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AN ITERATIVE GUIDANCE SCHEME AND ITS 

APPLICATION TO LUNAR LANDING 

SUMMARY 

38248 
A guidance scheme for vehicle flight from lunar orbit to a prescribed point on a , I  

trajectory computations themselves are made under more realistic and accurate 

spherical, non-rotating moon is presented. The equations of motion have been simpli- 
fied only to permit a closed solution for  the thrust magnitude and thrust direction. The 

tions and are not included. 

This scheme is another approach to the problem of adaptive guidance mechaniza- 
tion for vacuum flight. The more salient features of the scheme are the limited number 
of presettings, the closeness to optimization, the closed form solution, and the "homing" 
feature; i. e. , the guidance information is improved as the end point is approached. 

' ' 

The effectiveness of the scheme and the required thrust variations are displayed 
in Tables I and IL Two flight profiles have been considered: continuous burn of one 
RL-IO engine for  main braking from a 100 km lunar orbit to the beginning of the termi- 
nal braking phase at 300 meters altitude; ignition of three R G I O  engines at the 15 km 
periselenum of a Hohmann transfer ellipse from a 100 n. mi. circular orbit with burn to 
300 meters altitude. A description of a t imer ignition scheme is given in the appendix. /' 

SECTION I. INTRODUCTION 

It has been shown by Fried [ 11 and Lawden [ 21 that the optimum thrust direction 
in a vacuum Over a flat surface with a constant gravitational field, constant thrust, and 
constant specific impulse is 

where a, b, c ,  and d are constants depending on the boundary conditions. For example, 
if the velocity vector alone is constrained, the direction of this vector can be achieved by 



and the magnitude by the burning time t. 
metrically in Figure I. 

This relationship can also be seem geo- 

Y 

> X  

FIGURE I. THE RELATIONSHIP OF BOUNDARY CONDITIONS 

On the other hand, if the altitude is constrained along with the velocity vector'the 
thrust attitude direction becomes 

aR/aiT + ( T  - t) aR/aYT 
tan X = = ai + bit. 

aR/al;, 

The first order expansion of ( 2 )  and (4) 

x = a' 

x = ai +bi t ,  

2 



= - 7, F m i  -p-=-v .- 
m ex' ri~ 

where mi represents instantaneous mass. 

If only the end velocity vector is specified, it has been shown that a constant 
N 

thrust attitude direction, x , will achieve bhis end condition in a near-optimum fashion. 
Equations ( 2 . 1 )  can then be integrated over T seconds in closed form: 

7 N 

S; (T)  = i1 + (s in  ;;> vex In= - gT. 

Solution of equations ( 2 . 3 )  for yields 

Inspection of Figure 1 shows the same result geometrically. 

The magnitude of the velocity vector is obtained through the burning time T; i. e. , 

which may be set equal to the characteristic velocity 

7 AVi = V In - . 
ex T - T  

Equations ( 2 . 4 )  , (2 .5 )  , and ( 2 . 6 )  can be solved for T and 
of current state velocities fi,  f i  and required end velocities f (T)  , y(  T) . Since current 
state variables are changing, the T-computation and y-determ ination proceed stepwise 
using new 

for any combination 
N 

values as they are obtained. 

SO far, only an end velocity vector condition has been obtained. In order to 
constrain an end altitude also, it is necessary to introduce a linear thrust attitude law, 

4 



which has been justified through experiencqis used in developing the scheme. These 
laws make it possible to generate the function in flight using as information state vari- 
ables of velocity and displacement, thrust, m a s s  flow, and desired end conditions. 

The scheme is modified to approximate a spherical moon assumption by intro- 
ducing an average gravity direction and magnitude between the instantaneous state and 
the desired end condition. No longer are a', ai and b, constant throughout the flight as 

. in the unperturbed flat moon case but constant over the length of time beheen  evalua- 
tions. Jhdeed, one might think of a series of flat moons between the instantaneous point 
and the end point: an assumption which becomes more valid as the end point is ap- 
proached. These modifications to approximate a spherical moon do not destroy the 
ability to solve for a', ai, b,, and T in closed form. 

. 
Range constraint is achieved by the throttling capability of the engines. The 

required thrust is inversely proportional to the required range. The change in thrust 
affe!ct~, 4 course, the solution of x and T. These quantities are updated, however, to 
be compatible with the new thrust. 

SECTION II. DESCRIPTION 

The principles of the scheme can be displayed most clearly by assuming a two- 
dimensional f la t  surface as a-model. In a subsequent section, the extension to a homo- 
geneous spherical body, still in two dimensions, is presented. Finally the specific 
application to a lunar landing mode is shown. 

The equations of motion relative to a flat surface in a constant gravitational field 
a re  

0. 

x = F/m cos x 

y = F/m sin x - .g, 
0. 

where F/m represents acceleration due to  a constant thrust and a constant specific 
impulse, and x represents the direction of the acceleration vector against the horizontal. 
Mathematically expressed, 

. 
i = v  - F F  m 

m m i + & .  ex T - t  
---. - 

Since vacuum flight and constant specific impulse a r e  assumed, F and & a r e  
constant; & <. 0. The following definitions ais0 prevail: 

3 



where 

7 J = T l n - - T  
7 - T  

G = yl + fiT - sin 7 ] -$ - y(T)  - T In - 7 - T  Vex (2.12) 

S = V c o s y  ex 7 - T  

SECTION 111. EXTENSION OF THE GUIDANCE SCHEME TO A 
SPHERICAL BODY ASSUMPTION 

The theory can be extended to the spherical body assumption by assumicp a n  
average value for  the gravity direction @* and magnitude g* , where 

Figure 2 depicts the coordinate system used in the guidance computation. The 
t-7 system, with origin at the desired injection point, is formed by rotating the x-y 
system, space-fixed at the launch site through the terminal range angle @T: 

T t = x cos @ - (Ro + y) sin @ T 
(3.3a) 

T '  r) = x sin @ + ( Ro + y) cos @ T 

A similar relation holds fo r  the velocity components. 

T i = scos @ - 3 ;  s i n @  
T 

4 = 2 sin @ + 3; cos @T . T 

(3.3b) 

6 
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FIGURE 2. FLIGHT GEOMl3TRY 
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The steps taken in deriving the thrust attitude angle are the s a m e  as those 
displayed in Section II. 

A! = iT - - g *  T sin @* 

A; = GT - ;h + g *  T cos @*. 

= tan-i &i 
5 X 

T AVi = Vex In - . T - T  

N 

= x 5  - K1+K2t  - @T 

The equations of motion in the 5-T coordinate system then becomes 

.. 
5 = F/m cos x + g* sin @* 

5 

.* 
r) = F/m sin x - g*cos @*. 

5 

Again the coefficients K, and K2 appearing in (3 .8)  are determined to preserve 
the velocity condition imposed by equation (3.5) while enforcing a condition on altitude. 
Thus, 

(3.4) 

( 3 . 5 )  

' .I 
G(T) = - @ T  cos @* + sin Vex In - 5 T - T  (3.10) 

8 



(3. 11) 

7 - T  'I 7 + K2 Vex cos - K, COS j;. V In - 5 ex 7 - T  
1-T + T ln - 

5 

{ ( T )  - g ( T )  = 0 (3.12) 

T2 7 
K 2 c o s  { -2- T I T -  T) In - - 

+ vex 5 7 - T  

Solving equations (3312) and (3.13) simultaneously for K, and K2, 

G 
S 

G 7 

s 7 - T  

K , = -  J 

K2 = - In - 

where 

7 

T - T  J = ~ l n -  - T  

(3.13) 

(3.14) 

(3.15) 

s = v  C O S Y  ex 5 7 - T  

9 



. where y, K,, and K2 preserve the velocity condition already obtained, while also en- 
forcing a desired altitude condition. Equations (2. 1) become 

N 

2 = F/m cos ( x  - K, + Kzt) 

.. y = F / r n s i n ( F - K , + K z t ) - g .  

i 
I 
1 

In order  to preserve the velocity cpdition, K, and K2 must be chosen so that the 
J ;  obtained from the equations (2.7) and f a r e  the same. It is assumed that 
cos( -K, + K2t) 1 and sin( -K, + Kat) M -Kl + K2t. , 

T + r l n -  -gT.  (2.8) t T I T J  
N 7 N 

J ;  = f i + ( s i n r - K 1  c o s x )  Vexln- T - T  + K:! cos x vex 

i ~ 

f (  T) - 9 = 0 = -K, cos N x Vex ln- 7 + K 2 c o s y V  (2.9) 
7 - T  ex 

The coefficients K, and K2 must be chosen also to satisfy the altitude condition 
Y(T) : 

7 - T  
N 

Equations (2.9) and (2.10) can be solved simultaneously for K, and K2: 

(2. i o )  

K -'J 
1 - S  

7 ,  
G 
S 7 - T  K2 = - In (- 

5 



It may be helpful to go into some detail on the computation of T ,  the time-to-go, a 

which is determined from equations ( 3 . 6 )  and ( 3 . 7 )  , since their form would seem to 
indicate the need.for an iterative procedure to solve them. However, an iteration 
computation in flight is undesirable since there is no guarantee of convergence in the 
allotted time. Therefore, the following method is employed: Let TI be a guess of the 
time-to-go so that 

T = T' + 6T. (3 .17 )  

Then 

and 

(3 .  18) 

1' + 
AV12 = I t T  - i, - g"T1 sin @*< 

1 

3.19) 
2 [ - 4, + g*T' cos @q . 

NOW, referring to equations ( 3.4)  , ( 3.7) and ( 3-17)  , 

AVi = [iT - - g*(T' + 6T) sin @* + l2 
( 3.20)  

2 [tT - 6 ,  +g*(T1 + 6T) cos @*] , 
so that 

AV: - AV12 = 2 A t 1  g* cos @* - 2 A i f  g* s in  @* + g*2(6T)2. 
1 

For convenience of expression, the following relation is introduced : 

(3 .21)  

(3 .22 )  



or 

A$ * ge2( 6T) + 2h6T + AVY. 
1 

The total final inertial velocity in the guessed time TI is 

7 AVi = V In- . ex 7 - T  . 
Expressing (3.25) as a series approximation, 

Let 

7 L = V  ln- ex 7 -  T' 

K =-- 
T - T' 

then equation ( 3.26) becomes 

( 3.24) 

(3.25) 

(3.26) 

( 3.27) 

if second order terms are discarded. Squaring equation: ( 3.27) and setting it equal to 
equation (3.23) gives 

e2 (6T) + 2h6T + AV" = L2 + 2KL6T + K2( 6T) '. (3.28) 



Collecting coefficients of like terms results in 

- a (6T)2  + 2b6T + c = 0 

where 

a = ( K ~  - g*2) 

b = A - K L  

c = AVF - L2. 

Solving the quadratic for 6T, 

b + G  
a 6T = 

(3.29) 

(3.30) 

(3.31) 

The positive root is chosen in equation (3.31) , since b is negative, and 6T should be 
small. The time to go, T ,  may now be determined and the correct velocity components 
become 

= A[’ - g * 6 ~  sin +* 

A; = A$ + g*6T cos +*. 
(3.32) 

The spherical Earth assumption assumes a knowledge of the terminal range angle 
Presetting a range angle based on previous experience is one approach; however, an @T. 

on-board computation of @T is more desirable since it will change accordingly with 
perturbations which may be encountered. Therefore , the following approach is taken. 

The horizontal distance obtained from a linear acceleration on a flat surface in 
time T* is 

(3.33) 

12 



or 

7 - 
r - T *  In T* x = xi + T* [vi +vex + vex T 

Dividing by the radius vector r T ,  

Referring to equation (3. I) , 

( 3.34) 

(3.35) 

(3.36) 

This approximation has proved quite sufficient and has the characteristic of 
improving in accuracy as the end condition is approached. 

Briefly, in retrospect, the values preset a r e  final altitude, hT; final velocity 
components, ET and 
flight are instantaneous state variables xi, yl, GI, f l y  and some measurement of the 
specific impulse o r  fuel flow rate. 

and physical constants of the central body; values obtained in 

SECTION IV. APPLICATION OF THE GUIDANCE SCHEME 
TO LUNAR LANDING 

The guidance equations developed in the previous sections for ascent are virtually 
identical to those needed for lunar descent. The two essential modifications a r e  a change 
in coordinate system due to  the way the instantaneous state information is obtained and 
the use of range prediction to vary thrust, since it is desired to  arr ive at a prescribed 
spot on or  above the. lunar surface. 

The potential presenoe of a beacon lends itself to the coordinate systems shown 
in Figure 3. The 5-q system has its origin at the beginning of the terminal braking 
phase; the t-axis passes through the instantaneous vehicle position (M) . The beacon 
provides slant range, D , and slant range rate, 6. It is also assumed that the angle 6 
and its angular ra te  a r e  known or can be computed. 

13 



FIGURE 3. LUNAR FLIGHT GEOMETRY 
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. 
The behacon is located at the origin of a space-fixed system with its y-axis 

parallel to the radius vector to that point. The coordinates of the predesignated terminal 
braking point and the vehicle velocity at that point in the space-fixed system are 
( x T ~  YTs 2,s f,). 

The vector extending from the terminal braking point to the vehicle is 

- 4  4 

,$ = i ( D  cos 8 - xT) + j (D sin 8 - yT) 

Using these relationships, 

D COS e - % 
51 

COS ep = ¶ 

D sin 8 - Y, 
(4.4) 

The velocity components in the D-8 system are transferred into the space-fixed 
system : 

14.5) 

The instantaneous values are obtained by transferring to the 5-v coordinate system: 

il = 4 COS ep - 9, sin ep 

G I  = 22, sin ep + fl COS ep. 
t 4.6) 

15 



Similarly , for the term h a 1  velocity components, 

. 
= 2, COS ep - 9 sin ep 5,  T 

= 2 sin e p + f  COS ep. "I' T T 

A significant change necesgary is the determination of the average gravity direc- 
tion @* , since the waxis is not parallel to the local vertical at the terminal braking 
point. 

Equation (4.8) can be more readily understood by considering first the 7-axis parallel 
to the local vertical at the terminal braking point which yields equation (3. I )  and then 
subtracting the angle (Op + $ I ~ )  necessary to rotate the local vertical into the Taxis .  

The guidance equations are identical to those developed in the previous two 
sections. The form of equations (3.14) and (3.15) is the same; however, the terms 7, 
and v( T) which appeared in equations (3.16) are dropped, since in the 5-q coordinate 
system for lunar landing, they a r e  zero. Thus, 

7 
J = r l n -  - T  7 - T  

I 
2 ex G = ' ; l i T - - g * c o s @ * T 2 - V  

Equation (3.9) becomes the following to relate the thrust altitude angle to the 
space-fixed x-y coordinate system : 

x = 7- K, + K2t + Op. (4.10) 

16 



Thrus t  Control 

In the previous sections, no constraint has been placed on range. For lunar 
landing, however, it is desired to control range since a specific point on the lunar 
surface should be reached. To accomplish this task, variable thrust is superimposed 
on the guidance scheme. 

The thrust (F) is inversely proportional to the distance 5f , the predicted distance 
corresponding to the thrust (F) . 

K F = -  
5" ' 

(4.11) 

where K is a proportionality constant. There will exist a desired thrust level (F+)  such 
that the required distance ( 5 )  is covered during the remaining time. 

K F*==-. 
51 

Solving yields 

(4.12) 

(4.13) 

Equation (4.13) is the thrust control law for selecting the thrust level. The displacement 
[+ is the predicted distance that will be traversed during the remaining flight a t  the 
thrust level (F) : 

5" = 51 - [m. 

The total average acceleration in the [-direction is 

(4.14) 

(4.15) 

The value of cos ST is an effective average value of cos xt  over the time T. The 
positive sign on the gravitation component is due to the negative $*. 

17 



Using the fundamental laws of calculus, 

(4.16) 

t t 
dg(t) = i ( t )  - = s g(t) dt 

0 0 

(4.17) 

T 
i (T)  = + s *i(t) dt. 

0 

Combining equations (4.15) , (4.16) , and (4.17) and placing into (4.14) , 

T t 
t* = - s  { [ i l + r  [,,:,, cos + g* sin $4 dt } dt. 

0 0 

Performing the designated integration yields 

* e  l iT  - Vex cos X - ( 7  - T) In T - T  5" = - 
2 .  

(4.18) 

(4.19) 

Using the defining equation (3.5) for = ST and the defining equation (3.6) fok 
AV, the relation 

7 AV = & E vex In - 
cos x 7 - T  

is obtained. 

18 



Placing equation (4.20) into equation (4.19) yields 

using 

gives 

Rewriting equation (2.6) and substituting in equation (4.20) yields 

T = T  ( i - e  -vexAjos9 
For convenience let 

A i  z =  y C O S T  ex 

For computational purposes it is worthwhile not to have the exponential in (4.24) ; 
therefore, equation (4.24) is expressed in a Maclaurin series:  

or 

Placing (4.27) into (4.23) and using (4.25) gives 

(4.21) 

(4.22) 

4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

19 



Hence, the value of t* needed to select the proper thrust magnitude using equations 
( 4.13)  is obtained. 

- 

The task remains to determine cos 55 so that equation ( 4 . 2 5 )  may be evaluated. 
Let cos 7 be defined as follows: 

N where x = x - K, + Kzt. Performing the designated integration, 
< E  

- 2  I 1  

T2 cos x = - 9 [sin x - sin ( y -  K,) ] dt ,  
0 

x - cos ( x  - K i ) ]  - T sin ( r -  Ki)} . 

(4 .29 )  

(4 .30 )  

(4 .31 )  

Expanding the cos x term and rearranging, 

From the computer viewpoint it is most desirable to eliminate as many trigo- 
nometric functions as possible. Although cos 55 can immediately be obtained from 
equation (4 .32 )  the following steps a r e  taken to obtain a more suitable form for  the 
computer. Using the trigonometric identity, 

(4 .33)  

Equating terms with 4.32 ,  

(4 .34 )  

20 



. Squaring (4.34)  , adding, and expanding into series, we obtain 

A = J I- ( - - - )  I i  (K,T)2 6 9  

~ 

Using the binomial expansion gives 

and expanding (4.34) in a series gives 

(4.35) 

(4.36) 

A further simplification can be made if it is recalled that the enforcement of 
equation (3.12)  implies approximately that 

T T 
y d t  " (y -  Kl  +K#) dt 

0 0 

(4.37) 

Thus, 

K2T M 2 K i .  

Figure 4 shows this approximate relationship. 

(4 .38)  

(4 .39)  

21 



- 
X - K, + K2T 

.., 
x 

X - Ki 
u 

- 
t seconds - ?  

FIGURE 4. THE APPROXIMATE RELATIONSHIP OF K,T 2K1 

Evaluating (4. 33) , using (4.36) , (4.37) , and (4.39) , yields 

cos '55 = (i - $) cos (y - >). ( 4.40) 

With these relationships, the required thrust can be computed to fulfill the range con- 
straint. It should be noted that changing the thrust magnitude affects the solution of 
Kl, K2, x , and T; however, these quantities are updated with the new thrust evaluation. 
The following block diagram may be helpful in showing the input and the mechanization 
of the scheme itself. 

N 

22 



x = xT) F* which affects control quantities above 

, 
BASIC INPUT 

r s g s h T r V T  

F/m 

Beacon Offset 

SCHEME . 
r B 

MEASURED VALUE 

D, D, e, ti, F/m 

- 

+ 

FIGURE 5. BLOCK DIAGRAM SHOWING MECHANIZATION OF SCHEME 
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SECTION V. DISCUSSION OF RESULTS 

Two rather typical flight profiles fo r  lunar landing to exemplify the effectiveness 
of the guidance scheme are ( I )  continuous burn of one RL-IO engine, producing a 
nominal thrust of 15,000 lbs, from a 100 kilometer circular lunar orbit to a terminal 
braking point of 300 meters altitude, and ( 2) main braking by three RL-IO engines, 
producing a nominal thrust of 42,000 lbs,  from the 15 kilometer periselenum of a 
Hohmann transfer ellipse to a terminal braking point of 300 meters altitude. 

Tables I and I1 show the absolute value of the thrust variation and the displace- 
ment and velocity dispersions evaluated at the 300 meter terminal braking point for 
various initial dispersions in state variables and engine performance, and for  radar  
e r r o r s  emanating from the' beacon. The guidance parameters were determined every 
ten seconds. The trajectories generated by the scheme adhere closely to those gener- 
ated by variational calculus procedures. The maximum payload difference between the 
two methods is approximately 50 lbs. 

Since it is believed that the choice of initial e r r o r s  is conservative, it can be 
seen that the scheme itself has virtually no e r r o r  and is as accurate as the source of 
information it requires. Indeed, the scheme can be made as accurate as desired by 
increasing the number of evaluations limited, however, as the desired end point is 
reached, by the possibility of control parameters becoming indeterminate. 

A crude analysis has been made of computer requirements to implement the 
scheme. These requirements are listed in detail in Table 111. It should be borne in mind 
that the computer time estimates are based only on the program used in checking out the 
scheme. It may be of interest to note that the guidance evaluation takes ten seconds for 
one step on the RPC 4000, which means, for  the cases in Tables I and 11, that the co- 
efficients would be obtained in real time. On the GE-225 digital computer the evaluation 
can be made in 0.5 seconds. The scheme requires 1300 words of storage; however, it 
is estimated that with optimum programming, this requirement can be reduced by 
approximately 50 percent. 

The single RL-IO case is somewhat unrealistic in that 15,000 lb  nominal thrust 
has been assumed, and thrust increases for  some perturbations cannot be realized with 
the existing engine. The case does show, when compared with the 3-engine case, that 
the percent thrust variation required of the single engine is considerably higher than 
that required for the 3-engine case for  nearly identical disturbances. In view of this 
trend, and because of long powered flight times and ranges required of the single engine 
flight profile, the single engine descent cannot be highly recommended. 
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Perturbation 

0 

A x =  2 5 k m  

A y =  2 5 k m  

& = -50 m / s  

Af = 50 m/s  

&p = -4.25 

AWgt = 5001b 

Radar Errors 

1% Slant Range 

1% Range Rate + 
1% Slant Range 
10% Angular Rate 
of Slant Range 
1" A Slant Range 
4ngle 
RSS of Scheme 
Error + Radar 
Error 

TABLE I 

WT = 43,655 lb 

P I  Ax Ah & Ai AWgt 
lb m m m/s m/s  -1b 

736 .05 -. 04 -. 001 -. 001 0 

709 .03 -. 02 -. 002 -. 002 -287 

1064 .07 -. 03 . 000 -. 010 -606 

730 .07 -. 05 .001 -. 013 -194 --- ~~ ~ ---- 
79 I .06 -. 03 .001 -. O i l  -277 

I826 2.57 2.54 .254 .566 - 144 

1704 3.21 2.74 .285 .640 -155 

1288 -2.86 -5.37 -. 001 -. 015 I 8 4  

6 502 -. 29 -2.22 . I 0 1  .259 

26 5 1185 

1372 -1.08 -3.93 .414 - .595 233 

10.81 -5.51 I. 036 -I. 253 

3850 12 10 1.2 I. 7 875 

SCHEME AND RADAR ERROR ANALYSIS 

Continuous Burn of One Engine from 100 km Orbit 
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TABLE II 

Ah & A9 
m m/s m/s  

. 01 -. 013 -. 005 

. 00 -. 020 -. 009 

.03 -. 028 -. 013 

-. 01 -. 018 -. 012 

DESCENT FROM 15 km PERISELENUM OF 
HOHMANN TRANSFER ELLIPSE WITH 3 ENGINES 

A w g  
-1b 

0 

52 

-391 

-523 

W, = 71,000 lb  

.03 -. 020 -. 005 

5.43 I. 481 .666 

5.48 I. 530 .690 

-4.91 -. 016 .002 

= 42,000 lb F~~~ 

-194 

-31 

-31 

12 

1 Perturbation I IAFI I Ax 

-43.76 1.105 -2.726 

-17.60 .311 -2.320 

48 2.8 3.8 

lb m 

64 -. 01 

-6 

9 

690 

IAx = -25 km I 193 I . O O  

lAy = 10 km I 196 1 -,02 

= -50 m / s  I 59 I . o o  

& = 50m/s 135 -. 02 

AIsp = -4.25 2383 13.66 

AWgt = 500 lb 2194 13.84 

I I I 

Radar E r r o r s  

1% Slant Range 3139 -7.76 

10.51 

18.78 

1% Range Rate + 

10% Angular Rate 

-1.30 

RSS Scheme 
+ Radar 

4.38 I 1.317 I .603 I -28 
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L 

IL 

m. 

Iv. 

TABLE Ill 

COMPUTER REQUIREMENTS FOR GUIDANCE SCHEME 

Built in addition, subtractioa, multiplication and division. 

Subroutines 

A, sin 

B. cos 

c. J- 
D. log 

E. tan-' 

F. integration for  gravity computer, if required 

Storage Requirements 

A. integration 16 (erasable) 

B. storage and program 910 

C.. subroutines 250 

TOTAL W 1300 

Time Requirements per  Step, no printing 

A. GE 225, internal floating point 0.5 sec 

B, RPC 4000, programmed floating point 10.0 sec 
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APPENDIX 

IGNITION CRITERION FOR MAIN BRAKING 

It is possible that some cases  of main braking may require ignition before the 
beacon has been acquired. For this reason, .the t imer approach is attractive both for  
simplicity and accuracy. The followirig assumptions are made: 

i. The period of the actual lunar orbit in which the vehicle flies pr ior  to 
braking is known - measured from the point at which the slant range rate, 6, is zero. 

- 
2. The ignition time for  the nominal case, tig, is known and is available aboard 

the vehicle. 

3. The thrust attitude program and the thrust magnitude for the nominal main 
braking case are precalculated and are available aboard the vehicle. 

The time of ignition for any case,  tig, is then defined as 

= P - P + F  
tig ig 

At this time the vehicle begins to fly, with the nominal thrust attitude program and the 
nominal thrust magnitude, until the beacon is acquired, when the guidance scheme pro- 
duces the necessary thrust vector to accomplish the mission. 

The following table displays a typical example, based on a nominal main braking 
phase from the 20 kilometer periselenum of a Hohmann transfer ellipse, the aposelenum 
of which is at 100 kilometers. It is assumed that three R G i O  engines with a nominal 
thrust of 40,000 pounds are available and that acquisition of the beacon occurs sixty 
seconds after ignition. 

The table shows the change in thrust magnitude and direction called for  when the 
beacon is acquired due to  e r r o r s  in the original ellipse, and e r r o r s  resulting from fly- 
ing the nominal thrust magnitude and direction in the region where the beacon is not 
available. The e r r o r s  in state variables at this point can easily be handled by the 
guidance scheme. 
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ERROR ANALYSIS OF PERTURBED ORBITS 
FOR TIMED IGNITION 

Nominal Thrust = 40,000 lb 

Guidance Scheme Becomes Effective 60 Seconds After Ignition 

AF60 
lb 

0 

135 

642 

-91 

73 

Ax 
km 

0 

-. 98 
I. 41 

.28 

-. 29 

AY 
km 

0 

-10.23 

10.26 

.04 

-. 04 

A2 
m/s  

0 

6.79 

-6.73 

-2.20 

2.18 

Ai 
4 s  

0 

3.11 

-3.47 

-. 55 
. 56 

-AX60 

0 

13.02 

-13.51 

. 10 
-. I1 

AWgt 
lb 

0 

-59 

-66 

0 

0 
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