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EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF THE TRANSONIC
AND SUPERSONIC DIVERGENCE CHARACTERISTICS OF A
DELTA-PLAN-FORM ALL-MOVABLE CONTROL*

By A. Gerald Rainey, Perry W. Hanson, and
Dennis J. Martin

SUMMARY

The static aeroelastic divergence characteristics of a delta-plan-
form model of the canard control surface of a proposed air-to-ground
missile have been studied both analytically and experimentally in the
Mach number range from 0.6 to 3.0. The experiments indicated that
divergence occurred at a nearly constant value of dynamic pressure at
Mach numbers up to 1.2. At higher Mach numbers somewhat higher wvalues
of dynamic pressure were required to produce divergence. The analysis
and the experiment indicate that the camber stiffness of the control
surface and the stiffness of the control actuator are both important in
divergence of surfaces of this type.

INTRODUCTION

The increased usage of low-aspect-ratio canard surfaces for stabil-
ity and control of missilés has led to considerable interest in the
aeroelastic characteristics of such surfaces. In several instances,
missile failures have occurred which were believed to be due to static
aeroelastic divergence of surfaces of this type. In most cases, a
relatively simple solution to the problem has been found such as
stiffening the surface in the chordwise direction or by altering the
geometry of the control. Investigations of this type are usually
of an ad hoc nature and the results may not be generally available.

*pitle, Unclassified.
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Divergence encountered by surfaces of this type differs somewhat
from the classical torsional divergence in that camber deformations
seem to play a dominant role. This new class of divergence problems
which is associated with thin low-aspect-ratio surfaces has received
some analytical study (refs. 1 and 2).

In a recent design of an air-to-ground missile, preliminary studies
showed that the canard control surface might be subject to divergence
within the flight boundary of the missile. Consequently, a series of
models were constructed and have been tested in the Langley 2-foot tran-
sonic flutter tunnel in the Mach number range from 0.6 to 1.2 and in
the langley 9- by 18-inch supersonic flutter tunnel over the Mach num-

. ber range from 1.64 to 3.0. In addition to a simple proof test of the

missile configuration as designed, the opportunity was taken to investi-
gate the effects of variations of stiffness and location of the pitch
axis. An analytical treatment of the divergence of this type of control
has been developed. The structure has been treated as a beam with its
span alined with the airstream. Two types of aerodynamic forces are
considered, one based on very-low-aspect-ratio theory and the other
based on piston theory. The experimental results are compared with the
results of this analysis to aid in making the investigation of more
general interest.

SYMBOLS

Aij slope influence coefficient for panel, pitch spring being
considered infinitely stiff (slope at position i due to
unit load at position Jj), radians/lb

aij slope influence coefficient for pitch spring, panel being
considered infinitely stiff, radians/lb

a speed of sound, ft/sec

b model semichord measured parallel to the root chord at three-
guarter span, ft

B. . slope influence coefficient for panel-spring combination

* B;: = a;. + A radians/1b

(Big = 213 * Aig)

c distance from intersection of leading edge and root chord

to trailing edge, ft

w4 GO NFEDENTTAL,
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measured deflection of control surface at a point 27.1 percent
of the root chord rearward of the leading edge and at 50 per-
cent of the local span outboard of the root chord due to a
unit load at that point with pitch spring stiffness assumed
infinite, f£t/1b

modulus of elasticity of panel, 1b/sq ft

modulus of elasticity of air, 1b/sq ft

effecfive value of modulus of elasticity of control, lb/sq ft

panel bending stiffness with respect to pitch axis, lb-ft2

measured deflection of infinitely stiff control surface at a
point 27.1 percent of the root chord rearward of the leading
edge and at 50 percent of the local span outboard of the
root chord due to a unit load at that point acting against
the pitch spring stiffness only, ft/1b

effective stiffness of panel-spring combination,
1b/ft

2

d+h

length of treiling edge, ft

bending moment, ft-1b
mass of panel, slugs

' K
effective mass of panel, —g, slugs
w

mass of air contained in the cone whose base diameter is equal
to the root chord and whose height is equal to the span, slugs

Mach number

static pressure, 1b/sq ft
aerodynamic load, 1lb
dynamic pressure, lb/sq ft

one-half the distance from leading edge to root chord meas-
ured parallel to pitch axis at chordwise station x, ft

CONFIDENTTAL
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t thickness of panel, ft

v stream velocity, ft/sec

W component of stream velocity normal to control surface,~ft/sec
X chordwise distance measured from and perpendicular to pitch

axis (for analytical purposes, pitch axis is assumed perpen-
dicular to line bisecting angle formed by leading edge and
root chord), ft ‘ .

X4 chordwise station where deflection is measured due to load
at Xy ft
X distance of panel elastic axis from leading edge at root
chord, ft
X5 chordwise station where load is placed, ft
Z . vertical displacement, ft
7 ratio of specific heats
M . mass ratio, ¥2
A
o density of air, slugs/cu ft
w natural frequency of vibration, radians/sec
Cq spring constant of pitch spring, ft-lb/radian
€ distance from bpdy center line to cqntrol leading edge, ft
=1 if 1 =]
°1 =0 if 1i#
[D] differentiating matrix

Subscripts:

L A refers to lower surface

CONFIDENTIAL
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U refers to upper surface

) refers to conditions far removed from control surface
APPARATUS AND TESTS

Description of Wind Tunnels

The tests were conducted in the Ilangley 2-foot transonic flutter
tunnel for the Mach number range from 0.6 to 1.2 and in the Langley
9- by 18-inch supersonic flutter tunnel for the Mach number range
from 1.64 to 3.0.

The Langley 2-foot transonic flutter tunnel is a slotted-throsat
single-return wind tunnel equipped to use either air or Freon-12 as a
test medium. All of the present tests were made with Freon-12. The
tunnel is of the continuous-operation type, powered by a motor-driven
fan. Both test-section Mach number and density are continuously
controllable. '

The Langley 9- by 18-inch supersonic flutter tunnel is a fixed-
nozzle blowdown-type wind tunnel exhausting into a vacuum sphere. The
nozzle configurations used in this investigation gave Mach numbers of 1.6k,
2.0, 2.55, and 3.0. At each Mach number the test-section density varies
continuously to a controlled maximum.

Description of Models

The l/9-sca1e models simulated the delta plan form of the canard
all-movable control surfaces of an air-to-ground missile. They were cut
from 2024-T aluminum sheet stock, the thickness of a given model being
constant over the plan form except for the beveled leading and trailing
edges. The geometry of the models and model-mount fairings is shown in
figure 1. The portion of the mount fairings forward of the trailing edge
simulated the contour of the missile.

The masses and thicknesses of the control-surface models, identi-
fied by numbers 31 to 47, are presented in table I. The method of
mounting the models for use in both the 9- by 18-inch supersonic flut-
ter tunnel and the 2-foot transonic flutter tunnel is shown in figures 2
and 3. The torque rod was connected to the mount frame through a tor-
sional spring. Several torsion springs were used to cover a range of
stiffnesses. Basic combinations of torsion springs and control-surface
thickness produced model modes simulating the symmetrical and antisym-
metrical modes of the prototype control surface. In addition to the

CONFIDENTIAL
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basic combinations several modified combinations were used to increase
the scope of the investigation. It should be noted that although the
physical appearance of the model mounts was different, the model root
conditions were the same in both mounts.

A model is shown mounted in each of the tunnels in figures 4 and 5.
Also shown in figures 4 and 5 are the different mount fairings used in
the two tunnels. The differences in model mount fairings are also indi-
cated in figure 1.

The torsional stiffnesses of the springs are presented in table II,
along with the control-surface-panel stiffnesses and combination panel-
spring stiffnesses. Thus, model 35-55 is control surface model 35
mounted on spring 55. The column headed d is the measured deflection
of the control surface at a point due to a unit load at that point with
the pitch spring stiffness assumed infinite and the column headed h
is the deflection of an infinitely stiff control surface at a point
due to a unit load at that point acting against the pitch spring stiff-
ness only. The point of reference is at 27.1 percent of the root chord
rearward of the leading edge and at 50 percent of the local span out-
board of the root chord. The effective stiffness K, 1s a measure of
the total stiffness of the model and is defined as 3 1 5
foot. Also shown in table II are calculated divergence dynamic pres-
sures obtained from an analysis to be discussed subsequently.

pounds per

Test Procedure

Langley 9- by 18-inch supersonic flutter tunnel.- The models tested
in the Langley 9- by 18-inch supersonic flutter tunnel were all of the
basic configuration; that is, the spring and control surface combinations
were such that the elastic properties of the actual canard all-movable
control were simulated, as was the location of the pitch axis (0.62 root
chord). Electrical resistance wire strain gages were mounted at the
root near the hinge line and the signal was taken to a recording oscil-
lograph which also recorded tunnel conditions. In addition, high-speed
motion-picture cameras recorded the behavior of the model. The proce-
dure for making all the runs was as follows: the models were set at
zero angle of attack and then the tunnel was evacuated to approximately
1 in. Hg absolute. A control valve upstream of the test section was
then opened and the density of the flow was allowed to increase at
constant Mach number until divergence  occurred.

langley 2-foot transonic flutter tunnel.- In addition to the basic
configuration, several modified configurations were tested in the
langley 2-foot transonic flutter tunnel. Effects of variation of the

CONFIDENTIAL
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pitch-axis location, variations of spring and control-surface stiffnesses
were investigated. In order to obtain data at various Mach numbers, the
following procedure was used. With the tunnel set at a low density the
velocity was increased until the desired Mach number was reached. With
the velocity held approximately constant, the test-section density was
slowly increased until divergence occurred. The dynamic pressure was
then decreased rapidly by actuating a spoiler in the diffuser section

of the tunnel. The Mach number was then decreased to a point well below
the divergence condition. At this point the stagnation pressure was
increased by a small amount, then the velocity was slowly increased
until divergence occurred. This procedure was repeated for several small
increments in stagnation pressure. For the type of boundary found for
these models this procedure resulted in divergence points for several
Mach numbers from the maximum obtainable in the tunnel down to some arbi-
trary lower Mach number.

Data Reduction

It was necessary to test models of different stiffnesses in order
t0 obtain divergence data over the desired range of Mach number within
the range of dynamic pressure obtainable in the test facilities. This
variation in stiffness leads to the necessity of reducing the data
obtained for the various models to some form of dimensionless parameter
which will provide a basis for comparison of the test results at various
Mach numbers. Such a parameter has been developed and discussed in
appendix A. The parameter chosen is closely related to the stiffness-
altitude parameter which has proven useful in interpreting flutter
results. The divergence parameter differs from the flutter parameter
in that the frequency and mass have been replaced by a stiffness term
in an attempt to recognize the static characteristics of divergence.

This parameter is

9\/Ke
a (M,

where b 1is a reference semichord taken at the T5-percent-semispan
station, a 1is the speed of sound, and K, 1is the deflection stiff-

ness or the load required for a unit deflection measured at an arbi-
trary point on the surface. For all the models tested, b is
0.0926 foot, and MA is the mass of air contained in a volume of a cone

whose base diameter is equal to the root chord and whose height is equal
to the exposed span of the control surface. This volume is 0.0405 cubic
foot.

CONFIDENTIAL
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The results of the experiments will be discussed subsequently, along
with results obtained from the following analysis.

ANATYSTS

This section is concerned with the development of divergence equa-
tions applicable to the spring-mounted elastic control tested in the
experimental investigation. An influence-coefficient method of analysis
is used in which two different methods are used for representing the
aerodynamic forces, namely, low-aspect-ratio theory (ref. 3), and piston
theory (ref. 4).

Structural Representation

In order to structurally represent the surface in a manner that is
readily amenable to analysis, the sections of the surface were considered
to be sheared parallel to the pitch axis and the trailing edge was rota-
ted about its midspan point so that an equivalent symmetrical plan form
was obtained. The equivalent plan form is indicated in the following
sketch:

In both the low-aspect-ratio-theory and the piston-theory approaches,
the aerodynamic loading is defined in terms of the local streamwise
slopes and curvatures. The expressions for aerodynamic loading can be

CONFIDENTTIAL
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combined with the slope influence coefficients of the system to obtain
an expression for the dynamic pressure at divergence. A first step in
the development of the divergence equations is the determination of the
combined slope influence coefficients of the spring-mounted elastic sur-
face. The simple beam equation will be applied in the stream direction
to determine a slope influence coefficient array. . It is assumed that

the influence of spanwise deformations on the structural and aerodynamic
forces is small. The elastic influence coefficients of the surface alone
may be obtained by assuming that CB’ the pitch spring, is infinitely

stiff; that is, slope and deflection at the pitch axis are zero. Use
may then be made of the fundamental beam relation

dgz
EId—x§=Mb | (1)

For a concentrated load Px- applied at a point at a distance xj from
d

the pitch axis, equation (1) becomes
d z
EI —= = - A P
(xJ x) %3 (2)
for
Ix‘ < ]x.'
Jd

Since the surfaces considered are of constant thickness, the section
moment of inertia I may be written as

w

T=15 (% %) (3)

Equation (2) may be integrated with the section moment of inertia repre-
sented by equation (3) to obtain the slope at a point x; due to a

load at station xj

12ncP
dz X

(a;)xi ) ?3‘] ¥ (e %) 1°ge(,$’i—x—i) (%)

CONFIDENTIAL
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where
n=1 (O < x5 < Xj)
n=0 (xj = O) (5a)
n = -1 (xj < x; < o)
Appropriate boundary conditions are
dz = (g§> x: ] > 1x:l; xex, > O)w
ax/ x5 X5 (| il .?l J" id
s (50)
dZ <
== =0 . =0
(dx)x. (xixJ - ) )
i
An elastic slope influence coefficient Aij may then be defined as,
)
dx/x bd X
Ayy.= 5 i- lgn; ;l - (l - —J)loge "—-21;7 (6)
| x Elt P 1 - 2L
J | %

subject to the conditions of equations (5).

For the present analysis the control surface is divided into ten
sections of equal increments along =x and the control points are located
at the middle of each section. The ten-point slope influence coefficient

matrix [A] calculated from equation (6) and representing the control
surfaces is presented in appendix B. The notation [] represents a
square matrix. :

The slope influence coefficient a4 due to a épring in the pitch
degree of freedom is '

o
a ayj = 5? (7)

The matrix [a] representing the pitch springs is also presented
in appendix B. B : S : I

" CONFIDENTIAL
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The combined slope influence coefficients due to the elastic con-
trol Surface and the spring restraint in the pitch degree of freedom
are additive,

The matrix eQuation

IR S (©)

gives the slope '{gi} in the streamwise direction for any system of
loads <{P} s Where {-} denotes a column matrix. If the aerodynamic

loads can be expressed in terms of the dynamic pressure and slope, then
substitution of the aerodynamic loads. into equation (9) results in the
divergence equations which may be iterated to obtain the critical dynamic
pressure. Two methods of representing the aerodynamic loads will be
used, namely, low-aspect-ratio theory and piston theory. The following
.section presents the development of the serodynamic loads into a form
that can be used in equation (9) to obtain the divergence equation.

Divergence Equations

" Low-aspect-ratio theory.- The aerodynamic loads are first obtained
from very-low-aspect-ratio theory (ref. 3). This theory assumes that
the flow field within a planar strip perpendicular to the flow direc-
tion is two dimensional and that the changes in the flow direction are
small. The complete expression for the aerodynamic load on a section
of dimension 2s normal to the flow and Ax parallel to the flow may
be written as

. : : 2 : .
P = -ﬁp(Ax)s2 2+ zv az + V2 az) _ 2n(Ax)pVs tan 6(& +V 95)

(10)
where 6 1is the angle that the leading edge is inclined to the free
stream. The effects of the central body on the aerodynamic forces as

given by low-aspect-ratio theory are not known; however, they are assumed
to be small. The time derivatives for the divergence case vanish, and

CONFIDENTTAL
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equation (10) when applied over the entire control surface may be
written in matrix notation as

{P} = -2n(sx)q {52 %} + 2 tan 0 {s %} (11)
If
5ij =1 (1 = 3) (12)
85 =0 (1 43)

the matrix for the aerodynamic loads becomes

(.2
fpl - 2l)dz g
{2y = ax(ax)a [aijsjl " + 2 tan 9[51,3 J] {dx} (13)

A differentiating matrix [D| may be determined such that

)
=l

&I‘”

} (14)

A sample matrix [D:] for the ten—po:Lnt analysis used in this paper is
given in appendix B. If the differentiating matrix [D] of equation (14)

is used in equation (13), the expression for the aerodynamic loads
becomes,

P = _Eﬂ(&)q‘:[sijsj{l [D] + 2 tan 6 [Sijsj-ﬂ {%} (15)

The square matrix premultiplying {%} is a function of geometry only,

and, if it.is denoted Dby EC] , the aerodynamic loads are given by

{r} _ ~2n(2x)q[C] {‘}—é} (16)

CONFIDENTTAL
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If the aerodynamic loads given by equation (16) are substituted into
the combined slope influence equation (eq. (9)), the equation governing
the slopes under aerodynamic loadings are :

{% = -2x(ax)qlB] [C] {%} (17)

Equation'(l?) expresses the conditions for which the aerodynamic forces

are equal to the structural restoring forces. Equation (17) is thus the
divergence equation and may be iterated to obtain the dominant root which
yields the dynamic pressure at divergence. The values of q thus obtained
for each case are given in table II. It may be mentioned that the pro-

duct [B] [b] for stiff control surfaces and weak pitch springs produced

an ill-conditioned matrix which was divergent under normal iteration pro-
cedures. Averaging successive iterations proved to be adequate to force
convergence to the dominant mode in the cases treated. '

Piston theory.- A second method of representing the aerodynamic
forces for the supersonic case was also used and involved the use of
piston theory (ref. 4). Piston theory is an application of the "local"
wave equation and may be obtained from potential-flow theory if the
Mach number is allowed to take on large values. The pressure coeffi-
cient may be written as '

p-p,_ = pmaMEE.Lm‘_,_ (%—l) %)2 + (712 l)(g_f Fo } (18)

5]

. The load on a section of the upper surface, which is 2s wide and Ax
long, becomes '

b = e(&)(%)q[ﬁ(%) e [ G R }

(19)

The surface 1s of constant thickness and the'load on a section of the
lower surface is

e[| 3 ¢ (6 26+

Recognizing that dz/dx 1is equal to w/V, the total load P, - P,

becomes

' CONFIDENTTAL
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= -b(ax)(2s)q L]iii + »45(7_1_;_1)(§_>Z§.)5 TR ] (21)

Only the first term of equation (21) will be used in the present analy-
sis. The system of equations representlng the loads on the control sur-
face is

—
el
\—v—l
I
|
g

Ax)q[é&ijsj] {%-XE} : (22)

Equation (13) is the corresponding equation derived from low-aspect-

ratio theory. The square matrix premultiplying {%i}r in equation (22)

is also a function of geometry only, and, if it is denoted by .Eq, the
aerodynamic loads are

{p} = -2 (ax)afe] {gj;} | (23)

Substituting the aerodynamic loads given by equation (23) into equa-
tion (9) gives the dlvergence equatlon for the analys1s based on piston
theory

dx

dz L k az :

== = - — {Ax Blic - oL
{ } M( )Q[]D{dxj - (2h)
Equation (24) may be iterated to obtain the critical values of q.

RESULTS AND DISCUSSION

The basic model configuration with springs simulating both the
syrmetric and the antisymmetric stiffness of the prototype missile has
been tested in the two wind tunnels in the Mach number range from
about M = 0.6 to 3.0. Additional tests have been made in the. tran-
sonic tunnel to study the effects of stiffness of the control rotation
springs and of the control surface. Additional studies were made of
the effects of location of the pitch axis.

CONFIDENTIAL
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General Characteristics of the Divergence Encountered

Classically, divergence-has been treated as an aercelastic. phenom-
~enon associated with torsional deformations. This type of divergence
‘has’ been defined as a static instability of an airfoil in torsion which
occurs when the torsional rigidity of the structure is exceeded by
aerodynamic twisting moments (ref. 5). The type of divergence encoun-
tered in the present investigation seeéms to fit this same definition
except that the role of torsional deformations has been replaced by
camber deformations superimposed on a rotation of the control about
its pitch axis. The type of motion involved is shown in figure 6
which is composed of enlargements from a high-speed motion picture.

As the deflections become large it can be seen that the surface has
large curvature ahead of the pitch axis and a decided slope at the
pitch axis. As a matter of interest, deflections were measured on
several of the enlargements and are compared to the calculated deflec-
tion shape in figure 7. The agreement between the measured and cal-
culated deflectlon shapes is good.

The type of motion involved in divergence of these models is quite
violent in the sense that very large deflections are reached in a very
short period of time as indicated by the enlargements of the high-speed
motion picture shown in figure 6. At subsonic and transonic speeds
only a few of the models acquired a permanent set during divergence,
presumably because of a stalling effect at high angles of attack. At
supersonic speeds, all the models were permanently damaged in divergence.
A representatlve selection of these damaged models is shown in figure 8.
Although the models ‘did not always suffer damage at the lower Mach num-
bers the control deflections during divergence were probably sufficiently
large to cause very violent maneuvers of the missile with subsequent
structural damage.

Basic Configuration

" The data obtained for the basic configuration have been reduced
to a nondimensional stiffness-altitude parameter which is discussed in
appendix A. The values of this parameter represent a stability boundary
for static aerocelastic divergence and are shown as a function of Mach
number in figures 9 and 10. In a figure of this type, constant altitude
operation of a-given configuration would be represented by a horizontal
line at 2 value of the parameter determined by the stiffness of the
control and the altitude. ‘Radial lines through the origin represent
lines of constant dynamic pressure

4
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The tendency toward a decrease in slope of the boundary with
increasing Mach number indicates that somewhat higher dynamic pressures
would be required to produce divergence at higher Mach numbers than at
lower Mach numbers. ’

The analysis of static aeroelastic divergence using very-low-aspect-
ratio aerodynamic theory yields a single value of dynamic pressure
required to produce divergence regardless of the Mach number. If pis-
ton theory is used, the analysis indicates that the dynamic pressure
at divergence increases directly with Mach nurber. The calculated
results obtained from both types of aerodynamic theory are shown on fig-
ures 9 and 10. In the Mach number range from about 0.6 to 1.2 (where
piston theory is not applicable), the agreement between the experiment
and calculations based on low-aspect-ratio theory is considered to be
excellent. At higher supersonic Mach numbers, the experimental results
fall about one-half the distance between the calculated results obtained
for the two types of aerodynamic theory.

Effects of Variations in Stiffness

In obtaining data over the desired range of Mach number in the two
facilities it was necessary to use models of varying stiffness. An
impression of the effects of stiffness can be obtained by examination
of figures 9 and 10 and observing the degree to which a single curve
can be fitted to the data for models of various stiffness levels. The
fitting of a single straight line to the data implies that the dynamic
pressure required for divergence is essentially directly proportional
to the stiffness. This seems to be true for cases where the contribu-
tions of the control surface and the pitch spring to the total stiffness
remain in about the same proportion. When the relative contributions
of the two sources of stiffness are varied, this direct relationship
between dynamic pressure and stiffness cannot be expected to apply.
This feature is illustrated in figures 11 and 12, where the variation
of the dynamic pressure required for divergence with stiffness is shown
for two methods of varying the overall stiffness of the model. The
first method (fig. 11) was to test the same control surface mounted on
different springs simulating a variation in control actuator stiffness.
The second method (fig. 12) was to test control surfaces of varying
stiffness mounted on the same spring.

The data agree very well with the calculated values and indicate
that the stiffness of the surface and the stiffness of the control actu-
ator are both important in determining the divergence characteristics
of controls of this type.

CONFIDENTIAL
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Effects of Variations of the Pitch Axis

It has long been recognized that the relative location of the aero-
dynamic center of pressure and the elastic axis is important in aero-
elastic problems. In the present investigation it was believed that
the camber deformations of the surface were producing a more forward
location of the center of pressure than would be the case for a more
rigid surface and, consequently, it was considered desirable to deter-
mine the effects of moving the elastic axis or the pitch axis forward.
For a model which simulated the prototype stiffness of both the surface
and the actuator, it was found that moving the pitch axis forward from
0.62c to 0.58c increased the dynamic pressure at divergence by about
%5 percent. Similar tests with a much lower simulated actuator stiff-
ness indicated about an 80-percent increase in dynamic pressure for the
same change in axis location. When the same control surface was tested
with the axis at midchord and with zero actuator stiffness (free
floating), the dynamic pressure at divergence was increased by about
20 percent indicating the strong influence of the location of the pitch
axis. ' ,

CONCLUSIONS

Divergence studies of a delﬁa-plan-form all-movable control in the
Mach number range from 0.6 to 3.0 indicate the following conclusions:

1. At Mach numbers from 0.6 to 1.2 divergence occurs at an almost .
constant value of dynamic pressure. At higher supersonic speeds up to
a Mach number of 3.0, divergence occurs at somewhat higher values of
dynamic pressure.

2. Analytical results based on very-low-aspect-ratio aerodynamic
theory gave very good agreement with the experimental results in the
Mach number range from 0.6 to 1.2. At higher Mach numbers the experi-
mental results fell about one-half the distance between two sets of
calculated results based on low-aspect-ratio theory and piston theory.

3. The analysis and the experiment indiéate that the stiffness
of the control surface and the stiffness of the control actuator are
both important in divergence of controls of this type.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., April 1%, 1958.
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APPENDIX A

DERIVATION OF A PARAMETER FOR PRESENTATION

OF EXPERIMENTAL DIVERGENCE DATA

In the study of dynamic aeroelastic phenomena or flutter it has
been found that a convenient grouping of parameters called the stiffness-

_altitude parameter has been very useful in interpreting experimental

flutter data obtained for a variety of stiffnesses over a range of alti-
tude and Mach number. This flutter parameter consists of the product

of a reduced frequency based on a representative chord, natural frequency,
and the speed of sound times the square root of a mass ratio which is
usually taken as the ratio of the mass of the surface to the mass of a
specified volume of air surrounding the surface. This flutter parameter

can be written asv y vr:

If it is reasoned that static aeroelastic phenomena, in particular
divergence, do not depend on inertia forces, then it seems logical that
some other combination of parameters might be more useful in interpreting
divergence data. If the divergence model can be represented by a con-
centrated mass which yields the frequency & when attached to a spring
whose spring constant is K., the flutter parameter might be redefined
as

This new parameter would seem to be more appropriate for diver;
gence studies since it is not based on dynamic properties of the model

‘but does include the stiffness of the surface. However, the new param-

eter is somewhat unsatisfactory because the significance of the individ-
ual parts of the parameter is not obvious. As a matter of interest
the parameter can be reduced further to

l _
VM dpb a
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where the product Dbel is propoftional t0 the mass of a particular
volume of air surrounding the surface. The speed of sound can be elimi-

: fE
nated by the relatiomnship a = ?é where EA is the modulus of elas-

ticity of the medium. Recognizing that the spring constant K, 1is

proportional to an effective value of the modulus of elasticity of the
material By ., the parameter becomes
. 2

- .
,‘f ~ oy [PMe
My EA

where C is a ccnstant for a given configuration depending only on the
geometry of the configuration. Thus, it is seen that the divergence
parameter is, essentially, the ratio of the model stiffness to the air
stiffness which would seem to be a very significant parameter.

® o
ZLD

The divergence boundary defined by the dimensionless stiffness-
altitude parameter can be converted easily to a boundary in terms of
dynamic pressure and Mach number for a particular configuration. At
each point on the boundary the dynamic pressure at divergence can be
found from the following relation:

b Ka\ M2

M 2
2 A ‘B/&
0
B.MA
M

where 7? is the specified volume of the medium surrounding the

surface,
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APPENDIX B

SAMPLE DIVERGENCE CALCULATION

Presented in this appendix is a sample calculation of the dynamic

pressure at divergence. Low-aspect-ratio theory will be used. The

control surface was represented by the following parameters. The dimen-

sions are given for the equivalent control surface after the sections
were sheared parallel to the pitch axis and adjusted to obtain a sym-
metrical control surface.

1]

10,000,000 1b/sq in. = 1,440,000,000 1b/sq ft
8.55 in. = 0.7125 ft '

= 3.60 in. = 0.30 ft

= 5.45 in. = 0.454 ft

) = 0.855 in. = 0.071 ft
0.032 in. = 0.00267 ft
[Cg = 0.0345 radian/in-1b = 0.414 radian/ft-1b

30° = 0.524 radian

]

4

G‘HdAJ ~ 0 =
H

The influence-coefficient matrix for all the control surfaces is
calculated from equation (6).

;.937 2.320 1.323 .67k .271 .058

o} 0 0 0
3.55%  2.320 1.323 .67F .27T1  .058 o 0 0 0
2.922° 2.122 1.323 .67+ .271 .058 o} 0 o} 0
"je.216 1.702 1.188 .674 .27T1  .058 0 0 o] 0
A _12¢ {1.475  1.17h 873 .572 .27 .058 0 0 0 0
[ iﬂ gt | -T1 .580 A50 0 319 189 .058 0 0 0 o
|l o 0 o] 0 o] o} -.005 -.018 -.023 -.034
0 0 0 0 0 0 -.003 -.0T4 -.20T -.339
1 0 o] 0 0 0 0 -.003 -.0T+ -.261 -.500
L © 0 0 0 0 0 -.003 -.0Th -.261 -.548

The slope-influence-coefficient matrix for the pitch degree of freedom
is given ‘as ‘ ’

[5.019 L4.170 3.322  2.b73  1.625 .T76 072 -.921  -1.769 -2.6181

5.019 4,170 3.322 2.473 1.625 .T76  -.0T2 -.921 -1.769 -2.618

5.019 L4.170 3.322  2.473 1.625 .T76  -.072 -.921 -1.769 -2.618

5.019 L4.170 3.322  2.473  1.625 .T76 . -.072 -.921 -1.769 -2.618

e.] = X {5.019 k70 3.322 2473 1.625 .76 -.072  -.921 -1.769 -2.618
[ ii] Cg {5.019 k.270 3.322 2.473  1.625 776 -.0712 -.921  -1.769  -2.618
' 5.019 4.170 3.322  2.473 1.625 .76 -.072 -.921 -1.769 -2.618

5.019 4,170 3.322 2.473 1.625 .T76 -.072 -.921 -1.769 -2.618

5.019 k.70 3322 2473 1.625 .76 -.072  -.921 -1.769 -2.618

5.019 Lk.170  3.322 2473 1.625 .76 -.072 © -.921 -1.769 -2.618]

CONFIDENTIAL
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The combined slope-influence-coefficient matrix Bij = Aij + aij is

given by adding equations (Bl) and (B2)

513 344,229 .14k ,080 .032 -.003 -.032 -.061 -.090
480 .34k L2290 .1M4 080 .032 -.003 -.032 -.061 -.090
45 327 229 .14k ,080 .032 -.003 -.032 -.061 -.090
.36k .291  .217 .14 .080 .032 -.003 -.032 -.061 -.090
_|.300 .25 .90 .135 .08 .032 -.003 -.032 -.061 -.090 (B3)
[?14] = l.23s  .19% (153 .113  .072 .032 -.003 -.032 -.061 -.090
175 A 115 .08 .056 .02 -.004 -.033 -.063 -.093
73 Wy L1150 .08 .056  .027  -.00%4  -.038 -.079 -.119
.175 Ak 115 .08 .056  .027 -.00k -.038 -.084 -.133
173 kb o115 085 .056  .02T -.004 -.038 -.0k8 -.138

A differentiating matrix is obtained by applying the 5-point interpolation
equations given on page 97 of reference 6.

[25 48 3 -16 3 o o o0 o 0]

3 10 -18 6 -1 0 0 0 0 0

-1 8 0 -8 1 0 0 0. 0 0

L 0 0 R g -8 é o 0 0 0

I 0 0 -1 o - 1 0 0 o}
[D] 12(Ax) 0 0 0 -1 8 0o -8 1. 0 0 (Bl.’)

0 0 0 0 -1 8 o -8 1 0

0 0 0 0 o -1 8 0 -8 1

0 0 0 0 0 1 -6 -18 -10 -3

K 0 0 0O 0 -3 16 -36 k8 -25 |

The matrix {Sijsj} is obtained from the geometry of the control and
]

is expressed in inches as follows

1 0 0 0o 0 0 O o0 o0 o]
o 3 0 0 0 0O 0 0 O O
o 0 5 0 0 0 0 0 0 O
©o o 0 7 0 0 O 0 0 O
5 s =-<Z§) 0 0 0 0 9 0 0 0 0 0] (g
i3 Lo o o o0 o0 o 1l ©° 0 0 0
lo o 0o 0o 0 0 13 0 0 0
©o 0 0.0 0 O O 15 0 0
©o o 0 0 0O O O 0 17 0 |
6 o o o 0 06 0 0 0 19 |

also

CONF IDENTIAL
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1 0 0 0 0 O o0 0 o0 o-}
0 9 © 0 0 0 0 0 0 0
0O 0 25 O 0 0 0 0 0 0
> |0 0 o ¥ o 0 0 0 0 0
5..s2=(28) |0 o 0o o & 0 0 0 0 0 (B6)
1379 40 O 0 0 O O 111 o© 0 0 0
0O O © 0 0 0 169 0 0 0
O 0 O 0 0 0 0 225 0 0
0O 0 © 0 0 0 0 0 289 0
0O 0 © 0 0 0 0 0 0 36%A
The matrix [C] is obtained from equations (15) and (16)
[c] = ra-.s.g] [D] +2tan 6 [5 .s] (BT)
e 1573
.084 038  -.029 L0153 -.002 0 0 0 0 0o 1
-.021 2h0 129 -.083 .007 0 0 0 0 0
.020  -.159 .519 159 -.020 0 0 0 0 0
0 039 -.312 727 .312 -.039 0 0 0 0
c=-| 0 0. 064 -.516 .935 .516 -.064 0 0 0 (B8)
0 0 0 .096 -.T70 1.142 .T70 -.096 0 0
0 0 0 0 .134  -1.076 1.350 1.076 -.134 0
o] -0 o} 0 0 179 -1.432 0 1.558 1.432  -.179
0 0 0 0 0 -.230 1.379 -L4.138 k,065 .690
| © o] 0 0 o] 862 -4.595 10.338 -13.785 9.153

The product [B] [C] for use in equation (17) is found to be

p—

L0 071 109 .095  .091 005 .392
037 .070 .110 .094 .091 005  .392
.033 .064 .110 .094% .091 005  .392
029  .055 .100 .093 .091 005  .392
}[3] Dﬂ"" .02k .ob5 .085 .08 .089 .005  .392
_ 019 .03 .06T .067 .OT6 .002  .393
01k ,026 .050 .050 .056 -.013 .ho2
014 .026 .050 .050 .056 -.033 .509
014 .026 .050 .050 .056 -.04lk .566
L_.01J+ .026 .050 .050 .056 -.047 .585

736 952 -.863)
.T36 .952 -.865
736 .952 -.863
.T36 .952 -.865
.736 .952 -.863
.T36 .952 -.863
.T60 .983 -.801
975 1l.27Th -1.142
099 1446 -1.272
Ak 1,503 -1.310

]
| aandil o I N NN N NN RS BN |

The dominant root of this matrix is found by iteration and is equal to
-0.327. The normalized slope mode is given by

CONF IDENTTIAL
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N

The dynamic pressure is given as

1
2n(Ax)(-0.327)

q:—

(1.000
.989
.962
.888
.761
D75
34T
275
240

.233}

N

= 0.57 1b/sq in. = 82 1b/sq £t

CONFIDENTIAL
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TABLE I

MASS AND THICKNESS OF MODELS

Model Mass, slugs Thickness, in.
31 0.000732 .0.016
33 .000928 .020
35 .0014k46 .032
37 .001875 .0ko
39 .002371 .051
] .002890 .06k
43 .003095 .072
k5 .003650 .080
k7 .003895 091

CONF IDENTTAL
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TABLE II

NACA RM L58E0T7

STIFFNESS PROPERTIES OF MODELS AND SPRINGS WITH CALCULATED

DIVERGENCE DYNAMIC PRESSURE

Calculated
divergence q,
(low-aspect-
Models d, ft/1b h, £t/1b K., 1b/ft ratio theory)
(a)
Basic control surface-spring combinations
35-55 | 19.50 x 10=2 | 31.73 x 1072 . 19.51 82.6
37-58 9.25 14,17 42,70 168
41-61 2.42 4,34 148.1 646
h1-67 2.42 1.75 240.0 826
43-63 1.71 3.08 208.7 906
43-71 1.71 1.17 347.8 1,190 .
39-59 L, 84 6.84 85.7 349
45-65 1.21 3.63 275.8 1,222
47-67 .83 2.58 388.0 1,762
Modified control surface-spring combinations
35-58 | 19.50 x 1072 | 1%.17 x 1073 |  29.70 103
35-T3 19.50 .67 49.58 14
b7-55 .83 31.73 30.68 652
35-49 19.50 255.00 3.64 Li.7
31-55 | 155.70 31.73 5.3k4 16.0
33-55 | 79.80 31.73 8.98 28.6
37-55 | 92.50 31.73 2h.b 129
39-55 k.93 31.73 27. 4 208

aDivergence q calculated using piston theory is approximately

equal to divergence

plied by 0.906M.

CONFIDENTTIAL
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L-57-1437.1
Figure 4.- Model mounted in 9- by 18-inch supersonic tunnel.

Flow,

T=57=1430.1
Figure 5.- Model mounted in 2-foot transonic flutter tunnel.
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071

092

L-58-1626

Figure 6.- Enlargements from high-speed motion picture of model 35-55

during divergence.
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Figure T.- Comparison of calculated and measured deflection modes during
divergence.
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Figure 9.- Variation of stiffness-altitude divergence parameter with
Mach number for models having springs simulating symmetric mode.
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Figure 10.- Variation of stiffness-altitude divergence parameter with
Mach number for models having springs simulating antisymmetric mode.
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Figure 11.- Variation of dynamic pressure at divergence with stiffness
for model number 35 with various springs.

CONFIDENTTIAL



NACA RM L58EOT

38

*STOPOW SNOTIBA YFT# G Joqunu Jurxds J0JF

SS3UIITAS YATM OOUSBISATP 9® aanssaxd oTweulp JO UOCTIQBIIBA -°gT 2Jan38TJ

1701 3 ‘ssaupus aanoay3

82 b2 (074 ol 2l 8
\\@\
g
4
@)
- O
(Ol
O 8 O
90=W O
\ painsoap
pajoInon)d

0
ov
08 o
~g
)
o
3
[¢]
_ 2
o2t $
2
s
g
osr "°
002

ov2

NACA - Langley Field, Va.



,”H: £rASe Wmm

UN@L‘BM;M@J




	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41



