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ABSTRACT

The MIRA 150A thrust chamber assembly (TCA) Phase III program is reported in detail.

_e opor&tion and performance characteristics of the variable thrust, hi=propellant

rocket e_ and detailed description of the assembly and its component parts are

dk)cumented. The _est history is presented, including tests under all specified

interface conditions and with expected extremes of environmental conditions. _ae

integrated TCA having succeaafully completed its prequalification teat

is shown to be ready for use in overall systems tests and ready for entry into &

formal qualification test im_o_am. , ..
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1.0 IN_ODUCTIOR

I.i Purpose

The purpose of this report is to provide a description of the design, performance,

development, and testing of the MIRA 15OA Thrust Chamber Assembly (TCA) and its mab-

assemblies and component parts. The time period covered is from i April 196_ to i_

30  anuar 

1.2 Contractual Coverage

The effort reported on herein was accomplished under JPL Contract Number 950596, :'_';

Modifications I0 _hr_ 16.

i. 3 Back6round

The STL Surveyor Vernier TCA effort began formally on 18 April 1963 with a 14-week

Phase I feasibility demonstration program. This portion of the development program was

performed using company-built MIRA 500 hardware and demonstrated the following

objectives :

i. Feasibility of an electrohydraulic servoactuator to attain high speed and

reproducible variable thrust control.

. Durability of an uncooled combustion chamber to withstand 300 seconds of

operation at 125 psia chamber pressure with an ablative throat, and at

150 psia chamber pressure with a tungsten throat insert.

3. An engine vacuum specific impulse of 295 Ibf sec/ibm at the 150 ib thrust

level using a 73:1 expansion ratio nozzle.

In addition to fulfillment of the above objectives, the Phase I program included the

design effort to incorporate the basic features of the MIRA 500 throttle mechanism

(injector and flow control valves) into an integrated flight weight TCA design. This

design, called the MIRA 150, was sized to comply with the interface requirements of

the Surveyor spacecraft vernier propulsion system.

With the successful completion of Phase I, STL received on 25 July 1963 a slx-month

Phase II contract to fabricate and test developmental hardware of the MIRA 150 design.

An additional two-month period was added to this program, called the Phase II Follow-

on, to effect advance fabrication of prequalification version of the MIRA 150 TCA,

called the MIRA 15CA TCA, and demonstrated the ability of the MIRA 150A TCA to meet

the following criteria:

I. Vacuum specific impulse of 292 ibf sec/Ibm between 90 and 150 ibs thrust and

260 ibf sec/ibm between 30 and 90 ibs thrust, both with a 37.8:1 expansion

rail@.

2. Mixture ratio control between 1.4 and 1.6.

3. Engine survivability under the most severe mission cycle thrust program.

4. Dynamic response capability, both start-stop and variable thrust, adequate to

meet current _pacecraft control requirements.

The Phase II program was brought to a successful conclusion by the end of March 1964,

whereupon the Phase III effort described herein commenced. _L
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1.4 Phase III Chronology

Phase III of the Surveyor Vernier TCA project formally (contractually) b._;gan on 23 March

1964. The planning for the technical effort for this phase _as described in the Develop-

ment Plan, STL Document 9730.4-64-I-43. A summary of the major m/lestones accomplished

during Phase III is presented in Table 1.4-1. These milestones are divided into _u_e

categories- develol_nent and prequalification testing,, fabrication/pro_ent

acceptance testis, and _or documentation- for convenient identification. _ _

The Phase III development effort as described by Task 17 of the contract ran frum_ !_

1 April to 1 August 1964. Durlng this period, major development activities cente_

around establlshlng the MIRA 150A configuration baseline. The injector design we_

through a series of four modifications before the design was frozen. Fixed _ _

injector tests were performed on the selected injector design to provide some basis

for evaluation of the possible use of the coaxial injector with a GFE throttle v_.

An alternate power source was subjected to a thorough analysis and evaluation. This

concept was rejected by JPL on 18 June 1964 in favor of a fuel-powered servoactuator

concept with overboard dump of fuel return flow. During the four-month development

period, TCA thermal control studies were performed to establish the type of passive

thermal control surface best suited for the purpose. By 1 August 1964 all of the major

Phase III planning and testing documentation had been delivered to JFL.

On 11 August 1964, the first major milestone of the prequalification test phase took

place _en a Fhase III TCA was fired at the JPL Edwards Test Site. The prequalification

test phase may be characterized as that effort devoted to evaluation of the TCA under

the extreme limits of interface and environmental conditlo_s and to gathering nominal

performance data at sea level and at altitude on a number of different HFAs and TCAs

to obtain the data needed for the Model Specification. From August on thruugh

8 Januarj 1965 prequalification tests vere performed at either the JPL Edwards Test

Site (ETS) or the STL Inglewood Rocket Test Site (IRTS). On 27 November 1964, a hot

firing centrifuge test was performed at the STL Capistrano Test Site (CTS). This

firing _as the only test performed at this site.

Phase III TCA hardware final assembly began in full swing during the last week of

September 1964 and progressed through 4 December 1964. At this time, a decision _s

reached by JPL to terminate assembly of TCAs, head end assemblies (HEAs), and combustion

chamber and nozzle assemblies (CC & NAs). Hardware not assembled at that time _s

packaged in an "As Is" condition and sent to Bonded Stores.

Final Ynase III activities were devoted to: (i) finishing certain testing underway,

(2) preparing the Final Report, including reduction of the November and December test

data presented therein, (3) preparing the remaining final documentation - parts list,

outline and mounting drawings, fabrication drawings and most importantly, the model

specification, (4) cleaning and packaging the hardware which were subjected to the

final prequalification tests, as well as all remaining contractually procured h_,

and (5) preparing a tabulation of the disposition of all items procured on the

contract.

0 _k
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2.0 S_

This document is the final report on the development program of a TCA for application

to the Surveyor spacecraft vernier propulsion system. The program _s conducted under

contract to the Jet Propulsion Laboratory, JPL Contract No. 950596, first initiated in

the first quarter of 1961.

The Thrust Chamber Assembly is deslgnated MIRA l_A. It consists of two variabl_ea

cavitatlngventttri flow control valves to control the propellant flc_rates; a s_e

coaxial, variable-area in_ector element to maintain propellant inJect$on velociti_;

propellant shutoff valves; a servoactuator; and an ablatlve-cooled combustion char

and nozzle assembly. The flow control valves and the injector element are mechamleally

linked e_ndare positioned by the fuel-operated electrohydraulic servoactuator. The

ablative-cooled combustion chamber employs a hard throat insert in an ablative-li_ed

titanium case which is extended to become a radiation-cooled expansion skirt.

This final report describes the development since April 1964 of the above TCA components

and of the integrated TCA. It also presents the overall performance and control capa-

bilities of the TCA, and the associated test data and analytical effort.

The report is divided into the following main categories:

I. The introductory sections 1.0 and 2.0, in which background and chronology

are given.

2. The technical description of the final design, section 3.0, in which:

(i) The TCA and its major subassemblies and components are described im

detail.

(2) The TCA operation is explaine_.

(3) Values for performance parameters are given.

(4) Interfaces between the TCA and the spacecraft are defined.

(5) Detailed test data is not included.

Section 3 may be considered aT CA c_racteristics report.

e The detailed review of the testing effort is given in sections 4.0, 5.0,

and 6.0. Section 4.0 reports on the l_A calibration and on the series of tests

specified in the acceptance test specification. These are:

(i) Leak checking.

(2) Ablative throat or streak test.

(3) HEAacceptamce firing test.

(4) TCAvibration test.

(5) TCA acceptance firing test.

Section 5.0 reports on the testing done in Phase III that did not involve

firings. This testing includes:
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(I) Functional acceptance tests of servoactuators, filters, and pilot valves.

(2) Laboratory testing under deep vacuum conditions.

_o

(3) Component evaluation testing.

(4) Servoactuator Ix_er system studlem. _

Section 6.0, the largest section in the report, covers in detail all the/_

firing tests, including discussion of the test hardware, the test setups_

the results and the derivation of the overall TCA performance parameters.

The theoretical effort, section 7.0, includes discussion of that work that

was primarily analytical in nature, such as theoretical internal ballistics,

the dynamic response analytical model, thermal analytical computations, and

applicable fluid flow theory.

5. The remaining sections, 8.0, 9.0, I0.0, 11.0, and 12.0 cover other items such

as special test equipment, reliability, quality control, and references.

The integrated TCA design is shown to have demonstrated operational characteristics

satisfying the contractual requirements of JPL Contract No. 950596. Based upon the

demonstrated capabilities of the TCA design and upon STL's develolmnent record in

accomplishing program objectives within the time and cost constraints of the subject

Contract, the STL MIRA 150A TCA is now considered ready to be used in ground based

integrated spacecraft systems tests and ready to advance through qualification testing

to prove operational readiness.
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3.0 THRUST CHAMBER ASSD_LY DESCRIPTION AND OPERATION

3 .i General

3.1.1 TCA Description and Operation

The MIRA 150A TCA is a throttlesble, liquid hi-propellant rocket engine with a _t
_pabn_t7 o_ 15o mmmua_ to 3o I_ _; a 5:1 throttl_ range. _e TCa_
_as developed for use _ the _treeyor spacecraft to provide thrust for velocity ._.

correction and for attitude control during mid-course trajectory and velocity atteh-

uation during lunar landl_ e_neuvers. In this spacecraft control application, two

of the prime performance requirements are:

1. The TCA -.,st _e cl_ble of smooth and continuous throttling.

2. The TCA thrust response to spacecraft co, hands must be predict_ble and

repeatable.

The MIRA 150A TCA complies with the above requirements through mechanization of t-#o

cavitating venturi flow control valves, a coaxial variable are& injector and a

precision electrohydraulic servoactuator. These and other major TCA functional

components are described in the following paragraphs. The TCA is designed for long-
term compatibility with propell_nts by extensive use of 17-4 PH stainless steel and

Teflon sealin6 elements.

Table 3.1.1-1 presents a brief sunm_ry of TCA physical and performance characteristics;

subsequent para6raphs , noted below, contain more detailed data.

Envelope: _z'agz'a_ 3.1.2

Nmss Properties: Paraffraph 3-1-3

Components and S_b-

assemblies: Par_raph 3.2

Spacecraft Interfaces: Paragraph 3-3

Performance: Paragraph 3-_

The MIRA 150A TCA is shown in Figure 3.1.1-2. Part (a) of this figure shows a cross

section of the TCA. It is comprised of two major subassemblies, the Head End Assembly

and the Combustion Chamber and Nozzle Assembly, as shown in Figure 3.1.1-3. An

exploded view of the Head End Assembly is shown in Figure 3.1.i-4.

3.1.1.1 Major Functional Components

The major TCA functional components are briefly described in the following paragraphs.

Detailed descriptions are contained in paragraph 3.2. A schem_tic diagram of the TCA

is shown in Figure 3.1.1-5 and is included for use as a reference during the following

discussion.
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Table 3.1.1-1

MIRA 150A TCA Performance Summary

[

I

Thruat, Ib

Chamber _,

Specific Impulse, ibf-sec/11_m

(n_ de_vere4)

Expansion Ratio

Characteristic Length, in.

Thrust Coefficient

Characteristic Velocity, ft/sec

Service Life at Maximum Thrust, sec

TCA Weight, ib

Mixture Ratio, _X/4

Oxidizer

Fael

Total Engine Length, in.

Exit Diameter, in.

Throat Diameter, in.

Feed System Pressure, psia

F

PO

Isp

L _

Cf

C_

MR

De
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Flow Conlml

Hel;um

Valve

Inj

Filter

Combustion Chamber

(a) Section V;ew

Figure 3.1.I-2. MIRA 150A TCA
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Helium P_Iot Valve

Hel;um Inlet

)ellont

Shutoff Valves

Ox Inlet <_ <:> Fuel Inlet

ATeo

S Iniect°r

! .... i

I" '- ---_ S/A
" _ Outlet

' \
_/ Spacecraft Furnished

S/A Out|et Valve

t
_. _unt; r_ Tr unnior_

To Reservoir or "_
Overboard Dump _-" Combustion Chamber cnd Nozzle Assy.

Figure 3.1.1-5. MIRA 15OA TCA Schematic

Propellant Filters

Flow Control Valves
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i

Pro_t _i].te_

A pair of 5 micron nominal (15 micron absolute) filters are contained within the TCA to

provide filtration of supplied propellants. The filters are located immediately

downstream of the propellant inlet ports and upstream of the flow control valves.

w •

Two cavitating vemt_ valves are used to control the flew rate and mixture ratio of
the prop'ellants to the injector. In the range of TCA pressures and flow rates, the
rate of propellant _low through the valves is entirely a function of the position of

the pintles relative to the venturi throats and thus insensitive to downstream pressur_

Therefore, flow rate and mixture ratio are purely a fUnction of the flow control valves

and independent of inJeetor opening. The total stroke of the flow control valve

pintles (maximum to minimum thrust) is O.155 inches.

Propellant Shutoff Valves

Two pilot-operated shutoff valves (normally closed) are used for start/stop control of

propellant flow. The valves are actuated to the open position by application of helium

pilot gas pressure. Valve closure and poppet seat sealing is achieved by a spring and

propellant pressure. The valves are closely coupled to the injector in order to

minimize downstream volume and, thus, minimize TCA start and stop times.

Helium Pilot Valve

A solenoid-operated, three-way valve supplies pilot gas to the propellant shutoff

valves when energized with a DC signal. When de-energized, the pilot valve ports the

pilot gas volumes of the shutoff valves to atmosphere.

Variable Area LuJeetor

A coaxial, variable area injector provides the propellant velocities and patterns

necessary to maintain combustion efficiency throughout the throttling range. At low

propell_t flows for minimum thrust the injector area is small and, therefore, the

propellant velocities are maintained at the high value needed for efficient operation.

The in_ector is configured such that a central plntle is stationary and area changes

are obtained by rectilinear movement of the injector sleeve through a total stroke of

0.0067 inches during throttling from maximum to mi_ thrust. Fuel flow is through

the center of the injector around the fixed pintle. Oxidizer flow is on the outside,.

on the periphery of the movable sleeve.

Servoactuator

The servoactuator receives spacecraft electrical commands and resolves these into rect-

ilinear motion (position) of its output shaft. The servoactuator has a built-in

position feed-back and, therefore, an electrical command for a specific thrust is

resolved into a specific shaft position. The output shaft is mechanically coupled

to the injector and flow control valves through the flexures and actuation arm; thus,
each servoactuator shaft position is translated into specific flow control valve and

injector settings. The total stroke of the servoactuator output shaft is 0.174 inches.

Fuel (MMH) is the servoactuator working fluid and is supplied from a connection down-

stream of the fuel filter and upstream of the fuel flow control valve.
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Actuation Ar_Flexures

The actuation arm and flexures mechanically couple the servoactuator, injector and flow

control valves. Flow control valve flexures are an integral part of each valve pintle.

Injector and servoactuator flexures are separate parts. The actuation arm is pivoted

on the head end body such that the lever arm from the pivot to each flexure is as

follows (refer to F_ 3.1.1-5):

Servoactnmtor 2._ inches to left of pivot

Injector Sleeve 0.095 inches to right of pivot

Flow Control Valves 2.195 inches to right of pivot

As the servoactuator shaft extends, the injector sleeve and flow control valve pintles

retract. This motion reduces the flow area in the throats of the cavitating venturis

and the orifice area in the injector. Reduction of flow area in the throats of the

cavitating venturls reduces thrust, and reduction of Orifice area injector maintains

inJectant velocities for the reduced flow.

Combustion Chamber and Nozzle Assembl_

The Combustion Chamber and Nozzle Assembly (CC & NA) contains, directs and expands the

gaseous products of combustion. Propellant combustion occurs in a 2.35 inch internal

diameter ablative-cooled zone (silica-phenolic liners). Gases then converge to a 1.00

inch diameter hard throat of JTA graphite. Expansion of gases from the throat is

through a sillca-phenolic exit cone liner and radiation-cooled titanium skirt, with

exhaust occuring at a diameter of 5.725 inches. The entire outer case of the Combustim

Chamber Assembly is titanium with integral trunnions provided for spacecraft mounting

of the TCA. The overall length of the CC & NA is 10.5 inches; other parameters are

noted below and inparagraph 3.2.7.

Contraction Ratio (chamber area/throat area) = 5.5

Expansion Ratio (exit area/throat area) = 32.8

Characteristic Length (L*) = 17 inches

3.1.1.2 TCA Operation

The events involved in a typical TCA operational sequence are as follows:

Pre- Start

The TCA is placed in a ready condition by pressurizing the oxidizer, fUel and helium

inlet ports to 720 pslg (nominally) with their respective fluids. The pilot valve and

servoactuatorare no_ energized at this point. Since the fuel inlet to the servoactuator

is upstream of the fuel shutoff valve, servoactuator null leakage occurs whenever

the actuator is pressurized. Loss of fuel by null leakage can be avoided by use of a

two-way (normally closed) solenoid valve connected to the servoactuator fUel outlet

ports. (Such a component is, of course, required for use of the TCA on the spacecraft;

however, STLwas not required to design and develop this component.) In the pre-start

condition, propellant pressure in the FCV causes the servoactuator output shaft to

fully retract and, therefore, the "throttle position" is set at maximum thrust.
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Start

To start the TCA, electrical commands are sinultaneously applied to the servoactuator

and helium pilot valve (and actuator fuel outlet valve if used). Energizing the pilot

valve produces actuation of the shutoff valves, and propellant now flows through the

injector and ignites hypergolically in the cnmbustion chamber. This sequence of events

is shown graphically in Figure 3.1.1-6. _he electrical signals to the servoactuator

command the desired thrust. The servoactuator response is sufficiently faster than the

pilot valve and shutoff valve cumbination such that the desired thrust setting will be

in effect when ignition occurs. This, of course, assumes the delay of the null leakage

dump valve is negligible.

Throttling

Throttling of the TCA is acccmplished by electrically commanding the servoactuator to
the desired thrust level(s). _e electrical commands are resolved into specific output

shaft positions. The actuation arm and flexures move the injector sleeve and flow

control valves such that the commanded thrust level or profile is obtained.

Shutdown

TCA shutdown is achieved by removal of the electrical signals to the pilot valve and

servoactuator (and its outlet valve if used). Power removal results in closure of the

shutoff valves, shown graphically in Figure 3.1.1-6, and the TCA is restored to its

pre-start condition.

3.1.2 Envelope

The TCA overall size and shape are delineated in Drawing No. 107062 and are illustrated

in Figure 3.1.2-1.

3-1-3 5_ss Properties

The mass properties of the 106570-1 TCA are given in 5_ss Properties Baseline Report

9730.4-64-3-6and are summarized below.

Weight = 8.30 ib

M_ent of Inertia About Trunnion Axis = 73.7 it in. 2

Center of Gravity Location : Nuninally on the trunnion axis at its

intersection with the thrust axis (TCA centerline).

Minor design changes which have occurred since the baseline report was issued have not

affected the figures given below.

An Engineering Technical Directive (ETD), MIRA-OF-0OI, entitled "Determination of Weight

and Center of Gravity Location" was prepared. _Lis ETD lists the procedures and equip-

ment required to de_ermine the weight and center of gravity location of the TCA devlned

by Drawing No. 106570-1.

i
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3.1.4 Parts List and Drawln 6 Tree

_ne MIRA 150A TCA Drawing Tree, revised 15 January 1965, is given in Figure 3.1.4-1.

The MIRA 150A TCA Indentured Parts List, revised 15 January 1965, is presented in

Table 3.1.4-2. This parts list contains parts manufactured by STL or purchased to

STL specifications. Parts such as seals, lockwire, or fasteners_ commercially avail-

able or covered by Military Standards, are not included in this indentuaw_ parts list.

The parts list and da-awlng tree contain not only Phase Ill final design part numbers

but also the Phase II Follow-on part numbers, where appropriate.

3.1.5 Specification Tree

The MIRA 150A TCA Specification Tree, revised 30 September 1964, is presented in
Figure 3.1.5-1. The specifications listed are as follows:

i. Specification No. SKI-7, Model Specification MIRA 150A Thrust Chamber Assembly.

2. Specification No. EQI-94, Combustion Chamber Assembly.

3. Specification No. PK4-2, Packaging Specification, Surgeyor Vernier Rocket

Engine. This specification establishes requirements for the preservation,

packaging, and packing of both the assembled TCA and the Combustion Chamber

Assembly alone. The required shipping container as well as the package

. configuration is defined on STL Drawing No. C-302148, Surveyor Vernier TCA

Shipping Container. • The package identification is defined on STL Drawlng

No. 302444, Marking Drawing, S_ipping Container Surveyor Engine.

he Specification No. EQI-_, Hea_ End Assembly, although _hown on the specification

tree, this specification was not completed prior to phase out of the Surveyor

Project. However, two specifications, containing technical content planned for

inclusion in EQI-95, are available- Specification No. EQS-SA, Injector

Assembly, and Specification No. EQS-6A, Valve Assembly, Flow Control. These

specifications cover Phase II Follow-on HEA parts defined on STL Drawing

No. i05_61, Head End Assembly. These parts were reworked to the Phase III

configuration as noted in Paragraph 3.1.4.

5- Specification No. EQ2-25D, Solenoid Operated Three-Way Valve.

6. Specification No. EQ2-42, Servoactuator, Electrohydraullc.

7. Specification No. EQI-73B, Filter, Propellant.

8. Material and process specifications applicable to the CC & NA parts are as
follows:

Specification No. MT3-9, Molding Compound, Chopped Silica Fabric

Reinforced Phenolic. This specification establishes the require-

ments for the molding compound used in manufacture of the liner

components.

be Specification No. PRIO-9, Compression Molding of Chopped Silica Fabric

Reinforced Phenolic Parts. This specification establishes requirements

for molding the ablative molding compounds into the ablative liner components.
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Ce Specification No. MT3-10, Silica Fabric Reinforced Phenolic Resin Tape
and Broad Goods. _is specification establishes requirements for the

material used in overwrapping the molded liner component pieces.

dl Specification No. PR I0-i0, Laminating and Wrapping of Silica Fabric

Reinforced Phenolic Resin Tape and Broad Goods. This specification

contains some of the requirements for the overwrapplng operation.

ee Specification No. MT3-12, Graphite, Oxidation Resistant. _is

specification defines the requirements for the oxidation resistant graphiW
composite used in the throat insert, defined by Drawing No. i065_, and

chamber liner insert, defined by Drawing No. iO6542.

Specifications No. MT3-9 and No. PRIO-9 apply to the following parts: Injector Head

Liner, defined byDrawing No. i0_53; Exit Cone Liner, defined by Drawing No. i06543;

and Chamber Liner, defined by Drawing No. i06541. Specifications Nos. MT3-10 and

PRIO-IO apply to the Overwrap Liner Assembly, defined by Drawing No. 106558.

3.1.6 Log Book

The purpose oft he "_ality Assurance Log Book" is to (I) provide a complete list of

the parts and subassemblies constituting the particular TCA, (2) document any modlfications
to the TCA and components thereof, and (3) delineate the tests performed in the TCA or

assemblies thereof. Thus, a permanent and current record is available for purposes of

accountability and traceability of all raw materials and purchased components assembled
into the TCA. Further, tests to which the TCA have been subjected are listed, and

limited items of test data maybe included in the log. The log then becomes a single

gathering point for information related to assembly and testing of the engine so that,

if required, more detailed information can be searched out from this point.

The basic log book contains 13 form-type pages which are supplemented by pertinent
information such as component acceptance test reports, engine test data sheets, and

oscillograph data as appropriate.
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3.2 Components and Subassemblies

3.2.1 Flow Control Valve

Propellant flow control is accomplished by dual variable area cavitating venturi valves.

The cavitating venturi valves separate any oscillations in the combustion or injection

pressures from the feed system. The flow through the cavltating venturis is independent

of downstream pressure and dependent only upon venturl inlet pressure and propellant

density as shown in the following equation:

R = Mass Flow Pate

A =, Venturi Throat Area

CD =

"t"
p

Y

Discharge Coefficient

Propellant Density

Inlet Pressure

Vapor Pressure

Figure 3.2.1-1 shows the assembly drawing of the MIRA 150A flow control valve (FCV).

An exploded view is shown in Figure 3.2.1-2. The pintle contour is a paraboloid

resulting in R 14near flow srea with stroke. Figure 3.2.1-3 shows typical flow-stroke

data from atkTobtlt_ enc!ne firing.Figure 3.2.1-_ shows typical mixture ratio data for

a throttling run.

The cavitating venturi valve operation is based on the fact that as liquid flow through

a venturi throat is increased by decreasing the pressure downstream of the throat_ a

point will be reached at which no further flow increase will be experienced with further

decrease in the downstream pressure. The reason for this cha_-acteristic is that as the

upstream pressure head is increasingly converted to fluid velocity, the throat static

pressure finally reaches the vapor pressure of the liquid. At this point, some of the

liquid vaporizes. Further lowering of the downstream pressure merely creates additional

vapor (cavitation) at the throat, with the liquid flow rate remaining constant because

the flow controlling pressure drop in this system is between the inlet pressure and the

venturi throat pressure.

In a venturi with a well designed diffusing section downstream of the throat, cavitation

will occur when the downstream pressure is about 85 percent of the upstream pressure;

that is, a maxim_ of about 85 percent of the throat velocity head (which for low vapor

pressure fluids is equivalent to the upstream pressure) can be recovered in the diffusing

section of the venturi. Therefore, as long as the injector manifold pressure is less

than this value of 85 percent of the upstream pressure_ the propellxnt flow rate to the

engine will be a function only of the tank pressure and the venturi throat area.
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Figure 3.2.1-5 shows the actual measured cavitating recovery pressure on the FCV during

a water flow test. The scale also shows the equivalent oxidizer flow rates. This curve

can be used to help predict the lowest possible tank pressure allowable for a given

chamber pressure.

For example, a change in the FUV pintle contour could allow operation of the TCA at a

chamber pressure of ii0 psia with an oxidizer tank pressure of approximately 350 + 20

psia. This would allow a pressure budget of the following approximate values:

Item Nominal Pressure Drop, psi

Filters 15

Shutoff Valve i0

Fcv 67

Other Passages 25

Injector 95

Total_P 21--_psi

This 212 psi pressure drop plus a chamber pressure (Pc) of ii0 psia gives 322 psia to
the needed inlet pressure.

The 67 psi pressure drop for the FCVwas derived assuming an inlet pressure to the FCV

of 335 psia (i.e., 350 minus filter drop of 15) and an 80% recovery (see Figure 3.2.1-5)

or 20% loss, thus, 67 psi drop (i.e., 0.20 x 335)-

Further discussion of pressure budgets is given in paragraph 3._.ii.

The FCV pintle contours are paraboloids providing a linear flow area versus stroke over

the throttling range. The true flow ares is difficult to predict since the flow at the

throat is not parallel to the centerline of the pintle nor parallel to the immediate

parabolic surface. Though the later assumption is probably more valid, analysis shows

that either assumption (flow parallel to centerline or to surface) results in a linear

flow area versus stroke. A detailed analysis of the derivation of the proper shape of

the paraboloids for the fUel and oxidizer is given in Appendix A. A closed form

computer solution for the parabolic contour, and for the transformation to equivalent

coordinates through which a machinists grinding tool must move to cut the contour is
also available.

The flow discharge coefficient for both valves is assumed to be 0.92. Pintle contour

tolerances are held to _0.0002 inches.

3.2.2 Propellant Filters

Filtration of propellants upon their entry into the TCA is necessary in order to avoid

the detrimental effects of contamination which can cause: (I) Jamming of moving parts,

(2) seal leakage, and (3) disruption of established flow rates and combustion pattern.

Fuel and oxidizer filters are provided within the TCA izmediately upstream of the propel-

lant flow control valves and permit the propellants to be filtered as soon as they enter

the TCA. The two filters in each TCA are identical and interchangeable and provide the

degree of filtration noted below:
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98% filtration of particles 5 microns in minimum dimension.

100% filtration of particles 15 microns in minimum dimension.

100% filtration of fibers lO00microns or greater in length.

The filters must meet the requirements delineated in STL Specification No. EQ 1-73B and

Drawing No. C105183. The filter, shown in Figure 3.2.2-1 is constructed of Type 30_

stainless steel wire mesh, pleated and welded to 304 stainless steel and rings and core.

The closed end of the filter element contains a 10-32 tapped hole which is used to aid

installation and removal. Flow direction is from outside to inside, and the pressure

drop is 15 psi maximum for an oxidizer flow of 0.36 lb/sec or a fuel flow of 0.24 lb/sec.

. Paragraph 5.1.2 discusses acceptance testing of the propellant filters and presents

test data acquired during these tests.

3.2.3 Propellant Shutoff Valve

The TCA contains two propellant shutoff valves (SOVs) for start/stop control of fuel

and oxidizer flow. The S0V outlet ports are closely coupled to the TCA injector in

order to minimize TCA start/stop times. The SOVs are pilot operated by gaseous helium

supplied at a nominal pressure of 720 psia from a common helium pilot valve (see

paragraph3.2._).

Each S0V is comprised of a group of interchangeable component parts and utilizes the

TCA head end body as a common valve body; the head end body contains all pilot gas and

propellant porting. The SOV assembly and component parts are shown in Figures 3.2.3-1 (a)

A picture of the parts that are inserted in the head end body is presented in Figure

3.2.3-1 (b).

All metallic parts are stainless steel. The seals (Bal-Seals) are made of Teflon with

a stainless steel spring insert. The valve seat is sized to mate with a standard Teflon

O-ring.

In the absence of pilot gas pressure, the SOV is closed with the poppet-to-seat seal

maintained by a closure spring and propellant pressure. The spring will provide valve

closure in the absence of propellant pressure. With the application of helium gas

pressure, the valve piston moves downward (reference Figure 3.2.3-1 (a)) opening the

poppet and compressing the closure spring. Upon removal of pilot gas pressure, the

valve poppet is closed by propellant pressure and/or closure spring force. Pilot gas

threshold pressures for opening and closing the valve are noted below.

i. Valve initially closed.

Propellant Pressure = 720 psia

Pilot gas opening threshold pressure = 400 psia:

(i.e., valve will open when pilot gas pressure reaches approximately 400 psia).

e Valve initially open.

Propellant Pressure : 175 psia (corresponds to thrust of i00 ibs).

Pilot gas closing threshold pressure = 150 psia:

(i.e., valve will close when pilot gas pressure reaches approximately 150 psia
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It is noted that opening and closing threshold pressure may vary + 50 psla from the

values shown because of tolerances associated with spring force _and seal friction.

The basic SOV design was developed during the Phase II effort and refinements were

incorporated during Phase III. These refinements ana the testing thereof are discussed

in paragraph 5.3, SOV Component Evaluation Test Seri_s." Environmental testing of the

SOV is discussed in paragraph 5.2, Deep Vacuum Tests.

3.2._ Helium Pilot Valve

The TCA contains a single, solenoid-operated, helium pilot valve for supplying and

removing gaseous helium to and from the two propellant shutoff valves. The pilot

valve is a three-way, two-position design, and its performance is an important factor

in TCA start/stop operation. The pilot valve is attached to the TCA head end body

such that its pilot (outlet) port is connected to the pilot gas inlet/outlet of both
propellant shutoff valves.

Pilot valves were procured fr_n two sources under STL Specification No. EQ 2-25D and

Drawing No. C104337. During the early part of the Phase III effort, orders were

placed with only one vendor. At that time, the possibility of delivery delinquencies

appeared. Therefore, a second source was established and additional pilot valves were

ordered. The two helium pilot val_es are shown in Figures 3.2._-1 and 3.2.4-2. The

initial design, Part No. C104337-1 was finally chosen to becc_e the cc_ponent part of

delivered TCAs and was used exclusively in the prequalification test program.

In operation, the inlet to the pilot valve is normally pressurized with gaseous helium

at 720 _+ 20 psia with a maximum possible inlet pressure of 850 psia. Inlet poppet

closure is maintained by a spring to achieve a maximum all_able helium leakage of i0

scc/hr at 850 psia. With the valve de-energlzed and (inlet poppet closed) 3 the vent

and pilot ports are connected and the pilot gas portion of the propellant shutoff valves

is now vented to atmosphere. Upon energizing the pilot valve solenoid, the armature

moves thereby opening the inlet port and closing the vent port. Thus, with the pilot

valve energized , the vent port is closed and the inlet port is connected to the pilot

port with the result that propellant shutoff valves are actuated to the open position.

With the pilot valve energized and the vent port closed, the maximum allowable leakage

across the vent poppet is i0 scc/hr at 850 psla.

Electrical power for operation of the pilot valve is 15 watts maximum; voltage require-
ments are noted below.

Minimum Actuation Voltage: 16 vdc for one second (pull-ln)

Minimum Hold-in Voltage: 13 vdc

Maximum Actuation Voltage: 23 "vde

M_ximumApplied Voltage: 26 vdc for 5 minutes

The valve inlet port must be pressurized to approximately _00 psia in order to obtain

valve actuation upon energizing the solenoid. Also, the pilot port must be capped or

connected to a fixed volume to permit the armature to return to its unactuated position
upon removal of power from the solenoids.
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Figure 3'2._-l. _[LRA 15OA Helium Pilot Valve
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STL P/_ C_04337-2



The magnetic circuit of the CI0_337-I valve is high permeability iron coated with

electroless nickel plate. The first lot of CIO4337-2 valves had a similar magnet

circuit. On a second lot of C104337-2 valves, stainless steel replaced the nickel

plated iron. The CI0_337-2 design used Teflon on both the inlet and vent poppets

while the -i design used Teflon on the vent poppet and nylon on the inlet poppet.

Paragraph 5.1.3 presents data from acceptance testing of the helium pilot valves.

Pertinent environmental test data is in paragraph 5.2, Deep Vacuum Tests. Pilot

valve cycle life data is contained in paragraph 6.4.3, Cycle Life.

3.2.5 Variable Area In_ector

The HEA injector is a single element, coaxial type injector. The single moving

injector element, the sleeve, is mechanically linked to the flow control (cavitating

venturi) valves and to the _ervoactuator. Thus, as the propellant flow rate increases

the injector orifice areas are simultaneously increased.

The injector has several unique characteristics:

I) The use of coaxial impinging sheets provides uniform circumferential

propellant distribution in the combustion chamber.

2) The combustion zone is removed from the injection ports, minimizing

coupling wlth the feed system.

3) The single moving injector element controls the injector gaps accurately

to malntain the proper absolute and relative injection stream velocities

over the entire throttling range.

Streaking and uneven heat flux to the chamber, faceplate and throat is

minimized by the type of boundary layer generated.

5) The injector is not required to be a flow control mechanism - the cavitating

venturi flow control valves have this function - thus the injector can be

adjusted for optimum combustion efficiency. For example, the injector flow

gaps can be set for wider tolerances than would be allowable if the injector
controlled flow.

6) The injector geometry, impingement angles, pressure drops, flow rates and

gaps are relatively easy to adjust and/or modify during developmental testing
and calibration.

An exploded view of the injector is shown in Figure 3.2.5-i.

drawing is shown in Figure 3.2.5-2.
A scaled injector cutaway
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Figure 3.2.5-2. MIRA 150A Injector Assembly

(Section View)



As the flow of propellants is reduced linearly by the servoactuator, the fuel and

oxidizer injector gaps are reduced simultaneously. The MIRA 150 injector orifice

diameters, metering angles, and gaps are designed and adjusted to provide a nominal

pressure drop for oxidizer and fuel as shown in Figure 3.2.5-3. The oxidizer to fuel

momentum ratio, MoVo , is kept approximately equal for the entire thrust range.

Mfvf

The injector sleeve stroke on the MIRA 150A is 0.0067 inches of travel from 30 to 150

ibs of thrust and the gap at the minimum thrust level (30 ibs) is approximately 0.0017

inches. Although this gap is quite small, the injector pressure drop at the low thrust

level is relatively insensitive to fabrication tolerances.

Further discussion of pressure budgets is presented in paragraph 3.4.11.

Injector development and performance test data are discussed in paragraph 6.2.

i00
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60 ¸

4O

3O

H
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i0
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2O 3O 5o 6o 7o 8o 9o zoo no 12o 13o l_O 15o 16o
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Figure 3.2.5-3. Typical Injector Pressure Drops
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3.2.6 Electroh_draulic Servoactuator

The servoactuator converts thrust control electrical signals into output shaft position.

It is powered with 720 psia fuel (MMH) from the spacecraft vernier engine fuel system.

Two servoactuator designs are discussed herein - The Phase II Follow-on design and the

Phase III design. Both designs are conceptually identical and operationally similart

but differ in stroke, electrical connector location, other minor design areas_ and

detailed performance.

The servoactuator design is shown in Figures3.2.6-1, -2, -3, and -4. A schematic of

the servoactuator is shown in Figure 3.2.6-1 and is applicable to both the Phase II

Follow-on and the Phase III units. Figures 3.2.6-2, -3, and -4 apply only to

Phase III units.

The actuator consists of a double coil, torque motor which positions a single nozzle

flapper fluid amplifier. Control pressure from the first stage amplifier positions a

second-stage, three-way spool valve, which in turn supplies pressure to a balanced

power piston which positions the load. A feedback spring mechanism is connected from

the output shaft to the torque motor armature, insuring positioning accuracy. A

pressure port filter, rated at 5 microns nominal, is installed to preclude inadvertent

actuator contamination during handling and installation. In the TCA installation, the

MMH flowing through this filter has already been filtered by the TCA filters described

in paragraph 3.2.2. An additional internal servoactuator filter, rated at 2 microns

nominal, protects the orifice and nozzle.

The differential command current signal to the two servoactuator torque motor coils

varies from a nominal value of -72 ma at 150 ibs of thrust to +70 ma at 30 ibs of

thrust. The permissible thrust to_l hysteresis and linearity envelope allows a small

actuator over-travel. The_l signal is superimposed on a DC quiescent current of _5

ma per coil to insure correct current flow direction throughout the throttling range.

A 400-cps differential current dither signal of 5 ma peak-to-peak is superimposed on

the command_l signal to reduce actuator hysteresis and deadband.
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A typical extend mode function is as follows (refer to Figure 3.2.6-i). A differential

current signal to the torque motor moves the flapper away from the nozzle, increasing

the effective nozzle area and allowing an increase in fluid flow through the nozzle.

The nozzle control pressure, PI' acting on the right hand side of the second stage

spool decreases, because of th_ increase in effective nozzle area. The unbalanced

second stage spool moves to the right until a force balance equilibrium is obtained,

and ports fuel at high pressure, Po, to the right side of the output piston. The left

side of the output piston is porte_ to the low return pressure, P_. The piston and

output shaft assembly then extends to the left. As the desired pdsition is approached,

the feed back mechanism exerts a torque on the armature opposing the original commanded

torque. When the desired position is reached, the feedback torque exactly balances the

commanded torque and the flapper is then in the original or null position. This null

position of the flapper results in increasing the nozzle pressure to its original or

null value and returning the second stage spool to the center. Thus, for any steady

state position of the output shaft, the flapper and second stage spool are always in

the null or center position, except under one circumstance. This occurs when the torque

motor receives a signal for an extreme position of the output shaft beyond the position

its mechanical stops will allow. For example, a -80 ma signal to a servoactuator whose

mechanical stops are set for a position corresponding to a signal of -75 ma will result

in the flapper and second stage remaining away from the null or center position until

the signal is changed to -75 ma or less (i.e., lower negative amperage or positive

Dynamic throttling performance for the TCA for frequencies up to i0 cps are totally a

function of the servoactuator dynamic response. Details on a mathematical model dealing

with TCA dynamic performance are presented in STL Report 8_22-601_-TV-O00.

Table 3.2.6-5 lists servoactuator documentati°n and associated drawing numbers. Table

3.2.6-6 lists major servoactuator specification requirements when operating on MMH.

Figures 3.2.6-7 and -8 support Table 3.2.6-6. Figure 3.2.6-9 graphically defines

certain dynamic performance parameters

A passive resistance network was designed to allow a change in position gain of the

Phase II Follow-on servoactuators to simulate the Phase III gain. This network allowed

the input impedance to remain constant and also allowed the position of the extend stop

to be altered by changing resistance values.

The formula for calculating2the fuel dumped for a mission profile, shown below, is based
on a piston area of 0.17 in , and a 100% stroke for -70 to +70 ma nominal signal range
with no overshoot.

Total Volume Flow = V = _ + (2)(f)C60)(x)(t)(.17) in 3.

= 12t + 20._ fxt_ in. 3

V = Total Volume, in. 3

t - Tlme_ rain.

f = Frequency, cps

x = Actual Storke, in.

Total Weight Flow = Volume (V) times fuel density (_) = V(0.0316) Ibs
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This relationship is plotted in Figure 3.2.6-10 for the Phase III servoactuator. This

figure can be used for determining fuel flow rates for any combination of stroke and

frequency.

Calculation of typical (i.e., for typical mission profiles) fuel dump weights for Phase

III servoactuatorm, using Figure 3.2.6-10, are given below.

J

Time f M Weight

Mode (secs) (cps) Stroke (ib/mln) (Ibs)

270-see total 50 7 Stop-to-Stop 1.21 1.01

duty cycle 220 i 6._ (I0 ibs .38 1.39

(4.5 mlnutes) thrust)

480-sec total 50 7

duty cycle _30 i

(8.O minutes)

Totals 2.40

Stop-to-Stop 1.21 1.01

6.?_ .38 2.72

Weight - Three

Actuators (ibs)

7.20

Totals 3.73 11.19

Table 3.2.6-5

Servoactuator Documentation

Phase II

Follow-on Phase III

Part Number

Serial Numbers

Specification

Specification Control Drawing

Acceptance Test Procedure

Quantity Procured

ClO_3_ B

C53747 to C53752

EQ2-23BAmended

by935_.4-1_9
9354._-167

C10_312, Revision B

935_.4-14o

5

C219217 A

C55390 to C55407

EQ 2-_.2

C219217, Revision A

9354-_-255

18
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Table 3.2.6-6

Servoactuator Major Specification _qulreme_ts

A. Ccennon to Both Phase II Follow-on and Phase III Units

Parameter

Operating DifferentiaklPressure

Burst Pressure

Weight

Loading

Input Signal

Dither Input Signal

Hysteresis

Deadband

25% Stroke Step Response
Rise Time
% Overshoot

Settling time

100% Stroke Step Response
Rise Time

Frequency Response
Amplitude Ratio

Phase Lag

Static Shelf Life

Endurance

Operating Altitude

Operating Temperature

Storage Relative H,-.idlty

.Null Leakage

Required Value

635 to 7_0 psi&

1720 psia

1.7 lbs max, dry

15 to 25 Ibs compressive, + _ to _+ i0

ibs frictlonj 0.01 slugs max inertia

+ 70 ma _I normal, _+ 120 magi con-
_inuous overload

5 ma peak-to-peak_I at _00 cps

I_ss t_an 2.5 ma or 15% of amyAI

excursion, whichever is greater_ and
within envelope

2.5 ma maximmm

_0 ma maximum

23% maximua
65 ma maximum

40 ma maximum

•97 rain @ 5 cps, 15 ma peak-to-peak

20° max @ 5 cps, 15 ma peak-to-peak

2 years

201000 cycles minimum @ 4_ 70 real I cpe
sinusoidal input

i00 hours in Cis-lunar space

0 - lO0°F

3 to 95% thr __out a temperature range
of 32 to i00 F for 2 years

12 in.3/min max_
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Table 3.2.6-6 (Continued)

B. Different for Phase II Follow-on and Phase III

Parameter Required Value

Phase II Follow-on Phase III

Proof Pressure lO5O _a 1o35 ps_ (1035 psis
at sea level)

Nominal Stroke

Quiescent Current

Coil Impedance

0.253 stop-to-stop

0.233 at + 72maAI

_2.5 _+ z.1 ma/ooil

_Oo120 oh=s/coil DC

0.1836 stop-to-stop

0.174 frum 30 to 150

ibs thrust

0.172 at + 70 magi

_5 ± 2.1 m_/coil

_00 + 20 ohms/coil DC

625 _hms/coilmax&t
_00 cps

Dielectric Strength

Linearity

2mamaxcurrent at

500V DC, pin to ground

per Figure 3.2.6-7

5 megohms mlnat

125 VDC, pin to

ground

per Figure 3.2.6-8

3.2.7 Combustion Chamber and Nozzle Asse_bl_ Description and Operation

The combustion chamber and nozzle assembly (CC &_tA) is that portion of the TCA thst

contains, directs and expands the gaseous products of combustion. A cross section view
of the CC &HA is shown in Figure 3.2.7-1 and an exploded view is presented in Figure

3-2.7-2.

The CC &HA is composed of six major parts; a combustion chamber liner, an exit cone
liner, a throat insert, a convergent section insert, an injector head liner, and a metal

case. These six major parts are fabricated fram three different materials; a silica-
phenolic ablative material, JTA graphite, and Titanimn 6Ai-4Valloy.

The injector head liner, combustion chamber liner, and exit cone liner are machined as
detailed l_rts from silica-phenolic billets. The raw stock billets are molded frcm_"

x _" squares of pre-lmpre_mated silica-phenolic material in a closed metal die and

pressure cured at 2000 psig minimum for _ hours at 310°F. The billets are then post-

cured in a circulating air oven for 24 hours at 310VF. The uncured ablative material

molding compound is composed of 23 to 27_resin solids and 2 to 5% volatiles by weight.

The remalningmaterial is 98%, or better, pure silica reinforcement material. The

resulting malded billet has a minimt,, specific gravity of 1.77, an average Befool hardness

of 70, and less than 0.5% by weight of uncured material. The raw material billets are

radiographically inspected before machining into detailed parts.
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Settling time to last

crossin6 of 10% band

=i---/ .... l-'-- l- -'?-_--]-
4 I / + 5_ o_ .et

_ initial delay time
0 _rcan initiation of step change

in differential current

[-

_gu.re3.2.6-9. Servoactuator Step

Response Definitions
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100% _
.I

S/A Part No. C219217 /

Null Leakage = 12 in.3/mln //
2.5 100% Stroke = 0.172 in."_ ± 70 ma

Piston Area -0.17 in. 2 3
Fuel Density = 0.316 Ib/in.

• i //• /

,., //,&/

_! _ 2..---
Null Leakage

0.375

0
0 4 8 12 16 20 24

Frequency (cps)

Figure 3.2.6-10. Phase llI Servoactuator
Fuel Flow Rates
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The naz_le throat insert and convergent section insert are machined as detailed parts

frc_ JTA graphite billets. JTA graphite is chemically composed of 4_ carbon, 35%

zirconium, 8% boron, and 9% silicon by weight. During the hot press molding process,

graphitization is accomplished at approximately 25OOVC. Radiographic analysis of a

finished billet shows carbon_ zirconium diboride_ and silicon carbide as the chemical

products present. The finished billet has a minimum specific gravity of 3.0 and is

radiographically inspected before machining into detailed parts.

A unique feature of JTA is its oxidation resistance at high t_perature. This character-

istic is provided by a surface coating of oxides (e.g. Si 02) that forms during the high
temperature use and which wets and coheres to the basic JTA substrate. Thus_ the

characteristic is a function of the use temperature and of the shear forces and boundary

layer conditions which could strip the molten surface coating away.

The metal case is machined to its final configuration from solid bar stock material

composed of 90% titanium - 6% aluminum - 4% vanadium by weight (Ti-6AI-4V) alloy. The

metal case retains the ablative liner assembly, provides trunnions for mounting to the

spacecraft, and is the unlined aft portion of the nozzle divergent section from an area

ratio of 13.5 to 32.8.

Upon completion of the machining of the detailed parts, the nozzle insert and convergent

section insert are bonded into the combustion chamber liner and exit cone liner using a

high temperature adhesive. The ablative liner assembly is then overwrapped with a

silica-phenolic broadgoods cloth. The uncured silica-phenolic material used for this

operation is composed of 29 to 33% resin solids and 3 to 7% volatiles by weight. The

re_aining naterial is 98%, or better, pure silica reinforcement material. Following

the overwrap process, the part is pressure cured at a minimum pressure of 200 psig for

6 hours at 310°F followed by a post-cure cycle of 24 hours at 310°F in an air circulating

oven. The resulting cured overwrap material has a minimum specific gravity of 1.70, an

average minimum Barcol hardness of 70, and less than 0.5 percent uncured material by

weight. Following the post-cure cycle, the ablative liner assembly is radiographically

inspected to assure conformance with specified requirements.

The cc_pleted ablative liner assembly after machining to final configuration is assembled

to the r_aining portions of the CC & NA (see Figure 3.2.7-2). The CC & NA is pressure

checked as a component at ii0 + 5 psig in accordance with Engineering Test Directive ETD

MIRA-2F-O01 before it is installed on an HEA injector.

The CC & NA has the following nominal physical characteristics:

Overall Length: 10.090 inches

Largest Diameter: 6.000 inches

Internal Diameter: 2.350 inches

Throat Diameter: I.OOO inch

Exit Diameter: 5-275 inches

Contraction Ratio: 5-5

Ablative/Radlatlon Skirt Interface Area Ratio: 13.5

Characteristic Length: 17 inches

Weight : 2.6 ibs
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The CC & NA has the following operational characteristics:

le Throat erosion is zero and case temperatures will not exceed 2000°F during or

following operation under operatingocondltlons of i00,000 feet altitude vacuum
environment, 1.6 mixture ratio, i00 F propellant temperatures, maximum thrust

of 150 pounds for a total of 300 seconds consisting of three starts with a
maximum single firing of 180 seconds.

e The total weight loss of the CC & HA as a result of an accumulated 300-second
firing under the operating conditions described above will not exceed 7.8 per-

cent of the pre-fired weight.

Additional information on the CC & NA development is given in paragraphs 3._.9, 3.A.IO,
and 6.4.
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3-3 TCA/Spacecraft Interfaces

The paragraphs herein define the mechanical, electrical, pneumatic/hydraulic, and thermal

control interfaces. Drawing No. 107062 or Figure 3.1.2-1 may be used as a reference for

the dimensional relationships of the various interfaces.

3-3-I Mechanical

TCA mounting provisions conform in general to Hughes Aircraft Company (HAC) Drawing No.

276594, Rev. A, dated 20 April 196_. The TCA is designed to be mounted on the space-

craft using trunnions which are an integral part of the TCA combustion chamber and

nozzle assembly. The mounting trunnions are normal to the TCA thrust axis ana their

centerline passes through the TCA center of gravity.

Du_ing attachment of the TCA to the spacecraft, nozzle centerline aligglnent may be

achieved by using a special allg_nent tool, P/N XT106_29, designed for this purpose.
Installation procedure and use of the aligument tool is described in STL Document No.

9730.4-6_-54, Informal Operating and Maintenance Instructions, revised 14 September 19_.

3-3-2 Electrical

The TCA contains two items which must be electrically connected to the spacecraft; the

helium pilot valve and the electrohydraulic servoactuator. The electrical interfaces
conform in general to HAC Drawing No. 276594, Revision A, dated 20 April 196_. Electrical

power for these items is required only during operation of the TCA.

3.3.2.1 Helium Pilot Valve

The helium pilot valve is a DC solenoid-operated device. It is electrically connected

to the spacecraft by two wires, each fitted with a wristlock disconnect connector,
Thomas and Betts P/N B-14D. The pilot valve is not polarity sensitive and thus, either
wire may be grounded. The mating spacecraft connector is also a Thomas and Betts P/N
B-I_D.

M_ucimum input power is 15 watts and the minimum pilot valve coil resistance is 45 o_--s.

Input voltage requirements are as follows:

Minimum Actuation Voltage: 16 VIE for one second (pull-in) followed

by 13 VDC continuously (holding)

Maximum Actuation Voltm6e: 23 V_

Maximum Applied Voltage: 26VDC for 3 minutes

3.3.2.2 Electrahydraulic Servoactuator

The servoactuator (S/A) is a dry-coil torque motor device. It is electrically connected
to the spacecraft through an electrical receptacle (Bendix P/N PTO 2H-8-4P) located on

the servo_ctuator. Polarity of the electrical connection is important. The mating

spacecraft connector is a MS 3116 and must be wired in accordance with the following
schematic:
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Current Input

AB=CD

S/A Output Shaft Position

Mid-position (Mid Thrust)

AB > CD Extends (Min _[hrust)

CD> AB Retracts (Max Thrust)

Pertinent servoactuator electrical interface values are as follows:

Differential Signal Current:

Quiescent Current:

Coil Impedance (maximum):

+ 70 ma (Normal)

+ 120 ma (Overload Capability)

45 ± 2.1,_/coil

625 ohms/coil at 1_) cps

400 ohms/coil DC

Dither Differential Signal

Current: 5 ma peak-to-peak at 400 cps

3.3-3 Pneumatic/Hydraulic

The TCA is designed to operate from a pressure regulated feed system of pilot gas and

propellants. The TCA is also equipped with fittings/ports for servoactuator fluid

outlet, pressure instrumentation, and connection to ground supply propellants. The

following paragraphs define each of the pneumatic/hydraulic interfaces.

3.3.3-1 Pilot Gas

Helium pilot gas is supplied to the TCAby connection to the MS 33656E3 inlet fitting

on the helium pilot valve. The pressure at the interface is 720 + 20 psia during

operation of the TCA. The maximum static system pressure is 850psia. Pilot gas

temperature range is O°F to lO0°F. Y_ow requirements are small; each actuation of the
pilot valve uses approximately 0.3 in _ of pilot gas. A 3/16-inch nominal diameter

supply llne is adequate.
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3•3-3.2 Propellants

The propellants consist of the fuel, monumethylhydrazine (_H) per MIL-P-2740_, and

the oxidizer, which is a mixture of 90% by weight of nitrogen tetroxlde (N_Oh) per
MIL-P-26539A and 10% by weight of nitric oxide (NO). Propellants are suppIied to the

TCA by connection to the two MS 33656-4 fittings on the flow control valve body. The

fuel inlet fitting is parallel to the centerllne of the TCA mounting trunnlons_ and

the oxidizer inlet fitting is normal to the centerllne of the trunnions. _3_e propellant

pressure at the inlet fittings is 720 + 20 psia during TCA operation. The maximum

static system pressure is 850 psia. Pr--opellant temperature range is O°F to 100°F.

Propellant flow at maximum thrust are:

Fuel : .21 Ib/sec

(For I of 291 sec, MR = 1.5)

Oxidizer: .31 ib/sec sp

Refer to paragraph 3-5 for additional propellant details.

3.3-3.3 Servoactuator Outlet

The servoactuator (S/_working fluid is fuel (MMH). This fluid is supplied to the S/A

inlet port by a feed llne connected to a fitting on the flow control valve body, upstream

Of the propellant shutoff valves. The S/A fuel feed line is an integral part of the TCA,

and therefore, whenever fuel is supplied to the TCA, the S/A is pressurized. The S/A

outlet port must be connected to a normally closed dump valve in order to avoid fuel

loss due to null leakage. To activate the S/A, the dump valve gust be opened to route
the S/A outlet fluid overboard or to a collection tank. The outlet connection on the

S/A is MS 24299C3. The outlet valve used should not impose a pressure drop in excess

of 20 psi with a fuel flow of O.0_93 ib/sec. The S/A outlet dump valve was not developed

during Phase II, since this valve was considered a spacecraft propulsion system component.

3.3.3.4 Pressure Instrunentation Connections

All TCAs have a port for instrumenting combustion chamber pressure. This port conforms

to AND 10050-2 and must be either plugged or connected to pressure instrumentation.

TCAs 106570-4 and -5 have provisions for instrumenting fuel and oxidizer injection

pressures. These instr_,entation bosses conform to MS33656-G3 and must be either capped

or connected to pressure instrumentation.

3.3.3.5 Ground Supply Connection

The flight TCAs have provisions for connection to ground supply propellants or purge

equipment. A ground supply boss is located on each shutoff valve. These ground supply

bosses are ported to the upstream side of the fuel and oxidizer SOVs and must be either

plugged or fitted with the quick disconnect fittings listed below.

Fuel Quick Disconnect: HAC P/N 254060 (or equivalent)

Oxidizer Quick Disconnect: HAC P/N 254073 (or equivalent)
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3-3-_ Thermal Comtrol

Considerable thermal interface analysis and materials testing was performed during

Phase liT; however, the ther_ design was not finalized because spacecraft thermal

interface requirements were not provided. Thus, the TCA in its present form does not

include surface finishes compatible with the Surveyor spacecraft passive thermal

control requirements.

In accordance with paragraph 3._.5 of JPL Specification SAM-50255-DSN-C, the temperature

o_ the inastive TCA will be controlled during flight within the temperature range of
O-F to 125 F. In compliance with this requirement, several meetings between STL and

HAC were held to discuss TCA thermal control design requirements, surface processing

methods, coating patterns, etc. In early STL/HAC thermal interface discussions, the

TCA passive temperature control was conceptuall_ configured as an overall coating of
vacuum deposited al_inum (VI_) with 3 to i0 in of black on some of the forward facing

surfaces of the TCA. Subsequently, gold plating was suggested by STL as being superior

to VDA, since gold is more resistant to atmospheric conditions, more easily cleaned,
and is operable at higher temperature because no organic subcoating is used. In addition,

a "Cap" to enclose the HEA was proposed and analyzed. Ultimately it was decided to

pursue the STL design approach utilizing the HEA cap to passively control the temperature

of the TCA while leaving all exposed surfaces below the HEA-to-CC & NA split line to be

gold finished to provide low values of absorptance and emittance.

An _analysis of the MIRA 150A using a cap for thermal control is presented in Appendix B.

Recommendations resulting from this analysis were as follows:

i. A cap should be used over the HEA for thermal control.

2. The cap should be al_inum with a liquid bright gold finish.

3. The external surface of the CC & NA should have a gold finish.

The thermal properties of various sample surfaces representative of the TCA surfaces were

determined. These included various gold finishes and several titanium surfaces represent-
ative of the uncoated case and nozzle before and after firing. Details of this analysis

are presented in Appendix C.
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3.1_ TCA Performance

The MIRA 150A TCA steady-state and transient performance characteristics presented
herein are based on static test data provided by the Phase III prequalification testing.

The supporting data for this information may be found in Section 6.0.

3.4.1 Specific Impulse

Table 3.4.1-i provides nominal and 3-sigma deviation estimates of specific impulse at
three different thrust levels. The requirements of JPL Specification SAM-50255-DSN-C

are provided for comparison. Figure 3.4.1-2 shows vacuum specific impulse as a
function of vacuum thrust and operating mixture ratio. Further details may be found

in paragraph 6.8.5.

Minimum Thrust (30 ibs)

Midrange Thrust (90 ibs)

Maximum Thrust (zSo zbs)

Table 3.4.1-I

MIRA 15OA Specific Impulse Variability at
Standard Inlet Conditions*

Isp (seconds)

Measured Values

Nominal + 3-SigmaDeviation

287.6 5.2

291.3 3.3

Nominal

290

zgo

SAM-50255-DSH-C
+ 3-Sigma ;LimiA

7

5

*NOTE: Standard inlet conditions are defined as 720 psia TCA propellant

inlet pressure and 70°F propellant inlet temperature.
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3.4.2 Characteristic Exhaust Velocit_

Table 3.4.2-i provides nominal and 3-sigma deviation estimates of characteristic

exhaust velocity at three thrust levels. Figure 3.4.2-2 shows characteristic exhaust

velocity versus nozzle stagnation pressure and mixture ratio. Further details may
be found in para@raph 6.8.5.

Table 3.4.2-i

MIRA 150A Characteristic Velocity Variability
at Standard Inlet Conditions

m_Thrust (3Olbs)

C* Measured Values (f_s)

Nominal + 3-Sigma Deviation

_826 180

Mid.range Thrust (90 ibs) 5286

M_Thrust (XSOXbs) 5328 i01

3.4.3 Thrust Coefficient

Table 3._.3-i provides nominal and 3-sigma deviation estimates for thrust coefficient

at standard inlet conditions. Figure 3.4.3-2 shows vacuum thrust coefficient versus

nozzle stagnation pressure and mixture ratio. Further details may be found in
paragraph 6.8.5.

Table 3.4.3-I

t._RA 150A Vacuum Thrust Coefficient Variability
at Standard Inlet Conditions

Minimum Thrust (30 Ibs)

Midrange Thrust (90 ibs)

Maximum Thrust (150 lbs)

_F Measured Values

Nominal + 3-Sigma Deviation

1.7ul o.o74

1.75a 0.035

1.763 o.o_

1

r_
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3._.4 Mixture Ratio

The n,_minal and allowable limits of mixture ratio at standard inlet conditions are

1.50 +_ 0.03 for su_ thrust level. These values are the acceptance test limits, a_

a_y TCA found outside this range during acceptance testing will be recalibrated and

readjusted as needed to meet these limits. Further details may be found in paragraph
6.8._.

Figure 3.4.4-I provides propellant temperature effects over the 0°F to 100°F speci-

fication range. The information presented in Figure 3.4._-1 is based on a perfectly

adjusted nominal minute ratio at standard inlet conditions of 1.50. Any deviation

because of the "imperfectness" of the HEA (e.g., the allowable of + 0.03) would be

added to that shown. Further details may be found in paragraphs 6V.5.1 and 6.5.2.

3.4.5 Chamber Pressure

Table 3.4.5-I provides nominal and 3-sigma deviation estimates of chamber pressure

at three thrust levels. Figure 3.4.6-5 may be used to determine nominal chamber

pressure as a function of vacuum thrust. Further details may be found in paragraphs
6.8.5 and 6.8.7.

Table 3.4.5-i

MIRA 150A Head End Chamber Pressure Variability
at Standard Inlet Conditions

Vacuum Thrust

(ibs 

30

90

15o

P--cMeasured Values (psia)

Nominal + S-Sigma Deviatiom

22.4 1.3

65.2 1.1

108.2 2.4
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1.70

1.66
Fuel Temp

(°F)
0

0

100

100

7O

1.50

1.46

1.42

-7O 0

Servoactuator Signal (ma)

+7O

Figure 3._.4-i. MIRA 150A Mixture Ratio Versus

Propellant Temperature for

Varlous S/A Signals
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3.4_6 Thrust

Table 3.4.6-i presents nominal and 3-sigma deviation estimates of thrust at five
different servoactuator signal levels under standard inlet conditions. Figure 3.4.6-2

shows the nominal thrust versus signal curve with the SAM-50255-DSN-C limits super-

imposed. Figure 3.4.6-3 provides the influence of TCA inlet 2ressure on thrust.

Figure 3.4.6-4 shows theoeffect o_ inlet temperature variations on thrust over the
specification range of 0 F to lO0 F. Figure 3.4.6-5 is a plot of vacuum thrust versus

head-end chamber pressure.

Further details may be found in paragraphs 6.5.3, 6.8.6, and 6.8.7.

Table 3.4.6-1

MIRA ISOA Vacuum Thrust Variation

at Standard Inlet Conditions

Measured Values

Signal Level Nominal Thrust + 3-Sigma Deviation

(ma) . (ibs) - (Ibs)

-8o 26.4 6.2

-7o 29.0 8.6

o 95.5 4.2

+70 154.6 2.9

+8o 16o.8 3.0

3.4.7 Startup and Shutdown Transients

The TCA startuw and shutdown transient data provided herein is based on altitude

firings at the-jPL/ETS facility and sea level firings at the IRTS. Sea level and

altitude transients s_znaries are presented separately.

3.4.7.1 Sea Level StartuD and Shutdown Transients

Table 3._.7-1 presents estimates of nominal and 3-sigma de_ation for startup times;

and Table 3.5.7-2 presents startup impulse estimates at different startup thrust

levels for sea level firings. Specification S_,I-50255-DSN-C specifies a maximum

startup time of 0.130 seconds.
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Table 3.4.7-i

MIRA 150A Sea Level Startup
Time Estimates

mni=_ T_ust (30ibs)

_idr_e Thrust (9o lbs)

Maximum Thrust (150 ibs)

NOTE:

Startup Time Measured Values (seconds)

Nominal + 3-Sigma Deviation

(I) (i)

o.o69 + 0.036

0.026 + o.o48
- o.o26

(i) Sufficient data was not available for a reliable estimate.

Table 3.4.7-2

MIRA 150A Sea Level Startup

Impulse Estimates

Minimum Thrust (30 ibs)

Startup Impulse Measured Values (1) (ib-sec)

Nominal + 3-Sigma Deviation

(2) (2)

_range Thrust (9O ibs)

M_um Thrust(150ibs)

1.9 + l._

0.87 + 0.31

(i) These estimates are based on chamber pressure integrals converted

to vacuum impulse by Iva c = Cf .AtfP c dt.
vac J

(2) Sufficient data was not available for a reliable estimate.

Table 3.4.7-3 presents estimates of shutdown times; Table 3.4.7-_ provides shutdown

impulse estimates under sea level conditions. Further details may be found in

paragraphs 6.9.2 and 6.9.3.
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Table 3.4.7-3

MIRA 150A Sea Level Shutdown

Time Estimates

Minimum Thrust (30 ibs)

Shutdown Time Mezsured Values (seconds)

Nominal + 3-Sigma Deviation

(i) (I)

massager_ust (9o lbs)

_t (150 lbs)

0.035 + 0.030
m

o.o_ (2) + 0.003(2)

NOTES: (i) Sufficient data was net available for a reliable estimate.

(2) Estimate based on data from only one HEA.

Minimum Thrust (30 ibs)

Midrange Thrust (90 Ibs)

Maximum Thrust (15o lbs)

_o_s: (1)

3.4.7.2

(2)

(3)

Table 3._.7-4

MIRA 150A Sea Level Shutdown

Impulse Estimates

Shutdown Impulse Measured Values (ib-sec) (I)

Nominal +_ 3-Sienna Deviation

(2) (2)

_.8 + 2.5

3.9(3) + 0.3(3)

Impulse values based on chamber pressure integrals, converted

to vacuum impulse.

Sufficient data was not available for a reliable estimate.

Estimates based on data from only one HEA.

Vacuum Startup and Shutdown Transients

Table 3-4.7-5 provides estimates of startup times; Table 3._.7-6 gives startup impulse

estimates for vacuum conditions. Tables 3._.7-7 and 3.4.7-8 provide estimates of

shutdown times and shutdown impulse at vacuum. Further details may be found in

paragraphs 6.9.1 and 6.9- 3-
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m_ _st (30ibs)

Mi_e Thrust(9Olbs)

Maximum Thrust (].5Oibs)

NOTE:

Table 3-_.7-5

MIRA 150A Altitude Startup
Time Estimates

Startup Time Measured Values (seconds)

Nominal ÷ S-Sienna Deviation

o.275 (1)

0.I04 ÷ O.O13

o.o77 + o.o_

(i) Sufficient data was not available for a reliable estimate.

Table 3.4.7-6

MIRA 150AAltitude Startup

Impulse Estimates

Startup Impulse Measured Values (seconds_

Nominal + S-Siena Deviatiom

Minimum Thrust (30 ibs) 3._ (1)

t._drange Thrust (9Olbs) 3l _+1.2

Maximum Thrust (150 ibs) + 2.63.1

NOTE: (I) Sufficient data was not available for a reliable estimate.

Table 3.4.7-7

. MIRA 150AAltitude Shutdown

Time Estimates

Shutdown Time (seconds_

Measured Values SAM-50255-DSN-C

Nominal + B-Sigma Deviation Requirement

Minimum Thrust + 0.280

(30 ibs) O.179 - O.179

Midrange Thrust 0.165 +_ 0.i_2

(6o-loo lbs)

+ 0.056Maximum Thrust 0.123 _

(15o Zbs)
O. 200 n=_o:

t

!
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Table 3.4.7-8

MIRA 150A Altitude Shutdown

Impulse Estimates

Shutdown Time (lb- sac)

Measured Values SAM- 50255-DSN-C

Nominal ÷ 3-Sienna Deviation Requirement

Minimum Thrust

(30 lbs) 3.2 _+2.9 mine

Midrange Thrust

(60-100 lbs) 3.3 _+ 2.4 + 1.0 (variation)
m

Maximum Thrust

(15o lbs) 5.6 Z l.l _one

3.4.8 Thrust D_namic Response

This paragraph summarizes the MIRA 150A dynamic throttling characteristics. Table

3.4.8-1 provides step response information. Figures 3._.8-2 and -3 show typical

chamber pressure response characteristics to large step servoactuator position changes.
Table 3._.8-_ summarizes loop width and 5-cps response characteristics. Typical

sinusoldal response as a function of frequency is shown in Figure 3.4.8-5. Hysteresis

loop characteristics are shown in Figure 3.4.8-6.

Paragraph 6.9 presents additional details on TCA thrust-to-signal dynamic response
test firing information. At frequencies below i0 cps, the thrust-to-signal dynamic

response is almost totally a function of the servoactuator response. Thus, additional

information that deals with dynamic response is available in paragraphs 3.2.6, 5.1.1.2,

and 7.3,

Table 3.4.8-1

MIRA 150A Step Response

Characteristics

Large Steps (1)

Rise Time (4) (seconds)

Overshoot(4) (%)

Small Steps (S)

 '-mol lC,oooo ,)
Overshoot' " (%)

NOTES:

Nomiaal

Measured Values

+ 3-Sigma Deviation

SAM-50255-DSN-C
Requirement

o.o38 o.O23o(2) o._5
0 25

O.Ol4 o.oo8 o.o65
19 lo 25

(i) A large step is defined as step signal inputs from +70 to -80 ma and
-70 to +80 ma.

(2) The output spool reaches the mechanical stops preventing any overshoot

in response to +80 ma signals.
(3) A small step is--defined as any 35 ma amplitude step signal between -70

and +70ma.

(_) Rise time and overshoot are defined in Figure 3.2.6-7; for purposes

here, the ordinate callout of position in 3.2.6-7 may be assumed to

be equivalent to thrust.
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1.  opwld (I)

_se rag(e) (aeg_es)

-62.5 + 7-5 ma Sigmal

0 + 7-5 ma Signal

_2.5 + 7.5 ma s_ml

_tio (3)Amplitude

-62.5 + 7-5 ma Signal

0 + 7-5 ma Sigsal

-62._ + 7.5 ma Si_

Table 3._..8-4

MIRA 150A Loop Wldtb

And 5-cps Sinusoldal

Response Characteristics

Measure_ Values SA_50255-DSN-C

Nominal _+ _-Si_ma Deviation Requirement

z.8 1._ 15 max

17._ 11.8 28 max

17.4 8.7 18 max

14._ 13._ 28 max

1.01 0.20 0.95 mln

1.O2 0.12 0-95 rain

1.01 0.19 0.95 mln

NOTES: (i) Percentage loop width is defined from a plot of thrust versus servo-

actuator signal current in which the width of the plotted hysteresis.

loop is divided by the command current excursion times i00.

(2) Phase lag is defined in Figure 3.2.6-7.

(3) Amplitude ratio is defined as the peak-to-peak thrust attained under

dynamic signal excursions conditions divided by the peak-to-peak thrust

attained by the same signal excursions under steady state conditions.

3.4.9 TCA Operational Temperatures

Temperature profiles of the TCA external surfaces were obtained during Phase III

development and prequaliflcatlon testing. Figure 3._.9-! shows the thermocouple

locations on the TCA altitude configuration. Figures 3.4.9-2 through 3.4.9-4 show

typical surface temperatures as a function of time for maximum thrust, minimum

thrust, and variable thrust conditions, respectively. These plots were derived from

altitude test firings in which the test cell pressure was approximately 0.16 psia

(IO0,O00ft pressure altitude) and the test cell walls were uncooled and painted white.
The temperature of the cell walls during the firings was approximately IDO F.

During the test firings, view factors for radiation cooling of the external surfaces

were not simulated to represent the actual spacecraft condition. The differences

between actual test conditions and spacecraft conditions in effect on surface temper-

atures are: (i) small but unconservative for conductive and convective heat transfer

considerations, and (2) somewhat greater and conservative for radiation considerations.

In general, the TCA surfaces would run cooler in the spacecraft environment than

in the altitude test firings. _'}_
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3.4.10 CC & RA Charrin_ Erosion t and Weight Lou

_he testing performed during Phase III did not include individual tests whose primary

objective was the determination of any CC & NA liner charring, erosion, or weight loss.

Data applicable for these determinations was derived from tests performed for other

purposes, such as durability an_ overall TCA performance tests under extreme operating

conditions. (Refer to paragraph 6.4 for details. )

Typically char depth and pattern are not highly reproducible parameters being

functions not only of the injector and chamber design and the unit-to-unit variability

but are also a function of the firing duration, chamber pressure, and the environ-

mental conditions influencing the CC & NA external heat transfer.

Based on the data obtained from several CC & NAs used on altitude firings, the predicted

char depth of the ablative liner as a function of firing duration for a typical var-

iable thrust program is shown in Figure 3.4.10-1.

CC & NAs tested at sea level were fired for no less than 300 seconds duration, and

thus no data on duration versus char depth or weight loss are available. Figure

3.4.10-2 shows a comparison of typically sectioned CC & NA liners that had: (1) 300

seconds at maximum thrust, (2) 315 seconds of variable thr-st, (3) 480 seconds at

minimum thrust, and (4) 57 seconds at maximum thrust. The variability of the char

pattern in the combustion chamber is readily seen in these photographs. The buttercup

char pattern is directly relatable to the 12-hole distributor ring used in the

oxidizer propellant manifold. It is also of interest to note that the minimum thrust

firing is more severe on the head end liner than a maximum thrust firing. This

occurs primarily because the combustion zone moves back toward the head end liner as
the TCA is throttled back. Charring completely through the liner, especially at

station 2 (shown in Figure 3.4.10-1), is typical for most test duty cycles used.

The estimated nominal mission profile, per JPL Specification SAM-50255-DSN-C has a

duration of 162 seconds; thus the test cycles used represent a considerable overstress

condition •

The total chamber liner weight loss following a typical 300-second maximum thrust

multi-start firing does not exceed 7.8_ofthe prefiring CC & NA weight- nominally

2.6 lbs. The CC & NA percentage weight loss varies approximately linearly with firing

time.

The _ARA 15OA TCA rarely experiences any nozzle throat erosion with a HEA that has

satisfied acceptance criteria. Based on experience with 30 CC & NAs in more than

10,OOO seconds of total firing time there have been only three instances of JTA

graphite throat erosion. In each of the three cases, the calculated thrust vector

deviation, based on throat area centroid shift calculations, was within design

specification criteria. (Refer to paragraph 6.4 for details. )

i
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(a) 300-Second Firing at Max Thrust (3 Starts)

t, _ z !
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(b) 315-Second FTr;ng at Variable Thrust (4 Starts)

(c) 480-Second at M;n Thrust (3 Starts)
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(d) 57-Second Firing at Max Thrust (1 Start)

Figure 3._.I0-2. _ical CC & ;_ Char Patterns (Dotted
Line Represents Char Depth)
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3.4.11 Pressure Schedule

This paragraph presents the nominal MIRA 150A propellant pressure schedule. Since

the only pressures measured during a static firing are inlet pressures (POl and Pfl),

injection pressures (Po5 and Pfs), and combustion chamber pressure (Pc) , the remaining

pressure drop information was extrapolated from water flow data. Figure 3.4.11-1

shows various TCA pro cellant pressures as a function of TCA thrust level. Figure

3.4.11-2 shows the pressure measurement locations.
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Figure 3.4.11-2. Pressure Measurement Locations
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The bipropellant MIRA 150A TCA uses a fUel and oxidizer having the characteristics
described herein.

Fuel - Monomethylhydrazlne (MMH) conforming to MIL-P-27401_.

Oxidizer - MDN 90/10, which is a mixture of 90% by weight of nitrogen

tetroxide (N20_.) per MIL-P-26593A and 10% by weight of
nitric oxide(1_0).

Table 3.5-1 and Figures 3.5-2 through -7 present physical properties of M and

MON 90/10. Freezing and boiling points are given in Table 3.5-1; Figures 3.5-2 and

-3 provide density versus temperature relationships; Figures 3.5-4 and 3.5-5 give

vapor pressure - temperature data; and viscosity versus temperature data is shown

in Figures 3.5-6 and -7-

Table 3.5-i. Propellant Freezing and Boiling Points

Freezing point at

standard atmospheric

conditions.

_m _. 9o/10
m

.62°F .IO°F

Boiling point at

standard atmospheric

conditions.

+189.5°F 5_.0°_
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4.0 FINAL AShY AND ACCEPTANCE

This section discusses program activities associated with the final assembly and acceptance

testi=_ of the TCA.

Acceptance testing of STL-fabricated assemblies was initiated at the HEA level and

included tests and operational checkout during and after final assembly of the TCA. The

major steps in the final assembly of the HEA and TCA are listed in Table 4-1. Figure

4-2 depicts the acceptance test sequence as defined by Acceptance Test Specification

TSB-OIB. The final assembly and acceptance test procedures developed during the Surveyor

program are considered to be a substantial contribution to state-of-the-art techniques

of assuring operational adequacy for a delivered variable thrust rocket engine. In

particular, these procedures applied in conjunction with associated special test equip-

ment permit:

le The HEA to be adjusted after final assembly to achieve the desired flow

rate/pressure drop/input signal relationships to produce within specification

performance characteristics,

, The KEA to be hot-fired on a substitute combustion chamber employing a soft

throat such that the erosion pattern of the soft throat establishes the

subsequent minimum life of the flight weight chamber.

Item I. above is made possible because the MIRA 150A injector, being a coaxial tube

design, permits orifice sizing to be accomplished after final assembly, merely by

adjusting the axial location of the coaxial elements. The as-assembled coaxial tube

injector characteristics are readily adjusted to acceptable values in the calibration

procedure. Thus, in-process fabrication controls are considerably less stringent

and manufacturing yield is higher than would be experienced without the adjustability

feature and without the HEA calibration technique.

The calibration procedure in which the coaxial tube injector is adjusted to its final

configuration requires the use of in-process test equipment, called the HEA Calibration

Stand. This stand is essentially a water-flow bench, on which the water flow char-

acteristics of a master HEA have been measured and recorded. All final assembled

MIRA 150A HEAs are adjusted on this stand to match the water-flow characteristics

of the master unit. Details of this equipment are presented in section 8.0.

Item 2. requires an ablative test firing, or "streak test", as part of the routine

acceptance testing on every HEA. This streak test, with specified, quantitative

accept/reject criteria, is a means of evaluating the compatibility of an injector

with a particular chamber geometry. The test employs an erodable nozzle throat

to record the effect of the combustion pattern. This part of the HEA acceptance test

is run at an overstress condition, namely, maximum thrust for 200 seconds when the

nominal mission cycle is equivalent to told-thrust for 162 seconds.

These two techniques of calibrating and streak testing are interrelated in that it

is possible to adjust the coaxial tube injector for optimum streak test results,

Just as it is possible to adjust it for optimum combustion efficiency. Thus, if an

assembled HEA produces an unsatisfactory throat erosion characteristic in its streak

test, this characteristic can be modified by coaxial tube injector adjustment. How-

ever, the most important reason for the use of a streak test as an HEA acceptance

criterion is that a reprochAcible and quantitative correlation between the durability

of a streak test throat and the flight chamber has been developed. Data to corroborate

acceptance test criteria by prequalification test results of flight chambers is

available on HEAs -OO1, -004, -008 and -010; refer to paragraph 4.4 for streak test
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it is possible to predict with confidence the durability of the flight chamber based

upon the streak test characteristics of the HEA during its acceptance test.

4.1 Leak Checkin_

Fluid leakage in excess of stipulated amounts can adversely affect operation of the TCA.

Therefore, leak checking techniques were developed and implemented in the TCA fabrication

and acceptance test operations.

4.1.1 Potential Leakage Paths

Possible leakage paths and the allowable rates and affects associated with such leakage

are discussed below.

External I,e_;e

No external leakage of propellants is allowed other than the small external leakage

appearing as wetting of the output shaft of the servoactuator. Leakage other than this

could: (1) damage adjacent spacecraft equipment, (2) be hazardous to personnel during

spacecraft operations, (3) affect mixture ratio and flow, and (4) waste the spacecraft

propellant supply.

Potential external propellant leakage paths associated with the flow control valve are

from: (1) the propellant inlet supply fittings, (2) the servoactuator fuel supply

line fitting, (3) the filter retention nuts, (4) the flow control valve insert retention

nuts, and (5) the face seals between the valve body and the head en_body.

Potential external propellant leakage associated with the injector, possible only

during the firing mode, is limited to oxidizer or f_el leakage across the injector

sleeve seal and fuel leakage across the pintle guide seal and/or pintle O-ring.

Ex_eraal fUel leakage associated with the servoactuator includes those sealing

elements of: (i) the torque motor cover gasket, (2) the feedback cap gasket, (3) the

spool stop O-ring, (4) the piston outside gland ID and/or OD O-rings, and (5) the

inlet and/or return port fittings.

Internal Leakage

Inter-_al propellant leakage is possible across the filter outlet seals, and, if small,

would have no adverse affect on TCA operation; however, if large, this leakage would

result in inade_aate filtration and possible TCA malfunction. Internal propellant

leakage could also occur across the flow control valve throat inserts. Similarly, this

leakage, if small, would have no adverse affect on TCA operation but, if large, could

af2ect TCA mixture ratio and flow control performance.

In the nonactuated state, internal propellant leakage across the shutoff valve poppet

seat and/or bottom sleeve seal would emerge as unacceptable external leakage at the

injector. In the actuated state, shutoff valve leakage across the small piston seal and/or

center sleeve seal would emerge as unacceptable external leakage at the shutoff valve
vent.
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Internal leakage of fuel is possible across the sealing elements in the servoactuator

at: (I) the torque motor flapper 0-ring, (2) the orifice retainer face seal and/or

O-ring, (3) the piston inside gland ID or 0D 0-rings, (4) the piston O-ring, a_d (5)

across the spool (i.e., null leakage). Allowable spool null leakage is 12 in.5/min

at 700 psig. Other servoactuator internal fuel leakages are allowable only to the

extent that they do not produce excessive external leakage or impair performance of
the servoactuator.

Internal helium leakage in the shutoff valves is possible across the large piston

seal and/or top sleeve seal (which would emerge as external leakage at the shutoff

valve vent) and across the shutoff valve cap. This leakage if small would be toler-

able, but if large, could preveht the shutoff valves from actuating and/or waste

spacecraft helium supply.

With the helium pilot valve in the nonactuated state, internal helium leakage can

occur across the inlet poppet/seat. In the actuated state, internal helium leakage

can occur through the valve case or across the outlet poppet/seal. In both cases,

the leakage would emerge externally at the valve vent ports. This leakage, plus any

from across the face seal between the pilot valve and head end body, would waste the

spacecraft helium supply; excessive outlet poppet seat leakage could prevent shutoff

valve actuation. Internal helium leakage is limited to lO scc/hr at 850 pslg.

CC & NA Leakage

Leakage of combustion gases in the CC & NA can occur: (i) between the ablative

liner and shell, (2) between the ablative liner and hard throat, and (3) at the

CC & NA/HEA Joint. This leakage is limited to minor amounts that will not: (1)

erode the ablative liner materials and destroy the Joint integrity, (2) cause structural

failure of the titanium shell because of overheating, and (3) result in structural
failture of the head end body/chamber shell flange.

4.1.2 Test Techniques and Equi_ment

Four Engineering Test Directives (ETD) were prepared specifically for conducting

leakage tests on the TCA and its major subassemblies. These ETDs are listed below.

ETD No. ETD Title

ETD-MIRA- 2F-O01 Combustion Chamber and Nozzle Assembly Leak Check

ETD-MIRA-IF-O01 Head End Assembly Leak Check

ETD-MIRA-OA-O01 TCA Leak Test

ETD-MIRA-OA-002 TCA Pressure Decay Test

In addition, a portion of the following component acceptance test procedures for

the helium pilot valve and servoactuator is devoted to leak checks on these items:

Acceptance Test Procedure Solenoid-Operated Three-

Way Valve

STLDocument No.

9354.4-255

Acceptance Test Procedure, Surveyor TCA Electro-

hydraulic Servoactuator

-7 ............

|
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_.I.2.1 Component Level Leakage Tests

During component acceptance testing of the helium pilot valve, external and internal

leakage are measured quantitatively with a helium leak detector (mass spectrometer).

Leak measurements are made with the valve energized and de-energlzed, using helium test

gas at 850 psig.

Component level leak checking of the servoactuator is performed during its acceptance

test. External leakage is checked by pressurizing the unit with fuel to proof pressure

(1035 psia) and visually checking for leakage other than normal wetting of the outer

shaft. The null leakage is quantitatively measured by pressurizing the servoactuator

with fuel to 700 psig and collecting the "null flow" in a graduated cylinder over a

one-minute period. Internal leakage cannot be measured dlrectly# but is assessed by

the foregoing checks and servoactuator performance measurements.

4.1.2.2 Combustion Chamber and Nozzle Assembly Leak Check

A leak test is performed prior to attaching the CC & NA to the HEA. The CC & NA is

tested while on a special test setup that seals off the chamber head end and plugs the

throat. The CC & NA is pressurized with nitrogen at 110 psig and leakage is qualitatively

checked by applying Leak-Tec to the potential leak paths and visually checking for

bubble £ormmtio_.

4.1.2.3 Head End Assembly Leakage Tests

The HEA is subjected to two types of leakage tests. The first test is an immersion

test and is performed before the servoactuator and helium pilot valve are installed on

the SEA (the head end body fluid attach points being plugged or capped). The HEA is"

attached to a chamber face cap fixture which seals the injector face and provides s

fitting for test gas pressurization. The leak check is performed with nitrogen gas

pressurization. The leak check is performed with nitrogen gas by pressurizing the

propellant inlets to 500 psig and the Sealed injector face to 125 psig and them

immersing the assembly in water. Leakage is detected by emmlssion of bubbles and

corrective rework, if required, is implemented before proceeding with further assembly
and test.

The second technique of HEA leak checking is performed with the pilot valve installed

on the HEA. The pilot valve is pressurized to 720 psig with nitrogen and then energized.

Leakage is checked (with Leak-Tec) at the pilot valve and its attach point and at the

SOV vents and SOV caps. The pilot valve is depressurized and the propellant inlet

ports are pressurized with nitrogen to 500 pslg. The test gas fitting on the chamber

face cap fixture is connected to a water-filled inverted gr_te. Leakage across the

SOV poppets is then measured by observing the change in water level in the graduate as

a function of time.

4.1.2.4 TCA Leakage Test

The TCA leakage test provides a check on all external leakage paths of the TCA and is

performed during the acceptance test sequence. For this test, the combustion chamber

is fitted with a throat plug having an integral fluid fitting. In the first phase of

the test, the propellant inlet ports and the pilot valve are pressurized with nitrogen

to 720 psig and the throat plug fitting is connected to a water-filled inverted graduate.

Using Leak-Tec, the potential leak paths of the TCA are qualitatively checked, except

for leakage across the SOV poppets which is quantitatively measured by displacement
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versus time of the water in the inverted graduate. Next, the throat plug fitting is

pressurized with nitrogen to 110 psig and the potential leak paths of the TCA are

qualitatively checked again using LeaE-Tec.

4.1.2.5 TCA Pressure Decay Test

The TCA pressure decay test provides a quantitative measure of the total TCA external

leakage. Maximum leakage of gaseous helium of i0 scc/hr is allowed when the TCA is

pressurized to 500 psig. In this pressure decay method the propellant inlet ports are

pressurized to 720 psig and then closed off with_a resultant total fixed volume of the

propellant passages and test equipment of I0 in. 5. Test acceptance is based on a

maximum allowable pressure decay of i0 psi/hour. The helium pilot valve is also

pressurized to 720 psig_and then closed offj with a second test system also having

a total volume of i0 in _, in order to perform a similar pressure decay test. The

pressure decay tests are run over a time period of 8 hours minimum.

4.1.3 Test Results

The results of the component leakage tests (,conducted during component acceptance

testing) are contained in paragraphs 5.1.1 (servoactuator) and 5.1.3 (helium pilot

valve). Data are not tabulated here for: (i) CC & NA Leak Check, (2) HEA Leakage
Tests, and (3) TCA Leakage Test, which are in-process type tests used in the

production cycle to assure leak-free items for subsequent operations (i.e., assembly,

calibration, firing). The TCA pressure decay test was conducted on three TCAs

(2 Phase IIs and 1 Phase III); test results are given below.

Test
Test Specimen • Date

_ ISOA-OOl 10/i/6_

Propellant Passages
Pilot Valve

l_-OO5 _/7/6_

Propellant Passages
Pilot Valve

150A-007 n/n/6_

Propellant Passages
Pilot Valve

Initial Final Test Pressure Decay

Pressure Pressure Duration (psi/hr)

(psig) (psig) (hrs) Actual _11__!e

720 345 5 75 10
720 718 8 0.25 10

737 723 16 o .88 1o
737 735 16 o .13 10

720 723* 10 0 10

72O 725* 10 O 10

*Small increase in test specimen temperature caused pressure rise.

The above data show that the propellant passages of MIRA 150A-O01 did not meet the test

requirement, and propellant leakage could therefore be expected. However, subsequent

Pressurization of this TCA with propellants did not result in propellant leakage and,
therefore, the allowable helium leakage requirement was shown to be conservative.

MIRA 150A-005 and -007 (which met pressure decay requirements) of course did not

exhibit Propellant leakage.
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4.1.4 Discussion of Test Results

•he several in-process type leak check procedures proved to be very useful in detecting

leak problems and, thus, enabled remedial action to be performed prior to subjecting

the particular item to operation. The following paragraphs discuss the reasons for the

leaks found, the leakage criteria, and the influence the leakage had onTCA design.

4.1._.i Leakage Causes

Investigation of the causes for leaks revealed that leakage was generally attributable

to one or more of the following:

i. Contamination (i.e., foreign material on sealing surfaces)

2. Defective sealing elements (i.e., scratchesj cuts, etc.)

3. Improper assembly (e.g., shearing of seals)

4. Inadequate sealing surface (i.e., rough or scratched bores, seal grooves).

During the course of the Phase III program, leakage problems were resolved by an

iterative process of; (I) leak checking/detection, (2) isolation of leak cause,

(3) change in material# design or assembly technique, and (4) final leak checking.

Leakage attributable to contamination was resolved by increased attention to clean-

liness procedures and requirements and by elimination or improved processing of micro-

sealed surfaces.

Defective sealing elements resulted in a few leakage problems. Some Bal-seals and

0mniseals were found to have small scratches or imperfections on the sealing lips

which resulted in leakage after assembly. These defective parts were not detected

in Receiving Inspection, since when received these items were classified in the

small hardware category (i.e., nuts, bolts, etc.). As a result of this problem,

assembly technicians began to visually inspect every seal with a 5-power eye loupe

prior to using the seal in aT CA assemb_V.

Improper installation of seals, subsequently resulting in leaks, was generally confined

to: (1) excessive seal stretching when the seal was pulled over a land, and (2) shearing

of seal lips upon assembly into a bore. The stretching problem was resolved by incor-

porating a procedure of heating the Teflon seals to 400 to 500°F and installing in the

hot condition using a tapered-type installation tool. Shearing of seal lips was

eliminated by using a "sizing" procedure on a seal before insertion in a bore. The

"sizing" consisted of depressing the seal llps in a cylindrical tool whose I.D. is

slightly less than the seal O.D.

The need for very smooth metal surfaces in contact with sealing elements was

recognized in Phase II testing, and as a result surface improvements were incorporated

into the Phase III TCAs (see paragraph 4.1.4.3).
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_.1.4.2 Leakage Criteria

Leak testing has shown that, for the TCA to exhibit zero external propellant leak_e,

it is not necessary to comply with the i0 scc/hr helium leakage requirement at 500 pslg

(see paragraph 4.1.3). Though compliance with this helium leakage requirement assures

zero propellant leakage, i0 psi/hr pressure decay can be exceeded without subsequent

propellant lea_.

For example on MIRA 150A-OOI, TCA leak checking of the KEA revealed a total SOV poppet

leakage of 70 scc/_r of helium at 500 psig. An additional check using water at 700 psig

was conducted, and after one hour there were no visible leaks. The TCA was subsequently_

pressurized with propellants at 720 psig, and there were no visible leaks.

Complete evaluation of the leakage .criteria and determination of an allowable helium

leakage that is equivalent to zero propellant leakage was not made. Indications are

that propellant leakage will not be encountered if the item exhibits a helium leakage

of lO0 scc/hr at 500 psig. Q_alitative leak checking(using Leak-Tec) of paths such

as SOV vent holes, flow control valve plntles, etc., indicated that a bubble formation

of approximately one bubble per second (using nitrogen at 720 psig) is acceptable

to the extent that the path will not leak propellants.

The need for a leak-free CC & NA is also not believed to be mandatory, since within-

specification firings have been performed on chambers which did leak prior to firing.

4.1.4.3 Design Considerations

To achieve a leak-free seal between a metal surface and a sealing element the smooth-

ness of the metal surface is very important. Thermal effects on Teflon seals cause

the surface finish to be even more important when sealing is to be accomplished at low

temperatures. Experience 6ainedwlth TCA S/N-O01 throu6h -006 resulted in refinement of

surf.ace finishes on the Phase Ill TCAs S/N-0OTand subsequent. This is shown in the

following table:

Seal Application

Dynamic Sealing of

Propellants

Surface Finish of Metal Parts

(_s per MII.S_IO)

SIN and
O01 thru 006 Subsequent

8-16

Static Sealing of

Propellants

1&32 8

In addition to surface finish refinements, surface processing methods were also improved

for Phase III TCAs. The use of mlcro-seal (a dry film lubricant) was minimized in

Phase Ill units, and this material was used only in those areas where galling is a

definite possibility because of extremely small clearances (e.g., in the flow control

valves and injector). Where microseal was used, the surface was subsequently highly

burnished in order to avoid flaking of material which could buildup on seals and cause
leaks.

It is important to note that in conducting in-process type leak checks, significantly

fewer leaks were encountered with Phase III TCAs than with Phase II units (HEAs-O01

thr_ 006). There were no failure reports due to leakage against a Phase III TCA.
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4.2 HEA Calibration

The Hea_ End Assembly Calibration Stand, described more fully in section 8.0, was

developed for the purpose of measuring and adjusting HEA flow and pressure drop character-

istics during fabrication. The goal was to achieve complete HEA calibratiomwlth

water flow thereby mlnimlzing the number of static firings required to prepare a TCA

for delivery.

In addition to serving as a calibration tool, the HEA stand also proved most useful

in diagnosing and correcting fabricatlonand design problema.

The experience and data obtained wlth this stand during the Phase III is summarized
herein. By the end of the program, a total of five Phase IIHEAs (S/N-001,-002,-OO_,

-005, and -006) and five Phase III HEAs (S/N-007 through -011) were calibrated on the

stand at least once and subsequently static tested at the Inglewood Rocket Test Site
(IRTS). Detailed test data is provided in Figures E-I through E-8 of Appendix E.

In developing the final calibration procedure, a matching technique was used. This
_rocedure consisted of first calibrating a standard HEA by means of static firing.

Without changing any settings the standard HEAwas then completely characterized on

the stand with water flow. Subsequent HEAs were then matched to the standard _EA.

Experience gained with this testing demonstrated the feasibility of using a water
flow callbration techni_ae to measure primaryHEAperformanceparameters and to allow

their proper a_justment without injector gap setting without resorting to a static

firing. Even in early testing, before the calibration technique was fully developed,

firing data from water calibrated HEAs indicated that in many instances no resettings

were required.

The HEA Calibration Stand _Icohol subsystem, required to simulate the servoactuator

hydraulic supply, was not completed until late in Phase III. As a result, only
limited data are available on the servoactuator setting operations performed during

a complete HEA calibration.

Table 4.2-1 provides a summary of the HEA calibration data for HEAs S/N-OO8 and -OO9,
the only two HEAs that underwent a complete calibration. Table 4.2-2 provides the

static firing data from tests conducted on these two HEAs without readjustments between
water calibration and firing. Figures 4.2-3 and _.2-4 provide a comparison of these
data.
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Table 4.2-1

MIRA 150A BF_ACalibration Dm_

* _ * Mixtmre
Servoactuator Pinlet Wate_Flow Wate_ Flow Ratio A Pox APf

Signal (ma) (pslg) (ibs/sec) (ibs/sec) (o/f) (psi) (psi)

oo8 -8o .6 722 0.o528 o .o458 1.154 3o

-7o .4 720 o .o611 o .o528 1.158 34 28

-48.4 718 o.o9o3 o .o778 1.16o 46 3_

-25.4 716 o .13o5 o .11_5 1.16o 61 42

- 0.4 714 o.1652 o.I_5 1.144 71 47

+24.8 715 o. 2o13 o.1721 i. 171 83 52

+47.8 714 o .2318 o .1986 1.167 92 57

+70.2 714 o.2595 o.2222 1.167 lOO 62

+80.4 71_ o .2722 o .2332 1.168 lO4 6_

oo9 -80.6 722 0.0501 0.0426 1.175 33 el

-70.6 720 0.0528 0.0_56 1.158 35 23

-45.4 718 0.09q3 0.0834 1.166 52 33

-25.4 716 0.1292 0.11// 1.163 64 39

- 0.3 714 0.1666 0.1444 1.155 75 46

+24.9 712 0.2055 0.1763 1.165 86 53

+45.1 71o o .2348 o .2012 1.167 94 57

+70 .:' 71o o .2694 0.2320 1.162 lO3 64

+80.2 711 o .278o o .2388 1.164 lO6 66

Indicated water flow in ibs/sec obtained by converting from gal/min measured on
EEA Calibration Sta_d.
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Ts])le 4.2-2

MIRA 150A ]]FA Performance Data

oo8

Servoactuator

s g=z(M=

-80.0

-50 .k

-35.6

- 0.6

+35 -_

+71.0

+78.6

ox f Ratio Pch C*
(Zbs/sec) (Zbslsec) (o/f) (psla) (_s)

0.064Z 0.0428 Z._99 2]..0 _938

o .lO33 o .0692 1._94 3_ .8 5077

o .1326 o .o879 1.509 _5 -5 5192

o .1975 o .1318 1.499 69.8 5332

0.2585 0.1727 i .497 92.1 5382

o.3132 o.2113 z.4_ 111.9 5378

o .32_3 o .22o5 1.47o 115.8 5359

009 -79.4

-_9.6

-34._

+ 0.6

+35.8

+71 .It

+81 ._

o .o628 o .otto 1.55_ ].9.9 _8o7

o .o998 o .o655 ]. •52_ 32.4 _9o_

o .].3o5 o .0857 z.522 _.5 5].39

o. 1992 o. ].326 1.5o2 70.3 53oo

0.2663 0.1770 1.505 93.9 530k

O.3240 0.2].80 I._ 115.0 5311t

O.3327 O.2223 i.496 117.8 5315

(].)Data corrected to standard inlet conditions.
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4.3 HEA Ablative Throat Test

HEA ablative throat tests were conducted in accordance with STL Acceptance Test Spec-
iflcation TS3-OIB. This test followed the HEA calibration (paragraph _.2) and was

conducted prior to the EEA performance test (paragraph 4.4).

The test consisted of a 200-second maT1_,m thrust sea level static firing with the HEA

mated to a water-cooled combustion chamber (Part No. 106694) that incorporates an
ablative throat insert.

The objectives of the test were to demonstrate that: (i) the combustion character-
istics of the HEA and the resultant heat transfer to the chamber were acceptable, and

(2) that there was no nonuniform distribution of propellants in the injector spray

pattern.

Objective (i) is determined by the change in throat area as evidenced by chamber

pressure changes under the constant propellant flow rate conditions of the test.

Any decrease in chamber pressure indicates an increase in throat area. Any throat

area increase is cause for rejection.

Objective (2), propellant distribution uniformity is measured in terms of maintenance

of throat symmetry. This is determined by change in the initial throat radius and
the shape of the throat after firing. Any increase in radius (using the original

throat center and radius as reference) is cause for rejection, m_e resultant post-

test allowable out of roundness is determined first by locating the maximmm post-

test throat diameter, D . , and the diameter at angles to it, D_, then meas-
this ratio is greater

Oinltlal

than 0.05, the HEA is not accepted without rework and/or retest.

The piece-to-piece reproducibility of the ablative throat insert material m_st be
maintained at a high level. Therefore, the ablative throat material is procured to the

same material specification used for the liners in the flight CC & NA.

During Phase III, a total of nine different Phase II and Phase III HEAs were tested
with ablative throats in accordance with the Acceptance Test Specification TS3-OIB.

The results of these tests are su_mmarized in Table 4.3-1. Typical ablative throats

after firing are shown in Figure 4.3-2. These photographs show inlet and exit views

of throats tested on two different EEAs, one being acceptable and the other being not
acceptable. Circles are drawn to show the original diameter of the throat before

firing. A mark is placed at the bottom of each throat insert indexed to the oxidizer
inlet passage.

Of the niue HEAs tested, three failed to pass the acceptance criteria. Each of the

three nonacceptable tests were run at abnormal fUel injection pressure drops, _ PF'
as discussed in paragraph 6.2.2. Two of the failed HEAs (S/N-O09 and -010) were

later re-tested at normal fuel injection pressure drops and successfully passed the
acceptance criteria for the ablative throat test. The third failed _FA was not

available for retesting.
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Table 4.3-1

MIRA 15OA HEA Ablative Throat Acceptance Tests

Conditions for All Tests:

200 seconds at maximum thz_st

Nominal Pc : ii0 psia, M.R. : 1.5 (MJMf)

Flow rates constant within +

Initial throat diameter, Dinitia I, : 1.00 in.

Acceptance Criteria:

A.

B.

C.

(Specification TS3-OIB)

No increase in throat area

No increase in throat radius

Dmax" DA _< 5%

Dinltlal

Area D DA
PF Change max

HEA S/N (psi) (%) _ (in)

001 Phase II 59 _7.6 0.90 0.88

002 Phase II 71 .4.3 0.90 0.90

004 Phase II 62 _6.1 0.88 0.86

005 Phase zl 71 -8.4 0.89 0.85

007 Phase III 85** --7.4 0.92 0.86

008 Phase III 62 -9-3 0.90 0.86

00"9 Phase III 76** _5.0 0.94 0.88

009 (Repeat) 63 --14.5 0.88 0.8_

010 Fnase IiI 82** @0.9 _ 1.02" 0.91

010 (Repeat) 60 -_II.6 0.88 0.84

011 Phase III 59 -,9.8 0.89 0.86

Dmax - D1

Dinltia I XIOO

(%)

2

0

2

6*

4

6*

4

11-

3

Accept or
Reject

Accept

Accept

Accept

Accept

Reject, C >5%

Accept

Reject, C >5%

Accept

ReJect A&B increase_

Accep%

Accept

*Nonacceptable value.

**Abnormal _PF- see paragraph 6.2.2 for discussion.
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4.4 HFA Perfermance Test

The _EA performance test, defined by STL Acceptance Test Specification TS3-OIB, is

normally conducted immediately after the HEA ablative throat test described in
paragraph 4.3, and prior to the TCA vibration test discussed in paragraph _.5. be

objective of the test is to demonstrate the acceptability of the HEA steady-state
and dynamic performance characteristics. This thrust cycle was modified during the

course of Phase III by adding several large steps near the end of the cycle for
dynamic response analysis.

The test consists of a 130-second, sea level static firing with the HEA mated to a
water-cooled CC & NA. The thrust cycle used for these firings is prerecorded on

magnetic tape and is given in Table 4._-I. Primary performance parameters determined

by this test include characteristic velocity, chamber pressure, propellant flow rates,

mixture ratio, thrust versus servoactuator signal, 5-cps signal dynamic response, large
step signal-thrust response, thrust-signal hysteresis loop width, and startup and
shutdown transients.

During Phase Ill, a total of eight HEA performance firings were completed with seven
different Phase II and Phase III HEAs. The detailed test data is presented in
Tables D-2-20 and D-2-21 of Appendix D-2 and also in paragraph 6.7. Table 4._-2

presents a typical summmx_ of data acquired during this test and entered in the TCA
Log Book (see paragraph 3.1.6).

The characteristic velocity data obtained early in the acceptance test program were

somewhat lower than the more recent data. As a result of investigation of a charact-

eristic velocity data bias between the JpL/ETS and IRTS test sites with HEA S/N 001, a

data reduction and measurement discrepancy were discovered which had resulted in

erroneously lowering the reported characteristic velocity data during the earlier
testlng.
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Table 4._-2

HEA Acceptance Test Firing Log

Test HEA Acceptance

HEA Serial No. 150A-007 Rev. No. B

Date Performed _ November i_64 Input Tape No.

Test No. C2-6_1 Test Engineer

Test Document TS_O1

AT-IM

B. Wallace

Date 15 September i_

Output Tape No. 162

Inspector No. 32

Parameter

Isp

Isp

Isp

I
sp

I
sp

Mixture Ratio

(s_)

Thrust Envelope

Phase Lag

Step Response
Time

Start _nl_lse

Signal Level Required

+ 70MA 285 sec

+ 35 283-7

o 282-5

- 35 270.5

-5o 262

+ 7o z.5 _ o.o3

Measured

291

289.7

289.3

277

267

1.47o

+ _ 1.5 i o.o3 z.=,q=,.

O 1.5 + 0.03 1._8_

- 35 1.5 _+0.03 I._97

- 80 z.5 + 0.03 z._._

- _O to + 70 per Spec

60 + 7.5 280 15

O + 7-5 28o 16

- 45 + 7-5 280 13

-4o

+8o

0

to _OMA <0.06.5 sec.

to-kOMA <'0.065

MA 1-9 + 1.4

< o.z3o

MA 2.8 + 1.4

XA < o .o65

"Thrust B_ildup Time O

Shutdown Impulse O

Shutdown Time 0

0.048

0.036

2.0

o.o76

k.2

0.04

Accept

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Reject



These discrepancies affected the HEA performance data reported for IRTS Runs C2-5_8
C2-585 conducted as part of acceptance testing. JPL/ETS and IRES test data

after Run C2-585 were not affeq_d.
°

Table 4._-3 sunm_rizes the results of the HEA performance tests. It maybe noted
that the acceptance criteria defined by Acceptance Test Specification TS3-01B were
not entirely met during some of the firings. HEA 15OA-OO4 failed the specific "

impulse criteria when tested with N20_.. Subsequent tests at IRTS and JPL/ETS showed
a significant performance improvement when _DN was used as the oxidizer and would
have resulted in acceptable performance for HEA 150A-00_.

Both EFA 150A-O0_ and 150A-005 fell below certain portions of the thrust-si_ml
acceptance envelope. The use of _N as the oxidizer would have brought HEA 150A-O0_
within acceptance limits. Correcting for the previously mentioned C_ error would
bring the 150A-O05 thrust-si_l curve within the allowable envelope. Only two
HEAs (S/Ns 005 and 007) passed the 1.50 + 0.03 standard mixture ratio criteria. _ze

specification tolerance was tightened from a previous value of 1.50 _+ 0.05 after it
was discovered that the mixture ratio variability with temperature was greater than
expected (see paragraph 6.5). Since all of these HEAs were calibrated to the earlier

limits, many of them did not meet the newer criteria. However, only HEA 15@A-OO_

could not have been recallbrated to meet specification requirements. ReworE of the

flow control valve would have been required on S/N 00_.

Both _A 150A-001 an_ -00_ failed the step response requirement when tested
Phase II Follow-on seawoactuators. No _A has failed th_ e_terla 1hen te:
 Ath :XZ Hm 1 OA-OOe ex  aea the
upper limit by one7 0.1 lb-se_, and probably could have been brecht wit
specification limits by su_stitution of a different helium pilot pilot valve
shutoff valve parts. H_ 150A-005 failed both the shutdown time and impulse

rlth
_d

in
or net

criteria

because of slU_Elsh helium pilot valve operation. S_bsequent investigation _vealed
severe valve cozTosion ca_sed by inadequate surface plating. A helium pilot Valve
design improvement corrected this situation. No HEAs faile_ the phase is@ or startup

time requLTmaen_s.
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4.5 T_ Vibration Test

The TCA vibration test was conducted in accordance with STL Acceptance Test Specificatio_

TS3-OIB and was then followed by a leak check and a final TCA acceptance firing test

(paragraph 4.6) in the acceptance test series. The vibration test setup is illustrated "

in Figures 4.5-1 and 4.5-2 showing the _CA installed on the shaker.

During the vibration test, the servoactuator control cavities were filled with

alcohol and the external ports were capped. The TCA propellant passages were filled

with water and pressurized to 300 + 20 psig by means of a regulated gaseous nitrogen

pressure source. A control accele-rometer was mounted on the test fixture and the

output was recorded on an X-Y plotter. No other instrumentation was required.

The vibration spectrum is illustrated in Figure 4.5-3. It consisted of two variable

frequency sine wave sweeps of three minutes duration each along each of three mutually

perpendicular axes (along the thrust axis, the trunnion axis, and the axis perpen-

dicular to the first two). During and after the vibration test visual inspections were

made for evidence of structural damage or leakage. At the completion of the vibration

test, a thorough leak check was performed prior to subjecting the TCA to the final

acceptance firing.

During Phase III, a total of four different TCAs were subjected to the vibration

test. These included TCA S/Ns 001, 002, 005 and 007. No post-vibration difficulties

were encountered with TCA S/N 001. This unit successfully completed the prequalification

test program without hardware replacement or calibration readjustments (see para-

graphs 6.6 and 6.9). A_ the vibration test, TCA S/N 002 exhibited a fuel leak in

the torque motor static seal of the Phase II Follow-on servoactuator. Design changes

were initiated for all Phase III servoactuators to correct this failure mode

(reference paragraph 6.1R.1.2).

Following the vibration test of TCA S/N 005, both the flow control valve pintle

Jam nuts and the servoactuator Jam nuts were found to be loose resulting in a TCA

performance shift during the TCA acceptance firing test (see paragraph 4.6). This

problem was traced to inadequate torque in tightening these nuts, and resulted in a

fabrication procedural change to preclude a recurrence.

Problems were also encountered during vibration testing of TCA S/N 007. The post-

vibration firing (discussed in paragraph 4.6) exhibited a significant chamber

pressure shift downward for a given servoactuator signal. The difficulty was

traced to a servoactuator null shift. It _s found that the torque motor cover

screws were loose. A design change incorporating more stringent torque and lockwire

requirements was immediately accomplished (reference paragraph 6.12.2). The null
shift had also been noted on other Phase III servoactuators which had not been

subjected to vibration. This problem was traced to spring design deficiencies

(further detail is given in paragraph 6.12.2). A servoactuator spring design

change was incorporated. Design verification of this change was demonstrated in

Prequalification Test -Oll wherein TCA S/N 008 was successfully subjected to

,qualification" vibration levels that were well in excess of the acceptance test

levels. (See paragraph 6.10.2 for discussion of this test.)
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4.6 TCA Acceptance Firin_ Test

The TCA acceptance firing test, conducted in accordance with STL Acceptance Test

Specification TS3-OIB, was performed immediately after the TCA vibration test

(paragraph 4.5) in the acceptance test series. The test'consisted of a 12-second

programmed hot firing test at sea level on the complete TCA. The thrust-tlme pro-
file used is shown in Table 4.6-1.

The objective was to verify HEA performp_ce after the TCA vibration test and to check

oh the quality of the CC & NA.

Three complete TCAswere subjected to the TCA acceptance test. Tests on two of the

TCAs (S/Ns 005 and 007) were invalid because of loose adjustment screws on the jHEA

and servoactuator. Remedial action was initiated as outlined in paragraph 4.5.

The TCA acceptance firing test on TCA S/N 001 was successfully completed on 23

September 1964. Relationships among characteristic velocity, mixture ratio, chamber

pressure, specific impulse, thrust, and servoactuator command are presented in

Figures 4.6-2, 4.6-3, and 4.6-4. Data from the previbration HEA performance test

are also shown in these figures to present a direct comparison of HEAperformance

characteristics before and after vibration. These data, plus the phase lag between

signal and actuator position for the 5-cps'servoactuator signal, showed acceptable

post-vibration HEA performance. Both the test data and the post-firing inspection

,verified the acceptability of the CC & NA (S/NO03). Thus, TCA S/N 001 passed all

the TCA acceptance requirements of STL Specification TS3-OIB.

Table 4.6-1

AT-2 Thrust Cycle Profile

Co.and (_11iamps + .5)

O Step

O Startup

+70 Step

-80 -Step

-5o Step

0 Step

0 _ 7.5 sinusoidal, 5 cps

0 Step.

0 Shutdown

Time From

Startup (sec + .1)

-i0.0

0.0

3.0

5.0

7.0

9.0

9.5

11.5

12.0
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5.0 NONFIRING DEVELOPM]_EAL EFFORT

Nonfiring testing accomplished during Phase IIl included component functional acceptance

testing, other component evaluations and vacuum tests in the laboratory. Also, effort

was expended in design studies that were involved with the servoactuator and related

power systems. These areas of effort are discussed in this section.

5.1 Component Subassemblies - Functional Acceptance Testing

As part of STL company standard practice, all incoming parts were subjected to receiving

inspection. In addition, component subassemblies delivered by vendors as complete units

were functionally acceptance tested in an "As Received" condition in accordance with the

applicable procurement specification and associated acceptance test procedural document.

The three component subassemblies receiving acceptance tests were the electrohydraullc

servoactuator, the helium pilot valve, and the propellant filter. These subassemblies

are listed below with their corresponding acceptance testing procedures and specifications.

Subassembl_

Electrohydraulic Servoactuator

Specification No. Accept. Test Doc. No.

EQ2-kg. 935_._-255

Helium Pilot Valve (Solenoid-

Operated, Three-Way Valve)

EQ 2-25 ETD-MIRA-3RI-OOI

Propellant Filter EQ 1-73 ETD-MIRA-4RI-001

5 •1 •1 Servoactuator

The servoactuator (S/A) was acceptance tested in accordance with STL Document No. 9354.4-

255. In Addition to the S/A acceptance test results discussed below; S/A experience of

any unusual nature occurring after acceptance is discussed in paragral_ 6.12.

5.1.1.1 Test Setup

Required S/A acceptance test measurement tolerances are given in Table 5.1.l-1. The

servoactuator _24H test stand is shown in Figures 5.1.1-2 and -3- The stand includes

a complete M_H recycling pressurization and supply system capable of supplying fuel at

the required flows and pressures. A servoactuator load fixture was designed and

constructed to simulate TCA induced loads. These loads consisted of a pressure area

load simulated by a spring and a superimposed friction load simulated with an electro-

magnetic friction brake.

The Surveyor servoamplifier design schematic was used as a basis for the construction of

laboratory test servoamplifiers. These amplifiers incorporate dither oscillators to

simulate the spacecraft-imposed dither signal.

5.1.1.2 Servoactuator Acceptance Test Results

5.1.1.2.1 Phase II Follow-on Servoactuators - Acceptance tests were conducted on all

six Phase II Follow-on servoactuators. Table 5.1.1-4 stwmnarizes the internal leakage

tests. Because these units were procured only for HEA and TCA development test purposes

(rather than on deliverable TCAs), all units were found usable for subsequent testing_

TCA dynamic response data was not obtained using any of these six S/As.

( k i ".
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Table 5 •i •1-i

Instrumentation Measurement Tolerances

Current + 0.5 milliamperes

8_22-6013-TU-000

Pa@_ 5-2

Displacement _ 2.3 milli-inches

i 3.0

Resistance _ 0._ ohms

Inductance _ I0 millihenries

Pressure . _ I0 pel

i Phase IlI Servoactuators

Acceptance tests were conducted on seven of the 18 Phase III servoactuators. Results

are given in Table 5.1.1-5. Figure 5.1.1-6 illustrates m typical Phase III hysteresis

cux-ve.

Based on experience with earlier units, servoactuator S/Ns C5539_, C55395, C55398, and

i C55390 were somewhat modified prior to delivery and acceptance.

Unit C55398 passed all tests. _ _

Unit C5539_ passed all tests with the exception of linearity and phase lag. The actuator

failed the linearity requirement because the retract stop was reached at -69.5 ma instes_

of the -70 ma required. Phase lag at 5 cps was 22.5 ° at -60ma, instead of the allowable

i 20 v maximum.
Unit C55395 passed all requirements with the exception of amplitude ratio, which was as

i low as 0-95 compared to the 0.97 minimum specification value.

Unit C55390 passed all tests excep_ frequency response. Amplitude ratio was as low as
0.91 and phase lags as large as 27-.

Units C55394 and C55395 were marginal in performance but were accepted after review of the

test data. Actuator C55390 would have allowed the TCA to meet all systems requirements

with the exception of amplitude ratio, which was 4% low. This actuator was also accepted

by _terial Review Board (MRB) action.

The remaining 14 Phase III units were not acceptance-tested at STLbut received similartesting at the vendor's plant.

I 5.1.2 Propellant FilterAcceptance testing of propellant filters procured to STL Specification EQ 1-73B, consisted

I of functional testing in accordance with ETD-MIRA-4RI-OOI plus visual and mechanical

inspection.

| ,,
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1. Nominal FAlt_tlon Ratlz_

.

'/ °

i_+,
e,,-, •

i

A bubble point _est was used to evaluate the nominal filtration rate. In this test,

the filter element in a test fixture is submerged in alcohol and nitrogen gas is slowly

applied to _Me fJ.L_er outlet. For the _inal 5-micron filter to be accep_ble, the

initial bubble emission must occur at a pressure greater than II inches of water and

the entire surface must emit bubbles at a pressure of less than 30 inches of water.

These requirements are shown graphically in Figure 5.1.2-i.

The pressure drop versus flow test was conducted in accordance with E_D-MIRA-4RI-OO1.

Water was used as the test fluid, and with appropriate density and flow corrections,

acceptance criteria was established as a pressure drop of 13 psi maxismm at water flow
of 2 g_.. Figure _.i.2-2 shows the nominal pressure drop versus fluw for water _(accept-

ance test fluid)_ and for oxidizer _ fuel. Two filters failed to pass this acceptance
test (S/Ns 36 and 38). These filters were subsequently accepted by MRB action.

_ _= -_e_a._i __ _ n_=s is s_. in _ _._._-S.

5.1.3 Heli___;._l_e,., .... _ + +
5

Acceptance testing of helium pilot valves consisted of visual and mechanical examiz_tions

and .f_uctional' tes t_ _+_ 'vl_'ve in accordance with EI"D-MXRA-3K1.-OOX to check for

A_ no_ in _ heli_ pilot valTel were e__d, di_Pe_r-

omer om_'_=__ _.sx at__mmn_s t_ tw _si_ns d_rered in +as interests _ in
t_e._Saet_+_ (_ _. re.m).nO in _e _m_ets. _ umaetl+ _t _' _ao
CIO_--337-IvalVe 'Ts electroless nickel plE_e over high permeability iron. The pl_i_

p_ess is paW_l_+to the _e_k_ e_ _ developed for use in _ _S. _e
£nle_ poppet _:Ls _I_ "_:m_,s _._ _ poppet is _t"1on. _"_ +., _ ore,.+'c_ vat
pop_ because of problems which occurred during Phase Xi testing involving propellant
con_tion in this area of the pilot .+:_!lve. _let poppet eoz_l_t_ _oble_ have
never occurred. _e CIO_337-2 valve use++Teflon on bo'P._ the inlet az_ vent .p<:,ppl4_.

•The first lot of CIO_337-2 valves received also used electroless nickel pla_e over high

permeability iro_ in the magnetic c_. However, the plating _ (apparen_ not

identical to that used by the other _) was inadequate, and the valves rusted frc_
exposure to atmospheric and rocket test stand moist_re. _ese valves were r_ from

service, and a second lot was ordered with appropriate design change S.

_ +
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15

14

13

12

i!

No_:

I. Spe¢. EQI-73 Allowable for Oxidizer

2. Spec. EQI-73 Allowable for Fuel

3. Max. Allowable Using Water as
Test Fluid per ETD-MIRA 421-001

4. P/N C105183-1

10

6

Oxidizer (computed
from water data)

Wa te r

5

4

3

2

0
0 .2 .4 .6 .8

Figure 5.1.2-2.

Fuel (computed from
water data)

1.0 I .2

Flow(epm)

Filter Pressure Drop
Versus Flow

)t_'t



B,_bble PoA_ Pressure

Filter Inittsl G_I For Water For Fuel Flow (1)

Serial Emission E_lsion __ow of 2 _ of .L_ lb/sec

No. (in._O) (_,,.U._O) (psi) (_)

For ox n_,(z)
or ._ ib/_

(psi)

Accept. Greater Less
Test than than

Reqm' t 1t, .... 30

1
2
3
5
6
7
8
9

i0
11

12

13

z5
15
17
18

Z9

23
2_
26
28
3o

37
38

13
Z_
z9
z9

2O
z3
20
2O
21
z7

I T
20

19
2O

z9

z9
2O
11
z3
z9

Less
than
13

None

_6 zo.5 8.8
_5 11._ 9.6
26 12.0 i0.i

27 9._ 7-9
27 9.7 8.2

9.6 8.1
:_7 9.5 8.0
28 10.1 8._

27 9._ 7-9
_7 9.:_ 7.7
L:'r 9.8 8.2
S8 9.5 8.0
S7 9.6 8.1

9.3 7.8
s8 9._ 7.9
S7 _O._ 8.8

10.1 8._
s8 12.5 1o.5
'_ 10.7 9.o
S4 10._ 8.8
s_ _.._ zo.5
_3 11.3 §.5
27 11.3 9-_
23 ]0.7 9.0
L_ z5.5 z3.o
ss Iz.3 9.5
26 15._ 12-9

None

12.2
z3.3
I_.O
zo.9
11.3
11.2
ii.i
11.8
zo.9
zo.7
iI._
II.i

11.2
1o.8
zo.9
12.2
11.8
14.6
12.5
12.2

1_.6

Z3.2
Z3.2
19..5
18.1
13._
18.o

NOTE: (i) Fuel and OxAP's computed from water flow data.
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for _ usage; tberefm, the -,1 _wes ,,,,ere _ exelus!'wQl.y, on all. hara'mro"
sch_ed for _liwn7 _ f_ 'use In the _l"_m,ULf:lLe_t:l.on t.est _.

• 3

1. Dielectric (500 VoYts for one mlnnte _Ath no _reakdo_).

3. Proof Pressure (10o0 pwl_).

_. Leakage (zero external; tnter_l, i0 see/hr of belts at 850 I_lg).

Response _ (a:wsture _m_ent at 0.0_0 see for 16 V_C and 0.012 sec for

16 vdc and 0.012 sec for _ vdc; 0.025 sec for pilot pressure increase to
200 psig and decrease to i00 psig with 700 psig applied).

In performing these tests, the maximum allowable tolerances on test condition movements
_X_:

Current: + 1%

Voltage: + i%

....::;:'..__ ..

Pressure- :

_.+_

•_.+1,_

.,._

The dielectric test was conducted by aFplying a Ix_tentlal of: 500 volts rms for one minute

between each 1_e le_d rare, in turn, and the valve case. Insulation breakdown

defined as a _ flow in excess of two mllllsmperes.

The coil resi_r_ae_ test ec_ststed of measuring the resistance of the valve solenoid,
using a _neatstonebrldge circuit.

The proof pressure test _as conductedby applying a pressure _of I000 psig to each valve

in the energized condition and checking for an_ detrimental @fleet during the following

five-mlnute period. :i

External and internal leakage tests were perfo_aed using a heli_ leek detector. Leakage
was checked using helium at 850 psig. Internal leakage measurements were performed for

both the inlet poppet and the vent _oppet with the maximum allowable leakage for either

being I0 scc/hr.
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This circuit simulated that used in the Surveyor spacecraft. Pilot valve opening and

closing (energize _d de-energlze) response times vere measured for the foll_ two
signal conditions-

(I) 16 vde 1_Yl-ln fo_ a _ae-seeo_ _tion follow_l by a 13 vde
holding _i_.

(2) 23 v_.

Table 5.1.3-1 presents data frum acceptance testing of the 28 CI0_337-I design valves.

The de-energize response time data shown were obtained with the simulated spacecraft

switch protection circuitry (_ and resistor) connected. The observed effect of this

switch protection circuitry was to delay valve armature movement upon de-energiziz_ the

¢_ve hy app.=_Lm_ nine ,CO ten milliseconds, but had no affect on energize response
•_es._ _l_umj)_ ,__;;Id_mm for the energized condition is al_lieible f_ both

":!!_._,_,, _ . .,_.,__ ,_:. ,_-

,.o , U ,eco ,or of
ana:yszs or te_ _ata _tso shoved that upon de-energizing a valve, the time

_ ._asr._e _) _ ama_ute travel 't:tne and _ssm-e de--O, time.._aru_,

reslx:mse _ _lAot _pcesscres l_'e_eated were selec_ced beemuse: (l) the propellant

shutoff valve __ _h_eshold pressure is equal tO approximately _0 pslg pilot pressure

at a propelle4_ _ of 740 pslg, and (2) the propellaut shutoff valve eloeing thres-

hold pressure 18 equal to aIREoxi_Cely 150 psig pilot pressure at a propellant presmn_
of 175 pe_g.

Figures 5.1.3-2 and -3 show the nominal energize and de-energize response times for the
CI0_337-I valve.

Late delivery of the -2 design stainless steel valves resulted in acceptance testing of

only two of these valves. Table 5.1.3-_ contains these data.

All valves tested passed the acceptance requirements for dielectric strength, coil resist-

ance, proof pressure, external leakage, and internal leakage, and response time, with one

exception. Valve P/N CI0_337-I, S/N 001, did not meet the energize response time require-
ments. This valve was subsequently accepted through MRB action.

/
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T_ble 5.1.3-I

A¢¢ep_e Tlst na_ - Valve CI04337-I

VALVE

s/N

Specificatiom'
Value

m_IZE m_o_
16 vdc AEplied

% [t3_o %50'

..(m'e"l("'c'¢"_.', . ..

2O

ooi

oo2

oo3

oo4

o05

oo6

007

oo8

oo9

010

011

012

013

014

o1_

o16

o17

01_
i

r 2. 28;_!
13 16,8

14.2 18.3

18 21.8

12.8 17

14.2 18.3

11.2 15.3

20 24

15.8 20.5

13.2 17.3

021

022

023

02_

O25

026

027

028

x(3)

/(4)

_,:4_,_

l[., I III I

_!_.3 _._

13 l_

13.5 _lk._

le.8 13.8

1o,8 u;S_

13.6 i_.8

13.8 15

II.8 13
i i

12 1313.5 17.5

l& 17.8 12.5 13.5

16.2 20.3 12.3 13.3

12 iG 12 13

12..8 16.8 I0.5 11.5
" ' ' 2

Ii .8 15.5 _.S 13.3

14.8 19 12.5 13.5

16.a _o.3

!I

z_.2.! 1_._ 11.6 13 6.8

9.8 I_.8 I0 11.3 9

1_ 18.5 12 13._ lO.8

12 16.5 12.3 13.3 8.8

13.5 18 12.8 13.8 1o.5

15.8 20.3 13._ lb.5 IO._

13.2 17.8 12.3 13.3 9.5

ii 14.7 11.3 12.3 lO

ii 14.8 !0._} 13 10.5

i_.i i_.2 12.3 i3.h ' 9.7

,..2.9 +3.o +_z.2 _+1.2 +.z.2

19.3 9.5

22.8 9

18 9.2

19.3 9

16.3 7.5

25.3 9.8

21.5 9.8

18._ ....7:_
18.8 8.2

19 8.8

21.3 8.2

17 8._

17.8
16.5 8.5

20.3 8.2

t_,.8 6

19.8 7.8

17.5 8.21

_9 8.5 1

21._ 9.2 !i

_8.8 8.2

16 7.2

16 7.2

19.3 8._

J.3.1 +_i.I

• DE-ENERGIZE RESPO_ISE 'l_m [z)

13 vat Hemoved ' _3 v_c _emovea

t ! ",oo % I 1%o0

(6)

/,

o

1111111

II

II .5

11.8

I0

9.2

' 8

i0.8

io

7.8

9

9.2

11.5

9"_.

10.8

9.8

l_,O_ 1_.8 8.2

1_.._ V._ __-_.

con _,_. _,m,,_ia,

(oh,,,)(,_c#,r)(,@@/m.)
-_ _ III i |'11' i ii lili l (_

- 3_ - -
II I I I --

19.5 25.5 11.2 20

20.2 26 13 20.5 25.5 _5.6

20 26.5 12.2 20.5 26.8 55.%

20.2 2&.5 ii.8 19.5 2_.8 55,2

17.6 22.8 10 18._ 2_ 5_.i

17.2 22.5 10.5 18.2 2_.2 55,6

18 2_ 9.8 19.5 25.5 55.2

18 24.8 9.8 18.5 25 5g.6

19.5 26.2 11.2 21 27.2 55 .i

18.8 24.2 !148 20.2 L_.5 55_

17.5 2_ .2 9.8 19 25.2 55.0

18.2 24.5 11 19.2 25.2 55.7

17.2 22.5 10,8 18.8 23.8 55.2

20 25.8 12 20 25.2 55.0

18.2 24.8 i1.2 19.2 24.2 55.9

19.2 25.2 ii .2 19.6 25 5k..9

19.5 25.5 11 20.5 26 55.1

1_ 22.8 8.8 _7._, _i_i_i
..... .[: _ 23.'5 _iiii,_;ii_iii_ ,il,ii:9.2 i7.8 83,,2 -55_3

j.16.2 ; 21.8 .....8 17 22..5 55.6

I i6.8 24.2 10.2 20 26.8 55.1

20 25.5 lO 20.5 26 55.8

17.2 23.2 9.8 18.5 23.8 55.6

19.2 25 .a 11 20 26 55.9

....1{_.5 2_,.2 .... !1._ 19.8 _. _5.6

20.5 27 I0.8 19.8 25 55.7

18.8 2_ .8 11.2 19.5 25 55 ..5

19.2 2_ .8 12.,5 21.2 26.5 55,2

18.7 24.6 10.8 l_.& 2_.0

+1.2 +1.3 +i.i +i.i +1.2

• . .. °

.... :t.............. :_" ........ .... _ .... hui, , _-

,001 . ._

•00_ • .01

.........oo4 ! :.oo_

,00_

.003

.002

.o(x:_

.(:5

.007

.004

.ooo2

.00o8

.003

.016

.02

.OOe

.oo6

5._

, .0006

.003

.OO5

.o5

• .003

.09

.01

.006

..... o0,1.;

.ooI ....... .o_

.002 .05

.o0o4 . .oo4

•002 • .002

• 0009 .01

;oo3 ,o_

.001 .oo7

.00_ .003

.OOl. .o_

(1)

(2)
N

(g) (standard deviation) " (X i - _)
1

Response time data acquired using helium at 700 psig. Valve attached to test block

which simulates 'i_ pilot gas porting and volume.

t = tL_e from application/r_oval of voltage until valve armature moves.

ta = time from appllc&tion/removal of voltage until pilot pressure - xxx p_ig.
X.XX

Internal leakage measured with helium at 650 psig. (Helium leak detector used. )

(5) Spec. value energize response time of _ msec is for t200 (i.e. time for pressure
to reach 200 psi_).

(6) Spec. value de-energlze response time is for condition without switch protection circuitry

and is 25 msec. The value shown (34 msec) assumes a switch protection circuitry dela_

of 9 msec.

!

!

!
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Figure _.l.3-H. Nominal Energize ResRo_se Time for

Helium Pilot Valve P/N CI0_337-I
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Three deep vacuum tests were c_ed _1._ Jul_ and August 196_. _
obJectlve of these tests _ to 4a__ the effect, of space envirozmemt on the
function of the HFA movi_ ]_rto; lot' e_!ple, to see if aetuatlon friction 18vels
Increase@., or if leak8

_ese tests were perforce4 at a point in time _hen all assembled and operatto:al MIRA
15OA-HEAs were be_ utilized +f_ h_ _riorlt¥ firing tests; therefore, _ MIRA 150
HEA (Part No. 103950 and S/_ 00_) was selected as the basic vacuum test specimen. At

the outset of this vacuum testis8 with the MIRA 150, it was planned to conduct subsequent

tests with MIRA 150A HEA hardware; however, it was felt that the MIRA 150 HEA testing

would indicate potential problem areas and provide definition of test equipment and

instrumentation requirenents.

The paragraphs which follow discuss the three vacu_ tests.

5.2.1 Head End Assembl_ Vacu_ Test

F

!

5.2.1.1 Test Specimen and. Test Setup

The test specimen was MIRA 150 HEA S/N 00_. The test setup is shown schematically in

Figures 5.2.1-1 and -2; a _ of the setup is presented in Figure 5.2.1-3-

For this test, water was u_aea eebetitute for both fuel and oxidizer and _seous

nitrogen was _ _U__e _ _ _i_e of helix. _e servos_ta_tor _ _upplled

for actuator __::+_ _l_+__draln_.a,,, the water fl_'th.lm:U(_h the _ _--,:

actuated), a " ..T_tlSl!_:___:bl,place of
++:L '-'+ :_ : +"_+ i " •++ +' " _"

_.2.1.2 Ins+_entati+n ........

rectilinear _enti_er _or ' l_Osition readout and a load llnk for outl_at shaft fores

current ms++monttm+_ %y_n os+illOscope connected across a one+ shunt. ActuatiOn of

the o_idize_t_nt_ v_lm _ _etecte_ with a pressure transducer attached to the

• hermocouplen were _attached _ the test specimen to verify the 1RS°F tem_ratuaw _sintaLu_
during vacu_ _ by _e_ns _ia pair of heat limps.. ::_

_

• he specific I_A perf_ _ers of interest in the test _ea_=

I. Friction loads as measured at the actuator e_l of the

actuation arm (load link instrmmen_atlon).

2. Servoactuator hysteresis deadband and linearity (shaft position

instrumentation).

3- Pilot valve actuation (current instrumentation).

h. Shutoff valve actuation (injection pressure instrumentation).
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Figure 5.2.1-_. HEA Vacuum Test Actuator Shaft

Position and Load Instrumentation



Prior to subjecting the test specimen to the valuta environment, the above performa_e'
parameters were measured to _ referer_e values. _e friction loads were measured
both with and without wm_er flow, and the w_ter was then purged from the HEA with dry
gaseous nitrogen.

_e dry, unpresaurtzed _ was next exposed to a vacuum environment, and followi_ a pmap.
down period of four and o_n@half days the EFA was soaked for approximately i00 hours at

a mean pressure of 4 x i0-r torr. During this time, the _pecimen temperature was main-
tained at 125-F, except for brief cycles from 80VF to 160 F to expedite out-_asslmg.

Following the lO0-hour soak, fluid pressures were slowly applied to the HEA in _rder to

fill the various volumes without causing a pressure surge which might break loose any

cold welds and this mask sticklm_ or friction changes. The aforementioned perfozmmnee
parameters were then measured and recorded; these data are presented in paragraph 5.2.1._.

c

m_

Following the performance measurements, the HFA _as again subjected to the vacuum environ-

ment; however, this time the test specimen was pressurized with the various working fluids
(i.e., water, Rrayco 910 and n_trogen). In the pressurized condition it was only possible

to achieve a vacuum of 6 x I0"_ torr (apparently because of test specimen lea_); the

HEA was soaked at this pressure for approximately i00 hours. After 100-hour soak in the

pressurized condition, the HEA performance parameters were again measured and recorded;

these data are also presented in paragraph 5.2.1._ •

5.2.1._ Test D_a

Figure 5.2.1-5 shows a plot of bell Jar pressure versus time for the unpressur_ze_ and

pressurized va_ stca_ _est runs.
i

Upon pressurizin_ the servoactuator after the lO0-hour dry vacuum storage_ fluid (Brayeo

910) leakage was__ _the output shaft; however_ after .cycling the se_t_
at 0.05 cps an&._n a_pl.l.tu_e lesll than full travel_ the leakage stopped and • lO0-secom_

actuation (throttling) run was conducted with full shaft excursion. Because of an

inadvertent __ _f the triter signal, the pilot valve solenoid current and oxidizer
injection pressttre were not reeoxded duri_ the first HFA start. However, normal water
flow occurred during this start; in subsequent starts current and pressure recordings

successfUl_ o_.

Servoactuator hysteresis plots taken after both vacuum storage tests revealed no gain
cha_es or null s_s. The actuator fluid leakage which occurred at the conclu_ion of
the dry st_r_e test _topped with shaft motion and no further leakage was encountered.

This action suggests that the leakage was due to shrinkage of the shaft seal causimg
it to pull away i_ the shaft and that wetting and/or fluid pressure restored the seal.

Pilot valve current rise and oxidizer injection pressure build-up are shown in Figure

5.2.1-6. Pilot valve armature movement as noted by the cusp in the current trace did not

indicate any v_cuum environmental effect. The oxidizer injection pressure trace for the

post dry storage test was attenuated, since the flow setting at startup for this test _as

different than for the control test and post wet storage test.



(a) :r._i_t_a_ Control Tes_

o zo 2o 30 _o _o 6o 70 8o 9o _oo

(c) Post _et Storage Test

Scales:

S_-eep Speed lO.ms/em

Pressure _-5 lb/cm-

Current 200 ma/cm

Figure 5._.I-6. _A Vacuum Test Startup Data
17 _
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u_. The at__ in _i_. _r _ssure _e_en _ sma no-flow eon_ttlou _.It_ in
a reduced ae%-_O_'_owalmS_-of ap_oxlsstelY °_0 l_s for .this flow eon_ti_. M_e post
wet storage _ _-emrve :-ts _d a_tely 6 lbs higher than either o_
other _o curves_ l_osst_l_ beeause, of a drift _n the load readout _a_rusen_tCa or s
shift in the strain gage excitation level.

The friction load is equal to one-half of the difference in loading that occurs _n_ing
a shaft direction reversal. T_ble _.2.1-8 shows the friction load data derived

Figure 5.2.1-7. Changes in actuator loading resulting from changes in friction are

negligible when cc_pare_ _o the IOO-ib stall load ratin_ of the servoac_uator. The

exact reason for the _seTved Ine!_aee in friction loads is not clear; _r_ it I_y

possibly be attributed to measurement technique and accuracy and variations in seal

friction. Cold welding was not observed nor expected. A review of available data on
cold wel_ing indicates pressures less than I x i0-" tOrT are necessary to produce cold
welding.

Condition

Table 5.2.1-8

FrlctlonLoads at S/A Shaft

"

FLOW _RDITIOS
ow )

Retmset _ mx_ma Loaa
(rob) (ib)

Pre-s on -3-5, 3.5" 3

6.5 3.5

6

3.5

5.2.2 Shutoff 8ub_ ,_n Vacuum Test

Immediately foll_the HEAvs_u_n test discussed in Paragraph 5.1.1, a similar vacuum

test was conductef on the shutoff subsystem. The test objective here was to detex_ine

if shutoff subsystem, performance would be affected by vacuum storage in the pressure
region where cold welding phenomenon occurs (less than 1 x lO'7torr).

5.2.2.1 TestSetup Description

The shutoff subsystem functionally consisted of the shutoff valves and the helium pilot

valve. The test article was the same head end body, shutoff valves, and helium pilot
valve used in the previous test (described in Paragraph 5.2.1) bu_ with the FCV, and

servoactuator removed. The injector elements also remained, fixed in the full-open
position. The shutoff valves used were of the Phase II design, except that Microseal
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was not used on the metal parts and Bal-Seals were used for static and dynamic seals.

The helium pilot valve was P/N C i0_337-i (S/N 005).

The test setup, shown schematically in Figure 5.2.2-1, used helium for the pilot gas and

water in lieu of propellants. Heat lamps were used to maintain a test specimen nominal

temperature of 125°F.

5.2.2.2 Instrumentation

Test instrumentation was provided to measure and record the following performance

parameters as functions of time:

I. Fuel and oxidizer injection pressures

2. Pilot valve solenoid current

3. Pilot valve solenoid voltage

Additionally, test specimen temperature was monitored to verify the 125°Ftemperature

requirement,

5.2.2.3 Test Procedure

The test article was pressurized and the performance parameters were measured at (room)

ambient conditions to establish reference values prior to vacuum storage. Following

these initial control tests and with _he system still pressurized, vaCUum pumpdown was

started. A pressure level of 2 x I0 "V torT was readily obtained, and the test specimen

was soaked at this pressure for 168 hours. Throughout the vacuum storage s the pilot

valve inlet pressure was 700 psig, the inlets to the SOVs were pressurized to 7_0 psig

and the test specimen temperaturewasmaintained at 125°F. It is nc_e_that

the vacuum storage the water_outletwasvalvedto the va_n_ _s_t_ the

downstream portion of the SOVs was exposed _o the v_cu_ enviroumeut.

At the conclusion of the 168-hour vacuum storage, the water sump outlet was valved to

(room) ambient pressure. The pilot valve was then energized and de-energized several

times with the aforementioned performance parameters being recorded during each actuation.

The actuation signal was 16VDC and the switch protection circuitry (see Paragraph 5.1.3)

was connected to the pilot valve.

5.2.2.4 Test Data

Table 5.2.2-2 presents pre-vacu_ storage and post-vacuum storage data on energize response

times of the pilot valve and SOVs.
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Table 5.2.2-2

Shutoff Subsystem Energize Response Times •

Pre-Stora_e Post-Storage

Energize Energize Response Time

Response Time i st 2 nd

(msec) Aetu_t---ion Actuation

(.see)

Helium Pilot Valve

S_utoff Valves

11 57 13

13 (11+2) 61 (57+_) 15 (13+2)

NOTE: The energize response time is defined as the interval of time from closure

of the pilot valve switch until movement of the particular valve is detected.

Pilot valve movement is noted by a cusp in the solenoid current trace which

indicates armature movement (see Figure 5.1.3-2)- S0V movement is detected

by a chan6e in inJectlon pressure downstream of the SOV poppet.

The first actuation of the pilot valve following the vacuum storage displayed a large

delay in response time, perhaps caused by the start of cold welding. In subsequent

actuations, the response time was approximately equal to the initial value; the small
differences could be attributed to instrumentation and data reduction inaccuracy an_ to

the fact that input power to the valve was less than that during control tests because

of the temperature difference.

Cold wel___ of_e___e waa _ indicated. The two-milliseco_ increase

in time interval between _ilot _ve armature movement and SOV movement (i.e._l_ll=_

msec versus 61_57=_ m_c) can be attributed to instrumentatlon and data reduction in-

accuracy. The de-energize response times are not tabulated, since the oscillogr_

tapes did not indicate a difference between pre-storage and post-storage values.

To verify the apparent vacuum enviro_ental affect on the pilot valve response, a third

vacuum test, discussed in the paragraph 5.2.3, was performed.

5.2.3 Pilot Valve Vacuum Test

A third vacuum test was conducted in order to further assess the effect of a vacuum

environment on performance of the heliu_ pilot valve.

5.2.3.1 Test Setup Description

The same test setup was used for this test as was used in the previous vacuum test_ except

that two additional helium pilot valves were added as test specimens. The added pilot

valves (P/N CI0_337-I) were S/N 016 and 017. For this test they were secured to a metal

block within the vacuum chamber. The pilot ports of the added valves were capped a-_

the vent ports were open to the vacuum chamber. Further, the inlets of these two valves

were connected such that during vacuum storage the inlets could be either pressurized

with pilot gas or exposed to the vacuum.
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5.2,3.2 Instrumentation

Instrunentation for this test was the same as the previous vacu_ test (see Paragraph

5.2.2.2) with the exception that current and voltage instrumentation were added for the

two additional pilot valves.

5.2.3.3 Test Procedure

Prior to vacuum storage, the performance parameters were measured for each of the

three pilot valves and two SOVs.

After initial control tests to establish test specimen reference values, vacuu_ pump-

down was started. Throu@hout the pumpdown-and vacuum storage, the shutoff subsystem

was pressurized as in the previous test whereas the two added pilot valves were intern-

ally as well as e_ternally exposed to the vacuum enviro_ent. The test specimens were
soaked at 2 x lO'_torr and 125 F for i_ hours. At the conclusion of the l_-hour

vacuum storage, the inlets to the two separate pilot valves were pressurized with helium;

Each of the three pilot valves was then actuated twice by a 16 vdc signal and the various

response times recorded.

•5.2-3-4 Test Data

Table 5.2.3-1 presents the e_ergize response time data of the three pilot valves.

SOV energize response time'was not obtained because of an error in instrumentation

wiring.

The

T_able _.2.3-i

Pilot Valve Energize Response Times

Pilot Valve Pre-Storage, Post-Storage

Serial .......... Energize E_ergize Response Time

I_umber Response Time ist 2nd

(msec) Actuation Actuation

(msec) (.sec)

005

oz6

O17

ii 14 ii

12 13 i0

z4 16 17

* Same valve used in previous test.

The post-storage actuation of the pilot valves did not indicate the sticking that had

apparently occurred in the previous test. The small variations in energize response
time can be attributed to instr_,nontatlon and readout in-accuracy, temperature differences

and valve repeatability. The de-energize response times were, as before, unaffected.

As a result of this test, it was concluded that the pilot valve is not affected by vacuum

environment. The previous indication of sticking with the S/N 005 valve may possibly

have been caused by dirt between the armature and the bore.
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5.3 SOY Component Evaluation Test Series

In Paragraph 3.2.3 it is stated that refinements to the SOV were incorporated during

Phase III. Testing of these refinements is discussed in this paragraph. Table 5.3-1

outlines the parts of the shutoff valve package and the corresponding part numbers for

the Phase II and Phase III designs. The SOV design features that were refined for the

Phase III design are briefly described below:

le Seals - The Phase II SOV used 0mniseals. This seal is a sprlng-loaded Teflon

configuration and sealing is achieved by single ridges on the 0.D. and I.D.

peripheries. The Phase III SOY uses Bal-Seals throughout. The Bal-Seal is

also a spring-loaded Teflon configuration; however, it provided superior seal-

ing because of uniform spring loading and two sealing ridges each on the O.D.

and I.D. peripheries.

.

e

Microseal - Microsealis a dry film lubricant applied by a high velocity

spraying process and was used on the Phase II SOV sleeve and piston to avoid

galling and seizure. Action of the piston seals caused the Microseal tow.at

and flake off. The subsequent buildup of this material on the piston seals

resulted in leakage. Microseal was not used in the Phase III SOV, since

adequate piston to sleeve clearance presented no problem of galling or seizure.

Surface Finish - Critical area surface finishes of 8 and 16 microinches rms

(per F_L-STD-IO) in the Phase II S0V were replaced in the Phase III SOVwith

finishes of 4 and 8. _e better finishes improved sealing, decreased friction,

and enhanced sell life.

_e Poppet and Seat - The same basic poppet and seat design concept is used in

Phase II and ILl SOVs. However, in the Phase II SOV, the poppet to seat contact

diameter is0.38 inches whereas the Phase III SOVa smaller Teflon O-rlng seat

Is 0_31 inches, The smaller contact diameter of the Phase IIXSOVlowers the

pilot gas pressure at which the SOV opens and enables the SOV to be used in a

lower _ressuresystem (e.g., 370psia system instead of 720psia).

. Tolerances - The Phase III S0V incorporates smaller dimensional tolerances than

those used in the Phase II configuration. The reduced tolerances improve

performance repeatability and enhance component part interchangeability.

The SOV component evaluation test series was comprised of three separate tests which are

discussed in the following paragraphs.

5-3-1 Seal Comparison Test

The objective of this test was to make a comparative evaluation of the performance
characteristics of Omniseals Versus Bal-Seals. The test specimens were a pair of Phase

II SOVs with one valve assembly equipped entirely with Omniseals and the second valve

assembly equipped with Omniseals for the static elements (i.e., sleeve seals) and Bml-

Seals for the dynamic elements (i.e., piston seals). Each SOVwas installed in a test

block containing a cavity identical to the SOV cavity in the Fnase II HEA. The two SOVs

were pressurized with N_0& at 700 psig. Valve actuation was accompliahedby supplying
the S0Vs with 700 psig _elium (through a tee connection) from a helium pilot valve.
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Table 5.3-1

Shutoff Valve Package Refinements -

Part Number Changes

Phase II Phase llI

Item Desi_ Design P/N

s-  ,ve lOS 7
Piston i039_8 1O6657

Poppet io39 

Separation Washer None 106670

Poppet Spring MS 24585-18201 MS 24585-182CI (no change)

O-Ring Seat Parker O-Ring 2-110T " Parker O-Ring 2-11T

Sleeve Seals . Omniseal R10105-015 AIN Bal Seal 200-15

Piston Seal (small) Omuiseal RlOSJ-.242 AIQ Bal Seal 2OO-10

Piston Seal (large) Omniseal RIOSJ_.370 AIQ Bal Seal 200-12

The test consisted of concurrent cycling of the SOVs and periodically measuring the

fluid leakage from the vent of each S0V. The method of measuring leakage dad not

afford quantitative data; however, the test revealed that qualitatively the Bal-Seals

were superior to the Omniseals in this application. From the start of the test the

valve assembly completely equipped with 0mniseals exhibited some leakage of N 04 dur-
ing actuation. This leakage was sporadic throughout the cycling period and b_came

severe after 400 cycles. On the other test article using Bal-Seals there was no initial

_N201, leakage, but some did develop gradually with wear and became severe after 600

cycles. Static leakagey leakage of N20 k during nomactuation - was undetected for
either test aritcle after i000 cycles of operation.

5.3.2 SOV Seal Life Test No. i

The objectives of this test were to evaluate SOV life and galling or seizure resulting

from not using _icroseal. The test specimens were a pair of Phase II SOVs incorporating

the design deviations noted below.

i. Microseal was not used.

2. All seals were Bal-Seals.

3. Surface finish in critical areas was _ and 8 microinches rms.

The two SOVs were installed in the same test blocks used in the seal comparison test

(described in paragraph 5.3.1). The SOVs were pressurized with Noh.O at 700 psig.
Actuation was accomplished with 700 psig helium via a tee-connectlon frmm a helium

pilot valve.

For this test, the SOVs were cycles for 2000 actuations with periodic interruptions for

quantitative leakage measurements. The specific leakage paths which were periodically
checked are identified in Figure 5.3.2-1. The leakage rates as a function of total

actuations are tabulated in Table 5.3.2-2. Upon completion of 2000 actuations, the SOVs
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were disassembled and visually examined. The seals were quite clean as cc_pared to seals
run in N_crosealed bores, and there were no indications of galling or seizure. Visual

inspection did not reveal the cause of helium leakage in Valve No. i (Path 1-2), but it

is noted that this leakage would have been detected in HEA leak checks and corrective
action taken.

Figure 5.3.2-I

SOV Leakage Paths

I

2

4

Vent

Pout (Prop. Outlet)

Pin (Prop. Inlet)

Pressure Conditions

Leakage

Type

i - 2 Heli_

3 - 2 N20 _

_-3 N2°_

7OO

7oo

0

0

ig) :

0

Pin

0 0

250 250

o 7oo

*Leakage from 4-3 checked withhelit_mbefore
testing and after 2000 valve actuations. All

other leakage paths checked before testing and
after each 200 valve actuations.

I
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I

5-3-3 SOV Seal Life Test No. II

The objectives and conduct of this test was the same as in SOV Seal Life Test No. I.

_e identical SOV pistons were used in this test as in Test No. I but all other SOV

parts were new. Here again, Microseal was not used and all seals were Bal-Seals.

I

I

The results of this test are presented in Table 5.3.3-I; the leakage path definitions

of Figure 5.3.2-1 also apply. No leakage of N_O h developed after 2000 cycles. The
valves were disassembled and visually inspected.- Here again, the seals were very cles_

and there were no indications of galling or seizure.

_le _.3.3-I

I

I

'I

'I

_humber of

Valve

Actuations

0

_0o

8oo

1200

16oo

20O0

Leakage Vs. Actuations - SOV Seal Life Test No. 2

• |

Leakage Path & Type

i-2

Heli_

(cclmn)

1,0

Valv I Valve
3.3 1.3

2.o .9

1.5 .8

• 1.2

1-3

3,6 1.0

3-2

(co/ran)
(a)

Valve _4Valve #_

0

v_ve #3

00

0 0
..... j

0 0 0
, ,, ,

O O -

o

l,e o o o

o o o

_-3

Helium

(CO/ran)

I val_ #_
0

0

O

O

'I

'I

'I

'I
'I

(a) Zero leakage is defined as not detectable during an observation

period of approximately 2 minutes.

(b) Zero leakage is defined as not detectable during an observation

period of approximately lOminutes.

5.3.4 Additional Data

The po_rpet seat design of the Phase III SOV was not evaluated by a specific test series._

The basic poppet and seat configuration, consisting of a Teflon O-ring seat and speherical
radius poppet, is used in both the Phase II and III SOVs and was well tested. However,
the reduced poppet seat contact diameter used in the Phase III results in the bottum

sleeve static seal (Bal-Seal 200-15) being exposed to system pressure and functioning as

a primary seal. In the Phase II SOV design, the bottom sleeve seal was actually a

secondary element since primary sealing was performed by compression of the O-ring seal

between the sleeve and a step in the SOVport.

'I
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The Phase III SOVs have been installed in nine MIRA 15CA HF_As (S/Ns 001, 002, O0_, 005,

007, 008, 009, 010, and O11) and have undergone leak tests and ol_erational use. _e

l_rformance of the design has been satisfactory. The few leaks associated with the

poppet seat or lower seal that were encountered were traceable to installation of
defective parts, dirt, or i_dequate surface finish. These leaks would have been

detected during HEA acceptance testing and would have resulted in rep!_cmcnt pa'-ts

being installed on the TCA prior to its delivery.
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5- 4 Servoactuator Evaluations

I

I

I

I

I

I

Two short develoIlnental tests were performed on the servoactuator alone. One was a

test for performance at the expected minimum, in-flight temperature, i.e., near

O°F. The other test was to determine performance at various inlet fuel (MMH)

pressure levels down to 350 psia. This latter test was accomplished to support a

spacecraft s_stem evaluation of a possible low pressure propellant feed system and

to support the servoactuator power system evaluation study discussed in paragraph

5.5.

The servoactuator low temperature test was performed on a Phase II Follow-On unit,

S/N C53751. Hysteresis, deadband, step response, and frequency response character-

istics were measured at ambient temperature in accordance with STL Acceptance Test

Procedure 9354.4-1_0. The actuator and fuel were then cooled to O-15°F, and the

servoactuator characteristics were again measured. No change in performance occur-
red.

The low pressure tests were conducted on two Phase II Follow-On servoactuators,

S/N C53747 and C53748, to determine the following performance parameters at three

pressures 700, 500 and 350 psi:

i. Null Leakage

I
I

I

I

I
I

I

2. 100% Stroke Rise Time

3- 25% Stroke %Overshoot

_. 25% Stroke Settling Time

5- 5 cps 10% Stroke Phase Lag

These tests were conducted under imposed loads corresponding to those imposed by

the FCVloading. The compressive loads assumed were 12 Ibs at 350 psia_Hpres-

sure, 19 lbs at 500 psia, and 25 lbs at 700 psia.

Test results are shown in Figure 5.4-i. Null leakage and phase lags were within

STL specification limits for all differential pressures from 350 to 750 psi. Step

response rise times and settling times were generally over the required limits

specified in the component specification.

In view of these results, it was concluded that the performance parameters can be

altered to result in a S/A design that would meet all performance requirements

at the 350 psi _P condition. However, the effect of low differential pressure on

reliability is unknown.
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5-5 Servoactuator Power S_stems Evaluations

Prior to final selection of the servoactuator power system using _4H with overboard

dump (see section 3.0), several other possible power systems were evaluated. Of

the alternate approaches the most extensive effort was expended on a separate

h_lraulic power s_ (raPs)..

5.5.1 Alternate S_stems Consi_ere_

Six different servoactuator power systems were considered.

ically in Figure 5.5.1-i.

Scheme

I Battery driven,
oil.

They are shown schemat-

De scription

separate hydraulic power unit (HPU), using

II Low pressure drop, fuel-driven servoactuator with regulator

bypass.

III High pressure, fuel-driven servoactuator with overboard MMH

dump.

IV Electromechanical servoactuator.

V Helium motor-driven hydraulic power supply, using MMH as

hydraulic fluid.

VI Electropneumatic servoactuator using helium.

The evaluation Fesults _re Summarized in Table 5.5.1-2. As a result of the evalua-

tion, STL reconnnended System I, the electric motor-driven hydraulic power supply

for the follo_dulg reag_s:

Io Existence of a highly reliable, readily adaptable, qualified, missile type

hydraulic power unit now used on the second stage of the MINUTEMAN Wing VI
missile.

2. High system reliability.

3- Competitive overall weight for spacecraft vernier engine system.

4. Short development and qualification test periods.

5. Sealed hydraulic system resulting in lowest possibility of actuator
contamln_tion.

6. Excellent ground functional checkout capability.

7. System dynamics uncoupled from the propellant feed system.

8. Allows man rating the propellant tanks because of reduction in feed

system pressure requirements.
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"El ec tfo- hAecF_onlcal Servooc t_toe Hellum D_;ven Fuel Powee Supply

H;_ _' _ Pos;t;oner - Overboard Dump

Electro - Pneumatic Servc Posltionee

Figure 5.5.1-1. Alternate Servoactuator Power Systems
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. Excellent spacecraft growth potential with regard to use of the HPS

for other uses (e.g., to drive equipment to be used after the space-

craft reaches the moons surface).

i0. Low development risk.

5.5.2 _draulic Power Suppl_

A develol_nent program was initiated to develop a completely closed HPS using

hydraulic oil as the power fluid. The HPS was comprised of a hydraulic power

unit (discussed in paragraph 5.5.2.2) and associated hydraulic lines and fit-

tings. One HPS was designed to provide power to the servoactuators of all three

TCAs on board the spacecraft.

The spacecraft location chosen for the HPS was near the helitm tank, somewhat

outboard of the main spacecraft frame. This location was chosen to satisfy

thermal control, weight and balance, and hydraulic line routing and length con-
siderations.

Two system detail design alternatives were considered. One alternativewas to

package the battery and switch in a separate container, requiring the RPU to undergo

modifications needed for operation in a hard vacuum environment. The second alter-

native was to pac_kage the HPU, battery, and switch in a sealed container which

would be pressurized with inert gas at a moderate pressure. Figures 5.5.2-1 and -2

show two packaging arrangements for the second alternative, assuming 20 battery
cells.

The MMH servoactuator design (see paragraph 3.2.6) was reviewed for use with

hydraulic oil. Items requiring design changes for the change in fluid media were:

•

• Feedback spring ratea.

• Spool cemterlag s_ringe.

These required changes were considered minor and easy to incorporate in the existing

MMH servoactuator design.

During the course of the HPS program, purchase requisitions were submitted to pro-

cure 5 HPUs including a special test HPU, to permit hard vacuum starts to be made

during spacecraft systems tests, and one mass mockup unit. In addition, the loan

of two MIE_AN units was negotiated. One HPU and three pressure transducers

were received from vendors, and the two loan HPU units were received.

Before testing was started on HPS components a decision was made to develop

Scheme III (see Figure 5.5.1-1).

A detailed discussion follows on the major constituents of the HPS and its pre'

dictedperformance.
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5.5.2.1 Hydraulic Power Unit (HPU)

Vickers Aerospace Division, vendor of the second stage Wing VI MINUTEMAN HPU, was

chosen to make the minor modifications to this HPU for use with the MIRA 150A. The

modified HPU was given Part No. EA1513711-2 and it is schematically represented in

Figure 5.5.2-3. Figure 5.5.2-4 shows the actual MIND_ HPU.

The modified HPU consists of the following components:

• Variable-delivery, pressure compensated hydraulic pump.

• DC, explosion-proof, pump-drive electric motor.

• Self-pressurizing reservoir.

• Pressure transducer.

• Hydraulic oil filter.

• Radio noise filter.

• Check valve,-

• N_nlfold.

• Fill and bleed disconnects.

The displacement of the pump is varied by controlling the angle of the cam plate by use.

of the compensator. The compensator is a three-way valve which senses system pressure

and ports fluid to the stroke control piston to change pump flow_maintaining syste_
pressure between required limits.

-

The welded steel bellows reservoir acts a_ a compression spring to maintain a minlxam •

system pressure for storage purposes and to.facilitate pump startup, Follo_ring the

initial startup command, the reservoir is pressu_i_zed by system pressure.

Radio frequency interference (RFI) requirements were given in Hughes Aircraft Company

Specification No. 226100, "Electromagnetic Interference Specification." Low ripple

voltages and essentially no commutator arcing result from a minimum number of armature

turns and a maximum number of ccemr_tator bars in the motor. This motor design keeps the

armature reactance voltage and commutator bar-to-bar voltage at a minimum. The radio

noise filter utilizes the inherent inductance of the motor field windings as inductive

elementa of symmetrical filter networks. The motor compensating field windings are

divided equally between the positive and negative circuits in a four pole configuration.

Conducted and radiated RF energy is thus kept below specification requirements using a

light weight radio noise filter.

5.5.2.1.1 Considerations for Space Environment Ope.ration - If the pump-drive, DC motor

were to operate satisfactorily in a deep vacuum environment without the packaging and

pressurization noted earlier, modifications from the original MINUT_4AN design would

be required. A study was performed, investigating the feasibility of such modifications.
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On the proposed design the motor and pump have a common shaft allowing good he&t

conduction. The partially sealed bearings combined with the erplosion-pro_f motor
sealin 6 were estimated to result in pressures at the bearings of about i0 "v tort

when the HPU is exposed to i0 "II torr. Proposed plugging of the shaft seal drain

port would further improve this motor internal pressure situation. In a vacumn, the

DC motor brush material deposition must supplant the ambient oxidation film and

provide a lubricant film on the commutator of low enough resistance to minimize

voltage drop, but sufficiently high to prevent undue brush short-circuiting and wear

out. A possible brush material for use in deep vacuum was estimated to consist of

electrographitic carbon 3 copper, silver and additives to controlofilmin6 rate. This
material would have to operate at temperatures not to exceed 550 F. A change to the

brush spring rate probably would also be required.

The order of sublimation of materials of the EPUwere considered to be: oil, lubricant,

insulation of armature and field, highly polymerized resins of the mechanical insulation,

brush impregnants, and lastly, metals. Of the 2.23 ibs of motor weight, it was estimated

that 5% would sublimate in three years under deep vacuum envirorsnent.

Other anticipated changes required to convert the existing Vickers HPU from Model No.

EA1513-530-2 to Model No. EA1513-711-2, are summarized below. These changes would

permit the HPU to operate within the performance requirements and environmental

conditions defined for the Surveyor application.

Reservoir - Change spring preloadon bellows to simulate the existance of

sea level atmospheric pressure under outer space conditions.

Manifold - Revise shaft seal leakage drain holes to permit plugging after

seal leakage check.

Seals - Change all 0-ring seals to a material capable of withstanding the

required temperature cycle.

Pressure Transducer - C_e operati_ pressure range from 0-700 psia to

0-i000 psia.

5.5.2.1.2 Predicted Performance of HPU - A special test was performed by the vendor

prior to subcontract award to insure that the Vickers MINUT_.'AN HPUwould meet the

pressure-flow requirements. Test data, shown in Table 5.5.2-5, confirmed that the

unit would meet the requirements subsequent to slight modifications. Considerable

effort was expended in an analysis of the HI_U predicted performance and its compatibility

with system requirements and servoactuator characteristics.

These studies confirmed the earlier opinion that minor modifications to the existing

HE], plus development of the batteries and the packaging, would provide an HPU that was:

(1) fully capable of powering the servoactuators, and (2) adaptable to the required

spacecraft installation.

A preliminary draft of an equipment specification for the HE]was prepared. This

unreleased doctunent was given the specification number, EQ 2-40. Some of the primary

performance requirements are excerpted in Table 5.5.2-6.
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(_ _ 2-_o)

8422-6o13-_'j-ooo
page 5-51

Operating Fluid

Voltage, vdc

Nominal Operating

Overload Rating - for 0.010 seconds

Operating Pressures, _sia

Nominal differential operating pressure 750

Maximum inlet pressure 90

Pressure versus flow demonstration requirement

Flow Rates, glmm

Minimum operating flow rate
Maximum flow rate

Flow demonstration

Flow Response

Demonstration re quir_ent

Maximum Time, seconds

(i) From 63% of full flow to minimum flow 0.015

(2) From minimum flow to 63% of demanded full 0.015

flow.

Startup time, seconds

(frc_ voltage application to achievement of

0.160 gpm)

MIL-H-5606 hydraulic oil

See Figure 5.5.2-7

0.156

0.790
See Figure 5.5.2-8

See FigureS.5.2-9

0.090

5.5.2-2 Battery

The battery and switch requirements for powering the _ during the mission cycle were

analyzed in detail, resulting in the selection of a secondary type battery.

Battery development activity was suspended in the middle of June 1964.

5.5.2.2.1 Requirements - Preliminary battery design requirements were derived based on

the 8.5 - minute duty cycle shown in Table 5.5.2-i0. This duty cycle was considered to

be very conservative. The total power requirements derived from the duty cycle (Table

5.5.2-10) in conjunction" with Figures 5.5.2-11 and -12 are given below for alternate

average battery voltages.
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Design Voltage 22 vdc 24 vdc 28 vdc 30 vac

Watt hours over -.
mission cycle 70.3 7_.i 79.8 82.7

In addition to the approximately 80 watt-hour power requirement, other technical require-

ments established for the battery were:

I 3.

I 4

st____s

I. To survive after _he lunar landing without liquid leakage or explosion
for 5 days at 300 F followed by 15 days at -300UF.

2. To be capable of at least 30 days stand time when wet at 20°F to lO0°F prior

to launch - recharging permitted during this period.

To be capable of operating during launch and in any attitude in space.

To be capable of supplying =otor current requirements during the start transient_
(assuming a start voltage of 2_ vdc the motor current requirements for start was

90 amperes, decaying to the steady state requirement in approximately 0.3 seconds

Table 5.5.2-10

Battery Duty Cycle

Load Curve

• Shown in Time

Figure 5.5.2-11 se_s_

A 30
A 60
B 20

B 20
B 2O

A I0

B I0

A 30
B i0

A 280

B i0

A i0

Totals A

B

Battery usage to occur as follows:

I ) Turn on #1 to occur near beginning of lO0-hour Period.

2 _ IkLrn on #2 to occur near middle of lO0-hour Period.

3) Turn on #3, #4, and #5 to occur near end of 1CO-hour period.

Total mission time = lOO hours.
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A summary of the battery requirements _as given to vendors to obtain their recommendations

Since there was not time to develop a new battery for thi_ application, a choice was to

be made of batteries or cells presently in production. The following is a summary of
vendor recommendations:

(z) Electric Storage Battery - The EEB Type 224 battery was recommended.

It was in production and was to be used on Surveyor Test Spececraft

T-2. The cells have a six-month stand life and are:capable of lO

cycles of operation. Twenty cells, the number needed, would weigh

four pounds and could probably be packaged for a total weight _.of 5.0

lbs. The ESB Type 2_1 battery weighing 6.8 ibs might also be useable.

(2) Eagle-Picher - Eag_le-Picher recc_mended using Type 515 cells in a MAR

_196 container. This battery was similar to one of the batteries that

_as supplied to STL for the Polaris STV Program. This battery weighed
6.0 l_.

(3) Yardney Electric - Yardney Electric had no suitable battery in production.

However, they reccrmended using 17 Type HE-3 cells in a titanium came

estimating a maximum weight of 6.0 lbs. Delivery of thisbatterywas

estimated at 3-_ months, cells alone in 4-5 weeks.
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6.0 TEST FIRING EFFO_

The hot firing tests conducted during Phase IIl areoutllned in this section.
results of these tests are discussed to the extent needed to substantiate the

performance set forth in paragraph 3.&.

The

6.1 Combustion Chamber and Nozzle Assembl[ Final Selection Tests

As related in the Phase II Final Report (STL Document 9730.4-64-36), the two-piece

JTA nozzle throat insert had been chosen by the end of Phase II as the primary throat

configuration for the MIRA 150A CC & NA. A secondary design, still under consideration

at that time, was the tantalum-tungsten alloy throat insert.

As planned in paragraph 3.1.2 of the Phase III Development Test Plan (STL Document

9730.4-64-1-43), a series of final selection tests were performed using three sea

level chambers with coated tungsten throat inserts, three sea level chambers with

90% tantalum-lO% tungsten throats, and nine sea level chambers with J_ graphite
th/_ats (eight of which vere of the final configuration). The specific test

objectives for _ese final selection tests were to:
%

1. Determin_ the reproducibility of service life of the JTA insert design

by testing with several MIRA 150 injectors.

2. Determine the effect of a silica-tape overwrap on the service life of
the ablative liners.

3- Determine the effect of a JTA graphite convergent section upstream of the

throat on the durability of the throat inserts.

4. Compare service life limits of the caudidate nozzle materials.

5- Determine the valve of an oxidation protective coating on t_talum-

tungsten.

The test conditions for the final selection test

Propellants:

series were the following:

NTO or gO-lO MON, and H

Mixture Ratio:

Starting Chamber Pressure:

Combustion Efficiency, C*:

1.5 _ o.05

125 + 5 psia (0.920 inch diameter throat

104 + 5 psia (1.00 inch diameter throat)

51_)0 ft/sec _ 1%

Firing Schedule:

Environmental Conditions:

15 seconds at maximum Pc followed
by a cool down to ambient temperature,
50 seconds at maxismm P followed by a
cool downto ambient temperature, and

a final 235-second firing at maximum P .
C

Ambient sea level conditions with

ambient propellant temperatures and

prestart chamber temperature. No
thermal blanket used on chambers.
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'lhe results of the final design selectlca tests are sun_narized in Table 6.1-1. The

significant conclusions drawn from these tests are as follows:

l. The primary throat design (i.e., two-plece JTA ir_ert) is more than

adequate for the intended use. (Full duration firings were successfully

completed on eight ch_mbers employing this throat design. Two MIRA 150

injectors were used in this series, neither producing any throat erosion

following 300 seconds of operation. One JTA throat was fired for a total

of ll41 seconds and resulted in only an 11% throat area increase. Another

JTA graphite throat was tested at the maximum MIPA 150A chamber pressure of

ll0 psia for a total of 688 seconds without throat erosion. )

2. The silica-tape overwrap used to hold the multi-plece c_posite together,

provides structural integrity to the entire assembly.

1
The JTA graphite nozzle convergent section extends the service llfe of a

refractory throat insert. (The JTA convergent section does not erode a_

disturb the boundary layer that provides long throat life. )

4. Oxidation protective coating is not essential to provide long service life

of a tantalum tungsten throat insert.

_o
The tantalum tungsten insert provided the longest service life of the

throats tested. (A total of 2266 seconds was achieved with no change in

throat insert dimensions. )

Based upon these test results, *_he two-piece JTA graphite throat design was selecte_1

for advanced development directed toward final qualification because it 18

adequately erosion resistant and lighter weight and easier to fabricate than the

Ta-W alloy design.
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6.2 Injector Modification Tests

During the course of the Phase III development program there were two occasioms

when the basic injector design was modified and tested.

The first such effort took place in May - June 196_ and led to in_ector desi_

modifications that became part of the final MIRA 150A design. This effort is 441a-

cussed in paragrsph 6.2.1.

The other effort was primarily one of testing and characterizing the current Injector

design under unusual test conditions. It also included evaluation of some desi_B
features that are different from those on the MIRA 150A. This effort is discu_

in paragraph 6.2.2. i

6.2.1 Mod i to _ _ In4ector DeYelo_ment

Early in Phase III the ir_Itial injector de_@ign for the MJ2A 150A was found %0

exhibit excessive throat erosion on stream testing. The injector develolmnent program

described herein was undertaken to arrive at an injector design that would exhi_t

acceptable throat erosion when tested at full thrust on stamdar_ stream test $__ii0_t

inserts.

6.2.1.1 Back_

The MIRA 150 injector was satisfactory from the standpoint of low throat eros_

after the propellants were reversed from oxidizer center to fuel center. In 1_h_t

design the total injector sleeve stroke from 0 ib to 150 Ibs of thrust was al_xi-

mately 0.0050 inch. Thus, at the 20% thrust level (i.e., 30 ib), the gap on the fuel

and oxidizer injection control point was approximately 0.0010 inch. The sensitivity

of this small dimension to manufacturin6 tolerances made it difficult to contr@l

reproducibly the injection pressure drop at the low thrust levels. These small gaps

also increased the danger of completely closing the injector gap and sfm_plmg flow,

thereby introducing high pressures into the injection pcrts and seals. The _tlal

?_[RA 150A injector was designed with a smaller injector pintle and sleeve to reduce

the effective diameter at which propellant injection velocity is controlled. The

injector sleeve travel and gaps w_re therefore increased proportional]j. The in_ector

sleeve stroke on the MIRA 150A __A is designed for 0.0084 inch of travel from. 0 lb

to 150 !bs of thrust. Therefore, the gap at a minimum t.hrust is approximately 0,0017

inch. This gap is still quite small; nevertheless i# makes the injector pressure

drop at the low thrust level considerably less sensitive than on the MiRA 150 HEA.

The above-mentioned injector design char4ge (resulting in the MIRA 150 HEA becoming

MIRA 150A HEA) completely altered the geometry of the injector although the g_meral

impingement angles, ramps and steps were still very similar. Unfortunately, the

design change resulted in unforeseen rough combustion. Throat erosion durimg

200-second streak tests increased from essentially zero to over 35_. The initial

MIRA 15OA screamed (i.e., emitted a high pitch sound) at full thrust with various

injection pressure ratios. Screaming did not exist at low thrust levels. The

appearance of the ercsion and char pattern of the streak sample _Bs completely dif-

ferent from that exhibited by the MIRA 150 injector. Whereas the streak sample on

the MIRA 150 injector had a s___ply defined 12-leaf char pattern with absolutely no

char upstream of this distinct char pattern, the initial MIRA 150A injector (un-

modified design) had no virgin material visible after 200 seconds. The unmodified

150A inJe,ctor produced characteristic velocities at the high thrust level in the

range of 5400 to 5500 ft/sec uncorrected. Low thrust level performance was above
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5000 ft/sec with readjusted injector pressure drops. This HEA had a 108-hole dis-

tributor ring, and all streak samples tested on this design (Runs C2-237 and C_-250)
resulted in an eroded oval throat aligned to the inlet of the oxidizer manifold. It

was apparent from these tests that a higher pressure drop was required across the

distributor ring. A 24-hole, 0.021-inch hole diameter, distributor ring was then _

selected and tested. This ring resulted in a 7.5-psig pressure drop at 100% fl_.

This change eliminated the high erosion at the 1 and 7 o'clock positioas.

After preliminary tests (water-coole_l and streak) were l_erformed on two cf the _i_

initial dezign _StA 150A HEAs, S/Ns 001 and 002; four modifications w_re made t@ _'

the injector geometry on HEAs S/Ns OO1 through 005. These design chan6es are

cussed in paragraph 6.2.1.2, and the test results are presented in paragraph 6._,I.3.

6.2.1.2 Design ModAfleation DescrlptloQs _

The four injector modifications evaluated are shown in Figure 6.2.1-1..

Mod No. 1 - The first modification involved reboring the sleeve I.D. frc_ 0.1_In.

to 0.175 in. The modification was incorporated on all HEAs after it was shown _kat

the fuel velocities and d_._ic pressures in the pintle-sleeve passage were e_sive

(effective fuel pressure drop was approximately i0 to 15 psi) and probably resulted

in poor fuel distribution. The velocity in the fuel flow passage could not be reduced

beyond a certain limit; otherwise, the radius of curvature of the fuel passage at the

injection zone would be reduced to a point which introduces losses and unstable flows.

This modification is shown in the upper left hand corner of Figure 6.2.1-1.

Mod No. 2 - The second mocification involved adding a l0 ° ramp extension on the inJec-

tro sleeve. It -_as incorporated in an effort to move the propellant impingement zone

away from the pintle and sleeve thereby reducing combustion reoughness (which

believed to be contributing to the excessive erosion). This modification is shown

in the upper right hand corner of Figure 6.2.1-1.

Mod No. 3 - l.'odification No. 3 (shown in the lower left corner of Figure 6.2.1-i}

was made by press fitting an extended oxidizer ramp onto the injector. This mod/fi-

cation was desi_ued to'move the impingement zone away from the fuel injection point

and still maintain a 90o impingement angle. The ramp was designed to prevent oxidizer

from overlapping at the fuel injection point as it probably did on Mod No. 2. The

distance from the end of the ramp and the fuel injection plane was also significantly

reduced. Testi__g of this modification was done with a rebored sleeve (Mod No. I) and

a 108-hole distribution ring.

Nod No. _ - Yodification No. 4 involved a simultaneous 0.200-inch lengthening of the

injector pintle, increasing the diameter of the oxidizer upstream ramp, and lengthen-

ing the downstream oxidizer step. This modification was first tested on SEA 150A-005

with a 24-hole distributor ring and with a rebored sleeve (Mod No. l). It is shown

in the lower right hand corner of Figure 6.2.1-1. _
j -
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6.2.1.3 Test Results

A total of 228 firings were conducted during this injector modification effort. Of

these firings, two were done with JTA throat inserts, 13 were done with ablative

streak test throat inserts, and the r_aining 213 firings were done with completely

w_ter-cooled chambers including the throat section. The following HEAs were test

fired: 150A-001, -002, -003, -004, -005, and 150-003.

Table 6.2.1-2 stumnarized the tests performed on these HEAs. A summary of the

individual streak tests performed during this series is presented in Table 6.2.1-3.

Seven streak samples selected from those listed in Table 6.2.1-3 are pictured in

Figures 6.2.1-4 through 6.2.1-10. Th_j are viewed from the upstream end.

C..*, listed in Table 6.2.1-2 is an average of the un=The characteristic velocity,

corrected values obtained on water-cooled_ chambers during that test series. There

is normally an 80 to 120 ft/sec C* correction which is added to the tabulated figure.

This correction includes pressure correction, throat growth, and water-cooling cor-

rection. The do shown in the fifth column of Table 6.2.1-2 is the correction for

heat removed from the chamber by the w_ter-:ooled combustion chamber. The sixth

column, P-h' indicates the roughness in chamber pressure as measured by the down-
stream tr_sducer. Whenever a streak test -_as performed during the test series

shown in Table 6.2.1-2, said test is identified in the Conm_nts col,---.

Table 6.2.1-3, the streak test su_nary, lists the run number, SEA number, injector

modification, and mixture ratio. The listed Cu* and_C*H_ 0 are measured on the water-

cooled run which preceded the streak test. In all cases no HEA adjustments were made

bet_en the streak test and the preceding water-cooled test. Pci/P, indicates the
initial and final chamber pressures. Th_ injector pressure drops t_lated for the

oxidizer and fuel indicate the pressure drop between the pressures measured Just below

the shutoff valve and the chamber pressure. Of this pressure drop, approximately

20 to 30 psia is irreversible at full flow and does not contribute to injection

velocity. The roughness indicates in the P__column were obtained from the Ph_oa

transducer used for the water-coolea run Jus_ prior to the stream test.

The only effect Mod i appeared to have on _A operation was to lower the heat flux

correction, 2_C_ 0 from _O-42 ft/sec to about 35-40 ft/sec. Characteristic velocity

was not signifiCantly affected but streak test throat erosionwas still unsatisfactory.

Mod 2 probably gave the most interesting set of test results of allthemodlfica-

tions; however, the streak tests were unsuccessful. Testing on Mod No. 2 alone

resulted in high C*'s (5400 ft/sec uncorrected) as indlcatedby Test Series 4 of

Table 6.2.1-2. The injector when reworked to include both Mod No. i and No. 2 pro-

duced the lowest C* (5000 ft/sec or less), lowest heat flux, and smoothest Photocon

traces of any TCA fired. Tests on _.As with these modifications are shown in Test

Series 5 and lO of Table 6.2.1-2. No screaming was evident on either series of tests.

With Mod 3 the heat flux was low - 30 _/sec but screaming was pronounced. The re- _

sulting characteristic velocity was low - 5-000 ft/sec (uncorrected). The Mod 3

streak test failed; chamber pressure dropped from 109 to 75 psia in _900 seconds. The

erosion pattern on the stream sample _s ova! and aligned to the inlet oxidizer

port. (See Figure 6.2.1-7.) This was the o_--lyunsuccessful streak test that showed

a sharp char border with about 1/_ inch of v_-rginmaterial at the _Bter-cooled

ablative interface.
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For Hod 4, three streak samples and a JTA chamber were tested with complete success.

The initial tests demonstrated a characteristic velocity of about 5250 ft/sec at the

high thrust level. Later testing, during the same series, demonstrated character-
istic velocities of 5350 ft/sec at maximum thrust. The test on the JTA chamber (with

no erosion) was run for three separate runs with a C* of 5420 ft/sec on all runs.

The -_ater-cooled runs prior to the JTA test showed uncorrected C*'s of 5360, 53_p

and 53B7 ft/sec. This TCA did not scream at any thrust level or injector pressure

drop. With the Mod No. 4 injector design, a sharply defined char pattern was also

distinctly evident after a 50-second r_u with a JTA throat insert in an ablative

chamber. Heat fluxes were the lowest experienced over the entire range of pressure

drop ratios. The patternator tests showed oxidizer flow varied fram plus 15-20%

high on one side to minus 15-20% io_ on the other side.

6.2.1._ Test Conclusions

The following conclusions were reached based on the test data and earlier data obtained

from testing the MIRA 150 HEA:

i. Characteristic velocity (ft/sec) is not the controlling parameter on

throat erosion.

o Combustion roughness measured at either the head end or the downstream e_nd

of the chamber with Taber or Photocon transducers does not correlate with

throat erosion.

3- In_ector pressure drops (absclute or relative) do not have a significant

affect on throat erosion, using an otherwise good injector.

4. Low heat flux is a necessary _t not sufficient criterion for low throat
erosion.

e Injector geometry is the prima_--/ _arameter controlling erosion. Roughness,

injection pressure drop, am/ characteristic velocity are controllable

parameters which can affect erosion within limits on a poor (high erosion

causing) injector.

6. A direct measurement of throat erosion using a streak test sample is the

best method of predicting the throat erosion characteristic of an injector.

The .,.k)d4 design pro_-Ided smooth com'=_3tion, eliminated throat erosion and maintained

high _erformance. All Phase II SEAs _S/:_s CO1 through 006) were modified to the Mod

4 In_ector configuration by fabrlca_ion of new injector sleeves of the size and

shape adhered experimentally by the fro-piece arrangement shown in Figure 6.2.1-1.

_nis Y_d _ design thus became the stania._d in_ector configuration on the MIRA 150A;

all phas_e Ill SEAs (S/Ns 007 and subsequent) were fabricated with the Mcxl 4 shape
and size.

I •
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6.2.2 Bi-Stable Combustion Imvestigsti_

The objective of the bi-stable combustion investigation was to determine the cause(s)

of observed operating differences between Phase II and Phase llI HEAs such as greater

than usual streak test erosion with Phase III HEAs than with Phase II HEAs. As a

result of this investigation, it was determined that: (i) t_ possible combustion

nodes existed, (2) the mode causing higher heat transfer could be triggered only at

sea level, and (3) the CC & I_ could tolerate the more severe mode.

6.2.2.1

The basic design difference between Phase II and Phase III HEAs was the addition of

quick disconnect ports to the injector bod_. This change necessitated relocation of

the injection pressure taps and propellant passages. No change was made to the basic

in_ector element comfigtu_atlon.

.4

Initial streak testing of the first Phase III HEA (S/N 007), resulted in an erosion

and char pattern noticeably different from that of Phase II HEAs. Overall erosion

was greater, the erosion pattern was less uniform, and the throat insert appeared
"hotter" than in previous streak tests. Another unusual characteristic of this I_

was an occasional 20 psi increase in the pressure drop between the fuel injection

-_anifold and chamber head end. This anomaly correlated with an increase in heat

transfer to the water-cooled chamber and an increase in combustion noise. Initial

tests on the next Phase III _A (S/N 0_.) showed none of these characteristics, while

the third and fourth Phase Ill HF_s (S/N 009 and 010) exhibited all of the anomalies
of S/N 007. It was then evident that a bi-stable cQmbustion condition existed which

had not been experienced during testing of Phase II HEAs.

An investigation was initiated to determine any differences between the Phase II and

Phase III 150A HEAs which might explain the combustion characteristics mentioned
above. A reinsl_ction of all mJor parts of the Phase III units was conducted. The

sleeve (Part No. 105192), pintle (Part No. 105107), pintle guide (Part No. lOyi06),

and body (Part Nos. 106809 and 105_64) were reinspected to original prints. In

addition to relnspection, the parts from Phase III EEA 150A-007 were compared to the

paints from Phase II EEA 150A-006 at high magnification on an optical comparator in

an attempt to identi_ differences that might explain the change in performance.

A_er a thorough investigation of Phase III and Phase II parts, the differences noted

be_._en the t_ injectors _re: (1) the method of applying Micro Seal treatment

to the 10666h Body Assembly on the Phase IIX unit, (2) the method of staking in the

distribution ring (Part No. 105103-2), and (3) the aforementioned additions of quick

_,isconnect ports and relocation of injector pressure ports on the Phase IIl design.

The third item results in a slight increase in propellant volume upstream of the
shutoff valves.

A series of engine firing tests were performed concurrently with the reinspectiom of

parts mentioned above. Comparative tests under identical conditions _re made on

three Phase IV 150A HEAs and five Phase Ill HEAs, and also on the MIRA 150 HEA-O03,

which has a sigmlficantly different basic injector element. Figure 6.2.2-I shows

the injector configuration of the MIRA 150 HEA sad the modifications to the basic

15CA element which were tested in this investigation. These modifications are

described in paragraph 6.2.2.2, and the results are discussed in paragraph 6.2.2.4.
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6.2.2.2 Injector Configurations and_x_llficatio_

The injector configurations and modlfications (to the basic condi_Arations) which

were tested during this combustion investigation are shown in Figure 6.2.2-1.

The basic configurations were:

Phase II I_OA HEA - This confi_Aration was the standard Phase II design.

HEAs S/Ns 004, 005, and 006 -_re tested under this configuration.

Phase III 150A HEA - HEAs S/Ns 007, 008, 009, 010, and 011 were tested under

this configuration as stand_rl Phase III HEAs. Basic change from the Phase

II design was the addition of quick disconnect ports, as disc,_sed in para-

graph 6.2.2.1.

150 HEA - HEAS/NO03 tested was one of the original MIRA 150_As.

This design has a larger dlaneter slee_ and pintle compared to the MIRA

150A_As.

Injector modifications for +_hese tests "_re limited to changes which could be readily

l_erforned on existing HEAs by reme_hi_ of parts already fabricated.

The modifications teated _'es

@ "Roughened" Sleeve - The surface of the injector sleeve on I_OA HEA S/N

O10 was roughened using #_CO emery paper while the HEA _s on the test stand

bet_en Runs C2-66M and C2-665. This was done to alter the oxidizer flow

boundary la_er conditions. T_ne roughened sleeve was left in the HEA while

other modifications -_re being investigated.

80 ° Pintle - A fuel pintle (Part No. I05107) was reground frca 90 ° to 80 °

as shown in Fi_re 6.2.2-i to change the propellant in_in_-e_ent angle in

an attempt to eliminate injection pressure drop shifts _ relocating the

combustion flame front. This _intle was installed on___A S/N 010 for Runs

C2-696 through C2-698. This _ already had the "roughened" sleeve modifi-
cation mentioned above.

Reduced Diameter Sleeve ."_I_- _'_nismodification was tested on I_OA HEA S/N

009 during Runs C2-681 thr_Agh C2-68_. The tip of the sleeve, (Part No.

1051_2) was machined to a smaller diameter, as shown in Figure 6.2.2-i.

In a_dition to these modifications, the fuel pintle from Phase II _A S/N 006 waa

ins_lled in Phase Ill HEA S/N OlO for Runs C2-699 through C_-708. Although Phase

II and Phase III HEAs both use the sene pintle design, this exchange was performed

to ascertain that no change in fabrication techniques had occurred be_._en the times

the Phase II and Phase III plntles w_re produced that might have affected the flow

characteristics of the injector. Each of these basic configuration and modifications

_re subjected to an identical series of test conditions as describe_ in para_ph

6.2.2.3. The results of these tests a_ given in paragraph 6.2.2._.
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6.2.2.3 Test Setup and Conditions

After inspection of HEA detail parts shoed no significant change in injector con-

figuration between the Phase II and Phase III HEAs, a review of the test setup at

the Inglewood Test Site was made to determine whether the Phase III HEAs had been

tested under different conditions which might explain the change in combustion charac-

teristics.

The Phase III HEA tests, except those for dynamic response and start-stop transient

response, were run witho.,t the nitrogen gas purge lines which were usually connected

to injection pressure taps. Earlier, purging had been used as a safety precaution to

prevent accidental acouzulation of propellants in the combustion chamber when the HEAs

were fired on the IRTS horizontal test stand, C-I. Since the Phase IIl HEAs were to

be fired only on the IRTS vertical stand, C-2, where propellants would drain from the

chamber, it was decided to eliminate purge volumes to enable the acquisition of valid

response data on all runs.

The elimination of purging had two effects on run conditions: (I) successive firings

without purging may result in varying amounts of residual propellants in the injector

passages, which could cause an oxidizer or fuel lea/ on startup; (2) the fill volumes

between the shutoff valves and the metering gaps s-_e decreased by two-thirds, which

causes shorter start trausient times and rapid chamber pressure rise on startup. Both

of these conditions were considered as possible causes of the bi-stable combustion

experienced in initial testing of Phase XII _EAs.

Figure 6.2.2-2 shows the relative locations of the ._ael and oxidizer passages down-

stream of the shutoff valves. Vertical mounting of the _A creates a trapped fuel

volume between the shutoff valve and the pintle guile, while the oxidizer passages

drain freely. In addition, the low vapor pressure of the mixed oxides of nitrogen

(MON) compared to monc_et_vlhydrazine (MMH) causes rapid boil-off of the oxidizer

compared to the fuel. Both of these conditions temi to cause a fuel lead on ignition

when the injector passages are not put@rod prior to starting.

To investigate the effects of the above conditions, tests _re conducted both with

and without the purge volumes attached. Additional tests were made with the purge

volumes disconnected and the propellant passages cc_-pletely free of trapped propellant

by purging the injector _-ith nitrogen and then removing the purge lines immediately

prior to firing.

Phase III HEAs, which had the quick disconnects po_s upstream of the shutoff valves,

were tested with and without the additional volumes of these ports filled with pro-

pellants (attained by bleeding) or plugged _th Teflon rods.

Instrumentation used _ -Ao. all tests is listed in Table 6.2.2-3. The results are listed

in Table 6.2.2-4 and described in para6raph 6.2.2._.

The test conditions for each of the HEAs fired during this investigation are stumarized

as follows:

ii Empt_ Passages Do-.-astream of Shutoff Valve - This condition was attained
when the I_A -._s first installed on the test stand or by purging through

the injection pressure ports. Purge line volu_mes then were or were not

removed before the firing.
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%H

PCI>-I

PCD-2

POUV

PFUV

FMF

FM0

ISA

LSA

TWD

TF

TO

SSV

*P-if

*Pio

Table 6.2.2-3

Instrumentation Requirements

Parameter

Chamber Pressure 1

Chamber Pressure 2

Chamber Pressure 3

Inlet Venturi Pressure,

Oxidizer

Inlet Venturi Pressure,
Fuel

Fuel Flowrate

Oxidizer Flowrate

Actuator Signal

Actuator Position

Cooling Water Flowrate

Cooling Water Tempera-
ture Rise

Fuel Temperature

Oxidizer Temperature

Start Signal

Injection Pressure Fuel

Injection Pressure
0xidi zer

Instrument

r_e

Taber

Taber

Photocon

Taber

Taber

Rotating Vane

Rotating Vane

Ammeter

Potentimeter

Rotating Vane

Thermocouples

Thermocouples

Thermocouples

P,ela,y .

Taber

Taber

0 - 150 psia

0 - 150 paAa

0 - 150 psia

0 - I000 ps[a

0 - I000 psia

.o3- .3lb/_c

-o'5 - •_ lblsec

+" 1_::) }4n_
i

+ 0.12 Inch

0 - I0 ib/sec

o- 50°F

0 - lO0°F

0- 100°F

0 - 250psia

*Optional Instrumentati_
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e Partially Filled Passages Downstream of S_toff Valve - This condition

occurred when an injector was repeatedly fired on the test stand and not

purged prior to restarts.

. Throttlin_ - To achieve this condition, _s of each configuration were step

throttled from minimum to maximum thrust to check for initiation of the

bi-stable combustion mode.

6.2.2.4 Test Results

A total of 98 firings were performed on nine different HEAs. HEAs of the three basic

in
configurations described ragraph 6.2.2.2 were tested. Most of these tests in-

cluded multiple starts and/o variable thrust o_eration of the HEA. Twenty-three

streak test ablative throat inserts and four ablatively cooled CC & NAs were tested

in addition to the majority of the firings t_t were made using a _ater-cooled
combustion chamber.

A summary of the test results are presented in Table 6.2.2-_. The table lists the

number of times the bi-stable combustion mode "_s a_tained compared to the number of

times the particular test conditions were imposed. Tests results are listed separately

for each test condition on each HEA tested, and -_re also subtotaled for each configura-

tion. The right hand columns of the table sheathe c_hange in C* performance and
chamber heat flux measured when the bi-stable combustion conditions existed.

Typical effects of bi-stable combustion on HEA measured parameters are shown in

Figure 6.2.2-5. Exceptions to some of these norms are discussed in the notes below

Table 6.2.2-4. In general, hi-stable combustion resulted in increased C* performance,

higher heat flux, and an increase of about 20 psia in fuel injection preszure drop.

High speed oscillograph traces of the tests, such as the one reproduced in Figure 6.2.2-6,

showed that the chamber pressure fluxuations measured by a Photocon transducer in-

creased in a_plitude from + 5% of the mean pressure _eak-to-peak under normal conditions

to _+ 10% peak-to-peak _nde_ bi-stable combustion conditioms. The oscillograph traces

also showed a significant fuel inJection pressu__e lead on ignition when the injector

passages downstream of the shutoff valve were pa._i_ally filled with propellants, as

described in paragraph 6.2.2.3. Photocon measurements of chamber pressure frequencies

indicated a shift from 2000-3000 cps at normal conditions to a consistent 1500 cps at

the bi-stable combustion conditions. This 1500 CPS frequency was occassionally audible
durlngTCA firings.

The Handbook of Astronautical Engineerin_ (H. H. Enoelle, Editor-in-Chief; McGraw

Hill1961), page 20-66, described an "Entropy Wave" mode caused by a sudden mixture

ratio shift at the injector resulting in a press_Are _ traveling to a zone near the

throat, changing in press_Are at the sonic nozzle, and propagating back to the injector,

thereby causing a further change in mixture ratio. The fuel lead on ignition result-

ing from residual _uel in the injector passages _s a possible cause of such a mixture

ratio shift. Inserting the actual combustion c_-_amber _dimensions in the equations

presented in the abov_ reference results in a calculated frequency of 1525 cps, which

is very consistent _ith the measured frequency of 1500 cps. It was also possible

that local mixture ratio variations caused by nonuniform flow distribution may have
initiated an "Entropy Wave." This was a possible explanation for the fact thatthe

bi-stable combustion mode was initiated by throttling _-A S/N 010 after the sleeve
was rot_hened.
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Streak test ablative throat inserts and injector face plate liners tested on 150A

HEA S/N 010 at both normal and bi-stable combustion conditions are shown in Figure

6.2.2-7. The only difference in test conditions for these two firings was purging

of the fuel passages before Run C2-673. Purge lines were then removed before the

firing. Both test samples showed that the injector distribution pattern was not

perfectly centered, causing more charring on one of the throat. However, the stream

test at normal combustion conditions was acceptable by the criteria described in

paragraph 4.3, while the streak sample at hi-stable combustion conditions had more

erosion and a serious stream at one point. Both the ablative throat and face plate

liner from the test operated at the hi-stable combustion conditions (Figure 6.2.2-7)

showed the characteristic white glass flow associated with higher temperatures at

the chamber wall.

On all HEAs tested, the streak test nozzles operated under hi-stable combustion

conditions showed more erosion and a less uniform pattern than those run under normal

conditions.

Three of the four CC & NAs tested during this investigation were run at the hi-stable

combustion conditions: CC & NA S/N 004 on HEA S/N 007, Run C2-620; CC & MA S/N 009

on _ s/I_oo6, Run c2-515; an_ cc a _ s/_ oi_ on _A S/N O10, _un C2_9_. These
chambers had a noticeable amount of throat erosion after the 300-second, full-thrust

durability tests; however, the thrust vector deviation which -._uld have been caused

by this erosion did not exceed the reqjAired limits. Paragraph 6.A.2.2 discusses this

subject more full_.

The results of all tests discussed under this investigation have shown that the

bi-stable combustion condition is attained only when the injector passages are partly

filled, which occurs when the injector is not purged or exposed to vacuum between

firings. Altitude testing experienced at JPL/ETS indicated that residual propellants

are expulsed during the shutdown transient, as described in paragraph 6.9.1.2.

6.2.2.5 Conclusions

The following conclusions were derived from Oh. test results presented in paragraph
6.2.2._:

i. Ri-stable combustion conditions would not have occurred under actual mission

conditions where a vacu_ environment would assure emp__- injector manifold

passages between restarts of the TCA.
b

2. Bi-stable combustion conditions did not result in unacce__table durability

of the CC & NA.

3. The geometry of the injector element (sleeve tip and pintle) is the critical

parameter in control of com_r_stion characteristics.

he The use of ablative streak test nozzles is the most consistent quantitative

method of determining bo+_h the overall and localized erosion characteristics

of an injector.

i
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Figure 6.2.2-7. Ablative Streak Tests
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6.3 Fixed Area In4ector Tests.

A series of static firings _ere conducted on MIRA 150" HEA S/N 002 with the injector

sleeve locked in position. The l_e of these tests was to demonstrate the

operation and performance of the MIRA 150 Design in a fixed area injector configuration.

One test series had the sleeve position set for optimum performance at maximum thrust.

During a second test ser_es the sleeve position was set for optimum low thrust per-

folwm_e.

Performance is depicted in Figure 6.3-I. Additional tabulated data from then runs

are presented in Table D-2-21 of Appendix D-2.

These data indicated that the MIRA 150 injector with the injector sleeve fixed is

capabl_ of being employed for limited range throttling as a fixed area injector.

*Details of this Ph@,se II type injector configuration are discussed in the Phase II
Final Report (STL Document No. 9730.4-6_-36).
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6._ Service Life Tests

The HIRA 150A TCA service life capability may be considered from two points of view -

one involving primarily cumulate firing time and the other involving the number of

cycles of operation.

The former consideration is most applicable to the CC & NA. First, because it contains

.he ablative liner that chars progressively with total cumulate firing time. Second,

because it contains JTA in the throat that (theoretically at least) must give up to

its surface as a function of time at elevated temperature molten Si O_ to serve as a

protective layer. (It is recognized that char and erosion rates of a_lative liners

are also dependent on the number of starts and cool-downs, and the liner temperature

at restart. However, in the context of the MIRA 150A CC & NA performance where re-

starts should never exceed six, this startup influence is quite small. )

The latter consideration (i.e., cycles of operation) is most applicable to the HEA

and-especially to the following component subassemblies of the HEA: Servoactuator,

helium pilot valve, shutoff valve, flow control valve, and injector.

Paragraphs 6.4.1 and 6.4.2 discuss the CC & r._Adurability (or service life aspects).

Paragraph 6._.3 deals with the HEA cycle life aspects.
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6 ._.I Applicable CC &NA Service Life Tests

!/

6._.i.i Sea Level Durability Tests

During Phase llI, a total of 18 CC & rd_s incorporating ablative liner assmblles and
JTA nozzles of the final design were tested under sea level conditions at IRTS. The

first eight of these 18 tests served to verify the choice of the final design of the

ablative liner and two-plece JTA nozzle throat insert. The nezt ten sea level durability
tests successfully demonstrated.the two categories of service life specified in JPL
Specification SAM-50255-DSN-Ctha_required 300 seconds at maxlzrmm thrust and _80

seconds at minimumthrust with the mixture ratio at 1.6. Anomal_s behavior resulted

on one chamber (S/N 01_) where the chamber burned through after 255 Seconds of maxlmum
thrust. Only three CC &NAs exhibited any detectable throat erosion and what wa_

measured would not have resulted in excessive thrust v_ctor deviation _r any risk of
continued firimg. These three CC & I_s (S/N 004, 009, and 01_, also the C_&_Aon

which the burn through occurred) were tested either with HEA S/N 006 that had a hell_

leak causing unacceptable c_nbustion characteristics, or with HE%_ that were operating
in the bi-stable mode discussed In pe._agraph 6.2.2. Such performance would not occur
under spacecraft operational conditiona.

6._.I.i.i Test Article and Set-Up - In early Phase III CC & HA _ability testing,
eight CC & I_As _rith liner assemblies identical to that specified on STL Drawing i065_6-2
were tested under maximum thrust conditions. The metal case used on these tests _a8

stainless steel (80mils thick) instead oft he flight weight titardt_ case. '_hese

I Later in Phase III, ten more durability tests were performed in accordance with para-

graph 3-13-1.2-q-of the Development Test Plan. These tests were perTormedwith complete
CC & I_s (case included) that conformed to STL Drawing I065_6-2.

A typical test setup for a sea level TCA firing is shown in Figures 6.7.I-i and -2,

except that an ablative-cooled CC & F_ was used in place of the "._ter-cooled chamber
shown in the figures. The CC & I_As tested during the early stages of Phase IIl (J_A-
C "0_ through J_A-OI3) were not insulated from the test cell envi_ent. The later

Fnase III sea level tests were conducted with insulated CC & l_As. A schematic of the

sea level CC &HA thermocouple locations is shown in Figure 6._.2-I.

o.4.1.1.2 Test Objectives - The eight early durability tests dls_ssed in paragraph 6.1

_ere maximum thrust firings conducted to verify the choice of the f_mal design by test-
ing under the following conditions:

1

_'_'ture Ratio 1._ + 0.1

( .
Chamber Pressure. I0_ psia + _ pets

c* (cot=coted): 5_u_o _/sec _+ z.o%

Firing Schedule: 15 seconds at max P followed by a cooldown to ambient
temperature, _0 secSnds at max P followed by a cool-

down to ambient temperature, andCa ._inal 235 second

firing at max Pc" _ _ I
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The purpose of the later ten sea level durability tests was to demonstrate the following

two categories of minimum service life on the selected final design using M0N and ]_4H at
a 1.6 mixture ratio.

• Maximum Thrust Duration: 300 seconds in 3 incre_ents (15, 50, and 235
seconds) at max_un thrust with cumplete cool-
downs to ambient temperature between flrings.

• Mlnimm_ Thrust Duration: _90 seconds in 3 increments (15 seconds at

maximum thrust followed by 50 and _15-aecq_l
firings at minimum thrust) with complete
cool-downs to ambient temperature between

ZLr_s •

6._.i.I.3 Test _trix - The test matrix for the ten durability tests performed in

accordance with paragraph 3.1.3.1.2 of the Development Test Flan is shown in Table
6.4.1-1.

Table 6._.1-I

Sea Level CC & HA Service Life Test Matrix

CC &NA Test Type HEA
Serial Max. Min. Serial

Nmnber Thrust Thrust Number
Initial Chamber

Temperature (vF)

Propellant

010 X 006 Ambient Ambient

oo9 I 006 125 Ambient
011 X 006 Ambient Ambient

o13 x 005 o loo
ool x oo5 125 zoo
012 X 005 0 i00
00_ X 007 Ambient Ambient

003 X 002 Ambient Ambient
O1_ X 01_ Ambient Ambient

002 X 008 Ambient Ambient

6._.i.i.4 Test Results - The test results of the Phase Ill sea level CC & l_ durability

tests are presented in Table 6._,I-2.

6._.i.2 Other Applicable CC &NATests

Table 6._.i-3 sun_arizes the other applicable CC & I_ service life tests performed
during Phase IIl. These tests are described in other r_raphs of this report; the

applicable paragraphs are referenced in the last column of this table.

Considered herein are 13 CC & NAs (including seven flight expansion ratio chambers)

tested at altitude at JPL/ETS., The results in terms of char_ erosion_ external TCA

surface temperature, and weight loss are reported in paragraph 6._.2. In evex7 ease

the CC & NAs performed acceptably.
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" CC &NA

Serlal

l_umber

0O2

oo3
0o5

Other Applicable CC & FA Settee Y-_fe Tests

Test CC & NA

Desi_atton

Altitwk
Altitude
Altitude

_-_1
_-_,
003,

, ,i ,

Test
_trtx

8_2.,60Z3-S_.,O00
6.-33

6._

6.6
6.6

,,,l l , l

Test Objectives, S_mmm.-y, Config-

urations, Setup, Conditions, and

Re t, .....
6.6.3
6.6._

6.6._

_--.----_.

i!

1

6._.1.2.1 Test Results ' The CC & _A test results from the tests listed in T_hle
6.4.1-3 are presented in _able 6._.1-_.

Test 5.2.5 w_ t_ hive been the last test in the propellant temperattu_-
_ _a testa l Ir_th _ ooz_tio we at me4Ln _m. It _a newer
__ i_ sea level CC & _A Serial Nun_ers 002 and 012 were u_d"
pea%ially in te_ 5._.5 and pe_tially on the CC & RA durability tests.

5.s._(l) Sea _l 6.5 6.5(_)

_ _ se_ _vez (_) (31012

(1) Development Test Plan para6ra_h number describin6 the test.!_ (2) T_e test objectives, sm_7, conditions, and results are describediu_ 6.5. _he teat setup 'm.s identical _. t_t _Llin t_

r 005 P_E-OO_B Altitu_e 6.6 6.6.6
P_-oo5 Altltude 6.6 6.6.11P_T-O07 Altitude 6.6 6.6.7

, 001 P_T-O08 Altitude 6.6 6.6.8007 P_-OI1 Altitude --- 6.10.2

006 5.2.1 (1) Sea Level 6.5 6.5 (2)

_L 008 5._.2 (1) Se_ _vel 6._ 6-5 (e).... 005 5._.3 (1) sea _evez 6._
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6.4.2 Applicable CC & NA Service Life, _s_, ,Results

6.4.2.1 External Surface _:loezatures

Temperature profiles of the MIRA 150A TCA external surfaces were obtained on both ses

level and altitude firings. Temperature measurements were not acquired an the HEA dur-

ing sea level firings because of the dAfficulty of thermally insulating the in_eetor

from the convective cooling environment inherent in the test cell. Such insulation is

necessary to make the ten_rature meaningf_l as related to the operational condition.

Some of the CC & Yuls fired at sea level were thermally insulated from the test cell

environment with one-half inch thick silica batting. Figures 6.4.2-1 and -2 show the

thermocouple locations on the sea level and altitude configurations.

Figures 6._.2-3 tD-_u@h 6.4.2-5 show CC & NA surface temperatures obtained under sea

level conditions with use of the thermal blanket for Runs C_-522 (maximum thrust), C2-525

(minimum thrust), and C2-60_ (variable thrust conditions). In Figure 6.4.2-3t the

surface temperature profiles of a CC & NA tested under sea level conditions without the

thermal blanket (_An CI-155C) is also shown for a 235-second firing. The case tempera_

tures are approrLu_tely 600°F lower for the uninsulated case where convective cool/rig

is apparentl_ appreciable.

Figures 6.4.2-6 th._h 6.4.2-8 show typical surface temperatures obtained at JPL/_

under altitude conlitions for maximum thrust firings (Runs I_-35, -36, and -37), minimum

thrust firings (_._s IY/_-38, -39, and -_0), and variable thrust firings (Runs DY-20

th uzh DY-2 ).

Figures 6._.2-3 a=i 6._.2-6 show that at maximum thrust the simulated altitude environ-

mental conditions result in approximately 300°F higher surface temperatures at Statlc_s

4 and 5 than with _he insulated chamber in a sea level test. This can be seen by compar-

ing Run C2-5223 _th _b_n DY-35. Figures 6.4,2-5 and 6.4.2-8 (Runs C2-6OHC and DY-23)

show approximately 200°F higher surface temperatures at Stations 4 and 5 for the altitude
conditions than for the insulated sea level test under variable thrust conditions.

Comparing Runs DY-27 (._P>:'n_nnthrust) on Figure 6.4.2-6 with Run DY-39 (minimum thrust)

on Figure 6.4.2-7, She ._Jiace temperatures were higher for maximum thrust conditions

at all stations, excep_ T_-h. Station THE-_ was atproxlmately 50°F hotter during the

minimum thrust firing than during the maximum thrust firing _. This may have been caused

by more local con;_ctive heat transfer surrounding THE-_, since the test cell pressure

was about five t_s higher because water was injected into the test cell to cool the

facility butter_z -ralve during the maximum thrust firing.

Also of interest is the tendency for surface temperatures at Stations _ and 5 to rise

more rapidly and to reach higher values under the same firing conditions as the liner

becomes more chs-_red. This can be seen by a comparison of the three successive 160-

second firings sh_n in Figure 6._.2-7.

Selected theoretical temperature profiles, extracted from those given in paragraph 7.5.3

for corresponding stations are shown as dotted lines in Figure 6._.2-8. Agreement is

good between predicted and measured temperatures at an expansion area ratio of 2_ in

the radiation portion of the nozzle skirt, TC-2. Larger variations between predicted

and measured te__-mera._u.-es occur at the other combustion chamber stations. Less accurate

prediction of these tezperatures may be attributed to lack of knowledge on the gas

film heat transfer coefficient. The heat transfer prediction is especially difficult

in a chamber such as the MIRA 150A where there is appreciable film cooling.
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6._.2.2 Nozzle Erosion

l>Aring Phase YII, a total of IO, OO0 seconds of firing time was accumulated on 30

CC & NAs incorporating JTA _raphite nozzle inserts. During these tests, only three

CC & NAs exhibited throat erosion. The erosion in each instance occurred during the

sea level maximum thrust durability tests. The three eroded sea level chairs (P/N

1C65_6-2) had Serial Numbers OO_, 009, and 014 and vere tested on H_As S/Ns 007,-006,

an_ 010 respective_v. Figures 6._.2-9 throu@h 6._.2-i_ are post firing photos of

the CC & NAs showing the nozzle erosion and their corresponding streak test nozsles.

CC & NA S/N 00_ was tested on __A 150A-007, the first Phase Ill production HEA. The

streak test nozzle shown in Fi_Are 6.2.2-10 Was used in the ablation throat acceptance

test of this HEA (see paragraph h-3); the HEA failed this test. Evidence of a hi-stable

combustion condition existing with _ 007 was apparent on Runs C2-619, a _ater-cooled

cheer firing, and C2-620, a streak test firing (see paragraph 6.2.2 for further

details). A maximum thrust durability test was performance on a CC & NA S/N 00_ to

exloerlmentally determine _he corresponding erosion on a JTA graphite nozzle that is

characteristic of an HEA that had failed the streak test.

?

CC & NA S/N 009 was tested on _A 150A-006. The injector body of EEA 006 had been re-

worked by welding a sleeve in the oxi_-izer shutoff valve body to correct an unaccept-

able machined dimension. The -_ml_ -_s faulty allowing a helium gas leak past the
sleeve into the oxidizer manifold. _ne flow of helium caused abnormal oxid/zer in-

Jector pressures and a more erosive environment.

CC & NA S/N 014 was test fired on I_A 150A-OIO. During prelimin_ checkout and streak

test firings, it was noted that _ 0!0 operated in a bi-stable mode (see paragraph!
6.2.2). As with HEA 007, a __ thrust durability test on a CC & NA was performed

to determine the effect of the bi-stable mode of operation on chamber durability.

Fi_Ares 6._.2-16, -17, and -18 show the chamber pressure versus time curves for the

firml firings of CC & NA S/Ns 00_ (_Au C2-628C), 009 (Run C2-515C), and 01_ (Run

c-o-69_c). Erosion of the JTA graphite nozzles occurred during the final 235-secom_

d'_--_ation firing in all three cases.

CO & NA S/N 002, the throat area increase following the final firing was 9.6%

:tth a throat area centroid shi_ of 0.035 inch. If the throat erosion pattern is

as=-amed to have occurred on _z_ altitude type chamber and the exit diameter remained

concentric with the centerline of the TCA, a nozzle area centroid shift of 0.035

inch would correspond to a th_--_t ve.-_tor deviation of 0.316 degree. A thrust vector

de:_ation of 0.316 degree is _-ithln the allowable deviation of 0.35 degree as

s=_ecified by JPL Specification S/J.[-50255-DSN-C.

T-_e throat area increase on CC & _'[AS/:_ 009 following the final firing on HEA 006

_--s 0.96% with a throat area centroid shift of 0.O10 inch. This corresponds to a

th__st vector deviation of 0.091 de_ee assuming the erosion occ,_red on an altitude

tD..-peCC & NA. This was again _rlt__In the allowable thrust vector deviation.

."%e steps in chamber pressure data on CC & NA S/N 01_, shown in Figure 6._.2-18,

re_resents an attempt to _.rigge_-_ on _A S/N OlO the mode of operation that produces

the erosive environment. A_ter 190 seconds of firing, the CC & _'LIburned through

the case upstream of the JTA graphite insert. The burn-throu@h was coincident with

a streak area or point of pro__llant impingement on the ablative wall. At the time

th, final firing was stopped, the nozzle throat area had increased 8.5_%. The throat
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Figure 6._.2-9. CC & NA S/N 005 ".:axi=um Thrust IAu_billty
Test C2-682 on _-A 150A-007

Figure 6.4.2-10. Pretest Streak Nozzle Number 7A-I-C2-620

on HFA 150A-00_

4
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°

_retest Streak Nozzle N_mber 6A-3-C2-513

on _ 150A-006



_e6.k.2-14. Pretest Streak Nozzle

:lumber IOA-7-C2-693 on

Number 150A-OIO

Fig:-e 6.4.2-15. Post-Test Streak Nozzle

Number IOA-8-C2-695 on

HEA Number 150A-OIO
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are& centroid shi_ _ was 0.020 inch which corresponds to a thrust vector deviation

c_ an operational CC & HA of 0.181 degree; again an acceptable deviation.

Tests on the Thrust Vector Deviation Stand, designed and built to measure the e_gle

of thrust deviation from the centerline of the TCA, were not acc_plished.. Therefore,

_ ass_io_ _d in the _o_ric _AY_ o: _ vector deviati_ _ _ a._
s/_s oo_, oo9, a._ 01_ _re not p:rov_ exp_men_..v. A diseussJ.o_, oZ'_s sT.a,_ 1,
included in section 8.0 (Special Test Equl_ent) and also in Append_ O.

The three tests cited above did show that HEAs that fail the acceptance streak test

described in _ra_a_h _-3 do indeed cause more than normal erosion of an operational
CC & HA throat. Eovever, the resultant erosion is not of such a ,_nitude that un-

acceptable thrust vector deviation is expected to result.

It is hotel that had the TCAs been operated at the nominal mission cycle of" 162.

seconds at an average thrust near 85 ibs (per _ Specification SAM_50255-DSN-C)

rather than the crcerstress conditions used in the above tests, the erosion _,_I_

probably have been _ detectable.

6._..2.3 Char Depth _
Determination of CC & NA _iner char depth was not a primary objective of Phase III

test_. Test _ta _ble 1"ol-c_ d_ dete_tions _ de_a n_ _sts
performed for other F_r_oses t such as durability and overall T_A performance _es_s

under extreme operating con_Litloas. . .
An isometric cutaway view of a typical CC & NA liner assembly is shown in_ Figure 6._.2 19.

This figure deflues the axial location of the char depth measurements. TheSe measure-

ments were taken _t the zero degree section which coincides with the plane that passes
mid-way between _he oxidizer and fuel flow control valves.

Fi_ _._.z-__ thee_ecto_:iri_d_tion onc_= depth._ c._=o_
data was obtained _ three CC & NAs tested at s_Alated altitude curlnE. (i) _5-

second_-_ (__/x-2_),C2)_0-secondm_-oo_(_s i_-_'__d -_),and(_)_-
second totaA duration Tes ,,Series P_T-002, -003, -OO_A, and -O0_B (Runs DY-26, -27,

-26, and -33)- O_a-._.y views of the CC & NAs used to obtain the csls_::eP_hdf_or Figure
6._.2-20 are sh_.m in Figures 6._.2-21, -22, and -23. The CC & HA xn_

P_T-OOI and P_T-O05 _re the only ones fired for durations less than 300 seconds.

_Ii of the CC "& ._As tested at sea level were cc_-pletely charred in the zones of interest.

Further, since the sea level tests were conducts;- under a less severe 1_at transfer

environment than the operational one, sea level char depth data w_s excAu_e_.

Table 6.4.2-24 _---_izes the measured char depth data at four average thrust levels.

The data were obtained from the following teszs performed in the JPL/ETS altitude
cell: (i) _O-seco:i, minimum thrust P_T-O08 (l_J.us DY-38, -39, agd -140), (2) 315

second, variable thrust Test Series PQT-002,-003, -OO_A, and -OO4B (Runs I_-_b,

-27, -38, and _33), (3) 300-secon_, maximum thrust PQT-O07. (Runs DY-35, -36, and ..

-37) and (_) 3_-_econd, initial dynamic thro%tllng test (Runs DY-_O thx_ough _-2_9.
Cutavay views o_ the CC & NAs used to obtain the char depth for Table 6.4.2-2_ are

shown in Figures 6.} .2-23, -25, -26, and-27-

A line of white do_s_ has been added to the cutaway CC & NA views to clarify the

c.har to uncharted material interface.
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Char Depth to Thrust Level Relationship

l Station No. Maxinnnn Ablative Average Total Firing Measured Char

(per Figure Material Thickness

x .27o

Thrust DuratioQ Depth

32 _Bo .zSo

81 3_8 .o9o

96 _.5 .o9o

].52 3oo .o6o

2 .375

3 .600

480 .o80

8]. 3_8 •375

96 3].5 .3?5

ZS_ 3oo •37_

32 _0 .120

81 3_8 .6oo

z52 30o .6oo

.38o 32 _ .050

8Z 348 .230

_5 . ::_,o

].52 300 .380
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The head end liner (Station l) chars more at minimum thrust than at other levels.

This is caused by a shifting of the combustion zone towards the hea_ end llmer when

the TCA is at minimum chamber pressure.

The 81 and 96-pound average thrust levels were calculated by integrating the thrust-

time plots and dividing by the total firing time. The 32 and 152-p_ average thrust
levels were obtained by fixed thrust level firings at minimum and maxlmma levels.
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6._.2._ CC & NA Ablative Liner Weight Loss

Data acquired from two CC & NAs tested with variable thrust-time l_roflles under
altitude conditions at JI_/ETS (180-second PQT-005 Runs DY-_7 and _ and 3l_-

second Test Series I_-002, -O03, -O0_A, and -O0_B Runs DY-26, -27, -_, and -33 )

shoved a direct linear relationship between firing times and weight loss increases.

The CC & NAs lost 45 grams during PQT-O05 and 78 grams during the 35-second test

series. Figure 6.4.2-_ shows the effect of thrust level on chamber liner weight

loss under both sea level and altitude conditions. The data on altit_le conditions

shown in Figure 6._.2-28 were obtained from the same four CC & HAs cited as used

for Table 6._.2-2_. The sea level data in Figure 6.4.2-_ were obtained fr_ Runs

C2-525, C2-515, and C2-623. The dashed lines shown represent estimated weight loss

values as a function of average thrust level for a 300-second duration firing, and

are based on a linear relationship between firing time and weight loss. It is

assumed that the weight loss is all from the polymeric material in the chamber liner.
The weight of the CC & NA prior to test is _,_nAlly 2.60 pounds. Data from Figure

6.4.2-28 indicates that the MIRA 150A CC & NA weight loss will not e=eed approxi-

matel_ 7.8% of its prefire weight for thrust levels and firing durations typical of

those used in Phase III testing.

6._.2.5 CC & NA Gas Leakage

Even though test data show that the present CC & NA design is a_equate in all respects

for Surveyor application, most CC & NAs dad not exhibit zero gas leaka_ on pre81nlre
checking.

When the cause of the leakage was traced to a dama_d O-ring between the ablative

liner and titanium shell, the leak was repairable. On other occasions, replacement

of the O-ring seal did not stop the gas leakage. When leakage occurred on firing,
it could be detected at the following places: between the ablative liner and

titanium case, at the radiation skirt to ablative exit cone interface, around the
ablative liner retaining pins, an_ between the ablative liner and JTA nozzle insert.

When the leakage became a re_u!arly detected characteristic during the CC & NA leak
check procedure, several units were disassembled and the ablative liner assemblies

ie_ checked separately. _nese ablative liners themselves were found to be leak_

nitrogen gas at pressures as low as 30 psig. An attempt was --_le to pressure

i__pregnate the ablative liner ass_bly with a high temperature resin. Upon leak

checking the liners followi_g resin impregnation, the leaks through the ablative

liner were reduced but still present. These CC & NAs were re-assembled and sub-

sequently tested without failure.

Delaminations between the ablative inner liners and silica overwrap were present

to some degree on the majority of CC & NAs tested. They were never proven to be

the cause of gas leakage through the ablative chamber wall.

Following a firing, the les_ rate generally became worse. Experience showed

that a CC & NA that exhibited de_ectable leakage did not have a shortened service

life and did not effect the perfo_e of the TCA.
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Gross leakage led to CO & NA replacem.nt during prequalification test}rig on CC _ NAS/N 003. The chamber had been fired for 12 zecond during acceptance testing and 45

seconds during PQT-O01. Leak checki_ _f S/N 003 at JPL/ETS following PQT-C31 dis-

closed a severe gas leak between the ablativ_ liner and titanium shell. The CO & NA
was disassembled and the ablative liner alone was leak chectn-d. The main leakage

occurred through a crack in the ablative liner. The crack was believed to have

be.en caused by the 135-psig leak check procedure performed on th_ partially charred
chamber At JP_ETS.

Altitude CC & I_A S/N 008 and sea level CC & I_A S/N 003 successfully co--ted

maximum thrust durability firings, but the titanium shells were slightly bused.
CC & !IA S/N 007 successfully withstood a maximum thrust duralxility test at sea leve.,

I but showed extensive gas leakage from the ablative liner retaining pim_.
Thus, it was shown that gas leaks in the CC & NA do not lea_ to burn-throughs or

degraded performance. On the other hand, a "zero leakage" CC & NA would enhance

confidence in the CC & NA design. The possible solutions to the leakage problems

I are listed below. These solutions were ccnsidered but neven implemented.

i i. Overwrap the ablative liner assembly before the internal maehinlng is

started, thereby reducing da_e to the inner ablative liners dmri_

the overwrm.p _T-ocess.

2. Increase the overwrap thickness and allow no overwrap delamimatlomm.

3- Move the head end O-ring seal down near the titanium split ring, a_ .

allow the combustion gases to pressurize the annulus between the shell

and ablative liner assembly. (This change would require the use of a type

• of seal other than a rubber O-ring, since the temperatures in the split

ring area reach 1500°F during the required demonstration testis.)

6.4.3 C_cle Life

Tests whose principal objective involve_ cycle life determination of HEA components

were conducted on the helium pilot valve and propellant shutoff valve. In addition,

"trouble-free n HEA firings serve as an indicator of cycle life of the entire H__

("trouble-free" meaning total run time without a hardware change or malfunction).

The cycle life potential o_' _he propellant shutoff valve, as tested on the

component level, is indicated in paragraph 5.3 _herein the results of a successful

2000 cycle llfe test are discussed. _me _ Specification SAH-50255-DSNoC

cycle life requirement of 250 cycles after TCA delivery is, therefore, well within

the capability of the present propellant slrmtoff valve design.

The helium pilot valve cycle life after TCA delivery is specified in JPL Specifica-

tion SA_4-50255-DSN-C as 250 cycles. A simple test was conducted on one pilot valve

to check for poppet/seat durability. Valve S/N 023 was processed through the pilot

valve acceptance testing, installed in :_RA 150A-007 and processed through the

TSB-OIB acceptance tests. Therefore, the valve underwent all predelivery actuatio_.

The valve was then cycled 125 times with a 700 psig inlet pressure and 125 times

with a 7_0 psig inlet pressure (250 cycles _otal). The inlet and vent pol_pet/seat
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leakage w_s then checked with a helium leak detector and the values compared to those
obtained in pilot valve acceptance tests. These data are shown below.

Inlet Popl_t/Beat

(soc/ )

Vent Poppet/Seat

Valve Acceptance
Test Valuem

After Pre-Delivery Actuatioml

plus additional 250 cycles

Maximum Allowsble

0.002 0.002

o.o5 o.lo

i0.O iO.O

In addition to the above cycle life test, a qualitative evaluation of poypet/seat

life was conducted by the valve manufacturer wherein a pair of valves were cycled
approximately 1500 times each. The pair of valves were then disassembled; exs_

tion of the poppets and seats revealed that they were still in good condition and

capable of ma_ more actuations.

Cycle life testi_ at the component level was not conducted on any TCA components
other than the two discussed above. Other TCA components or sut_ssemblies and the

HEA per se were not given any specific cycle life testing. However, in the develop-

ment and prequalification testing complete HEAs undex-_ent various test firln_ of
considerable total duration during whleh no hardware chants occurred or were

required. This testing testifies to the general service cycle life capability of

the HEA. For example, HEA S/N 005 underwent a series of tests with no parts re-
placements nor malfunctions extending over 293_ seconds in 38 starts with test

durations ranging from 26 to _15 seconds, thrust levels frc_ minimum to ma_

and with 65% of the total t_ime under conditions of step or dynamic throttling.

Similarl_, HEA S/N 010 underwent 18_5 seconds of testing, in 23 starts with test

durations ranging from 70 to 275 seconds. These HEAs were in every way complete,

e .g., including servoactu_tors.

Based on test data of the above type, various HEAs demonstrated a capability of
three repetitions of the "owerating sequence" including a "nominal mission thrust-

time profile," as given in _ar_graph 3.6.2 and 3.6.3 of JPL Specification SAM-50255-
I]S_-C.
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6.5 Extreme Propellant Temperature and Inlet Pressure Tests

The MIRA 150A TCA is designed to operate over a propellant temperature range of O°F to

100°F and the following inlet pressure range:

Nominal _xrust, ibs 30 90 i_0

Oxidizer Pressure, psia 719 + 20 715 + 20 707 + 20

Fuel Pressure, psia 72o+_eo 717_+eo 7xe_+eo

The Surveyor propellant tanks are pressurized to 720 + 20 psia by a cummon regulator.

Thus at-any one time, there will be no significant pressure differential bet'_'een inlet

fuel and oxidizer. The propellant temperatures can vary independently and _he TCA must

operate at any combination of fuel and oxidizer temperatures between 0° and lO0°F.

Therefore, a series of tests were run to evaluate the effect of propellant tem-geratur@

and inlet pressure on mixture ratio, Propella_t flow rates and resultant performance.

The test series specified in paragraph 3.6.2.3 of the Development Test Plan was designed

to cover the possible matrix of propellant and TCA inlet conditions. _ese tests were

conducted at sea level conditions with HEA 15CA-005 coupled to a water-cooled cumbustion

chamber. Each test consisted of a ten-step throttle run. In addition, the test series

described in paragraph 5.2 of the Development Test Plan was performed with temperature

condltionedpropellants and two levels of inlet pressure. For this series, flight-type,

ablative-cooled combustion chambers were employed. Table 6.5-1 s_izes the conditions
for these tests.

Table 6.5-1

_vel_=_ Test s_=_v
CC&RA

Development Test Fue_ Temp. Oxid. Temp. Propellant Chamber Temp.

Plan Pars. IAn:ber Test Number (UF) (OF) (psia) . (°F)

i00 I00 As Req' d: Ambient3.1.3.1.2 C2-612ABC

-5 611ABC I00 I00 As Req' _ Ambient
-6 610 i00 i00 As Req' d Ambient

3.6.2.3 -i C2-592AB Ambient Ambient 740 Water cooled

-2 C2-592C Ambient Ambient 700 Water cooled

-3 C2-593A i00 I00 720 Water cooled

-_ C2-599A 0 O 720 Water cooled

-5 C2-592D Ambient Ambient 720 Water cooled

-6 C2-599B 0 O 7_O Water cooled

-7 C2-593B I00 I00 720 Water cooled

-8 02-597AB i00 O 720 Water cooled

-9 C2-59_%B 0 i00 7'20 Water cooled

5.Z.m _-6o_E o o 7_o o
5.z.2 c2-6ook_ loo zoo 7_o 125

CZ-603AB zoo zoo 7_o
5-2.3 C2-606ABCDE 0 O 700 0
5.2._ C2-60AABCDE I00 i00 700 0

*As required to achieve a 1.6 mixture ratio.
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6.5.1 Effect of Temperature and Inlet Pressure on Mixture Ratio a_.

Flo_Tates with Constant Ven_.url Dischar6e Coefficients

As described in paragraph 3.2, the ]_A 150A flow control valve employs dual, variable-
area cavltating venturis to control the propellant flow, with the flovr_te through a

cavltating venturi defined by Equation i.

Pt = Inlet Pressure

I Pv = vapor Pressure
The flov control valve pintles for the _ 150A were designed vith average discharge

coefficients of 0.92. Previous testing at room temperature shoved that the variatlo_

| in discharge coefficient had little effect on mixture ratio and an average CD

! satisfactory. The predicted variation in mixture ratio with propellant teml_rature

based on constant CD is shown in Figure 6.5.1-1. The variation in flow rate and

i mixture ratio noted is solely based on variations in vapor pressure and propellantdensities as expressed in Equations (2) and (3)-

("t -

I /- \
_lxl:

i "i' 1V",')
Where: MRsT = _Lxture Ratio at standard conditions

_3_e FCV pintles are parabolic in shape to provide a linear relation between flow and

•position. Equation (4) used for the pintle design is shown below.
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Where: K L
ox ox

L

= Design mixture ratio of 1.50.

K

= Position of venturi pintle in inches.

= Rate of change of standard flow rate with

position in ib/sec/in.

The actual mixture ratio obtained at standard conditions for pintles 4esiEned in

Equation (_) is obtained frum Equation (5)-

5, cDF

In Equation (5) it may be assumed that L u = I_; i.e., the pintle position relative

to the throat of both the oxidiser and f_l pi_tle are identical, thus, the projected

zero intercepts are identical.

In paragraph 7-5, it is shown that the discharge coefficients are neither equal nat

constant but vary with temperature and flow rate (or pintle position).

Figure 6.5.1-2(a) presents the mixture ratio at standard conditions predicted by the

use of Equation (5) with L^x equal to I_ and discharge coefficients that vary with

flow rate. (Details on th_s aspect are_found in paragraph 7-5, and the CD to servo-
actuator signal relationships used in deriving Figure 6.5.1-2(a) are those given in

Figure 7.5-3. ) This mixture ratio deviates appreciably frum the design goal of 1.50

_+ 0.I0. Note that temperature extremes were not considered.

It is possible to adjust the pintles so as to reduce relatively the oxidizer area (oT

increase the fuel area) by a constant amount over the entire throttle range. The effect

of such an offset is shown in Equation (6).

Where: _ = relative adjustment of oxidizer pintle

The effect on mixture ratio of adjusting one pintle is much more pronounced at low

thrust than at high thrust. Thus, the relative adjustment of one pintle can compensate

for the increase of mixture ratio with decreasing flow rate shown in Figure 6.5,1-2(a).

In Figure 6.5.1-2(b), the effect of adjusting the oxidizer pintle to provide a mixture

ratio of 1.510 at low flow is shown. It is seen that it is possible to produce a

relatively flat mixture ratio over the entire throttle range. As the flow control valve

pintle positions are set during actual flow tests, the mixture ratio is maintained

relatively constant over the entire throttle range. This is further shown by test data

presented in Figure 6.5.2-2for HEA 150A-005.
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6.5.2 Test Results and Discussion

The results of the extreme temperature and inlet pressure tests are shown gral_ically

in Figures 6.5.2-1 through -6. The detailed tabular data frum which these figures are

prepared appear in Table I)-2- of Appendix D-2. From the results of these tests 9 it
is apparent that the simple standard MR formula shown by Equation (3) does not adequately

represent the venturi flow over a wide temperature range.

In Figures 6.5.2-7, -8, -9, and -101 the bands of the standard mixture r_tiol predicted

by the viscous discharge coefficient theory (discussed in paragraph 7.5) are cump_

with the "As F_asured" experimental data obtained during the different extreme telq_erm-

ture tests on HF.A 150A-005. The data is standardized to the temperatures shown. Also

for cum parlsor% is shown the standard mixture ratio obtained on the ambient temperature

tests (Run C2-592). The boundaries of the theoretical curves shown have been corrected

to correspond to the measured ambient temperature mixture ratio for HEA 15QA:005. "As o
the mixture ratio varies appreciably between the fuel temperature range of OUF and -20 F_

both boundaries are shown in Figure 6.5.2-10.

The standard mixture ratio value varied appre=iably between the low temperature test

(Figure 6.5.2-9) and the high temperature test (Figure 6.5.2-7). As the basic Equation

(i) for mass flow rate must be satisfied, the discharge coefficients in the venturl

must be considered to be varying with temperature.

Cumparing the theory with the experimental data it is seen that the upper boux_hury of

the theoretical cu-_ves corresponding to the high range of L_.I seems to fit the
c_ D

experimental data best, particularly at the low temperatures. (Leq and D are defied
and discussed in paragraph 7-5-)

In Figures 6.5.2-11, -12, and -13, the predicted standard and actual mixture ratios are

plotted as a function of the S/A signal level and propellant temperature for the high

Lq/ condition. Me curves are constructed for a FCV with a "nominal" mixture ratio

of ID.50 over the entire throttle range. All_ing a mixture ratio variation of --+0.03

at standard conditions for the FCV, the expected boundary of actual mixture ratio as a

function of S/A signal under the expected ten_erature and pressure extremes is shown

in Figure 6.5.2-IA.

6.5.3 Effect of Propellant Temperature and _r_ Pressure on Thrust

Extremes in propellant supply pressure and propellant temperature result in a thrust

change. Supply pressure affects flow rate "_cirectly and therefore causes a change in

thrust. Propellant temperature variations indirectly affect flow rate and thrust by

temperature-induced changes in density, vapor pressure, and discharge coefficient.

The quantitative effect on thrust of extremes in propellant supply pressure and temper-

ature are given in Table 6.5.3-1. These values were computed using the followinK

assumptions:

i. _Irust is proportional to propellant flow rate (specific impulse

is constant).

2. Propellant supply pressure and temperature are independant variables.

. Nominal thrust at any commanded level occurs at a propellant supply

pressure and temperature of 720 psig and 70°F, respectively.
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_. The viscous theory discharge coefficient (discussed in paragraph 7.5)

is applicable.

5- Propellant supply pressure extremes are 7_O psig max_ and 700 peig
minimum.

6. Propellant temperature extremes are lO0°F maximum and O°F minlmum.

Supply pressur_ effects are computed using Equation (2) in _pax____aph 6.5.1. For thla
calculation, propellant temr_rature was assumed constant (at 70 F), and therefore

density and vapor pressure were assumed constant. As sh_in in Table 6.5.3-1, _I_IY

pressure extremes result in a l 1.4% effect on ccemanded thrust.

Propellant temperature effects were cemputed using Equation (_) in paragrs_h 7-5-

_his calculation provided the "viscous theory" thrust ratio versus temperature curves

given in Figure 6.5.3-2. Although not used in assessing temperature effects here, the

"constant C_" thrust ratio versus temperature curve is also shown in Figure 6.5.3-2.

The curves _n Figure 6.5.3-2 were computed assu_ing a constant propellant supply pressure

of 720 psig. The effect of temperature on commanded th_st varies frmm +I._% to -1.9%,

as shown in Table 6.5.3-i.

The last colt_n in Table 6.5.3-1, entitled "Allowable _'n_Ast Boundary for Accel_ee"

VeS maximum and minimum values of thrust for S/A signals of -70, O, and +70 m
orrespondimg to minimum, mid, and maximum thrust, respe._tively). These thrust

boundaries were computed using the combined effect of extremes in propellamt supply

pressure and temperature, and assuming that a_ceptamce firings were conducted at (or
corrected to) 720 psig supply pressure and 70 F propellant temperature. _he "Allowable

Thrust Boundary for Acceptance" is assumed to be centered within the "S;ecificatiom

_rust Boundary."

The "Allowable ... Boundary" limits are those within which unlt to unit __ziatiom ia
allowable on acceptance testing at standard temperature and pressure (70 F and 720 psia).

This hardware variability is al!o%_ble in conjunction with uhe added variability i_

propellant temperature and supply pressure extremes which re_its in overall variability

that complies with the design specification (JPL SAM-50_5-D_-C ) thrumt to signal

boundary.

Table 6.5.3-3 presents the results of test firings conducted on four Phase Ill %_s and

one Phase II TCA (S/N 004).
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Table 6.5 •3-3

Actual _0rust Versus Commanded _rust for Phase III TCAs

Conditions for S/A

sls_1(_) oi" ,.

+_72 o_ -7o

Acceptable

L

Allowable -

per Table 6.5.3-1 150 to 16_ 91.8 to 99- 22 to _i

TCA S/N 00_ 15_.2 96.0 28.8

Te_ SI_ 007 155.0 9_.i ZS._

TCA S/N 008 153.3 95.0 27.7

TCA S/R 009 157.1 95.0 26.6

TCA S/N 011 15_.0 97.6 33.6

ommll

Yes

Yes

Yes

Yes

Tes

*Standard conditions are defined as propellant pressure of 720 psig

and propellant temperature of 70°F.
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6.6 Altitude Stead_-State Performance Tests

All steady-state performance testing associated with the Development and Prequ_llficatio_

Test Program conducted at the JPL Ed_rds Test Station under simulated altitude
conditions (plus one sea level checkout test and one sea level test for photograi_alc

purposes) is discussed in this section. Additional steady-state data frum tests

conducted at STL's Inglewood Rocket Test Site are discussed in other subsections of 6.0.

The results of individual tests are dis_Assed here; however, the discussion of c_.bine_
data from all tests used to determine the steady-state performance characteristics of

the MIRA 15GA are given in Paragraph 6.8. Transient data is discussed in Paragraph 6.9.

The TCA test program conducted at JPL/ETS consisted of 32 firings (DY-18 through DY-_9)

for a total of 35 TCA starts and a run _duration of 2,405 secon_ This program _s
conducted in accordance with the Development Test _lan (STL Document Lu_ber 9730._-_-i-

43) and Prequalification Test Specification TSB-02B. Table 6.6-I provides a summar_ of

the total test matrix, and the following .r_ragraphs discuss the detailed test results.
Three test series were run prior to initiation of the formal prequalification test

p=ogra_. These tests were a checkout run of ,.he data acquisition system (per ParagraI_h
5.2.8 of th_ Development Test Plan) and two additional altitude tests (per IxLragrmI_

5.2.9 and 5.2.11 of the plan) to verify the readiness of the MIRA 15OA to enter the

formal prequalification test progrmm.

6.6.1 Initia,l Checkout ,Test

6.6.1.1 Test Objectives

The primary test objectives of the initial checkout test (Run DY-18) 1_re to:

I.

2.

3-

Perform an initial checkout fiTing at JPL/ETS under sea level conditions.

Obtain sea level performance data.

Obtain acoustic data.

6.6.1.2 Test Sutures=7

With the exception of obtaining acoustic neasurements, the primary test objectives were
achieved. At JPL direction, the acoustic measurements were deleted prior to the firimg.

This sea level test was conducted accord!r_g to paragra_ 5.2.8 of the Development Test

Plan except that a 130-second AT-I thrust cycle was substituted for the cycle origimally
planned. The tes_ article consisted of _ S/N 004 coupled to a sea level, water-cooled

combustion chamber.

6.6.1.3 TCA Configuration

The HEA tested was MIRA 150A-O0_, built to the basic Phase II configuration (STL D_aving
No. 105461-1, A-l) and included the following major ixLrts=

Component
Helium Pilot Valve

Servoactuator

Injector Assembly
Shutoff Valve Piston

Shutoff Valve Sleeve

Shutoff Valve Poppet
Flow Control Valve

C104312-I C537_

I0546e-IA1 00_
103948-3B1 N/A
lO39AT-3m N/A

1039_6-IA N/A

io5_66-1A_ 0o_
0
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This HEA w_s functionally different from the basic Phase III configuration (STL D_avimg

No. 106662) in the following major respects:

lo

.

Servoactuator response, linearity, hysteresis, and gain characteristics were

different. (A Phas-. II servoactuator vas used in place of a Phase fix serve-

actuator. )
6

Leakage characteristics were different through various static an_ dymamic seals,

because of differences in seal design. (Bal seals are used exclusively on the

Phase III HEA while some Omniseals were used on the Phase IX HEA. )

e Propellant flow rate versus stroke was slightly different between the Phase II

HEA and the Phase III HEA, because of changes in flow control valve pintle and

insert design.

4e No quick-disconnect bosses or fittings were available on the Phase II config-

uration precluding propellant bleeding at the shutoff valves. _is difference

affects the initial startup transient.

However, since the major parts of the HFA 004 injector assembly (pintle P/N 105107-4,

sleeve P/N 105192-4, guide P/N 105106, and plate P/N 106_23-3) are dlmensiomml]_

identical to their Phase IIl c_Lnterparts, it may be stated that the two HEAs are

identical from the standpoint of combustion characteristics (C*, I , etc. ). The CC &

NA tested consisted cf a sea level, water-cooled combustion chambeSrP(P/N I063T2).

6.6.1.4 Test Setup and Test Condltion8

The TCA was installed in a thrust fixture (P/N X-lOhh33) which was rigidly mounted to

the altitude chamber door. The test installation is illustrated in Figures 6.6.1-i aria

6.6.1-2. The TCA was tested under sea level ambient conditions with sufficient measure-

ments to determine sea level stead_-state and transient performance characteristics.

However, because of the additional fluid volumes imposed by the use of injection pressure

measurements, none of the transient data are considered valid. An unmodified* AT-I thrust

program cycle (Table 6.6.1-3) was used resulting in a 130-secona test duratiom.

6.6.1.5 Test Results

The initial checkout run (DY-18) was successfully cc_-pleted on 11 September 196_ satis-

fying the requirements of Development Test Plan paragraph 5.2.8. Detailed stead-state

performance data for this test are st_zarized in Table D-I-I of Appengix D-I. With the

exception of a slfghtly high mixture ratio at the maximum thrust step (1-557 at stax_

conditions), measured performance characteristics were within _cceptance test rpecifica-

tion limits. Corrected C* data varied from 5276 fps at a ioS-psia chamber pressure to

5048 fps at a 20-psia chamber pressure. Because of the differences between Phase II a_

Phase Ill servoactuators and the flow control valves (discussed in 6.6.1.3), these data

are not representative of Phase III thrust-signal characteristics.

*_is AT-I thrust-tlme profile was later modified by additional stepping during the

last 20 seconds. Refer to paragrml_h 4.5.

T_ ......
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Figure 6.6.1-1. _itial Checkout Test

Setup(Run_-_)
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Figure 6.6.1-2. Initial Checkout Test Setup

Closeup (Run DY-18)
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Table 6.6.1-3

Thrust Cycle AT-I- Unmodlfle_

co_d (_+0.5_a)

0

+35
+70
+35

0

-35
-8o
-5O
-35

O

+7.5
-7-5

0

0+7-5

+70
+55.o
+62.5
+62.5 + 7.5
+62.5 -
-47.5
-32.5
-1,o.0
-40.o + 7.5
-40.0 -

+80.0
-40.0

-40.0 to + 70.0

+70.0 to - 40.0
0

Oto+ 15.0
+ 15toO

0

0

Startup

Step
Step

Step

Step

step
Step

Step

Step
Step

Step

Step

Step
Sinusoidal, 5cps

Step
Step
Step

Step
Sinusoidal, 5 eps

Step

Step

Step

Step
Slnusoidal, 5 cps

Step
Step

Step

Step

Ramp

_mp
Step
Shutdown

Time From

Startup (_+0.I sec)

0.0

5.0
i0.0

15.0
20.0

25.0
30.0

35.o
_o.o

_5.o
50.0
52.o
5_.o

59.o
60.0
62.0
6b.o
64.2
69.0

70.0

72.0

7_.0
74.2
79.0
80.0
82.0

_.o- 94.0
94.0 - lO4.O
lO4.O
lO5.o - lO7.O
lO7.o - lO9.0
lO9.O
13o.o
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6.6.2 Initial Altitude Test

6.6.2.1 Test Objectives

The primary test objectives of the first altitude test (Run DY-19) _ere to:

i. Determine altitude performance of the TCA with a water-cooled

CC &NA.

2. Determine altitude startup and shutdown characteristics.

6.6.2.2 Test Su_arr

This test was successfully conducted under altitude conditions according to ixLragra_h
5.2.9 of the Development Test Plan except that a 45-second, step-thrust cycle (PQ-3)

substituted for the cycle originally planned. All major objectives were achieved.test article consisted of HEA S/N 004 coupled with a water-cooled c_,bustion chamber

and radiation cooled skirt.

6.6.2.3 TCA Configuration

The HEA was identical to that described in paragraph 6.6.1.3. _'ne CC & NA consisted of

a water-cooled combustion chamber (P/N 106372) and a radlation-cooled altitude expansion

cone (e/N zo683l).

6.6.2.4 Test Setup and Test Conditions

l_e TCA _as installed as described in paragraph 6.6.1.4; the test setup is shown in

Figure 6.6.2-1. be TCA was fired under simulated altitude conditions using a thrust

_jcle planned for part of the PQT series and given by Profile 1 in Table 6.6.4-i (see

paragraph 6.6.4) with the cell pressure varying between approximately 0.03 to 0.14 psia

depending on the TCA thrust level. The TCA was at test cell ambien_ temperature
conditions prior to firAng; the propellants were maintained near 70 F by water cooling

the propellant tanks. Prime performance measurements included thrust, Photocon end

Y_ber measured chamber pressures, propellant and cooling wat-er flow rates, and se_

actuator signal and°position.

6.6.2.5 Test Results

"/he initial altitude test (DY-19) was successfully cmmpleted on 16 September 196_

satisfying the requirements of paragraph 5.2.9 of the Development Test Plan. Detailed

steady-state performance data for this test are summarized in Table D-101 and Figures

D-l-2 through D-l-5 of Appendix D-1. It may be seen fram Figure D-I-2 that the specific

impulse data falls within the limits of JPL Specification SA_/-50255-DSN-C ",#_.ich are

superimposed on the data plot. The standard mixture ratio was slightly high at max_
thrust (1.547 at 151.7 ibs compared to a 1.50 + 0.03 allowable range).
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6.6.3 Initial Altitude Dynamic Throttlin_ Test

6.6.3.1 Test Objectives

The primary test objectives of the initial altitude dynamic firings were to:

i. Determine TCA dynamic throttling chars_terlsticm.

2. Determine altitude performance of the TCA with a flight-weight

CC &NA.

3. Demonstrate TCA durability umderthrottllmg conditions.

4. Obtain TCA reliability data.

6.6.3.2 Test Summary

The initial altitude d_ic throttling test series (Runs DY-20 through X_-_) _re

conducted in compliance with the requirements of paragraphs 5.2.11 of the Development

Test Plan. This test was only partially successful in achieving the primary objectives,

because of facility problems and measurement response limitations. Although transient

response data are not considered to be valid because of these problems, same satisfactory

steady-state data were obtained.

6.6.3.3 TCA Configuration

The HEA was identical to that described in paragraph 6.6.1.3. The CC & I_A was a Phase

II (P/N 106546-1) altitude CC & I_, S/N 002, which is functionally identical to the

Fnase Ill CC &NA with the exception of the trunnion location which influences CG and

mounting provision= only.

6.6.3.4 Test Setup and Test Condition

The test setup is illustrated in Figure 6.6.2-1. The TCA was fired under altitude
cqnditions with the propellants held near 70 F. The origimal plan was to conduct the

first two firings, Profiles A and B of thrust cycle PQ-I (see Table 6.6.3-2),

soak the TCA for at leas_-48 hours, complete Profile C of PQ-I, and then repeat Profiles

A & B of I_-i.

Because of JPLfacility problems during the third start (Run DY-22), the firing was

terminated after approximately 20 seconds. As a resul_, the actual sequence consisted

of: (I) the first two firings (Run DY-20 and DY-21) according to plan, (2) a vacuum

so_ of approximately 70 hours duration, (3) the first 40 seconds of Profile C of _Q-I

(Run DY-22), (4) a complete ll5.8-second firing per Profile C of PQ-I (Run DY-23), and

(5) a repeat of Profile A of the PQ-I cycle (Run DY-24).

In addition to the prime _erfarmance measurements mentioned in paragraph 6.6.2.3, a

n_mber of TCA external surface temperatures were measured at the locations shown in

Figure 6.4.2-2.
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Fi_e 6.6.3-i. Test Setup for Initial Altitude
Dynamic Throttling Test (Runs
::-2o :'h..-,-ow,h _-24)
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o
o
0+7-5
0+7-5
0+7-5
o _7-5
0+7.5
0+7.5
0+7.5
0+7.5
0

0 to + 7.5
+ 7-5 to- 7.5
- 7.5 toO
+ 7-5
- 7-5
0

0

-29
-29
0

0!7o
0

+70
- 62.5
- 62.5 + 7-5
- 62.5 _.+7.5
- 62.5 + 7-5
- 62.5 _ 7.5

- 62.5 _ 7.5
- 62.5 _+ 7.5
- 62.5 +_7-5
- 62.5 + 7.5
- 62.5
- 62-5 to - 55.0
- 55.0 to - 70.0
- 70.0 to - 62.5
- 55.0
-70
-7O

Profile A

Step

Startup
Sinusoidal, _ cpl

Sinusoidal, 2 cpe

Sinusoldal, 5 cpI

Sinusoidal, 7 cpl
Sinusoidsl, i0 @ps
Sinusoidal, 15 C_s

Sinusoidal_ 20 ¢pe

Sinusoidal_ 25 cpl

Step

Ramp

Step

Step

step
Shutaown

(T_e _e an_ Calibrate)
Froflle B

Step

Startup

Step
Sinusoldal, 5 cI_

Step

Step
Step
Sinusoidal, } cps

Sinusoidal, 2 cps

Sinusoidal, 5 epS

Sinusoidal, 7 cpl

Sinusoldal, i0 cps

Sinusoidal, 15 cpa

Sinusoldal, 20 cps
Sinusoidal, 25 cps

Step

Step

Step
Shutdown

Time from Startup

(_+o.1sec)

-i0.0

0.0

1.0

?.0
12.0
lk.O
16.0
18.0
19-0
20.0
20.8
21.0 - 22.5

22.5 - 25.5
25.5 - 27.0
27.0
29.0
31.o
52.0

-I0.0
0.0

9.8
i0.0

20.0
20.2
30.0

31.0
39.0
_2.0
_.0
_6.0
_8.0
_9.0
5o.0
51.0
52.0 - 53-5

53-5 - 56-5
56.5 - 58.o
58.0
60.0
70.0
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(I 0.5 _)

+ 62.5
+ _.5
+ 62-5 + 7.5
+ 62.5 + 7-5
+ 62.5 + 7-5

line

+ 62-5 ÷ 7-5
+ 62.5 7 7.5
+ 62.5 + 7.5
+ 62.5 +_7.5
* 62.5 + 7.5
+ 62.5
+ 62.5 to + 70.0
+ 70,0 to + 55-0
+ 55.0 _ + 62.5
+ 70-0
+ 55.0
+ 70.0
. 80.0
. 80.0 to + 80.0

+ 80.0
+ 80.0 to - 80.0

. 80.0

+ 70.0
- 70.0
+ 70.0
- 70.0
+ 70.0
- 70.0
+ 70.0
- 70.0
+ 70.0
- 62.5
- 62.5 +_ 7.5
- 62.5 + 7.5

T_le 6.6.3-2 (Co_tSm_'_)

(T_pe _ange _0, CaP.rate)
Profile C

Ste_
Startup
SinueoiSAl, _ cps

Sinusoi_Sl, 2
Sinusoidal, 5 _8
Simmolaal, 7 c_

Sinusoi_1, 10 cpa

Sinusoi_l_ 15 cps

Sinusoidal, 20 cps

Sinusolaml, 25 cps

Step
P.azp
Ramp

Step

Step

Ste_
Step

Step

Step

Step

Step

Step

Step
Step

Step
Ste_

Step
Step
Step
Sinusoldal_ _ cp8
Sinusoi_£1_ 5 cps

Step

Time :f_cm S,t_,z_uP

(. o.z =ec) _

-10.0

0.0

1.0

9 .0
12.O

I_.0
16.0

18.0
19.0

20.0
21.0
22.0 - 23-5
23.5 - 26.5
26.5 - 28.0

28.0

30.0
32.0
_O.0

_z.o- 61.o
61.0

62.0 - 82.0
82.0

83.0
88.0

88.1

88.6
88.8
89.8
90.3

92.8
93.8

98.8
99.8
I02.8
1.0_.8
I05.8

- 62.5 Step 11.5.8

- 70.0 shutaow=
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6.6.3-5 Test Results

Runs DY-20 through DY-2_ were completed during the 18 through 21 September 196_ time

period,-satisfying the requirements of paragraph 5.2.11 of the Development Test Plan.
Since the PQ-I thrust cycle was designed primarily for dynamic response determination,

only a limited amount of steady-state data were available from these firings. Only
data time slices of 4 seconds or longer are reported in Table D-I-I and Figure D-I-6

through D-I-9 of Appendix D-I. The vacuum specific impulse was again within specifi-

cation limits; also, the mixture ratio was slightly high at maximuB thrust.

_ne post-fire condition of the CC & NA was excellent after undergoing five starts and

a total firing duration of 348 seconds. (For a more detailed discussion of CC & NA

performance and TCA temperatures, refer to paragraph 6._.)

6.6._ PQT-OOI_ -O0_ t -OO_a ,and-OO_A

6.6._.i Teat Objectives

The primary test objectives of PQT-001, -002, -0031 and -O0_A were to:

i. Determine TCA vacuum performance characteristics over the full specification

thrust and mixture ratio range.

2. Determine test-to-test TCA vacuum performance reproducibility.

3- Acquire additional data on TCA reliability.

6.6._.2 Test Sunm_

The test requirements of PQT-O01, -002, -003, and -O0_A given in paragraph 7.2 of the

prequalification test specification (TS3-O2B) and the primary test objectives were

successfully achieved during Runs DY-25 through DY-28. These firings were conducted

under altitude conditions with HFA 150A S/N 001 and two different flight-wei@ht altitude

CC & r_s S/Ns 003 and 005.

6.6.4.3 TCA Configuration

HEA 150A-O01 was built to the basic Phase II configuration (STL Drawing No. 105461-1,

AI) and then fitted with several Phase Ill design features. The HEA major parts and

components are listed below.

Component
Helium Pilot Valve

Servoactuator

Injector Assembly
S_utoff Valve Piston

Shutoff Valve Sleeve

Shutoff Valve Poppet

Flow Control Valve

ClO_312-I C53750
lOS_62-ZAZ OOl
106657-i ./A
106656-IAX N/A
106_8-XAZ _/A
lO5_66-_ OOl

The same comments with respect to the major functional differences between this configu-

ration and the Phase III configuration discussed in paragraph 6.6.1.3 apply here, except

that the following items had been reworked to the Phase III configuration prior to

initiation of PQT-OOI (DY-25) :

_Lq .... _ ......... L .......................
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i. 106657-1 shutoff valve piston replaced IO39_S-3BI.

2. IO6656-IAI shutoff valve sleeve replaced 103947-3.

3. I06798-IAI shutoff valve poppet replaced I039_IA_

4. I06219-IA and 106905-21 flow control valve pintles were installed.

5. 106907-2 flow control valve throat inserts were installed.

6. i06_23-i injector diffuser plate replaced i03966-3CI.

7- 2OO-12, 200-10, and 200-15 Bal seals replaced RIOSJ-370AIQ, RIOSJ-2222_IQ,

_ndRIOIOS-OI5AIN Omniseals, respectively.

As a result of this rework, HEA 150A-O01 shutoff valve operation, flow rate versus

valve stroke, and combustion characteristics were all considered identical to the

Phase III cohfiguration.

Altitude CC & HA (P/N I06546-IA4) S/N 003 was used on PQT-OOI, but was replaced by

CC & :_ (P/N I06546-IA6) S/_' 005 for PQT-O02 through PQT-OO_A. CC a ;_A S/N 005 was

later used for PQ_-OO_B (see paragraph 6.6.6).

6.6.4.4 Test Setup and Test Conditions

_ne test setup and test conditions were as described in detail in paragraphs 7.2.2

thro_h 7.2.6 of the prequalifica_ion test specification (TS3-023). Propellant supply

t-ar_ pressures were varied off-nominal to obtain 1.2 and 1.6 operating mixture ratios

during Runs DY-26and DY-27 while maintaining eotal propellant flo_ rate approximately

constant. The thrust signal-time programz used are given in Table 6.6.2-1 - Profile

i_o. i for PQT-O01 and -O0_A, Profile No. _ fox 9QT-O02, and Profile No. 3 for PQT-OO3.

6.6.4.5 Test Results

P_-_31 through -OOhA were successfully ccmpleted by Runs DY-25 through DY-28 from 12

t_h 20 October 196A satisfying the requirements of the prequalification test

S_ecification. During I_T-001 and -O0_A, the propellant tank pressures were set at the

numlr_l 720 psia to achieve a target mixture ratio of 1.5. For PQ2-OO2, the fuel

pressure was set at 770 psia and the oxidizer at 674 psia for a 1.2 mixture ratio. In

a similar fashion, the oxidizer pressure was set at 760 psia and the fuel at 663 psia

to _arget a 1.6 mixture ratio during PQT-OO3.

No -__-_. hardware changes or resettings were made during this series. After PQT-OOI (Run

DY-25), a TCA leak check performed with gaseous nitrogen and soap solution revealed

tha_ CC &NA S/N 003 leaked at the liner retaining pins, and at the aft interface between

+.he ablative liner and titanium expansion cone. CC & NA S/N 003 _as subsequently removed

prior to Run DY-26 and replaced by CC & NA S/N 005. Since both of these CC & NAs were

of identical configuration except for trunnion locations, the performance results were
not affected.
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CoI1and

(_+0.5

0

0

+ 23
+ 47

+70
o

- 23

- 47
-70
-12

-12

0
0

+ 23

+ 47
+70
0

- 23
-47
-7o
+12
+ 12

0

O

+ 23
4 4":
+?o
0

- 23
- 47
-70
- 35
- 35

Tab2.e6.6.4-1

PQT-O01 Through -00_A, -004.5, and -005

Step Thrust Cycles

Profile No. 1

Step
Startup

step
Step
Step
Step
Step
Step
Step
Step
Shutdown

Profile No. 2

Step
Startup

step
Step
Step

Step

Step
step
Step

Step
Shutdown

Profile No. 3

Step

Startup

Step

Step

Step
Step

step
Step

Step
Step
Shutdown

Time from Start=p

(+o.1

-i0.0
0.0

5.0
I0.0

15.o
20.0

25.0
3o.o
35.o
40.0
45.o

-i0.0
0.0

5.0
i0.0

15.0
20.0

25.0
30.0
35-0
40.0

45 .o

-i0.0

0.0

5.0
i0.0

15.o
20.0

25.o
3o.o
35-o
40.0
45.o

/
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Detailed performance d_ta for the test series is prov_ded in Table D-I-I and Figures

D-l-lO through D-1-28 of Appendix D-1. It may be noted frum Figures D-l-ll, D-l-16,

D-l-21, and I)-1-25 that all of the vacuum specific impulse data falls within the

performance limits established by JI=L Specification SAM-50255-DSN-C. F_rther

discussion of performance variation with mixture ratio is given in paragraph 6.8

wherein data from PQT-OOI through P_-OOAA firings are combined with the results of

similar tests such as Pqr-004.5.

6.6.5

6.6.5.1 Test Objectives
h

_ne pr_ry test objectives of P(E-O0_.5 were to:

i. Verify performance corrections for water-cooled CC & NA firings.

2. Determine TCA startu_ and shutdown characteristics with high response

chamber pressure measurements.

3- Confirm performance variation with mixture ratio.

6.6.5.2 Test Suntan7

_ne test requirements of PQT-O0_.5 are given in paragraph 7.3 of the prequalificatioa

test specification (TS3-0_3) and the above test objectives were _accessfully achieved

d_u_ing _us DY-29 through DY-32. _nese firings were conducted under altitude conditions

using --_-A_15OA S/N 001 coupled to a water-cooled combustion chamber and radiation-

cooled nozzle divergent section.

6.6.5.3 TCA Configuration

The _ tested was identical to that described in paragraph 6.6.4.3. The CC & NA

consissed of a water-cooled combustion chamber (P/N 106372) connected to a radiation-

cooled nozzle divergent section (P/N 106831).

6.6.5.4 •Test Setup and Test Conditions

The test setup and test conditions were as described in detail in paragraphs 7.3.2

thr_:_h 7-3-5 of the prequaliflcation test specification. The actual test setup used
was sini_ to that illustrated in Figure 6.6.2-1. These tests were essentially

identical to PQT-O01 through PQT-OO4A (Runs DY-25 through DY-28)_ with the exception

that a rater-cooled chamber was substituted for the flight-weight chamber. No alterations

in HEA hardware or settings were made.

6.6.5.5 Test Results

P_-OC_.5 was successfully cumpleted by Runs DY-29 through DY-32 from 22 through 26

Octo'cer 1964 satisfying the requirements of the prequalificatiom test specification.

The tank _ressures were again Varied (see paragraph 6.6.4.5) to achieve a 1.5 _ixture

ratio during Runs DY-29 and DY-32, a 1.4 mixture ratio during Run DY-32, and a 1.6

m_ure ratio during Run DY-31.

Detailed performance data for each of these tests is provided in Table D-I-I and Figures

D-I-29 -Jarou@h D-I-48 of Appendix D-I. These test results are pooled with other data

(especi _a!/j- from PQT-O01 through -00_A from paragraph 6.6.4.5) and discussed in detail

in rara_,_-aph 6.8. _ "
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6.6.6 P_r-OO_B

6.6.6.1 Test Objectives

_'ne primary test objectives of PQT-OO4B were to:

i. Demonstrate TCA start capability at low (O°F) temperature.

2. Determine the influence of low temperature on TCA stead!y-state and _ym_mic

performance characteristics.

6.6.6.2 Test Suum_-7

_-e test requirements of PQ_-00_B given in paragraph 7.2 of the preq, z-l_f_c_tion test

specification and the above test objectives were partially achieved durinz Run DY-33.

The test was only a partial success because of an error in test procedure which

comprised the steady-state data accuracy. However, the transient data were obtained

and are discussed in p_a_raph 6.8. This test was conducted with HEA S/N 15OA-OOI

and flight-welght CC & NA S/N 005 under altitude and low temperature environmental

conditions.

6.6.6.3

The KFA

CO &NA

through

TCA Configurmti oa

was identical _o that used for PQT-O01 through PQ_-O0_.5 (see paragraph 6.6.4.3).

S/N 005 which _ previously been fired for 135 seconds total during PQT-O02

-O0_A (Runs DY-26 through DY-28) wins used for this test.

6.6.6.4 Test Setup and Test Conaltioms

The test setup and test conditions are described in detail in paragraphs 7.2.2 through

7.2.5 of the prequaliflcation test specification. The thrust signal versus time used

is given in Table 6.6.6-1. _he test setup was identical to that used for PQT-O01 through

PQT-OO_A with the exce;:ion that the propellant and TCA temperature conditioning equip-

ment described in _ec_icn 8 was employed to achieve nominal OUF temperatures. This

conditioning equipment is illustrated in Figures 6.6.6-2 through 6.6.6-4.

6.6.6.5 Test Results

P_-OO4B was completed by Run DY-33 on 11 November 196_ satisfying the requirements of

th_ prequalificatlon test swecification. At TCA ignition, the fue_ temperature was
-4 F and the oxidizer _4°F." These values increased slightly to -21 F and +IO'F,

respectively, by the n" ofe _ the firing. Immediately prior to firing, TCA temperatures

varied from a min_m of 5CF on the combustion chamber to a maximum of 45°F on the

nozzle exit cone. The :ranslent data from this test is discussed in paragraph 6.9.

The detailed steady-state data for this test are provided in Table D-I-I and Figures

D-I-49 through D-I-53 cf Appendix D-I. Unfortunately, the accuracy of these data are

comprised by the fact-_at the propellant bleed valves located immediately upstream of

the TCA inlets were !e_ open during the entire firing. Since the flowmeters were

upstream of this point, _he measured flows included the bleed rates as well as the true

TCA flow rates. An attempt was made to correct for the bleed flows by observing the

rates immediately before and after the firing, and ass_zing that they varied with the

square root of the TCA inlet pressures during the firing.
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Table 6.6.6-z

PQT-OO_B, -005 Thrust Cycle

Step

Start, up
Step

Step

Step
Step

step
Step
Step

Step

Step

Step

Step

Step
step
step
step
Step
Sinusoldal, 5 cpa

Step

Step

Sinusoidal, 5 cpe

Step
Step

Sinusoidal, 5 cps

Step

Step
Step

Step

Step
Step
Step
Ramp

Ramp

Step

Step
Step
Sinusoidal, 5 cps

Step

Step
Shutdowa

Time from Stirrup

(_+o.3-sec)

-I0.0

0.0

5.0
I0.0
3-5.o
_3.0

_5.0
30.0
35.o
40.0
_5.o
50.0
55.o
60.0
65.o
70.0
75.o
78.0
80.0
8Jr.o
8z_.o
85.o
88.0
89.o
90.0
93.o
91,.o
99.0

3-o4.o
3-o7.o
112.0
L'L5.0
120.0 - 14o.o

14o.0 to 16o.o
3-60.0
163.o
3-68.o
173.o
176.o
177.0
180.0
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By this technique specific impulse values of approximately 292 seconds at __

291 seconds at mid-r_nge, and 2_ seconds at minimum thrust levels were obtained.

Except for the mi _r_imu_ thrust point, these values camp&re favorably with typical

values of 292, 2_, and 260 seconds at the same respective thrust levels determined

fr_a PQT-0OI thr_A_h -O0_A and -004.5. Mixture ratio data also appeared fairly

normal with the exception of a 1.75 value obtained at minimum t]a_st. It is evident

that for a given absolute error in estimating the bleed flow rates, t_* _ercentage

error in performance determination becumes greater a- total flow rates diminish near

minimua thrust.

The post-ru_ ha_re condition was excellent. This test demonstrated the capability

of the TCA to start and operate under minimum temperature conditions.

6.6.7

6.6.7.1 Test Objectives

The primary test objectives of PQT-007 were to:

I. D_zonstrate TCA endurance capability at maximum specification values

of mixture ratio, thrust, and temperature.

2. Acquire additional data on TCAreliability.

6.6.7.2 Test Summary

The test requ!r_ents of PQT-OO7 given in pe_aph 7-5 of the prequalification test

specification (TS3-CV2B) and the above test objectives were successfully achieved by

Runs D_-35 throu;_h DY-37. These firings were conducted under altitude conditions with

HEA 150A S/N CO8 and CC & NA S/N 008. This test consisted of three startSoOf 50, I00,
and 150 second d_--ations with a 1.6 mixture ratio, maximum thrust, and i00 F propellant

temperatures_

6.6.7.3 TCA Configuration

HEA 150A-005 _.s the second to be fabricated to the Phase llI design (STL Drawing No.

I06662-2, B3)- ?n--_only major deviation from this configuration was the use of a

Phase II servoac=uator (P/N CI0_312). The major components used on this HEA are listed

below.

Helium Pilot Valve

"Servoactuator

Injector Assembly

Shutoff Valve Piston

Shutoff Valve Sleeve

Shutoff Valve Poppet

Flow Control Valve

CI0_337-IB3 02_

clo43_ c5375l
106663-_.A6 002
lO6657-ZAZ OO3 & 00_
I06656-IAI 007 & 009
106798-ZAZ OO9 a ozo
106609-ZA oo2

Phase III altitude CO & NA P/N I06546-I S/N 008 was used for these firings.

i_•
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6.6.7._ Test Setup and Test Conditions

The test setup is defined in detail in paragraphs 7.5.2 through 7.5._ of the prequalifi-

cation test specification. The test setup was identical to PQT-OO_B (Run DY-33)

including the propellant conditioning equipment with the exception that heat lamps were

placed in the altitude cell to raise the TCA temperatures to the desired levels prior

to each test. Figure 6.6.7_i illustrates the TCA test setup.

Pro__llant temperatures meas Ared in the propellant feed lines were m_Intained at I00

5 F duriong__these firings. TCA pre run temperatures varied from 80 F minimum on the
_EA to 250 F maximum on the CC & NA. All te_ts were conducted under altitude conditions.

Propellant tank pressures were varied to target a 1.6 mixture ratio.

6.6.7.5 Test Results

Pt_T-O07 was successfully completed by _ns DY-35 through DY-37 on i through 2 December

1964 satisfying the requirements of parzgr.aph 7.5 of the prequalification test specifi-
cation. Since these firings were dA_i6ued prlm_-ilj for CC & I_ durability demonstration

at one fixed thrust level, only limited steady-state data is available from these firings.

Table I)-l-i of Appendix D-I presents _he data obtained.

A _Faick review of the performance data revealed that the specific izpulse values obtained

(291.3 to 293.5 seconds) were well within the experience of the previous altitude

firings. Mixture ratios ranged from 1.565 to 1.625. One point of interest noted during

_.hese firings is that the throat area appears to be thermally expanding by approximately

0.6 percent. This is deduced by the observation that Cf increased by 0.6 percent and
C* decreased by a like amount over the duration of each firing, while I remained

esse_tiaily constant. Since C* and C_ are both computed from a constan_Pthroat area

de.ermined by prerun measurements, the observed shifts in these two performance para-

=eters must be attributed to an actual throat change during the firing. Post test

=easur_ments of the throat indicated no erosion had occurred, therefore any throat area

change was from thermal expansion.

A!th_J4_h the CC & NA successfully _urvived the required duration_ there was eviSence

of localized overheatir_g in _he _-ombusticn zone upstream of the nozzle throat in the

form of a noticeable b_iz_= in _ae titanium shell at that point.

j
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Figure 6.6.7-1. PQT-O07 Test Setup

I (Run I_-35)
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6.6.8 PQT-OOS

6.6.8.1 Test Objectives

_e primary test objectives of PQT-008 were to:

I. Demonstrate TCA endurance capability at maximum specification mixture ratio

and temperature, and at minimum thrust.

2. Acquire additional data on TCA reliability.

6.6.8.2 Test Summary

_ne test requirements of PQT-O08 given in paragraphs 7.5.2 thrmlgh 7.?.h of _.he pro-

qualification test specification (TS3-02B) and the above test obJecti:-es were success-

fu/_ly-achieved by Runs DY-38 through DY-40. These firings were conducte_ under altitude
con;_iticn_ using HEA 150A S/N 008 and CC & NA S/N 00! with a 1.6 I_, i00 F propellant

tez;eratures, ard minim_ thrust for _80 seconds.

6.6.8.3 TCA Configuration

_r_. S/N 150A-008 used for this test was previously described in paragraph 6.6.7.2.

The _ was assembled with altitude CC & NA S/N 001 (P/N I06546-IA_).

6.6.8.4 Test Setup and Test Conditioms

Tze test setup was as described in detail inl_phs 7.5.2 through 7.5.4 of the pre-

q'_-alification test specification. Prior to the first run (DY-3B), the TCA was conditioned

to :em--_eratures ranging from -30°F to 28°F with the propellant te__qoeratures maintained

at iO0"15°F during the firing. For the next two runs (DY-39 and -hO_ the propellants

were ag_-in eondltioned to maximuum temperature (i00_ 5°F), but no attempt was made to

condition the TCA. Prope!lan_ ta_k pressures were adjusted to target a 1.6 mixture

ratio. Eac_h of the three firings were performed at minimum thrust for a duration of

160 seconds for a total of 480 seconds.

6.6.8.5 Test Results

P_?-OC_ va_ successfully ccmpleted by _uns DY-38, -39, and -40 on 5 through 7 December

!9_ satisfying the requirements of the prequallficatioa test spe_Ificatlon. The amount

of s_ _a_y-state data available w_s minlm_l because only one thrust level was tested.

De=_iled performance data are reported in Table_D-l-i of Appendlx D-I.

Difficulties were encountered in attempting to target the 1.6 mixture ratio on these

f_-ings. _-ing Run DY-38 mixture ratios ranged from 1.70 to 1.T3. Tank pressures were

readjusted prior to Run DY-39 res,Alting in a 1.55 to 1.57mixture ratio range. The tank

pressures were again readO_sted in an effort to raise mixture ratio, but a lower 1.52 to

1-55 mixture ratio range resultel. Post-test disassembly of the f%ow control valve

inlet filters showed evidence of foreign material and partial blockage which could explain
the mixture ratio _hifts.

/
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Another item of note during these firings was the variation in vacuum specific im_se

during each test. Performance data slices were obtained at 5-i0 t 75-80, and 155-160

seconds after ignition. Typical values of I at these times were 2_9.6, 259-3, and

260.4 seconds, respectively. The latter valSu_ agrees closely with mi_mum thrust

performance obtained during previous altitude firings wherein minimum thrust steps were

preceded by periods of operation at midrange and maximum thrust levels.

The apparent explanation for this performance increase with time is the thermal losses

from the ccmbustlon gases to the initially cold CC & _% result in a relatively long

period of time required to achieve equilibrium heat transfer condition and performance.

At higher thrust levels this phen_enon has also been observed, but the time requires

to reach stea_y-state was much shorter due to the higher heat transfer rates. Since

the typical Surveyor mission profile provided in JPL Specification SAM-50252-D_;-C

indicates a period of midremge and maximum thrust operation prior to minimum thrust

operation, it is likely that the low initial performance levels experienced d_u-ing

these firings would not be experienced in flight.

6.6.9 PqT-OXO

6.6.9.1 Test Objective

The primary objective of PQT-OIO was to determine the TCA d_c throttling character-

istics at ambient temperature using a Phase III servoactumtor.

6.6.9.2 Test Su_mry

The test requirements of PQT-OIO given in paragraph 7.6 of the prequalification test

specification (TS3-O2B) and the above test objective were successfully achieved by

Runs DX-_I through VY-_3.

Although _is was primarily a dynamic response test, limited steady-state data were also

obtained. The item tested was Phase II HEA S/N 004 fitted with a radiation-cooled

expansion skirt.

6.6.9.3 TCA Configuration

Phase II HEA S/N 15_-00_ used in this test was previously described in paragraph, 6.6.1.3,

except for the following retrofit and rework items:

i. Servoac_uator P/N C219217, (S/N C55394) replaced P/N CI05312-I, (S/N C53_8).

2. Piston P/N 106657-1, Sleeve P/N I06656-IAI, and Poppet P/N 106798-1, replaced

P/N I03948-3BI, P/N I03947-3BI, and P/N i03946-i_ respectively, in the shutoff

valves.

.

_e

Bal Seals P/N 200-20, P/N 200-12, 200-10, and 200-15 B_I replaced cmniseala

RI0105-020 AI/_, RIO5J-370AIQ, and RIOIOS-OISAI_, respectively.

Inserts P/N 105133-2 ana P/N 1060907-2 replaced inserts P/N I05133-IA2 and

105131-1, respectively, in the flow control valves.
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These retrofit items were accc_plished with the objective of making HE_ 15QA-00_

functionally identical to a Phase llI HEA, especially with respect to throttling

charac_terlstics. A water-cooled combustion chamber (P/N 106372) and a rs_tlon-

cooled skirt (P/N 106831) were mounted on the HEA for these firings.

6.6.9._ Test Setup and Test Conditions

The test set_p for PQT-OI0 is described in paragraphs 7.6.2 through 7.6-5 of the pre-

qualification test specification and is illustratef in Figure 6.6.9-1. be TCA was

fired at altitude with propellant tank pressures set at the numlnal 720 psla.

_ne thrust signal-tlme program used was the PQ-I program given in Table 6.6.3-2.

6.6.9.5 Test Results

P_T-010 was successfully completed by Runs DY-41 through DY-_3 on i0 through ii

December 196_ in accordance with paragraph 7.6 of the prequalification test specification.

Stea_/-state performance data were again limited because of the dynamic thrust cycle

used. _his'thrust cycle was run in a s_what reversed order with the llS.8-second

duration portion (Profile C of PQ-I) being used first on Run DY-_I and the 52 and 70-

second segments (Profiles A-and B of PQ-I) following on Runs DY-_2 and IE-_3.

be detailed steady-stat e data are presented in Table D-I-I and Figures D-I-54 through

D-I-59 of ApT_endlx D-I. Specific impulse values obtained ranged from 291.6 seconds at

154.8 Ibs va,_uum t_t to 255.5 seconds at 27.5 ibs vacuum thrust. _nese values are

well wi-_hln JPL Specification SAM-50255-D_-C, and agree favc_-ably with previous
altit_de tests. Mixture ratio varied from I._76 at minimum thrust to 1.535 atmaximum

thrust, again veil within prescribed limits.

6.6.lO Pq_r-oog.5

6.6.10.i Test Objective

Be pri_ I obJectiv_ of PQT-009.5 was to determine the TCA dynamic throttling character-

istics at ni__imum (0_) temperature using a Phase III servoactuator.

6.6.10.2 Test Summary

test re_Airements of PQT-009.5 given in paragraph 7.6 of the pre._uualification test
spe_ifica_icz (TS3-O2B) and the above test objective were success,_lully achieved byRuns

DY-_+ thro-_h DY-_. These firings were conducted under altitude conditions with HEA

15CA S/N OC_ and a water-cooled CC &NA. The test item was identical to that used far

P_Y-010. _e test conditions w_re al_ered by conditioning the servoactu_tor and propel-
lasts tom ir_Imum temperature (0 F ncminal).

6.6. i0.3 TCA Conflguratlam

_3_e TCA configuration was identical to that defined for P_-OIO (see paragraph 6.6.9.3).

7,
J

/
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6.6.10.4 Test Setup and Test Conditions

The test setup was identical to that described in paragraph 6.6.9.4 except propellant

and TCA conditioning equipment were used. Figure 6.6.10-1 illustrates the method far

cooling the servoactuator by blowin_ vaporized liquid nitrogen over the exterio R

surfaces. IXtring this test series, the propellant^temperatures varied from -20-F to
+l_ F and servoactuator temperature varied fram 16_F to 33VF. Propellant tank press-

ures were set at the 720 psia nominal level. The thrust signal-time program used is

given in Table 6.6.3-2.

6.6.10.5 Test Results

PQT-OOg.5 was successfully cumpleted by Runs DY-4/_ through DY-46 on 15 thro._h 16

December 1964 satisfying the test requirements of the prequalification t_st specification.

Only limited steely-state performance data are available because of the dynamic thrust

cycle used.

The detailed data are provided in Table D-I-! and Figures D-I-60 through D-I-6_ of

Appendix D-I. S_ecific impulse values at maximum thrust varied from 290.2 to 293.2

seconds and were cc_parable to the values obtained from PQT-OIO (Runs DY-41 through

DY-43). However, at 23 ibs thrust the performance was slightly lower than PQT-OIO

varying from 247.8 to 253.6 seconds. This may be explained by the lower flow rates

and higher mixture ratios which resulted from the lower propellant temperatures.

Mixture ratios obtained during these firings were higher than predicted values based

solely on the propellant vapor pressure and density changes, especially at the lower

thrust levels. A 1-733 mixture ratio at 23.6 ibs thrust was obtained on Run DY-_5.

Correcting this value to standard conditions (720 psia and 70°F) yields a 1.67_8 mixture

ratio cumpared to a 1.480 standard mixture ratio at 25.6 ibs thrust measured during

Run DY-43, the ambient temperature firing. It is concluded that the increase in fuel

viscosity at low temperature results in a boundary layer growth at the flow control

valve throat, thereby lowering the discharge coefficient__C D. The net result is a
decrease in fuel flow rate with decreasing temperature. Paragraph 6.5 discusses the

temperature extreme tests conducted at IRTS, and describes this phenomenon in detail.

6.6.11 P@/'-O0_

6.6.11.1 Test Objectives

The primary objectives of PQT-O05 were to:

i. Determine the test-to-test TCA vacuum performance reproducibility; and,

determine TCA-to-TCA vacuum performance reproducibility.

2. Demonstrate TCA endurance capability.

3. Acquire additional data on TCA reliability.

6.6.11.2 "Teat Summary

The test requirements of P_-OO5 given in paragraph 7.4 of the prequalification test

specification (TS3-O2B) and the above test objectives were partially achieved by Runs

DY-_7 throu6h DY-49. Runs DY-47 and -_8 were conducted under altitude conditions with

HEA 150A S/N 0i0 and CC & NA S/N 010. For Run DY-49, a water-cooled combustion chamber
and radiation-cooled skirt were used. These tests were for the most part unsuccessful

in accomplishing their major objectives because a metal chip caught in the fuel s'ide of _{

the injector degraded the injection pattern and resultant performance. _ _
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6.6.11.3 TCA Configuration

Phase III HEA S/N 010 (P/N I06662-2B3) used for these tests had the following major

components:

Camponent

Injector Assembly

Flow Control Valve

Helium Pilot Valve

Shutoff Valve

Servoactuator

zo og-nn
C10_337-IB3 026

l_66e-eB3 010

C219217 C55S94

Flight-weight altitude CC & NA S/N 010 (P/N 1065_5-IA) was used during Runs DY-47 and

DY-48. This chamber was replaced by a water-cooled combustion chamber (P/Z_ I06372)

with a r_dlation-cooled skirt (P/N 106831) for Run DY-Ag.

6.6.11.4 Test Setup and Test Conditio u

The test setup is described in detail in paragraphs 7.4.2 through 7.4.5 of the pre-

qualification test specification. The three runs were all conducted under altitu_
conditions and near standard propellant temperatures drillpressures (70°F and "720 psia).

The thrust-tile profile used was essentially the same as used on PQT-O01, -O0e, -003,

-O0_A, and -O04B successively plus an added four-second long firing Just before -OO_B.

Thus, the thrust signal-time prcgrsm used was Profiles No. i, 2, 3, and 1 (repeated) of

Table 6.6.4-1 followed by a four-second firing at mid-thrust, and concluded with a

180-second firing per Table 6.6.6-1.

The four-second firing was inserted to assure filled propellant passages down to the

shutoff valves prior to the next restart. This was done to obtain applicable startup
data on the 180-secondrunthat folluwed.

6.6.11.5 Test Results

P_-O05 was completed by Runs DY-47through DY-_9 on 18 through 21December 196_

satisfying the requirements of paragraph 7.4 of the prequalification test specification.

With the excep:ion of mixture ratio and startup and shutdown performance charact-_ristics

determination, _hese firings were unsuccessful in obtaining valid altitude performance

data or in demonstrating CC & NA durability under nominal performance conditions.

Table D-I-! and Figures D-I-65 through D-I-76 of Appen_dlx D-I present detailed steady-

state performan:e data for these firings. A review of the vacuum specific impulse data

indicated highly nonreproducible performance values during these tests. For example,

during I_DY-_9 specific impulse varied from 273.4 to 283.3 seconds at maximum thrust.

Similar relatively l-_rge performance variations were noted_for Runs DY-47 and DY-_SA,

B, and C. A ;ost-test visual inspection of the CC & NA after the testing revealed

approximately a 60 degree sector over which the CC & NA temperatures were significantly

lower than the surrounding area. This pattern may be clearly seen in the nozzle ahc_n

in Figure 6.6.11-i.

Immediately after Run DY-49_ the TCA was removed from the test stand and shipped directly

to IRTS. _nere a HEA performance test was conducted at sea level with a water-cooled

CC & NA (refer _o }ban C2-685 discussed in paragraph 6-7.5)- This test substantiated the

abnormally i_ and erratic performance experienced at JP_ETS. An injector water flow

visual check %_s subsequently performed and revealed a void in the fuel flow pattern

equivalent to a_--proximately 60 degrees of the total circumference of the fuel injector

gap. -/

lu
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Disassembly of the injector fUel pintle resulted in the discovery of a small metal chip

(approximately 0.020 inches across) located in the annulus between the pintle and sleeve
near the fUel injection gap. Re chip was removed, and another HEA performance test was
conducted (refer to Run C2-686 discussed in paragraph 6.7). Performance data obtained

frum this test _s essentially normal cumpared to other HEAs.

The conclusion reached is that the metal chip in the injector disturbed the fuel in_ection
pattern suffici_ly to impair TCA combustion efficiency during PQT-O05. These tests

dramatically demonstrated _he need for stringent cleanliness and inspection procedures

TCA f_r!cation, assembly, handling, and testis.

6.6.12 Photo Coverage Test

The sole purpose of this test (Run DY-3A) vas to obtain photo6raphic coverage of a sea

level firing, lustrumentation was kept to a minim_sn, and no steady-state data reduction

was attempted. _A S/N 001 and sea level CC & _ S/N 011 were used.
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6.7 IRTS Stead_-State Performance Testa

The MIRA 150A steady-state performance data obtained frca the STL Inglewood Rocket Test

Site (IRTS) is presented in this paragraph. Rather than include all available data

(which would have added to the volume of this paragraph without contributing significantly

to its value) representative data from different HEAs were selected.

Test data deliberately eliminated frum this sample fell in o_e or more of the :ollowi_

categories:

le

2.

N204 was used rather than MON as the oxidizer.

Downstream pressure rather than head end chamber pressure was used to cumpute

performance. This alternate measurement was made on all tests _rlor to Run

C2-587. (Head end chamber pressure must be used in order to establish a

correlation between ablative-cooled and water-cooled CC & HA firings, since

downstream chamber pressure is not measured durlng the latter. )

3. The test was conducted under temperature extremes. (These data are reported

paragraph6.5).

4. The HEA was operating in the out-of-specification, high injection pressure

mode. (This hi-stable operation is described in paragraph 6.2.2).

5- The _ was not previously calibrated.

6. Known instrumentation problems made the test data unreliable.

On this basis a total of 16 sea level firings on six different HEAs were selected. The

performance data obtained fram the IRTS were not in general as repeatable as that acquired

at the JP_ETS under vacuum conditions. _ne following factors account for the difference:

i. The microsadic digital acquisition system at JPL/ETS is more accurate and hs_

better precision than the IRTS analog system. Even strip chart reading errors

become significant in the low thrust range with the latter.

e The sea level combustion chamber data may not always be valid at chamber

._res_ares from 20 to 26 psia because choked flow may not be achieved.

(Theoretically, at a ratio of ambient pressure (P) to chamber pressure (P)

less _ha.n_--/_[, the flow will not be sonic at the throat. If P is 14.7 psia,

_'= 1.24 (_fable 7.1.2-I), Pc must be at least 26.4 psia for _hcked flow.
However, the actual value of P below which throat flow is not sonic is

affected by the actual y, the Cozzle shape in the throat region, and the fact

that the low P value may be achieved by slowly decreasing P frum higher

values. The l_ck of perturbations in some intex_o_l ballisti_ parameters such
as C at chamber pressures as low 19 psi- indicates flow may actually be sonic

at this pressure on some sea level tests).

e During most of the JPL/ETS performance tests, end-to-end or transducer

calibrations were accomplished before and after each test. Transducer

calibrations are performed less frequently at the IRTS.
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he Difficulties with the patch panel were often experienced at the IRTS

resulting in short-term drift in the measurements. A new and superior

patch system was subsequently installed and used on all tests after
Run C2-661.

Rather than grouping the test data by test number or test objectives as was dane in

paragraph 6.6 (where the firings were conducted in accordance with the prequalification

test specification), the IRTS data are organized herein according to HEA serial mlber°

6.7.1 REA ISOA S/N OO5 - Runs C2-_91 t Ce-_92, an9 ¢2r596

6.7.1.1 Test Objectives

The primary objective of Runs C2-591 and C2-596 was to establish sea level performance

at as near standard inlet conditions as possible. Run Test C2-592C was conducted as

part of the testing described by paragraph 3.6.2.3 of the development test plan. _hls

test was designed to establish performance variation with inlet pressures varying

700-7_0 psia at ambient temperature.

6.7.1.2 TCA Configuration

HEA MIRA 150A-005 was built to the basic Phase II configuration (Drawing No. I05461-IAI)

plus several Phase III retrofit parts.

on the HEA for the three firings:

Component

Helium Pilot Valve

Servoactuatar

Injector Assembl_

Shutoff Valve Piston

Shutoff Val_e Sleeve

Shutoff Valve Poppet
Flow Control Valve

_e following major components were installed

s/w
C10_337-I 019
C104312-1 C537&7
I05_6a-IAI 005
1O6657-U_ N_.
106656-L_ W.A.
106798-U_ W_.
105_66-2 N.A.

The following Phase III parts were retrofitted:

le Piston P/N I06657-IAI, Sleeve P/N I06656-LAI, and Poppet P/N I06798-IAI

replaced P/N i039_8-3Bi, P/N i03947-3, P/N I03946-IA, respectively, in

the shutoff valves.

2. Bal Seals P/N 200-20, 200-12, 200-I0, and 200-15 replaced umniseals RIOIOS-

02GAIN, RIO5J-370AIQ, RIOSJ-2421Q, and RIOIO5-OISAIN, respectively.

. Pintle P/N i06905-2, Insert I05133-2, Insert i06907-2, Insert I05131-2A3

replaced P/N i05!!6-3, 105133-1, I05132-3AI, and I05131-IA3, respectively_

in the flow control valve.

A water-cooled sea level CC & I_A (P/N 106372) was used for these tests.

6.7.1.3 Test Setup and Test Conditions

l_ne typical HFA water-cooled test setup used at the IRTS is illustrated in Figures

6.7.1-1 and 6.7.1-2. The _ is rigidly mounted on a test fixture. Thrust measurements

were not made on the fix_ure. Typical measurements include propellant and cooling water

flow rates, head end and nozzle end chamber pressures, injection pressures, propellant

inlet pressures, coolin_ _er and propellant temperatures, servoactuator and helium _
pilot valve electrical si_a!s, and servoactu_tor position.
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The three tests were all conducted under sea level ambient pressure and temperature

conditions. No attempt was made to temperature condition the HEA or propellants. For

all three tests the manual switch on the tape programmer control unit was used to achieve

step throttling.

6.7.1._ Test Results

Detailed test data from these firings are reported in Table D-2-1 and Figures D-2-2

through D-2-4 of^Appendix D-2. Mixture ratio values at standard inlet conditioms

(720 psi& and 70_F) ranged from I._59 to 1.523 over the full thrust range. Character-

istic velocity varied from _928 fps at minimum thrust to 5408 fps at mid-range thrust

after applying the water cooling correction factors. _e shape of the characteristic

velocit_j versus nozzle stagnation pressure curve (Figure D-2-3) is somc_aat u_u_ual,

since the _ value was achieved at 75 psia chamber pressure, and th-_n _ecreased

by approximately 130 fps at Ii0 psi& chamber pressure. The reason is t_i___wn for this

departure from the normal characteristic of slightly increasing C* values with increasing

chamber pressure above 66 psi&. Other performance characteristics appeared nurmal.

6.7.2 EEA i_ S/N 007 - RumC2:618 and C2-621

6.7.2.1 Test ObJ_,t_w.m

Run C2-618 was conducted as a performance verificatioa test prior to the formal accept-

ance firing. Test C2-621 was conducted as an HEA performance acceptance firi_.

6.7.2.2 TCA Configuration

HEA 150A-O0 7 was the first unit fabricated to the Phase llI configuration (Drawing No.

I06662-2B3). The following major components were installed on the HEA during these

fLr_s:

Cc_onent

Helium P_ot Valve

Servoactuator

InJector As sembly
Shutoff Valve Piston

Shutoff Valve Sleeve

Shutoff Valve Poppet

Flow Control Valve

PJ/ sJ/
CI04337-IB3 023
C219217-A C55390
l_609-Im _Z
I06657-IAI 001 & 002

I06656-IAI 003 & 006

106798-ZAZ _7 a 008
lO -Zm ooz

A sea level, _ter-cooled CC &NAw_s used for these tests.

6.7.2.3 Test Setup and Test Conditions

The test setup was identical to that described in paragraph 6.7.1.3. The HEA was fired

under sea level ambient pressure and temperature conditions. Propellant tank pressures

were set a_ the nominal 720 psla. The manual step switch was used to achieve throttling

durimg Rum C2-618, and an AT-1 acceptance test thrust program tape (see Table 4.4-1) was

used for Run C2-621.
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6.7.2.4 Test Results

Detailed test data are provided in Table D-2-1 and Figures D-2-5 through D-2-7 of

Appendix D-2. Standard mixture ratio ranged from 1-.487 to 1.515 during the acceptance

firing (Acceptance Test Specification TS3-OIB limits are 1.50 + 0.03). Characteristic

velocity values ranged from 5026 fps at 33.9 psla chamber pressure to 5351 fps at 113

psla chamber pressure. These performance values are cump_ble to the JP_ETS test

data reported in paragraph 6.6.

6.7.3 HEA .19c_ S/N 008 - Runs C2-680z C2-70_, 'and C2-710

6.7.3.1 Test Objectives

The priory objectives of these tests were to:

i. Demonstrate the capability of the TCA to meet specification requirements

after simulated missile boost phase vibration.

2. Acquire additional data on TCA rellabilit_.

6.7.3.2 TCA C_flgarat_a

_ne configuration of H_% S/N 150A-008 is described in paragraph 6.6.7.3, wlth

exception that Phase III Servoactuator P/N C219217A (S/N C55398) replaced Phase XI

sez-toactuator P/N IOA31P-B (S/N C53751). A water-cooled CC & I_ was used during Runs

C2-680 and C2-710. Altitude CC & I_P/N 106546-1 (S/N 007) was installed for Run

C2-709.

6-7.3.3 Test Setup and Test Conditions

_e test setup was identical to that described in paragraph 6.7.1.3. Runs C2-680 and

C2-710 were performed under sea level ambient pressure condition% using the AT-I thrust

cycle. For Run C2-709 the propellant tank pressures were adjusted 'to target a 1.6

mixture ratio and the thrust level was fixed at the minimum level.

The three runs were conducted as a pcrtlon of the PQT-OII vibration test sequence

described in paragraph 7.7 of the prequalification test specification, and are discussed

_further in paragraph 6.10.2. The specific purpose of Runs C2-680 and C2-TIO _ms to

de_ernine whether vibration had any influence on HEA performance characteristics. Run

C2-680 _s conducted prior to the vibration test described in paragraph 6.10.2, and

Runs C2-709 and -710 were conducted after exposure to the vibration environments.

Run C2-709 was a 300-second, post-vibration, CC & HA durability test conducted in

three starts of 15, 50, and 235 seconds duration.

6.7.3.4 Test P_sults

Table D-2-1 and Figures D-2-8 through D-2-10 of Appendix D-2 provide detailed test
data.

Figures 6.7.3-1 through 6.7.3-3 provide a comparison of the pre-vibration and post-

vibration performance characteristics of the HEA. _he minor performance differences

indica=ed therein are considered to be within the normal data scatter and are not

significant. The vibration levels imposed had no effect on _A performance.
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i The pose-test condition of the CC & I_ after Run C2-709 (the post-vibration CC & RA

durability test) was satisfactory. The CC & _ condition is discussed in detail in

paragraph 6.4.b

6.?._ _ I_QA S/_ O_ - Runs C2-_2 ariaC2-68_

i 6.7._.i Test ObjectivesRun C2-6°_2 was conducted to check HEA performance acceptance test. Run C2-683 was an

hTA acceptance test conducted in accordance with the acceptance test specification

t (rs3 La).

6,7._.2 TCA Configuration

II _ 150A-009 was fabricated to the Phase III configuration (Drawing I,o. I06662-2B3).
m The follo'.ing major components were installed on the HEA during these firimgs.

Helium Pilot V_Ive cI0_337-IB3 025

sez"voact-ua_,z' C_l_.17A C55_
In0 _ctor Assem_r 10_3-2A 003

Shutoff Valve FJ.ston I06657-IAI 005 & 006

Shutoff Valve Sleeve I06656-IAI 010 & O11

&hutoff 7alve Poppet I06798-IAI 013 & 01_

Flow Con.rol Valve 106609-IA 003

A wa_er-cooled CC & RA was used for both the firings.

6.7._.3 Test Setup and Test Co_lltlo_s

The test s_tup- was identical to that described in paragraph 6.7.1.3- The HEA was

operated under sea level ambient pressure and temperature conditions. Propellant

tank _res_res were set at the nominal 720 psia level. _hrottling was controlled by a

manuzl s_ep switch during Run C2-682 and irj the AT-I thrust profile for Run C2-683.

6.7._._ Test Results

Detailed zest d_ta are provided in Table D-2-1 and Figures D-2-11 thr<_aEh D-2-13 of

Ap_en;-ix D-2. Standard mixture ratio varied from I.A78 to 1.560 compa/e_ to an allowable

variation of i._70 to 1.530. Although the 1.560 value is above the s_eclfication m_,

it occurred only at the minimum thrust level; the mixture ratio at all other thrust levels

1 was we_ within prescribed limits.

This EEA could easily have been readjusted to bring the low thrust mixture ratio within

_ specification limits without seri_Asly affecting the values at the higher thrust levels.

?nis is aClributed to the fact that for a 5% change in mixture ratio at minimum thrust,
only a i_ change would be experienced at mmximum t/urust because of the five to one

throttllr_ range.

Characteristic velocity data were well within previous experience varyin_ from _8_8 fl_s

at mlni=_m _rust to 5326 fps at maximum thrust.

..... i
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I The primary test objective of Runs C2-6_, C2-686, and 02-689 .was to investigate the

cause of the abnormal TCA performance experienced during the PQT-O05 test series at

the /PL/ETS (refer to paragraph 6.6.11).

6.7.5.2 TCA Configuration

i The configuration of _A S/N 010 is described in paragraph 6.6.11.3. For the

subject IRTS runs, it was mated to a water-cooled CC & RA.

6.7.5.3 Test Setup and Test Condltioms

The test setup is described in paragraph 6.7.1.3. All three runs were conducted

under sea level ambient pressure and temperature condition= usimg a mamual step

switch for throttle control.

6.7.5.4 Test _s_l_

Detailed test results for Runs C2-685, and C2-689A are provided in Table D-2-1 and

Figures D-2-14 through D-2-16 of Appendix D-_2. Run C2-685 was conducted i_ediately

after the last I_T-OO5 firing (Run DY-Ag) at the JF_ETS without altering the HEA.

The characteristic velocity was lower than normal as well as being errstlc.

After Run C2-68_ an injector water flow pattern check was conducted. Al_hough
oxidizer flow appeared normal, the fuel injection pattern exhibited a 60 void aro_

the circumference of the fuel gap. A metal chip 0.020 inches across was subsequently

found lodged near the fuel injection gap between the pintle and sleeve. The fuel pintle

was removed and the chip taken out. Run C2-686 was then conducted resulting in normal

HEA performance. Since the fuel injection pressure drop was low on this test, a readjust-

ment was made prior to Run C2-689A. The performance data before and after the chip

removal is shown in Figure 6.7.5-i.
6.7.6 HEA I_OA S/N 011 - Run C2-676

6.7.6.1 Test Objective

Run C2-676 was condu_ted_ primarily as an HEA performance checkout firing with a water-

cooled CC & NA.

6.7.6.2. TeA Configuration

HEA S/N 150A-OIl was fabricated to the Phase Ill configuration (Drawing No. 106662-2),

and was assembled with the following major components:

Cc_l_nent • P/N S/N

Helium Pil_ Valve clO_337-IB3 015

Servoactuator C219217A C55395

Injector Assembly I06663-2B1 005

Shutoff Valve Piston I06_7-IAI 009 & 010

Shutoff Valve Sleeve I06656-1Ai 005 & 008

Shutoff Valve Poppet I06798-IAI 017 & 018

Flow Control Valve I06609-IBI 005 , _,

A water-cooled CC & :L_ %_s used for this test. 9
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6.7.6.3 Test Settrp and Test Con_ttlons

The test setup _s identical to that described in paragraph 6.7.1.3. Run C2-676 wu

conducted under sea level 8mbient pressure and temperature conditions with the propellant

tank pressure set at numinal 720 psla. A manual step switch was used to control

throttllng.

6.7.6._ Test Results

Detailed test data are provided in Table D-2-1 and Figures D-2-17 through D-2-19 of

Appendix D-2. Standard mixture ratio varied frum i._ at 101.8 psia chamber pressure
to 1.487 at 50.1 psia chamber pressure. Readjustment to raise the i._ to I._70 &@

the high thrust level would result in a mLxture ratio greater than 1.530 at the low

thrust end. Thus, the HEA could not have been readjusted to meet the 1.50 + 0.03
requirement. Characteristic velocity varied frum 4810 fps at m_d=um thrust to 5333

fps at maximum thrusts thus meeting minimum performance requirements.
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6.8 Combined Results of Altitude and Sea Level Stea_iF-State Performance

In the t_ previous paragraphs (6.6 and 6.7) the data on steady-state performance

were presented. These data were derived from firings at the IRTS and JFL/ETS. The

objectives, test setup, test article, and test results were described on an individual
test or test series basis. In this section such data from paragraphs 6.6 and 6.7,

as is a_!icable, is combined to present overall TCA steady-state performance charact.

istics. The following paragraphs are organized on the basis of performance parameters.

6.8.1 S_ific ,Im_ulse Comparison of Water-Cooled Versus Albativel_ Cooled Chamber

Te_ Da_a

Comparative performance plots of vacuum specific impulse versus vacuum thrust fc"

the tests using both ablatively cooled chambers (PQT 001 through 00hA at the JPL/ETS)
and wate_-cooled chambers (PQT 004.5 at the JPL/ETS) are given in Figures 6.8.1-1

through -3- 2*_txture ratios of 1.4, 1.5, and 1.6 are considered. The performance

measurements illustrated by these three figures indicate an excellent correlation

between the ablatively cooled and the corrected, water-cooled I_ data, thus verifying

the heat transfer term employed for correcting wa_er-cooled per_rmance in the STL

data reduction computer program.

6.8.2 _-_teri_tic Exhaust Velocit_ Co_ison - Ablativel_ Cooled Versus
W_er-Cooied Chamber Test Data

Since the _ter-cooled performance corrections contain a combustion chamber throat

growth term which does not enter into the I correction, the C* data for ablative],y
cooled anl water-cooled chamber tests were _zpared in Figures 6.8.2-1 through 6.8.2-3

to deter-:_e the validity of the throat area correction. These figures show a positive

bias in C* re_lting in higher values for the water-cooled data. As a result of these

data, a r_-rision was made to the Surveyor data reduction program to reduce the magni-

tude of the throat growth term eliminating all significant differences between ablatively

cooled an! -._ter-cooled test C* data. All data reported in Appendix D-I contain the

revised _r-cooled corrections.

6.8.3 C_racteristic Exhaust Velocity Com_-_ison - IRTS Versus JPL/ETS Test Data

Characteristic velocity data from all of the firings reported in paragraph 6.7, except

for Runs C2-685, C2-686, and C2-689, were used for statistical estimates of C*.

These thre_e firings were eliminated because of the abnormal performance characteristics

of HEA S/N 150A-010 discussed in paragraph 6.7.5- Based on IRTS data only, the

estimates -.resented in Table 6.8.3-1 were obtained. These data were statistically

compared -.S_h the JPL/ETS data and it was determined that there was no difference at

the 90% ccnfidence level in the mean values obtained. The variances were also tested

at the sa_e confidence level, and it was determined that a significant difference

existed only at the 30-1b thrust level. With the exception of the variances at

minimum th__ast, the JPL/ETS and IRTS data were then pooled. The results of a stud_

of the combined data are presented in paragraph 6.8.5.

Two major reasons are offered to explain the g._eater characteristic velocity variation

at m_ thrust observed at t_e IRTS. Considerable discrepancy has been discovered

in comparing strip chart determined flow at low flow rates with flowmeter frequencies
determined from counters or oscillograph reco-_!s. The bulk of the performance data

was based on the strip chart readings. Also, at low thrust the nozzle is operating

in the re,_on -_nere it may unchoke, resulting in nonrepeatable chamber pressure. The

JPL/ETS data are therefore more representative in the low thrust region.
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Table 6.8.3-I

TCA IRTS Characteristic Velocity _ta Su_

Vacuum Thrust Level

(lbs) ,

30

90

15o

Characteristic Velocity

Mean

5_86

5_

+ 3-Slgma Deviation

lO5

6.8.4 Mixture Ratio Comparison - IRTS Versus JPL/ETS Test Data

Mixture ratio data at standard inlet conditions _re summarized for both the JPL/ETS

and IR_ tests. Table 6.8.2-1 presents the results of the statistical analysis per-

formed. The analysis showed that there was a significant difference in the mean and

the 3-sigma values obtained from the JPL/ETS as compared to the IRTS d_ta. In isLrtic-

ular, the 3-sigma mixture ratio deviations determined from IRTS data were two to three

times greater than the JPL/ETS d_viations.

A number of factors contributed to these larger variations. The problem encoUntere_

in determining the flow rates frc_ the IRTS strip charts was previously mentioned in

paragraph 6.8.3. Several of the HEAs used in the IRTS data summm_ry being tested

before adequate experience had been gained in calibration and, thus they were not

properly calibrated for mixture ratio. With the exception of HEA 150A-OIl, all of the

Phase Ill _As tested could have been readily recallbrated to yield a 1.50 ÷ 0.03

standard mixture ratio over the total throttling range by means of a simple flow

control valve pintle adjustment. The best possible mixture ratio setting on HEA 150A-011

would have ranged frc_ 1.47 at maximum thrust to I. 52 at minimum thrust, and a flow

control valve pintle replacement would have been required to meet the 1.50 _* O.03.

Based on the experience gained during the IRTS testing, it was decided to set the

acceptance test mixture ratio limits at the 1.50 ÷ 0.03 level with the expectation

that the recalibration and possible rework rate w_uld be acceptable. With the basic

S_ design, adapted to adjustability and accurate calibration, final hardware scral_page

would not be required. For example, in a case such as HEA S/N 011, noted above,

where readjustment alone would not suffice, the _low control valve pintles could be

matched in sets to achieve the desired flow characteristic (i.e., oversized and under-

sized pintles could be paired).

The influence of te _mperature and pressure on mixture ratio is discussed in paragraph

6.5.

6.8.5 Characteristic _ibchaust Velocity; Soecific Impulse; and Thrust Coefficient

Rela_ionshiio to ,'.Lixture Ratio_ Chamber Pressure and Thrust

After combining performance data from simulated pressure altitude Runs DY-25 through

DY-32 (PQT-OOI, -002, -003, -O02A, and-004.5), a multiple regression analysis was

conducted to determine the variation in TCA performance with mixture ratio and nozzle

stagnation pressure. The regressed parameters included characteristics velocity

efficiency (_C,) and _arust coefficient efficiency (_ Cf) which were computed based

/
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Table 6.8.4-1

MIRA 15SA Mixture Ratio Data at

Standard Inlet Cond/tions

Thrust Level Mixture Ratio

• • __Test Si_ _(ibs) --Mean + 3-Sigma Deviation

IRTD 30 1.502 O. 115

90 Z._l o.o6_

, 15o z. _75 o.o61
j_/J_,s 3o • 1.477 o .o_2

9o 1.5o6 o.o2_ .

15o l. _z o.o38 "

on the frozen flow theoretical data presented in paragraph 7.1.3- Specific impulse

efficiency (_ I ) was then com_r__te! from the product,_ C* X_c " These efficient.lea

are plotted versSPus nozzle stagnation pressure and mixture ratioftm Figures 6.8.5-1

through 6.8.5-3. The partial derivatives, 6Cf, 6C*, and 6Isp -._re next computed

and plotted as a function of nozzle st_gnat_on pressT_re. These _ata are shown in

Fixates 6.8.5 -b, through 6.8.5-6.

The present analytical engine perfc_-=_nce model used in the Surv_.zOr data reductio_

progr-am is based on frozen flow theory, and assumes performance efficiencies do not

cha.uge in extrapolating TCA test iata from one set of mixture ratio and chamber

wressure conditions to another, it is evident from the data presented herein that

this ass'_uption is not completely valid over the entire chamber 2r__ssure range. For

example, Figure 6.8.5-3 shows that there is a considerable variaticm in I_ Is_ with
nozzle stagnation pressure belov a:-v_rox_--mately60 psia, with a ===n reduced rvarlation

ab=ve 60 psia. Conversely the r__'_._-=._'-_eratio influence is relati;_-ly small in the
range above 60 psia with a more si__i_icant influence between am ._ of 1.4 to 1.6at
higher pressures. However, since a zajority of the MIRA 150A static firings were

condu=ted within a 1.50 + 0.04 -_Ix=.=__eratio range, with chamhe.r _ressures within a

few psi of the nominal thrust-to-si=__al envelope, performance data ex_rapolated to

"staniard" (720 psla and 70UF) an! -_o "rated" 1.5 mixture ratio c=nlitions are within

at least 0.5% of the true values for most cases.

After performing the regression ana/_:sis, all valid vacuum perfor-=.__uce data were

corrected to a 1.5 mixture ratio, _-_ulmean value and standard de%-_'ation estimates

_re obtained for I._, C*, and C_. _-_e test data used in this aua/o'sis included the

following runs: op

I. DY-19 through DY-21 (see _aragraphs 6.6.2 and 6.6.3).

2. DY-23 throu@h DY-32 (see _a_agraphs 6.6.3, 6.6.4, and 6.6.5 on PQT-O01,

• -O02, -003, -O04A, and -CO*. 5) -

3. DY-35 through DY-h6 (see =;_rzgraphs 6.6.7, 6.6.8, 6.6.9, and 6.6.10 on

I_T-O07, -008, -010, and-009.5).

:!r
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The remaining data were deleted because of their questionable validity (see discussions

under the appropriate individual test paragraphs). Table 6.8.5-7 provides the

statistical performance estimates derived from these data plotted in Figures 6.8.5-8

through 6.8.5-10. The C* estimates also include data from IRTS firings conducted at

sea level (see paragraph 6.7). Before merging the JPL/ETS and IRTS data 2 statistical

tests were performed to determine whether the means and variances were the same. The

tests were all pcsitive with the exception that the C* variance obtained from

data was significantly greater than that obtained from JPL/ETS data _t the

thrust level. After c_nputing the mean performance values at a 1.5 mixture ratio s the

previously derived partial derivatives (Figures 6.8.5-4 through 6.8.5-6) were applied

to CO_l_ute the performance variation as a function of mixture ratio_ thrust and nozzle

stagnation pressure. The resulting variations are shown in Figures 6.8.5 -11 thr_

6.8.5-13.

6.8.6 Thrust to Servoactuator Signal Relationship

Data from five static tests (four at IRTS -- C2-62!, C2-676, C2-680, C2-683 _

at ETS ---- PQT-010) using five different HEAs (S/Ns !50A-0OM, -007, -008, -009, _u_

-011) and four different Phase III servoactuatore (S/Ns C55390, C553_, C55393, am_

C55398) were selected as a basis for this analysis. Tests with other than Phrase III

servoactuators would not be valid for use here.

Measured thrust extrapoVated to standard vacuum conditions was used for I_-O10 c_-

ducted at altitude. The remaining tests were conducted at sea level without thrust

measurements; it was therefore necessary to compute thrust from measured chamber

pressure and the vacuum thrust coefficient curve previously presented in Figure

6.8.5-10. The resulting thrust-signal servoactuator curves were then plotted and the

values read off at the points of interest. Data at low pressures from the four

tests were used despite the risk associated with possible unchok_d flow. An indica-
tion that throa_ flow was sonic is the fact that the C* values on these rums, at

low chamber pressures corresponding to the minim_n stop and -70 ms signals, ranged

from 4810 to 4960. This is within the standard X + 3 range for Ca (reference

graph 3.h.2). The instrumentation error and amy zero shift of chamber pressure is

more significant at the low pressure levels than at higher pressures; this would

contribute to the higher 3 sigma deviation at the low chamber pressure levels.

The retract stop on the servoactuator (S/N C55394) used during PQT-OIO had been set

too low, thus limiting the maximum thrust. This low setting was detected during the

component acceptance test (see paragraph 5.1.1 - Table 5.1.1-10) which indicated that

the stop w_s se+_ at approximately +69 milliamperes differential current equivalent,

and was rejected on this basis. MRB action boughtoff the unit because the Surveyor

test program at that time required that firings be expedited with available hardware.

During acceptance of deliverable hardware, this servoactuator would have received a

null setting readjustment. Therefore, in order to include the data from PQT-OIO with-

out invalidating the sample, the thrust versus servoactuator signal curve was first

readjusted to represent this servoactuator null adjustment.
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_bze 6.8.5-7

MIRA 150A Vacuum Performance Estimatem at I._
Mixture Ratio

Specific Y_rpulse
(seconds)

z. mn_ma Thrust (3o z_s)

3. _ T_n_t (].50zbs)

Characteristic Velocity

(_/_e_)

z. mn.tmum rtu-ust (3o lbs)
2. m_a.,'_e rm-ust (9o ].bs)
3. M_m= Thrust (zSo Zbs)

C. Thrust Coefficient

z. m_ r_rust (3o ]._)
2. m_8_,-_,.eThrust (9o Zbs)
3. M_ r_rust (].50 ].bs)

Measured Value SA_..-50255-I_N-4

Requlzements

Mean +3-Sisma Mean +3-Sigsm
_ariation Limit

258.7 L_.5 Z60 7
287.6 5.2 e9o 5
291.3 3.3 ego 5

4826* 180 N.R.** N.R.

5286, 99* _.R. _._.
53e8- io'_* _.R. N.n.

]..7"zz 0.074 _._. w.a.
Z.752 0.035 _._. _.R.
i .763 0.0_2 N.R. N.R.

*Pooled estimate from both JPL/ETS and IRTS data.

**N.R. designates no specification requirements.

i
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All thrust data -_re then corrected to standard inlet conditions (720 psia, 70°F),

as summarized in Table 6.8.6-i. The mean and 3-slgma limit estimates based _ t00_F•
data were computed a_! are also provided in this table. The temperature (0 - 1

range) and pressure (700 - 740 psia range) effects su_zm_rized in Table 6.5.3-1 (para-

graph 6.5) were next applied by selecti_ the worst possible combinations of TCA-to-TCA

variation, temperature, and pressure. (NOTE: This worst-on-worst combinati_ of

3-sienna deviation lev?is of indepe_ient variables is very conservative c__ to

computation of a true o-rerall 3-sig=a deviation, but is required by JPL Specification

SAM-50255-DSN-C-) The resultant thrust-signal servoactuator envelope is defined

the following eig_ straight line segments:

Upper Limit Differential Current

(ib) (=U_)

33 -80 and :toss
].01 0

168 +70 and greater

Lower Limit Differential Current

v_u_ _ (__)

20 -70 and less
89 0

153 +80 _ sreater

6.8.7 Thrust-to-Ch-_ber Pressure Relationship

Head end chamber zrres_ as a function of vacuum thrust is shown in Figure 6.8.7-1

with the mean an_ 3-si_-_ limit estimates provided in Table 6.8.7-2.. These remAlts

are based on the 27 altitude firi_s at the jPL/ETS discussed in l_aphs 6.6.2

through 6.6.5 and 6.6.7 through 6.6.10.

Vacuum Thrust

(ib,)

15o

Table 6.8.7-2

MiRA 150A Chamber Pressure - V_

Thrust Relationship

Head End Chamber Pressure

Mean + 3-Si_:a Deviation

z2._ x.3

65.z x.x

x08.2 2._
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Dyrmmic response data frsm the JPL/ETS altitude test program are outlined in paragraph

6.9.1. Dynamic response information on typical sea level firings at the IRTS is presented

in paragraph 6.9.2. Paragraph 6.9.3 presents a discussion of the applicable camblned

data on startup, shutdown and variable thrust transient performance.

_he detailed discussion of dynamic response parameters that follows will require an

understanding of the follo'_ing definitions;

I. Startup Tire - The time interval between TCA receipt of startup signal

and attai_ent of 95% of the initially commanded thrust level.

. Shutdown __ze - For altitude firings, shutdown time is the time interval

from shutdo';n signal (removal of the signal frsm the electronic switch

that controls the helium pilot valves) until 95% of the total shutdown

impulse has been generated. For sea level firings, shutdown time is the

time interval from shutdown signal until the chamber pressure decays to

30 psia.

3. Startup L--Tulse - The area under the thrust'tlme curve over the startup

time interval.

. Shutdown L-icilse - For altitude firings, shutdown impulse is the eLre_
under the :h._ast-time curve over the time interval fr_ shutdown signal

to the tins at "._ich thrust has decayed to 0 lb. For sea level firings,

shutdown izi--lse is the area under the thrust-time curve over the shutdown

time interval.

. Step Res?or_e C_:ershoot - The maximum percentage by which the TCA-dellvered

thrust in2renen-_ exceeds the commanded thrust increment in response to a

step change in thrust signal level.

6. Step Response - The time interval between a step change in thrust signal
level and -/us initial attainment of the commanded thrust level.

. Phase La_ - .--hetlne interval between a sinusoidally varying thrust cammamd
msignal and .h_ resultant delivered thrust divided by the period of one full

c_mmand cycle; the quotient to be multiplied by 360 degrees and the resultant

product exTressed in degrees phase lag.

, Amplitude P_tio - The peak-to-peak thrust amplitude delivered in response to

a sinusoidzl!y varying thrust command signal divided by the thrust amplitude

change in response to the same amplitude change in steady-state thrust signal

levels.

. Loop Width - Loo; _dth is the maximum width of the thrust-signal control
loop (exp_ressed in milliamps) for complete and continuous thrust excursions

at rates well below system dynamic lags.

6.9.1 Altitude D_-anic Performance Tests

Test Objectives, _ config_ration, test setup, and test conditions during the altitude

test program conductei an _he JPL/ETS are presented in paragraph 6.6. The test discussion

contained herein will be limited to a presentation of the transient test results.

/
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6.9.1.1 Initial Checkout Teat

The transient data obtained from Run DY-18, the initial checkout test, were of little

value for the following reasons:

I. The test was not conducted in the altitude cell; thus, the startup

and shutdown transients were not comparable to altitude conditioDs.

. Injection pressure measurements were made adding to the effective

injector fluid volumes, and significantly degrading both throttling

response and startup and shutdown times.

. Propellants were not bled at the shutoff valves resulting in a slow

thrust buildup.

The servoactuator used (P/N CIO4312B, S/N C537_8) was of the Phase

II Follow-on configuration rather than the appropriate Phase III

flight configuration.

Detailed test data are provided in Table D-I-77 of Appendix D-l; these data are useful

for reference only.
4

6.9.1.2 Initial Altitude Test

The initial altitude test, Run DY-19, provided limited data characterizing MIRA 150A

I_A altitude dynamic performance. The chamber pressure at the nozzle end was measured

by a Model 351 Photocon pressure gage with a manufacturer's stated response of lO,O00

cps.*

Detailed response data based on the Fhotocon gage are provided in Table D-I-77 of

A_pendix D-I. Figures 6.9.1-1 and 6.9.1-2 provide copies of the original oscillograph

data sho_ing the startup and shutdown transients. During startup the Photocon pressure

data indicated several ignition spC<es, the largest of which was approximately 115% of

the final steady-state level and lasted for 3 milliseconds from initial buildup to

final decay. Under sea level auzbient conditions, similar Photocon =easurements revealed

no ignition spikes (see paragraph 6.9.2). The low ambient pressure (approximately

C.C5 7sla) experienced during the altitude startup has a definite influence on the

injez=or priming and ignition characteristics. Because of the relativel_ high vapor
;res3zres of the propellants (.75 psia for F/_H and 23 psia for MON at 70 F), it is

conceivable that the propellants flash vaporized upon opening of the shutoff valves,

entere! _he combustion chamber in the vapor phase, _nd ignited before the ir4ector

passages _ere fully primed with liquid.

The conbustion °chamber shell is capable of at least a i000 psi overpressure at room

tez;erature without structural failure and thus a momentary pressure of approximately

125 psla (115% of 109) is not a structural problem. A total of 20 altitude starts were

acccrFlished with flight weight CC & I_s without failure; thus, it is concluded that

ikl% reliability is not compromised by the small chamber pressure spikes seen by the

Photocon.

+J_L ccniucted a shock tube test with one of the gages used and obtained a measured

resTonse of from 3500 - bOO0 cps. Even accepting the lower response values, the Photocon

gage is considered adequate for deterzir_tion of all normal MIRA 150A transients excluding

high frequency combustion noise.

P,
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Table 6.9.1-3 _zes the startup sequence for Run DY-19. The unusually long start-

up time of O.174 seconds and large startup impulse of 8.5 ib-sec is characteristic of

a Phase II type_ EFA like S/N O0_ which had no provision for filling all propellant

passages down to the shutoff valves prior to a firing. During a subsequent start, the

startup Condition w_id be typical of the flight configuration if the propellants were

not removed. Relatively slow thrust buildup results in all cases on an initial firing

conducted Iz_ediately after TCA installation. Vacuum filling of the propellant passages

and bleeding at the quick disconnect ports on the Fhase III HEAs will be required for

any flight installation.

During shutdown (see Figure 6.9.1-2), somewhat unusual characteristics were noted

compared to the sea level firings at the IRTS. On all of the latter tests_ the Photo-

con pressure data indicated a rapid and smooth thrust decay with typical shutdown times

ranging frum O._O - 0.040 second. During Run DY-19, after the initial chamber pressure

spikes occurred oT.er a O.190-second time interval. The cell pressure at the time of

shutdown apparently had a significant influence on the propellants trapped in the injector

downstream of the ._ropellant shutoff valves. These trapped liquids probably vaporized

rapidly, entered the combustion chamber, and then relgnited. As the chamber pressure

increased and exceeded the propellant vapor pressures, the vaporization ceased until

the chamber pressure once more decayed. This cycle is repeated until all of the trapped

propellants ".*ere eyi_austed. Table 6.9.1-4 summarizes the shutdown sequence.

Servoactuator si_,_a! response data are also provided in Table D-l-N, although they do

not truly re_resent the flight configuration since a Phase II servoactuatorwas used.

Thrust rise time in response to step commands ranged frcm 0.013 to 0.03_ second, readily

satisfying the O.$65-secondmaximum allowable requirement of JPL Specification SAM-

50255-DS_-C.

Table 6.9.1-3

TCA Startup Sequence During

Altitude Test DY-19 (Nontypical Startup Conditions)

Event Description Time(seco ,)

Helium pilot valve

receives startup signal. 0.000

Helium pilot valve starts to open.
o.oo_

Helium pilot valve _ open;

Propellant Valves start to open.
o.o1_

First chamber pressure
rise indicated. 0.045

5_ximum ignition _ressure spike

followed by rapid chamber pressure
rise. o.o55

Chamber pressure and thrust

achieve 95% of cczr_anded level. 0.17_
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6.9.1.3 Initial Altitude Dynamic Throttlin_ Testm

Although the initial altitude dynamic throttling tests (Runs DY-20 through DY-24) were
conducted with Thrust Cycle PQ-1 (see Table 6.6.3-2) which was designed to obtain

transient response data, the information obtained was of limited usefulness because

of facility instrumentation problems. A 60-cps noise of approximately 2.5 ma peak-

to-peak amplitude was inadvertently superimposed on the servoactuator command signal
influencing the servoactuator response characteristics. Further, during Runs DY-20

th-_ough DY-23 the servoactuator command and position signals were amplified by
__ifferential a_plifiers with only a lO0-cps response which compromised the data

accuracy. These test setup problems were corrected for later firings. Detailed test
results for the initial altitude test are presented in Table D-1-77 of Appendix D-I.

Table 6. 9.X-_

MIRA 150A Shutdown Sequence
During Altitude Test DY-19

Event Description

Helium pilot valve receives

shutdown signal.

Helium pilot valve starts
to close.

Helium pilot valve

fully closed.

Propellant valves start to close;
chamber pressure decay initiated.

Major chamber pressure decay completed;
first reignition spike indicated.

95% of total shutdown
impulse accumulated.

Last reignition spike

OCCURS.

(seconde)

0.000

0.005

0.016

0.02_

o.o35

0.160

0.230

6.9.1.h PQT-OOI, -002, -003, and-O0_A

Since PQT-001, -002, -003, anl -O04A (Runs DY-25 through DY-28) -;ere conducted

;rizamily to obtain steady-state performance information, only limited transient
iata are available. These data are presented in Table D-1-77 of Appendix D-1.
S-=_artand shutdown transients are not reported for PQT-O02 (Run DY-26), because

helium pilot valve current and voltage signals were inadvertently not recorded

-='_ng accurate determination of TCAreceipt of startup and shutdown commands

impossible.
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Prior to each of these firings, the feed lines and TCA were drained of propellamts a_

were not bled or vacuum filled prior to startup. The resultant startup transients were

therefore not representative of the flight condition wherein propellants are v_c_

filled d_n to the shutoff valve seats.

This test series did serve to show the lack of high response of a Taber _age. The start-

up transient during Run DY-25 as represented by the thrust measurement is shown in

Figure 6.9.1-5, and as shown by the Taber gage at the head end in Figure 6.9.1-6. The

response of the head end Taber gage is obviously inferior as indicated by the long rise

time relative to thrust, and by the lack of any ignition pressure spike. The long

tubing between the transducer and the TCA (see Figure 6.6.7-I) and the small internal

passage (S.058 inch diameter) between the TCA chamber pressure tap and the cambustiom

chamhe_r are contributing reasons. JPL determined by shock tube tests that this install-

ation results in a measurement response of 30 cps at best. Therefore, on the remainder

of the transient data, only thrust and/or Photocon chamber pressure data were considered.

Based on measured thrust, the TCA startup times for PQT-O01, -002, -003, and -00_A were

all less than the 0.130-second maximum allowed by _ Specification SAM-50255-DSN-C in

spite of the fact that propellants were not bled at the shutoff valves. Shutdown times

ranged from 0.180 to 0.190 second, meeting the 0.200-second JPL specification maximum

allo'_able time. Servoactuator step response times ranged from 0.014 to-O.050 second,

all within the JPL specification upper limit of 0.065 second.

6.9.l.5 P -0O .5

Since all fotur firings on PQT-OO_.5 (Runs DY-29 through DY-32) were conducted with a

water-cooled combustion chamber, high response Photocon gage chamber pressure measure-

ments were available to evaluate transient response. The detailed response data of

PQT-OO4.5 are provided in Table D-I-77 of Appendix D-I_ Figures 6.9.1-7 and 6.9.1-8

provide coci_arison between thrust and Photocon chamber pressure data on TCA startup

and shutdo_m during Run DY-32. (The zero references on the time axes of these two

plots do n_t correspond to the startup or shutdown signal times - these signals are not

shown).

The thrust zeasurement was found to have two major shortcomings in the determination of

TCA transients. First, because of the thrust stand natural frequency of approximately

150 - 185 c;s, the chamber pressure spikes during startup and shutdown were not accurately

represented by thrust. A significant phase lag and amplitude distortion may be seen by

a careful review of Figures 6.9.1-7 and 6.9.1-8. Considerable thrust undershoot or over-

shoot may he detected, typical of an underdamped spring-mass system.

The second problem is associated with the accurate determination of proper limits of

integration for purposes of startup and shutdown impulse computation. Because of the
4

thrust stand oscillations, highly accurate definition of startup and shutdown times was

nearly im;ossib!e. However, the impulse values based on thrust and Photocon chamber

pressure over amy given time interval were found to agree within nine percent or better.

This relatively small error gave confidence in the Photocon data which was used when-

ever available for transient response determination for all tests reported in paragraph

6.9.
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Thrust response to servoactuator step commands ranged from O.012 to 0.O53 seconds, meeting

the O.065-second maximum requirement. Since propellants were drained from the feed lines

prior to all tests, with the exception of Run DY-32, the validity of the start transients

during Runs DY-29 through DY-31 is questionable. Startup impulse values ranged from 2.1

to 4.1 ib-sec with startup times varying from 0.102 to 0.125 second. Shutdown impulse

values ranged from 2.4 to 3.4 ib-sec with a slight variation with shutdown thrust level

indicated. Shutdown times ranged from 0.095 to 0.187 second meeting the O.200-second

specification maximum requirement.

6.9.1.6 PQT-oO_B

Since PQT-OO4B (Run DY-33) was conducted with a flight weight CC & NA with only a head

end pressure measurement, all response data were based on measured thrust. The major

significance of this firing was the demonstration of the capability of the MIRA 15OA TCA

to achieve a normal startup at the specification minimum TCA and propellant temperatures

of O°F. The startup transient observed during this firing was comparable to the previous

startup (Run DY-32) at ambient temperature. Shutdown was normal. The detailed transient

data are provided in Table D-I-77 of Appendix D-I.

Anomalous servoactuator behavior was detected. In every instance when the servoactumtor

received a positive step command while resting against the extend position mechanical

stop (minimum thrust), the resultant step response exceeded the specification limit of

0.065 second. In three of these cases, the servoac$_ator output stage failed to move

for periods of 0.015, 01094, and 0.102 second after receipt of a signal even though there

were indications from fuel pressure data that the first two stages had functioned.

Excessive phase lag was also noted in response to 5 cps slnusoidal ccmmmnds with values

of 31 to 38 degrees obtained as compared to a maxin-um allowable specification require-

ment of 28 degrees.

In the investigation of this performance _ailure, all previous test history with the

servoactuator (P/N CI0_312B, S/N C53750) was carefully reviewed. During component

acceptance testing, excessive step response times of up to 0.090 second and phase lags

of 27 degrees at 5 cps were experienced. This unit had been submitted to MRB and

subsequently bought off. During the acceptance firing of HEA 150A-OOI (see Test C2-56_

in paragraph 4.4), step response of 0.075 second and 5-cps phase lags of 27 degrees were

experienced.

A sea level firing (Run DY-34 - see paragraph 6.6.12) at ambient temperature was conducted

at the JPL/ETS immediately after Run DY-33. The response data from this test (see Table

D-1-77 of Appendix D-l) again showed an excessive phase lag of 36 degrees and a step

response of 0.071 second. After campletlon of TCA testing, the servoactuator was given

component level tests and then disassembled and ins;ected. No evidence of distortion,

wear, or galling was found. It was concluded that the out-of-speclflcatlon performance

was not caused by low temperature, since it had been experienced prior to Run DY-33-

However, the investigation failed to uncover the exmct cause of this performance. (For

further details on this servoactuator, see paragraph 6.12.1). During a formal production

program this servoactuator would have been rejected and not used for TCA testing or

delivery.
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6.9.1.7 1:_T-007

No throttling data are available from PQ_-OO7, because the tliree firings (Runs DY-35,

-36, and -37) were all conducted at fixed maximum thrust. All available data are

provided in Table D-I-77 of Appendix D-I.

Run DY-36 was the only firing of this series of three starts not preceded by propellant

drainback. The startup time was 0.07.3 second compared to 0.!23 and 0.105 second during

Runs DY-35 and DY-37, respectively. A considerable difference in startup impulse between

Run DY-36 and the other two firings was also noted. Shutdyom izF_ise values ranged

frum 5.4 to 6.0 ib-sec corresponding to a shutdown time rar_3e of frum 0.I0_ to_0.135

second.

6.9.1.8 PQT-OO8

PQT-O08 was conducted at a minimum fixed thrust level liziting the amount of transient

operating information. Detailed data for these firings (fans DY-38 through DY-40) are

provided in Table D-I-77 of Appendix D-I. Run DY-38 was conducted after draining and

refilling of the propellant feed lines resulting in a sume-._at slower startup cure,areal

to Runs DY-39 and DY-40. Startup times were 0.261 and 0.290 second during the latter

two firings.

Shutdown characteristics differed sumewhat frum those at the h_gher thrust levels.

Figure 6.9.1-9 shows the shutdown of Run DY-40 at a thrust level of 32 Ibs. Pressure

sp_es are not present for this low thrust shutdown. Ra-_her, chamber pressure tailoff

is smooth and lasts for a longer time period than for shutdo;_- at higher chamber pressures.

_nis different combustion transient characteristic may be attrilrated to the smaller

injector gap Settings at minizum thrust resulting in the tra=_T._edpropellants entering

the chamber at a steadier rate and reacting more s_oothly.

Another significant difference is the time required for closing the propellant shutoff

valves. _he valve closure tines may be roughl_ estimated "_f noting the time at which

the water hammer is sensed by the propellant inlet pressure transducers. By this

determination technique, the oxidizer and fuel shutoff valve closing times were 0.0_8

and 0.029 second, respectively, durir_ the minimum thrust shutdy_n on Run DY-40 s cumpared

_o 0.019 and 0.015 second, respectively, during the mid-th_---'st shutdown on Run DY-32 (see

Figure 6.9.1-2).

q'nis increase in the required shutoff valve closing time :__th decreasing shutoff thrust

levels may be readily explained b-j considering the principles of the valve operation.

_ne propellant shutoff valves are opened pneumatically. A sT.ring returns the poppet to

the closed position, and while propellant is flowing, the p__:ellant pressures also

generate a closing force, lhese _ropellant pressures vm---I as sh_n in Fi'gure 3.4.11-1.

The total force tending to close the poppet therefore varies directly with thrust level,

and causes an inverse valve closing time relationship with _J_ust.

6.9.1.9 PQT-OO9.5 and -O10

PQT-O09.5 and PQT-OI0 test series (Runs DY-_I through DY-16) %_re identical in all respects

with the exception that PQY-O09.5 was conducted with th_servoactuator and propellants

conditioned to the specification minimum temperature (O_F), an_ .=_-010 was conducted at

anbient temperature conditions. The use of a water-cooled camhustion chamber for these

tests permitted a Photocon chamber pressure measurement to he -_ade. Fhotocon pressure

and servoactuator signal data were used in the thrust trazsie:_ analysis. Table D-1-77

of Appendix D-1 provides same of the detailed trarmient da=a. Fur_.her discussion of

these test results is presented in paragraph 6.9.3.
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Detailed test data on PQT-O05 (Runs DY-47, -_, and -49) are provided in Table D-I-77

of Appendix D-I. Runs DY-47 and DY-_8 were conducted with a flight weight CC & NA,

and Run DY-49 employed a water-cooled combustion chamber. Thrust data were use_ on

Runs DY-47 and DY-_8, and Photocon chamber pressure data were used on the latter firing.

Startup, shutdown, and throttling transients were comparable to previous test results.

Servoactuator response tLmes again exceeded 0.065 second for steps initiated from the

mechanical stop positions on the servoactuator.

6.9.2 Sea Level .I_-mic Performance Test s

Detailed sea level transient data are reported in Table D-2-20 of Appendix D-2. _e

tests in this table include HEA performance firings conducted in accordance with

Acceptance Test Specification TS3-01B (paragraph _.4), and miscellaneous other firings

conducted at the IRTS. Photocon chamber pressure data were used for dynamic analysis

of all of these tests. Chamber pressure was converted to equivalent thrust by aplx1_ng

the vacuum thrust coefficients reported in paragraph 6.8.

Figures 6.9.2-1 through 6.9.2-5 show acceptance test data from Phase III HFA 15OA-007

fired at sea level. _ne_e data are typical of sea level dynamic response data oQ

startup and shutdown chamber pressure, step thrust response increase and decrease, and

chamber pressure to signal linearity. A comparison of Figures 6.9.2-1 and 6.9.2-2 with

Figures 6.9.1-7 and 6.9.1-8 (in the previous section) indicates differences between sea

level and altitude transients. These differences are discussed in detail in paragraph

6.9.1.2.

Although the sea level startup and shutdown transients are not accurate representation

of TCA behavior at altituie, the sea level data are useful quality control information.

_or example, Run C2-568 "_th _ 150A-005 resulted in a 0.15_ second shutdown time and

a _6.4 lb-sec shutdo-_a i__-pulse; both were well outside the normal data spread. It was

subsequently discovered =hat corrosion and dirt had caused sluggish operation of the

helium pilot valve.

No significant differen=e between altitude and sea level throttling d_n_amics was
detected.

6.9.3 Combined Sea Level and Altitude Transient Data Discussion

6.9.3.1 Altitude Start'_ and ShutdowaTransients

This paragraph presents the statistical summary of the startup and shutdown transient

data discussed in par_a_h 6.9.1. The following data were eliminated from the sample:

i. All startup tr_ient data from firings preceded by propellant drain-back

(includes Runs DY-19, DY-20, DY-25 through DY-31, DY-33 through DY-35,

1rz-37, DY-38, Zry.-L,l, and Dy._d_ through Ir/'-_Ba).

All shutdown tr_-u_ients where thrust stand oscillations were sufficiently

severe to prec!ule an accurate determination of shutdown time, and where

no Photocon c_-amber pressure data were available (includes Runs DY-20

through DY-28, DY-33, DY-34, DY-4?, and DY-_8).
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The re_aining data were then grouped according to the approximate startup and shutdown
thrust levels (minimum, mid-range, or maximm_), and the mean and 3-si6ma deviation

estinates were cumputed. These estimates of startup time and impulse, and shutdown

time and impulse are provided in Tables 6.9.3-1 through 6.9.3-_. In some instances,

the sample size was not sufficient to obtain reliable estimates. In other cases, only

one TCA was used for an estimate, and the TCA-to-TCA variability could not be determined.

In general, sample sizes were small and additional test data would be required to obtain
more _ccurate limits.

JPL Specification SAM-50255-DSq_-C requires that startup times not exceed 0.130 second
for all thrust levels of 90 ibs or above. Tabl_ 6.9.3-1 indicates this requirement

I would be met by the 0.117 second maximum estimate at 90 Ibs thrust _s well as by thereduced time of 0.089 second at the 150-I_ thrust level. The JPL specification also

requires a 0.200-second maximum shutdown time and a 2 Ib-sec maximum shutdown impulse

i variation. Table 6.9.3-1
TCA Altitude Startu_

Time Estimates

l SampleSize

Nominal Value 3-sigma

(second) _v_a_on

1:int== Thrust (30 lbs)

_T_e Thrust (9o Zb,)

2 0.275 *

3 O.lO_ _+o.o13

_._xi=_=Thrust (15o lbs) 0.077 _+0.02

*Sample size insufficient for reliable estimate.

Table 6.9.3-2

i TCA Altitude Staztt_
Impulse Estimates

sa=ple
Size

_'_n_'u=_='ust (30 Zbs)

_id_an_e _-ust (90 ibs)

_,>oo._ Thrust (15o Zbs)

Nominal Value

_(ib- sec )

2 3-_ *

3 3.l tl.2

5 3.1 _2.6

*Sample size insufficient for reliable estimate.
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i Table 6.9.3-3TCA Altitude Shutdown

i Time Estimates
Sample Ncainal Value 3-sigma

Size (second) , .De.viat.'_oj_

i +o.28o
Minim{.. Thrust (30 lbs) 7 o.179 -o;179

*Estimates based on data frcR one TCA onl_.

Table 6.9-3-_

TCA Altitude Shutdown

Impulse Estlmates

Sa=ple Nominal Value 3-sigma

Size (second ) Deviat los

I Minimmm Thrust (30 ibs ) 7 3-2 __+2.9
|

Midrange Thrust (60-100 Ibs) 7 3-3 + 2.4

Maximum Thrust (150 ibs) 3 5.6* + 1.1"

*Estimates based on data frcm only one TCA.

Table 6-9.3-3 indicates the shutdown time requirement will not be met, except at maximum

thrust. The measured + 2.4 ib-sec shutdown impulse variation also exceeds the + I ib-

sec specification requir_ent. The part of this impulse variability which is attributable

to TCA-to-TCA variation is estimated ta be + 1.9 Ib-sec. For use on a single spacecraft,

reliability would be e_ced by matching TCAs with approximately equal shutdown impulse

values. Helium pilot _!ve data provided in paragraph 5.1.3 indicate that approximately

+ 0.31 ib-sec (80 ib thrust multiplied by _+ 3.9 milliseconds variation in valve closing

t--imes) of the total im_a!se variation is caused by helium pilot valve functioning time.

The remainder is caused by shutdown thrust level (60-100 ibs range), propellant valve

closing time, and transient cumbustio_ variabi_i_y_

'6.9-3.2 Sea Level Startup and Shutdown Transients

All of the sea level data provided in Table D-2-20 of Appendix I)-2 with the exception of

Run C2-568 shutdown (helium pilot valve malfunctlon).were used to derive the statistical

data provided in Tables 6-9-3-5 through 6.9.3-8. Because the MIRA 150A nozzle may not

achieve choked flow at minimum thrust under sea level conditions, no minimum thrust

transient data are available.

A

/



!

_I_!drange%?u_mt(90Ibs)

M_ Thrust(150ibs)

*Data mot available.

__-_t (30lbs)

Midrange Thrust (901bs)

_xi_zn Thrust (1501bs)

*Data not available.

Table 6.9.3-5

TCA Sea Level Startup
Time Estimates

Sample
Size

8

Table 6.9.3-6

MIRA 150A Sea Level Startup

Impulse Estimates

Sample
Size

9

Nominal Value

(eecond_

o.o69

0.026

Ncmlnal Value

(secomd)

1.9

o.87

8422-6013-_;-000
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3-sigma
Deviation

@

+ 0.036

+ 0.048
- 0.026

3-sigm
Deviation

i

+1._

+ 0._

Table 6.9.3-7

TCA Sea Level Shutdown

Time Estimates

Sample Nominal Value

i Si___ze . (second)Y_am Thrust (30 ibs) (I) (I)

__e _m_st (9olb,)

_n Thrust(ZSOibs)

8 0.035

3 o.o_ (2)

I

I

I

(i) Data not available.

(2) Estimates based on data from one HEA onl_.

3-slgma
Deviation

(l)

+ 0.030

+ o.oo3 (2)
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Table 6.9-3-8

TCA Sea Level Shutdown

Impulse Estimates

Minimum Thrust (30 Ibs)

Sample Nominal Value 3-sigma

Size (second) Deviation

(z) (z) (i)

(9olbs)

muo== (mSoxb,)

NOTES: (i) Data not available.

8 2.8 + 2.5

3 3-9 (2) + 0-3 (2)
m

(2) Estimates based on data from one SEA o_.

6.9.3.3 Throttling Dynamics

Only tests using a Phase III servoactuator were considered in determining TCA dynamic

t_hrottling characteristics. The primary tests providing these data are PQT-O09.5 and
PQT-OIO. Other applicable tests include Runs C2-621, C2-680, and C2-710 conducted at
the IRTS.

Servoac_uator acceptance test results reported in Table 5.1.i-I0 should also be con-

sidered, because almost all TCA dynamic lags are attributed to the servoactuator for

step and 5-cps sinusoidal response performance.

In comparing the data frcm PQT-OO9.5 and -O10, no significant difference in step response

was detected between the low temperature and ambient te_rature tests. However, a

significant difference in step response was noted when the servoactuator was commanded

off the extend or retrac_ mechanical stop positions. In these cases, there was an

initial delay before the output stage started to move after receipt of the step command.
After ruction was initiated, the rise time was well within the 0.065 second requirement.

Because of the time delay in starting movement of the servoactuator output shaft, these

step responses were as long as 0.088 second total. For all intermediate signal levels,
the maximum step respcnse times did not exceed 0.038 second.

The reason for this initial time delay may be explained by a review of servoactuator
operation. (Refer to _r_aph 3.2.6.) For all co_i signals within the limits of

the mechanical stops, the second stage spool and flapper are caused to return to the
null or center position _ the feedback spring once the output shaft reaches the

commanded position. The l_ts on the mechanical stows are required to be outside the

-70 to +70 milliamp r_uge _rI Servoactuator Equipment Specification EQ2-23B. If a command

signal exceeds that required to place the output spool against one of its stops, the
feedback spring is unable to exert sufficient force to null out the torque motor force

on the flapper,, and both the flapper and second stage sxool are driven to an extreme

position. The initial time lag is that required for the- flapper and second sts4_
spool to travel the full stroke before the output stage can respond.
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JPL Specification SAM-50255-DSN-C expresses response requirements in terms of step

cc_m_ad signals of -70 to +80 and +70 to -_O milliamps. Under these c_uditions, a

servoactuator that meets component acceptance test requirements vould never be required

to initiate a large step from a stc____position, and would therefore not experience the

response la_s noted during these firings. The servoactuator used for these tests had

the retract stop set at +69 millia_--is and the extend stop set at -76 milliamps. Actual

signal levels during the TCA firings rangei from -79 to +73 milliamps. The shape of

the step response traces on the osc_llograph records indicated no overshoots upon

approaching the extreme positions, __rt_r confirming the fact that the servoactuator

was hitting the mechanical stops.

Sinusoi_al signal response data fr_ _T-GOg.5 and -OlO firings are provided in Figures

_.9.3-9 _r-_g h 6.9.3-12. Phase lag data (Figures 6.9.3-9 and -i0) indicate no signifi-

cant _Ifferences between the ambien_ aml loo; temperature firings at com;_Arable signal

levels. _lth_agh more erratic, the a-_plltude ratio data (Figures 6.9.3 -11 and -12) are

also similar at the two temperature levels. Temperature al_armntl_ has no sigmlficaut

effect on servoactuator response in the 0°F to 70_F range.

Signal level did have a noticeable im__luence on TCA response characteristics, especially

at the _-n thrust level. Phase lag at 5 cps for the 0 + 7-_ and +62.5 ÷ 7.5 signal

levels dil not exceed 23 degrees. At the -62.5 + 7-5 sign_ level, the _ha_e lage at 5

cps reached 3_ degrees compared to a - --___ all_blm value of 28 degrees. The shape

of _he resi_nse curve at the low level _s also somewhat unusual as indicated by Figure

6.9.3-13. ._ne actual command signal levels -_re measured as -64. 5 + 8.5 millia_,

slightly lc'_r than the -62.5 + 7.5 Lutenied level. These levels ar--esho_a on the

thrast-si__al h_steresls loop _btalned from the large ramp signal input d_Arlng Run DY-_l

and plo_tel in Figure 6.9.3-14. This fiE_e shows that the servoactuator _as operating

in _he red-±on having the largest loop -_!th (approximately 4 millia_ps at the -6_.5

millia-_p level), and was at the mec'_=-_cal s_op at the low end of the slmusoidal curve

(a_ -73 -_llllamps). The behavior no_ei is attributed to this situation. The MIRA 150A

TCA equiu_ei "._th a Phase iII servca_-aator ";ill meet the specification requirements

of a 25-_e_ee maximum phase lag anl 0._5 r_Inimum amplitude ratio in response to a 5-cps

sinusoi_Lly varying input signal of l_ -__illiamps peak-to-peak amplitude at all signal

levels ex:e_t those which cause the ser¢oactuator to operate In the regions of the.

mechaz_c_-I stops (+70 milllamps, or greater).

Large ra_-p sisal response data for PQT-O_.5 and PQT-010 are provided in Figures

6.9._-1L ___-i6.9.3-15. The _ loop ".-Lith for these tests was approximately _.5

millia_-p=s o__curring at the minimum _'r_--_t level. This is well within the

allo-._ble 1_% of the command curren: exc-_slon (160 milliamps in this case) required by

JPL S;ecific55ion SAM-50255-DSN-C. --_= --_ast-signal gain values also fell -_ll within

the 0.7 to 1.O lb/ma specification limits. The downward shift in the thrust-signal

cu-_'e i'_--u_ _n DY-_6 _as caused _.: _ =o_ase in total propellant fl_ rate at low

te-__perazure. This phenomenon is explalnei in paragraph 6.5.

The s-_=_ized dynamic throttling characteristics of the MIRA 150A TCA are provided in

Table 6. R- _-16.

On a _-si__a deviation worst case basis, several of the demonstrated dynamic response

characteristics did not meet the req_!re--ents of JPL Specification S_4-5025_-DSN-C.

Step response overshoot _as h% abo_ _he a!lo_mble 25%, the phase lag for 5-cps signals

of -62.5 _• 7-5 milliamps amplitude ".ms_ 1.2 legatees above the _8-degree limit, and the

3-slgma _._ation estimates of amplitude ramio fell as much as O.l_ below the 0.95

minim aiio_ble. However, checkout of Phase III TCA and servoactuator acceptance

testing _:-hlch _uld be conducted on _ _ts prior to delivery) indicated that all of

the speoiflcation requirements could he met "._ith a tighter screening of component

perfo_--am_.
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Of the three TCAs tested _rith Phase III servoactuators, none failed the response requJ-re-

_ents while operating within the s_e_cificatio_ llmit8 (including low tem_ez_ture)-- Out

of seven different Phase III servc_ctuators acceptance tested (see Table 5.1.1-10), on_

one (S/N 55390 which had a 0.91 amplitude ratio and 27-de_ree phase lag at 5 cps) would

have caused a TCA to fail response requireaents. Other characteristics such as loop

width, thrust-signal envelope, and-rise time performance presented no problem even on a

conservative 3-siEma deviation basis.

bus, it is believed that the basic MIRA 150A TCA design will meet all transient perform-

ance requirements when: (1) proper care is taken on acceptance testing, (2) added

experience has been gained in fabrication and testing, and (3) added test data (frum a

qualification test program for eTmzple) becomes available to add to the statistics.
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6.10 Vibration and Acceleration Environmental Tests

Two tests were performed to determine the effects of high level vibration and accelera-
tion external load enviromnent.

The acceleration loads were imposed by centrifuge. The centrifuge tests were planned

as a prelude to more extensive testing under a combined vibration and acceleration

envrlonment. These tests are discussed in paragraph 6.10.1.

One prefiring, high level vibration test was performed as described for PQT-OII in

the prequalification test specification. This test is discussed in paragraph 6.10.2.

6.10.I Centrifuge Tests

MIRA 150A TCA centrifuge tests at the STL Capistrano Test Site (CTS) were limited to

two checkout firings, Runs HEPS-O01 and HEPS-O02. Aidltional acceleration tests

which were scheduled as part of the prequalification test program were later deleted

from Phase III. However, the centrifuge tests that _re conducted demonstrated the

capability of the _RA 150A TCA to operate satisfactorily while under the simultaneous

influence of 10g acceleration in the longitudinal axis (required by paragraph 3.7.5.2

of JPL Specification S_-50255-DSN-C) plus the c/oerational vibration characterized as

white Gaussian at a level of 3g rms between 100 and 3_330 cps along three orthogonal

axes (required by paragraph 3.7.3.2 of JPLS_ecification SAM-50255-DSN-C).

6.10.1.1 Test Objectives

The primary objectives of the centrifuge tests, .'Runs HEPS-O01 and HEPS-O02, were to:

i. Perform initial checkout firings of t_ centrifuge stand.

e Determine any changes in TCA operating characteristics when fired under

flight acceleration and vibration ccniitions as compared to standard static

firing conditions.

6.10.1.2 Test S_

All major test objectives were achieved. The _._ tests on the centrifuge, one with

and one without the centrifuge spinning, use! the sa__ TCA and were performed in

immediate succession to enhance the validity of the co_-parison of the static and
acceleration conditions.

6.10.1.3 TCA Configuration

The HEA tested _s _A 150A-O01 (STLP/N 105L6!-lA1) and included a Phase III servo-

actuator (S/N C53750). The altitude CC & !_ (P/N i065h6-i) was S/N 006.

6.10.1.4 Test Setup and Test Conditions

The TCA was installed on the mounting bracket on the centrifuge stand as shown in

Figure 6.10.1-1. _ne centrifuge is described in section 8 (Special Test Equipment).

The same 130-second iuration AT-1 thrust-time _ro_--_am (see Figure 6.10.i-2) was used

for both firings. Sufficient instrumentation measure--ents were made to determine

L
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Figure 6.10.1-1. Centrif_e Test Setu_
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steady-state and transient performance characteristics. Because additional propellant

volumes ere imposed by the use of injection pressure measurements, none of the
transient data are considered valid. A triaxial accelerometer was mounted to the TCA

(see Figure 6.10.1-3) for the nonspinni_g firing to determine the g level and fre-

quency of the vibration environment self induced by the TCA during firing.

6.10.1.5 Test Results

The centrifuge checkout firings, Runs P_S-O01 and HEPS-00_ were successfully

completed on 27 November 1964. The _ta showed no significant change in TCA operating

characteristids at 10g acceleration c___red to static conditions. Figures 6.10.1-4,

-5, and -6 co_loare the C*, mixture ratio, and injection pressures of the two firings.
No derived data is available for values below 40 psia chamber pressure, because of

an instrumentation setup error causin_ loss of oxidizer flow meter data at low flows;

however, extrapolation of data at low levels is verified by all other measured values

(fuel flow, injection pressure, etc.). Instrumentation failed on servoactuator

signal and position. Detailed tabulated data from these runs is summarized in Table

D-3-1 of Appendix D-3.

Measured self-induced vibration levels during static firings (see Figures 6.10.i-7,

-8, and -9) indicate that the required value of 3g rms or greater white Gaussian

over the frequency sepctrum of 100-300 cps was attained at all thrust levels. Un-

filtered vibration data over the entire frequency spectrum indicated levels of

from 20 to 50g rms.

6.10.2 PQT-OII ---- Prefirin_ Vibration Test •

6.10.2.1 Test Objectives

The primary objectives of this test were to:

i. Demonstrate the capability of the TCA to meet specified performance require-

ments after subjection to sL=Alated spacecraft boost phase flight vibration.

2. Acquire additional data on TCA reliability.

6.10.2.2 Test Summary

This test _s successfully completed according to paragraph 7-7 (PQT-OII) of the pre-

qualification test specification. _ co=p!ete PQT-OII test series consisted of:

(i) a previbration HEA calibration test (_n C2-680) accomplished according to the

procedures of the acceptance test specification, (2) the vibration test described

herein, (3) a postvibration TCA durability test (Run C2-709), and (5) a repeat of

the _A calibration test (Run C2-TIO). The results of the previbration and two

postvibration static firing tests are dlscussed in paragraph 6.7.3. Detailed in-

formation on the vibration test may be found in STL Document Humber 9522.3-272,

"Test Report Surveyor Vernier Thrust _amber Assembly Pre-Qualification Non-Operating

Vibration Test," dated i February1965.
#

6.10-2.3 TCA ConfiEuratio_

The TCA tested was a complete Phase III flight-wiehgt configuration (MIRA I_IA-O08)

and is described in paragraph 6.7.3.2.
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6.10.2.4 Test Setup and Test Conditions

The detailed test procedures followed are contained in paragraph 7.7 of the prequali-

fication test specification. During the vibration test, the TCA propellant passages
down to the shutoff valve seats were pressurized with water at 300 + 20 psig. The

servoactuator cavities were filled wlth alcohol, and the inlet and_utlet ports were

plugged. Figure 6.10.2-1 illustrates the overall test setup used.

Measurements were made of vibration input levels and the resultant resl_OmSes at

various k_j locations on the TCA components. The exact transducer locations for each
of the three axes tested are illustrated in Figures 6.10.2-2 through 6.10.2-_. All

transducers used were piezoelectric accelerometers which were calibrated for basic

sensitivity amplitude linearity and frequency response by means of a combination

optical and stroboscopic technique prior to the test.

The vibration input levels complied with the requirements of PQT-OII in the preqm_ll-
fication test specification, except the sinusoidal sweeps were initiated at i0 Ms

rather than at the specified 5 cps frequency, because of sh_kmr servo control llmltm-

tions at low frequency. Also, during the first sweep_ intermittent loss of shaker

servo control resulted in erratic vibration input. The actual inputs used are pro-
vided in Table 6.10.2-5. Atypical combined random and sinusoidal input is illustrated

by Figures 6.10.2-6 and 6.10.2-7.

Vibration _ms applied by a MB i0,000 force-pound exciter (Model C125), controlled at

the TCA trunnion mounting point on the test fixture (i.e., accelerometer number 1 in
Figure 6.10.2-2). Both the sine and randam components of the complex wave _re

controlled to maintain the specified rms vibration level by use of separate serve

syste__s coupled through a tracking filter with sine reject capability. Sinewave

control _s accomplished with a conventional Bruel and KJaer servo control system.

6.10.2.5 Test Results

_ypical results for each of the three orthogonal axes tested are provided in Al_ndix

I. Incluied are plots of vibration input levels, both the sinusoidal and random, and

the tran__-_isslbility plots for each of the transducer locations illustrated in
Figures g,i0.2-2 through6.10.2-4.

No TCA resonant frequencies were found in the low frequency range; thus, the test was
not coz_rcm!sed by the lO-cps initiation or by the aforementioned loss of servo control
on the first of the six vibration rams.

The tram_issibility plots in Appendix I indicate that no TCA resonant frequencies

occur below 250 cps. The highest resonant frequencies noted within the lO-15OO cps
frequen_j band were in the range of 700 to 800 cps for the TCA throttle arm, nozzle

exit, and the servoactuator. These all occurred along the Z-Z axis (parallel to the
trunnloms).

The highest transmissibility ratios (the ratio of measured output g to input g) were

19 at 800 cps on the nozzle exit, 21 at 760 cps on the servoactuator, and 22 at 365
cps on the nozzle exit. The first two ratios _re noted during sweeps along the Z-Z

axis, and the third along the y-y axis.
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No signs of liquid leakage or physical damage were noted upon visual inspection after
each sweep. After the last sweep, no leakage w__s detected when the TCA was leak

checked. The 300-second TCA maxlrmun thrust durahdlity test (Run C2-709) performed
in 3 starts (50, IOO, and 150 seconds) and then a repeat of the previbration HEA

calibration test (Run C2-710) with a water-cooled CC & HA, _ere successfull_ completed

after the vibration test. The static test results are provided in paragraph 6.7.3.

This test series demonstrated the capability of the MIRA 150A TCA to operate satis-

factorily after exposure to simulated spacecraft boost phase flight vibration.

i

I
F
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6.11 Extended Range Throttling Tests

A limited number of tests w_re made at the conclusion of Phase III testing to determine

the capability of the _CIRA 150A HEA to perform satisfactorily over a throttling ra_

extended to 9:1 ----- 20 lbs to 180 lbs vacuum thrust.

6.11.1 Test Objectives

The primary objectives of these tests were to:

i. Throttle the 2C!RA 15OA design beyond the required 5:1 (30 ibs to 150 ibs

vacuum thrust) range presently specified.

2. Obtain sea level performance data over a throttling range from 20 Ibm to
180 lbs vacuum thrust.

6.11.2 Test Summar_

All major test objectives were achieved by Run C2-714. This test was conducted

under sea level conditions at the Inglewood Rocket Test Site.

6.11.3 TCA Configuration

The HEA used was MIRA 150A-004, including a Phase II servoactuator (S/N C53666) which

was capable of providing a 0.240 in. stroke, compared to the 0.17_ in. stroke required

for Phase IIl servoactuators. A _ter-cooled CC & NA (P/N 106372) was used for these
tests.

6.11.4 Test Setup and Test Conditions

The TCA was installed on the C-2 test stand and instrumented to measure all parameters

required to determine steady-state and transient performance characteristics. A

Phase II servoactuator was used (-._thout the resistive network required to reduce the

servoactuator stroke for Phase III performance) to provide sufficient stroke for a

9:1 throttling range. Engine throttling was accomplished by use of a manual stepping

s_tch preset to provide step signals to the servoactuator giving nine thrust levels.

6.11.5 Test Results

Run C2-714 was successfully completed on 12 January 1965. Figure 6.11.5-I summarizes

C*, mixture ratio, and in_ector pressure drops measured over the throttling range.

Detail tabulated data are presented in Table D-2-23 of Appendix D-2. C* values

are not plotted at the 20-1b vacu_ thrust level, because the nozzle became umcho_d

at sea level at the low chamber pressures.
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6.12 Summar_ of Servoactuator Anomalies

During the course of the testing discussed elsewhere in this report, there _re

occurrences of anomalous performance and malfunctions of the servoactuators. Details

of these occurrences are gathered in this paragraph. Also outlined herein are the

corrective actions taken to evolve the satisfactorily performing, reliable final

design.

For details about servoactuator design, performance, and acceptance testing, see

paragraphs 3 •2.6 and 5 •i. i.

6.12.1 Phase II Follow-onUnits

Six servoactuators were ordered and received as part of the Phase II Follow-om

Program. All six servoactuators were used during Phase III testing; these servo-

actuators had serial numbers C53747 throu@h C53752.

6.12.1.i Failures and Anomalies

Three units (S/Ns C537_7, C53748, and C53749) de_elopel severe fuel leakage past the

torque motor static seals. These units were retired from service after the leakage

vas detected. Unit C537h8 was used successfully at the'JPL/ETS for tests there

prior to leaking.

Unit C53752 experienced a null shift and leakage through the output shaft dynamic
seal and nozzle and was returned to the vendor for re-;ork. After rework the unit was

used in IRTS firings and in time developed a leak through the spool stop O-rim_

static seal. It was retired from service.

Unit C53750 showed intermittent, excessive initial step response delay times in lear-

Lug the extreme stop positions during the mlndmum te__--perature test (PQT-OO_B) at the

JPL/ETS. Initial delays of up to 0.103 second resultel in step response rise times

as high as 0.160 second. Tquis was accompanied by excessive position slew rates.

This performance characteristic occurred intermittently during later tests at the

IRTS and the centrifuge tests at CTS. (For further de_ails on d_namle performance

refer to paragraph 6.9.)

In an effort to ascertain the cause of the anomalous behavior of Unit C53950 the

following steps were taken:

i.

0

2.

.

Using this servoactuator on HEA S/N 001, the friction force required to

move the crossarm without propellant pres_._e to the TCA was determined.

The servoactuator-to-crossarm flexure was re,laced with a load ring. Then,

500 psi fuel pressure was applied to the TCA and servoactuator (with actuator

dump line open); full stroke ramp inputs of +80 ma at 0.03, 0.i, 0.5, and

1.0 cps :_re imposed and the loads _re mea_--_ed on the load ring.

The servoactuator _s installed alone on the actuator test stand sad

pressurized to 7_0 psia without the resistive (stroke reducing) network.

A sinusoidal differential current input of +_cO ma at 0.03 and 1.O cps was

then imposed, and the load, position, and s_g_al wmre measured.

I
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With the same setup as described in (3) above, step inputs of +80 ma were

imposed, and the load and position were measured.

Ans_ysis of the data from (i) through (_) above revealed no malfunctions; performance

w_s nor_sLl.

Unit C53750 was next partially disassembled; all parts appeared to be in excellent

condition. Thus, the causes of the ano-_alous performance on Phase II Follow-on

Unit C53750 remain unknown.

Analysis of the performance cited above and of the acceptance test data, plus restudy

of the Phase II design showed the follzr.-Ing major inadequacies of the Phase II Follow-
on servoactuator:

• Inadequate linearity.

• Excessive step response rise time,

• Excessive internal leakage.

overshoot, and setting time.

6.12.1.2

Leakage of torque motor static seal.

Leakage through the output shs.ft dynamic seal. (This was caused by metal

particles that got by the shaft wiper during stroke retract because the

shaft wrench flats were too icn_ making the wiper ineffective. )

Electrical zero shift and nozzle lea_. (This was caused by im_lequate

nozzle press fit.)

Design Changes Instituted for Phase III Servoactuators

The following changes were required for Phase Ill servoactuators to eliminate the

inadequacies noted in paragraph 6.12.1.1:

i. Overall actuator linearity w_s !__roved by more rigid inspection controls

on torque motor linearity.

2. Step response was improved b_- altering the second stage porti_w_.

e

_e

e

e

Internal leakage tendencies _re reduced by tighter quality control durimg

second stage assembly and matchlmg.

Torque motor static seal leak_-e was corrected by a design improvement using

an ethylene-propylene O-rlng.

Leakage through the output sha-_ "._s corrected by shortening the wrench

flats on the shaft to make the wiper effective.

Nozzle leakage and nozzle zero position shift were corrected by new nozzle

press fit dimensions.
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6.12.2 Phase III Ser_oactuators

Only seven of the 18 Phase IIl units ordered (S/Ns C55390 through C55395 and

C55398) were tested a= STL. Some anomalies occurred.

Actuator S/N C55390 d_;eloped a severe random null shift during firing of _A S/N 007.

The actuator was removed and returned to the vendor. Disassembly of the unit re-

vealed that the four long-lock torque motor mounting screws had loosened (possibly

during vibration) allo-.__ng the flapper to shift with respect to the first sta_

nozzle. All Phase iI! servoactuator torque -_otor _-o._nting screws were then chan_

to be lockwired to _llevlate the possibility of this malfunction reoccurring.

Units S/N C55391, C55_2, and C55393 were received from the manufacturer and per-

formed as expected du__ng acceptance tests. Ho-_mver, these units experienced null

shifts during subsequent HEA testing. Investigation in some depth indicated that

the second s%age spool centering springs could be overstressed during conditions of

maximum error signal ca':sing spring length changes. As a result, both centering

springs, the feed _back beam spring and the feedback arm spring were redesigne_ to

preclude changes in performance caused by occurrence of maximum stress conditions.

These actuators were returned to the vendor for re'._rk and subsequent units had the

spring redesign features. After rework, these three units passed the normal tests to

which they are subjected by the vendor prior to delivery and were again delivered.

this time STL no lcn_zer was performing acceptance tests. Further, these units

were not tested on an _ subsequent to rework.
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7.0 THEORETICAL ANALYSIS

Significant theoretical effort on the Phase Ill program centered aruund the six

subjects listed below.

i. TCA Passive Thermal Control Analysis - See paragraph 3-3._ and Appendix B.

2. Theoretical _3_ermochem/cal and Ballistic Propertlem.

3. Exhaust Plume Temperature and Pressure Profiles.

_. I_/na_ic Response Analytical Model.

5. TCA Predicted Firing Temperatures.

6. Venturi Discharge Coefficients.

The last five items will be discussed in this section.

7.1 _noc._tio_L Thermochemical and Internal Ballistic Pro_ertlem

7.1.1 Chemical Co m_ositi0n of Exhaust Products

Assuming frozen flow conditions, the theoretical gas composition in the combustion

chamber and at the nozzle exit plane are identical; these _ta for a mixture ratio,

M.R., of 1.5 and mid-range chamber pressure, Pc' of 66 psi are provided in Table
7.1.i-i.

7.1.2 • S_clfic Heat Ratio and Molecular Weight

The specific heat ratio, r , is deflned as

ZX C
T = i pi when:

-(_i CPl) - _

le

o

__F'Xi Cpi is evaluated at the temperature of the co=bustion products in the

_er, T , or at the exit plane, T .
c •

R has the value of 1.987 when X i is ex_._essed in mole ._ractlon _na Cpi

¢al/=oZe°K.

The average molecular weight is defined by Rg =ZX i _gi where:

_gi is the molecular weight of the i-th combustion gas constituent.

The heat capacity ratios (r c is T at T c and _ e is T at Te) and the average molecular

weight at M.R. = I._ and P = 66 psia are given in Table 7.1.2-1 along with some other
C

properties.
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Table 7.1.1-1

_eoretlcal Gas Composition

(Expressed as mole fraction for MSN/MMH at MR = 1.5 and Pc " 66 psla)

0.3o_o

o.28_89

o .2o1_

o .1_._8

o .028oo

o .o_17

o .o.u29

o .oo129

o.ooo8_

Additional Gases of Low Concentration

Mole fraction lO"5 to 10 -6

N, NH, _3

Mole fraction 10-6 to 10-8

CN, HCN, H2CO, _CO, _, N20, NO

Mole fraction 10"8 to i0 -lO

C_, CH 3

Mole fraction 10-10 to 10 "15

C, CH, C_, HCCH, NCCN, 03, H+, 0+,
e D

Mole fraction less %hanlO -15

02

HCO

0 .o0o_7

0.00001

c2, Cy c_, c5, c3o2, c_.2, m2o2,

H2C=CH 2, N203, N2H4, N2Ol_, N205,
----- +

c

Table 7.1.2-1

Various Thermochemlcal Properties

(MR = 1.5 and Pc = 66 psia)

r : 1._3
c

= 1°33_r e

= 19.49

T = 5237 o_
c

C*(frozen) = 55611. ft/sec

isp(frozen) = 311.3 sec at ¢ - 32.8

CF (frozen) = 1.8003 at ¢- 32.8

e

PjP,:5m
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7.1.3 Theoretical Internal Ballistic Prol_rties

Equilibrium, frozen, and kinetic theoretical performance calculations were made. _e

results of these calculations are given in Figures 7.1.3-1 through -3- _ese figures

show theoretical "_characterlstic exhaust velocity_ thrust coefficient, and specific

impulse of the __A as a function of chamber pressurm. The equilibrium an_ frozen

performance calcalations were made using STL's _ 7094 Rocket Chemistry Progrsm.

This program considers all possible reaction produc_s and calculates the adiabatic

chamber conditic_-s and the equilibrium or frozen isotroplc nozzle expenslon using

JANAF ther--al f_-.c'_ions (free energies, enthalples, and heat capacities). Reaction

rates are not considered; thermodynamic characteristics alone are conslde1_-_.

Extensive co_-paris=ns of the results of these ca!cllatlons with similar calctd_tio_

performed by associate contractors &/ring the Air Yorce ballistic missile p_

has established the overall accuracy of the program. The kinetic calcttlatlons

were perfo_ed using STL's Nonequillbrium Perfor-_ance Program. Assuming that

equilibrium condltloms exist in the ccmbustlon chamber, this program calculates the

nonequilibrium nozzle expansion accounting for the effects of finite rate chemical

reactions occur__ng between combustion products. The program considers the 12 chemical

given in T le 7-_.3-_. It b_en shown that these 12 chemical species an_

chemical reactions are the only ones of importance in currently used space storable

propellants contai--'ng the elements carbon, o_/gen, hydrogen, and nitrogen when complete

combustion occurs in the chamber. Examination of Figures 7.1.3-1 through 7-1.3-3

shows that even __th complete combustion there is an appreciable kinetic performance

loss associated _-th the lack of complete recombILatlon in the Surveyor nozzle. _he

calculations sh_-_ that the theoretical kinetic perfor-_nce estimates for Surveyor

are closer to the frozen flow Performance est -Izates than to the equilibrium flow

performance estlmstes.

For purposes of the data reduction program (STL Do=_ment 84Z2-6007-TU-O00, BO2) the

frozen flow theoretical performance was assumed an_ these data are provided in

Figures 7.1.3-5 th_&gh -7. Data are included in these figures on characteristic

exhaust velocity, -_Lxt,_re ratio, thrust coefficient, and chamber pressure inter-

relationships (.--_ic_res 7.1.3-5 and -6) plus combus:ion gas temperature (Figure 7.1.3-7)-

The info_tion sh=._ in Figures 7.1.3-5 through -7 is tabularly presented in

Tables 7.1.3-8, -9 and-IO.

Analytical re!at!cza were derived to express the vac-_'_m thrust coefficient as a

function of nozzle s'_a_-nation pressure, mixture ratio, and nozzle expansion ratio.

These relations, __h__ graphically in Figure 7.1. _-_" and presented in Table 7.1.3-11,

are also used in the Surveyor Data Reduction Program.

Data similar to _.hat shown in Figures 7.1.3-5, -6, and -7 and in Tables 7.1.3-8,

-9, -i0, and -ii fcr ._"__and N20 A (a propellant combination used on the program
for a brief period) are provided in Appendix F.
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l%meticm
]_mber

1

2

3

5

6

7

8

9

10

11

12

13

lk

15

16

17

18

19

2O

21

22

23

Reaetloo

W2 * M_,tX * W * Z

% +_o +o *.

I0 +M_]I+ O+M

00 +M_C +0 +M

(X)2÷ M_Q:) + 0 + M

12o + ,_oa + i *,

_ + M_----"aJ+ a + M
B +M'4:fO +B+M

"2,o_.-,_-,,o+,,o

]VO + 04--_| + 02

oo+o_,_c+o2

oo2 * o_'_oo,o2

O0 + _C + ]I0

CO + NO_---_O 2 +C

CO +O0_---_02 +C

a +oR<.-_o.* o

H + IO'_"T-OH+I

B + CO_--0H + C

il + 00_--_01[ +CO

_o . o_ol + ol

+ %_o,,. o,,

Table 7.1._

Assumed Chealcal Reactlo=s

8A22-6013-TU-000

Pa_e 7-'/

k

2 • 1o 18 T4

2 • 1018 T "1

2 x Io _a T"I

2 x 1018 T"1

3 x lo_T "1 -_393/T

3 x 1o19 T"1

2 • 1o 18 _1

2 x _o18 T"1

1._ x 1016T "1

1.oll x 1o _1 _-o .5

(-_/_)

2._8 x m_3 e_ (-_O/T)

3.58 • xo1_ _'_

z._ x zoz6 fz

2.11 • zo x_ fz

2.11 x lo _6 _'1

3.3 • lO _6 _'_

_.o_ • lO 23 _-1

• _ _(._,_0/_)

•7 x _O_2ex_(-_OO/T)

z x _(-_oo/_)

z._ • lo_3 T"_

_._ • lo _ _-z

_._ _ _oz6._p(-_,_oo/_)

l_rm_ee

Byron, 8., quoted by Wrsy, K. L., Avco Research
Report m_ (1961)

Wray, K. L., and Teare, J. D., Avco Research

Wrsy, K. L., and Tesre, J. D., Avco Research
Report 9:; (3.963.)

Wray, K. L., and Tears, J. D., Avco Research
Report _ (1961)

tvre_enko, L. l., and Koleanlkova, R. Y.,
lzvest. Akad. ,_...tk. S.S.S.R., Otdel. _aln.

Bulewlcs, E. M., _d Sudden, T.H., Trans. Far.
S_., _, _5, (1958)

_,_, J. P., J _=. _m., 36, 262, (_)

Wr_y, K. L, and Teaa'_, J. D., AWCO Rmmea_h

Fnillips, L. F., a_d Schlff, H. Z., J. Chem.
_,., _, _o9, (x_(_)
Ralston, A., &_d _ilf, H. S., Y_thes_ttcal
Method for I)14_l C_:puten, 1960

Vincentt, V. O., _ord Unlvers£t¥
Del_r_t of _er_c_tlcm£ _lnee_ln_ Report

Awrsmenko, L. I., e_d Lorentso, R. ¥., 2]_r.

n,. _., ___, _, (Z_O)

Awrsmenko, L. I. L_I Kolemnikovm, R. V., Izvest.
Akad. _;auk., S.S.S.R., Otd_l. l(hia. Nauk., 1562

Avz_menko, L. I., and Lorentso, R. Y., _ur, R

Avz_ae_r.o, L. X., and Eoles_L]r.o_, R. V.,
Izvest. Akad. _., S.S.S.R., Otael. _alm.
m,_x.. _62 (z959)

ATz_a_nko, L. I., end Lorentso, R. V., D_ur.
n,. m:_... _, a_?, (x_)o)
F_, F-, an_ Del Gr_co, F- P., N1-th
International S_-'_sI-,. O_ Ccotmstlon (1963)

_, F., e_d Del Gr_eo, F. P., Nlnt,b
Internsttom_l Sy-_oslum on Combustion (1963)

Porter, A. g., _eL-_t, S., and _,tler, J. I.,
E_Khl;h Intel-r_tl¢=_l Sympo_iu_ on Ccmbultlo_ (i_2)

I_, F., and Del Greco, P. P., Ninth
Intel-national Sy--_,_41uaon Combuation (1963)

Westenbez_, A. A., and Fr_ltl_, R. M._
J- _aT"- _'- .._, 591, (1961)

Kau_, F., a_d Del Greco. F. P.. Illnth
International _s1_ on Comburtlon (1963)

I_, F., a_d Del Oreco, F. P., N1n_Ja
Intez_ational S_:_II_ on Combustion, (1963)

Kau.te_, F., and Ee.lso, J. P., J. Chea. Phys., ___.
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Table 7.1.3-8

Theoretical Characteristic Exhaust Velocity

products: _m - m_ (_ .2o_ - lo_ .o by _t)
Conditions: Frozen Flow

Nozzle

Stagnation Pressure

(psla)

20

Mixture Cha_cteristie
Ratio Exhaust Velocity

1.2o 9.S7
l ._o 5_o2

]..5o 5_x)

1.6o 5]_

z.So 5_3

5o z._ 5_)'_

l._O 55_8

]..6o 5._3

z.so 5.5o6

l_ ]..2o 552z

l._ 56o2

1.6o 58)2
II

1.8o 5577



Nozzle

5ta6nstl on Pres m_
(p.,-_

SO

50

50

50

50

50

15o

zSo

zSo

15o

15o

_I_eoretlcsl Vacuum Thrust Coefficient

Condltlona: Frozen Flow

Mlxtu_ Vscuua
Rstlo Nozzle Thrust

Oxldl zer/l__el Area Rstlo CoefTtcteut

I .SO 15.7_6 1.7312
_-_9 1.7652
3_.o72 1.78e3
k1.7o7 1.7932

z._o 16.So8 1.7_:7
26._ _.7781
35.3_ I. 7958
_3.3_ 1.8072

1.5o z6.391 1.7_71
26.8_9 1.7832
35.815 1.8o12
_3-962 1.&:7

1.60 z6._ _.75oB
ST.L19 1.787_
36.r_ z.ao56

._ 1.817_

1.80 16.776 _.7563
.56,? 1.7936

36.876 _.8_3
k_.338 1.8_5

1.so 15.813 z.73s8
_.7_ 1.7671
3_._6 _.78_
_.9_6 z.795_

z._o 16._ _.7_6
• _6.7o_ _.78_

35.637 1.7993
_3-73_ 1.ama

.50 _6.5_9 L7_o6
_7.o91 _.7871-
36._95 z.8o_
_J_._57 1.8171

Z.6o z6.7o2 _.75_
_=7._19 1.7919
36.67o 1.81_
_5 .o73 Z.8223

Z.80 Z6.965 _.7609
.9"aS Z.7_

37. _00 1.8179
_6.021 1.8301

•_ 15.87_ Z.73_
25.861 1.7688
3_._-_ _.786o
_.z66 _.797_

i ._o 16.1_? 1.7_86
26.927 1.78_B
35.96c _.8o_

•z5_ 1.at_5

1.5o 16.675 1.7.543
27.368 1._13
_._, _._
_,._.9a1 1.8217

z.6o z6._7,_ z.7._z
27.7_ 1.79_
37.Z_8 _.8_56
S5.695 _.a_77

1.80 17.182 1.7662

_8.3_6 z.eo_9
38.oo3 z._3
_._7 1.8368

8_2-6013-TU-000
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_kle 7.1.3-10

Theoretical Combustion Gas Tempersture

Propellants: _e - _N (_ 1,20_ - _ _'by weight)

Nozzle

Stagnation Pressure
(p,l,)

2O

Mtxture
Ratio

Oxidizer/Fuel

1.20

• 1.&O

1.50

1.60

1.80

CombustioQ

rature

_651

_z

5175

5291

50 1.20

1._0

1.50

1.60

1.80

5070

5_o3

53o9

5_5o

150 1.20

1.&O

1.50

1.60

1.80

_763

5171

5_

5_57
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_b_ 7.1.3-I-I.

•heoretical Vacuum 'Thrust Coefficient

(Applicable for 20<P_<150, 1.20<MR_I.80, 20_ ¢ <_0)

CF, VAC = A_F,VAC (PTIF MR, E
)

CF, VAc(PTD, 1.5, 32.0)

For 1.2 ___J_R< 1.1_

For 1._ < _<1.5

I _F,vAc_=-_.z396 x _o"7 2 io-56.MR / P_- _.8_ • e_ + o.o5_

For 1.5_. MR<I.6

= -5.7671 x 10"7 P_D + 1.5108 x 10-_ P_ + 1.7916

For 1.6 <:MR <1.8

IscF,vAc_ -6.3323 io'7 io-__ _ + _ _ _ + o.o_MR
/

For ¢___

/ _CF_A=_. 7.73_ _-2 s 1._, 32.0) -0.2_2 %,VAC(_, 1._, 32.O)5¢ / X CF, VAC(

For e" _32

_CFzvA = 6.027 x i0-2 CF, VAC(
6_ /

( ) i o.v.c)CF, VAc(PTD, 1.5, 32.0) + 5CFtvAc (MR- 1.50) + ( _ - 32.0)CF, VA C =

+ o.23_

/] _"
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7.2 Exhaust Fl_ne T_rature and Pressure

The exhaust plume for the MIRA 150A nozzle was calculated for vacuum condltiona. A

peEfect gas isentropic expansion from a uniform parallel flow at the nozzle exit

was assumed, and the flow field was calculated by the method of characteristics. At

a nominal mixture ratio of 1.5 and at an area ratio of 32.8 the average kinetic

specific heat ratio for a chamber pressure of Ii0 psia (maximum thrust) and 66 psla

(mid-range thrust) is 1.3275 and 1.3307, respectively. An average kinetic specific

heat ratio of 1.329 was chosen for the exhaust plume calculation. Therefore, the

flow field shown in Figures 7.2ol and 7.2-2 represents the estimated exhaust plume

characteristic applicable to both maximum and mid-ran_e thrust levell.

7-3 D_amic Response.Analytical Model

A mathematical model for the throttling capability of the M/3RA 150A was derived and

verified. The servoactuator was shown to be the only compo,nent with significant

dynamics at low frequency. The model of the actuator was simulated on the analog

computer and verification achieved by matching the simulation results with the

and I00_ step response test data, and the 15 ma and 30 ma peak-to-peak frequency

response test data of two Phase III servoactuators- S/Ns C55391 and C55393.

The final model contained the following nonlinearities:

i. Spool velocity deadband caused by Coulomb friction.

2. Flow deadband caused by spool overlap.

3. Asymmetrical piston flow coefficients due to asyzmetrical porting to piston.

4. Flow limit d_e to saturation of pressure drop.

5- Spool and piston position limit caused by physical stops.

6. Loading effects including preload, Coulomb friction, and spring forces.

7. Asymmetrical torque motor gain.

Figure 7.3-i illustrates the final analytical model. A detailed description of the

model is given in STL Do._nt 84_-6014-_J-000.

7.h Predicted Firin_ T_. ratures of the CC & HA

During Phase III, there.! analyses were performed on the CC & NA to predict the external

surface temperatures under various duty cycle conditions.

7.A.I Computer Programs

The following STL com___ter programs were used in connection with these analyses.

7.4 .I.i Bartz Turbulent Bc,_udary Layer and Heat Transfer Prograa

This program solved the e_ations governing turbulent bc_ndary layer growth and heat

transfer in axisymmetr_l: nozzles. The integral momentum and energy equations for the

turbulent boundary layer vere solved simultaneously usin6 semi-empirical relations

for skin friction and hea: transfer coefficients. The nozzle wall heat transfer

coefficient calculated by -_his program was used as input to the Thermal Analyzer Pro_.



0 u LLI
Q. a. _x a.. ,'_ _ N !

0

o

0

0

0

r-,i

4)

'LI

!

',0
!

0

c_

0

0

. r

",0
,,0

0
oO

0

!

!

II

U

!

,0

!

c_

!

0
",0

0

0

0

0 0 0 0 0 0

0



8_2-6013-TU-000

Page 7-17

l Zo.,o-,
, °._'-';,.,llfi-o.,-'//"Jo._-,

' "

0 I 2 3 4 5 &

zA E

J

Figure 7.2-2- Exhaust Flume Profile -
Near Exit Plane



()



8&22-6013-TU-O00

Page 7-19

7.4..I.2 Geometrical View Factor

This program computed the geometrical view factors between the elemental sections of a

given body for use in the solution of radiation heat transfer problems. The geometrical

view factors obtained were used in the Thermal Analyzer Program for those surface nodes

where radiation interchange must be considered.

7.4.1.3 Charring Ablation Program

This program solved the one-dimensional heat transfer equations for the transient

behavior of decomposing materials that yield gaseous products and leave a porc_m

solid matrix. The program output consisted of tem_erature and density distributions

as a function of time, surface recession rate, and Ir/rolytic gas flow rate. Inlmat

parameters consisted of the material's thermophysical properties, Arrhenius decomp-

osition constants, recession rate constants, and system geometry. Head inl_lt can

be specified at both inner and outer boundaries of the material composite as being

convective, radiative, or an arbitrary function of time.

7.4.1.4 Thermal Analyzer Program

This program used the results of the above three programs and solved the electrical

network analog of the TCAs heat transfer characteristics. The output of the progrmm

resulted in a temperature-time history at each of the specified mo4es.

7.4.2 Predicted Temperature.. for Mid-Course Correction Firing

A thermal analysis of the Surceyor _CA daring and izmediately after the _O-secomd,

half-thrust firing for the mid-course correction was performed to predict the temp-

erature history of the combustion chamber shell and nozzle extension.

The combustion chamber used for the analysis was defined by STL Drawing No. 106546-1.

Twelve stations were analyzed along the TCA as shown in Figure 7.4-1. One dimemslonal

analysis considering radial conduction only was performed at the combustlom chamber

and nozzle throat. For the nozzle expansion cone (both the ablative-coole4 portions

and radiation-cooled extension), a two dimensiona/ the.---al model w_s set up. _is

model considered axial conduction along the 0.020 inch thick titanium shell an_

radial conduction throu@h the ablative liner. A complex thermal radiation network

was set up whereby each station a/ong the expansion cone was allowed to view each

of the other stations +_hr_,.4_hits appropriate geome_.ric view factor. MA_itiple
reflections were considered in the thermal radiation calculations. It was also

assumed that both the emitted and reflected radiation were diffuse. Each of the

internal stations on the expansion cone were allowed to view space thro_ the

nozzle exit plane. The stations on the outside of the nozzle extension were also

allowed to view space (g_ometric view factor taken as 1.0). The sink temperature
for space was taken as 0 R. Emissivities used in the analysis were _rized in

the following table:
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Su_ of Emissivities Used in Anal_sis

Com_nent Emissivlt_

Combustion Chamber 0.05

Shell

External Nozzle 0.5

Extension

Internal Nozzle 0.7

Extension

Internal Ablative

Expansion Coae

0.55

The convective heat input was calculated by the Bartz method. The total temperature

(combustion chamber flame temperature) was corrected for variation in C* efficiency

(_ C,). The _ C* used for the analysis was 94.5% , and the corrected flame tempera-

ture was 4688°R.

The thermal analysis was performed for a 1800-second period which consisted of a

50-second firing at half t_ust followed by a 1750-second cooldown. The results

of the thermal analysis are presented in Figures 7._-2 thrc-Agh -5. Figures 7._-2

and 7.4-3 present the first lO0 seconds of the analysis, w'__ile Figures 7.4-_ and

7.4-5 present the total 1800-second analysis.

7.4.3 Predicted Temperatures for a Full Duration Firing

A thermal analysis was performed on the CC & NA (defined blt STL Drawing No. I06546-i)

for a full duration, 5-start, variable thrust firing. The t'_--_ust-time profiles use_

as an input to the Thermal Analyzer Program are described in Table 6.6.3-2. The

thrust-time profile inputs were used in the following sequenme: (1) 52 seconds of

PQ-1 profile A, (2) 70 seconds of PQ-1-B, followed by a 72-hour vacuum soak, (3) the

first 40 seconds of PQ-1-C, (4) 116 seconds of PQ-1-C, and (5) 70 seconds of PQ-I-B.

Seven stations were analyzed along the CC & NA axis.

The same assumptions were used for this thermal analysis as _ used on the mid-

course correction thermal analysis with the following exceptions-

I. The emissivity on the nozzle extension was 0.25.

2. The environmental sink temperature for the TCA was lO0°F.

3. The sink temperature seen by the nozzle exit area luring firing was 1000°F;
at the end of the firing this temperature was redu:ed to 100 F and main-

tained constant during the heat soak back period.

The results of the ther-_al analysis are presented in Figures 7.4-6 throug_ 7.4-10.

The experimental data obtained under the same operating coniltions were generated
at JPL/ETS during five _es_ firings -- Runs DY-20 through UY-24. A comparison of

the experimental results and theoretical predictions is presented in paragraph 6.4.
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7_5 Theory of Venturi DischarGe Coefficients

In the Rivas and Shapiro paper, "On the Theory of Discharge Coefficients for Rounded-

Entrance Flowmeters and Venturls," a theory is presented for the prediction of dis-

charge coefficients based on potential flow profile, friction, and boundary layer
buildup in a converging nozzle. The theory is shown to correlate much of the available

experimental data for rounded entry flowmeters (flowmeters with no Vena Contracta).
=_asically, the theory shows that two factors affect the discharge coefficient in the

viscous flow regime- the momentum boundary layer thickness and friction.

In order to evaluate the discharge coefficient, it is necessary to determine whether

the flow in the throat of the venturi is laminar or turbulent. As the pressure

gradient in the entrance section of the venturi becomes smaller, the boundary layer

in the venturi should _emain lanier for a longitudinal length equal to a length
_eynolds number (ReYL) of 2 x lO . With carefU_ contouring it is possible to mmlm-
tain laminar flow up to values of Bey T of _ x lO°. For the range of t_mperat_res,

_ov areas, and fluids specified for The MIRA 150A Rey T ranges from 10 ° to ]D°. _As,
rAov through the venturi will be laminar through most _f the flow range encountered
in MIRA 150A testlmg.

P_vas and Shapiro show that the discharge coefficent of a venturi in the laminar

region can be expressed in terms of a "mean apparent friction factor, f , and an
ecuivalent length, L . _e mean apparent friction factor over a lengt_,PPL, includes
°:=e effect of change_qln momentum flux, as well as wall friction, on the pressure

drop. The equivalent length is defined as the equivalent length of the actual

=jlindrical section (constant areal resulting in the same boundary layer growth as the
contracting section (refer to Figure 7.5-i).

The discharge coefficient, CIF is determined from the following formula:

D

(i)

"_-nere: D = (DO - Di) for an annulus.

Pouch approximations of the detailed potential flow and boundary layer solution

indicate that the value of Lo_/D for the two TCA flow control valve venturis are
"ce_een 1.O and 2.0 at maxi_ thrust and 6.0 to 10.O at min1_ thrust. _e

uncertainty in the value of Leq/D is caused by two factors:

1. The very simple boundary layer solution used. Detailed numerical integration

and reiteration are required to improve the accuracy of the solutions according
to Rivas and Shapiro.

2. The allowable tolerances on the length of the cylindrical section.

theoretically_evalue of f_ermlnedinthe torange.°fbe-interest here has been both experimental and

Rey L = P____ = --_4L = Rey D_L
_ _ D
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Leq = 13.74-%/(Leq/D) (2)

4fapp D '4 ReyD

Combining equations (i) and (2), results in the following equation for CD"

cD - / l , (3)

V Rey D

Where:

and _ = Viscosity

Curves from the literature showing the venturi discharge coefficient as a function

of L/D and Rey n are shown in Figure 7.5-2. In Figure 7.5-3, the discharge coefficients

for the two pr_pellants, based on this theory, are shown both as a function of servo-

actuator signal (i.e., equivalent position) and propellant temperature. The dis-

charge coefficients are shown as a band rather than lines, because of the uncertainty

of the value of Le_/D. Although not incorporated in the standard data reduction
program, equation _(3) does express the discharge coefficient useable in the standard

flowrate equation. No experimental evaluation of this relationship was attempted.

If equation (3) is combined with basic flow equation (i) and the definition of

Reynolds number is inserted follow_d by normalizing to standard temperature and

pressure, the standard flow rate equation results:

- + Do

Where: _ = Standard flowrate with vary_ CD

(_)

= Standard flowrate with constant CDT

= :'_lowrate at test conditions

CDo = Discharge coefficient at standard condition

MT = Absolute viscosity at test conditions

_0 = Absolute viscosity at standard conditions.
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8.o SPECIAL TEST EQUIPMm_

Eight items of Special Test Equipment were designed, constructed, and used during

phase _!I, with the exception that no actual engine firings were made on the Thrust

Vector Deviation Measurement Stand. These eight items are discussed briefly below;

more detailed data is provided in Appendix G.

8.1 ES_.mic Ta_e Programmer

_ne __'-_mlc Tape Programmer, shown in Figure 8-1, includes a 14-channel FM tape trans-

port an5 auxiliary equipment capable of providing prerecorded start-stop signals and

a .-_rlable-thrust program input signal to the TCA for engine throttling tests.

Re__/_na-e characteristics of the TCA may be simultaneously recorded on the same tape

fcr ccz_ter printout and analysis.

8.2 Head End Assembly Calibration Stam_

_ne C_-libration Stand, shown in Figure 8-2, provides a servoactuator signal; high-pressure,

_is%iiled -_ater and alcohol to simulate the propellants; and measuring equipment

re_:-red for end-to-end calibration of flow rates versus servoactuator signal and for

_e-tL-6 i_j_to__e d_v_d _i_t__v ove_ ti_ 3.1 thAottlLu_ _.

8.3 C!eanln_ Set

_ne Cle-_ning Set, shown in Figure 8-3, consists of a console-mounted, dual evacuation

_:s___e_ (for fuel and oxidizer) to remove residual propellants frcm the TCA. Each

yjs_____ includes a vacuum pump, LN 2 cooled condenser to trap propellants, and necessary
v__z__ and gages. In order to increase the rate of evacuation, an electric blanket

ca-_able of enclosing the TCA is part of the Cleaning Set.

8.i Leak Check Console

The L ==> Check Console, shown in Figure 8-4, contains pressure regulators, filters,

ga_-es, valves, a Freon 12 bottle and associated halogen leak detector "Leak-Tek" for

_ss leak indications, and anaccurate pressure gage and thermometer for pressure-

decay :easurements.

8.5 _-_l!ant__.:_ Thermal Conditionin_ Units

The .-_roiJellant Thermal Conditioning Units, shown in Figures 8-5 and 8-6, are two

iden=ical, pallet-mounted, transportable units capable of maintaining oxidizer and

fuel a_ an3' temperature from 0° to 100°F. Propellants are cooled or heated by heat

exzhar_-ers _ersed in the propellant tanks. The heating fluid is _ter, heated by

elec_rlcal heaters. The cooling fluid is liquid nitrogen. Pumps are used to circulate

;rc ceLlants through insulated feed lines immediately prior to engine firings.

8.6 _ner-_ai Conditioning Equipment

._ze _. __nermal Conditioning Equipment provides prefiring TCA temperatures from 0°

to l_q-5_F as measured by thermocouples on the TCA. This is accomplished by directing

col! nl-rogen gas into a vented shroud enclosing the TCA for belo_ ambient tempera-

_-ures (shown in Figure 8-7) and by the use of three variable-current heat lamps for

heating. _ equipment can be used for both sea level and altitu_e c_hamber firings.
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Figure 8-3. Cleaning Se_
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Figure 8-6. Fuel _hermal Condltionin_
Unit - Back Side
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Figure 6-7. TCA _._.e_ Conditioning
Equipment
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8.7 Centrifuge

The Centrifuge, shown in Figures 8-8, -9, and -i0, was installed at the STL Capistrano

Test Site. The Centrifuge was used to determine TCA performance changes when the

TCA -_s subjected to g forces simulating Surveyor main retro engine firing. The

Centrifuge is powered by a variable speed electric drive motor and includes acco_mo-

datlons for mounting the TCA, counter._i_%ats, propellant and pressurization tanks

and l_ues, flowmeters, and transducers. S_nielded slip rings transmit command an@

instr__entation signals between the rotating stand and the Centrifuge control center.

8.8 _z__st Vector Deviation Measure_nt Stan_

The Th_--_st Vector Deviation Measurement Stand, shown in Figure 8-11, is a gimbal-

mountel, counter-balanced beam (with zounting provisions for the TCA) -_hich rotates

about the glmbal center when subjected _o any side load component of thrust. Thrust

vector deviation while firing is derived_j measuring an_lar displacement of the
beam using position potentiometers in _w3 planes perpendicular to the thrust axis.

Calibration of the pressurized stand correlates displacement with side forces.
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p_ 8-I0

Figure _-8. Centrifuge
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Figure 8-9. Cen_rlfu6e Closeup -
TCA Ins_llea
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Figure 8-10. Centrifuge Electrical.
Console
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FIEure 8-11. Thrust Vector Deviation
Measurement Sts_xl
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9.0RKLIA_ _0(_

This section presents the reliability program results and the final documentation required

by Modification 14 (Phase III) to Contract No. 950596. The reliabilltypro_wss

carried out in accordance with Reliability Program PIa_-B_22-6006-TU-O00, Revision A.

With the documents presented herein, all doc_entation requirements of Phase fiX have

been satisfied. Discussed in this section are: the Reliability Parts List, the Relia-

bility Estimate, the Performance Reliability Analysis, and the Failure Report Summary.

9.1 Reliability Parts List

F

The Reliability Parts List is presented in Ap_H-I and is current through Nov_aber

196_. This list presents the estimated reliability of the TCAmaJor components, inclu_Ling

the number of tests performed on each and the number of failures experienced by each.

The llst, as scheduled in the Reliability Progra_ Plan, has]_.e_prese_ted i_-tw_stages -

the first issue (preliminary) being presented in the July 1964 Surveyor I_onthly Progress

Report and the second issue being presented herein.

The list is summarized in Figure 9.1.1 wherein reliability information is limited@A}:

(I) the component reliability goal (as established by an apportior_ent of the specified

goal* for one TCA), (2) the current estimated reliability, and (3) the estimated 80%

lower confidence limit.

The servoac_ator reliability displayed in Figure 9.1-I represents data frum testing of

Phase I and !! servoactuators only. Data on the Phase III servoactuators were not

available for inclusion in this presentation. These data have since become available

and show Phase III units are far superior to the earlier versions.

*Based on -Jue reliability measurement contained in the JPL Specification SAM.-50255-1M_N-C,

to be obtained at the completion of qualification.
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9.2 P_liability Estimate

The complete TCA test firing history is presented in Table 9.2-1. The reliability

estimate through November 196_ is based on the total number of firings not excluded

for reliability purposes along with the number of firings which experienced a failure.

The estimate prefiring is the reliability of one TCA for a firing of _5 seconds (average

firing time) under various test site conditions. This estimate is not to be construed
as a mission estimate. The mission estimate (based on a 186-second firing duration)

with its 80% confidence limit is presented in the same table.

b

The reliability growth experienced during the entire Surveyor program is presented in

Figures 9.2-2 and 9.2-3. Figure 9.2-2 shows the growth of the probability for m

successful start of a single TCA. Figure 9.2-3 shows the growth of the probability of

one TCA ccmpleting a successfUl mission. This curve is based on a mission time of 186

seconds, each mission having an average of 4.6 starts. This is more than twice the

number of starts expected to occur duri_ the actual mission. For this reason the

reliability estimate obtained is considered conservative, whereas the reliability

estimate on a per firing basis is high. The true, current reliability for a single TCA

is-somewhere between these two numbers. " -

These reliability estimates are for gross TCA performance and do not include the _ro_-

ability of operation within the specified parameter tolerance. This variation is taken

up in the Reliability PerformanceAnal_is in Appendix H-2.

The reliability goal is that specified in the JPL Specification SAM-50255-DSN-C for a

single TCA completing a mission (the goal to be obtained at the cc_letion of qualifl-

cation).

9-3 Performance Reliability Analysia

The Surveyor Performance Reliability Analysis is presented in Appendix H-2. Due to the

unavailability of data in sufficient quantities on all parameters_ the ar_sis is

based on a model using only three parameters; Isp, M.R., C*.

9._ _ll,,,u-e _epo-rt Sumar 7

The status of the failure reporting and analysis activities for the complete Surveyor

TCA program is presented below:

Total number of failure reports received 91

Total number of failure modes

Total number of failure reports closed

Total number of failure modes closed

Nu_nber of failures under investi_tion

32

2

Number of failure modes under investigation 2
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I,_mber of Firings

(_A St_s)

Total Firl_ Time(second,

Number of Firings
with Failure

Estimated TCA Reliability

per Firing

80_ Lower Confidence Limit

Estimated TCA Mission

Reliability _

80% Lower Confidence Limit

SpeclfledGoal

_ble 9.2-I

TCA Firing Sumnary

November 1963 through Novezber i_)

Donstant Variable

'_ummt

795

_,317

5

_rust

;°

19,079

9

 ,396

-97528

.9581'

.._.30
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Figures 9.4-1 through 9.4-4 display the c_mplete engine failure history. Figure 9._-I

and 9.4-2 show the complete TCA total failures and mission failures, respectively.

Figures 9.4-3 and -4 present the component total failure history and cumulative mission

failures. These failures are classified as to whether they are critical _ maJarp ar

minor. The three classiflcations are defined below.

Critical - Catastrophic type failure, rendering the TCA incapable of

performing a successful mission.

- Out of tolerance performznce or conditions that could a_xxrt

or compromise a mission.

Ndnor - Failure other than critical or major that does not seriously

affect TCA performance.

A complete failure summary is presented in Appendix H-3. Sis smmnary is axranged such

that the failures experienced by each major component or subassembly are listed in

chronological order. The components are presented in the following order: InJectc_r

Assembly, Combustion Chamber and Nozzle Assembly, Fuel Shutoff Valve; Oxidizer Shutoff

Valve, Fuel Flow Control Valve, Oxidizer Flow Control Valve, Electrohydraulic Servo-

actuator, end Helium Pilot Valve. The corrective action statements reflect the status

of each component as of 31 December 196_.

Two failure reports are still under investi_tion at the close of the Surveyor program.

One report (No. 9375) dealt with the servoactuator sticking at minimum thrust; the other

report (No. 10795) dealt with the Fuel Flow Control Valve Assembly leaking fuel duri_ a

test run.

Extensive testing of the servoactuator, in an effort to reprc_uce the failure, was
LLRSUC cessful. -

Less than optimum seal clearances within the Fuel Flow Control Valve Assembly may have

been responsible for the fuel leakage, i_e analysis conducted prior to the conclusion

of the 9_rveyor program indicated that less seal clearance may be required to prevent

leai_e under conditions of differential temperature between the two propellants.
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I0.0 MANUFACTURING A_rD QUALITY CONTROL

The manufacturing operations _nd associated control techniques and applicable

doc,cmentation used in fabrication and assembly of the MIRA 150A TCA are presented

in detail in STL Surveyor Manuf_-_cturing Plan 9550.8-91. The fabrication

assembly experience gained in the manufacture of liquid and solid propellant develop-

zent engines, the Lunar Excursion Module Descent Engine, and the Surveyor Phase II

TCA "..asthe basis for the _.lanufacturing Plan.

In the interests of cost control and accurate schedule, well understood and tested

fabrication operations were ezT_loyed almost exclusively. These included lathe,

mill, surface and cylindric_l _-ind, hone, bore, drill, tap and die, polish, electron

be_m weld, and passlvation prooesses. In special situations where proprietary pro-

ceszes were employed or -dnere a more _ivantageous price or delivery could be obtained,

outside vendor facilities were employed. The Quality Assurance (QA) organization

worked closely with the manufacturing group with the result that Quality Control

functions were performed smoothly and efficienctly at various stages of fabrication.

b_on completion of fabrication of p_rts and subassemblies, the hardware was subjected

to final inspection with referral for Material Review Board (MRB) action if it did

not meet specified requirements. _ne form of the rejection was a Noncomformlng

:_terial Report (NCMR). _ne N_ provided for engineering buy-off, rework, or scrap

dls-_osition of the parts. K_ring fabrication of Phase III _ parts, a total of 222

_.-_B actions occurred. Appropriate corrective action was taken following each MRB

red--few. Table lO-1 shows quantities, categories, disposition and percentages of all

:_cn_onforming Material Reports.

In addition to the Quality Control Inspection function and MRB activity discussed

above, the Quality Assurance organization was involved in the following activities:

I. All outside suppliers were surveyed and approved by Vendor Quality

Assurance prior to t._ placement of the first purchase order in accord-

ance __th _ Q,,o_a!i_yProcedure Number 30.12. Source s_,_-_vei11_lmnceinspec-

tion was used for eight Surveyor hardware fabricating vendors and for

three suppliers of cc-__lete assemblies. The following list gives the

suppliers names anl the :II_ 150A hard_re fabricated by them.

Grindley Y_nufact_ring Co.

Schroeder _f. Co.

U.S. Beryllium Co.

L.A. Gage Co.

PreMec Engineering

Fibreform Products

Altco

Haveg Reinhold

Reflective Laminates

Vinson Valve

Eckel Valve

Cadillac Gage Co.

Pintles - Flexures

Yoke Assembly
Actuator Arm

Actuator Arm

Head End Body

Head End Body

Sleeves, Pistons, Inserts

Ablative Billets

Ablative Billets

Solenoid Valves

Solenoid Valves

Servoactuators

Ii
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Table 10-i

NCMR Surveyor Phase III - 222 Total

Head End - 120 Total

Dimenslon__l Rejects - 93 Total Workmanship ReSects - 27 Total

Use as is 50 41% Use as is 13 ll%

Return to Return to

Vendor 16 13% Vendor 1 i%

Scrap 13 11% Scrap

Rework 14 12% Rework 9 9%

Combustion _:__r and Nozzle Ass_. - 55 Total

WorFJnanship Rejects - 12 TotalDL=en- _:_=_ Re0ects - 43 Total
Use as is 35 _% Use as is 6 ll%
Return to Return to

Vendor 0 Vendor O

Scrap _ 7% Scrap 0

Rework 4 7% Rework 6 11%

Helium Pilot Valves - 42 Total

Use as _o'- 35 83%
Return to

Vendor 7 , 17%

Phase IIl Serzozctuators - 5 Total

Re:ura -_o

Vendor 5

TOTAL I_._ __LL CATEGORIES

Use as is

139

Percent of Total 62%

RTV Scrap Rework
21 33
9%



Page 10-3

_o

_e

_Q

An instrument calibration and certification system, defined in STL Quality

Assurance Procedure Numbers 3 and 4, was used throughout Phase III.

Prequalification firing tests performed at the IRTS and JPL/ETS were

monitored by the QA test surveillance group.

Operating Instruction Number 48-3003-35, entitled "Documentation of

Experimental and Develo_m-ental Hardware - Surveyor Phase II TCA," was

written and imp.lemented to maintain control of Phase II Follow-on HEAs

during the accelerated hardware redesign period when six Phase II SEAs

(S/N 001 - 006) -;ere being updgted (with injector modifications) at the

same time the first Phase III units (S/N 007 and subsequent) were being

readied for delivery.
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ll.O _ OF _EWIDEAS AND CONCEPTS

S_-arized below are n_ ideas and concepts originated during the design and develop-

nent effort described in this report. This stmm_y is intended to comply with the

"Reporting of New Technolo_" clause in JPL Contract No. 950596.

The following four items may be included in the category of a new idea or conce_:

1. The technique of matching flow performance of an HEA to a master unit in

the calibration and _dJustment of HEAs on the Head _d Assembly Calibration

Stand. Refer to section 4.0 and paragraph 4.2 for _-ther _etails.

To The ablative throat testing technique used during the acceptance testing

series on an asse_oled HEA. Acceptability of the HEA under the criteria

of this test assures the service life of the CC &HA. Refer to section

4.0 (paragraph 4. 3 in particular) for details.

e A prestressed cer_c nozzle throat insert design concept. A disclosure

entitled, "Prestressed Ceramic Rocket Nozzle" and marked Docket No. 908

was forwarded to the STLPatent Office in May 1963 on STLFormlRSA.

The Thrust Vector Deviation Measurement Stand designed to allow measure-

ment of any rocket engine thrust vector deviations during firing in terms

of angular displace-_ent of the gimbal-mounted beam on which the engine is

mounted. Further details can be found in paragraph 8.8. A disclosure
entitled, "Rocket ___ne Thrust Vector Deviation l,_asurement Device N an_

marked Docket No. 3073 was forwarded to the STL Patent Office in August
1964 on S_ Form lRSA.

i
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12.0 _CES

This section contains a list of all reports, specifications, and standards referenced

in the report. The date and latest change of the documentation is shown herein am_

is not reported each time the document is referenced in the text of the report.

In addition, the symbols used in the report are identified herein for convenient

reference.

12.1 .,_scella_neous Documentation

S_ecificatioms

_51ita_ Specifications and Standards

NXL-P-26539A
5 April 1963

Military Specification Propellant,

Nitrogen Tetroxide

_p-274o4
3 April 1962

Military Specification Propellant,

Monomethylh_drazime

:_L-STD-10 Military Standard, Surface

Roughmmss Waviness and La_

_ 33656-G3 Military Standard, Connections,

Ground LeakageTest, Pressurized

Cabin, Aircraft

AND 10050-2 Air Force - Navy Aeronautical

Design Standar_, Bosses, St_

Dimensions for Gasket Seal Straight

Threa_

JPL/EAC Specifications

J2L &_- 50255-DS_-C
30 December 196_

Design Specification Surveyor

Flight Equipment Thrust Chamber

Assembly (MIRA 150A)

EAC No. 226100, Rev. A

2_ January 1962

Electromagnetic Interference

Specification Surveyor Spacecraft

and Associated Support Equipment

STL S_ecificatiom s

EQI-TSB
12 F,bruar7196_

Filter, Propellant

EQ I-9_
25 january 1965

Combustion Chamber Assembly

EQ 2-23B
7 February 1964

EQ 2-250
29 October 196_

Actuator, Serve Control, Electro-

hydraulic (Phase II Follow-on)

Solenoid-Operated, Three-Wa_

Valve (Phase!If)



8_22-6013-TU-O00
Page 12-2

STL S_ecifications (Continued)

25August1_
Servoactuator, Electrohydraulic

_Q 5-5A
29 February 196_

Injector Assembly

EQ 5-6A
29 February 196_

Valve Assembly, Flow Control

PK _-2

12 August 1964

Packaging Specification, ShL_veyor

Vernier Rocket Engine

S_ 1-7
26 February 1965

Model Specification, MYRA 150A

Thrust Chamber Assembly

TS 3-OIB
26 February 1965

Acceptance Test Specification

Surveyor Vernier MIRA 150A

Thrust Chamber Assembly

TS 3-02B

24 December 196_

Prequaliflcation Test Specificatio_

Surveyor Vernier _rust Chamber

Assembly

STL Nmnufacturing and Process S_ecificatioms

J

3 December 1963

MT 3-i0

13 April 196_

Molding Compound, Chopped Silica
Fabric Reinforced phenolic

Silica Fabric Reinforced Phenollc

Resin _ape and Broad Goods

MT 3-12
15 September 1964

Graphite, Oxidation Resistant

lO-9
3 December 1963

Compression Molding of Chopped
Silica Fabric Reinforced Phenolic

Parts

PR i0-iO

Aprili9o 
Laminating and Wrapping of Silica
Fabric Reinforced Parts, Resin

Tape and BroaaGoods

STLEn_ineerln_ Technical Directives

MIRA-OA-O01

15 January 1965
TCA Leak Test

MIRA-OA-OOe

15 january 1965

TCA Pressure Decay Test
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STL Er_ineerin_ Technical Directives

MIPA-OF-O01

15 J_7 1965

MERA-OT-O01

15 January 1965

D_RA-LF-OOI

15 Jamma7 1965

F_RA- IF-O0_

15 January 1965

2V_RA-2F-OOI

15 Ja_n_=-y 1965

_=_-_-OOl

_A-_R1-001
15 January 1965

F/PA-ST-O01
-- Af_

i> january A_c9

._TT_.!.'dsce!!aneous Re_ort s

_22-6006-_'J-0o0, hey. A

19 June 196_

8_22-6007-TU-000, R02
6 October 1964

8_-60!4-TU-000
!I December 196_

935_-_-255 •
29 September i_/_

9522.3-272
i February 1965

9550- 8-91

i August 196_.

9730-b-6_-I-_3

30 June 196_

(Continued)

lDetermir_tion of Weight and Center

of Gravity Location

Flo_eter Calibration Proce@ure

Head End Assembly Leak Check

Head End Assembly Water Flow
Calibratioa

Combustion Chamber and Nozzle

Assembly Leak Check

Solenoid-Operated, _ree-Way Valve

Acceptance Test

Propellant Filter Acceptance Test

Electrical Control Console Calibration

Data Reduction and Analysis

Procedures for Surveyor Vernier

Thrust Chamber Assembly

Analytical Model for the

Surveyor MIRA 150A Engine

Acceptance Test Procedure, Surveyor

Thrust Chamber Assembly Electrohydraulic
Servoactuator

Surveyor Vernier _rust, Chamber

Assembly Prequalification Nonoperatin6
Vibration Test

Manufacturing Plan, Surveyor Vernier

TCA, Qualification Program - Phase

III MIRA 150A

Development Test Plan
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STL Niscellaneous Re_orts (Continued)

9730.4-6_-3-6

5 August 196_
Surveyor Vernier Thrust Chamber

Assembly MIRA 150A Mass Properties

Baseline Report (U)

9730. .-6 -36
15

Final Report - Feasibility (Phase I)

and Development (Phase II) Surveyor

Vernier Thrust Chamber Assembly

9730._-6_-5_

14 September 196_

Informal Operating and Maintenance

Instructions

Technical Papers

ASME Transactions 1956

Vol. 78, Part I, Page _89

On the Theory of Discharge Coefficients
for Rounded-Entrance Flowmeters and

Venturis

S_mbols and Units

Symbol

A i

A
Y

CD

Cf

Cp

C

Description

Injector Flow Area

Venturi Throat Area

L_ scharge Coefficient

Thrust Coefficient

Specific Heat at

Constant Pressure

Characteristic Velocity

Units an_or Definitions

in. 2

in. 2

None

None - (p F
c" At )

cal/mol°K

_/SeC

D

E

E
C

F

Diameter

Ex_ansionRatio

Contraction Ratio

Thrust

in.

A
X

None - --
A
A t

None - o

At

ibs

Plane Area 
Throat Area "

(Chamber Area)
'Fnroat Area"

f Frequency cps

f
app

T

N2an Apparent Friction Factor

Specific Heat Ratio

HAC Hughes Aircraft Company .-.°
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I
sp

L
eq

Pc

Pinj

Pt

R

Rey D

_ey L

e
S

S'rL

t

V

Description

Specific Impulse

Length

Characteristic Length

Equivalent Length

Mass Flow Rate

Mixture Ratio

Molecular Weight

Chamber Pressure

Injector Pressure

Injector Pressure Drop

Feed System Inlet Pressure

Val_or Pressure

Radial Distance from Nozzle Exit

Nozzle Exit Plane Radius

Reynolds Number

Length Reynolds Number

Propellant Density

Servoactuator Stroke

TRW/Space Technoloo- Laboratories

Service Life or Time

Velocity o_ Injection Stream

(V_ for oxidizer and VF for

Viscosity

Units and/or Definitions

seconds (or
ibf - sec/ibm)

in.

V
in. c /Chamber Volume_

in.

Ib/min

None - Oxidizer Flow

Fuel Flow

None - Ib/sec-ft

psia

psia

psi

psia

psia

in.

in.

lbs/ 3

in.

seconds (or minutes)

ft/sec

ib/sec-ft
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x

Xi

Z

Description

Actuator Stroke

Mole Fraction

Distance aft of Exit

Units an_or Definitions

in.

None

in.
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APP_n)IOES

The nine appendices tP_t are provided here are arranged as follows:

Appendices A, B, C, F, H, and I are part of Volume II an_ follow on

the subsequent pages.

Appendices D, E, and G are provided in a separate Volume III because

they consist totally of pages that are about 17 inches in length or

greater. Thus, they have been bound separate_7.
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AFP_DIX A

DERI_IATION OF FCV PARABOLIC SHAFE

The flow control valves (FCV) are designed to cavitate over the entire throttling,

rs_nge, thereby permitting propellant flow to be independent of conditions downstream

of the valves. For the actuator stroke to be linear with t_u_st the flow-area

through the FCVs must be linear_ :_ith stroke assuming the following criteria were

met: (1) the flow coefficient are constant, (2) there is no appreciable loss in

total pressure up to the throat of the venturi, and (3) t._ specific impulse is in-

dependent of thrust level. Development tests have indicated that the flow coefficients

do change. However, it is considered preferable to accept this slight nonlinearity

in thrust rather than attempt to design the contour for variable flow coefficients.

_uis procedure does not affect mixture ratio, since the flow coefficients of both

valves normally vary in a similar manner. Since the characteristic velocity and

th-_st coefficient (and thus the specific impulse) do vaz-j with thrust level, a

further error in thrust-stroke linearity is introduced. However, because of the un-

predictability of this error at the time the FCV pintle design had to be decided u_on,

it was not advisable to try and match valve contour to TCA performance.

A _ plntle should have a parabolic contour if the area normal to the pintle center

_line is to increase linearly with stroke. Ho__ver, this solution will result in a

slight error in the strokm, simme the flow through the valve is actually parallel

to the pintle surface rather than parallel to the pintle centerline. With the flow

assumed to be normal to the pintle centerline, the area-stroke curve is linear but

the total stroke is slightly less than for the case where_ flow is parallel to the

pintle surface. This effect becomes more pronounced as the _low control point moves

,_urther toward the vertex of the l_rabola.

_ne procedure outlined in this appendix computes the contour equation based on a

_ow area through the valve noz--.ml to the pintle surface. This area is represented

as the surface of a truncated cone.

_"_-efollowing routine supplies the basic data necessary for the FUV sleeve and pintle
contour calculations:

A " Mt/C D _/0 2g (P t - Pv) ---- Where:

Mt = Total Mass Flow of Propellants

Mf s

O

Totai Mass Flow of Fuel

Total Mass Flow of Oxidizer

F s Thrust
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Is-p

r s

g s

Specific l_se

Mo, mixture ratio

Gravitational Constant

0 = Propellant Density

= Flow Coefficient

Pt = Inlet Pressure

Pv = Propellant Vapor Pressure

A = __roat Area or Flow Area at 100% Thrust

Fi_.'_e A-I s._:s the standard geometric nor_nclature used in the analysis. 'i_netotal

stroke _ C_ to 100% thrust is given by S. The throat radius and pintle diameter

at zero th_-ai_ are given by H, X, and Y are°=he pintle contour corrdinates with X

being me_rei fr_ the pintle parabolic ver_ex. A transformation of coordinates
allows the -_e of X'which is measured from the zero thrust position on the contour.

G and H a__e _he coordinates of the throat, amd C is the gap between throat and the

p__utle meas-=_ed no=-_al to the pintle centerline. _ arbitrary dimensions must be

chosen before the v__Ive pintle contour can be co_-_ted; these dimensions are So(total

stroke) and E (the throat radius). The to_l stroke is chosen to conform to
t_e

injector anl a_.t'_'ator requirements. The throat diameter is determined by setting the

throat area, A, e_._-i to approximately twice the flow area as computed in the above

equation. Uzls in,ares that the flow will not "oe controlled by the rapidly changing

pintle su__face near the vertex of the parabola and that the throat diameter will not

be too large re_!ting in small gaps and tight tolerances. Thus, the throat radius

can be dete.--mlmed by:

H_'_ (1)

This value :-__s__ounded off and used on both the oxidizer and fuel FCVs. The follow-

ing procei'_ ie-_-ved the pintle contour coefficients:

= aX = a (X° - X') where a and X are the coefficients to be determined

when knowing _o' H, and A. (2)

dY/dX = a/2Y slope of pintle surface at a_y point (3)

m = -2Y/a slope of line nor--_l to surface (_)

With G am! H as coordinates of the throat, the following equation establishes the

relationship "_e_en G, H, X, Y, and a:

(Y-H) / Cx-o)=-_la C5)

Defining C as the distance between the throat and the plntle normal to the plntle

centerline re_!ts in the two following e_aations:
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C
a - So

(H-c)2
a

Equations (2) and (5) when combined yield-

2 2_

y3 + 2 a 2

The fl_ area is related by:

(8)

A = _ _(H-Y) 2 + (X-G) 2 (H+Y) (9)

An alTproximate value for C is used in equations (6) and (7) and values for G can

now be obtained, which in turn permits values of Y and X to be obtained from equation

(8). The flow area is then obtained from equation (9) and compared with the desire_

flow area. By linear interpolation a n_; value for C is selected and the process

iterated until the flow area is satisfactorily converged. Then the coefficient, a,

in the parabolic equation is known, which is the same value when either X or X' is

used. If the X' coordinate form of the quation is desired, then X° is required and
is simply defined as:

A computer routine is available for the above calculations and iterations.
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APPENDIX B

MIRA 150A THERMAL CONTROL ANALYSIS

Summary

A ther-_al _analysis was conducted to determine the feasibility of using a "cap" over

the he_i of the MIRA 150A TCA for passive thermal control. This study was general

in nature because an exact definition of environment for the three locations of the

TCAs on the spacecraft was not available. Two cap models were evaluated -- a buffed

alumin-r-_cap, and an aluminum cap with a bright gold finish. Either cap will require
some ar_ount of black paint on the side faces to maintain the TCA within the proper

temperat_e range. The areas that require painting and the temperature profiles of

the TCA are presented herein.

An error analysis was made to determine the effects of potential variations of sur-

face properties (a and cw) from their nominal values. It was found that the gold-
coated cap "._s muc_ less Nensitive to variations in these properties than the buffed

aluminum cap.

The changes in TCA temperature profile due to changes in the exit cone interior sur-

face emissi-__ty (because of mid-course firing) _ere evaluated. It _as found that
the exit cone _emperature could change only about 15°F if the titanium emissivity
varied fr_ 0.20 to 0.80. The nominal value of emissivity for 6A14V titanium is

about 0.2 to 0.3. However, it was found that drastic changes in the tem_erature pro-
file re_Alt as a function of the amount of exit cone area exposed to solar heating.

For a TCA that has no solar heating of its exit cone, temperature as low as -160_F

may be expected.

The concept of using a cap over the HEA vas found to offer several advantages,
themost i_-T_ortantof which are: (1) more flexibility in maintaining the TCA vithin

its tempera_Cure limitations if the thermal environment is revised at some point in
the Su._v_-or program, (2) simplification of the manufacturing requirements, (3) a con-

figuration that can be easily cleaned during spacecraft assembly and checkout, and

(4) si_-_llfication in geometry (hence, better confidence level) in the thermal

a_sis.

Based on this analysis, it is therefore recommended that a gold-coated aluminum cap

be used for thermal control of the MIRA 150A TCA. The weight of a O.02-inch thick

cap is about 0.15 pounds. Gold should also be used on the chamber walls to minimize
TCA heat losses if the exit cone receives no solar heating.

As sumptions

The follo'.-ing assumptions were used in this study:

I. ."_netop surface of the cap was fully exposed to the sun at all times.

2. _"_e chamber cylindrical section and inside exit cone surface had an un-

obstructed view of space, i.e., the shape factor for emission was 1.O.

3- _ exit cone external surface had a shape factor of 0.70 for emission

to space.
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4. The chamber was coated with a liquid bright gold (Reflective Laminates,

Inc. No. 381 applied per ELI Process 1554, modified).

5. The exit cone was bare titanium.

6' Joint conductances of 0 and i0 BTU/hr-ft2-°F were used at the cap-to-TOA

interface.

7- The nominal values of the thermal properties used are presented in

Table B-I •

Table B-I

_rmal Properties Used in Amalysel

Material

Titanium ( _LI._-V )
Fiberglass (Ablative Liner)

Alumlaum

Thermal Conductivity

0.26
70.0

Material

Buffed Aluminum

Liquid Bright Gold

Black Paint

Titanium (6Al4V)
Titanium (after
mid-course firing)

Fiberglass Liner

Absor_tlvity, Us Emissivit_p CH

o.17 o.o_
0.35 0.03

not used 0.85

0.55 o.2o

0.55 O.2O - 0.8o
not used 0.90

Analysis and Results

Analyses were perfor-_ed to determine: (i) the temperature profiles of the MIRA

150AT CA, (2) the paint patte.--as required to maintain the TCA at proper operating

te_--_eratures, and (3) the effects of variations in the surface properties (_i and
¢_). Two different caps -Ere considered: (i) a "buffed" aluminum cap, and

(3) a gold-coated aluminum cap.

For determining the te_=perat_ profile, the HEA was held at 100°F, and the tempera-

ture profiles were co_putel for the following conditions:

I. Fifty percent of the projected area of the exit cone exterior exposed to

solar heating.

2. No solar heating of the exit cone.

3- Same as (2) with a higher emissivity for the exit cone's internal surface.

The results are shown In FiE_e B-lwhere it can be seen that the temperature profile

is very sensitive to the a_c_ut of solar heatin_ experienced by the exit cone. The

foregoing analysis was based on the understanding that the exit cone of one TCA

_-lll be completely ahado_ and receive no solar heating. The variation in tempera-

_u-_e due to changes of er.issi'_._y of the inside surface, due to mld-course firing,

_s minor. The reason for _his is that about one half of the exit plane losses

originate from the nozzle th._oat and nozzle internal insulation, both of which
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Curve A - One-half projected area of exit cone

exposed to solar heating; inside

surface _H = 0.20

B - No solar heating of the exit cone;
inside surface _ = 0.20

H

C - No solar heating of the exit cone;

inside surface _H " 0.80

For all cases: Thrust chamber _H = 0.03

Exit cone (exterior) eH= 0.20 -.--I

Chamber E_it Cone

Figure B-I. Temperate&re Profiles of MIRA 15OA

m

i
. ,I
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experience negligible changes in emissivity due to firings of a TCA. The heat losses
from the various portions of the TCA are summarized in Table B-II for two of the

temperature profiles from Figure B-I. This table indicates that the cap must suppl_

from 4 to 7-3 BTU/hr to the HEA, depending on the amount of solar heating of the exit
cone. That is, for the case represented by curve A in Figure B-I. there is sufficient

solar heating of the exit cone that only 4 BTU/hr need be supplied to the head end

from the cap. For curve B, where there is no solar heating of the exit cone, about

7.3 BTU/hr must be supplied to the head end by the cap. Thus, the paint pattern on

the cap will have to be tailored for the thermal environment expected for each loca-

tion on the Surveyor spacecraft.

Table B-If

Thermal Properties

Summary of TCA Heat Losses

Case I (Curve A)

o.o3
0.20

Thrust Chamber, ¢.

Exit Cone (exteriSr), cH
Exit Cone (interior)

Throat and Fiberglass liner, CH 0.90 0.90

Titanium, •H 0.20 0.20

case2 (curveB)
0.03
0.20

Heat Losses

Thrust Chamber

Exit Cone (exterior)
Exit Cone (interior)

_nroat an_Fiberglass liner

Total
J

Solar Heating of Exit Cone

Net Heating from Cap

Case I Case 2

mxJl 
7.00 1.98

5.72 3.02

5.01 1.73

18.99B /hr 7.31BTU/hr

15.oo o

3.99 7.31 BTU/hr

The second protion of the calculations vasmade to determine the amount of black
paint on the side faces of the cap necessary to provide the required energy to the

_A. The results are shoMu in Figure B-2 for both the buffed aluminum cap and the

gold-coated cap. This calculation was based on the assumT_tion that the inside sur-

face of the cap and the components on the HEA have high em!ttance surfaces. It was
also assumed t.hat no gaps or holes existed in the cap. These curves can be adjusted

to account for small openings in the top and side faces of the cap.

An evaluation of the sensitivity of the engine temperature to possible variations

in surface properties (5_ and e=) was made for both cap designs. The variations of
the properties used in this study are noted below.

Liquid Bright Gold

Buffed Aluminum

Black Paint

_s eN

o.35 _+ .o35 0.03 +_ .oi

O.17 + .02 0.04 + .O1
- .03

Not used 0.85 + .05
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These are the type of variations that may result due to errors in the experimental

measurements of the properties, variations from one application to another t aging,

etc.

The results of this evaluation are presented in Figure B-3 :_ere it can be seen

that the buffed aluminum cap is more sensitive to variaticn in Czs and £_ than the
gold cap. This is because there is about twice as much so _!ar energy ab_'orbed by

the gold cap, and therefore about twice as much energy is reradiated by the black

paint on the sides Since the variation of the black paint c_ is much smaller,

percentage-wise, t_n the highly reflective surfaces, this _ the effect of reduc-

ing the error in the amount of heat exchanged with the HEA.

An analysis of the potential variations of the Joint conductance between the cap

and the TCA was made, and the res,Alts are presented in Figure B-4. The Joint con-

ductance of i0 BlwJ/]_-ft_-°F is considered an upper limit for this type of interface,

and the value of zero, of course, represents the lower _llmit. It can be seen that

the Joint conductance is not a significant variable; ho-_ver, if necessary, it coul_

be made to approach zero Joint conductance by proper desi_ of the cap surfaces

which are in contact with the TCA.

Recommendations

Based on_ tb_s stud_', it is rec_nd_ thmt:

I. A cap be used over the _A for thermal control.

2. The cap be aluminum with a bright gold finish.

3. Gold surface treatment be used on the c_bustio- c_ber walls.
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Nominal Pro

-0.04 -0.02 0

ha
S

(
•p= 0.80, •AL = 0.03

_ • =0 85, • :0.04_
/- p ." AL.

• = 0.90,• =0.05

_p = Emissivity of
Black Paint

_AL = Emissivity of
Buffed Aluminum

+0.02 +0.04 +0.06 +0.08

( a Nominal) = 0.17)
$

a Buffed Aluminum Cap

160

g-

O 120
o
L_

i-

e
tD
¢,1

E 80
I,--

C
O

4,
o

"r

Nominal Properties

-0.04

I
i

i

-0.02 0 +0.02

ors(Nominal) = 0.35'%a s

b Aluminum Capwith Gold Finish

• =0.80,•G =0"02
P

• p =0.85, _G =0.03

• p =0.90, _'G =.0.04__

1
_p = Emissivity of

Black Paint

_G = Emissivity of
Gold Finish

T 1

+0.04 +0.06 +0.08

l_l&'uz'eB-3. Error Analysis of Surface Properties
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APPENDIX C

THERMAL PROPERTIES OF VARIOUS SUI_ACE8

Two series of determinations of thermal properties of various surfaces were con-
ducted - Series A and Series B. A discussion of each series follows:

Series A - The spectral reflectance of five samples of gold on titanium were measured.
Measurements in the, wave length region of O. 32 to 2.0 microns were made with a Beck-

man DK-2A instrument with a STL integrating sphere attachment. A paraboloid reflecto-
meter was utilized for data at wave lengths between 2.0 microns and 26.0 microns.

A descirption of the samplesotested with corresponding values of solar absor_e,

a, and room temperature (80 F) normal and hemispherical emlttance, c. and _H' are
s_own in Table C-I.

Table C-I

Sample Descriptions and Values of Solar Abosrptance, cx ,
Normal and Hemispherical Room Temperature Era/trances

Sa=p!e No. Sample Description

Solar Normal Hemispherical

Absorptance, Emlttance, Emittamce,

as cN cH

i. Gold, liquid bright, RLI (Re- 0.35 0.02 0.O3

f!ective Laminates, Inc.) No.

381, two coats. Applied per
ELI 154_process, except

maximum cure temperature was
675°F + lO°F for 60 minutes.

Total_ry film thickness 3

to 5 millionths of am inch.

Substrate-titanium 6AL_V,

'400-600 grit wet polish.

2. Same as sample i, except 0.37 0.02 0.03

Je'_lers rouge polish also
used on substrate.

3. Same as sample 2. 0.40 0.02+ 0.03+

4. Same as sample 2, except 0.42 0.02+ 0.03+

tripoli polish also use_
on substrate.

5- Same as sample 4. 0.42 0.02+ 0.03+

Values of solar absorptance were obtained from the spectral reflectance data by
summing the average reflectance in each of 25 -_ave length bands corresponding to

four percent energy increments of the solar spectrum, obtaining the average solar

reflectance, 0_, and then subtracting this value from unity. The normal emittance

values -._re de_ermined by multiplying the average reflectance in the various wave
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length bands by the percentage of energy emitted _r/ a Pl_nckian radiator at 80°F in

the same spectral bands, summing the resulting products, and then subtracting the

sum from unity. Values of hemispherical emlttance, CH" -are determined by applying
the theoretical values for the ratio of hemispherical to normal emlttance found in

Figures 13 through 15 of "Heat and Mass Transfer," Irj E. R. G. Eckert and R. M.

Drake, Jr. (McGraw-Hill Book Company, Inc., New York, 1959).

Series B - The thermal radiation properties of a number of titanium specimens were
measured. Table C-If contains a descirption of the test specimens and a summry of

the test results. Samples 5 and 6 were exposed to TCA c_bustion products during a

test firing in vacuum with the hemispherical emittance, ¢=, being the only property

of interest. The solar absorptance, as, as well as the h_mlspherlcal emlttance of
four other titanium samples of varying surface finishes -.raredetermined. The values
of emittance in Table C-II are room temperature data and provide only an indication

of their properties at high temperatures.

The same measurement equipment used in Series A was used here.

Samples 5 and 6 were nonuniform in appearance. A "spot-check w of the emittance of

the samples shoed the values of normal emittance to va_j widely over small areas
on the material. The values shown in Table C-If may not, therefore, be representa-

tive of the case as a whole. They should, hoover, pro'_.!e an indication of what

values of (xs and cH can be expected.

Table C-II

Thermal Properties of Titanium Surfaces

le

Sample Description

Titanium, 6AI-4V, 5 I_._ Ms_hine
Finlsh.

Solar

Absorptance,

s

.50

Hemispherical

Emittance,

CH

.17

e

e

_e

.

.

Titanium, 6A1-4V, 8 _,_ Machine
Finish.

Titanium, 6AI-_V, 16 H_ Machine

Finish.

Titanium, 6A1-4V, 12 i_._ Machine
Finlsh.

Titanium Portion of TCA Case

After Firing (Sample #I).

Titanium Portion of TCA Case

After Firing (Sample #2).

.50

.50

.50

.17

.18

.18

.49

.26

|
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APPenDIX F

THEORETICAL THERMOCH_rCAL DATA ON 2_H AND N204

For a short period during the development effort in Phase llI the propellants

planned for flight use on Surveyor w_re _ and H^0 4 instead of MMH and MON which
w_re used for most of the testing. Included here_for information only is thermo-

chemical data on _.."CHand N_O_. Similar data for !._._and MON are included in
paragraph 7.1 of the main _ody of the report.



Appendix F

8_22-6013-TU-000

:.-!-_:, :_.i:.-:i:.:!:::b:::_.-.-::::-i-::-__ :' i..............:- :::::::::::::::::::::::--:-:::-,._:i

: _ _::1-.::! • - :. ,- : : . :- ! .. ! i - v ,_l,'.t_': rt- _j,:;::.:::_!:"::,.:: "_'-:.!:_':_

. . . ,.: ..... q_ : -. :.-: - ; •..-: .: -. _ : , , . .-............ .,-1',.:" .....

• I ,:- "'t : :- . l - ! ., :-_.... : - .: " : . :: : ': '", .:" t ": !:..-,_'_::

' ., : . ": _ " : . , 1 ,. • F"-" , . :: ..........................:: -;. _:,:, :,. ., :, ,, 1:i t:t: r 1,I, ::..,._:
.... , ..... ; - . _ ...... --I --' , _ .... _-:-,.:--":--:': - - :' :._:' :-'_. ,'--:::--.'_-t--

• _ i ::..:,_: ::: i-. ! i i : i :; i : _-!.:iii i-: : i ,.:, , _,,-e_l---_..:-_.
..... :----: .... £:.::,,..-.;..-:.,.,._.._.,t_-__._:___: ...... .:.... I.-..-.I .... _--;: --.I ... " " ._;4 __. : ;-. ;.1- .... ....:" _:'_:" : "

• , ' ' _-:.-.:,: ::: ,- , - l_--f-- ,-; :: : - .n_Ime_:, _::: :i ::

• #.;;_'_ ,...................... , . t ...... t:.....
......... 1.... : .... ,,,"',,_+I .:'," ..: + " ................. "'-'" ......

"I[ ' _........ , t_; ......... _ ' • ;-......... I" r_:_:-_

- _ -- ...... :'" , " , " " " , ! i' .. '" " " _ ...... . ; • _ " , .: " ",

._:--i-,: :.i-- _ ..: :i. :: _/_::! i-\._t"-_-i " _ i: :..:.:-!:ii_.:!.:::,!.:i_:::
.. "- ' _ , _ : : * .- ; - . . _ It ' , _.-4" __ .-_" ' " :' :_ _ '"_4.' : ; : , " :. ;) .--* . _.: :; -

f i .:':; i_!:: :..' : : i :-/7 _ li .:.i :-: i:_-I . :'t"_ i ::_ I,:::: _:;:J:::]---j:......:_:--
_.___-.L.:. _::.:_:..-'-_:_; .... ::_:_.... --./,/. ----,Z---L-:-:-'--4---'--4. ,_:...-.L .... -4'-- -"_-:---:- q--"-':_- ".z:...:_;._;:-:4-:- ;:: _

• : ' !::::::i:'." ; i - : " " ' '. : ::i ' .:- -; !. .:'"-'-::!:P:::!i!::'_::i:::'r;:::

_:._L_ h-- : _'" ": ._ " :":'- " : " _ :: LJ::_: :::'t • '.: - -'__ _:..-' _:; _ _.:L--_":"-' ::':_';'-;:''";'• :-- :- .... .:-: -----; ..... .--- -::------:. : .-- -:-.-.-.-[:_:-. I: . _- ......... I i... _-..,, .... ,.........I: .... -/:, . -1. .... ,..,-%t: ..... ...... ,..

• _! ' • " -_'"_ :I : r':--.._:-_r r.: . .: :-I ,:. : |-..? .|. :_ : ; - : - _-.- . z ; "::l:.:-t:'.-::..l;::: .:-_ ..: ::,,;:.t::

-I_ j,,/h,,'_. -:; -:.'_ :. . :. . i .., ; _ . : :: J.. ; " _ :::: • l :. 4 • .-I : I: :.-.:i.: :;: :L.1;:_" u: _,:,:_

• " _ ' ' ' ' ' : -- : :- " - : " - _ " : " " • ' :_' '" : -I" : .... _ "" " I .................... ! "" " 1' "_" " ........ .: ' "-z -'" -: .:: :" J.: • .:: " : '. " : '- I: '; -." ' ';:" _: :. .:_'" I :: " ;-- • :- ,: ":::::.::':: ::'" ':_'.:__.,,_................. I_:..._-.: .............. J.._:J.... ....... ,__£ ..........
_" • : ..I .: .-, " '1: :.: , . : : : :" • I" . ":.1 ..... I. :1 .-:- I.. ; . [- -,. :_-':: .... "I ::_..'_..-''.:. :tl

:" . _,4,_,-, _'.'_':: 1,: " !: : .... "! " " '' ': ::!-:i:4 : "!' : ..! :"" ;:":i:'-'-!" "t ":'"-!":'i'i_.[---:;:!.-_",--','

: :_.-i: :_ _-: _- .,,,,-"--7..:-..i .:::1:._..,_!",_-.-. r - i _ ::-:I. _:_ :::-_:::-::F- : _ :i_

-(] " ; . _ ::'::r ...| .: : : -" :. - ..' :. ]''_-:-|'-'i':1"--.:-::!_ '!-:'::: : '.',-,':"":':'-::::_::::::: :;
- : " - - " .... "; "" _ " • : ! - ' ; : : .... • " " ' " ;" " t "- _ " "; _ "_ - ""q. ;'" " ;' "". .: ........ _ .......... __- . :: : , .;; . : ,:.;::: :__--i_:.:_---:- _- - :-' ::;:: , . _ " :. : :: : : ..: ,.::':..:. .:: .I " . ...... .__ ............ -.:.... I ..

._J__, :i': ,: i:" , " " . " .11:": .: _ ! _ : : : _ ".-: _. "%. : i.L_-:_ i.'-': J;:::1 :;'_.r:-';_'..:_::;.:'..,

±_.--J:_ .--:-_ ':.:':'::" : ::-" : :-" ; - : " _:" ::-:.|..: :'_..LL.__:_!,X_.-:__::L2:_..'X..:-_±_::-.:::dt': '-::-q"::i;:::_:'-=-

: :_,._,-[:::-I:!S_::: :--:;_ -!- : " i !.-!:!:i:i:[:i !!!::i-:i i-- ! -"X :: " .ili: i_.-*}:!:{i_;_d_:_:::_l_!:::
: _T,,,_ - ::.:..:: :.... : ..........

i'" " --" .... _:.:._:Z_.::...;..___ - ; :-- -:----:.__ - ' :-.-_._ -_'-.:,,-.---::::_ ':.:- ..... -::--.4-:-..::- ;-- ::_-,::-;-_l_)_:---_:-:--;::'t':_" ":.-:---_
• .J .- ......... : • [ 1 " _ ...... t- - -"

. " .... _"::: , " " : " " : " : .. . ;. *:"7: 7::_:_.......: ": _'! " : :: ::::"::":":"":.i:_.-]:"
.... I ........... . ; . ; .................................... , ._: .....

_ :: : : ,:.4-' , - : : :-- :--:_. :.:i:::_::_----z:_.--:-l-- ":._.-::-:-:.,_ ::-_-
:: i _ ' :: : !:_.; .... - : " - ;: :.. _ i-'_:-- :]--::'I:::::: : ::'::! " :_::: i:: :::::li:-F!:::=

-. t_ _ _ i - : ; _ : ! :. t" ..' . : _ :_ , ,; . , , .... .::, .;., ,[..:_ ..._.u

:: -_].-4: i._i _a: i: _,_.._: : _.:.J:__,__ , .:-_J,_::__.A_-:.__: _U_._-___:;::±._:-_-__:

i-_I d. :_:I:-::-- ! :. :: ::.:I+- :I:::::::::::::::::::: ::::::::::::::::::_::::-:::l_::i::::',:..:_:_



I

....:....i....,:..... I-.
i ! !

: .... 1 .....

I



Appendix F

Q422- _)13- TU-O00

'C'4}:!

"..:l;:

_eM
.....l-"i:=".'"I"::

.-_:!-'-

._ [_--_
:-- /,:..

l ";]

I

: ;-j, .:i"
i .. ,.

i
-_]. _.r.._

:! ":' t
" i

t

"r

t-i

-: i '... ::it::

• I : . ", ......
" ! "z":" ..

" " ;.C.: :':. ;. t :gL;

...... :. - . : :.._..-_ ..,,
:ii-'ii i '" , _::': "t-:'",":,i

......... ,. : ::- ; : : :._.::;
!:- • 4" -: _: ;-:-:t-:-.'..;- '- I_
F7 " th'_-'_t. " . F ::':":f:' £ -t: : _ ; :. "
.... £.., ....... _ • _. ...... . ...........- - 1 .............. , .. -" r

• - :: ........... _ "'' ; f; "'" .......... -.... :: • -i - "._ _ ................................ f ................. tL : .: :-. - _-. : . ."u.. j ' ; -.:-.:.r-. .. I ' i" '- " " ": : i- " ;- .........
"-":-----:--;---- _:--:r--':*i--:-:- ..F"L--_-: ,_.-:r-r:--" --r: I" n . r :.... ":_ -.r--:rr-_ _-:__-.:t-:.-: -1"- _.,-_.,I..___

__ --- _ ..... :_.- .+ -- 1. "_-.. _ . ' , - | . . , 1 . I . ; " " " i" "" I: : :.::_:- - :._,,,_ I ." _ ': l ::! :: !:;-::-: !- :: ', : ! -_;,-:f- ::-".!- .:--i ! i - =: : -i.:t '.-"]
':- : _ • ''" " "-::: F::"' j. ." _ _ -: " .. P.-',- k-" l " --- ":-; ',-:.--i

: - [ :: i : ;-:-:-: :"- "- _ - , ! i:--t : .l..::]:.." .: -.- : _: -:- :".. :- - • - ................ , " ' , • , ........ ; - '- -i :-,• _. .. t...... :. -,........ . ... . . ; :_:., . .......

r- ,:,...,,_t. _--i:-_: :t :.i:, _:.i _:. ! : ' " _ :÷!t:i::i-r: _ : , : -:- .:_:::r_--
a- -''-". _ • ; :"" *: ! ! :'- :. • ! : " " -.... ' i ' ; • : _ : :-.":___-........... - __._-Z,_, :::_:k:.:.__a_._!_..:.1,-_:.:.!-:..:-I_,_._.:_[__.,._;_......_._--_,.i':___i._.-zt,8:i:.:
i -:: :: :_ .:r !._t_ i i : ! : ; i' i _! 'i I:_ :i-r-i .! : i-::t

l _ " :: : K:..:.t::"i:!--i:-:-_.! :;_:l:- i :.: i: 4A:::I::.I- !..i: _::-!-::::i-!: i li::i:i:l

.,., _ ....

.:!q!::i

::: :,%.;::

.o ,, ....

. .,,...

_1 d: ,"

>q::4

..; l--

i:iF.:i.

• i

i. ii b

:7:(f-Z

::..P=.'I,

.,a: : :I.::I

':}_}:5,'1
..,

:*:g

:!I:YSJ
FTi::.q

:!!h::_



TA_E F-4

THEORETICAL CHARACTERISTIC EXHAUST VELOCITT

Propellants: N204 -

Conditions: Frozen Flow

ARpendix F
8_22-60_3-TU-OOO

Page F-6

Nozzle

Stagnation Pressure,

psla

22

66

110

Mixture

Ratio,

0xidizer/Fuel

i._0

1.50

1.60

1.40

1.50

1.60

1.40

1.50

1.60

Characteristic

Exhaust Velocity,

ft/sec

5_2

5479

5_66

5531

5536

5530

5551

5560

5558

:i_

!
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Nozzle

Sta6nationPressure,

psia

22

22

22

66

66

F-5

THEORETICAL VACUUM THRUST COEFFICIENT

Propellants: N204 - _4H

Conditions: Frozen Flow

Mixture Vacuum

Ratio Nozzle Thrust

Oxidi zer/Fuel Area Ratio Coefficient

i._0 16.300 I. 74/_7

21.729 l.7665
26.657 1.78o4
3l.241 l.79o5
35.567 i.7983
39.687 1.8o46
43.639 1.8098

z.5o 16.492

22.oo7
27.o19
31.684
36.o89
40.287
_.315

1.6o 16.653
22.242
27.324
32.058
36.53o
40-795
44.888

1.40 16.433
21.923
26.910
31.552
35.934
40.ZlO

.zz7

z.5o 16.653
22.242

27.325
32.060

36.533
40.8o0
_.895

Z.749_
1.7715
z.7857
1.796o
1.8039

1.8103
z.8156

1.7533
1.7757
l.?90l
1.8006
1.8086
1.8ISZ
1.8204

l. 7_BI
I.??OZ
Z.78_3
1.7945
1.8023
1.8087
Z.8Z40

1.7535

1.7759
z.79o_
1.8008
1.8088
1.8153
1.8206



I

I
i

I

I

I

I

!

!

i

Nozzle

Stagnation Pressure,

psia

66

110

llO

110

TA_E F-5

Mixture

Ratio

Oxidi zer/Fuel

z.6o

z.4o

z.5o

z.6o

(CONT'D)

Nozzle

Area Ratio

16.839
22.5Z3
27.679

_.o_6
41.38B
45.559

16.z_87
22.001
27.012
.676

36.o8z
z_o.28o
_,. 3o9

16.720
ee.341

32.218
36.720
_I.01_

_5.138

16.919
22.63_
27.832
32.682
37.368
ui.6_5
45.849

Appendix F
8_22-60Z3-TU-O00
Page F-8

Vacu_

Thrust

Coefficient

1.7579
1.78o8
1.7954
1.8o60
1.8142
z.8_)8
z.8263

1.77z5
1.7858
1.796o
i .8o39
1.8zo3
1.8z%

z.7552
1.7778
1.7923
z.8o_8
Z.8zo8
z.817_

1.7599
z.7829
1.7977
1.8o84
1.8z66
1.82_
1.8288



Nozzle

Stagnation Pressure,

psla

22

66

110

TABLE F-6

THEORETICAL C0_EUSTION GAS T_IPERATURE

Propellants: N204 - /_

Mixture

Ratio

Oxldizer/Fue 1

1.40

1.50

1.60

1.50

1.60

1.40

1.50

1.60

Appendix F
8_22-r_13-Tu-ooo
Page F-9

Combustion

Gas Temperature
oR

5oe2

5O79

5_

5_

5125

5275

53_
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_I THEORETICAL VACUUM THRUST C0EFFIC_ITopelZants: N204 -

Conditions: Frozen Flow

Appendix F
8_22-6013-TU-0OO
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J

I

(Applicable for 20<PTD<I40 , 1.20<MR<I.8, 20<6<40)

CF,VAC " CF, VAC (PTD" MR, 6')

CF, VAC (PTD' 1.5, 32.0) = -0.5225 x 10-6 P2TD + 1.2907 x 10-4 PTD + 1.7942

For MR i.5

6%VA_I.6'a _ -o._37x lO"6p2=
+ 2.2815 x I0"4 PTD + 0.0120

For MR_I.5

6O',VAOI.-3._6_6__O"6_%
(5"_I

For 6>32

+ 4.7716 x 1o"_ PTD + 0.0492

o F,VAC (PTD' 1.5, 32.0) - 0.4393 CF,VA C (PTD' 15., 32.0) + 0.3874

For 6_ 32

F,VAC (PTD' 1.5, 32.0) - 0.1198 CF, VAC (PTD' 1.5, 32.0) + 0.1026

CF'VAC : CF'VAC (PTD' 1"5' 32"0) + _ 6MR[6CF'vAC ) (MR " 1"50) +(6CF'VAc_ (6 "32"0)66 '



I
I

Appendix H-I

8_22-6013-TU-000
Page H-l-i

APPENDIX H-I

RELIABILITY PARTS LIST - FINAL

No. of Pa_es: II
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APPENDIX H-I

RELIABILITY PARTS LIST - FINAL _

The Reliability Parts List is presented for the combined accumulative testing on all

three of the Surveyor Vernier TCAs: MIRA's 150, 180, and 150A. The 150A has three

model designations: 150A-F (Flight weight), 150A-SL (Sea Level), 150A-SL-PT (Sea

Level with Port-transducer).

Explorations of the Reliability Parts List column headings are presented below.

Part Number - All part numbers having the same descriptions are listed

together.

second Column - The particular head end designation to which the part

belongs.

Order of Assembly - As presented in the engineering indentured parts list.

Part Description - As presented in the engineering indentured parts list.

N_nufacturer 's No. - Federal Supply Code for manufacturers.

Reliability Goal Represents the apportioned reliability. A complete

apportior_ent is listed for first and second order of

assembly part numbers. A partial list appears for

the third order.

Ntuzker of Tests - This column does not include tests during which an
excluded failure occurred.

_m_!ative Operating Time units are seconds. The figures do not include the

time/cycles accumulated during a test in which an
excluded failure occurred.

Number of Failures The "total" column does not include the excluded

failures. The "Exempt" column includes exclusions

that are specified each month in the progress report

under "Tabulation and Scoring of Test Data".

Estimated Reliability - Per Test = Successes
No. of Tests

Per ission= ( ccesses)(mssion
Cumulative Time

The variations in the times and the number of tests are due to the excluded tests being

subtracted from the total time and tests.

* _ssion time used is 186 seconds.
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FORWARD

The analysis contained in this report was performed to meet the

need for a mission reliability evaluation of the SURVEYOR Vernier

Engine Thrust Chamber Assembly with respect to its critical per-

formance parameters. Sufficient performance parameter data were

not available to fully utilize all aspects of the reliability

model. The model was designed to accammodate data that would

have added by the Qualification Program to that currently avail-

able.
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Performance Reliability is defined for the SURVEYOR Vernier _glne

Thrust Chamber Assembly as the probability, for a specified SURVEYOR

mission, that each of the critical TCA parameters will have a value

that is within the parameter specification limits. When this analy-

sis was initiated the following procedure was planned. Firstly to

define a sequence of mission events and the parameters involved to-

gether with their design specification limits. Secondly, a determin-

ation was to be made of a frequency function for each of the parsmetersp

treated as variables. If a frequency function appeared to be non-

normal a transformation would be sought such that the properties of the

normal distribution could be utilized for such statistics as tOler-

ance intervals. Thirdly, a determination of dependence (or independ-

ence) between parameters was to be made. If dependence between two

parameters existed a bivariate distribution would have to be deter-

mined. Because of a restriction on time and data the approach above

was curtailed. The probability of success of all events of the

mission, defined below, could not be calculated. Data was suffi-

cient for three parameters: mixture ratios specific impulse, and

characteristic velocity. Correlation studies could not be made and

so independence was assumed between parameters (as variables). The

probability of a mission success is then based on the three above

parameters. Normality was verified graphically by fractile plots.

Two statistics (besides mean & variance) were calculated for each

parameter with the exception of characteristic velocity (C*). The

first one is the probability, under the assumptions of normality,

sample mean _ _true mean_ and sample variance $2= true variance_ 2,
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that each parameter is within its specified limits. Since C* does

not have design limits specified, the statistic is not calculated

for it. The second statistic is more conservative and is the sa:e

probability as the first but determined under the condition that

X + KS will contain the area under the normal curve that repre-

sents this probability, the probability statement made at 00%

confidence and also X + KS is contained in the specification

limits. X is the sample mean)S the sample standard deviation,

and K a positive constant. X + KS is commonly known as a

tolerance interval. Finally, these two statistics are combined

in the model of the following sections to for: two cases. For

this exercise independence of events is assumed.
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the probability that the mixture ratio value for one

engine during one continuous firing is within its re-

quired limits.

PII

Pi2 =

the probability that the specific impulse value for one

engine during one continuous firing is within its re-

quired limits defined at 90-158 ibs. thrust.

the same as PI 1 except defined for 70-85 lbs. thrust.

PI 2 = the same as PI 1 except defined for 30-150 ibs. thrust.

PI 3 -- the same as PI 1 except defined for 100-150 ibs. thrust.

PI 4 = the same as PI 1 except defined for 30-50 lhs. thrust.

PI 5 = the same as PI 1 except defined for 30-60 ibs. thrust.

These estimates are based on the assumptions that the sample mean X

is equal to the true mean_ , the sample variance, _, is equal to

the true variance _2, and the variables are distributed normally.

An estimate of this type is not made for the characteristic velocity

(C*) since its required limlts are not yet specified. From these

estimates, probability est -i=ates for three engines, PR 3 and PIj3

(J = 1,2,3,4,5) is calculated. These values are then entered into

the mission event model given in the next section to obtain an esti-

mate _(S) of P(S) the probability of mission success. A more con-

servative estimate is obtained for P(S) if we substitute for PR & PI

PR* & PI i* the probability values under the normal distribution

for 80_ tolerance intervals. PR.3 & PIj .3 (J -- 1,2,3,4,5) are
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calculated again leading to P* (S), another estimate of P(S).

mentioned in the Introduction, specified limits for C* are not

available. However tolerance limits containing O.999 of the

population at 80% confidence were calculated and are symbolized

_Y X-+ KS in the tab_.

TABLE aF R_ULTS

Method of Point Estimates Method of Tolerance Interval

PR o.99995 r_* o.9998e

PR3 o.99985 PR*3 o.99946

PI i o.99883 Pz z* o.993z5

PI 13 O. 996_9 PI 1*3 O.97959

PI 2 O. 99883 PI 2* O. 99315

PI 2 3 0.996A9 PI 2*3 o.97959

' * 0.99315PI 3 0.99883 PI 3

PI 33 O.99646 PI 3*3 O.97959

PI _ 0.99995 PI _* 0.999_

Pz _3 o.99985 Pz _'3 o.99952

PI 5 O.99995 PI 5* O.9998_

PI 53 O.99985 PI 5*3 O.99952

P(S) 0.98_8 P*(S) 0.9170

All

For C*: X *_KS = 5267.6 ± _13.88 sec. will contain 0.999 of

the population at 80_ confidence.
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Prior to any analytic attack on the problem, a review of critical per-

formance parameters affecting reliability was made that resulted in a

list of parameters to be used as inl_ts to define mission success

events. If a particular parameter is treated as a variable and vari-

ability limits specified, then a sub-event of the event of success is

defined. A description was made of events and their sequence neces-

sary to complete a successful mission. However, at this writing

insufficient data exists for some parameters so that exercising the

model in its entirety is not possible. A list of events that make

up the model for a successful mission for one TCA is presented be-

low together with a status of the data required.

ae Sta._t Time Event No. 1 - Event consisting of sub-events follow-

ing the initiation of an electrical signal to the helium pilot

valve such that 90% of the selected thrust is accomplished in less

than 130 ,,-=ees.

Data : Samples of elapsed time to perform sub-events

frol a sample space similar to that expected

in a mission configuration. Data is unavail-

able at this time.

be Continuous Operation Event No. 1 - A success event occurs in this

case if each event of any set of values of the critical stead_-

y

state parameter lies within its required interval. The parameters

(or variables in this case) are : thrust, vacuum specific impulse

(lsp) at the indicated thrust range, m/xture ratio (vacuum condi-

tions), corrected Characteristic velocity (C*) at the indigated

thrust range_

Data: Samples of the above variables at proper

environment and specified chamber type. (All

r
t
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the TCA test results will be corrected to

standard inlet conditions for homogeneity of

data. ) Data to date is sufficient only on

vacuum specific impulse (Isp) _-158 Ibs.

thrustj mixture ratio, and corrected character-

istic velocity (C_).

Ce Shutdown Time Event - Event consisting of the removal of elec-

trical signal from the switch which controls the helium pilot

valve until 95% of the total shutdown impulse has been generated,

all accomplished in less than 80 msecs.

Data: Samples of elapsed time to perform this event

from a sample space similar to that expected

in a mission configuration. Data is unavail-

able at this time.

_e

e,f,g,h,&i.

Start Time Event Nb. 2 - Same as a. above.

Data : Same as a. above.

Continuous Operation Events _o. 2_ 3, _, 5, & 6
t

Same as b. above with different steady-state thrust levels, and

therefore different ranges for Isp

Data: Same ash. above.

Je

This event OCCURS if the thrust levels Te, Tf, %, TM, & Ti Of

events e, f, g, h, & i form a complete and continuous thrust

excURsion and the width of all thrust vs. servoactuator control

current loops is less than 2.5 ma or 15.0 percent of the control

current excURsion, whichever is greater.
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Data : Cal-Comp plots of thrust loops. Data not avail-

able at this time.

ke This event occurs if the servoactuator control current during

e, f, g, h, & i+is a monotonic function of time and the slope of

the thrust-servoactuator current curve thereby created, is between

0.?lb/ I.0 ib/m.

Data: Cal-Comp plots of thrust loops. Data not avail-

able at this time.

It is assumed in this model that the TCA is of the ablative type.

_herefore, data from ablative type testing is used unless data froa

other types, via statistical analysis, can be combined with the

ablative results. Also, Edwards test site data is used because the

configuration at that site has JuXtaposition with respect to the

expected final configuration. The data are based upon a reduction to

standard inlet conditions of 720 psia venturi inlet pressures and 70 ° F

propellant temperatures.
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Mixture Ratio

A. Estimatesof _;_'. Unbiased estimates of the population variance,

_a, were calculated separately from 21 acceptance tests at

Inglewood Test Site and JPL Edwards Test Site. The data from

Inglewood are from water-cooled test chamb_ and the data from

Edwards are from-_ater-cooled and ablative type chambers. Each

test generates a sample by "slicin6" of the data and sample

number or number of slices ranged from 1 to 26 over the 21

samples. Besides the 21 estimates of population variance, the

means of the 21 samples were calculated. However, the data

appears to indicate that the mixture ratio mean value is the

result of a "setting" made for each test and varies from tert

to test as a function of human as well as mechanical vari-

ability. _._ ."he mixture ratio variable within samples is

considered to be a random variable. Therefore, variances were

pooled but not sample means. The mean t of the mixture ratio

is assumed to be 1.5. Even though the mean obtained fro,,,

pooling all 21 sample means is _ = i. 501185, it is not a

verification of the assumption that _- 1.5. The data of the

ablative TCA test at Edvards is partitioned _y order of magni-

tude of variance estimates into two sets, A & A' where the

elements of A are S i; i = 1, 2, 3, 4. And the elements of

A' are Si,ji = i, 2, 3. Estimates of the Population vari-_ z_

mince were made f_m the elements of A & A' using S2 => "Ti S'_--_ _I'

i: I /i_l

for K samples with fi the degrees of freedom of the computa-

tion for Si.
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The results vere

s2 = o.oo0661 for A

& S '2 : 0.001930 for l'p

Where

&

Let

y Ni : 32, K : _ forA

|

Ni' = 211., K : 3 for A ,

$2 _ .000661 : O. 3_2
F "-s,--z . 193o

An F ratio test at the .01 level of si_ificance yields an

accep_uce region of 0.3_0 <F <3.21. _be value of F "fallA

in too close" at the high level of significance so that the

two estina_es of_ az'e considered to be_ froa two populations.

However, a sample of 5 tests of _5 slices total yielded •

variance estimate of S2 - .000560 for "_a_er cooled TCA units

at E_ards Test Site. By pooling this estimate we obtain

S2 = .000602 with 68 degrees of freedom. Based on its much

larger number of sample points we take S2 = .00060_ as the

variance estimate of the mixture ratio parameter rather than

s2 ,, .001930.

s2 = o.ooo Tlel¢,

S = 0.0246 as an estimate of the standard deviation.

Be Assu_tion of Normality

The assu_tion that the variable of mixt_ure ratio is norm-

ally distributed has some verification vhen one observes the

plots of the fractiles approximating the distribution func-

tion. Figure 0 shows data points from a sample of 19 mixture

ratio measurements of the ablative type chamber and Figure 1

shows a .._tile diagram for water-cooled chamber results

froa the !n@!ewood Test Site with a sa_._le of N = 26.
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99.9 -

_': 99

3 tests combined with _

cc___on mean, X = 1.5.

---- ;_2---tive chamber [ -- i_ I I £ ---- --

-Ldwards test site

' ' " .... I ! I

1.A6 !.A? .L.A8 1,A9 1.50 1.51

I,'.ix_ur e Ratio

Fixate O: Fractile plot for r.ixture ratio sample

1.52 1.53 I .5A 1.55
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!.0

Figure i: Practile plot for mixture ratio sample
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C. Calculation of Statistics from Mixture Ratio Data

We assume the normal density function _(_, for mixture ratio and

calculate, _, the estimate of steady-state probability PR, or

the probability at any point in time during the operation of

one TCA that the value of mixture ratio will be in the interval

[1._, 1. which represents the current specification limits.

" x_[1._, 1.6 ]def_, a success_ o_,t whereXis a _=
of =_ _tio. _g _=Z.5 i _ - 0._

• OA_@

-_ _99995

With the mean,_, of the population of _Lwture ratio values

assumed known S2 will vary from sas_le to sample. So, consider

the problem of finding a value K such that_ -+ KS will contain

i at least 1 -0( of the population with 10OF% confidence,

0 _0_ < I, 0_P_I. _L +_KS are the sample tolerance limits. From

!

I
f_e<_ 8,'_"t de_<l by ""':'t"/" (X) : / - _--

[ From,--'Xztal_._s ",d.th I-0r.=O._,_ • 7i I_

& P = 0.80 K = 11..06

or KS = _.06 X ._6

= 0.I0

Or there is 80% confidence that at least O. 999_ of the popu-

lation is contained in I. 5 4" .IO.

Implicit, in the use of either of these statistics as the

probability of success for proper mixture ratio is the
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II.

assumption that these estimates of the probability of success

hold over a finite time interval of TCA operation.

s; ific (9o-i taru,tr, e)

A. Estimate of _ _ _" _

Isp data utilized was as follows :

5 s_-_les (tests with slices) of w_ter-cooled chamber

firings at _,

5 samples of water'cooled chamber f_ngs at ETS &

s_ples of ablative cheaher firimgs at ETS.

There is no significant difference in means between

abalattve - ETS & water-cooled - E_S with means of X

: 290._6 sec. & X-_ 2_.15 :T:v/ see. respectively from sample

sizes of _ & _ respectlwly. There is a significant dif-

ference bet-_een the data from these configuration-sites & the

water-cooled tests at Inglewood. The latter is excluded

since ablative - ETS data is to be preferred. The pooled

value of estir.ated mean from ETS is X=289.97 - sec. The

data with respect to variance estimation partitions itself

again at v_i%_rds. The ETS ablative results generate one

estimate (by the partitioning per order of magnitude) of

S2--2._ ) J_r _. This is the maximum S2 generated

of all data and therefore is taken as an estimate since

ablative - ETSis considered the most likely environment;

also the esti=ate is conservative. In addition, the water-

cooled chamber tests at Edwards are partitioned into two

sets of variazce, the maximum being $2--- 2._ with _=i0.

This is not significantly different from the above ablative

t
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estate so that the two are pooled using a_lu

3.

z,,-- S; ( th = 20)

ft_ i= 6

_2 = 2.63. The sample size for ablative - _ is 13 a_dL for

water-cooled- ETS it is I_

S2 _- 2.63 implies S : 1.51_

B. Assumption of Formality Graphical Verification

The fractile diagram approximating the distribution

is shown in Figures 2, 3 & 4 for ablative - E"I'S at sample

N = 30, water-cooled Ingl_d at sample N = 63 and water-

cooled Edwards at sample N = 2_ respectlwely.

Cm

Calculation of Statistics from Isp Data

The specification for Isp is 290 ± 5 sec., at 90-158 lhs. thrust

Following the procedure of the mixture ratio exercise we obtain

from tables of the normal distribution

f . S'4
To calculate a value of K such that X +- K contains at least 1 -0_

of the population (this time F is considered unknown) with lOOP%

confidence we can show that K = ,JQ__) I if" 2CiC.i.i )

With i - C_ = .99315, K = 3.2M at 80% confidence or

KS = 3.2_ x l._: _..99

That is to say, there is 80_ confidence that at least .99315 of

the population is contained in 289.97 --*M.99 (284.98, 294.96)
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Figure 2

289 290 291

Isp
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III. Characteristic Velocity (C_')

(ya; Samples from ablative Ers & watercooled EdwardsA. Estimate of _,

indicate no significant differences. The pooled mean is

-" 5267.798 ft/sec. All Edvards data (ablative & water-cooled)

yield a pooled variance estimate, S2= 13, 366. E06, dfm72.

_l_nz s = _9.61.

_e Assumption of Normality

A sing_-paremeter transformation to the normal distribwtion of

the ablative water-cooled Edwards variates was attempted without

success. Xn lieu of further research at this time, FIKure 5

shows a fractile dia6r_ from i00 samples of C* for the w_ter-

cooled TCA at Inglewood which is somewhat normal.

C. Calculation of Statistics from C* Data

Specification limits have not as yet been established for C*.

Also, at this writing it is not certain that C* is critical.
j

However, we shall calculate a tolerance interval at 80% confi-

dance such that .999 of the population is contained in the

!n_ez-val, _ _+KS. The result is K -- 3.58 _npl,ying5267.55

± 413.88 contains.999 of the population at 80% confidence.
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Probability of Mission Success Based on the Available X_ta

As mentioned above, because of the insufficient data only the con-

tinuous operation events are considered here for mixture ratio and

Isp variation. C* is not included because requirements do not exist

for it. Let E1 -Event of continuous operation #I (see (h)p. 5 )

JPL Spec. S#_-50_55 DSN-B lists the thrust range at 70 to 85 ibs.

The Isp calculations were made from the best data available at

90 - 158 ibs. Therefore, we assume that the variation of Xsp around

someX e E70,85_can be measured by S = I. " SAM-50255 also lists

the reT_Irement for Isp at 260 +_ 7 secs at 30 ibs. thrust & 290 +_ 5

see. at 90 - 158 Ibe. thrust. A curv_liz_ar band through these

points and all intermediate points is given, but the accuracy in

reading off points is not very good. Because of this fact and since

the Isp required interval for _70, 85_ is very close to the Isp

r_
in  .a zorC9o,15 , a. e there  r ent X ± 5

X_ 290. With S = i._i we can then say that the probability of

/ /

the correct Isp at some value of thrust in (70, 85) is O. 99883 as

(population
obtained above under the _ssumption that the sample mean _ = _ mean)

and S2 ---"_2. . Under this last assumption the probability of

correct mixture ratio is 0.99995 as calculated above. Then since

there are three engines P(EI) =.999953 X .gcj_

SAM-50255 lists the duration of El as 40 seconds (nominal) to

200 secs (max.). It must be pointed out again that P(EI)was

arrived at by assuming that the event of Isp and mixture ratio

_elu8 vithin their limits at the beginning of the time interval

!
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P (_l)= o._3 =

.97906

of the event assumes that they will be in control at any other point

of time of the event besides the initial point. After shutdown and

start again five continuous fixed thrust events follow in succession.

We shall make the above assmnption for each of them. This implies that

Isp and mixture ratio are most likely to shift out of specification

where the thrust is varied. Before considering these events, consider

calculating P(_) with the propabilities obtained in generating 80%

confidence tolerance limits for Isp and mixture ratio. This yields

0.993153

• 97959

Let _ _- Event of continuous operation #2. SAM-50_55 lists the

thrust range/chamber at 30-150 lbs. Since we cannot predict the

exact thrust setting, we shall assume the Isp calculation above for

this wide range and obtain (since the mixture ratio probabilities

remain the same).

P (E2) = P (_l)- o._34 for _-_ _ =

& P (E2) ----P (El ) : 0.97906 for unknown population at the 80_

confidence tolerance interv_

Let E3 = Event of continuous operation #3. Range of thrust is

given as 100-150 Ibs. which is contained in 90-150 ibs.

such that

P (E3) = P (_) = 0.996_

& 0.97906 for the two calculations.

_ _ ,, J ....
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Let E4 :- Event of continuous operation _. Thrust range is given by

_-50255 to _e 30 to 50 lbs. In this case asstme S _ 1.54 for lsp

from the data available for 90-158 lbs. thrust. Also assume operation

will be at the lover end point of 30 lbs. The requirement at this

point is Isp- 260 --+7 secs. Assume (because of lack of dat_) that

= 260. We obtain from normal tables

._67-z&o 4.0S"

J z_3 -2.d;o
I. s'4 --4. o_

-- o. 99995. With the m_ure ratio pz-obability of . 999953 =. 99985

ov_in P (_)-- ._5 x o.99985

= ._</_ with /_:_z ; _.z =s2

For 80% confidence on Is];) at 30-50 _s.

K = _..%s o_a 1 -_ = o.9990_

or 99.98% of the population is contained in

26o_+_.55 x I._

= 260 _+7.00

With this

= .999_6 x .999_

=r .99898

Let E5 _- Event of continuous operation #5.

range is i00 to 150 ibs.

_u,r_eore r (_5)= p (_3)=

Here a6ain the thrust

P (_) = o._

& 0.97906 fro_ the two calcula-

tions

f,

ii_-
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Let E6 = Event of continuous operation _6_ where the thrust range is
I

30 to 60 ibs. Therefore E6 is close to E_ which has operation deflned

over 30-60 lbs. t2_-_t,

_ereforeP (_)= P (_) = .99985x 0.99985

=0.9997

.- -_p (E_) = ._._ _, ._
I =!

= .98_ x o.99_o

= 0.9848rot X_ 5_--_

-- 91883

-- o.917o

x .99796

from the second type of

statistics

This last estimate is of course more pessimistic since it is cal-

culated from tolerance intervals around each parameter from each
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Hald, A., Statistical Theory with Engineering Applications; John Wiley

and Sons, Inc., New York, 1952, Section 11.10, Tolerance

Limits.
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