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ABSTRACT 

This final report documents the progress towards the Contract 

goal of finding an optimum inversion technique for inferring vertical 

thermal structure from satellite infrared observations. The major 

part of the research under Contract has appeared in the scientific 

literature. These articles are appended to the text. The final 

report consists therefore of a running commentary detailing our 

ideas as the understanding of the problem deepened. We conclude 

with unpublished material which tests the new inversion method 
1 
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under random observational errors. 
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SECTION 1 

INTRODUCTION 

With the advent of the TIROS series meteorologists had for the first 

time a platform for topside viewing of the atmosphere. In the visible this 

consists largely of scattered sunlight, hence the interest in cloud patterns 

for what they reveal of the wind velocity field. Unfortunately, the scatter- 

ed sunlight is largely insensitive to the thermal and pressure structure of 

the atmosphere. 

I -  
I -  The mean terrestrial temperature around 285K, with the maximum of the 

Planck emission centered near 15 microns, suggests using the infrared region 

for thermal sensing. 

are infrared active, they will appear as absorption bands imposed on the 

Since certain atmospheric constituents (C02,H20,03) 

black-body background continuum of the earth. If the bands are sufficient- 

ly opaque the satellite will intercept photons ar'ising solely from the top 

of the, say, water vapor layer whose intensity is given by the Planck 
I 

function associated with that particular temperature and frequency. 

These considerations bracket the problem. If we look in a window 

(~4) we will see infinitely deep into the atmosphere, in our case the sur- 

face temperature. At the other viewing extreme of an opaque band center 

( ~ - + m ) ,  only the temperature of the top of the emitting layer will be 

1 



sensed. The question poses itself: Is it possible to determine inter- 

mediate temperatures between these levels by viewing the intermediate 

frequencies? 

The relation stating the radiation frequency dependence on 

vertical thermal structure follows from transfer theory as 

W 

I(K) = IB(u)e'KUK du , (1) 
0 

Where B is the Planck intensity and exp(-Ku) the transmittance. This 

model assumes a plane-parallel atmosphere viewed vertically at varying 

monochromatic frequencies. By concentrating on this geometry we gain 

greatly in mathematical simplicity while losing little in principle. 

Thus using Equation (1) we arrive at once to the bracketing values of 

the deep and topside intensities 

lim I(K) = lim e 
K+o K+o 

and 

= IB(u) 6(u) du = B(0) . 
0 

Equation (1) states that the intensity I(K) is the moment of the 

2 



Planck intensity weighted by the transmittance derivative 

( 3 )  
- Ku w(u) = K e 

Since w(u) decreases monotonically with depth u, this implies a strong 

weighting of the near field, i.e. the top of the atmosphere. These 

considerations set the limits on temperature inference. The near field 

weighting indicates increasing unreliability of deep thermal sensing. 

Further we are asked to construct a thermal profile from a knowledge of 

its moments. This is similar to asking the distribution of grades on 

an exam given only certain averages. 

Formally, at least, since Equation (1) is a Laplace transform the 

solution follows from the inversion theorem as 

y+iw J m e d K  KU . 
K 

B(u) = - 2xi ( 4 )  
y- io0 

Of course if the intensity were known continuously and exactly, there 

would be no problem since the temperature profile would be uniquely 

specified. In practice, however, the intensity is sensed at the 

finite number of channels within a band. The inversion problem then 

consists of  extracting the maximum amount of thermal information from 

these intensity observations. 

3 



SECTION 2 

THEORY 

We are now in a position to state the inversion problem: Given n 

discrete values of an intensity profile, 

= I(K~) , i = 1y2,...yn ( 5 )  

deduce the atmosphere which gives rise to the observations. This 

problem as it stands does not have a unique solution. Any single- 

valued intensity curve passing through the observations gives, upon 

inversion, an allowable solution. Since there is a non-denumerable 

infinity of  such curves, there is a corresponding infinity of tempera- 

ture patterns fitting the data. Many of these profiles fluctuate 

wildly with grossly superadiabatic lapse-rates and even negative temp- 

eratures. This is evidence that we must impose some constraint to 

reduce the number of possible solutions. 

There are two ways of approaching the constraint. The first led 

by physical argument to the imbedded source technique. The second 

method, inversion by slabs of varying thickness, was arrived at by 

mathematical considerations of smoothness in the curve-fitting. 
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Research during the first half of the contract period centered on 

the imbedded source technique, which we now discuss. A s  we have seen, 

Equation ( 4 )  is an incomplete statement of the inversion problem since 

there is no discrimination between unphysical and feasible solutions. 

Both the observed intensity and temperature structure are end results 

or effects of deeper causes. Thus one is led naturally to attempt to 

relate the two effects to an underlying cause, rather than directly to 

each other. These considerations gave rise to the imbedded source 

technique. The temperature distribution is in a real sense determined 

uniquely by the strength and character of the radiation incident on 

the atmosphere boundaries and the distribution and concentration of 

absorbing gases within. 

Formally the solution involved three steps: First radiative 

transfer theory was used t o  relate the upwelling intensity with the 

transform of the imbedded sources, then an inversion was performed 

t o  obtain this source distribution. Finally transfer theory was again 

used to obtain the temperature distribution associated with the im- 

bedded source. Schematically, the process may be written 

I 

I1 

The critical step is the second one, the inversion. We have a partial 

5 



knowledge beforehand of  t h e  s t r e n g t h  of t h e  e x t e r n a l  r a d i a t i o n  f i e l d s  

and t h e  abso rb ing  gases  which c o n s t i t u t e  t h e  imbedded sources .  C e r t a i n  

c o n s t r a i n t s  f o l l o w  n a t u r a l l y .  The f l u x ,  f o r  i n s t a n c e ,  must f a l l  o f f  

con t inuous ly  a s  t h e  medium i s  pene t r a t ed .  

l -  

The imbedded source  technique l e d  t o  two r e s u l t s :  

1) An unders tanding  of t h e  connec t ion  between r a d i a t i v e  sou rces  

and s i n k s  and t h e  v e r t i c a l  temperature  p r o f i l e .  Thus t h r e e ,  and p o s s i b l y  

f i v e  papers ,  were s t i m u l a t e d  by t h i s  approach t o  r a d i a t i v e  t r a n s f e r .  

2) The f a i l u r e  o f  t h e  imbedded source  technique  t o  s o l v e  s a t i s -  

f a c t o r i l y  t h e  i n v e r s i o n  problem l e d  t o  t h e  fo rmula t ion  of t h e  method 

of v a r i a b l e  s l a b  t h i c k n e s s .  

The f i r s t  paper  t o  appear  under c o n t r a c t  "Moment Method f o r  S o l -  

u t i o n  of t h e  Schwarzschild-Milne I n t e g r a l  Equation" (see Appendix A) 

so lved  t h e  e q u i l i b r i u m  t r a n s f e r  e q u a t i o n  by approximating t h e  expon- 

e n t i a l  i n t e g r a l  equa t ion  k e r n e l  w i t h  a f i n i t e  sum of e x p o n e n t i a l  

f u n c t i o n s .  

t h i s  moment method had t h e  f l e x i b i l i t y  f o r  a p p l i c a t i o n  t o  more g e n e r a l  

problems t o  fo l low.  

Although developed i n  t h e  c o n t e x t  of t h e  e q u i l i b r i u m  problem, 

The f i r s t  a p p l i c a t i o n  of  the  inbedded source  technique  appeared as 

t h e  "Greenhouse E f f e c t  i n  a Semi - In f in i t e  Atmosphere" (see Appendix B ) .  

The v e r t i c a l  thermal  p r o f i l e  of a p l a n e t a r y  atmosphere h e a t e d  from above 

w a s  c a l c u l a t e d .  I n  t h e  model t h e  imbedded h e a t  source ,  due t o  d i r e c t  

a b s o r p t i o n  of s u n l i g h t  was assumed t o  f a l l  o f f  e x p o n e n t i a l l y  wi th  i n -  

6 



c r e a s i n g  dep th .  Through t h i s  model one was a b l e  t o  re la te  t h e  thermal  

p r o f i l e  d i r e c t l y  t o  a greenhouse f a c t o r  

K 

' 0  K 
i r  

v i s  
- -  - ( 7 )  

d e f i n e d  a s  t h e  r a t i o  of t h e  i n f r a r e d  t o  v i s i b l e  a b s o r p t i o n  c o e f f i c i e n t s .  

The q u a n t i t a t i v e  r e s u l t s  i n  gene ra l  agreed  w i t h  q u a l i t a t i v e  i n t u i t i o n ,  

e . g .  t h e  h i g h e r  t h e  greenhouse f a c t o r ,  t h e  h i g h e r  t h e  tempera ture  a t  

l a r g e  dep ths .  Of s u r p r i s e ,  howeverywas t h e  compensatory greenhouse 

cooling' '  a l o f t  w i t h  i n c r e a s i n g  i n f r a r e d  o p a c i t y .  This  s p e c i a l  model 11 

gave one g e n e r a l  r e s u l t  of g r e a t  i n t e r e s t .  It would appear  t h a t  t h e  

lowest  p o s s i b l e  f r e e - a i r  temperature  of a n  e x t e r n a l l y  hea ted  p l a n e t a r y  

atmosphere i s  g iven  by 

Applied t o  t h e  t e r r e s t r i a l  atmosphere,  t h i s  p r e d i c t s  t h a t  t h e  t r o p i c a l  

s t r a t o s p h e r e  i s  c l o s e  t o  t h i s  minimum o b t a i n a b l e  tempera ture .  

I n  t h i s  paper  t h e  gene ra l i zed  Schwarzschild-Milne i n t e g r a l  

e q u a t i o n  

m 

0 

w a s  so lved  f o r  a n  exponen t i a l  sou rce  

- T I P o  

'PO 
S(T) = e 
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It would be advantageous t o  be  a b l e  t o  s o l v e  t h i s  equa t ion ,  i . e .  t h e  

tempera ture  p r o f i l e  f o r  a n  a r b i t r a r y  a r r a y  of imbedded sources .  This  

proves p o s s i b l e  u s i n g  a modif ied Wiener-Hopf technique  t o  o b t a i n  t h e  

fo l lowing  Green ' s  f u n c t i o n  s o l u t i o n  f o r  t h e  problem 

n 

0 

where q(z)  and ~ ( 7 )  are t h e  Hopf f u n c t i o n  and t h e  Heavis ide  s t e p  f u n c t i o n .  

A knowledge of t h e  Green ' s  func t ion  reduces  t h e  s o l u t i o n  of Equat ion (9 )  

t o  s i m p l e  quadra tu re  v i a  t h e  p r e s c r i p t i o n  

I n  a comprehensive paper  being prepared  f o r  p u b l i c a t i o n  i n  t h e  As t ro -  

p h y s i c a l  J o u r n a l ,  t h e  s o l u t i o n  of Schwarzschild-Milne e q u a t i o n  (9) i s  ob- 

t a i n e d  f o r  a v a r i e t y  of imbedded sources .  For  a n  o u t l i n e  of  t h e  c o n t e n t s  

see Appendix C .  The me teo ro log ica l  consequences of v a r i o u s  models have 

been p resen ted  as two i n v i t e d  papers .  The f i r s t ,  "Radia t ive  T r a n s f e r  

w i th  Imbedded Sources",  r ead  a t  t h e  r e c e n t  R a d i a t i o n  Symposium i n  Leningrad 

used a double  imbedded source  which y i e l d e d  many f e a t u r e s  of t h e  

8 



l -  

standard atmosphere. Particularly satisfying was the prediction of 

a tropopause-like temperature minimum at a depth of one-quarter 

atmosphere (250 mbs). An increase in the infrared optical thickness 

resulted in raising the height and lowering the temperature of the 

tropopause which was very suggestive of tropical behavior. 

More recently further implications of the imbedded source 

technique were presented at the AMs Micrometeorology Conference in a 

paper "The Nature of  the Radiative Discontinuity Near the Ground". 

The theory makes the startling prediction that the upwelling infrared 

radiation from a dry, smooth surface should be anisotropic, exhibiting 

1 imb - brigh tening . 

The imbedded source technique, while contributing to the under- 

standing of the inversion problem, did not provide its solution. To 

appreciate the limitations of the imbedded source technique and to 

see the considerations which led to the variable slab method, we must 

return to Equation ( 4 )  

y+iw 

B(u) = - . KP 

2ni K 
7- im 

The natural forms for expressing imbedded sources are exponential 

functions 

either decreasing or increasing with depth depending on whether the 

source is above or below. The upwelling radiation corresponding to 

9 



sums of exponential sources has a quotient polynomial form 

n 

n n- 1 

a K + a Kn-'+..*+ a 

b K + bn-lK +...+ b 
n n- 1 0 I(K) = 

n 0 

This then is the interpolation formula for the upwelling intensity. 

The constants a and b are determined by fitting the 2n + 2 observ- 

ations, Equation (5) 

i i 

Unfortunately, when this procedure is applied to a routine model it 

1 -  

is found that the fit with observations requires either negative or 

complex roots for K, which is physically inadmissable. This indicates 

that a quotient polynomial interpolation formula is suitable for 

slowly varying sources, but incapable of dealing with sources which 

change abruptly. 

In this manner we were led to the following temperature profile 

of extreme "bumpiness" as the source 
n 

du = 1 ABj S(u-u.) J , 
j=l 

from which follows as the interpolation formula 
m 

0 

= T A B j .  - KU j 

j=1 

10 



Using the observational constraint, Equation (5) , we have a nonlinear 

simultaneous equation set in 2n unknowns mi and ui to determine 
J J 

I 

n - K  U 
7 i j  

j=1 

I(K~) - B(0) 
= L ABj e 

is indeed fortunate that this non-linea 

i=1,2,.. .,2n . (17) 

set can be s lved, un- 

iquely, by an elegant algorithm which determines the n slab boundaries u 

as the roots of an nth degree algebraic equation and the slab weights 
j 

@B. as the solutions of n linear simultaneous equations. The unique- 

ness feature should be stressed. For 2n intensity observations there 
J 

is one and only one configuration of n slabs of varying heights and 

thicknesses which fit the observations. Thus this method is free of 

the indeterminacy which plagues other interpolation formulas. An 

example will suffice. 

Let us assume we wish to express the temperature as a power 

series 

j B(u) = b.u 
J 

By taking the transform we obtain as our interpolation formula 

j=O 

The observational fit requires 

11 



The power series s p e c i f i e s  t h e  sequence j = 0 , 1 , 2 , e t c .  Thus K i j  i s  

known and Equation (20) becomes a l i n e a r  s imul taneous  s e t  f o r  t h e  

unknowns b . But what i f  ano the r  sequence had been chosen, such as 

j=0,2,4,  f o r  example? This  would have l e d  t o  t h e  i n f e r e n c e  o f  a 

d i f f e r e n t  p r o f i l e ,  wi th  no ready c r i t e r i o n  t o  f a v o r  one over  t h e  

o t h e r  . 

j 

The pape r  " I n v e r s i o n  by Slabs of Varying Thickness" (see 

Appendix D) sets f o r t h  the  theory and a p p l i e s  t h e  new method t o  two 

s y n t h e t i c  models. The i n f e r r e d  f i t  i s  convinc ing ,  and subsequent 

work has  j u s t i f i e d  our e a r l y  o p t i m i s m  i n  t h i s  new method. 

Thus f a r  we have n o t  mentioned one problem of o v e r r i d i n g  i m -  

po r t ance  t o  a l l  i n v e r s i o n  methods. This  i s  t h e  e f f e c t  of no i sy  d a t a  

on the  i n f e r r e d  tempera ture .  To t h i s  p o i n t  we have d i s c u s s e d  only 

t h e  problem: Given p e r f e c t  d a t a ,  i . e .  f r e e  from e r r o r ,  which i s  t h e  

b e s t  i n v e r s i o n  scheme? Perhaps t h e  c h i e f  v i r t u e  of t h e  v a r i a b l e  

s l a b  method i s  i t s  s t a b i l i t y  t o  e r r o r .  This  we proceed t o  demonst ra te  

by numerical  examples of work done under c o n t r a c t  which i s  as y e t  

unpublished i n  t h e  l i t e r a t u r e .  

I n  t h e  f i r s t  model s t u d i e d  i n  t h e  " I n v e r s i o n  by S l a b s  of Varying 

Thickness" pape r ,  t h e  i n d i c i a 1  f u n c t i o n  which we sought t o  r e c l a i m  was 

g iven  by 

- K  U 
0 B(u) = 1 - e 

1 2  



and the corresponding upwelling radiation by its transform 

If we view the atmosphere at ten frequencies corresponding to 

K 

K 
- -  i - 0,1,2,...,9, 
0 

then the upwelling radiation strengths will be given by the sequence 

I ( K ~ )  = 1,1/2,1/3,. . . , 1/9,1/10 . (24) 

This array suggests a way in which we can determine the sens- 

itivity of the inferred slab profile to observational errors. From 

ten exact measurements we should be able to deduce a five slab 

atmosphere whose profile closely approximates the indicia1 function 

Equation (21). Figure 1 displays the five slab profile deduced 

from perfect data. The fit is extraordinarily good. Table 1 

lists the slab parameters inferred from the perfect data, Equation (24) 

along with slab parameters inferred from values of I ( K . )  rounded 

off to eight places. We see the effect of eighth place data round- 

off is to give rise to a maximum inferred error of five in the 

fourth decimal place. From a graphical point of view this is 

negligible, smaller than the width of a line. 

1 

Let us now successively degrade the data by rounding off to 

fewer decimal places and observe the resulting deterioration of the 

13 



. . ,  

TABLE 1 

INFERRED FIVE-SLAB ATMOSPHERE 

A. Exact Solution 

1 .11846344 .95308992 

2 .35777778 .76923466 

3 .64222222 * 50000000 

4 .88153656 .23076534 

5 1.00000000 .0469 1008 

B. Approximate Solution for Eight-Decimal Accuracy 

1 .11822508 .95318628 

2 .35715669 .76966538 

3 .64143363 .50073967 

.23142699 4 .88108260 

5 .99999997 .04710907 

.048 

.262 

.693 

1 .47  

3.06 

048 

.262 

.692 

1 .46  

3 .06  

14 
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i n f e r r e d  thermal  p r o f i l e .  F igure  2 shows t h e  e f f e c t s  of f o u r  decimal  

round-of f .  The smallest r o o t  x goes n e g a t i v e  b u t  t h e  a s s o c i a t e d  

AB i s  comfor t ing ly  s m a l l .  Thus w e  have,  i n  e f f e c t ,  l o s t  a s l a b .  

The shape of t h e  i n f e r r e d  p r o f i l e  i s  u n a l t e r e d ,  and what remains i s  

5 

5 

a n  e x c e l l e n t  f o u r  s l a b  r e c o n s t r u c t i o n  of  t h e  i n d i c i a 1  f u n c t i o n .  

With t h r e e  p l a c e  round-off  t h e  d e g r a d a t i o n  p r o g r e s s e s  f u r t h e r .  

F igu re  3 shows t h a t  two s l a b s  a r e  l o s t ,  w i th  x > 1 corresponding  t o  

a n e g a t i v e  T of - .764 . Two decimal  round-off  i n t r o d u c e s  t h e  new 

f e a t u r e  t h a t  two of t h e  r o o t s  x and x become a complex con juga te  

p a i r .  The a s s o c i a t e d  L1B and AB are,  however, ex t remely  s m a l l .  

Once a g a i n  t h e  shape o f  t h e  p r o f i l e  i s  f a i t h f u l l y  reproduced (see 

F igure  4 ) ,  though n e c e s s a r i l y  w i t h  t h e  less p r e c i s i o n  of t h r e e  s l a b s .  

1 

1 

4 5 

4 5 

These r e s u l t s  are r e a s s u r i n g .  They appear  t o  i n d i c a t e  a n  

extreme s t a b i l i t y  of  t h e  p r o f i l e  shape t o  non-sys temat ic  e r r o r .  O f  

f u r t h e r  i n t e r e s t  i s  t h e  f a c t  t h a t  t h e  smallest r o o t  x i s  most 

s e n s i t i v e  t o  e r r o r .  

atmosphere,  where w e  would expec t  maximum u n r e l i a b i l i t y  anyway i n  

thermal  r e c o n s t r u c t i o n .  

5 

This  corresponds t o  l a r g e  7 ,  i . e .  deep i n  t h e  
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MOMENT METHOD FOR SOLUTION OF THE SCHWAKZSCHILD- 
MLLNE INTEGRAL EQUATION 

JEAN I. F. KING AND E. T. FLOUNCE 
Geophysics Corporation of America, Bedford, Massachusetts 

Reca’ocd July 18,1963 

ABSTRACT 
The underlying basis of the extreme accuracy of the double-Gauss quadrature formula devised in the 

method of discrete ordinates is uncovered in an alternative solution of the transfer equation. The Schwarz- 
schild-Milne integral equation is solved by approximating the exponential integral kernel with a finite 
sum of exponential functions. A moment method is used to provide the best fit to the kernel. The con- 
stants that result are identical to those following from the choice of a double-Gauss quadrature formula 
in the discrete ordinate method. The integral equation formalism is then applied to the non-gray atmos- 
phere problem. 

I. INTRODUCTION 

The method of discrete ordinates developed by Wick (1943) and Chandrasekhar 
(1950) is a powerful technique for the solution of transfer equations. A critical factor 
is the choice of a proper quadrature formula to replace the integration of radiation inten- 
sity over direction. Sykes (1951) obtained results of extreme accuracy by splitting the 
interval and fitting the Gaussian formula separately over the upward and downward 
directions. 

The physical basis for the success of the double-Gauss method is laid bare by an al- 
ternative solution of the equilibrium transfer-equation which does not involve the inten- 
sity. The Schwarzschild-Milne integral equation is approximately solved by expanding 
the kernel transmittance in a summation of exponential functions. The characteristic 
equation that results is formally identical with that of the method of discrete ordinates. 
The specification of a “best fit” of the kernel, and its approximate representation by 
equating moments, lead to a set of equations which reduce to the Legendre polynomials 
of the double-Gauss method. Thus the ad hoc choice of the double-Gauss formula is 
justified as providing the optimum fit of the exponential integral kernel by a finite sum 
of exponential functions. 

11. MOMENT-METHOD SOLUTION OF THE SCHWARZSCHILD-MILNE EQUATION 

The transfer equation specifies a relation between the radiation intensity and Planck 
source function which, for a plane-parallel, non-scattering, gray atmosphere, may be 
written as 

d l (  7 ,  = I (  7 ,  p )  - B (  7 ) .  (1) d 7  

The imposition of the equilibrium constraint 

B(7)=&I:I(7, p ) d p  (2) 

permits the elimination of either of these dependent variables. Thus, by substituting the 
source function (2) into equation (1) we obtain the equilibrium integrodifferential equa- 
tion of transfer 

/ . 4 d 7 - = 1 ( 7 ,  dZ(  7 ,  r >  ~ ) - 3 / ~ 1 ( 7 , s ’ ) d d .  

397 

(3)  
-1 
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The method of discrete ordinates solves the problem approximately by converting thc 
integrodifferential equation into a system of 2n linear differential equations. This is done 
by replacing the integration over direction with a suitably chosen quadrature formula 

( i =  + 1 , .  (4) 

Chandrasekhar's (1950) use of a Gaussian quadrature formula was criticized by 
Kourganoff (1952) who preferred the Newton-Cotes method. Sykes (1951), meanwhile, 
obtained results of extreme accuracy by splitting the interval and fitting the Gaussian 
formula separately over the ranges (- 1,O) and (0, 1). We now demonstrate the physical 
basis underlying Sykes's choice of a double-Gauss method, showing how it represents 
the optimum choice of a polynomial quadrature formula. 

Returning to equations (1) and ( 2 ) ,  we can use the equilibrium constraint alternatively 
to eliminate the intensity from the integral form of the transfer equation yielding (see 
Chandrasekhar [1950]) 

B (  7 )  = $L>(~)J%( I t -  71 ) d t ,  (5) 

the Schwarzschild-Milne integral equation. The direct solution of this equation is dif- 
ficult. The form of the kernel 

suggests an approximate expansion into a summation of more tractable exponential 
functions. 

Equation ( 5 )  becomes, with this kernel approximation, 

The application of the Laplace transform using the Faltung theorem (Sneddon [1951]) 
leads directly to 

where 

B ( K )  - J m ~ (  7 )  e-k~d7 . (9 )  

The requirement that B ( k )  # 0 then yields as the characteristic equation 

whose 2n - 1 solutions consist of a double root at the origin k2 = 0 and paired roots 
at k = +k,. 

We obtain the general solution for the equilibrium source function by performing an 
inversion of equation (8) with the poles along the real axis given by the roots of the 
characteristic equation. Thus 

n-1 

, R (  7 )  = b [ 7 + Q +  ( L . e - k ~ ' + L - . e k * r ) ] .  (11) 

Cl=1 
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The constants b, Q, La, and L-, can be determined by boundary conditions in either 
of two ways. For a semi-infinite atmosphere the Wiener-Hopf technique can be used to 
express the constants directly as residues of the H-functions (King 1955), yielding 

where the H-function is given in this approximation as 

(121 

(13) 

Alternatively one can determine the constants by the requirement that B(r)  = 0 for 
T < 0. This constraint leads to a set of linear simultaneous equations to determine the 
n constants Q, La. Upon using the method of elimination of constants we are led then 
to relations (12). 

The characteristic equation (10) and constant relations (12) derived from the Schwarz- 
schild-Milne equation are formally identical to those obtained by Chandrasekhar (1950) 
using the method of discrete ordinates. This is not surprising since the two approaches 
are transformations of the same problem. 

The result is more than an elegant identity. First, we have derived the equilibrium 
source function B(T)  directly without recourse to any auxiliary function such as the 
radiation intensity. More importantly, however, we have in the kernel approximation, 
equation (6), an algorithm for the specification of the best quadrature formula. 

We return to the kernel approximation and determine the weights a, and directions 
p;  by equating moments of the kernel with its series approximation. Thus 

yielding the following system of non-linear equations to determine the 2% constants al,  
. . . , an and pl,  . . . , pn 

( Z = 0 ,  1 , .  . . 

111. SOLUTION OF MOMENT EQU.4TIONS 

A method for solving moment equations of the type 
n 

, 2n-  1 ) .  

has been given by Chandrasekhar (1950). He shows that if coefficients c i ( j  = 0 , .  . . , 
It - 1) are defined by the linear equations 

b n + l +  C c j b j + l = O  ( l = O , .  . . , a -  l ) ,  (17) 
i - 0  
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then pi is one of the n roots of the polynomial 
n-1 

F (  2) = xnf c G j X i .  
i = O  

Vol. 139 

(18) 

The coefficients cj  can be eliminated from equations (17) and (18), with the result that 
F ( x )  is a multiple of the polynomial 

@ ( x )  = det [6j l(x)] , (19) 

where 6 (x) is the ( n  + 1) X (n + 1) matrix 
A 6,~  = bj+l ( j  = 0,. . . , n - l), 6,l = xl (1 = 0,. . . , n) . 120) 

The determinantal equation @(x)  = 0 in which we have from equation (15) 

can be simplified (Muir 1960) to the form 

d" - [ x " ( l - x ) " l  = o .  
d xn 

The substitution 
x = +(1 + 2)  

immediately reduces equation (22) to the equation 
Pn(X) = 0 , 

where P, is the Legendre polynomial of order n. Thus, we have arrived at the same result 
as the Sykes double-Gauss method: 

(24) 

where p; is one of the n roots of the Legendre polynomial P,. 
Since the transformation (23) maps the interval (-1, 1) onto (0, l ) ,  Sykes (1951) 

noted that the double-Gauss formula is merely the Gaussian formula applied to the trans- 
formed interval. We will now demonstrate that the linear mapping (23) correctly trans- 
forms the moment equations (16). 

p .  = r I 2(1+ P i )  I 

If we insert equation (23) into the definition 

b l =  J1Xld3i. 

and use the moment equations (16) with equation (24), we obtain the transformed equa- 
tions 

-1 

f= & p i 1  = b l  , 
i -1 

where di  = 2a,. In other words, a solution to the equations (16) for the interval (0, 1) 
is a linear function of the solution to equation (25) on the interval (- 1, 1). 

The solution to equation (25) with 
( 1 even 1, 2 

' b i = 0  ( l o d d ) ,  b i = -  If 1 
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is the familiar Gaussianformula (Chandrasekhar 1950). Hence, the weights a; are given by 

Q-Constan t 
_____-- 

+0.50oooO + ,711325 

Writing equation (26) in the form 

GConstants _-_-______ 
. . . . . . . . . . . . . . . . . . . . 

LI= -0.133975 

reveals the standard prescription of ai as a quadrature weight. 

First..  . . . . . . 
Second. . , , , , 

Third . .  . . . . . 

Fourth. . . . , , 

TABLE 1 

CHARACTERISTIC ROOTS A N D  CONSTANTS OF INTEGRATION 

pl=0.50000000 
p1= ,21132487 
pz= .78867513 
pl= ,11270167 
p2= .50000000 
p3= .88729834 
p,= ,06943184 
p2= .33oO0948 
pa= ,66999052 
pr=0.93056816 

Approximation I Direction Cosine 

. _ _ _ _ . . . _ . _ . . . .  
+O .7 10472 

. . , . . . . , , , . , . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . .  

. 
. . . . . .  . . . . . . . . . . . . .  

L1= - ,048082 
L2= - .024173 
L3=-0.060866 

. . . . . . . . . . . . . . . . . . . .  

1 .OO. . . . . . . 
2 .OO. . . . . . . 
3 .oo. . . . . . . 

m . . . . . . . 

Characteristic Roots 

,69844 
,70799 
,70983 

0.71047 

. . . . . . . . . . . . . . . . . .  
kl= 3.46410162 

, . . . . . . . . . . . . . . . . .  
k1= 1.52028083 
k2= 7.59531080 

. . . . . . . . . . . . . . . . . .  
kl= 13.12234030 
k2= 1.22721388 
ka= 2.50960776 

. . . . . . . . . .  + ,710567 
. . . . . . . . . .  , . .  
L1= - ,057038 
L z = -  .076179 

0 57735 
58507 

0 02 59202 
0 0 4  ~ 60396 
0.06. . . . . . . I  
0.08. . . . . . ,61378 ,62194 

62879 
65123 

0 40 67312 
0 6 0  68537 
0.80. . . . . . . I  ,69324 

TABLE 2 

COMPARISOX OF FOURTH APPROXIMATION A N D  EXACT SOLUTIONS 

0.577351 
,588236 
,595391 
,606287 
.614789 
,62 1854 
,627919 
,649550 
,673090 
,685801 
,693535 
,698540 
,707916 
,709806 

0.710447 

I4 ___- 
0 0  
0 1  
0 2  
0 3  
0 4  
0 5  
0 6  
0 7  
0 8  
0 9  
1 0  

. 
-__ 

1.00000 
1.24619 
1.45020 
1.64257 
1.82937 
2.01288 
2.19423 
2.37407 
2.3279 
2.73067 
2.90789 

1.0000000 
1.2473502 
1.4503515 
1.6425221 
1.8292757 
2.01 2 7788 
2.1941330 
2.3739750 
2.5527044 
2.7305876 
2.9078105 

The characteristic equation (10) has been solved up to the fourth approximation. The 
roots pi and k. along with the derived constants Q and La from equation (12) are given 
for reference in Table 1. As an indication of the superior accuracy of the double-Gauss 
method, in Table 2 we compare the fourth approximation for q ( ~ )  and H ( p )  with the 
exact result from Kourganoff (1952, p. 138, Tables 33, 34). 
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IV. EXTENSION TO NON-GRAY ATMOSPHERES 

The Schwarzschild-Milne integral equation approach shows to best advantage in an 
extension to the non-gray atmosphere problem. The flux transmittance for a narrow band 
of width AV consisting of many lines, yet small enough so that the Planck function is 
sensibly constant, is defined as 

where X = K / K ,  is the ratio of the arithmetic mean and monochromatic absorption coef- 
ficients. 

By analogy with the gray case we can define a hierarchy of non-gray transmittances by 

obeying the relation 
---= d G ” (  - - & “ - I (  T )  ( 1 2  = 2 ,  3 ,  . . . ) .  (29) 

d T  

The non-gray Schwarzschild-Milne equation becomes 

As we continue to exploit the analogy, the form of the equation suggests that we expand 
the kernel in a summation of exponential functions 

where the a, and p, are noby “generalized” weights and roots. 

non-linear simultaneous equations 
Equating moments as before, these constants are determined by the system of 2n 

n 

a , / & ( =  El+,(O) = p1 ( l = o ,  1 , .  . . , 216- 1 ) .  132) 
t = l  

‘rhus the non-gray problem is reduced simply to the determination of new constants 
specified by different moments. Using relation (27) we may tabulate these as 

As an example consider an Elsasser band model consisting of an equally spaced array 
of identical Lorentz lines whose monochromatic absorption coefficient is 

s sinh( 2 7 r a i d )  
ct c o A (  27ra, d )  - c o s ( 2 7 r v / d )  ’ 

~” = - (34) 
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where S, a, and d are the line intensity, half-width, and spacing. By integrating from line 
center to center we obtain the relations 

where (A), the non-grayness parameter, is the ratio of the arithmetic and harmonic 
means of the absorption coefficient and = 2na/d is the ratio of line half-width and 
spacing. Any deviation from grayness leads to a (A) in excess of unity. 
' 

Although the P;  in equation (32) are no longer roots of the Legendre polynomials as 
in the gray case, it is not difficult to solve the equation set explicitly in the n = 2 
approximation. Doing this we find PI, PZ as roots of the quadratic equation 

( P O 8 2  - P12)P2 - ( 8 0 8 3  - PlP2)P + (PlPS - 8?> = 0, (36) 

with the root of the characteristic equation given by 

kl = ,/(-) 8 2  8 0 8 2 -  812 

. P O  8183- 82" 
(37) 

The most interesting result, identical in all orders of approximation and hence exact, 
is the Hopf-Bronstein relation generalized now for a non-gray atmosphere. Thus 

q ( 0 ) eQ +L = pipzk d ( 8 2 / 8 0 )  = d ( ( ) /3  1 - (38)  

The remaining constants in this approximation are determined as 

L i =  d ( 8 z I P o )  -Q 0 

V. CONCLUSIONS 

The double-Gauss quadrature formula used by Sykes (1951) has a sound physical 
basis in providing the optimum fit of the kernel in the Schwarzschild-Milne integral 
equation by an exponential function series. The power of the alternative integral equation 
formulation is demonstrated by the ease in the extension to treat non-gray atmospheres. 

We are grateful to Robert V. Sillars for the calculations leading to Tables 1 and 2. 
The research reported in this paper has in part been supported by the National Aero- 
nautics and Space Administration under contract NAS5-3352. 
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Greenhouse Effect in a Semi-Infinite Atmosphere 

ISTI~ODCCTION 
The greetihoiise cffcc*t whivh owtirs i t i  

exteriially hratrd plntietary atmospheres 
is c~rialitatively well iitiderstood. The phr- 
tiomeiinii, which r(wilts iii a temperatiire 
eiih:it ic-emciit I ie:ir thc siirfare, derives from 
the Idviiig actioti of the atmosphere it1 

:tdmittiiig the solar f l i i s  at optical wave- 
lengths \vhile trappiiig the re-emitted radia- 
tioii i t 1  the far iiifrared. ('learly this effecat 
must (kpeiid falidamelitally on the voiitrast 
htweeii :itmospherir visual transparw('y 
:md iiifrarrd opavity. 

The hwtitig drie to  the iiiroming solar 
heam :IS it attciiuates in the atmosphere 
plays n cwitrnl role. Iii a steady state coii- 
figuration the temperatiire must awom- 
modate to  this flus so that the loss through 
infrared eniissioti exactly halances the energy 
gain from solar absorptioti. IVe seek, therr- 
fore, a formalism whiroh n i l1  yield thr steady 
state temperatitre profile for ail intcriial 

hcat s o i i r ( ~  of suitably cshoscw c*oiifiguratioii. 
This goal is obtaiiied obliclriely by relating 
the imbedded soiirre model to the ivell- 
kiiowti problem of the diffiise reflevtioii from 
a sratteriiig atmosphere. 

T H E O I l Y  

Wc h g i t i  by iiitegratiiig the. tratlsfer 
eciiiatioii for a plane-parallel ahsorbing 
atmosphere, 

~ ~ Z ( T , P ) / ~ T ]  = I (T ,cL)  - H ( T ) ,  (1) 
over all directions yielding the flux diver- 
gellc'e 

$ [ ~ F ( T ) / ~ T ]  = 1 I ( ~ , l ) d p  - H ( T ) .  ('2) 

Under radiative equilibrium the flus 
divergence must vanish. In our problem, 011 

the other hand, this term which is propor- 
tional to  the infrared heating must remai!i 
finite. 

1 

- 



c 
1 . 4 

. 

(witrated at infinite depths. IJsing E(1. (10) 
the up\velling intensity for swh :t source 
becomes sourre fitiic*tioii. Thus 

welling ratliutioii from u semi-itifitiitc ut- 
mosphere is the 1,aplac.t traiisform of the 

a result idciitical to the emergiug intensity 
from a semi-infinite atmosphere in radiath-e 
equilibrium. 

Vigure 1 displays limb-darkening c u n ~  

where 

r 
I 2 3  4 5 6 7  8 9 IO 

P 
FIG. 1. Limb-darkening for various attenuated sources ( F / 4 p I , )  esp( - T / / J * ) .  

for imbedded exponential sources of various 
scale lengths. The shorter the scale length 
pol the more concentrated the source a t  the 
top of the atmosphere. As expected the 
curves for small po exhibit limb-brightening. 
Of surprise, however, is the fact that already 
for po = 0.815, limb-darkening is becoming 
apparent. Limb-darkening becomes most 
pronounced in the greenhouse “limit” as 
the atmosphere becomes transparent in the 
visible, corresponding to j l o  approaching 
infinity. 

In  order to  obtain 8 ( ~ )  for various heating 
configurations we use the fact that the up- 

The source function follows from Eq. (8) 
as the inverse transform 

I F H(jl0) R(7) = -. - - 
2rz 4 j l o  

Using the quotient polynomial expressioii 
(9) for the H function, we have as the con- 
tour integral 



which is t o  be compared with the transfer 
equation for the problem of diffuse reflection 
by an atmosphere scattering radiation 
isotropicdly (C'handrasekhar, 1'359, p. 81) 

Kxcept for the iiihomogeneous terms the 
equations are identical. This formal simi- 
larity implies that the iiitcnsity and soiirce 
function for aii atmosphere diffusely reflect- 
ing a parallel bcam incident downward iii 
the directioii -kO, are proportional to 
I ( 7 , p )  and B(T) for a model atmosphere 
with aii internal heat sink given by 

3{1F(7)/(f771 = - ( F / 4 ~ d  cxp ( - / P O ) ,  (5 )  
where the normalization factor l/po guaraii- 
tees that F(T -+ m )  = 0. 

Vnder steady state the infrared loss must 
he exactly compensated by a matching gain 
from the absorbed solar beam. If we assiimc 
a monochromatic beam for simplicity, we 
have 

where K ~ . ? ~  is the absorption coefficient of the 
solar beam. 011 compairng Eqs. ( 5 )  and (6) 
remembering the definition, 7 = K,,u, we are 
led to  associate with the ratio of absorp- 
tion coefficients, 

PO = K , , / K , , ~ .  (7) 
Thus we have proved the following lemma: 

The intensity and source junction for a 
sleady state atmosphere being heated by a 
tionthermal source whose jlux divergence is 
given by [F(0)/4po] exp ( -T/c(o) i s  equivalent 
to I (T ,M)  and B(T) for an atmosphere diffusely 
reflecting a parallel beam of strength F/4p0. 
The solutions are identical. From an exam- 
ination of the intensity or source function 
alone it is impossible t o  discern whether 

the radiation arises from an c.xteriially 
imposed flux or an internally sripplied soiircc 
of notithermal origin. This interchangc- 
ability of interiial and external c.olistraiuts 
has far-reaching implications for the solri- 
tioii of a variety of radiative traiisfcr 
problems. 

The imbedded soiirce problem admits n 
geiieralizatioii denied the impressed beam 
model in which the direction cositie pO is 
restricted to  the range zero to  otic. 111 thc 
imbedded source aiialog po as defiiied by 
Eq. (7) caii take any positive \-slue atid, i i i  

greenhouse models, typically greatly cwwds 
ruiity. As we shall see this leads to  a Iiatiiral 
gencralization of the H(p) function for argu- 
ment greater than one. 

Having demonstrated the equivalelice of 
the two models, we can appropriate directly 
some of the results of the diffuse reflectioii 
problem. Using the replacement algorithm 
[Eq. ( 5 ) ]  we find for an atmosphere heated 
internally by a exponential source (F /4po)  
exp ( -T /P" ) ,  that the upwelling radiation is 
given by 

There is no mathematical difficulty in- 
volved in generalizing the H functioii for 
argument greater than unity. For suitably 
chosen constants (King and Florance, 1964) 
the quotient polynomial form 

a =1 

is coiiveiiient, yielding even for 71 = 4 an 
approximation of extreme accuracy. Further, 
it follows readily that 

lim - H ( b )  = 
fi+ m M 

1 1 
PI . . . P A  . . . k,,-l 

= d3 (10) 

a result valid for all orders of approximation 
and hence exact. 

Thus we see that  as  po ---f a, the imbedded 
source approaches zero for finite values of 
the optical depth T ,  with the heating con- 



L a=’l 
1 

with 

( 16) 

p=1 

where the prime dciiotrs the factor p = (Y is 
omitted. 

approaches infinity, we 
have, using 1,’Hospital’s rille 

lim R(T) 

We note that as 

we-+ I 

where 
,, n-1  

0 = 2 P ,  - 2 V k a .  (IO) 
i = l  a = l  

+ ‘)J. k ,  (20) 

This is to be expected sitice there is 110 reas011 
to attach sperial physical sigiiificaiicae to the 
valaes / l o  = l/ka. 

The ratio of the soiir(’e fuiic.tioii a t  large 
depths to  that at the surface is easily found. 
I’rom Eq. (16) we have 

H ( T +  m )  = ~ ( F / ~ ) H ( ~ I ) ) .  (21) 

At  the top of the atmosphere we fitid from 

H(0) = Z(0,O) = ( F / 4 ) [ H ( P , J  PI,], ( 2 2 )  

Eq. (8) 

yielding as our ratio 

R ( m ) / H ( O )  = 4 Z P l h  (23)  

a result kiiowii to (‘haiidrasekhar ( l !EO, 
p. 87), though iittc~rprctable tiow for :ubi- 
trary value of p0. 

If we SO chose, tlic grwtihoiiw factor 
caoiild be dcfiiicd as this ratio of soitrw futic- 
tiotrs. 12 more physicdy satisfyitig defiiiitioii. 
however, is the ratio of H( r )  to  the effective 
blac.k-body fuiictioti of the oittgoing flus, 
whivh yields the si1rfac.e temperature of aii 

e( 11 t i vale I i t atmosphereless plat let. I rom the 
definition it follows that H , , ,  = F, since 

Care must be escwised i i i  the evaluatioti 

factors coincide with reciprocal roots of the 
charactt4stir equation, i.e. for (’ases in which 
PO = l,’ka. 111 this evpiit we see, using the 
quotient form of H (  -po)  defined by relatioii 

= H e , ,  4. (24) 

the temperature ellhanct.met,t drle to the 
presellce of a,, atmosphere, t,ec.omes, oll 

of H ( T )  for imbedded SOllr(’eS whose Scale The greetlhollse factor, ,\-hi(.h 

pl) all(i (24) 

(9), that the final two terms of the soiirw R(m)IH, , ,  = (v5 4)H,po). ( 2 5 )  
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FIG. 2. Steady state Planck temperature profiles for various attenuated sources. 

One customarily associates the greenhouse 
effect with models having a large infrared 
to visible absorption coefficient ratio [po = 
( K + / K ~ ~ J  >> 11. We see surprisingly that even 
for a “gray” atmosphere, Eq. (25) 

B ( w ) / B , / /  = ( d ? i / 4 ) H ( p o  = 1) = 1.259, 

exceeds unity, indicating a greenhouse effect. 
Thus even in an  atmosphere in which the 
heating is a maximum a t  the top, decreasing 
exponentially with depth, one may nonethe- 
less have a greenhouse increase of tempera- 
ture with depth and limb-darkening under 
steady state conditions. It is possible, there- 
fore, for the atmosphere at  large depths to  
have a higher temperature than overlying 
layers even though there is negligible pene- 
tration of sunlight t o  the depth in question. 

Figure 2 is a plot of the source function 

[Eq. (20)l for three models in which the 
absorption scale length po = l/lca, and a 
fourth curve for the equilibrium case, 
po >> 1. The general pattern emerging is 
that  for concentrated sources, po < (l /f i) ,  
the steady state temperature decreases with 
depth while sunlight which attenuates less 
rapidly leads to a greenhouse downward 
temperature increase. 
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APPENDIX C 

RADIATIVE TRANSFER WITH IMBEDDED SOURCES 

I. Abstract 

11. Introduction 

A. Problem treated: Steady-state distribution of radiation in 

a plane-parallel, semi-infinite planetary atmosphere for arbitrary im- 

bedded heat sources and sinks. Wanted: Vertical distribution of 

temperature and intensity profile of the upwelling radiation with 

viewing angle for various imbedded sources. 

B. Relation between imbedded sources and boundary conditions. 

C. Development of the fundamental Schwarzschild-Milne integral 

equation. 

111. Wiener-Hopf Solutions of the Schwarzschild-Milne equation 

A .  Exponential type imbedded sources 

1. 

a. relation to Chandrasekhar scattering problem for 

lo < 1 
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2.  

3 .  

b. relation to radiative equilibrium model for p >> 1 
0 

G e e p  imbedded source > 
c. limiting cases given by S (T) = 6 ( ~ )  with T -+ 0, >> 1 

d. simple greenhouse model interpreting p 

e. minimum free air temperature theorem 

f. plots of I ( O , p ) ,  B ( T )  for various po 

+ 
0 

1 -7 I Po 
s+(.r) = - exp(X), po complex 

PO 

a. 

b. physical interpretation: damped sinusoidal sources 

c. formulas f o r  computing H(po), po complex 

d. tables 

e. graphs 

generalization of H-function for complex argument 

a. Heaviside type expansion theorem for I ( 0 , p )  

b. application to expansion of S (T) in orthogonal poly- + 
nomial sets 

B. Exponential integral imbedded sources 

a. derivation of 11(0, p ) , B l ( ~ )  

b. equivalent boundary constraint 

2 .  

a. derivation of 1 2 ( 0 , p )  = B 2 ( ~ )  = F 
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. 
b. xluivalznt boundary constraint 

3. 

a. derivation of I (0,p) for arbitrary integral n 

b. solutions I,(O,P>, I 4 ( 0 , P ) ,  B3(TlO B4(T) 

n 

C. Delta-function imbedded source: The Green's Function 

1. Wiener-Hopf derivation of I(O,p), B(T) = G(TkT1) for 
, 

1' 2. Plots of I (0 ,p )  , B(z) for various T 

3 .  Improved greenhouse model. 

4 .  

5. Central role of H-function. 

Functional integral equation obeyed by Green's function. 

IV. Non-linear H-function integral equations derived using imbedded sources. 

1. Relation to invariance principle. 

2. H-function moments. 

3. Alternative method for obtaining H-functions 

(moment method of K & F) . 

V. Conclusions 

1. 

2. Generalization f o r  non-gray atmospheres. 

3 .  Implications for inversion problem. 

4.  Finite atmosphere. 

Capability for general greenhouse models. 
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Inversion by Slabs of Varying Thickness 

JEAN I. F. KING 
Geophysics Corporation of America, Bedford, M a s .  

26 March 1964 

In  the inversion problem an algorithm is sought for 
the inference of atmospheric vertical thermal structure 
from remotely-sensed radiometric observations. To 
accomplish this we propose a new inversion method, the 
variable slab technique, and demonstrate its application 
by two illustrative examples. 

All inversion procedures attempt to recover the 
thermal profile from observations of the upwelling in- 
tensity I ( K / ~ )  a t  various directions and/or frequencies. 
Transfer theory specifies the temperature dependence 
on depth as the solution of a linear integral equation 

where B is the Planck intensity considered here an 
implicit function of absorber depth u, and 3 is the kernel 
transmittance averaged over a narrow frequency interval 

1 

Av 1” ~ ( K u / c ( )  =- e-fi*u‘&, (2) 

with K,  the monochromatic absorption coefficient. 
For our purposes a simplified gray, plane-parallel, 

fixed-frequency model suffices in which the intensity is 
scanned over nadir angle O= cos-*p. Under these condi- 
tions the intensity is a Laplace transform of the indicial 
function 

J o  P 

where we have transformed to the new variable, optical 
depth T = K U .  

Conventionally the temperature profile is approxi- 
mated by an appropriate series expansion 

B(r)=C UjFj(T). (4) 

The series need not be orthogonal but should converge 
to the exact solution. 

The substitution of this expansion into equation (3) 
identifies the intensity with the Laplace transforms of 
the indicial approximation 

/J(~/cc) =C aifi(l/p). (6) 
Intensity observations a t  n discrete directions enable 

one to determine n coefficients of the temperature ex- 
pansion, equation (4), as the solution of the linear 
simultaneous equation set 

/.tiz(l//.ti)=E fijUj,  i= 1, 2, * * ., 72. (6) 
i 

A variety of different function classes have been used 
in inversion attempts. Examples are power series (King, 
unpublished), exponential functions (King, 1964), and 
various orthogonal sets such as Legendre, Chebyshev, 
or Laguerre polynomials (Yamamoto, 1961). All these 
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expansions share a commoii defect rendering them un- 
suitable for the inversion procedure. By choosing a 
particular finite polynomial expansion we restrict the 
form of the thermal profile. 

Standing in contrast to this analytic procedure in 
which the temperature is broken down into components, 
is the synthetic method which approximates the profile 
by isothermal slabs. This is expressed by expanding the 
lapse rate in a sum of delta functions 

(7) 
d B ( T )  
-= (AB) T - T ~ ) .  

dr 

Proceeding as before, the substitution of this slab 
approximation into the transfer equation yields the 
equation set 

dB(r )  
z( l /P) -B(o)=l  - e-‘l”dr 

d T  

= C(AB),e-ri’fi. (8) 

We have not specified the slab boundaries 7,. Hereto- 
fore these positions have been assigned in advance, 
usually a t  significant levels in the atmosphere where 
lapse-rate discontinuities are anticipated (Kaplan, 1959; 
Wark, 1961). 

Once again a knowledge of the intensity profile at 
the n directions leads to a linear equation set deter- 
mining the slab temperatures a t  n preset intervals 

I (  ~ / P J  - B(0) = C ( A B )  j ~ x P ( -  T~/’P<). (9) 
i 

As we shall see this synthetic method is extremely 
sensitive to the choice of slab boundaries. As with the 
analytic procedure, the same criticism holds. The choice 
of ~i is critical, forcing in advance a particular structure 
on the slab profile. 

We propose, therefore, a variable or floating slab 
method which determines uniquely the slab strengths 
and thicknesses for a given intensity profile. Consider 
equation (9). With the substitution x,=exp(-T,) we 
succeed to a set of nonlinear simultaneous equations 
each of degree l/pi 

I(l /~;)-B(O)=C(AB)jxjl’ l l i .  (10) 
i 

Ry choosing the sequence of viewing directions 

1 
-=i=O, 1, 2, s.., 212-1, (11) 
Pi 

we obtain the equation set of successively higher degree 

a ; = c  ajxjj”, i=o, 1,2, * * * ,  2%-1, (12) 
i 

where we have written oi= I ( i ) -  B(0) and uj for (AB)+ 

The equation set arises in the construction of quadra- 
ture formulas of the Gaussian type (Lanczos, 1956; 
Kopal, 1961). Despite its nonlinearity the set is soluble 
uniquely by an elegant algorithm given, for example, 
by Chandrasekhar (1950) which consists of three steps. 
First, n auxiliary constants c; are determined from the 
linear equation set 

n-1 

ai+n+C cz(~i+z=O, i=o, 1, - - - , n - l .  (13) 
l=O 

The slab boundaries ~ j =  -1nxj are then obtained as the 
n roots of the equation 

n- 1 

X“+ c,x‘=O. (14) 
2-0 

The knowledge of the roots enables one to determine the 
weights a j  from the first n equations of the set (12). 

The solution admits the interpretation: Given n iso- 
thermal slabs, the a j  and ~ j =  - lnxj are the unique choice 
of slab weights and thicknesses fitting the 2n intensity 
observations. 

Fig. 1 displays three and five slab atmospheres 
inferred from intensity values of the following model 
atmosphere 

The solid curve is the exact solution obtained directly 
by inversion 

u(T)=L / y + i m  pz(l/p)erl$d(l/p) 
27ri y- in 

(16) 1-e-r. 

The slab approximation is impressive. Note that the 
slab thickness is smallest in the region of greatest slope, 
thus minimizing the “cornering” error. 

For comparison the same ten intensity values were 
used to infer the ten weights of slabs bounded a t  the 
ten present intervals 

Tj=o.1, 0.2, . . -, 1.0. (17) 

The thermal structure inferred by solving the equation 
set (9) for this model is grossly unrealistic (see Table 1). 

The superiority of the floating over the fixed slab 
method can be understood by its relation to quadrature 
formulas. The Gaussian quadrature method achieves 
more accuracy than the preset Newton-Cotes intervals 
by allowing the integrand thicknesses to vary. Similarly 
in our inverse problem we have the additional degree 
of freedom in the determination of the slab boundaries 
as the unique solution of equation (14). 

A second, more complicated atmospheric thermal 
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2 

FIG. 1. Thermal structure inference for B ( T )  = 1-c‘. 

TABLE 1. Thermal profile for constant thickness slabs. 
_ _  

7 B (7)  

M O S P H E R I C  S C I E N C E S  VOLUME 21 

0 4 . 1  
0.1-0.2 
0.2-0.3 
0.3-0.4 
0.4-0.5 
0.5-0.6 
0.6-0.7 
0.7-0.8 
0.8-0.9 
0.9-1 .O 

>1.0 

0 
- 82 

+672 

+3167 
f2853 

- 1314 
- 1331 

- 485 1 
- 1250 
$2109 

0 

profile is inferred in Fig. 2 using the ten intensity values 

The agreement of the inferred slab model to the exact 
solution 

B(T)=  (19) 

is remarkable for optical depths less than ~ = l .  For 
large values of optical depth the divergence is expected 
since even the deepest sensing (pi=l) gives little in- 
formation on the atmosphere beyond unit optical depth. 

The constant slab slope (dB/d~=-O.14) in Fig. 2 
arises from the stipulation that the weights (AB)j  in the 
Gaussian quadrature formula (10) be positive (Kopal, 
1961). This requirement can always be satisfied by 

. 2 5 c  

r 

FIG. 2. Thermal structure inference for B ( s )  = ~ e - ’ ~ .  

adding a constant slope to the lapse-rate which is sub- 
sequently subtracted after the inversion operation. 

In a forthcoming paper “Meteorological Inferences 
from Satellite Radiometry, 11” this floating slab method 
will be applied to thennal inferences of synthetic atmos- 
pheric models. An extension of the formalism to treat 
arbitrary band transmittance kernels is planned. The 
implications of the technique for the error analysis of 
raw radiometric data will be discussed. 
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