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ABSTRACT
9\50\1

This final report documents the progress towards the Contract
goal of finding an optimum inversion technique for inferring vertical
thermal structure from satellite infrared observations. The major
part of the research under Contract has appeared in thé scientific
literature. These articles are appended to the text. The final
report consists thérefore of a running commentary detailing our
ideas as the understanding of the problem deepened. We conclude
with unpublished material which tests the new inversion method

under random observational errors. Lﬁr“)
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SECTION 1
INTRODUCTION

With the advent of the TIROS series meteorologists had for the first
time a platform for topside viewing of the atmosphere. In the visible this
consists largely of scattered sunlight, hence the interest in cloud patterns
for what they reveal of the wind velocity field. Unfortunately, the scatter-
ed sunlight is largely insensitive to the thermal and pressure structure of

the atmosphere.

The mean terrestrial temperature around 285K, with the maximum of the
Planck emission centered near 15 microns, suggests using the infrared region
for thermal sensing. Since certain atmospheric constituents (C02,H20,03)
are infrared active, they will appear as absorption bands imposed on the
black-body background continuum of the earth. If the bands are sufficient-
ly opaque the satellite will intercept photons arising solely from the top

\

of the, say, water vapor layer whose intensity is given by the Planck

function associated with that particular temperature and frequency.

These considerations bracket the problem. If we look in a window
(k»0) we will see infinitely deep into the atmosphere, in our case the sur-
face temperature. At the other viewing extreme of an opaque band center

(k+» ), only the temperature of the top of the emitting layer will be



sensed. The question poses itself:r 1Is it possible to determine inter-
mediate temperatures between these levels by viewing the intermediate

frequencies?

The relation stating the radiation frequency dependence on

vertical thermal structure follows from transfer theory as

[oe]

I(k) = k/\B(u)e-KuK du , (1)

o

Where B is the Planck intensity and exp(-xu) the transmittance. This
model assumes a plane-parallel atmosphere viewed vertically at varying
monochromatic frequencies. By concentrating on this geometry we gain
greatly in mathematical simplicity while losing little in principle.

Thus using Equation (1) we arrive at once to the bracketing values of

the deep and topside intensities

3 -Ku

lim I(x) = lim |B(0) +f ii@l e du

u
K—0 Kk—0

(o]
= B(0) + B(w) - B(0) = B(x») (2)
and
[o0)

lim I(k) = Llim fB(u)e'K“K du
K— o K—>

o]

b/\B(u) &(u) du = B(0)

(o]

]

Equation (1) states that the intensity I(x) is the moment of the



Planck intensity weighted by the transmittance derivative
w() = K e KU . (3)

Since w(u) decreases monotonically with depth u, this implies a strong
weighting of the near field, i.e. the top of the atmosphere. These
considerations set the limits on temperature inference. The near field
weighting indicates increasing unreliability of deep thermal sensing.
Further we are asked to comnstruct a thermal profile from a knowledge of
its moments. This is similar to asking the distribution of grades on

an exam given only certain averages.

Formally, at least, since Equation (1) is a Laplace transform the

solution follows from the inversion theorem as

1 7’-*.imIgK} e
B(u) = 7= e dk . )

7-iso

Of course if the intensity were known continuously and exactly, there
would be no problem since the temperature profile would be uniquely
specified. 1In practice, however, the intensity is sensed at the
finite number of channels within a band. The inversion problem then
consists of extracting the maximum amount of thermal information from

these intensity observations.



SECTION 2

THEORY

We are now in a position to state the inversion problem: Given n

discrete values of an intensity profile,

I =1(k) , i=12,...,n (5)

deduce the atmosphere which gives rise to the observations. This
problem as it stands does not have a unique solution. Any single-
valued intensity curve passing through the observations gives, upon
inversion, an allowable solution. Since there is a non-denumerable
infinity of such curves, there is a corresponding infinity of tempera-
ture patterns fitting the data. Many of these profiles fluctuate
wildly with grossly superadiabatic lapse-rates and even negative temp-
eratures. This is evidence that we must impose some constraint to

reduce the number of possible solutioms,

There are two ways of approaching the constraint. The first led
by physical argument to the imbedded source technique. The second
method, inversion by slabs of varying thickness, was arrived at by

mathematical comsiderations of smoothness in the curve-fitting.




Research during the first half of the contract period centered on

the imbedded source technique, which we now discuss. As we have seen,
Equation (4) is an incomplete statement of the inversion problem since
there is no discrimination between unphysical and feasible solutiomns.
Both the observed intensity and temperature structure are end results
or effects of deeper causes. Thus one is led naturally to attempt to
relate the two effects to an underlying cause, rather than directly to
each other. These considerations gave rise to the imbedded source
technique. The temperature distribution is in a real sense determined
uniquely by the strength and character of the radiation incident on
the atmosphere boundaries and the distribution and concentration of

absorbing gases within.

Formally the solution involved three steps: First radiative
transfer theory was used to relate the upwelling intensity with the
transform of the imbedded sources, then an inversion was performed
to obtain this source distribution. Finally transfer theory was again
used to obtain the temperature distribution associated with the im-

bedded source. Schematically, the process may be written

1 1(0, 1) %J(l/ui)
11 ;J(l/ui) > S(1) (6)
III S(t) - B(t)

The critical step is the second one, the inversion. We have a partial



knowledge beforehand of the strength of the external radiation fields
and the absorbing gases which constitute the imbedded sources. Certain
constraints follow naturally. The flux, for instance, must fall off

continuously as the medium is penetrated.

The imbedded source technique led to two results:

1) An understanding of the connection between radiative sources
and sinks and the vertical temperature profile. Thus three, and possibly
five papers, were stimulated by this approach to radiative transfer.

2) The failure of the imbedded source technique to solve satis-
factorily the inversion problem led to the formulation of the method

of variable slab thickness.

The first paper to appear under contract '"Moment Method for Sol-
ution of the Schwarzschild-Milne Integral Equation" (see Appendix A)
solved the equilibrium transfer equation by approximating the expon-
ential integral equation kernel with a finite sum of exponential
functions. Although developed in the context of the equilibrium problem,
this moment method had the flexibility for application to more general

problems to follow.

The first application of the inbedded source technique appeared as
the "Greenhouse Effect in a Semi-Infinite Atmosphere' (see Appendix B).
The vertical thermal profile of a planetary atmosphere heated from above
was calculated. In the model the imbedded heat source, due to direct

absorption of sunlight was assumed to fall off exponentially with in-



creasing depth. Through this model one was able to relate the thermal

profile directly to a greenhouse factor

b= (7)

defined as the ratio of the infrared to visible absorption coefficients.
The quantitative results in general agreed with qualitative intuition,
e.g. the higher the greenhouse factor, the higher the temperature at
large depths. Of surprise, however,was the compensatory greenhouse
"cooling" aloft with increasing infrared opacity. This special model
gave one general result of great interest. It would appear that the
lowest possible free-air temperature of an externally heated planetary

atmosphere is given by

- SN 1/8
_min _ ( _min N (8)
Tets Begs 16

Applied to the terrestrial atmosphere, this predicts that the tropical

stratosphere is close to this minimum obtainable temperature.

In this paper the generalized Schwarzschild-Milne integral

equation
00
B(1) = 8(7) +'§‘fB(t) E; (Jt-t])ae (9)
)
was solved for an exponential source

=t/ ug
S(1) = e [u . (10)

(o}



i

It would be advantageous to be able to solve this equation, i.e. the
temperature profile for an arbitrary array of imbedded sources. This
proves possible using a modified Wiener-Hopf technique to obtain the

following Green's function solution for the problem

6rlt) = G(rylm) = G- [rrattalHalr =)
T
+\7g"§ (Tl-T) +fq’(11-t)q’(r-t)dt] + 6(T-T1)
° (11)

+ G- [rHate) + a0 - aGen)

"1

9’
- 14 - 4 -
+\[3 (t Tl) +fq ('cl t)q’ (v t)dt] R
o
where q(t1) and n(1) are the Hopf function and the Heaviside step function.
A knowledge of the Green's function reduces the solution of Equation (9)

to simple quadrature via the prescription

o
B(1) = fS(Tl)G(T"Tl)drl . (12)
o

In a comprehensive paper being prepared for publication in the Astro-
physical Journal, the solution of Schwarzschild-Milne equation (9) is ob-
tained for a variefy of imbedded sources. For an outline of the contents
see Appendix C. The meteorological consequences of various models have
been presented as two invited papers. The first, "Radiative Transfer
with Imbedded Sources', read at the recent Radiation Symposium in Leningrad

used a double imbedded source which yielded many features of the



standard atmosphere. Particularly satisfying was the prediction of
a tropopause-like temperature minimum at a depth of one-quarter

atmosphere (250 mbs). An increase in the infrared optical thickness
resulted in raising the height and lowering the temperature of the

tropopause which was very suggestive of tropical behavior.

More recently further implications of the imbedded source
technique were presented at the AMS Micrometeorology Conference in a
paper '"The Nature of the Radiative Discontinuity Near the Ground".

The theory makes the startling prediction that the upwelling infrared
radiation from a dry, smooth surface should be anisotropic, exhibiting

limb-brightening.

The imbedded source technique, while contributing to the under-
standing of the inversion problem, did not provide its solution. To
appreciate the limitations of the imbedded source technique and to
see the considerations which led to the variable slab method, we must

return to Equation (4)
y+ico Kt
1 I(x)
BW = 7.4 f k¢ dw )
7-ie
The natural forms for expressing imbedded sources are exponential

functions

-'r/u -(Tl-“r)/uo

S(t) = C,e s Cze (13)

either decreasing or increasing with depth depending on whether the

source is above or below. The upwelling radiation corresponding to



sums of exponential sources has a quotient polynomial form

I(k) = n n-1 e o (14)

This then is the interpolation formula for the upwelling intensity.
The constants a; and bi are determined by fitting the 2n + 2 observ-

ations, Equation (5)

I, = I(k.,) ,i=1,2,...,2n+2 . (5)
1 1

Unfortunately, when this procedure is applied to a routine model it

is found that the fit with observations requires either negative or
complex roots for kK, which is physically inadmissable. This indicates
that a quotient polynomial interpolation formula is suitable for
slowly varying sources, but incapable of dealing with sources which

change abruptly.

In this manner we were led to the following temperature profile

of extreme '"bumpiness' as the source
n

B ) s (15)

o

f -Ku

I(k) - B(O) = | 93151 e du

J u

[¢]

0 (16)

-Ku
- X B, e

. J

j=1



Using the observational constraint, Equation (5) , we have a nonlinear

simultaneous equation set in 2n unknowns ABj and uj to determine

n -K.,u,
N i

I(k,) - B(O) = L 4B e i=1,2,...,2n . (17)
j=1

It is indeed fortunate that this non-linear set can be solved, un-
iquely, by an elegant algorithm which determines the n slab boundaries uj
as the roots of an nth degree algebraic equation and the slab weights

ABj as the solutions of n linear simultaneous equations. The unique-
ness feature should be stressed. For 2n intensity observations there

is one and only one configuration of n slabs of varying heights and
thicknesses which fit the observations. Thus this method is free of

the indeterminacy which plagues other interpolation formulas. An

example will suffice.

Let us assume we wish to express the temperature as a power

series
n

B(u) = Z bjuj . (18)
3=0

By taking the transform we obtain as our interpolation formula

= jlb,
(k) = Z —-3-1 . (19)
j=o0
The observational fit requires
2 jlb,
I(k,) = Z -1 (20)
1 K_]
=0 i

11




The power series specifies the sequence j=0,1,2,etc. Thus KiJ is
known and Equation (20) becomes a linear simultaneous set for the
unknowns bj . But what if another sequence had been chosen, such as
j=0,2,4, for example? This would have led to the inference of a
different profile, with no ready criterion to favor one over the

other.

The paper "Inversion by Slabs of Varying Thickness' (see
Appendix D) sets forth the theory and applies the new method to two
synthetic models. The inferred fit is convincing, and subsequent

work has justified our early optimism in this new method.

Thus far we have not mentioned one problem of overriding im-
portance to all inversion methods. This is the effect of noisy data
on the inferred temperature. To this point we have discussed only
the problem: Given perfect data, i.e. free from error, which is the
best inversion scheme? Perhaps the chief virtue of the variable
slab method is its stability to error. This we proceed to demonstrate
by numerical examples of work done under contract which is as yet

unpublished in the literature.

In the first model studied in the '"Inversion by Slabs of Varying
Thickness" paper, the indicial function which we sought to reclaim was
given by

-K u

Bu) =1 - e (21

12



and the corresponding upwelling radiation by its transform

I(k) = ——0 . (22)

= 0,1,2,...,9, (23)

then the upwelling radiation strengths will be given by the sequence
I(Ki) = 1,1/2,1/3,...,1/9,1/10 . (24)

This array suggests a way in which we can determine the sens~
itivity of the inferred slab profile to observational errors. From
ten exact measurements we should be able to deduce a five slab
atmosphere whose profile closely approximates the indicial function
Equation (21). Figure 1 displays the five slab profile deduced
from perfect data. The fit is extraordinarily good. Table 1
lists the slab parameters inferred from the perfect data, Equation (24)
along with slab parameters inferred from values of I(Ki) rounded
off to eight places. We see the effect of eighth place data round-
off is to give rise to a maximum inferred error of five in the
fourth decimal place. From a graphical point of view this is

negligible, smaller than the width of a line.

Let us now successively degrade the data by rounding off to

fewer decimal places and observe the resulting deterioration of the

13



TABLE 1

INFERRED FIVE-SLAB ATMOSPHERE

A. Exact Solution
B, . T
] ] " j
1 .11846344 .95308992 .048
2 .35777778 .76923466 .262
3 .64222222 . 50000000 .693
4 .88153656 .23076534 1.47
5 1.00000000 .04691008 3.06
B. Approximate Solution for Eight-Decimal Accuracy
1 .11822508 .95318628 .048
2 .35715669 .76966538 .262
3 .64143363 . 50073967 .692
4 .88108260 .23142699 1.46
5 .99999997 .04710907 3.06

14
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inferred thermal profile. Figure 2 shows the effects of four decimal

round-off. The smallest root X goes negative but the associated

ABS is comfortingly small. Thus we have, in effect, lost a slab.
The shape of the inferred profile is unaltered, and what remains is

an excellent four slab reconstruction of the indicial function.

With three place round-off the degradation progresses further.

Figure 3 shows that two slabs are lost, with X, > 1 corresponding to

1

a negative T1 of -.764 . Two decimal round-off introduces the new

feature that two of the roots X, and x_ become a complex conjugate

5

pair. The associated A54 and ABS are, however, extremely small.
Once again the shape of the profile is faithfully reproduced (see

Figure 4), though necessarily with the less precision of three slabs.

These results are reassuring. They appear to indicate an
extreme stability of the profile shape to non-systematic error. Of
further interest is the fact that the smallest root Xg is most
sensitive to error. This corresponds to large 1, i.e. deep in the

atmosphere, where we would expect maximum unreliability anyway in

thermal reconstruction.

16
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B(u)=l—exp (-u/ug)
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Figure 4. 1Inferred atmosphere with two-decimal observation accuracy.
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MOMENT METHOD FOR SOLUTION OF THE SCHWARZSCHILD-
MILNE INTEGRAL EQUATION

Jean 1. F. KNG AND E. T. FLORANCE
Geophysics Corporation of America, Bedford, Massachusetts
Received July 18, 1963

ABSTRACT

The underlying basis of the extreme accuracy of the double-Gauss quadrature formula devised in the
method of discrete ordinates is uncovered in an alternative solution of the transfer equation. The Schwarz-
schild-Milne integral equation is solved by approximating the exponential integral kernel with a finite
sum of exponential functions. A moment method is used to provide the best fit to the kernel. The con-
stants that result are identical to those following from the choice of a double-Gauss quadrature formula
in the discrete ordinate method. The integral equation formalism is then applied to the non-gray atmos-
phere problem.

I. INTRODUCTION

The method of discrete ordinates developed by Wick (1943) and Chandrasekhar
(1930) is a powerful technique for the solution of transfer equations. A critical factor
is the choice of a proper quadrature formula to replace the integration of radiation inten-
sity over direction. Sykes (1951) obtained results of extreme accuracy by splitting the
interval and fitting the Gaussian formula separately over the upward and downward
directions.

The physical basis for the success of the double-Gauss method is laid bare by an al-
ternative solution of the equilibrium transfer-equation which does not involve the inten-
sity. The Schwarzschild-Milne integral equation is approximately solved by expanding
the kernel transmittance in a summation of exponential functions. The characteristic
equation that results is formally identical with that of the method of discrete ordinates.
The specification of a “best fit” of the kernel, and its approximate representation by
equating moments, lead to a set of equations which reduce to the Legendre polynomials
of the double-Gauss method. Thus the ad koc choice of the double-Gauss formula is
justified as providing the optimum fit of the exponential integral kernel by a finite sum
of exponential functions.

II. MOMENT-METHOD SOLUTION OF THE SCHWARZSCHILD-MILNE EQUATION

The transfer equation specifies a relation between the radiation intensity and Planck
source function which, for a plane-parallel, non-scattering, gray atmosphere, may be
written as

aI(r, p)
pi D B

I+ =J(r, u) —B(7). (1)

The imposition of the equilibrium constraint
1
B =3/f I(r,n)d @
(0 =1f I(r, wdu

permits the elimination of either of these dependent variables. Thus, by substituting the
source function (2) into equation (1) we obtain the equilibrium integrodifferential equa-
tion of transfer

dI(, i
u—%f—”l=1(f,#)—%/_11(7, W)y o

397
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The method of discrete ordinates solves the problem approximately by converting the
integrodifferential equation into a system of 2z linear differential equations. This is done
by replacing the integration over direction with a suitably chosen quadrature formula

1
LI wdun Fad(nuw)  G=41,..., £0). @

Chandrasekhar’s (1950) use of a Gaussian quadrature formula was criticized by
Kourganoff (1952) who preferred the Newton-Cotes method. Sykes (1951), meanwhile,
obtained results of extreme accuracy by splitting the interval and fitting the Gaussian
formula separately over the ranges (— 1, 0) and (0, 1). We now demonstrate the physical
basis underlying Sykes’s choice of a double-Gauss method, showing how it represents
the optimum choice of a polynomial quadrature formula.

Returning to equations (1) and (2), we can use the equilibrium constraint alternatively
to eliminate the intensity from the integral form of the transfer equation yielding (see
Chandrasekhar {1950])

B(7) =4 [ BOE(It—r])at, ®

the Schwarzschild-Milne integral equation. The direct solution of this equation is dif-
ficult. The form of the kernel

1 d ki )
—7/u QM A —5in,
El(T)_—-—fe7 —= E — e v (6)
0

I i) Mi
suggests an approximate expansion into a summation of more tractable exponential

functions.
Equation (5) becomes, with this kernel approximation,

@ QYT
B(r) =3 f B e T a. e

The application of the Laplace transform using the Faltung theorem (Sneddon [1951])
leads directly to

- a; a;
B(R) = 1B(B) D (1o + =), ®
z ; 1+ puik " 1 —uik
where
B(k) EfwB(‘r)e_’"d‘r . 9
0

The requirement that B(k) #= O then yields as the characteristic equation
n a;
- XY w

whose 2n — 1 solutions consist of a double root at the origin 4* = 0 and paired roots
at k= +k,.

We obtain the general solution for the equilibrium source function by performing an
inversion of equation (8) with the poles along the real axis given by the roots of the
characteristic equation. Thus

B(r)=1b [r—i—Q-I—E (Lae_k“'+L~.,ek“T)]. an
a=1

.
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The constants b, Q, L., and L_, can be determined by boundary conditions in either

of two ways. For a semi-infinite atmosphere the Wiener-Hopf technique can be used to
express the constants directly as residues of the H-functions (King 1955), yielding

n n—1
b=3F/4, Q= u-— 27},
=1 a=1 "¢

az
T (1-— kapt) _
L“_pll}lI/lk, \/3 H( l‘): L—a“():
where the H-function is given in this approximation as
[T (ete)
=1 (13)

H(p) = — .
Moo o fpy 2l
I |(1+kuu)
a=1

Alternatively one can determine the constants by the requirement that B(r) = 0 for
7 < 0. This constraint leads to a set of linear simultaneous equations to determine the
n constants (3, L,. Upon using the method of elimination of constants we are led then
to relations (12).

The characteristic equation (10) and constant relations (12) derived from the Schwarz-
schild-Milne equation are formally identical to those obtained by Chandrasekhar (1950)
using the method of discrete ordinates. This is not surprising since the two approaches
are transformations of the same problem.

The result is more than an elegant identity. First, we have derived the equilibrium
source function B(7r) directly without recourse to any auxiliary function such as the
radiation intensity. More importantly, however, we have in the kernel approximation,
equation (6), an algorithm for the specification of the best quadrature formula.

We return to the kernel approximation and determine the weights ¢, and directions
pi by equating moments of the kernel with its series approximation. Thus

n
® as @ _ .
/ Efr)rdr= E —‘f e gt (14)
0 =] Mi Yo

yielding the following system of non-linear equations to determine the 2% constants g,

ceoyapand pr, .., u,
= 1
aipi' =E142(0) = 77— (I=0,1,...,2r—1). as
; I+1

1II. SOLUTION OF MOMENT EQUATIONS
A method for solving moment equations of the type

Daiut=1b, (=0,...,2n—1) 1o
i=1

has been given by Chandrasekhar (1950). He shows that if coefficients ¢;(j = O, . ..,
# — 1) are defined by the linear equations

n—1
batit D, 6ibiar=0  (I=0,...,n—1), am

=0
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then u; is one of the n roots of the polynomial
n—1
F(x)sx"—}-zc,x". (18)
i=0

The coefficients ¢; can be eliminated from equations (17) and (18), with the result that
F(x) is a multiple of the polynomial

®(x) = det [bu(x)], (19)
where b (x) is the (# + 1) X (n 4+ 1) matrix
5j1=bj+z(j=0,...,n—1),5,.,=x’(l=0,...,n). (20)
The determinantal equation ®(x) = 0 in which we have from equation (15)
— 1 — ! !
bl—l+1—[’.xdx (21)
can be simplified (Muir 1960) to the form
dﬂ[x”(l—x)"]=0. (22)
dx®
The substitution
x=314%) (23)
immediately reduces equation (22) to the equation
Pn(&) =0,

where P, is the Legendre polynomial of order #. Thus, we have arrived at the same result
as the Sykes double-Gauss method:

wi =31+ g3, (24)

where {; is one of the # roots of the Legendre polynomial P,.

Since the transformation (23) maps the interval (—1, 1) onto (0, 1), Sykes (1951)
noted that the double-Gauss formula is merely the Gaussian formula applied to the trans-
formed interval. We will now demonstrate that the linear mapping (23) correctly trans-
forms the moment equations (16).

If we insert equation (23) into the definition

b;=/;1£’da'c

and use the moment equations (16) with equation (24), we obtain the transformed equa-

tions
n
D @it = b, (25)

i=1

where @; = 2a;. In other words, a solution to the equations (16) for the interval (0, 1)
is a linear function of the solution to equation (25) on the interval (—1, 1).
The solution to equation (25) with

Cby=0 (I odd), 6,=ﬁ_2—1 (leven),
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is the familiar Gaussian formula (Chandrasekhar 1950). Hence, the weights a;are given by

1 P-(I-‘)
0= sy S L7 a0

l"—lh

Writing equation (26) in the form
dPa P (2
a;= [ (2pi— ] f du Pa(2p—1)

[ 2

reveals the standard prescription of ¢; as a quadrature weight.

TABLE 1
CHARACTERISTIC ROOTS AND CONSTANTS OF INTEGRATION
Approximation Direction Cosine Characteristic Roots Q-Constant L-Constants
First........ w=0.50000000 |................. ... +0.500000 |........... .. ... ...
Second. ... .. m= .21132487 k= 3.46410162 + 711325 Li=-0.133975
we= 78867513 ..
Third. ...... wm= .11270167 k= 1.52028083 + .710567 L=~ .057038
= 50000000 ko= 7.59531080 |................ Ly=— .076179
pe= .88720834 | ... ...
Fourth...... wm= .006043184 =13.12234030 +0.710472 L,=— .048082
m= 33000948 ko= 1.22721388 |................ Ly=— .024173
= .66999052 k3= 2.50960776 |................ L= ~0.060866
wa=0.93056816 |. .. .. ...
TABLE 2
COMPARISON OF FOURTH APPROXIMATION AND EXACT SOLUTIONS
r Tap(7) Pea(7) » Hop(u) Hex(p)
0.00.. 0.57735 0.577351 0.0 1.00000 1.0000000
0.01....... . 58507 .588236 0.1 1.24619 1.2473502
0.02....... .59202 .595391 0.2 1.45020 1.4503515
0.04....... .60396 . 606287 0.3 1.64257 1.6425221
0.06....... .61378 614789 0.4 1.82937 1.8292757
0.08....... .62194 621854 0.5 2.01288 2.0127788
0.10....... .62879 .627919 0.6 2.19423 2.1941330
0.20.. 65123 .649550 0.7 2.37407 2.3739750
0.40. . .67312 673090 0.8 2.55279 2.5527044
0.60. . 68537 . 685801 0.9 2.73067 2.7305876
0.80.. .69324 .693535 1.0 2.90789 2.9078105
1.00. . .69844 698540 ...
2.00.. 70799 07916 |
3.00.......| .70983 709806 |-
® L 0.71047 0.710447 | ... |

The characteristic equation (10) has been solved up to the fourth approximation. The
roots u; and %, along with the derived constants Q and L, from equation (12) are given
for reference in Table 1. As an indication of the superior accuracy of the double-Gauss
method, in Table 2 we compare the fourth approximation for ¢(7) and H(ux) with the
exact result from Kourganoff (1952, p. 138, Tables 33, 34).
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IV. EXTENSION TO NON-GRAY ATMOSPHERES

The Schwarzschild-Milne integral equation approach shows to best advantage in an
extension to the non-gray atmosphere problem. The flux transmittance for a narrow band
of width Aw consisting of many lines, yet small enough so that the Planck function is
sensibly constant, is defined as

1 /
283( 1) . f e Pududv

Av J an/y

1,
— —7/uN ’
2/0‘/0‘ e My dudv/Av),

where A = «/k, is the ratio of the arithmetic mean and monochromatic absorption coef-
ficients.
By analogy with the gray case we can define a hierarchy of non-gray transmittances by

(27)

1t d(v/Av)
&, = —r/in( g\ )n—2d y Y , (28
()= [ [ emimunyran =5 )

obeying the relation
M=“5n—1(r) (n=2,3,...). @9
dr
The non-gray Schwarzschild-Milne equation becomes

B(r) =4 [ TBWE =] )at. a0

As we continue to exploit the analogy, the form of the cquation suggests that we expand
the kernel in a summation of exponential functions

n
N @i —rfu,
Ei(r) =~ — g @3
i=1 M7
where the ¢; and u; are now “generalized” weights and roots.
Equating moments as before, these constants are determined by the system of 2
non-linear simultaneous equations

D aind = E11,(0) =8, (I=0,1,...,2n—1). 62

=1

Thus the non-gray problem is reduced simply to the determination of new constants
specified by different moments. Using relation (27) we may tabulate these as

E:0) =1, &:(0) = 3, Ea(0) = (N)/3, 8:(0) = (ND/4, ..,
&,(0) = 5 /(n—1).

(33)

As an example consider an Elsasser band model consisting of an equally spaced array
of identical Lorentz lines whose monochromatic absorption coefficient is
) _~§_ sinh(2ma/d)
* =4 cosh(2wa,/d) —cos(2mv/d)

(34)
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where S, a, and d are the line intensity, half-width, and spacing. By integrating from line
center to center we obtain the relations
S K 1+ cosh? 8
_=— x =—= D= 35
K d’< > Y coth 8, (A2 Smhfp (35)
where ()), the non-grayness parameter, is the ratio of the arithmetic and harmonic
means of the absorption coefficient and 8 = 27a/d is the ratio of line half-width and
spacing. Any deviation from grayness leads to a (\) in excess of unity.
Although the p, in equation (32) are no longer roots of the Legendre polynomials as
in the gray case, it is not difficult to solve the equation set explicitly in the n = 2
approximation. Doing this we find u, s as roots of the quadratic equation

(BoBz — B u? — (BoBs — BiB)p + (BBs — B?2) = 0, (36)
with the root of the characteristic equation given by
B3\ BoB: — B1*
k= == ) 7
' \/ Bo/ BiBs— Bs? en

The most interesting result, identical in all orders of approximation and hence exact,
is the Hopf-Bronstein relation generalized now for a non-gray atmosphere. Thus

q(0) =Q+Li = musk= v (B2/Bs) = vV ({A)>/3). (38)
The remaining constants in this approximation are determined as

0=pm+u _i=5053—313z— (Bo/ B2) V2 (B1Bs — Ba?)
! Pk BoBz — B1® ' (39)

L=+ (B:/B0) —=Q .

V. CONCLUSIONS

The double-Gauss quadrature formula used by Sykes (1951) has a sound physical
basis in providing the optimum fit of the kernel in the Schwarzschild-Milne integral
equation by an exponential function series. The power of the alternative integral equation
formulation is demonstrated by the ease in the extension to treat non-gray atmospheres.

We are grateful to Robert V. Sillars for the calculations leading to Tables 1 and 2.
The research reported in this paper has in part been supported by the National Aero-
nautics and Space Administration under contract NAS5-3352.
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A formalism is developed for solving the radiative transfer equation in the presence
of imbedded heat sources. This is accomplished by demonstrating the equivalence of an
internally heated model atmosphere to the well-known problem of diffuse reflection from
an isotropically scattering atmosphere. A replacement algorithm is then used to ealeulate
the steady state himb-darkening and vertical thermal profile of a semi-infinite, plane-
parallel atmosphere heated solely from above. In our madel the heat souree, due to direet
absorption of sunlight, is & maximum at the top of the atmosphere and falls off exponen-
tially with increasing depth.

The greenhouse factor, defined as the ratio of the Planck temperature for large depth
and the effective temperature of an externally viewed planet, is found as [B(«)/B, /]
= \/QH(;L,,)/{ where g is the ratio of infrared and visible absorption coefficients. H (u)
is the Chandrasekhar H function, generalized for values of the argument g, greater than
unity. The strong dependence of the greenhouse effect on the ratio of absorption coeffi-
cients at differing spectral regions is expected. It comes as an intuitive surprise, however,
to note that a pure gray atmosphere [ue = 1, H(u) = 2.9078] whose heating is concen-
trated at the upper levels nonetheless exhibits limb-darkening and steady state increase

of temperature with depth.

INTRODUCTION

The greenhouse effect which occurs in
externally heated planetary atmospheres
is qualitatively well understood. The phe-
nomenon, which results in a temperature
enhancement near the surface, derives from
the valving action of the atmosphere in
admitting the solar flux at optical wave-
lengths while trapping the re-emitted radia-
tion in the far infrared. Clearly this effect
must. depend fundamentally on the contrast
between atmospheric visual transparency
and infrared opacity.

The heating due to the incoming solar
beam as it attenuates in the atmosphere
plays a central role. In a steady state con-
figuration the temperature must accom-
modate to this flux so that the loss through
infrared emission exactly balances the energy
gain from solar absorption. We seek, there-
fore, a formalism which will vield the steady
state temperature profile for an internal

heat source of suitably chosen configuration.
This goal is obtained obliquely by relating
the imbedded source model to the well-
known problem of the diffuse reflection from
a scattering atmosphere.

THEORY

We begin by integrating the transfer
equation for a plane-parallel absorbing
atmosphere,

pldl(rp)/dr] = Izp) — B(r), (1)

over all directions yielding the flux diver-
gence

k@) /dr) = 4[| Tewde — Ba). ()

Under radiative equilibrium the flux
divergence must vanish. In our problem, on
the other hand, this term which is propor-
tional to the infrared heating must remain
finite.

359
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centrated at infinite depths. Using Eq. (10)
the upwelling intensity for such a source
becomes

lim 7(0.u) = V3(F/4)H(u),

Hy— ©

(11)

a result identical to the emerging intensity
from a semi-infinite atmosphere in radiative
equilibrium.

Figure 1 displays limb-darkening curves

361

welling radiation from a semi-infinite at-
mosphere is the Laplace transform of the
source function. Thus

104 = [* B&) exp (=r/wdr/u
= B(1/w)/u, (12)

where

B(p) = [ B(r)exp (—pr)dr. (13)
0

— p,=.07621
——- p,=.39847

—— . .81485

—s @©

Fia. 1. Limb-darkening for various attenuated sources (F/4u) exp(—z/po).

for imbedded exponential sources of various
scale lengths. The shorter the scale length
wo, the more concentrated the source at the
top of the atmosphere. As expected the
curves for small u, exhibit limb-brightening.
Of surprise, however, is the fact that already
for uy = 0.815, limb-darkening is becoming
apparent. Limb-darkening becomes most
pronounced in the greenhouse “limit” as
the atmosphere becomes transparent in the
visible, corresponding to po approaching
infinity. .

In order to obtain B(r) for various heating
configurations we use the fact that the up-

The source function follows from Eq. (8)
as the inverse transform

1 F H(uy)

Br) = 2rt 4 we
v+iw H
[ g e e

Using the quotient polynomial expression
(9) for the H function, we have as the con-
tour integral

(14)

_ 1 H (uo)
B(r) = 35 4 o1 - . . Hn
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Elimination of the source function B(r)
from Egs. (1) and (2) results in

Wl e ) /dr) = 1) — 4 [ Tew)du!
+ YR /dr), (3)

which is to be compared with the transfer
equation for the problem of diffuse reflection
by an atmosphere scattering radiation
isotropically (Chandrasekhar, 1950, p. 81)

Wl ) /dr) = Tew) = 3 [ T
— (F/4) exp (= /). (4)

Ixcept for the inhomogeneous terms the
equations are identical. This formal simi-
larity implies that the intensity and source
function for an atmosphere diffusely reflect-
ing a parallel beam incident downward in
the direction —pue, are proportional to
I(r,u) and B(r) for a model atmosphere
with an internal heat sink given by

HdF(r)/dr] = — (F/4uo) exp (—=7/m), (5)

where the normalization factor 1/ug guaran-
tees that F(r — «) = 0.

Under steady state the infrared loss must
be exactly compensated by a matching gain
from the absorbed solar beam. If we assume
a monochromatic beam for simplicity, we
have

_1ap

1 _ F(0)
4 dr

18 4,“0

_1dF
o 4 dr

exp (_ "vixu)y

(6)
where «,., 1s the absorption coefficient of the
solar beam. On compairng Egs. (5) and (6)
remembering the definition, » = «,u, we are
led to associate wo with the ratio of absorp-
tion coefficients,

Mo = Kir/Kvis' (7)

Thus we have proved the following lemma:

The intensily and source funclion for a
sleady state atmosphere being heated by a
nonthermal source whose fluxr divergence ts
given by {F(0)/4u] exp (—r/m) is equivalent
to I(r,u) and B(r) for an atmosphere diffusely
reflecting a parallel beam of strength F/4po.
The solutions are identical. From an exam-
ination of the intensity or source function
alone it is impossible to discern whether

the radiation arises from an externally
imposed flux or an internally supplied source
of nonthermal origin. This interchange-
ability of internal and external constraints
has far-reaching implications for the solu-
tion of a variety of radiative transfer
problems. '

The imbedded source problem admits a
generalization denied the impressed beam
model in which the direction cosine yg 1s
restricted to the range zero to one. In the
imbedded source analog uy as defined by
Eq. (7) can take any positive value and, in
greenhouse models, typically greatly exceeds
unity. As we shall see this leads to a natural
generalization of the H(u) function for argu-
ment greater than one.

Having demonstrated the equivalence of
the two models, we can appropriate directly
some of the results of the diffuse reflection
problem. Using the replacement algorithm
[Eq. (5)] we find for an atmosphere heated
internally by a exponential source (F/4up)
exp (—7/u), that the upwelling radiation is
given by

F HH ()
ERE ®

There is no mathematical difficulty in-
volved in generalizing the H function for
argument greater than unity. For suitably
chosen constants (King and Florance, 1964)
the quotient polynomial form

I0w) =

n

| [! (ui + u)

H(#) = P Hn”-l ’ (9)
[Ta+kw
a=1

is convenient, yielding even for n = 4 an
approximation of extreme accuracy. Further,
it follows readily that

.1 1
lim = H(u) =
,.l—» w 4 (“) Moo ﬂnkl e . k,,_l

=3 (10)

a result valid for all orders of approximation
and hence exact.

Thus we see that as y, — ©, the imbedded
source approaches zero for finite values of
the optical depth r, with the heating con-
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[ﬂ[ (wp + 1)

=1

n=1

p[]@+k

a=1

Ty r %

/’ _exppr
Jy—i= P + (1/p)

dp, (15)

which has n 4+ 1 simple poles at p = 0,
— kg, and — 1/,
A straightforward evaluation yvields

B(r)

n—1
= F kaLa _ka)
BV TP [ N
4 l\otl-"O 1
a=1
+ H(_I“U) CXp (_T/IJ'O) , (16)

\/gﬂn

with

[m) —
i=1

[]1 - b

g=1

Lo=(=1)" . .. k.0

(17)

where the prime denotes the factor 8 = ais
omitted.

We note that as u, approaches infinity, we
have, using I.’Hospital’s rule

hm B(r)
* n—=1
S F \
=3Z Loexp (—kor) + 74+ QY
a=1
(18)
where
" n—1
Q= z i — E 1/ke. (19)
=1 a=1
Thus we reclaim the familiar radiative

equilibrium result.

Care must be exercised in the evaluation
of B(r) for imbedded sources whose scale
factors coincide with reciprocal roots of the
characteristic equation, i.e. for cases in which
wo = 1/ks. In this event we see, using the
quotient form of H{— uy) defined by relation
(9), that the final two terms of the source

F.

KING

function, Kq. (16), separately diverge. An
application of 1.’Hospital’s rule shows that
their sum, however, vields a finite residue
leading, for wy = 17k, to,

s 1\ 1
B(r) = V3 3 ha H <A—>[A

n—1
kslgexp (—kar) + holaoxp (—k,r)
kﬁ'— ka

g=1

n

— kolaexp (—kqr) (r + Z

i=1

i
1 — hou.

(20)

This is to be expected since there is no reason
to attach special physical significance to the
values uo = 1/k,.

The ratio of the source function at large
depths to that at the surface is easily found.
From Eq. (16) we have

B(r— ©) = V3(F/9)Hw). (21)

At the top of the atmosphere we find from
Eq. (8)

B0) = 1(0,0) = (F/N[H(p) wo. (22)
yielding as our ratio
B(=)/B(0) = V/3u. (23)

a result known to Chandrasekhar (1950,
p. 87), though interpretable now for arhi-
trary value of u.

If we so chose, the greenhouse factor
could be defined as this ratio of source func-
tions, A more physically satisfving definition,
however, is the ratio of B(x) to the effective
black-body function of the outgoing flux,
which yields the surface temperature of an
equivalent atmosphereless planet. From the
definition it follows that B.,, = F, since

1 1
F/4=1 [) T(0,p)udu = 3} A B.udy

= B4 (24)

The greenhouse factor, which represents
the temperature enhancement due to the
presence of an atmosphere, becomes, on
using Eqs. (21) and (24)

B(©)/Boy; = (V3 HHiw).  (25)
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B(T)/F
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—— i, =.39847

—— .= .81485
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Fi6. 2. Steady state Planck temperature profiles for various attenuated sources.

One customarily associates the greenhouse
effect with models having a large infrared
to visible absorption coefficient ratio [uy =
(kir/Kkypis) >> 1]. We see surprisingly that even
for a “gray”’ atmosphere, Eq. (25)

B(®)/Bos = (V3/9H(u = 1) = 1.259,

exceeds unity, indicating a greenhouse effect.
Thus even in an atmosphere in which the
heating is a maximum at the top, decreasing
exponentially with depth, one may nonethe-
less have a greenhouse increase of tempera-
ture with depth and limb-darkening under
steady state conditions. It is possible, there-
fore, for the atmosphere at large depths to
have a higher temperature than overlying
layers even though there is negligible pene-
tration of sunlight to the depth in question.

Figure 2 is a plot of the source function

[Eq. (20)] for three models in which the
absorption scale length o = 1/k., and a
fourth curve for the equilibrium case,
o> 1. The general pattern emerging is
that for concentrated sources, uo < (1/4/3),
the steady state temperature decreases with
depth while sunlight which attenuates less
rapidly leads to a greenhouse downward
temperature increase.
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APPENDIX C

RADIATIVE TRANSFER WITH IMBEDDED SOURCES

I. Abstract

I1T1. Introduction

A. Problem treated: Steady-state distribution of radiation in

a plane-parallel, semi-infinite planetary atmosphere for arbitrary im-
bedded heat sources and sinks. Wanted: Vertical distribution of
temperature and intensity profile of the upwelling radiation with
viewing angle for various imbedded sources.

B. Relation between imbedded sources and boundary conditions.

C. Development of the fundamental Schwarzschild-Milne integral

equation.

III. Wiener~Hopf Solutions of the Schwarzschild-Milne equation

A. Exponential type imbedded sources

“1/n
= 1l . )
1. S+(T) -— exp<: s Ky real

Ho Ho

a, relation to Chandrasekhar scattering problem for

Mo <1
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B.

relation to radiative equilibrium model for o >> 1
<:§éep imbedded sour9;:>

limiting cases given by S+(T) = 8(t) with 1> 0, > 1
simple greenhouse model interpreting By = Kir Kvis
minimum free air temperature theorem

plots of I(0,u), B(t) for various My

@ == LS
S (1) = — ex complex
+ I‘lo P “o s “0 P

generalization of H-function for complex argument

physical interpretation: damped sinusoidal sources
formulas for computing H(po), Hy complex

tables

graphs

m
(r-n)(a) Tn-l

o pla) a .
5, (1) =Z (—17-(;;')' exp(a_7), exp(ar)z (r-n) ! (o-1)

n=1 n=1

Heaviside type expansion theorem for I(0,u)
application to expansion of S+(T) in orthogonal poly-

nomial sets

Exponential integral imbedded sources

a,

5,() = E (1)

derivation of Il(O,p),Bl(T)

equivalent boundary constraint
S+(T) = 2 EZ(T)

derivation of IZ(O’“) = BZ(T) =F <§sothermal cas%>
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b. :quivalent boundary constraint
3. §,(1) =n E (v)

a. derivation of In(O,p) for arbitrary integral n

b. solutions 13(0,u), 14(0’“)’ B3(T), B4(T)
C. Delta-function imbedded source: The Green's Function

1. Wiener-Hopf derivation of I(0,un), B(t) = G(TPTI) for
(t) =% é-r .
S, ( )
2. Plots of I(0,u), B(t) for various -
3. Improved greenhouse model.

4., Functional integral equation obeyed by Green's function.

5. Central role of H-function.
IV. Non-linear H-function integral equations derived using imbedded sources.

1. Relation to invariance principle.
2. H-function moments.
3. Alternative method for obtaining H-functions

<moment method of K & é> .
V. Conclusions

1. Capability for general greenhouse models.
2. Generalization for non-gray atmospheres.
3. Implications for inversion problem.

4. Finite atmosphere.
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Inversion by Slabs of Varying Thickness
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In the inversion problem an algorithm is sought for
the inference of atmospheric vertical thermal structure
from remotely-sensed radiometric observations. To
accomplish this we propose a new inversion method, the
variable slab technique, and demonstrate its application
by two illustrative examples,

All inversion procedures attempt to recover the
thermal profile from observations of the upwelling in-
tensity I(x/u) at various directions and/or frequencies.
Transfer theory specifies the temperature dependence
on depth as the solution of a linear integral equation

» aS(
1e/u) =~ / Blu)—du, )

ou

where B is the Planck intensity considered here an
implicit function of absorber depth #, and J is the kernel
transmittance averaged over a narrow frequency interval

v

1
ew/u)=— f — ?

with «, the monochromatic absorption coefficient.

For our purposes a simplified gray, plane-parallel,
fixed-frequency model suffices in which the intensity is
scanned over nadir angle #=cos~'u. Under these condi-
tions the intensity is a Laplace transform of the indicial
function

© b(1
(/)= / Beirfime @)

I

where we have transformed to the new variable, optical
depth 7=«u.

Conventionally the temperature profile is approxi-
mated by an appropriate series expansion

B(r)=2_ a;F (7). 4)

The series need not be orthogonal but should converge
to the exact solution.

The substitution of this expansion into equation (3)
identifies the intensity with the Laplace transforms of
the indicial approximation

wI(1/w)=3_ a; fi(1/u). (6)

Intensity observations at » discrete directions enable
one to determine n coefficients of the temperature ex-
pansion, equation (4), as the solution of the linear
simultaneous equation set

wl(U/u)=2 fue, i=1,2,- -, n (6)
7

A variety of different function classes have been used
in inversion attempts. Examples are power series (King,
unpublished), exponential functions (King, 1964), and
various orthogonal sets such as Legendre, Chebyshev,
or Laguerre polynomials (Yamamoto, 1961). All these
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expansions share a common defect rendering them un-
suitable for the inversion procedure. By choosing a
particular finite polynomial expansion we restrict the
form of the thermal profile.

Standing in contrast to this analytic procedure in
which the temperature is broken down into components,
is the synthetic method which approximates the profile
by isothermal slabs. This is expressed by expanding the
lapse rate in a sum of delta functions

dB(7)

=2 (AB);d(1—1;). ()

T

Proceeding as before, the substitution of this slab
approximation into the transfer equation yields the
equation set

e~ /adr

dB(r)
dr
=2 (AB)emilr.

I(1/u)— BO)= /

8)

We have not specified the slab boundaries 7;. Hereto-
fore these positions have been assigned in advance,
usually at significant levels in the atmosphere where
lapse-rate discontinuities are anticipated (Kaplan, 1959;
Wark, 1961).

Once again a knowledge of the intensity profile at
the » directions u; leads to a linear equation set deter-
mining the slab temperatures at » preset intervals

1(1/p:)— B(0)=2(AB); exp(—7j/us). 9)

As we shall see this synthetic method is extremely
sensitive to the choice of slab boundaries. As with the
analytic procedure, the same criticism holds. The choice
of 7; is critical, forcing in advance a particular structure
on the slab profile.

We propose, therefore, a variable or floating slab
method which determines uniquely the slab strengths
and thicknesses for a given intensity profile. Consider
equation (9). With the substitution x,=exp(—7;)} we
succeed to a set of nonlinear simultaneous equations
each of degree 1/u;

1(1/u:) = B(0) =2 (AB) ;. (10)
i
By choosing the sequence of viewing directions
1
—=i=0,1,2,---,2n—1, (11)
i

we obtain the equation set of successively higher degree

=Y e, i=0,1,2, -+, 2n—1, (12)
H

where we have written a;= I(:)— B(0) and g; for (AB);.
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The equation set arises in the construction of quadra-
ture formulas of the Gaussian type (Lanczos, 1956;
Kopal, 1961). Despite its nonlinearity the set is soluble
uniquely by an elegant algorithm given, for example,
by Chandrasekhar (1950) which consists of three steps.
First, » auxiliary constants ¢; are determined from the
linear equation set

n—1

a.-+,.-|—}:, Cza.'+1=0, i=0, 1, Tty n—1.
=0

(13)

The slab boundaries 7;= —Inx; are then obtained as the
n roots of the equation

n-1
2+ cx'=0.

=0

(14)

The knowledge of the roots enables one to determine the
weights a; from the first » equations of the set (12).

The solution admits the interpretation: Given # iso-
thermal slabs, the a; and 7,= —Inx; are the unique choice
of slab weights and thicknesses fitting the 2 intensity
observations.

Fig. 1 displays three and five slab atmospheres
inferred from intensity values of the following model
atmosphere

i 1 0’11"'75
(1) = ,—={01 )

witl

The solid curve is the exact solution obtained directly
by inversion

1 v+i0
B(T)=2—,f ul(1/u)emrd(1/u)

Tl y-in

=1—¢. (16)

The slab approximation is impressive. Note that the
slab thickness is smallest in the region of greatest slope,
thus minimizing the “cornering” error.

For comparison the same ten intensity values were
used to infer the ten weights of slabs bounded at the
ten present intervals

7;=0.1,0.2, - - -, 1.0. (17)
The thermal structure inferred by solving the equation
set (9) for this model is grossly unrealistic (see Table 1).

The superiority of the floating over the fixed slab
method can be understood by its relation to quadrature
formulas. The Gaussian quadrature method achieves
more accuracy than the preset Newton-Cotes intervals
by allowing the integrand thicknesses to vary. Similarly
in our inverse problem we have the additional degree
of freedom in the determination of the slab boundaries
as the unique solution of equation (14).

A second, more complicated atmospheric thermal
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F16. 1. Thermal structure inference for B(r)=1—¢"".

TABLE 1. Thermal profile for constant thickness slabs.

B(7)

0

—82
+672
—1314
—1331
43167
+2853
—4851
—1250
+2109
0

vPELTLELELE| -
SOOI N WD ke

]

ooooocoo
v\om\!
b

profile is inferred in Fig. 2 using the ten intensity values

i 1
I(l/p,.')=— , —=1,2,--
(it2)? s

The agreement of the inferred slab model to the exact
solution

,10.  (18)

B(r)=re?r (19)
is remarkable for optical depths less than r=1. For
large values of optical depth the divergence is expected
since even the deepest sensing (u;=1) gives little in-
formation on the atmosphere beyond unit optical depth.

The constant slab slope (dB/dr=—0.14) in Fig. 2
arises from the stipulation that the weights (AB); in the
Gaussian quadrature formula (10) be positive (Kopal,
1961). This requirement can always be satisfied by

T

F1c. 2. Thermal structure inference for B(r)=re™?r.

adding a constant slope to the lapse-rate which is sub-
sequently subtracted after the inversion operation.

In a forthcoming paper “Meteorological Inferences
from Satellite Radiometry, II” this floating slab method
will be applied to thermal inferences of synthetic atmos-
pheric models. An extension of the formalism to treat
arbitrary band transmittance kernels is planned. The
implications of the technique for the error analysis of
raw radiometric data will be discussed.
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