 10 cps (3 db down)

2WT.

Assuming a single time constant which is the worst possible case for a

heat transfer, the attenuation is at 3 cps.

1
A - - .957

1 + J f/F

Making the assumption of a 10% fluctuation of temperature at 40°R, the

error due to time delay is 0.17°R.

This value is based on a Rosemont 150 MA sensor. The calculations are

derived from Rosemont Bulletin 106017, entitled "Time Constant and Self

Heating Effects for Temperature Sensors in a Moving Fluid", and Bulletin 7619

entitled_ "Methods of Measuring Temperature Sensor Time Constant and Self Heat."

System Calibration Errors

Calibration of the platinum resistance measuring system is most easily

accomplished by placing a decade resistance bridge in place of a platinum probe,

adjusting the resistance to the calibration resistance for a specific temperature

on a 10-20 point schedule. This eliminates maDy systematic errors. In calibra-

tion the accuracy of the resistance decade box should be determined and

recallbrated periodically. The errors from this source are rather small with a

_odd decade box. Assuming a ±0.15% resistance standard, the temperature error

is ±0.016°R at 36°R to ±0.029°R at 60°R. This is a random error.

3O



3.1.4.4 Error Analysis - cont'd

System Calibration Errors - cont'd

Interchangability

Interchangability of probes is of interest when a unit has failed. At 60°R

interchangability is excellent, in the order of ±0.2°R; but at 40°R, interchang-

ability between probes results in errors of about ±I.50°R. In view of the

accuracy requirements of better than ±I°R, any change of probes will require

recalibration of the system and a change in the data reduction program.

Self Heating Error

Specification of the selected probe results in a 1.8°R error for 360 micro-

watt dissipation. The selected current of 0.5 MA is approximately .2 microwatts

at 36°R to 7.5 microwatts power dissipation at 60°R. This results in negligible

error.

Recording System

The PCM recording system (low level) was selected for this measurement.

Low level accuracy for the envir0nmen_al conditions without individual chal/_el

calibration should be approximately i% of full scale if major dropout errors

are excluded. With individual channel calibration the expected errors might

be 0.5 to 0.6%.

3.1.4.5 Requirements (200-R - 1800°R)

The requirements for the measurement of temperature rise of the hydrogen

in the cooling tubes are specified as follows:

Measurement Range

Accuracy

Frequency response

200 OR - 1800 OR

2 ° at 200, 20 ° at 1800 °

0-3 cps.

3.1.4.6 Types of Sensors

A sensor tha£ has a linear output whose signal is recorded on the PCM

recording system will have an average sensitivity of 3.2°R per count.

Based upon the general discussion of methods for measuring hydrogen

temperature, only two systems were considered. One, the platinum resistance

thermometer, and the other the swaged ceramic insulated chromel alumel thermo-

couples.

R]
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3.1.4.6 Types of Sensors - cont'd

a. The platinum resistance thermometer (PRT)

The platinum resistance thermometer can be purchased as off the shelf items

to measure gas temperatures in the range of 25°R-1950°R. One of the

advantages of this sensor is that it can be placed in a non-linear bridge

and read out on the PCM system and meet the quoted accuracy.

A typical platinum resistance thermometer for this application would change

its resistance from 160_ to 1800_ over the range from 200 ° - 1800°R. A non

linear bridge can be made as follows:

The voltage across the bridge and the values of R1, R2, and R3, are chosen

such that the full scale of 30 MV will equal the range of 200-1800°R,

and the change in MV/I°R is greater at 200°R than it is at 1800°R.

A platinum resistance thermometer that is rugged enough to stand

a 200°R-1800°R range is usually large and has a slow response time. However,

the time response could be increased by not using a protective wall and

exposing the probe directly to the stream.

Great care must be exercised to make certain that the sensor is the same

temperature as the gas. The sensor should not disturb the stream by creating

a large pressure drop and the sensor must be insul_ted to make certain that

it is not affected by its environment. This could prove to be a very serious

problem for the task of measuring the temperature in the cooling tubes.

The error analysis would include all of the items covered in the discussion

of the platinum resistance thermometers, plus an allowance for uncertainty

in the change in resistance of the leads on the thermometer and the

sensitivity of the bridge at different temperature levels. No difficulty

should be encountered measuring the sensor temperature to ±2°R at 200°R and 2%

over the entire range.

b. Thermocouples

Thermocouples have a great advantage in measuring the temperature of gases

flowing in small tubes. They can be made very small, (an overall diameter

of .010 is possible), and they measure the temperature in very small zones

with a minimum amount of disturbance.
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3.1.4.6 Types of Sensors - cont'd

b. Thermocouples - cont'd

The thermocouple considered for this application would be a small swaged

thermocouple assembly with a sealed end and an insulated measuring junction.

This thermocouple is explained in detail in the section dealing with

structural measurements. A sealed thermocouple would be preferred because

of its non-vulnerability to problems caused by hydrogen and assembly.

At cryogenic temperatures chromel and alumel should not be subjected to

hydrogen because of embrittlement (ref. 18) however, at temperatures

above 1500°R, direct exposure is possible. It is often advantageous to

fabricate parts with the thermocouples installed. This can be accomplished

by sealing both ends of the swaged thermocouple sheath for the brazing

cycle and terminating the lead end after fabrication. Although it is

possible to send sheathed thermocouples through a brazing cycle it is

recommended whenever possible, that guide tubes be brazed into place during

fabrication and the thermocouples installed in these guide tubes later at

a sacrifice in accuracy.

Thermocouples can be used to indicate temperatures without disturbing the

stream at different locations on the tube bundle by merely fastening the

thermocouples to the outside of the tubes and insulating the thermocouples

and the tube for minimum heat loss. When thermocouples are used to measure

the temperature of gas in tubes the thermocouples should be inserted so that

several diameters are exposed parallel to the stream. This minimizes the

error due to radiation and conduction.

3.1.4.7 Sensor Selection

The final selection of sensors for measuring hydrogen temperature on the

ramjet engine to determine thermodynamic state will depend primarily on how

many are required, and how much space can be provided for installation. Where

a small number of sensors are required, the platinum resistance thermometer

represents the most accurate measurement system.. For a large number of measure-

ments and inaccessible locations, the sheathed chromel/alumel capped thermo-

couple is recommended. The trade-off is basically convenience for accuracy.

If one type of thermocouple is used to cover the requesmd; ._i.de range,

chromel/alumel is a recommended selection. Because the thermocouple has an

output voltage of approximately twice the PCM system at 1800°R an attenuator-

is required. The stability of the PCM system is i%; this represents 150 micro

volts at the gate input or 300 micro volts at the attenuator input. Since this

is a large value relative to the typical CA sensitivity of 23 micro volt/°R,

it is evident that individual calibration of each thermocouple channel is

required to achieve the desired accuracy. The expected improvement in accuracy

is .6% full scale or 180 microvolts uncertainty at the input to the attenuator.
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3.1.4.7 Sensor Selection - cont'd

The chromel alumel thermocouple changes its sensitivity with absolute

temperature. A comparison of the expected error, including this effect, is

given below along with the desired system accuracy.

Temperature PCM Error Desired Accuracy

1800 7.8 oR 36 °R

500 8.2 OR i0 OR

200 15.0 OR 4 °R

34



3.2 Static Pressure

Static Pressure is defined as the actual pressure existing in a

flowing gas also sometimes referred to as stream pressure (Ref. 19).

In order to measure engine internal performance it will be necessary to

measure static pressures at various points throughout the engine. Errors

can be introduced at several points in the measuring system and are generally

identified with (a}. Pressure taps, (b). Dynamics of pressure lines, and

(c). Pressure readout systems.

3.2.1. Pressure Taps

An ideal small hole in a flat surface which does not disturb the flow along

the surface could be used to measure the static pressure without error.

Anything that disturbs the flow will change the static pressure, therefore,

a real hole in a real surface will be in error if: (a) the hole is large

enough or the edges are shaped to disturb the flow, or (b) the surface is

wavy or irregular. The amount that the pressure indicated at a real hole

differs from the true free stream pressure is defined as static tap error.

If a surface is curved or wavy, the pressure at the surface will vary

above and below free stream pressure. The pressure at the peaks of the waves

will be lower than free stream and the pressure at the low points will be

above free stream. (Ref.20). If the surface is intentionally curved, there

will be a real, expected difference between surface and stream pressure

and the tap will read surface pressure. If the surface is accidentally

curved, as it might be if a local spot is polished slightly down into an

otherwise smooth surface, the difference will be an unexpected error.

There will be an impasse between required-static tap geometry to obtain

the desi,red pressure accuracy of static measurements and the desired engine

design. The accuracies desired will require that the engine walls be

absolutely smooth perhaps even polished and certainly nonablative.

Rayle's thesis is an early and quite often quoted work on static hole

errors. (Ref.20 and21). Figure 10is based on his ASME paper, and shows

the effect of small variations in the static tap edge. All available

data has been taken with subsonic flow velocities, with a static hole that

is small compared to the boundary layer thickness. The error is probably

best computed based on a mean dynamic pressure a short distance out into

the boundary layer as was done in Ref. 22. An accurate evaluation of the

errors to be expected in supersonic flow is badly needed. Until such data

is available, the errors can be best estimated by using Rayle's indicated

errors based on an average dynamic pressure near the wall as a guide.
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3.2.1 Pressure Taps - cont'd

In discussions with individuals involved in nose cone measurements, the

best current practice on regenerative cooled or ablative protected surfaces

seems to be static pressure measurements which are estimated to be within i0_.

There are special cases where the accuracy is much better than this, but very

careful precau_i6ns must be taken to better this accuracy. The author of

reference 22 points o_t: "In common with many previous investigations, it has

been noted that even a very slight burr on the edge of the hole, or a small

quantity of dirt inside it can have a very significant effect on the reading

given by a static pressure hole." This kind of care will be extremely difficult

to achieve in a ramjet environment. Figure ii is a test coupon typical of a

regeneratively cooled surface and similar to those which will exist in a cooled

wall engine. Figure 12 is typical of an ablatively protected surface. Neither

of these surfaces would be even remotely acceptable for accurate static pressure

measurements.

An error which is calibratable and known and can be corrected is seldom a

problem. Neither the regenerative nor the ablative surface will produce this

Mnd of an error. On the regenerative surface the error can be expected to be

extremely sensitive to flow direction. With flow parallel to the tubes of

Figure 11, the error could be quite small. With the flow across the tubes the

tap down between the tubes could read nearer total than static. In order to

attempt to correct _he error in this case the flow direction would have to be

accurately known. If by local heating and Cooling the surface distorts this

will cause an error which could be large and either positive or negative.

This kind of error has been noted even in the small changes in countour of an

airplane when it is pressurized. (Reference 23).

Accurate measurements are possible on ablation surfaces before the onset

of erosion. Unfortunately, as the surface ablates the local disturbance of

the hoie causes a somewhat higher ablation rate with an attendant change in the

local surface. About all that can be said, for a static tap error in this case

is that it will become larger with time. There may not even be any possibility

of predicting whether the error will be positive or negative. The only hope for

useable statics in an ablative surface is to use the pressure readings before

the ablatio_ has gone far enough to produce too large an error. So far all

modifications of an ablative surface to attempt to improve the situation have

only made it worse. If the ablative material in the region around the hole

is changed in any way at all it will either ablate faster or slower than the

surrounding material. In either case it will produce an error.

The only possible method of producing static taps which will have

acceptably small errors appears to be by maintaining the engine surfaces

absolutely smooth with very small sharp edged taps (or chamfered per Rayle's

recommendations). If the engine designer cannot provide this kind of surface,

large uncertainties in static pressure measurement can be expected.

37



Figure 11 Typical Regeneratively Cooled Surface 
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a.  View Showing Static Tap Errosion 

b .  View Showing Shock Wave Errosion 

Figure 12 Typical Ablatively Protected Surface 
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3.2.1 Pressure Taps - cont'd

As a further note, the small taps required for steady state accuracy by

the considerations above will be inconsistent with the large holes required
for dynamic response. (See section 3.2.2).

3.2.2 Dynamics of Pressure Systems.

In order to measure engine performance it will be necessary to make some

continuous measurements of fluctuating pressure since engine operation is

expected to be transient in nature. There may also be pressure fluctuations

due to burner instabilities or inlet unstarts which will require a wide range

of frequency response on a few special transducers. Transient pressures may

be recorded by several systems as shown schematically in figure 13. These

may be broken down into:

a. Flush diaphragm systems.

b. Resonant tube and transducer systems.

c. Damped resonant tube and transducer system.

d. Tube connected non resonant systems.

Each system has specific advantages and limitations which will be dis-

cussed briefly. Each of the systems may be used at some points on the engine.

3.2.2.1 Flush Diaphragm

The flush diaphragm system is of course the simplest as far as error

analysis. If, as is ideally possible, the transducer diaphragm is absolutely

flush with the wall of a chamber and does not disturb the airflow, there will

be no "tap errors" or "tube errors" as there will be with the other systems.

The indicated pressure will be the same as the wall pressure up to the limits

imposed by the transducer itself. A limit of 10% of the resonant frequency of

the transducer is considered adequate in standard practice. If the transducer

is specially damped and properly calibrated specifically for high frequency use,

it may be useable to approximately 50% of the natural frequency. A flush
diaphragm system is limited to stream conditions which will not overheat the

diaphragm and usually requires a rather large area on the wall. This system is

frequently used as the standard during laboratory calibration for checking
errors of other systems.
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3.2.2.2 Pressure Tubing and Transducer

The most commonly used pressure transducer system uses a tube from

the pressure port to the transducer sometimes with a volume at the

transducer, as at fig. 13(bSc). For steady state pressures this method is

ideal. The volume at the transducer can even be made fairly large to

deliberately average out pressure fluctuations, as is frequently done.

The manometer so often used in the lab is this kind of a system. For fast

response the tube must be kept short with a minimum volume provided at the

transducer. In some cases damping may be added as shown at Figure 13c.

The response time (or frequency response) of this class of system has been

very thoroughly investigated both theoretically and empirically. See

references 24 through 54 .

Iberall (reference 24 ) is widely quoted and represents the most complete

theoretical analysis of, a simpl_'_ub4 and voiume system with a variable amount

of damping.

With very small or no volume at the end, a smooth constant area pipe,

and low damping,the system has a resonant frequency, often called the

organ pipe resonance, corresponding to a wavelength four times the

tube length. The curve marked 1/4 wave in figurel4 represents the

frequency length relationship. If the volume is not neglibible the curves

marked S/V which is the tube area divided by the end volume may be used

to determine the resonant frequency. These curves are based on the well

known helmholtz resonator frequency formula. For either case as the damping

varies the error will vary as shown in figure 15. There will also be a phase

shift which depends on frequency as shown in Figure 16. At frequencies

which approach resonance close enough to produce large amplitude errors

it is possible to add damping either in the form of small diameter tubing

or by stuffing the inside of the tube with some material such as steel

wool to improve the amplitude error. (References2_ and 54.) This is done

at the expense of phase shift. Some experimentors have even carried this

method to frequencies well above resonance (reference 44,54 ). Because

of the large phase shifts produced these systems would only be useable

at a single (sine wave) frequency. Any wave shape other than a sine wave

would be severely distorted. If this type system is used at frequencies

below 10% of the acoustic resonant frequency and the damping is kept below

critical the error due to resonance will be below 10%. Above this the error

can be estimated from Iberall or figure 15.
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3.2.2.3 Non Resonant Probe Tube

If the error due to resonance becomes larger than desired a non resonant

system as shown at Figure 13d'should be considered.

The resonance problems on the fig. L3b type system occur when a pressure
wave enters the tube, travels to the transducer, is reflected back down the

tube, and continues to echo back and forth in the tube. Resonance can be

prevented as at fig. !3d by providing a constant area tube extending beyond

the transducer. If the tube were infinitely long there could be no resonance

as the pressure pulse entering the tube would continue traveling forever.

If the attenuation is sufficiently high in a tube it can be capped off

at a selected length and the reflected wave will be attenuated sufficiently

to eliminate error due to resonance. This system has been used for making

sound measurements under conditions where the microphone could not be

placed at the point where the measurement is required (reference 55) but

seems to have been little used in pressure measurement.

If the tube area is held exactly constant from the sensing point to a

point beyond the transducer where the attenuation is quite high, there will
be no errors due to resonance. There will be some attenuation of the

wave as it travels through the tube, due to air nonlinearity effects,

(reference 56) and a time delay due to the transmission time, but these

errors will always be less than the errors which would be caused by resonance

if the tube were terminated at the transducer. Fig. 17 may be used to

estimate the attenuation in a tube at any frequency. The attenuation from
the sensing port to the transducer will be an error. The attenuation from

the transddcer to the capped end of the tube must be high enough to prevent

an appreciable echo from returning to the transducer. Any echo which returns
to the transducer will be an error signal. The attenuation can be increased

by adding damping material (reference 55) by tapering the tube or by making
part of the tube of sound absorbing material. Care must be taken that the

sound absorbing material does not cause reflections large enough to produce

appreciable errors in the data. Air nonlinearity errors which are a function

of dynamic signal level can be estimated from Figure 18 (reference 56).
There will be a time delay due to the transmission time which can be

estimated from figure 19

The total error for this type of system will be approximately the sum
of the errors due to attenuation, reflection from the closed end of the tube

and air nonlinearity. There will also be a time delay which must be

considered if the data is to be compared from two or more transducers.

Non resonant transducer systems are recommended for all pressures

where response higher than 100 cps is required. All pressures for which
response over 1 cps is desired should be checked by the engine manufacturer

to determine errors when final line size and length has been determined.
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3.2.2.4 Comparison of Resonant and Non Resonant Transducers

Fluctuating pressures can be measured with any one of the systems

shown in Figure 13. Theoretical analysis and calibrations to estab-

lish probe resonances by comparing relative input and output at various

frequencies have shown the non resonant system to be superior to the resonant

configurations. A direct comparison of the two tube connected systems with

a flush system was made as shown in Figure 20. The three types of systems

were ¢mnected to a small chamber which was driven with a Bruel and Kjaer

(B & K)mod.421S artificial mouth. The driving signal was a square wave at

approximately 100 cps. The amplifier speaker chamber combination distorted

the signal to that shown at fig. 2_ as measured on the chamber monitor

transducer. Fig. 21:bis the same signal as measured on the resonant

transducers. The superimposed "sine-wave" corresponds to the 1/4 wave

resonance frequency for the connecting tube. The conditions were chosen

deliberately where the resonant frequency was far above the measured

frequency. At conditions above about 1/4 of resonance the measured frequency

wave form became completely unrecognizable. Fig. 21c shows the same input

wave form measured with the same 2_" tube connection to the signal chamber

but with a non resonant termination (approximately 20 feet of _ inch tubing).

3.2.3 Pressure Readout System

In studying the requirements for accurate pressure readout, several

important conclusions evolved:

a. A single transducer will not cover the desired pressure ranges

with sufficient accuracy.

b. In order to provide reasonable accuracy and reliability, pressure

instrumentation should be centrally located with provisions

for thermal and vibration protection.

c. Several system concepts are available and application will depend

upon final selection of engine pressures to be measured.

These conclusions are discussed in detail in the following sections.

3.2.3.1. Transducer

3.2.3.1.1 Types of Transducers

A pressure transducer is an electromechanical device through which an

input pressure signal is converted to an output electrical signal. In most

cases the pressure results in a displacement of a spring in presumed accordance

with Hooke's law. The displacement produces a change in some electrical

property which is measured in an appropriate manner. The itransducer's maximum

frequency response is limited by the mass-spring relationship in the unit,

but in application is most frequently determined by viscous fluid flow

within the instrumentation lines.
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3.2.3.1.1_ypes of transducers - cont'd

Some of the types of pressure transducers manufactured by the industry

are categorized according to the electrical property utilized in detecting

displacement.

a. Strain gage - bonded

b. Strain gage - unbonded

c. Semiconductor strain gage

d Potentiometric

e. Variable reluctance

f. Capacitance

g. Strain oscillators

h. force balance

i. Piezoelectric

j. Digital

Each type has its particular area of application. Some are automatically

eliminated from this specific application by the limitations of the environment.

The work statement places a restriction of 50 pounds for the instrumentation

package in the ramjet. If we make a reasonable assumption that one half of the

weight be allotted to other than the pressure transducers, the average weight is:

25#

67 measurements
= .37# = 5.9 oz./transducer + accessories

A survey was made of the different types of pressure transducers,

considering the weight, accuracy, stability, temperature range, applicability

to the PCM system, and many other factors concerned with the expected

environment of the ramjet testing. Some of the salient points are evident

in Table I

TABLE I

Pressure Transducers

Type Accuracy Comments

Strain

Strain

Strain

Potentiometric

Variable reluctance

gage-bonded good

gage-unbonded good

gage-semiconductor fair

fair

very good

Capacitance

Strain oscillators

Force balance

Piezoelectric

Digital

poor

good

excellent

poor

poor

350 ° max.

700 ° max - good stability

high temperature coefficient

high hysteresis

medium temp. coefficient and signal

cond. problem.

highest temp. capability signal

cond. problems

high temp. coefficient, not in

production.

too heavy

no static pressure

high hysteresis
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3.2.3.1 Transducers - cont'd

3.2.3.1.2 Transducer Errors

The error to be found in a pressure system from the transducer to the

printout of the data can result from a number of causes. Nearly every item

in the system contributes values that may, or may not be, significant. The

more important ones are:

Thermal zero shift

Thermal sensitivity

Thermal shock

Vibration sensitivity

Calibration

Hysteresis

Linearity

Pressure sensitivity

Excitation voltage

Data processing

Thermal zero shift and sensitivity errors are caused by dimensional and

electrical changes in the transducer. Commercial compensated transducers have

errors in the order of .01% of full scale per degree Fahrenheit. The errors

introduced by these causes for the standard models are:

Temperature Thermal Sensitivity Total Error

Change Zero Shift Change (R.M.S.)

°F (%F. S. ) (%F. S. ) (% F.S. )

25 ±0.25 ±0.25 ±0.35

100 ±1.0 ±1.0 ±1.41

300 ±3.0 ±3.0 ±4.23

500 ±5.0 ±5.0 ±7.07

This points up the requirements for temperature control in ramjet instrumentation.

Special transducers can be obtained by selection with coefficients as good

as 0.005 at a nominal increase in cost. Attempts to achieve stability better

than this result in a manufacturing yield so low as to be impractical. If

high measurement precision is to be attained even with the best possible

transducers available at the present state of the art, an R.M.S. error of 2.11%

of full scale reading can be expected when measuring a pressure with a single

transducer. This assumes selected transducers and a temperature change

of 300°F.
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3.2.3.1 Transducers - cont'd

When a pressure transducer is subjected to a fast thermal transient, dimen-

sion changes occur in the transducer due to the thermal gradient. This type of

error is not normally expressed in manufacturing specifications. Careful design

of the case to equalize the heat gradient on the strain gage bridge and compen-

sation network is required to minimize the problem. In practical flight test

it can provide the major source of error for pressure measurements. For

example, in recent maneuvering flights with transducers located in the engine

bay without thermal protection, transient zero shifts greater than 10% of full

scale were experienced. This occurred where the temperature conditions changed

from above ÷200°F to about -50°F. Personnel at the National Bureau of Standards

in Colorado pointed out that transient shifts of above .03% per degree

Fahrenheit is possible during cryogenic testing with superior transducers.

It is recommended that in order to control this problem during flight test

transducers must be thermally lagged. Discussion with transducer manufacturers

indicate temperature rates in the order of 5 to IO°F per minute will not

appreciably degrade accuracy. There is still a great deal that is unknown

about this problem. A practical standard test would be helpful in comparing

transducers.

Vibration sensitivity of a transducer is primarily a function of the

spring coefficient of the diaphragm and the mass of the attached recording

mechanism. Certain variable reluctance and capacitive units achieve a very

low mass loading on the diaphragm and are far superior to most other transducers

in this matter, but the signal conditioning requires electronics such as

carrier oscillators and a ring demodulator system. This generally results

in increased weight as well as additional errors being contributed by the

electronics.

Vibration sensitivity is associated with the mechanical design of a

pressure transducer and for any one model is more critical at the lower ranges.

For a typical transducer model, the 40 g acceleration anticipated during the

ramjet test would have the following effect:

Pressure Range

of Transducer

Dynamic Signal Error

(% of full scale)

Frequency Range

0 - 5 psia 16 % to 2500 cps

0 - 10 psia 6 % to 2500 cps

0 - 25 psia 2 % to 2500 cps

0 - 100 psia 0.4 % to 2500 cps

Measurement of pressure fluctuations with this type of transducer are

difficult if engine acceleration occurs simultaneously in the plane of the

transducer most sensitive to vibration.
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3.2.3.1 Transducers - cont'd

The PCM recording system will record a frequency error which is difficult

to evaluate. If the vibration or pressure frequency is greater than 1/2 the

sampling rate, folding takes place which changes the true frequency to a lower

frequency. Assuming the dynamic signal is 202 cps and the scan rate is 200 S/S,

an effective 2-cps signal will be generated. This will appear as a significant

error unless the PCM gate filter is better than the presently existing R-C filter.

There is no simple answer to accurate pressure measurements in a high "G"

environment. If high frequency response is not required, isolation of the

transducer from the high "G" environment is recommended together with averaging

during data processing for steady state information. It is desirable to have

the filter knee frequency at 1/3 to 1/5 the sampling rate to provide a large

attenuation at one half the sampling frequency. The present 200 sps channels

have a filter knee at 40 cps or 1/5 the sampling frequency.

Calibration error should be discussed in several modes, depending on the

approach to the program. Component calibration and subsequent installation in

the ramjet instrumentation system can result in some rather sizable errors

when compared with end to end calibration directly on the aircraft with the

recording system. The major disadvantage with end to end calibration is that

it ties up the complete aircraft. Art error evaluation of the two systems should

be considered using an unbonded strain gage bridge to determine the trade off

possibilities. End to end calibration provides improvement in the following

factors:

a. Eliminates bridge voltage uncertainty at the transducer. The estimated

error in percent of full scale assuming an uncertainty of 1 ohm in lead

resistance for a 350 ohm bridge is ±0.29%.

b. Eliminates the requirement to measure each gate in the PCM system and

make a manual correction. Without correction the X-15 P.C.M. encoder

has demonstrated deviation of 0.7% between separate gates.

c. Provides complete assurance on the system during pre and post flight

calibration.

d. Permits automatic generation of calibration factors from P.C.M. calibration

tapes. Factors are used to correct flight data during data processing.

To summarize end to end calibration techniques, appropriate data

reduction procedures will reduce systematic errors to at least 0.9% of full scale.

Hysteresis error is an indication of the repeatability of Lhe transducer

and results from the mechanical motion of the diaphragm and strain gage arm.

Discussions with vendors indicated values less than ±.25% of full scale are

normal with standard units.

Linearity of a pressure transducer is in the order of ±0.50% of full scale.

To obtain best accuracy, the automatic data reduction facility should be provided

with tape data from calibration that will permit them to write a routine that

will correct non-lineratity of both the transducer and the amplifier.
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3.2.3.1 Transducers - cont'd

3.2.3.1.2 Transducer Errors - cont'd

Pressure sensitivity of the transducer case to outside changes in pressure

results in negligible error for the ranges of ambient pressure expected during

the ramjet test program.

Knowledge of the excitation voltage at the transducer is important to

determine the sensitivity of the transducer when laboratory calibration is

made. There is a change in poser lead resistance due to a temperature change

during test. This is small for the expected lead lengths in the aricraft.

Recording and data reduction errors depend on the particular system in

use. The two systems on the X-15 are the PCM and the FM-FM data system.

Information supplied by NASA indicates the following:

FM-FM system ±7% of full scale

PCM system ±.5% of full scale

with individual

channel calibration

3.2.3.1.3 Transducer Selection

If the ramjet manufacturer uses an adequately insulated compartment for

instrumentation the components will be exposed to a maximum temperature of 250°F.

As pointed out previously, data accuracy is poor unless the temperature control

is maintained. The ramjet vibration specification of 40 G between 200 and 250 CPS

will require some assurance testing of assemblies and components. Most

transducer proof testing has been done at 35 "G's" but no real problem really

exists since the prepared instrumentation package should be mounted on an

isolation pad to minimize transducer "G" and thermal shock data errors.

Several transducer manufacturers indicate their units will pass proof testing

at the 40 "G" level.

Selection of a pressure transducer required consideration of shape because

of space limitation. A cylindrical unit with the pressure tap at the opposite

end from the electrical connector would permit optimum packing density.

A diameter of about i" will allow a reasonable size pressure compartment.

There are many pressure transducers that fit these criteria. Typical choices

are the Statham PA220TC and the CEC model 4-236. Both are well isolated units

as far as thermal shock is concerned. To save weight it is recommended these

units be ordered with 24" leads which eliminates output plugs. The use of

insert pins, as a patch board on the pressure package disconnect, will allow

different equipment to be installed with ease.
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3.2.3.1 Transducers - cont'd

3.2.3.1.3 Transducer Selection - cont'd

These transducers will provide measurements of pressure in the order

of 0.6_ F.S. with end to end calibration in a controlled environment. They are

suitable above 5 psia for a quasi-steady state measurement. The tubing runs

to the compartment will cause an acceptable attenuation at 1 cps. For measure-

ments below 5 psia, diaphragm transducers are available but the selection is

generally limited to sensing units that impose less mass on the diaphragm than

unbonded strain gages do. Capacitive and reluctance units are candidates

but require complex signal conditioning. The signal conditioning equipment

is comparatively expensive if designed properly. The result of the study was

to select the unbonded strain gage pressure transducer to evaluate ramjet

engine performance and obtain transient information.

A typical error analysis for a good unbonded strain gage transducer and

recording system is shown in Table II. The analysis assumes a system calibration

prior toflight. The dependence of the total error on ambient temperature points

up the requirement for holding the temperature of the ramjet instrumentation

pressure package as constant as practical.

TABLE I I

Error Classification (Temp. +25 °F) (Temp. Shift ±180°F)

Stability - three weeks ±0.25 ± 0.35

Hysteresis ±0.20 ±0.20

Thermal zero shift ±0.25 +1.80

Thermal sensitivity shift -+0.25 ±1.80

"G" sensitivity (40G) ±0.40 ±0.40

Voltage supply - 12 volts ±0. i0 ±0. i0

PCM - 0-45 cps response -+i.0 ±i.0

Temp. transient-simulated flight Less than 0.5 Large

(value unknown)
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3.2.3.2 Central Instrumentation Package

3.2.3.2.1 Insulation Requ±rements

Some ides of the temperature rise in an insulated central instrumentation

package can be obtained by making reasonable assumptions. This will determine

the class of instruments capable of being used in the package. Assume a

thermal input to the bay is in the form of a function with an initial and

final value of 100°F and an elevated temperature averaging 350°F for 15 minutes:

Compartment size = 16" x 9" x 22"
Surface area = 10 feet 2

The heat input with i" of glass wool insulation is:

A

Q= tk W AT

t _ 1/4 hr

k = .02 btu/hr/ft/°F

A = i0 ft.2

w m 0.083 ft.

AT = 250°F

i0

Q = 1/4 (.02) .08----3 x 250

Q = 150 BTU

The temperature rise of the instrumentation package through the glass wool

insulation, assuming a 25-pound package is:
for stainless steel:

Q cp _ .214 btu/#/°F
AT' =

wc w = 25#
P

150
AT' _ = 27°F

25 x .214

Additional heat rise will come from the conduction through the base and

connections. If the connections are arranged to go an extended distance

through the glass wool, the base will contribute the majority of heat input.

Assume: Base size = 18" x 12" x i"

Base material - Teflon

1/4(. 14) (1.5) (250)

Q = (.0833) = 156 btu

k = 0.14 btu/hr/ft/°F

156
AT = = 29°F

25 x .214
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Total weight - approx. 31 Ibs.

Volume - approx. 1.1 cu. ft.

Figure 22 Basic Package Layout of Recommended Pressure System
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3.2.3.2.1 Insulation Requirements cont'd

Total heat rise is the sum of the two or 56°F. This results in a heat

rise in the package at the time of test much lower than this value since the

test will be over in less than i0 minutes after frame temperatures start

exceeding the 350°F limit It permits the use of light weight pressure

measuring equipment that have temperature limits of 250°F.

An estimate of the power required to hold the compartment at +I00°F

with the ramjet structure at -50°F which is the case prior to release from

the mother ship can be determined:

For AT of 150°F using the previous material assumptions

Heat rate -
Q
T

528 BTU/hr. or 153 watts.

3.2.3.2.2 Package Design

Installation of the pressure measurement systems in the centrally located

compartment is most simply accomplished by mounting each transducer on a

platform and connecting the pressure line to the transducer with a coupling.

This is the lightest method but makes it difficult to conduct a good

calibration. A method of doing end to end calibration with this approach

would be to make fixtures to cover the ports and pressurize the port with

a portable calibration stand.

A more practical method would be to use a single or dual pressure

disconnect. A concept of this is shown in figures 22, 23, 24, and 25.

This approach has several advantages and disadvantages that should be
discussed.

a. Provides quick end to end system calibration of all transducers

that are needed for accurate data.

b. Additional weight required.

c. Permits quick changes with dff_erent preprogrammed packages

if necessary.

d. Provides a quick pre-mate check of the pressure package.

e. Contamination-sensitive.

The quick disconnect pressure plug will provide for rapid calibration of

all transducers by mating it with a properly programed plug connected to

a portable pressure source with a set of secondary pressure standards.
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3.2.3.2.2. Package Design - cont'd

Transducers of the same pressure would be attached to a common pressure

line that would provide calibration pressure to be applied to all simultaneously.

With the ramjet connected to the X-15 via an electrical jumper cable, the PCM

system can be used to record data. The advantages of this method are:

a. Establish systematic errors such as bridge voltage uncertainty, PCM

gate offsets, and voltage differences.

b. Automatic calibration factors obtainable with proper data reduction.

c. Minimizes human errors.

d. Decreases manual handling of data.

In addition, the pressure disconnect plug approach permits the flight

objectives to be modified quickly by providing several packages with different

component arrangements. This would allow closer flight scheduling and permit

evaluation of the data on the previous flight £o be scrutinized longer before

the decision is required as to the next flight objective. These are important

factors in any flight program.

A pre-flight check of all pressure transducers could be accomplished to

check out the total system. If the pressure plug was made accessible with the

ramjet in the mated position, a pre-flight check could be planned just a few

hours before the flight.

There are some penalties attached to the pressure plug. The first is

weight. The estimated weight from a manufacturer of this type of equipment

was obtained at less than 1.5 pounds for two 40 tube male and female disconnects.

This is quite acceptable considering all the advantages. The second is more

serious. Good light weight tubing fo_ the ramjet testing is 1/8" O.D. This

could have an I.D. of .069". The contamination problem with this hole size is

obvious. Real care would have to be exercised by quality control. Utilizing

3/16" tubing with an I.D. of 144" would be better, but an estimated weight for

the tubing runs with an average of six feet would result in a weight budget of

15.3 pounds as compared with 10.5 for the 1/8" tubing.

To counter these disadvantages, pressure disconnects of this type have

been available commercially by Cannon and Scanivalve for many years. They

are used successfully on tubing as low as 1/8" O.D. without excessive problems

on ground and flight applications. At the larger tubing sizes, inset 0 rings

are recommended at high levels of ramjet pressure.

This item has been applied in many aerodynamic facilities. The California

Institute of Technology makes use of pressure plugs extensively. Perhaps the

most applicable experience has been in jet engine testing in the high mach

number tunnel at Arnold Engineering Development Center, Tullahoma, Tenn. In

this facility the jet engines are frequently instrumented with all pressure probes

going to a single disconnect. One system used around 300 pressure taps in a single

plug and permitted objectives and engines to be quickly changed without requiring

extensive down time from the instrumentation. The pressure levels in this facility

are in the magnitude for the ramjet test.program.
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3.2.3.2.2. Package Design - cont'd

The incorporation of a pressure plug is recommended to provide for easy

removal of instrument package and in place end to end calibration of pressure

measurement system.

Several package configurations have been studied. The first one looked at

uses 55 single transducers that will provide for basic pressure surveys. This

number assumes a smaller number of total pressures measured than indicated in

the guide lines. The reason for this change is the engine designers report that

the shocks from many total probes in the gas stream would disturb the engine

performance excessively. An estimated weight for the system is:

a. Tubing runs (1/8" tubing)

b. Pressure plugs (2)

c. Transducers

d. Platform, cover, heat control, shock pad, and

cover insulation

e. Compartment insulation

f. Electrical harness and plugs (all)

Total

10.5 pounds

1.5 pounds

10.3 pounds

10.3 pounds

4.0 pounds

5.0 pounds

41.6 pounds

This systems provides end to end calibration, removable modular construction

and meets a reasonable weight budget.

The estimated space to permit access to this i.i cubic foot package and

allow adequate insulation is approximately 2.0 cubic feet.

The development of this package is recommended.

The attenuation on transient data for this temperature controlled package

can be estimated, making certain assumptions_

i. Length of tubing runs - 7 feet (estimated maximum)

2. Tube diameter - 0.08" I.D. (1/8" tubing)

As determined from Section 3.2.2, this will result in the following errors:

Frequency At tenuat ion

(CPS) (%)

0.i 2

1 6

3 i0

i0 20

These values refer only to the attenuation of the transient portion of the

pressure level. The data is acceptable for steady state engine performance.
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3.2.3.2.2. Package Design - cont'd

The second harmonic distortion Vn dynamic pressure data for the

temperature controlled transducers can be estimated making certain assumptions:

a. The dynamic signal is 5% of the total measured pressure.

b. Average temperature in the tubing run - 610°R.

c. Length of tubing run - 7 feet.

Referring again to Section 3.2.2., this will result in distortion

values of :

Frequency Distortion (%)

1 cps 0.7

10 cps 6.3

100 cps 70.0

3.2.3.3. Pressures Measurement System Concepts

3.2.3.3.1 Multi-Transducer

The pressure measurement range to be covered during the ramjet testing

extends over more than two decades of pressure as shown on Figure 26.

It is not possible to cover this range with a single transducer and still

provide the desired accuracy. Two methods have been considered to provide

both range and accuracy as follows:

a. Over pressure single transducer

b. Provide multiple transducers in the same line with gage savers

provided to protect lowest range transducers.

Of the two, the latter appears to be the practical approach. An example

of the expected accuracies available with a gage saver system is shown in

Figure 27. Current commercial gage savers are not directly applicable to

flight systems because of range frequency response and weight. In view

of the accuracy and range requirements for certain critical pressure

measurements such as static pressures along the external ramjet structure,

it is recommended that an adequate gage saver be developed.
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3.2.3.3.2 Pressure Scanning

The application of a scanning type pressure system offers an approach

of considerable merit in ramjet testing. It is the lightest system evaluated
and results in decreased calibration times. A basic schematic of such a

system is shown in Figure 28. It consists of a single transducer, either

absolute or differential, that can be connected to different pressure ports

by means of an automatically controlled pressure switch. Each pressure port is
normally sealed off unless applied to the transducer. This provides for a

zero flow system except during stabilization of the pressure within the trans-

ducer and the required switching lines. To allow rapid stabilization after
switching, it is essential that the transducer and switching line volume be

held at a minimum. Short line lengths from the pressure port to the pressure
switch are also desirable. The basic problem is to allow an adequate gas flow

to pressurize the switched transducer volume in a short time when stepping-from

one pressure level to the next.

For the designer of a scanning system the most suitable method of control-
ling transducer volume is to select a small flush diaphragm pressure transducer

and design the pressure switch around the transducer. This has been done by

at least one manufacturer using the industry's standard 1/2" diameter flush

transducer with satisfactory results within certain limitations of port to

scanning line lengths and port scanning speeds. Application information on

these limitations for a practical system is to be found in reference 57.

The scanning method has been used by General Electric Flight Test to good
advantage in a number of installations. It has been flown on the B66 and F4

aircraft. This, however, does not directly qualify the scanning approach to

be used in the environment of the ramjet. The only product investigated is
suitable in a temperature range between 32°F and 257°F and must therefore be

utilized in a thermally controlled instrumentation space. In addition, it has
not been qualified for the vibrational specification of the ramjet. The vendor

has indicated his product will pass this requirement with nominal changes in

the present design.

Some of the advantages and limitations of the "present state of the art"

with respect to scanning systems are given below:

Weight 1/3 of a single transducer system

Size 1/5 of a single transducer system

Accuracy Nearly the same as a single transducer

Cost 1/6 of a single transducer system
Saves calibration time

Maximum practical sampling rate 24 ports in 1.2 seconds

Adjacent port pressure ratio 1.5 maximum

Low pressure limit 1 port - 8 psia

Low pressure limit 2 parallel ports - 2 psia
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3.2.3.3.2 Pressure Scanning - cont'd

And idea of the weight saving can be ascertained by comparing required

systems:
ibs.

72 port scanning unit

with 3 transducers 7.5

Mounting-shock .5

Wiring neg.

Total 8.0

67 pressure transducers 12.0

Mounting-shock 8.0

Wiring 4.0

Total 24.0

The accuracy of a scanning system operating at a sampling rate of

20 ports per second can be nearly the same as that of a single pressure

transducer if certain precautions are observed in obtaining adequate

stabilization after switching. The very limited data available from

reference 57 on scanning speed versus line length indicates this error is

a function of absolute pressure as well as the pressure ratio (psia)

between ports. For a typical system installed in the ramjet, pressures

higher than 8 psia will result in stabilization errors of less than 0.5%

of reading with adjacent pressure port ratios of less than 1.5 to i. Most

significant ramjet data will meet these requirements. Instrumentation

Engineering can easily program adjacent port pressures to be less tnan 1.5

to i. In cases where lower pressures are indicated during engine performance

evaluation, paralleling of ports will achieve adequate stabilization time

at a sacrifice in the number of measurements. At the suggested scan rates,

it is estimated 1 to 2 psia is a lower limit with the 1.5 pressure ratio.

The small number of transducers needed in the scanning system permits

time to be taken between flights for a complete end to end calibration.

The preflight assurance check in the last hours can be accomplished easily

with pressure excursions on only three pressure taps.

The scan rate of 20 ports in one second will provide for each port

to be scanned every 1.2 seconds. This will result in a limited number of

points during the test, but in steady state operation would be quite

satisfactory to obtain pressure profile data on external surfaces as well

as some other measurements.

The utilization of opposite ports on the same scanner will permit the

interval to be 0.6 seconds. Since a proposed package would include 72 scan

ports and some continuous scan transducers, most of the critical parameters

would be scanned at this latter rate and result in 33 samples per measurement

during a ramjet test time of 20 seconds.

72



3.3.3.3.2 Pressure Scanning - cont'd

Signal conditioning of a special nature will be required to apply the

scanning valve to the PCM system. It is necessary to know when a sample from

the PCM system is stabilized so it can be identified automatically as good data.

The method used by General Electric to achieve %his is to control the stepping

motor by the PCM clock. In addition, a trace identifier potentiometer is

monitored by the PCM. These inputs are programmed to the data computer to

select the stabilized sample and determine assurance of stabilization.

A conceptual system is given in figure 29.

A superior method from a data reduction point of view on trace identification

for scanning systems would utilize a digital code rather than a potentiometer.

The X-15 PCM system can accomodate a 9-bit digital word. Scaniva_ve Company

makes on special order a 7-bit binary code that would be suitable in the

application. If digital channels are available this is a recommended option.

The selection of pressure transducers for the practical scanning system

depends on the requirement to use either absolute or differential methods of

measuring pressures. Figure 29 describes this approach using absolute trans-

ducers and indicates a suitable transducer that can be utilized with the

Scanivalve.

As an option on differential measurements where space and weight limitations

are critical, the same differential pressure transducer indicated as suitable

in continuous differential measurements may be used in the scanning valve.

A pressure reference is required as indicated in Figure 28. This reference

should be monitored with a continuous, absolute pressure transducer to provide

level information and should vary relatively slowly with respect to time to

permit the same pressure to be present at the back of the differential

pressure transducer diaphragm and at the absolute pressure transducer diaphragm.

The obvious penalty for not doing this is a loss in dynamic accuracy. For

further details see the special section on differential measurements.
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3.2.3.3.3 Differential Transducer

Differential pressure measurements have been utilized as a standard in

flight test to acquire knowledge of pressure profiles. They are valuable where

the profile pressure change across the surface is small relative to the

absolute pressure. This may not be true in ramjet testing at high mach

numbers where it is possible to have a large pressure change occur across

some profiles. When this occurs, the advantage of differential pressure

measurements tends to disappear.

The application of differential transducers to the pressure within

the engine is not recommended. Shocks will" exist along with a high pressure

rise in the inlet. External surface pressures appears to be one application

on the ramjet that differential pressure transducers might be suitable.

This is recommended for the latter part of the program where the approximate

pressure levels are rather well known. A wide range conceptual system

is shown in the figure 30,_ Good profile measurements can be obtained

over ranges of 2 to 40 psia. This, of course, assumes the pressure profile

is rather flat. Equipment that would be suitable in the lagged instrumentation

bay to achieve this measurement is available.

This system would be extremely light because the differential transducer

selected is a flush type unit with an adaptor. The net weight of the

adaptor and transducer is less than one ounce.
i

The accuracy is difficult to define in a system of this nature.

Any frequency fluctuations in the plenum results in differential pressure

changes that are not easy to evaluate. Assuming the plenum is designed

properly, the errors are similar to the absolute pressure transducer.

With the system given, differential data can be obtained as good as 0.63_ of

full scale with end to end calibration on the transducers. The absolute

value of the readings is degraded by the requirement to utilize two

pressure transducers to calculate the port pressure. Since the delta

transducer generally reads only a small percentage of the pressure,

this degradation factor is also small.
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3.3 Structural Measurements

3.3.1 Metal Surfaces

3.3.1.1 Temperature Measurements

3.3.1.1.1 Requirements

A reliable method is needed for measuring the temperature of metal

structures of the ramjet engine. Specifications: Range, 390 ° - 2500°R,

Measuring range, 1000°R - 2500°R, Accuracy ± 1% of reading.

3.3.1.1.2 Temperature Measurements Systems

Many different measuring systems have been used to measure the temperature

of structures. Three general types of measuring systems were considered

for this application:

a. Systems that utilize the thermal radiation from the surface:

i. Total radiation pyrometers

2. Optical pyrometers

3. I. R. Pyrometers

4. 2-Color Pyrometers.

So Systems that depend upon a visible change in the surface:

i. Temperature paint

2. Radioactive Krypton

Co

Sensors that produce a signal that can be read remotely:
1. Resistance thermometer

2. Thermocouples

Systems that utilize the thermal radiation from the surface such as

optical pyrometers were one of the first methods of measuring surface

temperatures. All types of optical pyrometers must provide an optical path

from the surface to the detector in the pyrometer.

The most common o_tical pyrometer is the vanishing filament type

that operates on 6500 A and is adjusted manually. This instrument has been

modified to operate remotely and is commercially available. The lower

temperature limit is approximately 1300°R and the remote instrument is

very heavy and expensive.

Total radiation pyrometers have a lower reading limit of approximately 1000°R.

The pyrometer is sensitive to the emissivity of the target and the minimum

target size is not small enough to measure the detail that is often needed

for measuring temperature gradients on structures.
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3.3.1.1.2 Temperature Measurements Systems - con't

Infra-Red pyrometers can be used to measure surface temperatures as

low as 400°R. The instruments are cumbersome and need special attention.

The temperature determination is dependent upon the emissivity of the target.

Two color pyrometers on certain materials eliminate the need for determining

the emissivity. Most of the two-color pyrometers have a temperature range

of 2000°R and up, although special ones can be obtained for temperatures

as low as 1500°R.

A light pipe used in conjunction with a two-color pyrometer can be

used to measure remotely the temperature of a very small area and could

be used to measure ablating surfaces in the ramjet. (ref. 58)

Surface Indicator

Temperature indicating paints are a very inexpensive and lightweight

method for measuring surface temperatures. If the paints are applied

properly,and used according to directions,an accuracy of ±10°R can be

achieved. A great disadvantage of temperature indicating paints is that

it only records the peak temperature that the surface has attained and it

does not provide a time at temperature history of the structure. One must

know something about the expected temperature range before he can intelligently

select the best paint for the application.

The technique utilizing radioactive Krypton (reference 59 ) does not

suffer from selecting the proper paint for each location. This technique

involves kryptonating the surfaces before exposure and analyzing the parts

after exposure by controlled heating and counting the radioactivity.

Remote Indicator

Small sensors that can be read remotely are very attractive for ramjet

measurements. Paste on platinum resistance thermometers have been used to

measure surface temperatures. A grid much like a strain gage is attached

to the surface to be measured and the resistance change of the gage can

be used to measure temperature. The fact that the gage must be electrically

insulated from the part but not thermally insulated persents a problem under

conditions of high heat flux. The physical size of the resistance thermo-

meters present other attachment problems.

One of the advantages of the resistance thermometer is that no

reference temperature is needed. A special signal conditioning bridge

and an external power source is needed for each sensor.
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3.3.1.1.2 Temperature Measurement Systems - cont'd

Thermocouples are a very common method for measuring the temperature

of surfaces. The actual sensing element can be quite small, it can be

made an integral part of the structure that is being instrumented, and

it does not need an external power source. Accuracy of ±1% is obtainable

with thermocouples.

3.3.1.1.3 Selection of Sensor

Thermocouples are recommended as the measuring sensor for

the surface temperatures. The considerations were light weight, ruggedness,

cost, and comparability with the PCM system on the X-15. Thermocouples

do not present the same risk as some of the other systems because the

thermocouple state of the art is very well established.

The recommendations are:

a. Use swaged chromel-alumel thermocouple assemblies with enclosed

grounded thermocouple junctions.

b. Provide a reference junction system incorporating the floating

reference block system for referencing the thermocouple. (Ref. 60)

c. The signal Should be read out on the X-15's PCM system.

Chromel-alumel was chosen as the thermocouple elements because it meets

the temperature range and is very compatible with common sheath materials.

Other thermocouples elements considered were:

a. Copper-Constantan - a very stable thermocouple at low temperatures

but cannot be used at 2500°R.

b. Iron-constantan - subject to inhomogeneity and calibration drift

problems.

c. PtRh/Pt - Has a low output, is expensive and temperature range

does not warrant noble metal series.

d. WRe/W - Thermocouples are very stable at low temperature but the

junctions tend to be fragile and thermocouples cannot be used

in an oxidizing atmosphere unprotected.

e. Driver Harris - 242/33 Alloy-Thermoco_ple is reported to be good

in ozidizin_ or reducing atmosphere. Does have application for

instrumented parts Lhat must be subjected to a brazing cycle.

Thermocouple does not hold its calibration as close as CA.

Swaged thermocouple assemblies are recommended because the thermocouples

are very small, are easy to install, are somewhat flexible, have high

temperature insulation, can be made to give a pressure seal and the

complete assembly can be checked before the thermocouple is installed,

The floating reference block system is recommended because it provides

advantages of weight, reliability and complexity over conventional reference

systems.
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3.3.1.1.4 Fabrication and Installation of Thermocouples

a. Fabrication of Swaged Thermocouple Assemblies

Good swaged thermocouple assemblies can be obtained commercially as

off-the-shelf items. However, there are certain advantages to fabricating

the thermocouple assemblies for a particular job. Sufficient detail is

included to enable a technician familiar with the art of thermocouple

and strain gage instrumentation to perform the necessary operations.

The basic swaged thermocouple wire should be purchased from a reputable

supplier of metal sheathed ceramic insulated thermocouple wire. It is

strongly recommended that it be purchased according to specification

JMT-I.48.07, a copy of which is included in Appendix IV..

The sheath material should be compatible with,or the same material as,

the structure to which the thermocouples will be attached. (Inco 702 sheath

has been found to have very good oxidation resistance.). Over the temperature

range of 1000°R to 2500°R, the MgO insalation supplied in commercial sheathed

thermocouples Wlre is an adequate insu!tation. Swaged wire can be supplied in

many sizes. For this application a .020" diameter sheath is recommended.

However, if a small temperature zone must be measured an .010" dia. can be used.

The thermocouple wire should be inspected by the user to make certain

that it meets the specifications in Appendix. IV. Checks such as physical

size, insulation resistance, both hot and cold, are important. The

thermoelectric check should be amended to give a deviation curve from

NBS #561 so that this calibration curve can be used in the data reduction

program if necessary.

The spurious voltage test is used to give the deviations that might

exist in a thermocouple calibration due to the fact that the thermocouple

leads are subjected to a temperature gradient. This test being performed

is shown in figure 31.

After the wire has been tested one should have for the fabrication

of the thermocouples a roll of wire that is homogeneous and has a known

calibration.

The decision to use a grounded or ungrounded junction is based upon

two considerations; the temperature gradient in the part to be measured

and the readout system. If the thermocouple is placed in a high temperature

gradient a grounded junction is the best because the measuring junction

is a part of the structure whose temperature is being measured. An insulated

or non-grounded junction is compatible with most readout systems and usually

does not need as much filtering in the input circuit as the grounded

junctions. Trouble shooting non grounded junctions for secondary thermocouples

and grounds is less complicated than for grounded junctions.
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Figure 3 1 Laboratory Check for Sheathed W i r e  Homogeneity 
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3.3.1.1.4 Fabrication and Installation of Thermocouples - cont'd

Fabrication of Swaged Thermocouple Assemblies - cont'd

A trouble shooting tip for detecting secondary thermocouples and secondary

grounds in grounded thermocouples is to apply heat point by point along the

thermocouple sheath and to monitor the output of the thermocouple elements

and the output of the thermocouple element and the sheath. It is recommended

that grounded junctions be considered for this application to increase the

accuracy of the measurement.

The first step in making the actual ungrounded junction is to expose

the wire by stripping the sheath. This task can be simplified by the use

of a commercially available wire stripper which was designed for this task.

After the sheath has been bared some of the MgO insulation should be

removed and the thermocoupbejunction formed down inside the small sheath

by the use of an inert arc welder. If the final junction is to be insulated,

pure MgO is packed inside the sheath and over the thermocouple junction.

The end of the sheath is capped by the use of an inert arc welder using the

same filler material as the sheath.

In the case of the grounded junction the junction is not completely

covered with insulation and the end of the sheath is welded to the thermo-

couple junction. It should be emphasized that voids cannot be tolerated

in the end of the thermocouple and that pure, dry insulation should be used for

packing. After the junction has been made, it should be checked for

continuity and thermal shocked for at least 5 cycles. Heated in air

to 2000°R and doused in cold water is the recommended cycle test. If the

thermocouple assembly will be subjected to hydrogen during the testing

or be subjected to a reducing atmosphere during the fabrication of the

parts, the thermocouple should be leaked checked. The recommended procedure

for leak checking is to expose the thermocouple to 2000# of Helium pressure

for a half hour and place the assemblies in water and check for leaks.

Although the swaged wire is somewhat flexible a more flexible lead

wire is often advantageous. One procedure for making this splice is

as follows: First obtain a roll of 28 AWG CA thermocouple wire with

silicone impregnated glass asbestos insulation. It is very important that

the swaged wire and the flexible wire have the same calibration or a

mismatch will exist at the splice. To prepare the wires for splicing,

the ceramic insulated wire is exposed by stripping the sheath and the flexible

wire by stripping the insulation and then flattening the ends of the wires.

A small pad is attached to the swaged tube and the flexible wire is secured(fig. 32)

to the pad by use of a nichrome strap. The pad also provides a flat for

securing the splice. Care must be exercised to make certain that the

alumel wire is spliced to the alumel wire and the chromel wire to the

chromel wire without grounding or shorting either splice. The splice

is insulated from the flat on the pad by using a cement that will withstand

the expected temperature environment at the splice.

32



rl 
m 
Y 

24 
0 

c\1 
m 

W 
d 
3 

L L  
2 

a3 



3.3.1.1.4 Fabrication and Installation of Thermocouples - cont'd

b. Installation of the Thermocouple

The most preferred method of attaching the thermocouple to the surface

to be measured is the inlaid thermocouple. The steps in this operation are

shown in figure33a The depth and width of the groove fDr the .020 thermo-

couple should be .022-.024". The best method for making a good groove is

by using a brass electrode on a metal deposition machine such as an Elox.

The thermocouple is secured in the groove by a technique that utilizes

a capacitance discharge welder such as the Weldmatic of Unitek. Eight

to ten mil Chromel A wires are laid parallel with the thermocouple and welded

into the groove. The spot welder power setting is approximately 15 watt

seconds, and the wires are spot welded with a multitude of discharges until

the wire blends into the piece. The work is dressed off until it presents

a smooth surface. The finished product is a thermocouple that is in

intimate contact with the surface and it presents no aerodynamic disturbance.

The thermocouple sheath can be secured along its length by capacitance

discharge welding small nichrome straps over the thermocouple sheath.

It is not always possible to use the inlaid thermocouple technique

or a welded technique because of compromising the integrity of the structure.

After this has been adequately discussed by the designer and the instru-

mentation engineer, a compromise technique can be used. This technique

is used for attaching strain gages and is called the flame spraying

technique. (Reference 61 - figure 33b) The thermocouple junction is made

from bare 1-3 mil chromel alumel wire or 1 x 32 mil flat ribbon or exposed

wire from the end of the swaged .020 thermocouple wire. The area where the

thermocouple junction and its leads will be secured should be cleaned

thoroughly and roughened by a grit blast If the surface cannot be

roughened, it should be cleaned thoroughly and flame sprayed with a coat

of nickel aluminide such as Metco 404, and then a layer of nichrome applied

as a base coat. After the surface has been prepared an insulation coat

of AI203 rod is used with a ceramic spray gun. A layer of 2-3 mils thick
should be sufficient for a base coat. If the measurement system will

tolerate a grounded junction and the designer will allow a light tack weld,

a better thermocouple installation will result if the junction is spot

welded directly to the structure. The wires are then pulled tight and

taped by strips of masking tape that does not leave a residue such as

mystic taper Then the exposed wires and the strips of tape are flame sprayed.

The strips of tape are removed and the previously covered wires and the

exposed wires are covered with flame spray. If separate thermocouple wires

were used for this operation, a high temperature splice must be made to

the lead wire, and the lead wires are treated in the same manner as the

imbedded thermocouples.
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FIGURE 33a Imbedded Thermocouple In Various Stages of Installation 

FIGURE 33b Flame Sprayed Thermocouples in Various Stages of Installation 
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3.3.1.1.4 Fabrication and Installation of Thermocouples - cont'd

b. Installation of the Thermocouple - cont'd

If the measuring thermocouple cannot be installed with either of the

recommended practices, other methods of attachment are possible. A good

method is to bare the thermocouple junction, secure the sheath to the

surface by nichrome strapping, and then tweezer welding the junction to

the surface. It is recommended that the wires be bent to provide expansion

joints. The junctions and the end of the swaged wire should be covered

with a nichrome band. See figure 34.

The instrumentation of cooling tube bundles presents additional problems.

It is recommended that capped thermocouples be used and the thermo-

couples be lead from the cold side through holes in the braze, run along

the crevice in the tube for a short distance to minimize conduction and

then fasten the thermocouple to the tube by nichrome strapping.

See figure ii.

3.3.1.1.5 Reference Junctions

A complete thermocouple system consists of a hot junction, lead wire,

a reference junction, and a millivolt meter. The temperature of the hot

junction can be determined if the temperature of the reference junction is

known and the voltage developed by the thermocouple junctions is accurately

measured.

Several reference junction concepts were considered in this pro-

gram. A very good reference junction for thermocouples is a junction immersed

in oil and maintained at the ice point with a mixture of ice and water.

(Reference _2)0 Unfortunately this setup is bulky for a large number of

junctions.

Kaye Company of Cambridge Mass. sells a unit which utilizes a thermo-

electric heater and cooler to maintain a reference junction at 32°F.

A common reference junction is a heated junction that is maintained

at some temperature above ambient. It is difficult to build such units

small, and maintain small temperature gradients in the reference block.

For users that like a reference of 32°F but want to use heated junctions,

this can be obtained by having two thermocouple junction in series, at

two different temperatures. The difference can produce a voltage that is

equivalent to a 32°reference. Another very common type of temperature

compensator uses a resistor with a unique coefficient of resistance. This

system is used in many direct reading temperature instruments. The resistor

whose resistance changes with temperature is placed in the bridge so that the

zero reading of the bridge will be equal to the temperature of the resistor

in the bridge. Some very light weight airborne compensators are commercially

available that operate on this principle.
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Figure 34 Sheathed Thermocouples Provided with Protective Shields 
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3.3.1.1.5 Reference Junctions - cont'd

All of the systems described need one or more controlled junctions for each

measuring thermocouple. The system recommended for this application is referred

to as the CATS system in reference 60, and a zone box in reference 63. The zone

box makes use of the fact that it is easier to go with nature than try to control

it. The general schematic diagram of the proposed system is shown in figure 35.

The details of making the floating reference junction box can vary to meet

the specified purpose. For this application, it is recommended that the

aluminum block be made for 100 thermocouples. The block should be at

least 1/2" x 2" x 8", and drilled with 200 - .086" through holes.

Chromel-copper and alumel copper junctions should be made by soldering,

and insulating with a good cement such as RTV 104. All of the junctions should

be placed in the holes in the aluminum block and glued into place. It is

recommended that platinum resistance thermometers, attached to the reference

block, be used to monitor reference temperature. The aluminum block with its

leads should be encapsulated in a plastic such as RTV-104, with insulation on

all 6 sides of the aluminum block. The leads should be spiralled around the

block and the complete unit provided with additional insulation. The lead

wire from the thermocouples should be attached to the chromel-alumel leads

from the zone box and the copper leads should terminate in an electrical

connector that is compatible with the PCM system.

3.3.1.1.6 Error Analysis

There are several sources of error which can be attributed to the

thermocouple system.

a° Premium wire can be specified with an accuracy as low as 3/8% of

reading. This is approximately 3°R at the low end of the temperature

requirement.

b. Spurious voltage checks to evaluate inhomogeneity and spurious

voltage due to insulation is specified as ±100 _V (±5°R).

c. Splices made with different lots of wire can result in errors as

great as ±2°R.

d. Reference junction temperature uncertainty should be limited to

less than I°R.

e. Current drawing signal conditioners such as resistance dividers

should be avoided. Thermocouple lead wire resistance changes

during test are not easily identified.
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3.3.1.2 Strain Measurements

3.3.1.2.1 Requirements

Measurements of the mechanical performance of the ramjet structures

will be important to the engine designer in view of the criteria to provide

for light weight design. In addition to an analysis of thermal gradients

and thermal stresses, it will be necessary to identify surface strains

resulting from steady loads, (aerodynamic drag and aircraft maneuvers)

and vibratory loads resulting from mechanical resonance and excitation by

engine instabilities.

3.3.1.2.2. Sensor Selection

Wire resistance strain gages provide the only practical method for

measuring strains in flight. In a recent article by G. R. Higson, (ref. 64)

an excellent review of the current state of the art in strain gages is

presented. A complete summary of available gage materials and cements

as well as their mechanical properties can be found in ref. 64,65, 66, and 67.

Although the field of strain measurements has required an exhaustive

development of techniques and materials , only a few are available for

ramjet testing in view of sensor criteria:

a. Gage will be exposed to a wide range of temperature (-40°F to 1200°F)

b. Sensor circuitry must be simple in order to minimize weight of

associated hardware.

c. Sensors must be reliable even after long periods of inactivity.

d. Gage installation must be adaptable to light weight structures.

For these reasons, it is recommended that uncompensated gages of

Karma (74% Ni, 20% .cr, 3% Fe, and 3% Cu) in conjunction with flame spray

insulation (section 3.3.1.1.4) should be selected. It will be necessary

to provide for separate measurements of steady state and vibratory strain

primarily because of the requirement for different signal conditioning

and recording. Practical steady state measurements are limited to 650°F

because of gage wire stability and vibratory to 1500°F, because of leakage

to ground through the gage insulation.
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3.3.1.3 Vibration Measurements

3.3.1.3.1. Requirements

Three axis measurement

a. Range:

b. Measuring range:

c. Accuracy:

0-200 G between 200-2500 cps

0-50 G between 200-2500 cps

±2.5 G and ±25 cps.

3.3.1.3.2 Transducer Selection

A review of accelerometers was conducted to determine the specific

state-of-the-art component suitable for the ramjet program. The frequency

as well as the temperature requirements indicate the measurement can be

best achieved with piezoelectric aceelerometers. Reluctance and unbonded

strain gage units were reviewed. Their frequency response and temperature

range were not acceptable for this application.

Piezoelectric accelerometers are divided into classes, depending on

the voltage generating element. The generating elements looked at were

quartz and piezoelectric ceramics. A comparison of the two types is

given in the following table.

Piezoelectric

Characteristics Quartz Ceramics

Temperature Range

Stability:

below 500°F

500-750°F

Gain Sensitivity

Thermal Drift

System Noise Sensitivity

-320 to + 750

Superior

Severe problems

2.5 pico coulombs/g

.01% per°F

Good

-450 to + 750

Good

Superior

4 pico eoulombs/g

.015% per °F

Best

It is evident for this application that the piezoelectric ceramics

are more desirable since the temperature span is wider and the sensitivity

is higher. An error analysis can be derived from the _ollowing major

factors:

Calibration error -200 to 2500 cps

Temperature error - 750°F

with data reduction correction

without temperature correction

Amplifier error - linearity

±2.5%

Type of Error

+3. o%
±8.0%

to 2500 cps (located in X-15 inst. bay) ±2.5%

Error-cable capacitance change ±1.0%

(1% per 1500 pf)

Recording errors (FM system) estim. ±3.0-±5%

(Including playback)

Random

Random

Systematic

Frequency sensitive

Random

Random

91



3.3.1.3.2 Transducer Selection - cont'd

A methodof obtaining the required accuracy would be to monitor the
temperature of the accelerometer and correct for sensitivity change during
data processing. This is a feasible method which generates data assurance and
entails only a moderate programming cost. It is estimated that the method
would provide approximately ±5%data (±2.5G) whereas without the temperature
correction an acceleration uncertainty of about 11%can be expected with
good calibration practice.

In considering the temperature correction routine, an evaluation should
be madeof just what acceleration data means to the ramjet designer. Knowing
the vibration at one point, just howwell can it be extrapolated in the
particular structure devised? This is beyond the scope of this study.
A major use of the measurementwill be to provide safety limits for flight
test as established during the ramjet design and ground test programs.
Accordingly, the accelerometers should be fixed in their locations during
the ramjet design phase. The transducers should be positioned on stiff
main structural membersnear the throat of the engine as recommendedby the
design and test experience. The temperature requirements of a suitable
transducer is -450 to +750°F. The ramjet environment requirements can be
met with this unit by utilizing a standard insulating pad. This pad is
required for signal conditioning to insulate the transducer from ground.
It maybe necessary to replace these pads, and possibly the accelerometer,
after flight; consequently, the accelerometers should be accessible and
temperature monitored.

3.3.1.3.3 Amplifiers

As an electric source, a piezoelectric transducer may be considered

to be a very small capacitor which is a coulomb generator. To signal condition

this device, special matching electronics are needed such as:

a. High input impedance voltage amplifier.

b. Charge sensing amplifier.

For the application on the ramjet with the requirements for an extended

cable, the charge sensing amplifier in the X-15 is the most suitable since

system sensitivity is not affected by the cable length as it is with a

voltage amplifier. Calibration assurance is more satisfactory. The key

advantages to a good charge amplifier are:

a. The low frequency response of a charge amplifier is not a function

of input time constant. This means that calculations involving

transducer capacity, cable length, and amplifier input are not needed.

The amplifier only is involved in frequency response.

b. Charge amplifiers do not require the high input impedance of voltage

amplifiers.

c. The sensitivity of the system is not affected to a major degree by

cable lengths.

d. Laboratory calibration is suitable without appreciable correction.

e. The transducer thermal sensitivity is much less than in a voltage

measuring system.

f. Signal to noise is more favorable in a charge system with a long cable.
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3.3.1.3.4 System Weight

The estimated weight chargeable to the ramjet package consists of

insulating pads, transducers, cabling, and special plugs. It can be

estimated as:

a. Three transducers and pads 0.25#

_. Shielded cabling 0.20#

c. Plugs 0.80#

Total Weight 1.25#

3.3.1.3.5 Data Assurance

It is recommended to modify the charge amplifier to include a i00 ohm

resistor in the ground leg and a voltage divider to provide for preflight

and postflight assurance of the accelerometer system. This will permit

checkout of all the electrical harness and the gain of the charge amplifier.

A recommended schematic is given in figure 3G.

3.3.1.3.6 Calibration

Accelerometer, charge amplifier and appropriate length of cable should

be calibrated together for best results. A frequency-response curve should

be run on the system from 60 to 2500 cps using a laboratory shake table.

Such a suitable table is available at the NASA Edwards Facility. During

the laboratory testing, a standard 400 cps voltage should be supplied to

determine the "G" sensitivity of the calibrate terminal on the amplifier

in terms of "G" per volt. This will permit future adjustment of the charge

amplifier on the aircraft to a different range setting at a later date if

it is required.
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3.3.2 Ablation Surfaces

Ablative materials may be required in the design of the ramjet engine

in order to provide for thermal protection of engine structures

Considerable experience in the use of ablatives has resulted from their

application as nose cone and high temperature rocket nozzle protection.

In these applications the principal measurements have been surface pressure,

surface temperature and regression rate. These measurements will also be

necessary for ramjet evaluation,lhowever, it is expected that the accuracy

requirements will be more stringent since ablation will affect engine

performance through dimensional changes of wall surfaces and addition of

consiituents to gas stream.

Most successful technique for performing wall pressure measurement has

been to simply drill pressure taps in ablative material and provide pressure

tubing at base. (figure 37A ) Surface erosion around the tap constitutes

a major problem as pointed out in earlier discussions. Attempts have been

made to provide for a continuous smooth surface around the pressure tap

through the use of thin discs of various materials stacked in the ablation

surface (figure 37A ) with the intention that the discs would erode in one

piece during the regression of the ablation material. This technique has

been unreliable because of a resulting mismatch in thermal conductivities.

Surface temperatures are measured either directly through the use

of imbedded thermocouples (figure 37B) or indirectly through optical

measurement of the surface infra-red emission (figure 37B ). Optical

techniques for temperature measurements tend to be complex with

considerable inaccuracy due to the uncertainty of the surface emissivity.

Imbedded thermocouples have performed satisfactorily when small wires

(.001 - .003) are used and properly oriented to insure clean burn out.

(Reference G8) Plugs of ablation material containing thermocouples

can be made and inserted into ablation surface. Plugs must be of the

same material.

Since ablation regression is a direct indication of its effectiveness,

considerably more effort has been directed toward this measurement. Methods

fall into three classes:

a. radio isotope

b. electrical

c. surface erosion.

Figure 38 schematically depicts several methods in each classification

which have been applied. The electrical methods are not recommended for

charring or conductive materials such as phenolic base plastics and pyrolytic

graphite. Methods which rely on a discontinuity in the surface for indication

such as pushrod, pressure tube burnout and photoelectric detection are not

adaptable for easy replacement which will be a requirement of ramjet

instrumentation.
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3.3.2 Ablation Surfaces - cont'd

Considerable effort is currently being directed toward the application of

radio isotope techniques. Systems using imbedded radioactive wires and

discs have been"flight tested. Backscattering which should provide continuous

measurement of regression is under development. The nature of radio

isotope techniques for measurement require counting procedures which seriously

limit its application on transient and short duration tests.

Although the investigation of ablation measurements during this study

was cursory, and conducted primarily through discussions of measurements

with nose cone specialists, it is apparent that current techniques are not

adequate to provide critical ramjet data relative to regression rates of

ablation materials or surface pressures and temperatures.
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3.4 Exhaust Gas Measurements

3.4.1 Mid Stream Probing

3.4.1.1 Probe Interference

Probe interference effects will limit the use of probes to locations

aft of the exit nozzle under engine operating conditions. The shock wave

generated by any probe inserted in the stream will be severe enough to very

seriously disturb the engine operation. At any point where unreacted fuel

and air are present, the probes will almost certainly act as flame holders.

The extra high local heat release due to flame holding action will require

extra heat protection on all local surfaces. Even without flame holding

action the local interaction heating due to shock wave impingement as

discussed in Appendix I may require special thermal protection. The effects

of local interaction heating are shown quite clearly in figure 12.

3.4.1.2 Probe Support

Probes will be required for measuring stream temperature and pressure,

for taking stream gas samples and may be required to support optical heads

in the stream. Structurally the probes for each of these functions will

be the same. The only difference will be in the applied sensor and in

its mounting. For each engine location or each engine design the actual

probe design will differ as the stream conditions differ. During this study

one sample probe design was completed for one set of aerodynamic conditions

and should be a realistic guide as to what can be expected in a final probe

design (Appendix I and II).

The heat input to a probe will (in general) be fixed by the required

probe geometry to support a sensor in the stream and the gas stream conditions.

For a given set of engine conditions, the probe weight will depend directly

upon the technique used to remove heat. The probe may be:

a. Made of high temperature materials which will withstand the

imposed temperature

b. Protected with an ablative material

c. Cooled with a fluid coolant (water, air LN2, etc.)

d. Used as or attached to a heat sink.

The probe weight-estimated for6" p_oSe immersion at nozzle exit, max.Q,
20 second run;

i. Coated tungsten .46 lb.

2, Pyrolytic graphite protected Steel .72 lb.

(ablative)

3, Cu as heat sinM _ 6 lb.

4_ H20 as heat sink -_5.5 lb. plus pump, lines,

: and tank weight
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3.4.1.2 Probe Support - cont'd

The high temperature material approach will be the lightest weight if

a satisfactory material can be found. Various materials such as molybdenum,

tantalum, and tungsten variously alloyed and coated have been proposed.

At least one manufacturer sells, as a regular catalog item, a coated

molybdenum probe rated up to 3200°F in an oxidizing atmosphere. Figure 39

shows the results of a test reported in reference 69 in which the probes

were subjected to flame tunnel conditions at 2200°F, which is much lower

than the temperatures which will occur in a hypersonic ramjet engine.

High temperature materials need to be considered but until more reliable

protection methods are developed, they cannot be recommended.

With no heat sink available, ablatively protected probes will be the

lightest weight. One probe design for estimated maximum engine conditions

was completed as a sample of the procedure which must be followed and to

estimate the maximum weight for a probe. Final design of a probe must, of

course, be based on actual engine operating parameters and allowable mounting

arrangements. The design analysis for an ablative probe was done by the

General Electric Missile and Space Vehicle Department at Philadelphia, Pa.

Their results are shown as Appendices I and II. They have had extensive

experience in design of ablatives for missile nose cones. The analyses

presented are preliminary, and are based on estimated engine conditions.

It will be absolutely necessary to build and evaluate several probes to

determine the actual heat transfer rate, the shock effects and the vibration

characteristics before a final probe can be put into an engine. Much of

this can and should be done during early ground testing of an engine.

Figures i2A & 12B are typical of the erosion which can be expected

on a probe. They are the results of ablation testing for 4 seconds on a

phenolic nylon ablation material at high enthalpy levels which are very

roughly comparable with those which can be expected in a hypersonic

ramjet engine. About 3/4" of the material was removed in the 4 second run.

Pyrolytic graphite will not ablate nearly as rapidly as the phenolic

ablatives, but the ablation pattern should be similar. Notice the large

groove which has ablated at the base of the fin due to interaction heating

where the shock wave from the leading edge of the fin impinged on the wall.

It will be necessary to provide extra ablative material at the base of the

probe as suggested in Appendix I or provide extra cooling capacity at the

wall depending on how the engine is designed.

Should any source of coolant such as fuel, spent coolant used at some

other point, spent hydraulic fluids, or spent pressurizing gasses become

available, the choice between ablative protection and cooling must be

reevaluated.

All of the above analysis is based on estimated maximum engine operating

conditions. (Mach 8 and 85,000 ft.). At lower speeds, it will be possible

to use conventional stainless steel and similar materials. For any engine

operating conditions for which the probe temperature will not exceed

approximately 1800°F conventional materials should be suitable.
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3.4.1.2 Probe support - cont'd

If the final engine design has struts across the flow path, it may be quite

easy to measure the pressure on the leading and trailing edges of the struts

and use these pressures to calculate engine flow conditions.

3.4.1.3 Probe Functions

3.4.1.3.1 Total Temperature

Thermocouples are the most common way of measuring the gas temperature of

jet engines. It is a logical suggestion that thermocouples be investigated to

measure ram jet gas temperatures. General thermocouple design criteria is to

design the probes so that it operates as close to gas temperature as possible.

This is done by maximizing the heat input and minimizing the heat loss. The

running factor, which must be determined for each probe configuration establishes

the difference between probe indicated temperature and actual gas temperature.

In considering the requirements of 6500°R, it is questionable whether a

thermocouple can withstand this temperature. The thermocouple that has shown

a lot of promise in the high temperature range is Tungsten Rhenium-Tungsten.

Tungsten has a melting point of approximately 6600°R, and Tantalum of 6200°R,

alloys of tungsten and rhenium - 5800°R. Tungsten Rhenium-Tungsten have been

calibrated up to 5500_°R (reference 70). Reasonable values for the effects of

radiation and recovery would make the operating temperature of the probe low

enough to use tungsten rhenium, However, tungsten and rhenium must be protected

in an oxidizing atmosphere.

As the result of a survey of individuals actively working on the problem

of tungsten rhenium-tungsten protection from oxidation was that presently

there is no satisfactory coating for protecting tungsten and tungsten rhenium

alloys against oxidation at high temperatures. However, several of the

individuals expressed optimism of soon having such a coating.

Assuming that a thermocouple capable of witshstanding a 6500°R total

temperature stream will be developed, other practical problems exist for this

application. A quick review of the factors that determine the indicated

temperature of a thermocouple immerse_ in a gas stream should be helpful.

(Reference 71).

a. Heat transfer from the boundary layer to the probe sensor by convection,

q = hA(rg-Ti)
b. Heat transfer to or from the probe by radiation

q = _fe A(T_ - T_)

c. Heat transfer by conduction

T - Tb J hc
E = i where m =

P

c cosh mL R a
P

d. Conversion of kinetic energy to thermal energy in the boundary

layer aournd the thermocouple.

T T - T.1
Recovery factor -

T T - T E
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PROBE TIPS
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Figure 40
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3.4.1.3.1 Total Temperature - cont'd

e. The inability of the probe sensor to follow gas stream conditions

due to response time.

f. Chemical energy that is converted to heat on the surface of the

probe sensor.

The heat transfer coefficient is difficult to obtain in subsonic

streams and is more difficult to determine in supersonic streams. However,

determinations are made by heat transfer people for structure and probe

support designs.

h = heat transfer coefficient should be available. Number will
c

probably be subject to much uncertainty.

A = area of probe.

T. = indicated temperature of probe.
1

will be measurable quantities.

The factors that are needed to determine the heat loss by radiation

should be determinable.

_ Boltzman Constant

f = Angle factor

A = Area of probe.

are all measurable quantities or known constants.

e

T°

T 1 =
w

Emissivity of the coatings at elevated temperatures will be

available when the coating is developed.

The indicated temperature of the junction will be recorded.

The temperature of the wall can be estimated with some degree

certainty.

It should be possible to evaluate the conduction error by evaluating

the following factors:

P = Perimeter of probe.

a _ Cross sectional area of probe

Rp = Thermal conductivity of probe

L = Length of immersion of the probe.

These factors should be supplied by the probe manufacturer.

T b = Temperature of the base should be obtained from the probe support.
h c The heat transfer coefficient.

Since the proposed probe support is non cooled T i - T b should be a

small number and the conduction error should be small.

The recovery factor of thermocouple probes can be determined with

good certainty at subsonic velocities and work has been done at supersonic

velocities. (reference 72) The difference between TT, the total temperature

and Ts,the static temperature is large at supersonic velocities. Therefore,

a small error in the determination of the recovery factor is a large error

in the measurement of total temperature.

104



3.4.1.3.1. Total Temperature - conrad

A thermocouple with a slow time response will only read an average tempera-

ture and it is not able to accurately measure the temperature of a gas stream

that exhibits rapid temperature and pressure fluctuations°

The burning of combustibles on the surface of a probe results in a higher

indicated temperature than the true gas temperature and is referred to as

surface reaction. Dissociated combustibles at high temperatures are in equili-

brium with products of combustion in an efficient combustion process° The

effects of surface reaction on the probe in streams that contain disassociated

combustibles that are in equilibrium to high temperature and pressure can be

calculated. However, the effect of surface reaction in inefficient streams is

unpredictable and it can be a large source of error.

Discussion

General thermocouple design attempts to maximize the heat into the probe

by increasing the heat transfer coefficient, decrease the radiation loss by use

of hot shields, minimize the conduction error by making the stems long and the

base hot, and to minimize the recovery error by slowing the gas down to a low

velocity so the difference between total and indicated temperature is small°

By using the probes on steady state, non fluctuating gas stream with high

combustion efficiency, the response time and surface reaction problem can be

ignored. It is expected that in the case of ramjet testing_ these conditions

are not present and consequently response time and surface reaction are

expected to be serious problems.

Probe types other than thermocouples have been used to measure gas tempera-

tures such as pneumatic probes_ calorimeter probes_ and stagnation point probes°

(reference 73) Many of these probes allow the actual sensor to operate at a

lower temperature than gas temperature and provides a method for calculating

the difference.

Unfortunately all of the designs studied suffer from the fault that the

probe would interfere with the gas stream and could very well make combustion

take place in a stream with very low combustion efficiency°
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3.4.1.3.1 Total Temperature - cont'd

Recommendation:

The development of high temperature coatings for Tungsten Rhenium-Tungsten

thermocouples should be encouraged. High temperature thermocouples will serve

a useful purpose for some ground testing. Additional work must be performed

on the effects that a probe has on a supersonic gas stream containing

unreacted combustibles before a high temperature probe can be used to

measure temperature accurately for this application.

3.4.1.3.2 Impact Pressure

The impact pressure sensor will be the simplest of the sensors to build

for probe mountings. Under some conditions it may be possible to simply

drill a hole through the front of the graphite protection as shown in

Figure 40b. It will be necessary to test this kind of probe under ablating

conditions to determine ablation rate and particularly the effect of ablation

on impact pressure error. See Figure 12, which shows the local ablation

which will occur at holes in an ablative material. A more desirable probe

would have an Iridium tube fitted into the front, as in figure 40c.

Iridium with its high melting point could be expected to ablate more slowly

than the graphite and would thus maintain a small protruding tube in front

of the probe body. This will tend to decrease impact pressure error both by

protruding and by being more shape stable during ablation than an ablating

hole. It will have the undesirable effect of producing a small local shock

with interference heating effects which will tend to cut into the probe

body. This configuration will also have to be tested under ablating

conditions to determine an acceptable design and to determine the errors.

The material is quite difficult to work. The choice between the two

methods will depend on the results of tests which can be run during

early ground testing of the engine.

3.4.1.3.3. Optical

Optical instrumentation that may be used which will require probes in

the stream is distinctly developmental and it can vary quite widely in its

requirements for probes. A pyrolytic graphite protection sheath will

lend itself quite readily to many forms of optical probes. Figure 41 shows

simple suggested forms. If an optical path across the stream is needed,

a simple steel tube with graphite protection as at Figure 41 (a) will

suffice. Cooling (and purge) air may be blown down the tube to keep local

heating and ablation of the end of the probe down. If a folded light

path is required either looking upstream, downstream, or to either side of

the probe a first surface mirror can be mounted inside the probe at

figure 41 (b). In this case clean purge gas will certainly be required

to keep the mirror clean. Should a light pipe be required, it can be

mounted with cooling as at Figure 41 (c). Here cooling and purge both

will be required.
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3.4.1.3.4 Gas Sampling

3.4.1.3.4.1 Sample Extraction

Gas Sampling (Ideal Probe)

An ideal gas sampling probe would take a sample from the stream to the

analyzer without any reactions occuring. If the gas is disassociated, as it

will be at high temperatures, the disassociated portion will, of course recom-

bine if the gas is cooled. If the gas is not cooled, but is contained at

normal densities, it will rapidly react to equilibrium composition for the

particular temperature and pressure.

The allowable holding time (the minimum period of gas stagnation before

gas reaction and recombination is initiated) depends on pressure and tempera-

ture, but is a very small fraction of a second. Ionized gases at very high

temperatures have been sampled and analyzed within this time by a quite elaborate

probe built directly on a special mass spectrometer (ref. 74) which is far too

complex, fragile, and heavy to use in flight. There is a possibility that such

a system could be used in early ground testing.

Gas Sampling (Shock Swallowing)

Figure 42 represents the situation for sampling probes with cooling of

the sample. The ideal probe would take a sample from the stream as at fig.42a

and instantly cool it to a temperature at which no reactions occur except

radical recombinations. The nearest practical approach to this for a super-

sonic gas stream is shown at fig. 42b, in which the gas enters the front of the

probe supersonically and is cooled to a temperature low enough to freeze the

composition before it is decelerated appreciably. The gas temperature inside

the probe should never exceed the free stream static temperature. There will,

of course, be an external shock attached to the lip of the probe which will

disturb the stream externally, but there should be none inside the inlet of the

probe. The problem of designing such a probe is more difficult than designing

the inlet of the engine it is to be used in. At the point where gas analysis is

required there will have been at least some heat addition to the gas flowing

through the engine. The probe must of necessity be quite small which makes

aerodynamic design nearly impossible. Surface irregularities which can be

ignored in the engine almost completely may be as large as the flow path in the

probe. There are certain guide lines which can be stated for such a probe and

are illustrated in figures 43 and 44.

a. The inner area of the probe must expand to accomodate supersonic

flow with boundary layer buildup until the gas is cooled to a

point where shocking down will not exceed reaction temperatures

for the gas composition present.
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3.4.1.3.4.1. Sample Extraction - cont'd

Gas Sampling (Shock Swallowing) - cont'd

b. The lip edge must be sharp to permit an attached shock on the

outside of the probe without an internal shock. The angle formed

at the leading edge must be sufficiently large to conduct the heat

away without reaching a temperature high enough to cause damage.

c. The cone angle at the tip of the probe must be smaller than the

critical angle for an attached shock at the local stream Mach number.

Under certain conditions these requirements become mutually exclusive,

and there is no possibility of building a shock swallowing probe. This

occurs when the stream conditions are such that the total required

angle 1 plus 2 is greater than the allowable angle 3. Accurate calculation

of these angles is an extremely involved heat transfer and aerodynamics

problem. The general shape of the area which can be swallowed is shown in

Figure 44, assuming that the probe tip reaches the stream total temperature.

As the stream Mach number decreases the allowable stream total temperature

decreases to a limit slightly above Mach I. There is no possibility of

attaching a shock wave to the leading edge of a finite thickness probe at

or slightly above Mach I. As the stream Mach number increases the allowable

total temperature approaches a limiting temperature asympototically. The

limiting temperature will be that temperature for which sufficient cooling

can be maintained at the leading edge of the probe at an infinite Mach

number to maintain a sharp edge.

As has been stated above, the actual design and development of a shock

swallowing probe is a very difficult aerodynamic and heat transfer problem.

By using iridium for the sharp leading edge (melting point 4204°F) the

limiting stream temperature should be in the region of 4000°F to 5000°F

depending upon how much cooling can be supplied to the probe tip. Development

of such a probe and identification of the gas stream conditions under which

it can be used is recommended.

Gas Sampling (Rapid Expansion)

A rapid expansion probe, figure 42 (c), can be designed for any Mach

number or total temperature up to the limit of ability to keep a probe

structurally cool enough to not seriously ablate in the region near the

sensing port. (See references 75 and 76 for discussion of the design).

In a rapid expansion design, a rather blunt (probably spherical) ended probe

is placed in the stream which samples a small portion of the gas behind

a normal shock.An orifice much smaller than the I.D. of the probe is placed

at the inlet. The pressure inside the probe is maintained far below the

pressure at the inlet.
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3.4.1.3.4.1 Sample Extraction - cont_d

Gas Sampling - (Rapid Expansion) - cont'd

As the gas passes through the shock_ its temperature is raised to that which

exists behind a normal shock for the local stream Mach number As it passes

on into the probes it is rapidly cooled by a combination of rapid expansion

and mixing with the cooler gas inside the probe° The residence time between

the shock and the cooling inside the probe must be kept very short compared

to reaction times of all reactions which can occur in the gas° As an example_

the equilibrium composition for H2-air products of combustion are shown in

Figure 45.

In Reference 76, Appendix B_ '_Analysis of Chemical Reaction Quench Rates

in the Gas Sampling Probe", the conclusion is drawn that with their rapid

expansion probe under the conditions tested_ the quench rate was faster than

the reaction rate. In a straight tube gas sample quenching did not occur and

the reaction went to completion° In their rapid expansion probe the r_action

did not go to completion. It was aoncluded that the rapid expansion probe is

better than a plain straight tube for sampling non-equilibrium gas streams°

There is apparently no evidence to show what reaction occur in the region

between the shock wave and the probe interior for non.-equilibrium stream

conditions as pointed out in Reference 76_ "The Changes in Static Temperature

when Passing the Quenched Gas Through the Shocks (inside the probe) are not

Clear"° Apparently there is little possibility of realistically predicting

what happens aerodynamically inside a probe of such small physical size°

Since the quench is not instantaneous and particularly since the gas temperature

is raised above the free stream_ static temperature by the shocks _ome partial

reactions not detected in Reference 76 should be expected°

Referring back to Figure 44, for a rapid expansion probe no limits can be

drawn for the area in which it can operate° There will be no Mach number

limit since a shock in front of the probe is assumed in the operation and the

absence of the shock at subsonic velocities would simplify the analysis° As

the static temperature is increased_ the equilibrium disassociation increases

and the recombination reactions (which cannot be quenched) will limit accuracy°

3.4.1.3.4.2. On Line Gas Analysis

On line gas analysis can be desirable for several reasons:

ao Rapid analysis of samples may return data fast enough to allow

modification of engine operating parameters during a run_.

b0 It could represent a continuous record of gas composition even

during slow engine transients.

c. If a large number of data points is desired it may be lighter

weight than a gas sampling system°

d. For certain single constituents extremely light weight analyzers

are available.
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3.4.1.3.4.2 OnLine GasAnalysis - cont'd

Gas analysis on line could conceivably be done with several different
classes of equipment. These are:

a. Massspectrometer
b. Gas chromatograph
c. I. R. absorption
d. Thermal conductivity
e. Po_arographic equipment.

Mass Spectrometer

At least three basically different principles are used in mass spectrometers.

These are: I) path deflection in a magnetic field; 2) time of flight,and

3) nuclear quadripole resonance. All of the instruments are normally too

large and heavy for use in flight applications. Some small instruments have

been built and flown. (reference 74) Extreme light weight versions of all

three could probably be developed. A reasonable target weight would seem to

be i0 to 20 ibs. with the magnetic type probably the heaviest. The nuclear

quadripole type is quite new, but may well be developed to a point where it is

attractive by the time an analyzer is needed. One "time of flight" instrument

has an advantage of monitoring several constituents practically simultaneously.

(Reference 74)

A mass spectrometer will not provide any particular advantage over other

methods of analysis which are lighter and cheaper unless it is used with special

direct sample inlet hardware which permits analysis without cooling the gases.

This probably is not possible in flight but may be possible in ground testing.

The method has been discussed briefly in the section on quick quench gas

sampling and is discussed more fully in Reference 74, and will not be repeated

here.

Because of cost, weight, and relatively low data payoff, mass spectrometer

analysis in flight is no£ recommended.

Gas Chromatograph

All gas chromatograph systems investigated are far too slow to be of use.

The fastest systems could give an analysis on one sample per minute. For the

same weight many samples could be taken and analyzed later on the ground.

I. R. Absorption

Of the gases to be expected in the exhaust of a hydrogen air engine only

water vapor has an easily useable absorption in the I.R. region. The systems

available would be too heavy for flight use but could be developed into

lighter versions. I.R. absorption may be useable as a remote measuring system

but offers no special advantages over other available methods.
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3.4.1o3.4o2 OnLine GasAnalysis - cont'd

Thermal Conductivity

Thermal conductivity measurements are uniquely fitted to hydrogen analyses.

Hydrogen has a thermal conductivity much higher than any of the other gases

present and can easily be identified by its effect on thermal conductivity of

the mixture. There are several thermal conductivity measuring cells commercially

available which are quite small and could be adapted readily to ground testing.

Some rather minor development to reduce weight could make any of them applicable

to flight testing.

Whenever continuous recording of percent hydrogen present is required_ a

%hermal conductivity measurement is recommended°

Polarographic Analyzers

Very small polarographic analyzers for measuring oxygen percentage are

commercially available. At least one company is also delivering developmental

quantities of polarographic hydrogen analyzers (on Contract NAS 8,-i1510 to

Huntsville). Both systems are somewhat slow on response time but can be used

and would be quite attractive if the response time is improved. The analyzer

head for both systems can be of the e_der of one ounce°

The polarographic oxygen analyzer is recommended for continuous monitoring

of the gas sample oxygen content :regardless of what other analysis or sampling

system is used.

Improvement of the response time of the hydrogen analyzer will make it: more

attractive than the thermal conductivity system because of its lighter weight

and lower susceptibility to environmental errors from temperature and pressure

changes.

3.4ol.3.403 On Board Collection

Collecting the gas samples in glass bottles and analyzing the _amples later

with a chromatograph is a very practical system for ground testing_ and it could

be applied to flight measurements.

Different sampling systems have been used for ground testing but unless

there is a technical breakthrough in the design of non-contaminating light

weight vacuum pumps or in techniques for analyzing low pressure gas samples:,

none of these techniques can be applied directly to flight testo

Discharging the gas from the sampling probes into evacuated sample bottles

is not practical for flight test because of the requirement for low downstream

pressure within the sampling probe° This results in a low pressure sample that

is difficult to get out of the sample bottle and up te atmospheric pressure

required for chromatographic analysis. A vacuum pump could be used in the line

to maintain low pressure at the probe and give a high pressure sample° A non-

contaminating high vacuum pump must be used and such pumps are not adaptable to

flight applications°
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3.4.1.3.4.3. On Board Collection - cont'd

A system that would be practical for flight application is shown in Fig. 46.

This system isolates the gas sample from the evacuating system by the use of

mylar bags. Mylar is reported to be strong and impervious to hydrogen diffusion.

(Reference 77) The principle of operation is chat the bags are collapsed in a

vacuum chamber and the pressure difference between the probe and the chamber

fills the bag.

The design of the system is based upon a requirement for 12 samples.

A practical volume for commercial analytical equipment is a 10 ml. sample at

atmospheric pressure. In order to attain a quenched sample the downstream

pressure should not exceed 4 psia, therefore the minimum bag size would be 50 ml.

A scanning valve and room for twelve 50 ml mylar bags could be accomodated

in a container 3" diameter and 13" long. The container could be evacuated by

an on-board aspirator or a static pressure port on the side of the ship. The

bag filling would be sequenced by the scanning valve. The operational sequence

of the sampling system could be as follows:

a. fuel turned on

b. scanning switch actuated

c. first bag filled

d. scanning switch exhausts line to evacuated chamber

e. second bag filled

f. _xhaust to chamber

This sequence is followed until all bags have been filled.

When the samples are on the ground, the gas can be extruded from the bags

like toothpaste from a tube and sent to a commercial laboratory for as

comprehensive an analysis as desired.

3.4.2 Remote Measurements

3.4.2.1. Requi rement s

There is a tremendous advantage to being able to measure gas stream conditions

remotely. The introduction of probes into the gas stream can seriously affect

the performance of the ramjet engine and conversely the probe may be affected

by the stream. Although the chance for successfully developing remote instru-

mentation may be low, the rewards are so great that it should be attempted.

Remote measurements of total and static pressure, total and static tempera-

ture, veolcity and gas constituents would be welcome.
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3.4.2.1 Requirements - cont'd

The literature contains references to systems that have been used to measure

all of these parameters. However, the systems are usually engineered for a

specific problem and are often dependent upon the abilities of a specific _

individual. A reference list is included in the appendix that verifies this

statement. No commercial instrument was found that would measure any of these

parameters on a ramjet engine. It should be emphasized that there is a tremen-

dous difference between an instrument developed for a laboratory set up and

a dependable flight instrument.

In order to limit the scope of this investigation, it was decided to confine

the study to answering this fundamental question: "What is the combustion

efficiency of the supersonic ramjet in flight""

The two most promising parameters to measure would be static temperature

and gas composition. Methods which are used for measuring static temperature

of gas remotely include:

a. Sodium "D" line reversal method (reference 78).

b. Alkali metal line reversals.

c. Iodine absorption (reference 79).

d. Microwave absorption.

e. Untra-sonic absorption (reference 80).

f. Velocity of sound.

g. Ultra-violet, visible and infra-red spectroscopy.

h. Photographic pyrometers.

i. Two color pyrometer.

j. Temperature determination of soot and other particles.

k. Beta-Ray gauge determination of density.

i. Interferometer.

m. Infra-red absorption and emission (reference 81 and 82).

Instruments have been designed and built to measure OH and H20 concentration

(ref. 82). Work has been performed to determine the C02 and H20 concentration

in flames, (reference 83).

In order to determine which system would have the greatest chance of success

a set of typical engine specifications were assumed. It was arbitrarily decided

that the best location for making the measurements would be at or close to the

exit of the nozzle. The assumed operating map is shown in figure 47, which

gives the Mach number and the range of static temperatures. The profile shown

in figure 48 was assumed as typical relationship between the cooled boundary

layer, the hot static temperature of the uncooled but completely reacted

boundary and the static temperature of the main streBm.

The practical limits for Na D line is approximately 2900°R,(ref. 78),with

lower limits of 2500°R,(ref. 85). The predicted low static temperature and the

difficulties that have been experienced in attempting to seed locally in a

supersonic stream eliminated the use of Na D line techniques for measuring the

static temperature.
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3.4.2.1. Requirements - cont_d

The assumption was also made that no contaminants would be present in the

optical path such as B 2 03, carbon, @tc. The low static temperature and the
difficulty of bringing injected particles up to stream velocity and temperature

was used as a basis for eliminating the introduction of solid particles and

using a 2 color pyrometer to measure the temperature of the_particles.

Another decision was to choose the identification of the products of

combustion in the main stream rather than the static temperature if a choice

had to be made.

The technique that offered the most promise for making concentration measure-

ments and static temperature profiles is based upon the infrared absorption and

emission of the 2.7_ water band.

The infrared structure of the emission and the absorption of H20 molecule

in the 2.7 region is a function of the concentration and _tatic temperature

of the gas stream. By taking detailed and accurate emission and absorption data

at specified wavelengths in and around 2.7_, it is possible to calculate

water concentration and static temperatures. This calculation presupposes

certain basic information covering the band model parameters for the strongly

absorbing lines near the center of the 2.7_ band of H20.

3.4.2.2 Conceptual Design

Figure 49 shows the schematic of a conceptual optical system for measuring

infrared emission and absorption spectra at the exit of the ramjet engine.

Components selected for this design are identified to demonstrate a principle

and are not necessarily optimum components. There are four primary elements

which can be identified in the overall system. These include light source,

light transmission system, probe supports, and the spectrometer.

The conceptual system outlined would provide infrared emission and absorp-

tion measurements. This technique has been used for the strongly absorbing

lines near the center of the 2.7_ band of H20. Much of the background work

for this has been established in previous research studies, (ref. 86).

Additional work would have to be performed in order to be applicable to the

ramjet program.

The basic principle of the conceptual optical system is as follows.

Infrared radiation from the glowbar is collimated by the optical system and

chopped at a slow rate. The light pipes (ref. 87) transmits the radiation

to the optical probes in the_ream. The radiation is transmitted through the

hot gases, then by the light pipes to the scanning spectrometer. The scanning

spectrometer makes a full spectrogram in absorption. The chopper then cuts

off the radiation from the glowbar and the spectrometer makes a scan of the

radiation emitted by the hot gases.
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3.4.2°2° Conceptual Design - conrad

From the shape of these two curves_ which could be taken every 500 milli-

seconds, it is possible to determine the constituents_ the concentration_ and

possibly the static temperature of the stream.

3°4°2°3 Instrument Specifications

The following factors are important in the development of an adequate
instrument:

a. The path length across the nozzle

b. An estimate of the thickness of the boundary layer

c, The estimated static and total gas temperature profile across the

nozzle at different operating conditions. (This would include the

boundary layer and main stream)°

d° The estimated static pressure profile at different operating conditions°

eo The combustion efficiency expected_ and the lowest expected value,,

f. The possibility of impurities that would adversely affect the optical

path (such as ablative materials or products from pyrophoric fuels etco)

have been designed into the engine°

g° Estimates of weight and space available on the vehicle°

Instrument specifications should list in order of importance the function of

the instrument.

a. Instrument will provide a gas composition and static temperature profile°

b° Instrument will only provide a gas composition profile.

c° Instrument will only provide a static temperature profJleo

d° Instrument will only indicate if burning exists in the supersonic stream°

3.4°2°3 Definition of the Program

An integrated two part program resulting in an air borne instrument that

can be used to measure the composition profile at the exit of a ramjet is

recommended; the applied research portion to supply the basic information

needed for the instrument design and the interpretation of the data° The

instrument design portion should supply the operational instrument°

Some of the objectives of this program m2ght be;

a° A complete understanding of the operating and environmental conditions_

b. A definition of the wavelength interval_ resolution and other important

measurement characteristics°

c0 Re-evaluation of the feasibility ef designing an instrument based

upon I°R° absorption principle°

d° Start design of instrument.

eo Construct instrument°

f° Laboratory checkout of instrument°

g, Ground test instrument°

h° Review data - make design changes_

i. Flight test instrument°

j. Review
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3.5 Signal Conditioning and X-15 Interfaces

3.5.1 Signal Conditioning

The basic objectives in selecting specific signal conditioning

circuitry for the various parameters are the following_

a. Maximum reliability for airborne system.

b. Minimum checkout, trouble shooting and adjustment time.

c. Minimum weight for the test vehicle installation.

d. Maximum utilization of capabilities of the data acquisition

system and the transducers.

Types of transducers for which signal conditioning will be

required are the following:

a. Strain gage pressure transducers.

b. Static strain gages.

c. Thermocouples.

d. Thrust measurement system.

e. Flow transducers.

f. Accelerometers.

g. Resistance temperature detectors.

Discussion of all items except accelerometers and resistance

temperature detectors are covered in this section. The exceptions are

handled in the applicable measurement section.

Very careful examinationd the proposed thermocouple attenuation

method is recommended from the point of view of its use in other

measurements. The measurement constraints of a PCM system with only

two voltage levels of±15 MV and±5.0 volts full scale on instrumentation

outputs is very undesirable. The introduction of many voltage levels

would result in simplification of signal conditioning equipment and

data quality improvement. It would permit transducers to operate at

optimum signal outputs, decrease shielding requirements, and allow

correct power supply voltages to be applied directly to strain gage

bridges.

It is recommended that the next generation of PCM systems

be specified with a multilevel selectable gain amplifier programmed

to the particular channel.
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3.5.1.1 Pressure Transducer Signal Conditioning

The recommended signal conditioning circuitry for strain gage bridge

pressure transducers is shown in Figure 50. This circuit has the following
characteristics:

a. Transducer power is carried to the test vehicle on a common pair
of wires.

b. Voltage regulation feedback signal is taken from a point near the
transducer.

c. Power supply voltage is selected to provide ±I4MV output range for
the transducers.

d. Power supply voltage switched "off" for "zero cal" step. (zero cali-

bration)

e. Shunt resistance for "delta cal" (sensitivity calibration) step.

This circuit represents the simplest, most reliable signal conditioning

for this type transducer and requires minimum wiring to be run to the test

vehicle. Other advantages include elimination of sensitivity changes

with changes in power lead resistance and the absence of balance controls.

To make use of this circuit, however, there are limitations in flexibility

in application, including the following:

a. Transducers must be designed to balance at midrange for maximum
resolution in recording.

b. Sensitivity (full scale output voltage for a given excitation) must

be approximately the Same for all transducers operating from the

common power supply.

Use of a common power supply voltage has the advantage that the voltage
can be regulated and monitored at the transducer (if transducers are in one

location) terminals eliminating any errors which may result from variations

in series resistance of the circuit, either in wire resistance or a dropping

resistance. Recording the voltage at the common point near the transducers on

one channel of the PCM system will give further confidence in data quality.

Elimination of the balance control by specifying the transducers to

balance at the midpoint of their range also adds to the reliability and

accuracy of the systmm. With the use of computer processing, it is readily

feasible to correct for minor deviations from the optimum balance point.

If a transducer deviates significantly from its design balance point, there

is a good likelihood that it has been damaged in some way and qhite likely

is deteriorated in other performance characteristics as well as balance,

and should be repaired or replaced rather than rebalanced by external
adjustment.

Preflight and inflight checkout capability includes means for removing

power from the bridge to give a zero voltage output and shunting a resistance

across one arm of the bridge to give a step change in output. These o_tputs

do not check the zero or sensitivity of the transducer but serve only to

give a zero reference for the recording system, a rough check on the sensitivity

of the recording system, and an indication of malfunctions in the circuitry

associated with the particular channel or the power source.

125



o

126



Pressure Transducer Signal Conditioning - c_nt'd

The '_zero cal" step will indicate any changes in zer_ of the recording

system with the transducer still connected in its normal manner but with

excitation power removed. This will _erve as a check on zero offset of

the input gates and possible thermocouple effect_ in the wiring. In ca_e

signigicant shifts occur during a flight it may be possible to recover data

by means of this reference. However, this should not be considered a no,rm_al

practice and the system should be repaired to eliminate the source of the

offset.

The "delta cal" step will give a reaeonably good check on recording _ystem

sensitivity during system preflight checkout when temperatur_ of the system

are nearly constant_ but should not be used as a standard fc, r correcting

data. The primary function of thi_ check is to assure that there are no

gross malfunctions in the circuitry. An open or high resistan_e lead_ for

example, will result in a large deviation from the _tandard delta cal step.

If there is a change in recording system sensitivity, a reference voltage

on another input channel will give a mere reli._,ble source of cq, rrection data;

however_ either of these references should be u_ed for data cc, rrection

only in attempts to recover data which may possibly be salvageable in case

of system malfunctions. A six-wire _ystem '_i_;h the _hunt re_i_tance b_i!t

into the transducer for temperature compensation would give a more repeatable

"delta cal" during flight conditions. _©wever_ the added weight and complexity

of this appre:,ach is not considered to be justified in view c f the potential

benefits. Since the recording system _as a high input impedance and the

supply vcltage is regulated and mc_nitered at a point near t_e transducer,

the variations in lead wire resistance with temperatur'e change:_ _ill n_÷

affect t_e sensitivity of the transducer. _if tbe supply v_ltage is accurately

known and the circuit is de_on,_trated to be intact:_ tPe delta c_l value

will not improve the quality of the data.

Signal conditioning for transducers which do not meet the requirements

of midrange balance and common sen:_J.tivity can be accomplished by means

of the NA_SA 20 channel strain gage cont:,_l box_, d.v_._J.ng _DI-695_, wb.ich

includes balance and shunt ca!ibrati_n capability. _n addition_ transducer

sensitivx.ty must be matched to the !15 gV range of t_e PCM _ystem. TDis

may be accomplished either by addi÷i:_n of dr_pping re_i_tance in series _ith

the transducer power leads_ providing _elected power supply vcltages_ or

attenuating !he signals. Of tb.e_e options:. 9election _f p._)wer supply

voltages t<_ give the desired sensitivity witbout individual c_e.nnel

adjus÷ment or attenuation would result in the mozt _imple and reliable

system.
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3.5.1.2 Static Strain Signal Conditioning

Signal conditioning requirements for static strain measurements are

similar to those for bridge transducers except that the bridge must be

completed in the signal conditioner and there must be provision for

balancing the bridge. "Zero cal", "delta cal," and sensitivity provisions

and functions are similar to those discussed for strain gage bridges.

The NASA Hi-Temp Strain Gage System, Drawing ED-I-535, could be used

for this purpose. However, the scanner portion of this system is not required

nor desirable for this application. The basic signal conditioning circuit

required is shown in Figure 51

3..5.1.3 Thermocouple Signal Conditioning

Thermocouple signal conditioning will require attenuation of the high

temperature inputs to fall within the ±15 MV data system range. Attenuation

of signals ahead of the PCM system is possible but undesirable. A compromise

must be reached between source impedance for the data system inputs and load

impedance in the transducer circuits. Without attenuation the source

impedance is low and the load impedance is high, which is the ideal condition.

Increases in source impedance will make the system more susceptible to

extraneous noise signals and effects of back current in the electronic

gates. Decreases in load impedance will result in variations in sensitivity

with changes in source impedance such as changes in wire resistance as

a function of temperature.

The design of the NASA CT 77 data acquisition system includes a feature

which may make possible the attenuation of signals in groups of ten channels

without requiring these compromises. The multiplexer is made up of modules

(rows) of ten channels with an RC filter at the input of each channel and

a series switch following each row of ten channels. An attenuator between

the data gates and the series switch, Figure 52, will permit attenuation of

the associated ten channels with a relatively low resistance attenuator and

still not significantly load the source. The data switch is closed for an

individual channel only for the duration of one data word or 65 microseconds.

With the data gate open between samples the capacitance of the RC filter is

charged to the full level of the signal. When the data gate is closed for

the 65 microseconds period the voltage across the filter capacitor is

switched across the attenuator network and current flowing through the

resistor gives the desired attenuation at the series switch input. If the

data gate were "on" for an extended period the capacitance would discharge

down to a steady state condition determined by the resistance values of the

series resistance of the filter and the resistance of the attenuator.

However, with the gate turned on for only 65 microseconds the capacitance

discharges only a small amount and the voltage drop at the capacitor

is consequently low.
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Thermocouple Signal Conditioning - cont'd

This can be shown as follows:

t
E =Ee --
o RC

t = time following data gate cl<)sure

R = loop resistance of attenuator network

C = capacitance of filter output.

for t = 65 microseconds

R = 1500 ohms

C = microfarad

-6 -2
65 x i0 -1.44 x I0

E = Ee _ Ee _ .9857
o

1.5 x 103 x 3 x 10 -6

If C can be changed to 30 microfarad_ which is desirable for the 20-per-second

rate, E becomes 0.9986 E. Since there is no filter on the sub-com gates this

modification must be made to the particular prime channel filter°

To assure that this approach is feasible_ a study must be conducted

of the magnitude and stability of the "on '_ resistance of the data gates and

whether the attenuator network can be physically installed in the Multi-

plexer system.

An alternate possibility which should be considered is the installation

of additional amplifiers in the system along with programmer modificati_ns

to permit selecting of the desired amplifier for a particular channel.

Pre-flight checkout of the thermoceuple channels should include the

following:

a. Loop resistance check

b. Resistance to vehicle ground

c. Ambient temperature measurement

These resistance checks can be accomplished either manually cn an

individual channel basis or semi-automatically by mean_ ef a 9pecial te_t

system. Ambient temperatures can be reac, rded ae a data record on tape or

read manually from a visual display.

_n-flight calibration on an individual channel, basi_ is n_t feasible.

For maximum assurance of proper operation of the system at least one data

channel should be used to monitor the reference junction temperature. _f

sufficient data channels are available_ a further degree o:f r_l_ability

could be achieved by measuring a known reference voltage on one channel of

each ten-channel multiplexer module. This reference c_annel w_uld provide

a continuous check of the complete recc.rding system except f_ the individual

data gates.
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3. 5.1.4 Thrust Measurement Signal Conditioning

Transducers for thrust measurement will be LVDT type with an associated

electronic system to provide carrier excitation and demodulation. Output

of the system is a DC voltage with a full scale range of ±l volt.

Associated with the thrust transducers are two accelerometers to provide

correction signals for the thrust measurements. These accelerometers

provide output signals of .2 to 7.5 V.D.C. for the range of operation.

To increase the resolution of the thrust and acceleration measurements,

a Vernier Range Extender, Donner Model 4106, is included in the recommended

system. This device puts out two 0-5 VDC signals for each measurement. The

standard model would therefore use only half of the PCM system resolution

with zero thrust or acceleration at half scale. A modification in speci-

fications for these units is recommended to produce ±5 VDC output range with

zero voltage at zero thrust.

The output of this device can be connected directly to a high level PCM

channel with no additional signal conditioning requirement.

An alternate approach for recording these parameters using considerably

less complex circuitry, but with reduced resolution is shown in Figure 53.

For recording with the PCM system the thrust system output signal must

be either amplified to ±5 volts or attenuated to ±15 MV. For greatest

accuracy and best signal-to-noise ratio, amplification to ±5 volts full

scale is recommended. There are a number of commercially available

amplifiers, such as Dynaplex Type 035B, which will be suitable for this

application.

Accelerometer signals will require attenuation to bring the maximum

signal level to the ±5 V range of the data system.

3.5.1.5 Flow Transducer Signal Conditioning

Each of the potential flow measurement systems considered feasible

for this application requires an associated conversion system to provide

a DC signal as a measure of flow. The specification for the design of this

converter should include the characteristics required to connect to

the ±5 V inputs to the system.
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3.5.1.6 Dynamic Strain Gage Signal Conditioning

Dynamic strain data is necessary to monitor fatigue stress levels.

Separate signal conditioning must be provided for dynamic stress measurements.

A method used in flight engine evaluation on single element gages is shown

in Figure 54. Several options are provided.

A high voltage power supply can be elected to provide higher gain from

the strain sensitive element. This may not be necessary for the Ramjet

testing.

The recording system selected can be either the FM/FM system with a low

level VCO or the P.C.M. package. For accuracy the P.C.M. system is required,

but flight safety considerations indicate the necessity of telemetry to provide

the ground station with dynamic levels of stress as well as some static

information. IRIG channels from ii up are suitable with this signal

conditioner.

For lower frequency response a change in capacitors will be necessary.

The values required are:

Capacitor

(Microfarads)

Low Frequency

Cutoff

5 7 cps

10 3.5 cps

15 1.75 cps

The proposed signal conditioning method can be installed by modifying

the present strain gage units to accomodate the few additional circuits

required for dynamic strain data.

This signal conditioning method provides for a D.C. bias to be

supplied for certain types of V.C.O. systems.
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3.5.2 X-15 Interface

There are two major interfaces concerned with the instrumentation of

the Ramjet.

a. Ramjet/X-15 Bulkhead Disconnect

b. Recording requirements.

3. 5.2.1 Bulkhead Disconnect

The bulkhead disconnect is the primary item concerned with design of

the ramjet. A preliminary evaluation of instrumentation wiring is shown

in Table I It indicates a weight of one pound per foot and must be

considered in determining the weight budget. Reduction of the number of

wires in the 4-wire strain gage pressure system is desirable from this point

of view. This can be accomplished by using a single pair of wires to supply

instrumentation power. It has many advantages as discussed in the signal

conditioning section on pressure transducers and will decrease the wires

required from 507 to 377.

If, as it appears likely, the total pressure probes will be limited

in number, the actual number of transducers for pressures can be between

51 and 55. The disconnect requirements for this recommended approach

are shown in Table _II . This also indicates, as shown by the study,

requirements for monitoring in the ramjet temperatures of measurements

as follows:

Central Instrumentation Package Temperature 3

Accelerometers: Piezoresistive 3

Inertial 1

Temperature Reference - RTD 1

Dynamic Pressure Transducers 3
Total ii

The specifications on the Ramjet disconnect and associated instrumentation

wiring are as follows:

Copper wire used throughout.

Maximum contact and thermal gradient EMF generated - less than

30 microvolts with thermal gradient of 200 ° across plug.

The use of a thermally lagged temperature reference source on the Ramjet

permits all wire entering the Ramjet/X-15 disconnect to be copper. This is

of great advantage in the design of the actual hardware in m_etlng the

30 microvolt specification. This level of contact and thermal gradient

voltage represents approximately 0.2% of full scale and is required to

meet reasonable instrumentation accuracies.
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TABLE I

RAMJET/X- 15 BULKHEAD DI SCONNECT

TRANSDUCER # REQUIRED

Pressure

Temperature

Enthalpy

Force

Accelerometers:

static

dynamic

4-Wire strain gage

Thermocouples

4-Wire E-core

4-wire inertial

Piezoresitive

67

76

1

4

2

3

(separate plug)

25

TOTAL

Special inputs

Static strain
For controls_ power, etc.

2-Wire

Estimated Weight - 1.0#/ft. (assuming #26 wire on transducers)

TABLE II

RAMJET/X-15 BULKHEAD DISCONNECT - PROPOSED APPROACH

TRANSDUCER # REQUIRED

Pressure

Temperature:

Measurements

Transducer Mon-

toring

Enthalpy

Force

Accelerometers:

Static

Dynamic

Special Inputs

Static Strain

4-Wire strain gage

(Instrumentation Power Bus)

Thermocouples

Thermocouples and RTD

55

67

ii

# WIRES

268

152

6 (est)

8

8

3 coaxial

plugs

12 (est)

5O

507 Wires

# WI PF_S

114

134

22

1 6 (est)

4-Wire E-core 4 8

4-wire inertial 2

Piezoresistive 3

For controls_ power, etco (separate plug)

2-wire 25

TOTAl;

Estimated Weight - 0.7#/ft. (assuming #26 wire on transducers)

8

3(ceaxial)

12(est)

50

357 Wires
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3.5.2.1 Bulkhead Disconnect - cont'd

Disconnects should be tested with a 200°F gradient across the unit making this

evaluation. There appears to be no problem but specially plated pins may be

required, and the materials for the contacts should be from the same alloy melt

to prevent the existence of thermocouples within the disconnect. If insertion

pins are used they should be identified as to batch number in packaging.

These problems have been ovserved recently in flight test aircraft in the case

of bulkhead connectors that had a high thermal gradient across special pins

for iron-constantan thermocouples. This is a real accuracy problem for

thermocouple connectors but with copper wiring all that is required is good

quality control practice in procuring and minimizing of the thermal gradient

across the connector.

Special inputs for instrumentation power will be required. The study

indicates the following are needed:

Instrumentation Power Bus - 115 volts, 3.5 amps

Instrumentation Power Bus - 28 volts, 6 amps

Instrumentation Power Control Wires (2 amps each) for

gas sampling, Scanivalve and special tests.

Wires

The power should be in a separate plug from the low level instrumentation

signals as represented by thermocouple and strain gage signals.

3.5.2.2. Recording Requirements

The high accuracy of the PCM system makes it the most feasible method to

meet the measurement requirements to provide for good ramjet performance data.

This recording system meets the objective on all but the very high frequency

measurements.

Some modification must be made to the PCM filter system when recording

above 50 cps to provice a suitable frequency response. Presently there is in

the PCM system a filter that consists of a single R-C element with the standard

roll off of 6 db per octave. Practical controls on phenomena such as frequency

folding indicate its cutoff frequency should be about one-fourth of the sampling

rate. The PCM filters should be set to the following values, depending on

measurement frequency response:

FREQUENCY SAMPLING FILTER PRIME

RESPONSE RATE CUTOFF CHANNELS

(3 db down)

50 cps 200 S/S 50 cps

100 cps 400 S/S 100 cps

200 cps 800 S/S 200 cps

Standard (1)

Supercommutate (2)

Super_ommutate (4)
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3.5.2.2 Recording Requirements - contVd

There is only one channel restriction involving the 50 S/S rate (i0 cps)°

As previously indicated, the total pressure measurements required will be less

because of the internal engine shock problem. This will decrease the need for

the number of 50 S/S channels by around i0 to 12. If further channels for

other purposes are needed at the 50 S/S rate_ an additional subcommutator

should be provided.

The high frequency requirements on certain parameters _re difficult to

meet. The measurements in question are:

a. One combustor pressure signal 0 - 2000 CpSo

b. Three vibration signals 200 - 2500 cps.

The high frequency recording system on the X-15 consists of a standard

IRIG FM-FM system. The characteristics of the wide bands are given below:

BAND C+ FREQUENCY SIGNAL R_SPONSE

A 22_000 660

B 30_000 900

C 40,000 1200

D 52,500 1600

E 70,000 2100

In addition, in the NASA FM-FM system the accuracy is in the order of ±7_ of

full scale. This, combined with the frequency response_ does not meet measure-

ment requirements. Some other equipment must be supplied to meet these needs.

A single frequency identification approabh using a discriminator was considered°

It is not really suitable since the measurements in question will have a wide

frequency spectrum. A possible candidate is a wide band FM recorder system

installed in the aircraft. The details of such a system are beyond the

bounds of this report.
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Program Conclusions and Recommendations

Overall Results

The major study results are:

a. The preliminary design of a direct thrust/drag measurement system

for the experimental ramjet after identification of important design

criteria, a preliminary thermal and mechanical performance analysis,

and identification of development programs leading to an in-flight

measurement. (Volume 2)

b. Conceptual design of instrumentation systems and techniques for

performing desired measurements during flight testing on the X-15A-2.

Preliminary error analyses of candidate systems have been developed

as well as identification of reasonable accuracy to be expected,

and special considerations for calibration and installation procedures

to insure maximum accuracy. Programs for development of advanced

components are suggested, and where possible, vendor equipment which

meets specifications and is readily available has been identified.

C, A proposed overall program for development, cost, and lead times of

important instrumentation systems. The instrumentation systems

which are considered to be feasible are listed below as well as

their recommended function.

Engine Performance Diagnosis Safety

Fuel Flow

Mechanical Measurement

of direct Thrust/Drag

External static

pressure.

..Internal Static

Pressure(steady

state and fluc-

rating)

..Fuel temperature

and pressure

..Exhaust gas

sampling

..Fuel Pressure

..Structure

temperature

..Vibratory stress

..Vibration

..Optical gas

analysis

..Structure temperature

..Vibration



4.2 Specific Program Conclusions and Recommendations

Program conclusions and recommendations are summarized according to the

primary areas of measurement covered during the study. Detailed information

is included in Volumes 2 and 3.

THRUST/DRAG SENSING DEVICE

Conclusions:

a. Minimize magnitude of extraneous forces mechanically by two point support;

one flexible, the other fixed, and measure at all support points.

b. Provide for electro-mechanical compensation of remaining forces within

the thrust sensing element.

c. Measure all remaining axially extraneous forces for correction by proper

electrical circuitry, or by correction in data reduction.

d_ Measure deflection rather than strain,

Recommendations:

a. Conduct study of dynamic compatibility of ramjet X-15A-2 attachment.

b. Optimize single thrust measurement element.

c. Evaluate a prototype thrust measurement system under simulated loads.

d. Design and manufacture flyable thrust measurement system.

FUEL MEASUREMENTS

Conclusions:

a. Density correction of volume flow meters is difficult and seriously

limits their application for liquid hydrogen measurements°

b. Current methods to protect turbine type meters from overspeed during two

phase hydrogen flow are unreliable for flight application.

c. Orifices and venturies are limiting in flow range unless large fuel systems

pressure drops can be accomodated°

d. Adequate cryogenic facilities are available for meter calibration.

e. Cryogenic pressure and temperature measurements as required in this

program are within the current state-of-the-art.
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4.2 Specific Program Conclusions and Recommendations - cont'd

Fuel Measurements - cont'd

Recommendations:

a. Liquid hydrogen mass flow measurement should be made with a mass flowmeter.

b. The mass flowmeter should be calibrated at six month intervals using

liquid hydrogen and fuel system mockup.

c. Meter calibration should have a minimum of 15 points over the range 0-5 lbs.

per second.

d. Pyrophoric fuels can be metered with conventional turbine-type flowmeters
provided materials are compatible. Calibration can be conducted with
selected fuel on Edwards Air Force Base Rocket Site.

STATIC PRESSURE MEASUREMENTS

Conclusions:

a. Static pressure measurements along the internal wetted surface provide the

most feasible method of indicating internal aerodynamic conditions over

the complete range of ramjet operation.

b. Repeatable correlation between free stream and wall surface pressure is

questionable unless smooth surfaces with no abrupt changes can be provided.

c. Complete range of pressure cannot be measured with a single transducer

without severe accuracy, number, or weight penalties.

d. Transducers will require thermal and vibration protection.

e. Several pressure measurement system concepts are available to provide

adequate compromise between number of measurements, system weight, and

pressure range.

Recommendations:

a. Establish location of internal static pressure taps during component ground

tests to insure repeatable correlation between free stream and wall

surface pressure.

b. Fluctuating and steady-state pressure should be measured separately but

simultaneously.

c. Record steady state and quasi-steady state data on Pulse Code Modulation

(P.C.M.) and fluctuating pressure with non-resonant probe systems.
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4.2 Specific Program Conclusions and Recommendations - cont'd

Static Pressure Measurements - cont'd

Recommendations - cont'd

d. Provide for centralized instrument compartment with temperature

regulation to ±25°F.

e. Provide for pre-flight system calibration.

STRUCTURAL MEASUREMENTS

Conclusions:

a. Regression rate, surface temperature and pressure measurements of

ablation materials cannot be made with sufficient accuracy to satisfy

ramjet test requirements.

b. Sheathed thermocouples imbedded in metal surface will provide adequate

accuracy and reliability with current calibration and installation

procedures.

c. Steady state and vibratory strain measurements are temperature limited.

Practical limit for steady-state is S50°F; for vibratory 1500°F.

d. Vibration measurements as required in this program are within the

current state-of-the-art.

Recommendation:

Apply current practices associated with installation of sheathed and flame

sprayed thermocouples to ramjet metal surfaces.

EXHAUST GAS MEASUREMENTS

Conclusions:

a. Uncooled probes represent a better than 5 to 1 weight advantage over

cooled probes.

b. Refractory metals such as tungsten, columbium, and molybdenum with their

coatings are unsatisfactory probe materials in oxidizing gas streams

at high velocities and enthalpies.

c. Pyrolytic graphite is a feasible protection for high temperature probes.

d. Most reliable technique for analyzing exhaust gases appears to be on-board

sample collection with subsequent analysis on the ground.

e. Optical techniques for measuring exhaust gas temperatures and constituents

are feasible.

f. Probe interference effects will limit the use of probes to locations aft of

the exit nozzle.
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4.2 Specific Program Conclusions and Recommendations - cont'd

Exhaust Gas Measurements - cont'd

Recommendations:

a. Conduct experimental program to establish design and fabrication procedures

of probe supports with pyrolytic graphite protection.

b. Design and demonstrate minimum volume gas collection system for mounting

on ramjet engine.

C.

d,

Conduct applied research program to evaluate application of infra-red

emission and absorption.

Design, manufacture, and demonstrate flight weight optical system for

exhaust gas measurements.

e. Demonstrate practical application of polarographs for on-board gas

analysis.
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APPENDIX i

Description of Wyle Laboratories LH 2 Flowmeter Calibration System

In selecting the principle for developing the precision calibration

system, a great deal of emphasis was placed upon Wyle's prior experience in

the use of time-weight calibration systems and the desirability of directly

comparing the indicated total output of the various meters with accurately

known increments of test fluid weight. Based upon these criteria and

experience, the time-weight calibration principle was selected for use in the

design of the primary calibration system.

The system basically consists of a 650 gallon calibration tank mounted

on a mechanical scale system. Fluid is removed from the calibration tank

through the use of helium pressurization of the calibration system. In order

to eliminate the requirement for the measurement of pressurization gas added

to the calibration system during the calibration test, the helium pressurization

system is contained on-board the scale system. Calibrated drop weights were

selected for use which permit the use of the scale system as a null balance

device rather than as an absolute weight measurement device.

Fluid is removed from the scale system through a three inch, vacuum-jacketed

flexible hose assembly, and subsequently into a fluid piping system containing

the flowmeters to be calibrated. At the end of each calibration run the liquid

hydrogen test fluid is transferred by backflow through the test line to refill

the 650 gallon calibration tank.

A special vacuum test chamber is incorporated into the test system so that

most non-vacuum jacketed flowmeters with variable configurations can be easily

installed in the calibration system.

A typical flowmeter calibration is performed in the following manner:

With the calibration tank and transfer lines precooled and filled with liquid

hydrogen, and stabilized at atmospheric pressure, the vent valve of the 650 gallon

calibration tank is closed and the tank rapidly pressurized to approximately

50 psig using helium pressurization gas.

The downstream flow control valve is opened and the predetermined flow rate

is rapidly established. Following establishment of the pre-selected flow rate,

the mechanical beam balance system (which has been previously adjusted to an

over balance condition) approaches an initial balance condition, thus actuating

the capacitance switch which senses the beam pointer position. Following the

initial switch actuation, a 200 pound calibrated drop weight is lowered on to

the scale system, thus producing an overbalance condition. As the flow rate

through the flowmeter proceeds, a second balance condition is attained which

causes the final actuation of the switch sensing the beam pointer position.

The initial and final capacitance switch actuations trigger a totalizimg counter

and standard timer to indicate the total output of the flowmeter undergoing

test and the test time period.
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Appendix 1 - cont'd

Following the completion of the calibration period, the 650 gallon tank is
vented and the test fluid is transferred at a reduced flow rate through the
transfer lines to refill the calibration tank in preparation for subsequent
calibration tests.

The accuracy of the calibration system may be assessed by a combination
of evaluation of all possible sources of error and the results; obtained during
the calibration of turbine type flowmeterso

The sources of error which contribute to the inaccuracies of the calibration

system are scale repeatability, dynamic lag, standard weights_ and extraneous

loading of the scale system.

A. Scale System

The scale system is a specially designed mechanical beam balance

scale capable of supporting the total system weight and possessing a

sensibility reciprocal of less than one ounce. Since the scala system

is used as a null balance device, the inaccuracy introduced by the

scale may be attributed solely to the repeatability of the scale system°

Static and dynamic tests of the scale system have indicated that

repeatability of the scale is better than one ounce; thus producing

an error at the initial and final balance points of ±0°03% for a 200 lb0

weight change.

B. Dynamic Lag

The dynamic lag of the scale system may be predicted utilizing the

techniques outlined in Reference

(i)

T = Actuation time of scale system (sec.)

H = Distance traveled by the beam pointer before actuation of

the capacitance switch (ft.)

W = Gross system weight (ib°)

K = Flow rate (ib/sec)

g = Graitational constant (fto/sec./sec0)

W = Incremental error resulting from dynamic lag (ibm)

Based upon a capacitance switch sensitivity of 00002"_ a repeatability

of 20.0012, and a flow control of ±2%, the error due to dynamic lag

may be shown to be:

W = (102%)(K)(T I) - (98%)(K)(T2) <2)
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Appendix 1 - cont'd

where:
1/3

_HoW(I+AH/H) _
T =

l-gKo (I'_/K) _

_SHo_(I_nH/H)_ 1/3

i:3)

(4)

Evaluation of the system parameters yields:

_H/H = (0.0012)/(0.002) = 1G.7%

AK/K = 2%

= 2000 pounds

Substitution of equations (3) and (4) into equation (2) yields:

= (0.05)(K0)2/3 (5)_w

AW = gravimetric error

The error for a total weight change of 200 pounds is_

error = 2.5 x 10-2(K0 )2/3Percent (6)

C. Standard Weights

The standard weights which are used in the calibration system

have been calibrated to an accuracy of ±6 grains with a resultant

error for each individual 50 pound weight of ±0.002%.

D. Extraneous Loading

The effects of horizontal and vertical loading of the scale

system have been evaluated experlmentally by the application of

loads in excess of those encountered during system operation. This

evaluation has demonstrated that the scale system performance is not

degraded during operation by extraneous loading.
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Appendix 1 - cont'd

E. ToLal System Accurac_

The total system accuracy may be established at a maximum flow

rate of 300 pounds per minute as shown in the table below:

Error (%) (Error) 2

Initial scale balance 0,03

Final scale balance 0°03

Dynamic lag and capacitance 0°07

switch

Standard weight 0

Extraneous loading 0

Total:

0.0009

0.0009

0.0049

0

0

0.13% 0.0067

Maximum error of ±0.13%

RMS error i0.82%

The above error analysis indicates an expected performance in the

order of ±0.1%. Actual operation of the system during the

past 24 months period and numerous static and dynamic evaluations

of the system substantiates the above analysis°
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APPENDIX II

THERMAL ANALYSIS OF INSTRUMENTATION SUPPORT WITHIN A RAMJET ENGINE

P. CLINE, SUPV. ENGINEER, RSD - THERMODYNAMICS, VALLEY FORGE, PA.

Int roduct ion

A thermal analysis was made of a total temperature on pressure probe

located in the gas stream of a supersonic ramjet engine. The results of this

analysis are reported within this appendix.

The probe was to be six inches long, of minimum weight and the cross-

sectional area end was to be capable _ withstanding the heating environment

for at least 90 seconds without failure. The environment was to range from a

Mach number of 5.5 at the inlet to 8 at the exit and the fuel (hydrogen) to

air ratio could go as high as four times the stoichiometric values.

The results that are reported are those of a preliminary investigation of

the problems. Before actual probes are manufactured and inserted into a ramjet,

a more detailed analysis would have to be made, along with a rather extensive

experimental program. Not only must the heat transfer to the probe be evaluated,

but the increased heating to the walls of the ramjet engine must be determined.

Results

An ablative thermal protection system for the probe appears to be lighter

in weight and simpler than either a transpiration or convective cooling system,

if the cooling must be obtained from another source other than the hydrogen

fuel for the engine. Since the possibility of using the fuel was ruled out,

only the ablative system was analyzed. The results which follow are based

upon using pyrolytic graphite as the ablation material. It was selected due

to its low thermal conductivity in the "C plane" and its capability to withstand

high temperatures with little mass loss. Therefore based solely upon thermal

considerations, pyrolytic graphite appears to be an excellent choice of thermal

protection materials. However, before a final selection could be made, it is

necessary to consider manufacturability, thermal stresses and system compati-

bility.

A sketch of the probe configuration is shown in Figures i and 2. The base

of the probe has been curved outward to smooth into the wall of the ramjet in

an attempt to reduce the high interaction heating observed at the base of fins

attached to bodies in supersonic flow. Heat transfer to the surface adjacent_to

protuberance in supersonic flow has been investigated by Wisniewski (i), Bloom

and Pallane (2), Warren, Harris and Kaegi (3) and Shaw and Nestler (4).
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These tests indicated heat transfer rates to the surface adjacent to the pro-
tuberance were a factor of approximately 4-12 times the values predicted for
an equivalent surface without the probe in the presence of a locally laminar
boundary layer. The interaction heating to the adjacent surface is shown in
Figure 3. The values plotted are the ratios of the actual film coefficients
divided by the predicted film coefficients assuming laminar flow and no probe°
This interaction heating may be decreased if the probe was like a swept pro-
tuberance rather than a vertical fin. By rounding the foreward base region of
the probe as shownin Figure i, a similar decrease in the interaction heating
should be realized without having flow disturbances and separation shocks inter-
act with the sensor as might happen if the entire probe was allowed to be at an
angle of attack to the flow stream° The heating problem can be reduced by a
factor of two. The actual flow performance around the probe would have to be
evaluated in a wind tunnel test. The allowable size of the radius will depend
on the height of the probe and upstream flow conditions° A summaryof the
thermal analysis is shown in Table io The convective heating (qc) given in
Table i is the theoretical stagnation line value assuming a zero wall temperature°
The heating on the side of the probe is approximately 0.18 of the stagnation
heating value. It has been found (Reference 4) that the actual heat transfer
to a protuberance in hypersonic flow mayexceed the theoretical value by a
factor of 2 at the separation shock impingement point. The material temperatures
given are those after 90 seconds of heating. Shownin Figure 4 is a typical
set of temperature distributions within a probe at the stagnation point° The
total gas temperature and/or heat transfer to the probe are sufficiently low

for pyrolytic graphite that the computed mass loss due to ablation is insignifi-

cant. However, tests conducted by GE-RSD (Reference 4) have shown that severe

erosion will take place at the intersection of the body and probe if there is

a shape corner, this should be minimized due to the rounding of the base of the

probe into the wall of the ramjet engine°

For the thermal analysis described here two thicknesses or probe radii

have been considered: one having a total thickness at the sensor of one inch

(this is the one shown in Figures i and 2) and the other one half inch thick°

Each are adequate from a thermal standpoint provided the sensor tubes can be

heated to the tube temperatures given in Table lo

Discussion

The flow Mach numbers within the ramjet engine upon which the thermal

analysis was based is shown in the following sketch:
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1 2 3 Nozzle 4_

Throat / '

kk Inlet I J i

:8 ' ' I t= 8_ M = 5.5 _-_'/ Combustion Cham_ I I

=
T_ = 390°R _......-J : " _ I

throat M - 1 to 5 5 I I

Oblique Shock Wave M ='3_5

I
M= 8

The freestream temperature and pressure are those corresponding to an altitude

of 80 thousand feet as taken from Reference 5. The conditions at station 2

were calculated assuming the flow had crossed an oblique shock of sufficient

strength to decrease the flow Mach number to 5.5. The conditions at the

throat were determined by allowing the air to be compressed isentropically

to a Mach number of one. The heat addition within the combustion chamber

and the flow conditions downstream of the chamber were determined from the

Rayleigh Line Tables given in Reference 6. The properties of air at the

various stations were determined from Reference 7 and those for the hydrogen
air mixture were from Reference 8.

The heat transfer to the probe was determined using Lees' method modified

by Echert's reference enthalpy tehcnique. The temperature response and

ablation of the pyrolytic graphite was determined using the Reaction Kinetic

and Ablation Program (Reference 9).

Conclusions and Recommendations

It appears that a pyrolytic graphite probe can be placed within a ramjet

engine and it will last for at least 90 seconds. However, before an actual

probe is designed it is necessary to investigate the possibilities of using

other high temperature materials and an experimental program must be conducted

to determine the extent of the interaction heating and to evaluate the flow

disturbances caused by rounding the base of the probe.
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APPENDIX I I I

RAMJET SENSOR PROBE STRENGTH AND VIBRATION - J. MCGLINCY, S. BENNET

AND T.E. HESS, STRUCTURAL MECHANICS TECHNOLOGY COMPONENT MISSLE AND

SPACE DIVISION, PHILADELPHIA, PA.

Thermostress Considerations

A preliminary study was conducted in order to determine feasible

structural approaches to the subject casing. Thermodynamics studies defined

the need for a low conductivity material, such as pyrolytic graphite. This

is considered necessary in order to maintain a relatively moderate operating

temperature environment for the stainless steel probes.

Figure I shows representative temperatures of a pyrolytic and a commer-

cial grade graphite (ATJ) casing. These temperatures are shown as a function

of distance from the heated, or forwar_ surface.

Three materials concepts were determined to be feasible. These are

shown in Figure 2. The first con£iguration was made by depositing pyrolytic

graphite in the elliptical form indicated. While this procedure is not

beyond the state of the art, it is not an off the shelf item and some devel-

opmental work would be necessary. It is expected that a considerable amount

of random delamination wou&d occur, however, the piece, as shown, would be

expected to maintain its integrity under thermal and pressure loadings for

the duration of the test. The delamination anticipated may however create

problems under the dynamic load environment or by the impingement of foreign

particles (if this latter condition is probab&e).

Configuration 2 is also a pyrolytic graphite composition; however, in

this case the casing has been machined from two flat plates. The thickness

of the forward piece would depend on the temperature requirements at the bond

line. The bond line temperature can be controlled by tailoring the thickness

(x) of the front plate. The minimum temperature possible (from figure l) is

600°F using a .60 inch thick plate. This is within the usable range of C-10

bonding cement. In fact, a higher bond temperature is feasible and therefore

a thinner plate may be used.

A third configuration, similar to the second, but fabricated from a

solid piece of ATJ graphite was investigated. The temperature at the inner

surface dut to the higher thermal conductivity of ATJ. A preliminary thermal

stress analysis of a 1/2 inch deep beam using the ATJ temperatures of Figure

1 indicates marginal performance. This assumes internal support is provided

to help withstand bending forces. The internal temperature can also be

expected to be approximately 2000°F - a rather severe environment for the

probe tubes.
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As previously shown, each of the three concepts have inherent advantages

and disadvantages. The preliminary evaluation described herein, however,

indicates an advantage to the pyrolytic graphite plate approach° This

approach provides the preferred orientation of P. Go where needed, can be

more easily fabricated and adapt to an internal support structure readily.

Design development, fabrication and test studies are, however_ necessary
for this structural concept.

Vibration Considerations

The subject probe will encounter severe dynamic excitations during the

test run, and this fact must be taken into account during the design phase°

The probe may be treated analytically as a cantilevered beam clamped

to the wall of the ramjet. The cantilevered beam configuration has been

analyzed for almost any class of loading functions, by either exact or
approximate techniques.

The dynamic loading of the probe will include both deterministic and

random excitations. The more important sources include:

8 Excitation due to motion of ramjet wall. Presumably the limits of

this excitation are given by Section 5o9ol of the Study Work State-

ment (50G from 200-2500 cps steady state harmonic + 200G step pulse)°

Standard techniques of solution are available for these problems.

See, for example, References i, 2, and 3.

o Excitation due to boundary layer turbulence on the surface of the

probe. This excitation is random in amplitude and occurs across a

wide frequency band. The pressure fluctuations are usually uncor-

related over any significant structural lengths° This problem has

been solved in the technical literature if the power spectrum of

the pressure fluctuations can be determined. See Reference 4°

o If the probe is mounted down stream of the combustion area the

possibility of vibration due to combustion instability exists.

This is also a random excitation and it too can be solved providing

the power spectrum of the excitation is known° For this problem

the correlation factor over t_ length of the beam is unity° This

is a special case of the uncorrelated fluctuation and has also been

solved. See Reference 5.

o The possibility of shock oscillations near the tip of the probe

where there is a structural discontinuity exists° This shock can

interact with the turbulent boundary layer and cause a bo_ary

layer separation which will also induce an oscillatory response.

This is another random process which can be analyzed if the power
spectrum of excitation is known.
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.

o

If the probe is mounted down stream of the combustion area, uneven

heating of probe during the start up transient stage of operation

could cause a boundary layer separation and subsequent dynamic

loading.

Another source of vibration arises from the possibility of the

beam going into a flutter mode. The stability of the probe can

be analyzed using standard techniques. See, for example, Reference
6.
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APPENDIX IV

Specifications for Metal Sheathed,Ceramic Insulated Thermocouple Wire

1. Purpose and Scope

i.i This instruction is to establish the limits of acceptability for the

mechanical and electrical properties of metal sheathed, ceramic-insulated

thermocouple wire used in the:Flight Propulsion Division.

1.2 The instruction shall pertain to that group of thermocouple materials

employing a continuous integral sheath in which the thermoelectric

element or elements are insulated from the sheath and each other by an

inert metal oxide.

2. User's Option

2.1 It shall remain the option of the user to specify the type of sheath

material, thermoelements, insulation, length of material, nominal O.D.

and shipping condition.

2.2 Unless otherwise specified by the user, the following specifications

will prevail•

3. Physical Properties

3.1 Sheath

3.i.i The outside diameter of the sheath shall be held within the

following limits in the finished product:

Nominal O.D. O.D. Limits

.010" .0095 -

.020" .019 -

.040" .039 -

1/16" .0615 -

1/8" .124 -

3/16" . 1855 -

1/4" .248 -

0105"

021"

041"

064"

127"

190"

253"

3.1.2 The sheath wall thickness shall be controlled to fall within

the following limits in the finished product:

Nominal O.D. Minimum Wall Thickness

.010" X

•020" .003"

•040 .006"

1/16" .009"

1/8" .011"

3/16" .014"

1/4" .020"
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Appendix IV - cont'd

3.1.3 While seamless tubing is preferred for the sheath, it is not

mandatory. Welded (drawn) tubing is quite acceptable.

3.1.4 The sheath surface shall be free from cracks and gouges and

shall exhibit a finish of 32 micro-inches or better.

3.2 Thermoelements

3.2.1 The individual minimum wire gauge size for a two-conductor

configuration shall conform to the following:

Nominal O.D. B and S Gauge

.010" - X

.020" 38

.040" 34

1/16" 28

1/8" 22

3/16" 18

1/4" 16

3.2.1.1. The final surface condition of the contained

conductors shall not have scratches, dents; pits, etc._

gre_ter in depth than five percent of the starting

diameter or 1.5 mils (0015") whichever is least.

3.2.2 Wires shall be uniformly spaced and centered throughout the

length of the sheathed material.

3.3 Insulation

3.3.1 The insulation shall be electrical furnace-fused magnesium

oxide (Mg0) of minimum 99°i_ purity with a boron content of no

more than 30 parts per million by weight.

4. Electrical Properties

4.1 All conductors must exhibit complete continuity from end to end

regardless of length, and shall not have a resistance deviation of

more than ±10% from that calculated for the actual wire diameter_

length, and resistivity of the material.

4.2 Insulation Resistance

4.2.1. Ambient:

4.2.1.1 The insulation resistance between wires and between

wire and sheath shall not be less than 150 megohms

per linear foot of material at 1o5 to 3 volts D.C.
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Appendix IV - cont'd

4.2.1.1 (cont'd)

Note: The resistance per linear foot is determined

by multiplying the resistance of "X" number of feet

(meter indication) by "X", the length of the specimen.

4.2.1.2 For the .020 thermocouple wire, the insulation

resistance shall not be less than i00 megohms per

linear foot.

4.2.1.3 For the .010 diameter thermocouple wire, the

insulation resistance is still experimental.

4.2.2 High Temperature

4.2.2.1 All sizes of sheathed thermocouple material

of 1/16 O,D. and larger shall exhibit a minimum

average insulation resistance between sheath and

wire and between wires of 100,000 ohms with an

applied potential of 1.5 volts D-C when 12 inches

of the specimen, open-circuited, is elevated to

a temperature of 1500°F.

4.2.2.2 For the .040 O.D. thermocouple the resistance shall

be 40,000 ohms when tested under the conditions of

paragraph 4.2.2.1.

4.2.2.3 For the .020 thermocouple wire, the resistance shall

be 30,000 ohms when tested under the conditions of

paragraph 4.2.2.1.

4.2.2.4 Copper-Constantan is excluded from this test.

4.3 Thermoelectric

4.3.1 The thermoelectric elements will have been annealed and aged

to the extent that they will meet the thermoelectric speci-

fications of the Instrument Society of America's Recommended

Practice, ISA RPI.3.

4.3.2 When checking calibration of the thermelements, a sample piece

of wire three to five feet long from each spool or roll shall

be used.

4.4 Spurious EMF

4.4.1 The final product is to be treminated with an ambient junction

and reference. (See sketch) It is then to be heated along

its length with a 1500°F sharp gradient (approximately 1/2

to 1-1/2 inch). Under this impetus, the wire shall not produce

a spurious EMF greater than:

continued ....
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Appendix IV - cont'd

4.4.1.1 ±I00 microvolts for chromel-alumel <ISA-K)

4.4.1.2 ± 25 microvolts for platinum-platinum rhodium 10%(ISA-S)

4.4.1.3 ±i00 microvolts for iron-constantan (ISA-J)

4.4.1.4 ±100 microvol_s for Platinel II

4o4.1.5 ±i00 microvolts for chromel-constantan

4.4.2 Vendor substantiation certificate required that all wire

shipped has been checked to meet paragraph 4.4o10

4.4.3

_ FIame

I

l--_-----Extension Wire

[ _ CU

S. Final Product CU

Wire to be tested

Constant Temperatur

Zone

RECORDER

5.1 All metal sheathed thermocouples shall be fully annealed (air or

bright anneal).

5.2 Materials as received must be capable of bending 360 ° around a mandrel

diameter equal to three times the sheath nominal outside diameter without

loss of insulation resistance or fracture of the sheath°

5.3 A sample end of metal sheathed thermocouple material_ dressed square_

shall be firmly clamped vertically at a point 12 diameters above the

dressed end. There shall be no appreciable fallout of the insulating

material when the OoD° of the dressed end is subjected to repeated

taps of sufficient force to visibly move the dressed end at least one

half of the sheath diameter.

5.4 All exposed ends shall be sealed with a waterproof electrical compound

which shall be cured or dried to-a hard form bonded securely to the

sheath.

173



Appendix IV - cont'd

6. Shipping

6.1 All material of sufficient length shall be shipped in coils, the

diameters of which will be no less than shown in the foll_wing table:

Nominal O.D. Coil Diameter Preferred Length Minimum Length

•010 Convenience X feet 3 feet

.020" 20" 60 feet 20 feet

.040" 20" 60 feet 30 feet

1/16" 24" 60 feet 60 feet

i/8" 30" 60 feet 60 feet

3/16" 48" X feet i0 feet

I/4" 60" X feet i0 feet

6.2 Coils are to be held together in at least four places by reinforced

paper or plastic ribbon.

7. Identification

7.1 Each piece shall be identified as to:

Sheath Material

Sheath O.D. (Nominal)

Type of Insulation

Thermoelement Identification

Size of Thermoelements

Length

Manufacturer's Name
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