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EQUILIBRIUM COMPUTATIONS FOR MULTICOMFO"!T PLASMAS 

by Frank J. Zeleznik and Sanford Gordon 

L e w i s  Research Center 

SUMMARY 
Z39>/ 

A method is presented fo r  the calculation of multicomponent plasma 
propert ies .  
lowering e f f ec t s .  These e f f ec t s  a re  shown t o  be p a r t i a l l y  compensating. 
perturbation technique is used t o  make the calculation compatible with a 
scheme used f o r  calculating idea l  gas properties.  
such as heat  capacity, can be calculated d i r ec t ly .  

The method includes both Debye-Hkkel and ionization poten t ia l  
A 

Thermodynamic derivatives,  

INTRODUCTION 

Plasmas have become important in many areas of s c i e n t i f i c  and technical  

There are several  schemes 
work. 
but may involve many d i f fe ren t  chemical elements. 
( r e f .  1) and many computer programs f o r  the computation of the equilibrium 
properties of thermodynamic systems that can be regarded as mixtures of i d e a l  
gases. 
Coulomb forces . 

Often the  important plasma systems are not simple one-component systems 

These methods, however, must be modified t o  account f o r  the presence of 

In  pr inciple ,  the  presence of long-range Coulomb forces i n  a plasma in- 
val idates  the  independent-particle ( i d e a l  gas) approach and requires the con- 
s iderat ion of interact ions among a l l  par t ic les  i n  the system. 
systems, however, t h i s  approach i s  extremely d i f f i c u l t  and has yielded an 
exact solution only f o r  a one-dimensional plasma model (refs. 2 and 3) .  
scheme is presented i n  this repor t  f o r  calculating the  thermodynamic properties 
of many component plasmas that can be a p p l i e d t o  most systems and can be ex- 
pected t o  y ie ld  r e s u l t s  which are an improvement over t he  idea l  gas calcula- 
t ions .  

Even f o r  simple 

A 

The thermodynamic properties f o r  a system of independent pa r t i c l e s  ( i d e a l  
gas) can be calculated from a pa r t i t i on  function that is  a product of two 
fac tors .  One f ac to r  &tr represents the contribution of the  t rans la t iona l  
k ine t ic  energy t o  the  pa r t i t i on  function while the  other fac tor  
sents  the  contributions from the in t e rna l  energy leve ls .  
assumed independence of the par t ic les ,  the energy leve ls  used t o  calculate  the 
in t e rna l  p a r t i t i o n  f'unctions a re  the energy levels f o r  an i so la ted  pa r t i c l e .  
These energy leve ls  are avai lable  f o r  many species from spectroscopic data. 
Plasma computations that assume i d e a l  gas behavior and neglect Coulomb e f f ec t s  

Qint repre- 
Because of the 



are typified by calculations of Kubin and Presley ( r e f .  4 )  and ,ear ly  comhta- 
t ions of Hilsenrath ( ref .  5 )  and Rouse (refs.  6 and 7 ) .  A calculation t h a t  
assumes nonideal behavior but s t i l l  neglects Coulomb e f f ec t s  i s  reported by 
Rosenbaum and Levi t t  ( r e f .  8 ) .  

An attempt t o  incorporate the effect  of Coulomb forces produces two changes 
i n  the pa r t i t i on  function from the pa r t i t i on  function i n  the  ideal gas case.  
F i r s t ,  a th i rd  factor  appears i n  the pa r t i t i on  function. This fac tor  accounts 
f o r  the e f f ec t  of i n t e rpa r t i c l e  forces upon the t rans la t iona l  pa r t i t i on  function 
and represents the contribution t o  the  pa r t i t i on  function of the c l a s s i ca l  con- 

' 

figuration integral .  Second, i n  calculat ing the in te rna l  pa r t i t i on  function, 
one should no longer use the energy levels  of an isolated atom or molecule but 
should use the energy leve ls  of the atom ox molecule i n  the external  f i e l d  pro- 
duced by the other par t ic les  of the system (refs.  9, 10, and 11). Thus, f o r  a 
plasma, the in te rna l  pa r t i t i on  function i s  dependent upon the amount of ioniza- 
t i o n  in the  plasma and therefore is a function of the charged p a r t i c l e  concen- 
t ra t ions.  The concentration dependence of the energy levels  is generally un- 
known. Some recent attempts have been made t o  estimate t h i s  e f f ec t  f o r  
hydrogen-like atoms by calculating the  energy levels  f o r  a screened Coulomb 
potent ia l  ( r e f s .  10 and 1 2  t o  15) .  N o  data of t h i s  type, however, e x i s t  fo r  
other species. An a l te rna te  and somewhat simpler technique has a l so  been used 
t o  take in to  account the  f a c t  t h a t  the  in t e rna l  pa r t i t i on  function has concen- , 
t ra t ion  dependence. This method uses isolated pa r t i c l e  energy leve ls  together 
w i t h  an energy l e v e l  cutoff and an ionization poten t ia l  lowering t h a t  are 
dependent upon electron concentration; it has been used by Rouse (refs.  16 I 

t o  IS), Drellishak, Knopp, and Cambel ( ref .  19), and Drellishak ( ref .  2 0 ) .  The 
difference between the two procedures, then, is  that the f i r s t  adjusts  i n t e rna l  ' 
energy leve ls  by varying amounts while the  second, i n  effect, adjust the  leve ls  
by a constant amount. When only the ground s t a t e  i s  used, as by Harris 
( re f .  2 1 ) ,  the  two procedures a re  equivalent. 

I 

The previous discussion w a s  concerned with the e f f ec t  of Coulomb forces on 
the internal  pa r t i t i on  function Qin t .  
t ranslat ional  pa r t i t i on  function Qtr is usually calculated by assuming the 
va l id i ty  of the Debye-Hkkel approximation. The Debye-Hiickel theory i s  dis-  
cussed i n  various textbooks (e.g., refs.  22 and 23) .  
by Balazs ( r e f .  24)  i n  connection with the one-dimensional plasma f o r  which an 
exact solution i s  avai lable .  
clusions of various authors regarding the region of va l id i ty  of the Debye-Huckel 
approximation fo r  three-dimensional plasmas. Myers, Buss, and Benson (ref .  26), 
Hilsenrath and Klein ( r e f .  27), Harris ( re f .  28), Harris and Trulio ( re f .  2 9 ) ,  
and McGee and Heller (refs.  30 and 31), among others, have a l l  used the  Debye- 
Huckel approximation i n  calculations.  Unfortunately, the calculations of McGee 
and HeUer a r e  i n  e r ror  since they mistakenly use the excess Helmholtz f r e e  
energy for the excess Gibbs free energy and, i n  addition, they use an incorrect 
expression f o r  the excess entropy. 

The e f fec t  of these forces on the 

I t s  va l id i ty  i s  discussed 

Duclos and Cambel ( ref .  25)  summarize the con- 

Some confusion ex is t s  i n  the l i t e r a t u r e  regarding the term "ionization 
This term w a s  discussed by Ecker and fioll ( ref .  32 ), potent ia l  lowering." 

who showed tha t  both the t rans la t iona l  and in te rna l  energy l eve l  e f fec ts  could 
be regarded as an ionization poten t ia l  lowering. 
Harris ( r e f .  2 1 ) .  

This was  a l so  mentioned by 
I n  t h i s  report  the term "ionization poten t ia l  lowering" w i l l  

2 
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mean only  the ePfects associated with in t e rna l  energy leve ls .  

I The p;eviously discussed Coulomb effects  on both Qk and Qht a r e  in- 
cluded in  this report .  
limiting l a w  approximation is assumed. 
po ten t i a l  lowering that is  proportional t o  

and Drellishak, Knopp, and Cambel (ref. 19). 

unperturbed i n t e r n a l  energy leve ls .  
considered f'urther; however, several  of these cutoff schemes are reviewed by 

For the e f f ec t  on %, the  va l id i ty  of the Debye-gickel 
For the e f f ec t  on Qint,  an ionization 

This assumption is  equivalent t o  that of Harris (ref. 21) 
In performing numerical computa- 

K, the  reciprocal  of the Debye 
I length, is  assumed. 

, t i o n s ,  some scheme must a l s o  be used f o r  cutt ing off  the in f in i t e  number of 
This aspect of the  problem w i l l  not be 

I Rester and Sewell ( r e f .  33) and a l so  by Margenau and Lewis  ( r e f .  U). 

The usual  procedure f o r  calculating the thermodynamic properties of plasmas 
is t o  assign volume and temperature a s  the independent thermodynamic parameters. 
I n  contrast ,  the  method developed in  t h i s  report assigns the pressure and one 

enthalpy, and entropy as independent parameters. For many applications, it is 
more convenient t o  have data as functions of pressure ra ther  than volume. In 
addition, this procedure permits the calculation of thermodynamic derivatives 
such as spec i f ic  heat without resor t ing t o  numerical d i f fe ren t ia t ions  of tabu- 

I 

, other thermodynamic var iable  selected from the three quant i t ies  temperature, 

' lar data ( r e f .  1 9 ) .  

THERMODYNAMIC FUNCTIONS FOR MULTICOMPONENT PLASMA 

The Helmholtz f r e e  energy A of a plasma may be wri t ten a s  

A = A - r + P I ,  

1 where the subscript  I denotes the  idea l  gas contribution and c denotes the 
contribution from Coulomb forces .  
I n  terms of t he  canonical p a r t i t i o n  f'unction for  an ideal gas system, 

(All symbols a r e  defined i n  the  appendix. ) 

where T is the  absolute temperature and k is Boltzmann's constant. The 
t r ans l a t iona l  pa r t i t i on  f'unction is  given by 

Qtr 
i 

where V is  the volume, .K is  Planck's constant divided by 2n, mi is  the 
mass per p a r t i c l e  of species i, and Ni i s  the number of p r t i c l e s  of 
species i. The in t e rna l  p a r t i t i o n  function i s  given by 

( 3 )  

w h e r e  the internal pa r t i t i on  function fo r  the ith species i s  

3 



( i )  -Eii)/kT - E 2  (i)  /kT 
Qint = e e .- ( 5 )  

2 

where E i i )  is  the  ground s t a t e  energy fo r  the  
are the isolated energy levels  r e l a t ive  t o  the 
pendent of volume. 

The contribution of the Coulomb forces t o  
writ ten i n  the form 

ith isolated species and € 2  (i)  

ground state; Qint  i s  inde- 

the Helmholtz f r e e  energy can be 

- -  - -  AC 
kT 

The f i r s t  term i n  t h i s  equation 
l imiting l a w  ( re fs .  22 and 23) ;  

i , 

represents t he  contribution of the  Debye-Hickel 
t h a t  i s .  it i s  the e f f ec t  of Coulomb forces on 

' 

the  t ranslat ional  pa r t i t i on  function. 
t i o n  from the displacement of the in t e rna l  energ 
truncated pa r t i t i on  function Qikl goes t o  Q \ k i  exp( -AE( i)/kT) when each in-  

t e rna l  energy l eve l  i s  displaced by the  same amount AE(i). 
energy leve l  displacement w i l l  be a function of ionization. The quantity K i s  
the reciprocal of the Debye length and i s  given by 

The second term represents the  contribu- 
levels.  It arises because the 

The amount of 

where qi 
usually appears i n  the def ini t ion of  the Debye length has been s e t  equal t o  
uni ty  i n  equation ( 7 ) .  
ith species is  assumed t o  be proportional t o  
s tants  pi may be d i f fe ren t  f o r  each species: 

is  the charge on the ith species. The d i e l ec t r i c  constant that 

The displacement of the in t e rna l  energy leve ls  of the 
K ,  and the proportionali ty con- 

where pi has the  dimensions of energy and a. i s  the Bohr radius.  Combining 
equations ( 6 )  and (8)  gives 

0 
K a  

1 3  C 
A 

- - V K  -k k~ piNi kT = 125r ( 9 )  
i 

The assumption (eq.  ( 8 ) )  i s  consistent with the assumptions made by 
Harris ( r e f .  21)  and Drellishak, Knopp, and Cambel ( r e f .  1 9 ) .  
plasma, Harris used p~ = 2 1 ~  where IH is the hydrogen atom ionization po- 
t en t i a l .  For species i n  the argon plasma, Drellishak assumed t h a t  the change 
i n  ionization potent ia l  AI  was  given by the  expression 

For the  hydrogen 

4 



If it i s  assumed that the  energy of the f r ee  electron i s  zero, the ionizat ion 
poten t ia l  of successively ionized species of argon can be expressed i n  terms 
of t h e i r  i so la ted  pa r t i c l e  ground s t a t e  energies 

I 
The$efore, the change i n  ionizat ion potent ia l  i s  

~ The use of equations (a), ( lo ) ,  and (11) implies the following p 's :  
1 

j = 0,1,2,3,4 

~ 

Once the form of the Helmholtz free energy (eq. ( 9 ) )  has been s e l e c t e d , a l l  
' 
' dynamic r e l a t ions .  For example, w i t h  U = -T2[a(A/T)/aTlV the  in t e rna l  

other thermodynamic functions can be calculated from it by the usualthermo- 

energy can be calculated a s  j i  

where 

The equation of state f o r  the system is obtained from the thermodynamic 
r e l a t ion  p = -(&/&)T N and can be w r i t t e n  i n  the form 

' i  

The deviation of 
t o  Coulomb forces, and thus 
The two terms i n  equation ( E )  that account for  the deviation from uni ty  axe 
compensating if  the pi are taken t o  be positive. In terms of Z, equa- 
t ions  ( 9 )  and (14) become 

Z from uni ty  indicates  the departure from idea l  behavior due 
Z will be c a l l e d t h e  Coulomb compressibility. 

5 



AC - = 2(2 - 1) N i  kT 
I 

uc 3(2 - 1) CNi 
i k T =  

The enthalpy H and the idea l  gas enthalpy HI a r e  defined as 

H = U + W = UI + U, + W 

HI = U I  + k T C N i  
i 

Equations (15)) ( 1 7 ) )  (IS), and (19 )  may be combined t o  give 

H = HI + 4(Z - 1 ) k T C N i  
i 

The expression for  entropy i n  terms of volume and temperature can be ob- 
tained from the thermodynamic r e l a t ion  S = -(aA/aT),  . Jus t  as i n  the case 

of the other  thermodynamic functions, the contribution of the Coulomb forces can 
be writ ten i n  terms of the Coulomb compressibility: 

~i 

The term i n  the correction for nonideality a r i s e s  because the volume was 
eliminated by means of the equations of state (15). Usually In  2 i s  ignored; 
however, by doing t h i s  one is disregarding a term that i s  of  the same order of 
magnitude as the term retained. 

In Z 

Expressing the equations for  enthalpy and entropy i n  terms of moles n i  
ra ther  than the number of par t ic les  N i  gives 

m m 

H = C ( ~ $ ~ n i  + 4 ( ~  - ~ ) R T  C n i  (22 1 
i=l i=l 

( 2 3 )  

where 

6 



pj = ,njP 
2 n i  
i=l 

In these equations it has been assumed t h a t  there a r e  m d i f fe ren t  species 
i n  the system. 
becomes 

With the use of equations (22 )  and (23)  the Gibbs f r e e  energy 

F = FI + F, (24) 

where 

m 

i=l 
Fc = [3(Z - 1) - In Z]RT ni 

INVERSION O F  EQUATION OF STATE 

It is desired t o  express the  equations of t h i s  report  i n  terms of pres- 
sure, r a the r  than i n  terms of volume, as one of the independent parameters. 
Thus an expression f o r  volume i n  terms of pressure is  necessary i n  order t o  
eliminate volume from a l l  thermodynamic flmctions. 
tained by inverting the equation of s t a t e .  
pressing the Coulomb compressibility i n  terms of pressure and temperature. 

This expression can be ob- 
This inversion is equivalent t o  ex- 

If the dimensionless ionization parameter 

is introduced, the  equation of s t a t e  (15) becomes 

The ana ly t i ca l  solution of equation (28)  in  the form Z = Z(a) can be found 
conveniently by studying the associated cubic equation 

This equation w a s  obtained from equation ( 2 8 )  by rearranging terms and then 
squaring. 
equation of state (28).  

Not a l l  roots  of the cubic equation (29)  a r e  va l id  solutions f o r  the 
The solut ion that is  val id  f o r  both equations is  

7 



where 

2 2a 
2 cos cp = -1 + - 

aO 

where 

Figure 1 i s  a p lo t  of Z a s  a function of a. If the  ionizat icn poten- 
t i a l  lowering is  neglected, a < 0 and Z < 1; whereas, if  the Debye-Hkkel 
l imiting l a w  i s  neglected, a >-0 and Z > 1. Because these two contributions 
a re  p a r t i a l l y  compensating, considerable ionizat ion can occur with l i t t l e  e f f ec t  
on the equation of s t a t e .  
a < -%. A t  a=-%, Z has the  value 1/3 while, a t  a = q, Z equals 4/3. 

For la1 5 0.1, the trigonometric solution (eq.  ( 3 0 ) ;  can be replaced by 

It may be noted t h a t  there  i s  no solut ion f o r  

the expansion 

231  a5 la1 I O . ’  
Z r 1 + a - a + 5 a 3 - a 4 + -  2 

2 8  128 

This expansion gives a t  l e a s t  seven f igure accuracy i n  t h i s  in te rva l .  

1T”rlRATION EQUATIONS 

I n  this section, the i te ra t io l l  equations used t o  calculate  chemical equi- 
librium w i l l  be derived. In  the following section, the equations required f o r  
the calculation of thermodynamic derivatives w i l l  be given. 
of t h i s  report ,  the derivations w i l l  be based on the minimization of the Gibbs 
f r e e  energy and w i l l  be r e l a t ed  t o  the somewhat d i f f e ren t  f r e e  energy minimiza- 
t i on  methods described by White, Johnson, and Dantzig ( r e f .  34) and Zeleznik 
and Gordon ( r e f .  1). 
niques used i n  the computer programs described by Gordon and Zeleznik 

For the purposes 

In  order t o  make the method compatible with the tech- 

8 



I . 
( r e f s .  35 and 36), the  derivation used here 
will be such that in the  ideal gas l imi t  the 
equations will be ident ica l  i n  form t o  those 
obtained by the equilibrium constant method 

garding the sum of the moles of a l l  gaseous 
species as fixed a t  a value that is numeri- 
c a l l y  equal t o  the assigned pressure PO. 
This assumption requires t rea t ing  the t o t a l  
mass of reactants a s  a variable j u s t  as has 
been done in the  past f o r  the i d e a l  gas 
( r e f s .  1 and 37). 

- - ( r e f .  1). This can be accomplished by re- 

Since the derivation of 
I the i te ra t ion  equations closely parallels the 

-.5 0 . 5  1.0 1-5 2.0 minimization procedure of reference 1, many 
of the de ta i l s  w i l l  be omitted. Ionization parameter, a 

Figure 1, - Coulomb compressibility as function 
I The thermodynamic s t a t e  i s  assumed t o  be of ionization parameter. 

I specif ied by assigning the pressure and one 
I other thermodynamic variable selected from the three quantit ies,  temperature, 

enthalpy, and entropy. The pressure of the  system is specif ied by 

I P o - P = b P = O  (32) 

m 

i=l 
I where P = pi. The specif icat ion of the thermodynamic state i s  completed 

I by assigning e i the r  temperature, enthalpy, or entropy as follows: 

I s o - s = A s = o  (35 1 
where 

The quantity x is the t o t a l  mass of the  system. 
is arb i t ra ry ,  it is convenient t o  l e t  K be that mass which is required in 
order that the partial pressure of each species i s  numerically equal t o  the 
number of moles of that species; t h a t  is, p i  = ni.- I n  the following equa- 
t ions,  n i  is  subst i tuted f o r  p i .  The value of A that p e r m i t s  t h i s  sub- 
s t i t u t i o n  is  determined simultaneously w i t h  the other variables of the problem. 

Since the s i z e  of the system 

Once the  thermodynamic s t a t e  has been specified, the equilibrium composi- 

9 



I 

t ions  can be obtained by minimizing the Gibbs f r e e  energy subject, t o  mass’ 
balance constraints .  
2 is some fixed integer) ,  the 2 equations f o r  conservation of species and 
charge neut ra l i ty  can be wr i t ten  a s  

If there a re  ( 2  - 1) di f f e ren t  chemical elements (where 

(38)  
bi 0 - bi ai = 0 ( i = 1 . .  . 2 )  

m 

j =1 
where Ebi = a i j n j .  The a i j  a r e  the  stoichiometric coef f ic ien ts .  In 

the  s e t  of equations (38),  the equation corresponding t o  
conservation of charge. For the  case of a neut ra l  plasma, b2 = 0. 

i = 2 r e f e r s  t o  the  
0 

I f  t he  s t a t e  i s  specif ied by assigning a temperature and a pressure, the 
i te ra t ion  equations a r e  obtained by minimizing the quadratic approximation t o  
F/RT subject t o  the constraints  (eqs.  ( 3 2 )  and (33 ) )  and the l inear ized form 
of equation (38) .  
Lagrange mult ipl iers  
equation a r e  used d i rec t ly .  

1 
I 

The mass balance constraint  is  incorporated by means of 
a i ,  whereas t h e  pressure equation and the temperature 

The resu l t ing  i t e r a t ion  equations a r e  

A I n T = O  

where 

PI j P,T 
= rkj 

( k  = 1 , 2  . . . a)  (39)  

(43) 

10 
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It may be noted that, f o r  assigned temperature, equation (42) is t r i v i a l  and 
may be omitted together with the A In  T term i n  equation (39). If, however, 
the tempmature is specif ied ind i rec t ly  by means of equation (34), then the 
l inear ized form of equation (34) is  used i n  place of equation (42) : 

' 

j=1 

I 
The following equation, (e), is used when the  temperature is specified in- 

d i r ec t ly  by means of -equation (35) instead of equation (42).  
the  l inear ized  form of equation (35) t o  which has been added equation (41) 
multiplied by the fac tor  ( 2  - Z - In Z ) :  

This equation is 
I 

The most important difference between the preceding sets of i t e r a t i o n  
equations and the corresponding equations f o r  the case of an i d e a l  gas is the 
appearance of the matrix I? i n  equation (39).  In  the idea l  case (l? = 0), 
these equations could be used t o  eliminate 
f i i  (i = 1 . . . Z), A In E, and A In T. 
reduced from m + 2 + 2 t o  2 + 2 and the amount of numerical computation 
could be considerably reduced. 
reduction cannot be performed as easily. 
fully i n  a later section. 

A In n j  ( j  = 1 . . . m)-in terms of 
Thus the number of equations could be 

For the case of  a plasma (I' # 0), such a 
This problem wily be discussed more 

THEZUdODXbfAMIC FlRST DERIVATIVES 

In addi t ion t o  the thermodynamic f'unctions themselves, it is of ten 
desirable t o  have avai lable  the f i rs t  derivatives of the thermodynamic f'unc- 
t ions .  
independent ones. 
constant pressure 

All possible f i rs t  derivatives can be expressed i n  terms of any three 
As in e a r l i e r  papers (refs. 35 and 37),  the hea t  capacity a t  



m 

and the derivatives of volume with respect t o  temperature and pressure (dV/aT)p 
and (dV/dP), 
molecular weight is  introduced, the equations of s t a t e  can be wri t ten 

are  selected as the independent der ivat ives .  If an average 

(47)  
W PV = ZG RT 

This equation leads t o  the re la t ions  
r 

m 1 

From the procedure of reference ( 3 7 ) ,  it i s  readi ly  established that 

P 

12 



. 
Therefore, the evaluation of t he  three independent f irst  derivatives reduces 
t o  the  problem of calculat ing derivatives w i t h  respect  t o  In T a t  constant 
pressureand  with respect t o  In a t  constant temperature. The derivatives 
with respect  t o  

x n j  2 (=)p +",g (A)~ + (a)p= 0 

In T a re  obtained by solving the s e t  of equations 
m 2 

j=1 i=l 

I 

(k  = 1,2 ,3  . . . m )  ~ , 

(i = 1,2,3 . . . 2 )  (54) 

I 
j =1 m 

j =1 

where 

These m + 2 + 1 equations a re  ident ica l  i n  form t o  the m + 2 + 1 i te ra t ion  
equations (39 )  t o  (41)  although they are not derived from the i t e r a t i o n  equa- 
t ions .  They can be thought of, however, as being obtained from the i t e r a t ion  
equations by s e t t i n g  the right-hand side equal t o  zero and by formally dividing 
through by A In T. 

The derivat ives  with respect t o  In are obtained by solving the set of 
equations 

m I \ 2 I \ 

j =1 i=l 
(k  = 1,2,3 . . . m) 

j =1 (i  = 1,2,3 . . . 2 )  

( 5 7 )  



. 
Again t h e r e  i s  an obvious s imi la r i ty  between these equations and the i t e r a t i o n  
equations (39) and (40).  

4 

SOLUTION OF EQUATIONS BY PERTURBATION 

The problem of calculating the thermodynamic properties of a multicomponent 
plasma has been reduced t o  the problem of solving one of three d i f fe ren t  sets 
of simultaneous l inear  i t e r a t ion  equations. The set  of equations (39), (40), 
(41), (42) is used i f  the thermodynamic s t a t e  is specified by assigning a 
temperature and a pressure. A second s e t  (eqs. (39), (40), (41), (44) )  is  used 
if the s t a t e  i s  specified by enthalpy and pressure while the  t h i r d  set  (eqs. 
(39), (a), (41), (45))  is  used when the  state i s  specified by entropy and 
pressure. When the i t e r a t ion  procedure has converged, two addi t ional  sets of 
linear equations must be solved i n  order t o  calculate  the three independent 
derivatives discussed e a r l i e r .  
(54), (55) while the other i s  formed from equations (57), (58) .  

One of these s e t s  i s  composed of equations (53), 

These f ive  s e t s  of l inear  equations are very s i m i l a r  t o  each other, and 
therefore simultaneous discussion of t he  solution of these sets is  possible. 
I n  the discussion of these equations, the more concise matrix notation 
M - -  v = w - 
Further the  matrix M and the column vectors v and w w i l l  be assumed t o  
have been par t i t ioned s o  that the set  of equations can Le writ ten i n  the form 

w i l l  be used t o  symbolize any one of the f i v e  sets of l inearequations.  

The column vector xl 
n e (  j = 1,2, . . . , m ) ,  while 

The matrix i s  square and has the dimension m. The matrix N+,2 i s  a l so  
square and has the dimensions 
the sets (53), (54), (55) and (57),  (58) it has the dimensions 2 + 1 and 2 ,  
respectively. 

is  associated with the variables re la ted  t o  
is  associated with the remaining variables.  % J 

2 + 2 f o r  the  i t e r a t ion  equations, while f o r  

I f  t he  set  of equations represented by equation (59) is r e l a t ive ly  small, 
one can work d i rec t ly  with these equations. 
the number of equations could be qui te  large and t h e i r  solutions could involve 
a considerable amount of numerical d i f f i cu l ty .  
a reduced s e t  of equations analogous t o  those used f o r  the  idea l  gas problem 
would be convenient. A s  has already been pointed out, the pr incipal  difference 
between equation (59) and the corresponding idea l  gas equations l i es  i n  the 
f a c t  i n  t he  idea l  gas case 
member of equation (59) t o  be used i n  the d i rec t  elimination of 
second member of the s e t  and thereby gave a considerably reduced set of l i nea r  
equations i n  the variables v . Since the  objective is  t o  provide a calculating 
scheme compatible with the idea l  gas case, a reduced set  of l inear  equations 

In multicomponent systems, however, 

For t h i s  reason, working w i t h  

was  a u n i t  matrix. This permitted the f i r s t  
from the v -1 

-2 
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I 

must first be'constructed. 
singular 

With the square submatrix -b&. assumed t o  be non- 

This equation is used t o  eliminate v 
which yields  

from the  second member of equation (59), -1 

(y22 - $  1%- -%) 2 &2 = E2 - %%-l -h 

Equations (61) possess the disadvantage that they contain the matrix 

$11 - = (I - -  + I')'l. The need f o r  numerically calculating - M;1l would be 

eliminated i f  a closed-form expression could be obtained fo r  -I$. 
this expression is cer ta in ly  not possible i n  a general case, bqt it can be done 
when the contribution of r - t o  

Obtaining 

can be regarded a s  a perturbation. Then 5Ll 
the i t e r a t i v e  expansion of M - l  is  -11 

where I'O - E I. 
If the notation N v = is used f o r  the 

M - l  -n 
-* 

and if equation (62) is used t o  eliminate 

k=O 

where 

reduced set of equations (61) 

*om both N and fi - 

J 
The index k effect ively gives the order t o  which the  perturbation matrix I' 
appears i n  the various terms, 
now be applied i n  the solution of the reduced set of equations (61).  W r i t i n g  

Therefore, conventional perturbation theory can 



and equating terms i n  equations (61 )  with the same order of perturbation yields  
the usual equations 

k = O  

These equations can be used t o  calculate  v 
t i on .  An expression for v can then be obtained from v by using equa- 
t i on  (60) .  

t o  the desired order of perturba- -2 

-1 -2 
Grouping terms with the same order gives 

r 1 

n=O n=O L k=O J 

The exp l i c i t  expressions f o r  the matrices N ( k )  and the vectors x(k) w i l l  
be given for the case i n  which the equations t o  Ee solved by perturbation 
correspond t o  the i t e r a t ion  equations. Using the  notation 

= -  + In nk + 1 + 3(z - 1) - In z RT 

m 

i=l 

16 



ai+ 2 aijnjf 
j =1 

m 

j=1 
H + n j f j  

m 
+ h j n j f j  

j =1 

i , k = l . .  . 2 (75) 

m 

r = 1,2,3 . . .; i ,k  = 1 . . . Z 
17 



m I 
(77) r = 1,2,3 . . . 

A considerable amount of cancellation OCCUTS in N(') and ~ ( ~ 1  
(r = 1,2,3 . . .) because of two properties of the mathx r. - 

niF, = 0 

rE= o 
1= 4 (79) 

These properties are a direct result of Euler's theorem for homogeneous f'unc- 
tions. 
in the ni because a is homogeneous of degree zero in ni and thus so is 
Z. By EUler's theorem 

The function Fc, defined by equation (26), is homogeneous of degree 1 

m 

ni = Fc c i=l aF, 

Differentiation with respect to nk gives 

i=l 

Equation (81) gives immediately the second of the properties of 
The first property (eq. (78)) also follows from this result by recalling that 
the order of differentiation is immaterial; and thus for 
zero equation (81) can be written in the form 

(ea. (79)). 

nk not equal to 

i=l 

This is just the first property of the matrix (eq. (78)). 

18 



. 
* Equation.(78) immediately shows that the second last row of - N(') and the 

Because of equation (79) the second last element of 
contribut'ion t o  dr) - f r o m  the term 4(Z - 1) i n  h j  vanishes as does the 
contribution t o  ~ ( ~ 1  from the term 1 + 3 ( Z  - 1) - In Z in f j  . 

when the  thermodynamic state i s  specified by temperature and pressure except 
that now the &st row and Last column of ~ ( r )  - as w e l l  as the last element of 
~ ( ~ 1  must be deleted. 
variables, it is only necessary t o  replace the last row of - N(') with 

vanish identically.  

The same expressions for  and J $ ~ )  (r = 0,1,2 . . .) can be used 

When entropy and pressure axe used as the thermodynamic 

r = O  

r - 1,2,3 . . ._ 
The last element of $r) must be replaced by 

m 

>: s j n j  (e I jtft 
j , t=l J r = 1,2,3 . . . 

where the following notation was used: 
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SUMMARY OF RESULTS 

A calculating scheme has been presented fo r  obtaining equilibrium composi- 
t ions  and thermodynamic properties of plasmas containing many species.  This 
scheme was made compatible w i t h  an ex is t ing  calculat ing method f o r  i dea l  gas 
mixtures by using a perturbation technique f o r  generating a reduced s e t  of 
working equations. 

The method permits the  inclusion of both Debye-sickel and ionization po- 
t en t i a l lower ing  e f f ec t s  i n  the calculat ion of plasma propert ies .  
e f f ec t s  are p a r t i a l l y  compensating. 

These two 
I 

The equation of s t a t e  was inverted i n  order t o  permit specifying the 
~ 

thermodynamic s t a t e  in.terms of pressure and temperature (or a f’unction of 
temperature) ra ther  than the usual  way of assigning volume and temperature. 

The method given a l so  permits the d i r ec t  calculat ion of thermodynamic 
derivatives such as heat capacity and thus elimates the  necessity of using the 
usual ly  l e s s  accurate method of numerical d i f fe ren t ia t ion .  

L e w i s  Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 17, 1965. 



APPENDIX - SYMBOLS 

' A  Helmholtz free energy 

x t o t a l  mass of system 

1 a i j  stoichiometric coefficients 

80 Bohr radius 

heat capacity a t  constant pressure 
~ cP 

' E  

~ ( i )  

F Gibbs free energy 

ground s t a t e  energy leve l  f o r  i t h  isolated species 
I O  

I H  enthalpy 

h enthalpy per unit mass 

Ti Planck's constant divided by 2fi 
I 

ionization potent ia l  

' k  Boltzmann's constant 

l 1  

~ mi mass per par t ic le  of species i 

Ni - number of par t ic les  of species i 

I n i  number of moles of species i 

P absolute pres sure 

P partial pressure 

&ut internal par t i t ion  function 

t ranslat ional  par t i t ion function Q%r 

1 q i  charge on i t h  species 

' R  universal gas constant 

S entropy 
I 

I s  entropy per unit mass 

T absolute temperature 

2 1  



U in te rna l  energy 

v volume 

W mass 

Z Coulomb compressibility 

a dimensionless ionization parameter, eq. ( 2 7 )  

P i  proportionali ty constant 

r - perturbation matrix, eq. (43) 

Kronecker de l ta  

i so la ted  energy l e v e l  r e l a t i v e  t o  ground state 

'i j 

( i )  
2 € 

K reciprocal  of Debye length 

fl Lagrange mult ipl ier  

Subscripts : 

C Coulomb forces 

I idea l  gas 

0 ground s t a t e  

Superscripts : 

0 standard state 
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Page 15: Line 8 should read 
= (I + - A) -l, where A - = r except f o r  equations (57)  and 

(58). The need for  numerically calculating 5: would be 

Page 15: A l l  T's below l i n e  8 should be changed t o  A's. 

Page 16, equation (67): The r's should be changed t o  A ' s .  
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