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1. SUMMARY OF PROGRESS TO DATE

”During the reperting period the derivation eof all equatiens and
beundary cenditiens based en "thick-shell" and "thin-shell" theery in
spherical and tereidal ceerdinates was completed: The full set of equatiens
for the 'thin-ghell" theery and the sequence fer their selutien is included

in this repert, as is the finite-difference fermulatien fer this case.

4;ﬁm£3-evaluation of the equatiens near the singularity en the gee-
metri; axis-of—symmetrz;was made during the reperting peried. This re-~evalua-
tion;ég§ulted in a useable set of equatiens for the singular-peint for nen-axi-
symmetric case. These equations are alse preéented in this repert., As

stated in the previeus guarterly repert, since this peint is cemmen te all

meridian planes, using it as a cemmon nede weuld censiderably reduce the

tetal number ef nedes.

Efferts were initiated during the reperting peried in the areas ef
everrelaxation and cenvergence criteria. Initial results will be reperted

in the next monthly repert.

The effert in the pregramming area centinued en the axisymmetric

case. It is expected that this case will be cempleted by 1 April.

Details eof accemplishments since the last repert are belew, based en

the revised schedule presented in the first quarterly repert.

A. INVESTIGATION OF ENGINEERING MODELS (A" in Schedule)
The full set of displacement equatiens ef the thin-shell theery
in teri-~spherical ceerdinates and the preper sequence te be empleyed in
their selutien is presented in Appendix A. The "Yzero-erder" and "Hfirst-erder!
parts ef the equatiens are clearly indicated. A cemparisen ef this set eof

equatiens with the equatiens generated using the "standard" thin-shell fermu-
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I Summary of Progress to Date (cont.)

lation reveals plainly the inconsistencies in the "standard" formulation.
These inconsistencies are manifested by missing terms in the 'first-order"
equations, Thus, the standard formulation is at best a 'zero-order'" formula-
tion. However, the consistent zero-order formulation is considerably

simpler than the "standard" formulation.

As mentiomed in the fourth moathly report, an attempt was made
to avoid fourth-order terms in the derivation. This was accomplished at
the cost of increasing the number of equations from two to six as shown in
Appendix A.

The finite-difference equivalent for the '"thin-shell" equations
is presented in Appendix B.

(This completes Task A").
B. THE SINGULAR POINT

A re-examination of the equations for the non-axisymmetric case
at the singularity on the axis-of-symmetry was made during the month of
February. This effort was prompted by the progress made in the programming

of the non-axisymmetric case which requires special treatment near the

singularity. This effort resulted in the derivation of a programmable relatively

simple set of equations for this point for the general non-axisymmetric case.

These equations are presemnted in Appendix C.
C. DEVELOP CONVERGENCE CRITERIA

An effort in this area was initiated during the reporting period.
It is expected that imitial results will be presemted in the mext reporting

period.
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I Summary ef Pregress te Date (cent.)

D. OVERRELAXATION METHOD

A censiderable effprt was expended in this area during the
reperting period.i;if wae established that "line-relaxatien'" effers cen-
siderable advantages ever peint-relaxatien fer the present prob}ggf Varieus
line-relaxatien appreaches were investigated. Presently the 'lines' used
are these of censtant R (and apprepriate censtant r) because they assure
the preper effect of the beundary cenditiens en the selutiem and enable
"starting' the selutien in a relatively easy fashien.

E. PROGRAMMING

The effert in the pregramming area was cencentrated om the
cempletion of the axisymmetric case. It is expected that this effert will

be cempleted by 1 April 1964.

e

ffhe ms jer preblems enceuntered are in satisfying all the beundary
conditionn:£§‘the "first-guess'" selutien witheut generating discentinuities
at nearby mesh-peints. The difficulty stems frem the fact that the finite-
difference fermulatien utilizing the mesh-size impesed by the preblem dees
net medel the (centinueus) derivatives satisfacterily near the beumdary whem
standard finite-difference fermulatiens are utili;sd. A censiderable number

ef nen-standard fermulatiens have already been tried previding insight inte

the behavier ef the equatiens and the fermulatiens that effer mest premise.

With the receipt ef the imnfermatien en ablater-thickness amd
base-temperature data, the pregramming ef the final three-dimemsienal preblem

has resumed.
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II. PLANNED ACTIVITIES FOR THE NEXT REPORTING PERIOD

A. DEVELOP CONVERGENCE CRITERIA

Effert in this area will centinue during the next reperting
peried with initial results expected te be available fer reperting in the

rext menthly repert.
B.  OVERRELAXATION METHOD

With the expected cempletien ef the sxisymmetric case during
the next reperting peried (by 1 April), details ef the results ef this

effert sheuld alse be available fer reperting in the next menthly repert.
c. SANDWICH CORE PROPERTIES ANALYSIS

In erder te enable fulfillment ef the requirement fer a '"five-layer"
selutien ef the final nen-axisymmetric case, the preper sandwich-cere
properties will have to be develeped. This effert will be initiated during the
next reperting peried. An unisetrepic analysis ef the sandwich cere will
be perfermed. Based on this analysis the "equivalent-isetrepic' values eof
the material preperties utilized in the equatiens ef thin and thick shell

analysis will be develeped.
D.  PROGRAMMING

The axisymmetric test case will be cempleted by 1 April. The

pregramming effert en the nen-axisymmetric case will centinue.

III. PROBLEM AREAS

Ne new techmical preblem areas have develeped since the last repert.
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IV. PROGRAM CHANGES

During a meeting on 2 March 1964 between NASA/MSC and Aerojet, tenta-
tive agreement was reached on the following changes in personnel for this
program.

Program Mamager: W. T. Cox -~ replacing Dr. A. Zukerman

Principal Investigator: W. T. Cox - replacing B. Mazelsky

Consultant: Dr. H. H. Hilton - replacing Dr. A. J. A. Morgan

These changes will mot affect the performance and schedule of this

contract.
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APPENDIX A
Detailed Stress Equations for the Thin-Shell

Solution

The zero-order and first-order stress equations for the thin-shell
solution are derived in the toroidal system since the spherical case is readily

attained from the toroidal case by letting a = O.

The first-order expansion of the tangential stresses are

Q
il

* (5] Texp, (1)
og,* | ) %oe, (2)

(3)

[]

a0

c =0 + (E) o]
9  “ofb o) 08
] b deri i
where o , O » Ogg_ > 099 s cweb’ and °¢61 have been derived in Reference 2,
Equations (h8) through (53) of Appendix A. Substituting these equations
into equations (1), {2) and (3) and simplifying the stress equations in

toroidal coordinates are obtained in terms of uy, vo, Wo and Crp,
2
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Detailed Stress Equations for the Thin-Shell
Solution (cont.)

= 1l3ve V_o- 3w Vo_COS®
g T 1 [p]atp —l[s Jaﬁ_*Cl[ . o
Zero
i ] order
1, Yo sing BT \/ Py +Ds h |? terms
S R O R
v o || o g, |2 +Tagaaa g Prp] o [z ]2 N\
CGLBTB‘P_IF%B/ TG 39 3 | ps | 38
[ dc
Vo 2 [sin:p COSt sin® 1 32y, 1 g,
'C".s] s T T s T5IF T & ae
. ¢, |2 cose oz cosol|[ B . o -
Cs P s ]vo + Cy [ 0 5 Mvo o + & cr%] first
> terms
Z Z Sine
+[Cz(p1')+0.s(a s)uo
(%)
z vpz sing | J-Vo Avo 9 ) ] B&)
+C1[p + o s}{l-vo[atp +Uo+s(uo sing + vo cose 35
o (1-29)(1+%) 14V,
¥ [F() lci\)o cTI'o + l_VO P O TO
z z |{vq z v Dy +D2 E_ 2
W,
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Detailed Stress Equations for the Thin-Shell
Solution (cont.)

V)

c
1

|
0 o 1 awo cosg
Ci —J T - Ci 's' | - o+ Cl

. C rSlng 2 4 EOOETO { Yo
1 5 p o 1-v 1-v
3 L
r av v 2|l 3%y
+C | & == - CJl|lu + 2
p‘J oy 1 2|0 dg® o
- [ [
T r
2 | .sinag P azuo £ aOrGQW
-G s ; s Y *'s 3@ T G Jdg |
b T
? du i
(1- 8y - =2, B
i (o] a(f e
i °
z'z coséa rz sing Voiig o
+ C ! + C +
2 ! ps | 1 s PR |ll-v
L ) . LIS
dw i N (1-2v°)(1+V°)
+ v, cosg - 3g b+ E Tov ~ g
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+ Cg p + Cq pl 5 u p} Cy + B
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Page

N——eee -

w

zZero
order
terms

first
order
terms

(5)



Detailed Stress Equations for the Thin-
Solution (cont.)

o

_ 1]evw 1] 2w
Cwd Csl s | 28 i CE{_p dp ‘s [
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s =a + 1T siny

_ Eo

C1 - l_\)oa
E VAV
G = 1-v, * 1-vo2

_Ejvg . Eovg (I %)
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(1)
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(12)
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Detailed Stress Equations for the Thin-Shell
Solution (cont.)

Equations (4), (5) and (6), as previocusly stated, are in terms of

Upg, Vo, wp and O which are obtained by solving the six equilibrium equations
2

as given in Reference 2, Equations (33) through (38) of Appendix A.
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APPENDIX B

Thin Shell Solution: Finite Difference Formulation

The generalized finite difference analogue formulation was developed
in Reference 1 and is directly applicable to the thin-shell solution given
in Reference 2 with the following changes: coordinate & will be eliminated
since it corresponds to the radial direction¥*, subscript i will also be |

dropped to conform with the above statement.

The finite difference solution of the equilibrium equations will
first be obtained for the general case where the grid spacing is assumed
to be irregular. Then a solution will also be obtained for regular grid
spacing. 1In both cases the first, second and mixed derivatives are needed
for the central, forward and backward grid combinations. A typical general

grid spacing is shown in Figure 1 below.

|§1 (0’1 )

This coordinate

‘eliminated
'\ h24

ga("’z)

l

Figure 1 - Coordinates of Irregular Mesh Intervals

¥ The partial derivatives in the equilibrium equations given in Reference 2
are taken with respect to o and as (¢ and 8 respectively).
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Thin Shell Solution: Finite
Difference Formulation (cont.)

The increments in the vicinity of a node will be designated by the following,

in accordance to Figure 1.

hay = (o2}, - (es), ey = (o), ., - (as),
hos = (ae),,, - (a), hea = (68),, . - (o8],
(1)
haa = (0g); - (e2); has = (08); - (o8); ;
hp,y = (ab)i - (ah)i_g hay = (Qb)i - (05)1_2

From Reference 2 f(E€,, Bz, €3}, the function of the coordinates with the

origin at i, j, k is:

(8, 8, §) =f, ., +B & + B & + By Es + By §; Eg

1,3,
+ By Bp B3 + Bg g Ey + By E,2 + By B3 + By E5°  (2)
+ Byo €y B2 3 + Byy 8y €2° + By §; €3 + Bys E,° &g

+ Byy B2 B3+ ...

The first and second derivatives of f(al, g, 05) with respect to o

and o are obtained from Equation (2).

of af of of
e R TN =R, 3| . -5 = By
o 1131k g 0,0 »0 % 1:J:k 0,0 ,0
Er __¥*r - B (3)
3&2 aﬁb i3k 352 5@3
2d> 00 50
32f *r Rr *r
— = = 2Bg , TR = 5% = 28
aﬁ’a i:j)k ga 0,0 50 % i;j:k §3 0,00
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Thin Shell Solution: Finite
Difference Formulation (cont.)

The constants Bi are evaluated in terms of the function at these nodes
and the grid spacing as shown in Figure 1 by considering the values of
7(€,, Ea2, B3) at the eight nodes adjacent to j,k, and proceeding in a

manner similar to that outlined in Reference 1.

I. GENERAL CASE - IRREGUIAR GRID SPACING

A. CENTRAL DERIVATIVES

hea® f. + 2 o hge®) f. . - hyy® T,
.ai = 23 J+l,k (hal 28 ) J,k i J-1,k ()+)
d0p 5% hay has (hay + hpz)

bl
2 2 2 _ 2

af _ h33 fj;k‘*‘l + (hel - h33 ) fj,k hs], f'j,k_l (5)
d0y 3k hay hgs (hyy + hag)
_Pr - 1 haa® [f - f
o 005 | .\ hay Tes (hay + Bas) (hsy + hea) [ 2% |75+1, K+l 7 T3-1,k41

2

2 2
- (hss® - ha,?) (fj+1,k - fj-l,k) - Py (fj+l,k-l ) fj-l,k-l)J (6)

if;_ = 1 han® | £ - f
ooy Oa ik hg, hgs (hg; + hga)(hay + haz) | =° J+1l,k+1 J+l,k-1

2

2 2 - - 2 -
- (h2s® - 13 ®) (fj,k+l fj,k-l) b2y (fj—l,k+l fj-l,k-l) (1)

2 . - \h + f. + f.
aaf _ [hgs J+l,k ( 21 h'33) J,k }121 J—l,k.J (8)
a0 ik hy; haz (hay + hpa)
2 [ h, f. - + h, f. + h, f,
32f I S Y. (Bay + ha) Jok 8 "5 k-1 (9)
. 00, 3,k hy, has (hs; + has)
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Difference Formulation (cont.)
B. .  FORWARD DERIVATIVES

2 - 2 _ 2 _ -]
ar hea® fyp - (ea” - bey®) T - Per Ty

10
doy 3.k hay haz {(hgg - hax) (10)
2

- | _ 2 - 2

(11)

d04 ik hz, hap (bga - hay)

?%f 1

T = 21 r, - T,
| 30 8% | ;)  Pey Bes (Bay - Fea)(Bey * Foa) [h” ( FLEL T T3k
1

l - Thin Shell Solution: Finite

(12)

- + - 2 - - +
Lo,k fj+2,k) hay (fj+l,k-l Tivix ™ Te2,x1 fj+2,k)]

it S - 1 {hz als - f
3o 305 [; 3 Pey Pas (hsy - hea)lhe; + has) M s W3S N P

(13)

f

- - 2 - - +
Tirrpee © fj,k+2) B2y ‘fj-l,k+l 5,641 - Tyo1, k42 fj,k+2”

_ 2 |- haa fj+1,k + (haa - heq) fj,k e fj+2’k], (14)
2

° [ Bz £5 4y * (hea - Bea) £, * Pax fj’k*] (15)
3,k hzy haz (hsz - hay)

C. BACKWARD DERIVATIVES

2 2 _ 2
af h23 fj-2,k + (1124 - haa ) fj,k ha4 fj_l,k

]
]
i
]
i ik T Tos (Tas = Tas) (16)
]
]
i
i

o/

&
[
B

2 2 2 RN
of Do Ty {has® - boa®) £, - Pea® T449 (17)
das | . has hy, (ha, - haa)
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Thin Shell Solution: Finite
Difference Formulation (cont.)

IT.

3%r 1

30 30y, 3k - ha; haz (hgs - hoy)(hg; + hag)

+ -
fj—2,k+l fj-2,k fj-l,k)

2
- h31

d%r 1

doz 00 ' 3,k - hay has (hg,

- T T

; + I, - f,
Jtl,k-2 J,k-2 J,k—l)

2
- b=y (fj-l,k-l - fj,k—l - fj-l,k-Z

+

- - +
(fj-l,k-l fi1x fj-2,k-l fj-2,k)]

¥rl . 2[ Pea 5o " (Pae - Pea) Ty - Pay fa‘-l,k]
doy ik he hay (hag - haa)

2
32r ) 2[h::la fj,k-z + (hag - haa) fj,k - ha, fj,k-l]
%" |5 k has hag (Nay - haz)

’ i

GENERAL CASE - REGUIAR GRID SPACING

When the grid spacing is regular, then

1 1
hy = hgy = hpa = 3 baz = > hag

1 1
by =hgy = hgs = 5 haz 5 Dag

Page

2
[h” ‘ f3-1,00

T hay oy * za) [ Tl (fjﬂ,k-l
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Thin Shell Solution: Finite
Difference Formulation (cont.)

Substituting the conditions of Equation (22) into Equations (1)
through (21) the first, second and mixed derivatives for the central,

forward, and backward regular grid spacing combinations are obtained.

A, CENTRAL DERIVATIVES

f. - T,
af _ _itl,k Jg-1,k (23)
30'2 . 2hg
J,k
T, R
af ~ J,k‘*‘l J,k—l (2)-1.)
3 . 2h,
0 J,k 3
b 1 s - f -f +f (25)
d0g dna . K Eh3h3 J+1l,k+1 J+l,k-1 J-1,k+1 J-1,k-1
2 .
32r 1 ]
= = — | T -2f, + I, 26
aﬁ’a j,k h2 [ J+l)k JJk J'l)kj ( )
3r 1 ]
= = | f, - 271, + f, 27
30‘3 i,k ha [ J,k+l J,k J k-1 ( )
2 e
B. FORWARD DERIVATIVES
of 1 8
dok 3.k "~ 2hg [u fj+l,k -3 fj,k - fj+2,k] (28)
)
of 1
= = = - . - f, 2
o0 5k 2hg [h'fj,k+1 3 fJ,k J,k+2] (29)
J
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Thin Shell Solution: Finite
Difference Formulation (cont.)

s = =i T - f - f + f
B0z S0y 3K 2hyhy J+1,k+1 32, k+1 341,k-1 j+2,k-1} (30)
2
d%f -1
P, = b - - +
305 a5 |, | Zoals [ T ™ oo~ Tyoden fj—l,k+2] (31)
2
d=f 1
— =—|-2r7, + f,  +f, (32
L 3K ha® | J+l,k J,k J+2,k] )
2
.__z.aaf S [ . 2 + f,  +f, (33)
30’3 i,k ha J 1k+l J )k J )k+2
b -
c. BACKWARD DERIVATIVES
df 1 ]
ot =— | f. +3f, . -4 T, (3k4)
dok 3,k 2hg [ J-2,k 3 J,k J-1,k ]
b
?f 1
oL _ = f. +3f, -Lif, (35
303 3.k 2hg [ j,k-2 3 3,k J,k-1] )
> .
_?*r -1 |¢ - f - f + f, (36)
don 305 s 2habs j-1,k+1 j-2,k+1 3-1,k-1 j-2,k-1
2

aaa 5&3 i,k - 2haha [ fj+l,k-l -

-1 £ £

- +
5+1,k-2 - T3-1,k-1

j-l,k-e] (37)
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Thin Shell Solution: Finite
Difference Formulation (cont.)

g_,aaf =L s +f. . -2f

oz i,k ha J-2,k J,k J-1,k
)

2

2 f 1

— == | T, + f, -27f,

ad3 .j k h3 [ J’k'z J)k J)k'lj
>

Page B-8
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APPENDIX C

EQUATIONS FOR THE SINGULAR POINT FOR THE NON-AXISYMMETRIC CASE

A. CONDITIONS AT THE POINT, 9= O

The cempenents ef displacement u, v, w in the R, @, ® directiens

respectively have the fellewing preperties at ¢ = O,

u _ o, Py __
53; d325¢ %9
9! - v 33w e= 2 62v
09 - ’ - 960
aefag ® .

ov - \337 > aaw
90 aezaq, 08¢

T

T

o

These results are derived in Sectien B ef this Appendix.

Evaluation of Strains

From Equatien (1) the singular terms in the strain-displacement equa-

tiens can be evaluated. Thus we find

1 ow u vcot‘g
®80 * Rsinp 08 ' R ' " R
LR
1 | 98 u
$50 R sing *R

and frem Equatien (1), we nete that the bracketed part is ( -g- ) and thus we

have the result,

1 aaw ov
eee = § m + g& + u (Q=0) (2)
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Equations for the Singular Point for
the Non-Axisymmetric Case (comt.) .

Similarly we find:

{
_ 1 | dw 1 ov
e(pﬂ = (‘ % - wcetp + sing 1Y) )

&

and again threugh Equatien (1) we ebtain

1l [ow Ow 32
(3:-9 "3 * ?9%5) (@p=0)

b 2R ’
" | (3)
= i aav ( _ 0)
“o8 2R Wy $=
Finally,
1/ 1 ou ou
°re ~ ﬁ(sinQ % ~ v ¢ RTR)
(&)
2
13
eRe = ﬁ(m - W o+ R'a—R') (Q-O)
Equatiens ef Equilibrium
The equations ef equilibrium
aT. aT : o,
RR 1l _Ro 1 RE
3k * R o * Rsing ob
2T = T = Too + T, cete
s B B Re ., (5
oT. oT oT
Ro 1 P 1 ?
R R ? + Rsingp 9
. BTR + (T? - Tee)c.tw =0 (6)
a'rRe . 1 B’r@e 1 b'ree
3R R 3 ' TReing 096
3T, + 27
RO 8 cet
+ Fo =0 (?)
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iquations for the Simgular Point
for the ron-gxisymmetric Case (c:ait.)

have the fellewing indeterminate parts:

Frem (5), we have

1 9Te . "Rg cety (8)
Rsing 06 R

Putting in the values eof TRe and T, in terms ef displacements, we get

Re
© R | sineg aez P

From Equatien (1) we find that the expressien (9) is zere at ¢ = O. Thus we

may write, fer expressien (8),

2
o7 oT
RO R
Wy * o

-

which is the evaluatien ef the indeterminate pertien ef Equatien (5).

Frem Equatien (6), the indeterminate part is

oT T, =7
1 90, lop _ 68
Rsing —3%5 + R cote (10)

In terms eof the displacements
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Equations for the Singular "oint
for the Non-Axisymmetric Case (cont.)

Frem Equatien (1) the terms in parenthesis are zere. Thus we have

w 2%y . 33v _ 2%
R | g9y 3326¢ o0
-2 aaw

¥vdp
33 2
_ p.' v 5 0w \
- R 2. . aatp
ogToE

which is zero by Equatien (1),

Therefere we may write expression (10) as

2

o T oT oT
1 YTee 1 ( - ee)
R Ogl¢ *'R o O

which is the evaluation ef the indeterminate part of Equatien (6).

Frem Equatien (7), the indeterminate parts are

oT T

fs_iTcp —5-:-—6 + 2-%—6 cete (11)

and
oT

% 53° (12)
For (11) we have (atg — 0)

9Tag . o _

L) S
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Zquatioms for the Singular Point
for the Non-Axisymmetric Case (cont.)

_2» Ow 2(A + W) du aau
"R % 7 R 36 * *3Roe

+
o] PO
oo
g«
£}

1

o
Gl»’a‘

Naa?

2u (a_v_)_(xafap.)g(&v )
* Reing |36~ " Rsing 06 | o8+t v |

0
It can be seen from Equatien (1) that the terms with s;hw have the form: 0

and that the terms in u and 8 are zero. Thus we can write

oT ! 2 3 2
-1 3 _]_: i o v o w 0" v
oot 2 Tey T R | The " (A + 2¢) aeaa¢+ A+ 20) 5555
2 AY
Qv
+ A=
3 2 °a°"!
A+ ou ] oW + 2 Oy f
R 2% 0%
= 0 by Equatien (1).
Thus we may write exmression (10) as
2
1 9Tl oT
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Equatioms for the Singular Point
for the Non-Axisymmetric Case (cont.)

For (12) we expand the functioms in powers of ¢ thus:

2
V=:HO+H1¢+VZQ+.-.

etc

Then we may write (for ¢ — 0)

T w+w1:p+w2:p2
_ana - 2w2q> - ® —
ov ov
1 2 2
38+ wwer e |®
avo
v -39 dv
0 2
=2w2+ > -w2+-ﬁ
P
ov

And since W, o= -592 from (1), we have

3o = v, + 3% (¢ = 0) -
13

2 3
—%(aw-n-a-v) (¢ = 0)

T 2laf  aeeg”

oT
Thus, the one term, —3? , in the equilibrium equatioms is not evaluated by simple

L]
differentiation with respect to ¢.

B. RELATIONS BETWEEN DISPLACEMENTS AT ¢ = O

To obtain the equations given in (1) we take the gradient and
the Laplacian of the displacement vector, i.e.,
g ~ A A
VE = VR + o + &)

and
a

vafzva(ﬁu«ﬁ > + o)

®* See note at end of Appendix C.
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Equations for the Singular Point
for the Nom-Axisymmetric Case (cont.)

Expanding in powers of ¢, viz,
2 = u + u + u 2 +
= o l ¢ 2 Q ew oo
etc

and letting @ = —> O after obtaining \/§ and \/° €, we find the following

terms imvolving %, as a factor

AA
€0

O . . R . - . e . o e e e . . . . [ ‘ A ‘4,‘
f

|-

AA
%l - %

>
L—'
+
[

8>
o
o8
n
g

o>
o
@,
+
n
g

~r ->
Since VE and v2 € must be finite when ¢ = O, the above expressions

(having %-, as a multiplier) must all vamish. Thus we have

olo¥
<

ol.¥
ot

Y&
[}
(@)
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Equations for the Singular Point
for the Non-Axisymmetric Case (cont.)

32w ov
_F._;l'. = =2 1
362 kY]
aavl dw
= 2 1
ae? k)
2
o uy -
an 1

The equatioms im (1) are equivalent to these whem ¢ = O.

The equation

-g% = O (¢ = O)
where T
B = a(T)AT
T
o

can be seem from the fact that at @ = O there is only one point for all
8, so that B camnot vary with 8., (The same argument could have been
applied to the quantity u. It could not be applied to w or v since these

are functions which have extension in 6,)

NOTE: The further evaluation of (13) may reduce the expression to a simple deriva-
tion process, but such a possibility will not be investigated since the
expression has already been made determinate.
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