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ABSTRACT

The importance and the usefulness of remote sensing has aroused

great interest in the investigation of the scattering of waves from rough

surfaces. Numerous approaches to the problem are now available for

various cases, but none is general and at the same time exact. The

underlying principles of the different methods as well as their restrictions

are discussed.

The Kirchhoff-Huygens method is used to investigate the scattering

from a statistically rough surface in the far zone. Terms that involve

the first or second partial derivatives of the surface are all considered

and found to be of importance for angles of incidence greater than or

equal to 20 ° in the case of backscattering. The artificial line charge

introduced around the edge of the illuminated area to satisfy Maxwell's

equations is found to have no effect on the mean return power.

Investigation on the statistical parameters of the surface obtained

through fitting experimental curves shows that these quantities are

frequency sensitive and are,in general, effective parameters rather than

real parameters of the surface. It is shown that the exploring wavelength

has a sampling filter effect, i.e., it is sensitive only to a certain range

of structure sizes, the experimentally determined range being from less

than one to tens of wavelengths. It is also shown that when the incident

wavelength is about four times the actual standard deviation of the surface,

the statistical parameters obtained through fitting the experimental curves

will be the actual ones.

Through the angular variation of the return power it is found that

proper representation of the surface-height autocorrelation function will

give more information about the surface. Specifically, it is possible to

learn the range of structure sizes that are present on a given surface by

examining a more detailed surface-height autocorrelation function. The

proper form as well as the motivation to it is discussed. A very close

fit between theory using such an autocorrelation function and the

experimental results (both the moon and the earth data) is obtained over
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a range of incident angles from normal incidence to 80 ° from normal.

It is found that most of the contribution near normal incidence is due

to that range of the autocorrelation that approximates the slowly varying

exponential found alone in several theories, whereas the part of the

autocorrelation near the origin that approximates a more rapidly varying

exponential governs return at large angles. The autocorrelation differs

from the slowly varying exponential only near the origin. Thus, it

appears, as is intuitively evident, that large scale features determine

the return at near-normal incidence and small-scale features determine

that from nearer grazing incidence.



CHAPTERI INTRODUCTION

The problem of scattering of waves from rough surfaces has been

of interest to engineers, physicists, and applied mathematicians for more

than sixty years. Although a general and exact solution to this problem

is as yet lacking, various special methods that are valid in many cases

of practical interest are available. This is especially true when the angle

of incidence measured from the vertical is not too large; for then many

effects such as polarization, depolarization, shadowing, 'multiple

reflections, etc., may not have come in or become of importance.

In the following chapter we shall survey the scattering theories

and state the conditions under which each

will be discussed under the following four

surface roughness large compared with the

[ Feinstein 1954; Daniels 1961; Beckmann

Muhleman 1964, et_] ; secondly, the case

is valid. The various theories

headings: first, the case of

incident wavelength

1963; Mitzner 19 64;

of surface roughness small
r

compared with the wavelength [Rice 1951; Miles 1954; Parker 1956;

Bass and Bocharov 1958; Mitzner 1964, etc_ ; thirdly, the case of
.J

roughness of assumed shapes [Deriugen 1954; Twersky 1957;surface

Ament 1960, etc.] , and lastly exact methods [March 1961] . Roughly

speaking, the first case deals with surface irregularities that are large

horizontally, and perhaps vertically also, when compared with the incident

wavelength. The second case requires the amplitudes of the irregularities

to be small compared with the wavelength and slopes small compared

with unity. Thus, in units of wavelengths the irregularities have small

vertical dimensions but not necessarily small horizontal ones. The third

case deals with special surfaces where an exact solution is theoretically

possible; no restriction needs to be placed on the size of the irregularities.

The exact methods to be discussed are methods of solving a boundary

value problem. The results are clearly very complex. However, with high

speed computers available, they are not entirely impractical.

In Ghapter III, a detailed development of Kirchhoff-Huygens'

method of solving the bistatic and monostatic radar return problem is
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given. Terms involving the first and the second partial derivatives of

the surface, which are usually ignored either partly or completely,

Isakovich 1952, 1961, Winter 1962; Hagfors 1964] are allDaniels

evaluated for an exponential surface-height autocorrelation function.

The general result is as follows for the average scattered power in all

direction s,

-I-

-l¢ Z
(z

II1=1=1

e K (_,
q=O /3/

+1_ I__I_ _,JO e-K K."
n+l

a. c p- ('[-)'!.-. __ ___,])-C.+d +_, jtm+ )

n I

(X_--J+ e"_o #' I 2, " +° o..<;p.,z.Y



where

m = k_¢_ ( _ # _)_

= half the width of the illuminated area

C

the intrinsic impedance of the free space

amplitude of the.incident H wave

correlation distance

velocity of light

"_" = pulse length
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Other symbols are defined in Fig. III-1. It is found that for backscattering

the said terms are of importance at large angles of incidence starting at

about 20 ° for the term involving the first partial derivative of the surface

and at about 35 ° for the higher order terms. Mean power expressions for

the special case of forward scattering along the specular direction are

also given and their variation with the angle of incidence indicates an

increase in reflection with incident angle. This behavior checks with

experimental results [Taylor 1964].

In the course of the development of the theory of bistatic radar

return it is found that the artificial line charge introduced around the

edge of the illuminated area has no effect on the mean power scattered.

The comparison between theory and experiment shows that the

statistical parameters of the surface obtained from fitting experimental

curves are functions of frequency. It is shown in Chapter IV that the

incident wavelength is actually sensitive only to a certain range of

structure sizes. The experimentally determined range is from less than

one to tens of wavelengths [Evans 1962] . Thus, the statistical parameters

of the surface obtained this way are effective parameters that characterize

only the range of structures seen at the given frequency. Since the

standard deviation of a surface is determined mostly by large structures,

these effective parameters will coincide with the true parameters of

the surface at some frequency that is sensitive to the large structures

on the surface. In fact, it is shown that when the exploring wavelength

is about four times the standard deviation of the surface, the parameters

obtained through fitting the experimental curves will be the true ones.

The last statement holds for near-vertical incidence, since at large angles

smaller structures will dominate the return [Fung and Moore 1964] g

Examining the problem of angular variation of the mean return

power shows that a more detailed surface-height autocorrelation function,

i * K" [ (c/A)

÷
Q,

K(,-e

{ c,-



where K = ¢ °"

_" = effective standard deviation of the surface heights

_A. = wavelength

a= c+d+f+g

L, 1, 1', 1" are the correlation distances of various structures

c, d, f, g are appropriate constants,

is necessary for a surface with continuous distribution of structure

sizes. The motivation for its form is discussed in the latter part of

Chapter IV. The result shows that with this more detailed autocorrelation

function, only the zero order term (the term in the power return expression

that does not contain any partial derivative of the surface) needs to be

kept within 80 ° of the vertical. This appears to be a reasonable

approximation, since in the region where the zero order term is large,

the higher order terms (terms involving the partial derivatives of

the surface) are comparatively small. The use of such an autocorrelation

function permits a very close fit of both the moon and the earth data over

a range of the incident angle from 0 ° to 80" . It is found that most of

the contribution near normal incidence is due to that range of the auto-

correlation that approximates the slowly varying exponential found alone

in several theories [Daniels 1961; Hayre 1961; Hagfors 1964] ' whereas

the part of the autocorrelation near the origin that approximates a more

rapidly varying exponential governs returns at large angles. This

autocorrelation differs from the slowly varying one only in a small region

near the origin. Hence, it appears, as is expected intuitively, that

large scale features determine the return at near-normal incidence and

small-scale features determine that at larger angles.

As will be seen in Chapter III and Chapter IV, in many cases the

theory of Chapter III compares favorably with the experimental results.

Thus, contribution to mean power return at large angles may be due to



6

the terms involving the partial derivatives of the surface (see Eq. III-8)

rather than the inadequate description of the surface-correlation function

by a simple exponential. Further work needs to be done to clarify this

point,

A preliminary study on the effects of the size of the illuminated

area on radar measurements is also made for the case of near-vertical

incidence, It is found that the presence of large undulations comparable

in size to the illuminated area will cause a drop in the mean return power,

Details are given in sect.ton 4, 5,
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CHAPTER II

LITERATURE SURVEY ON SCATTERING THEORIES

2.1 Introduction

The problem of scattering of waves from a rough surface' has been

studied continuously since the days of Lord Rayletgh [1895] and has

become of special interest during the last twenty years. This is due to

its numerous applications in various branches of science such as radar,

radio communication, radio astronomy, acoustics, etc. An excellent

reference and introduction to the subject is the book by Beckmann and

Spizzichino [1963] where both theories and applications are treated.

Additional references may be found in survey papers by Lysanov _ 95_
f- ..%

and Bachynski I1959] and an extensive bibliography Is included at the

end of this work.

A general and exact solution to the problem is as yet unavailable.

This is due to the complications In the boundary conditions which are

now functionals of the irregular or random function describing the

boundary [Rice 1951] . The resulting complexity is always suchsurface

that approximations must be made whenever an explicit and useful result

is desired. The particular type of approximation used depends upon

the approach adopted which in turn depends on the type of problem in

question. Thus, we can divide the general problem into three different

categories where different types of approximations are valid: first, the

case when the surface roughness is large compared with the incident

wavelength; secondly, when it is small compared with the wavelength,

and lastly, when the surface roughness can be replaced by objects of

specific shapes. Exact methods have also been developed by some

authors, but the result is so complicated that the properties of the

solution cannot be deduced except by numerical means. In what follows

we shall briefly survey some of the various methods for each of the

cases. Others that are modifications of similar methods will be found in

the bibliography. Only the basic principle underlying each method will

be discussed, but in many cases to enhance understanding, a sketch of

the main steps in the development will also be given.



8

2.2 Case of surface roughness large compared with the wavelength

{i) The Kirchhoff's method

The field scattered from the rough surface is formulated according

to Huygens' principle and is given either by the Helmholtz integral (in

the scalar case) or the Stratton-Chu integral [Stratton 1941] (in the vector

case). These integrals express the scattered field in terms of the total

field and its normal derivative or their equivalents on the surface

Silver 1949J. The values of these two quantities are not in general

known and are in this case determined by the tangent plane approximation,

i.e. the field at each point of the surface may be represented as the

sum of the incident wave and a wave reflected from the plane tangent to

the surface at the given point. The criterion for the validity of this

approximation has been found by Brekhovskikh [1952] It is

when the point in question is not a point of inflection, where _ is the

smaller of the two principal radii of curvature at the point; e is the

local angle of incidence and )% is the wavelength of the incident radiation.

In the case where the point is a point of inflection, the condition to be

satisfied is

where x is the coordinate measured along the mean level of the rough

surface[ Brekhovskikh i952].

The above conditions restrict the method to work for locally flat

surface composed of irregularities with small curvatures. Also, the

angle of incidence must not be near grazing. Within the validity of the

basic postulate of the Kirchhoff approximation or the tangent plane

approximation, this method gives then an exact solution. However, It

is interesting to observe that when the conditions stated above are not

satisfied, as for example in the case of surfaces consisting of small

rectangular corrugations, this method may still give very good results

Beckmann Spizzichino 1963, p. 66] . Detailed discussion of thlsand

method will be found in Chapter III.
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(1i) Muhleman's method

Using ray optics, Muhleman [1964] developed a statistical theory

for the radar backscatter angular power function. The physical basis of

the theory involves combining two random variables which represent

height variations and horizontal scattering lengths to form the probability

distribution function for surface slopes. The probability density function

of slopes is then shown to be directly related to the backscatter function.

The probability that the normal-to-the surface element lies within

a solid angle of a_,e =L_ _._ at an angle • measured from the normal

to the mean spherical surface Figure II-1 is assumed to be of the form

(in spherical coordinates)

gi-z)

I e

o(_ t I

t -,- --,- -- Y_,,I_"I __ I I /

I \

Figure II-1

.Geometry defining the incident
ray __ ; the reflected ray e_. ;
the normal to the scattering
element _ ; and normal to the
mean surface _ .
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If now a unit flux is incident on an area a.S of the mean surface at an

angle of incidence, < , from the mean normal, then the intensity _[

per unit solid angle scattered into a solid angle i_l in the direction

( _, _ ) is given by the number of individual scattering elements in /.4

that are so oriented that the laws of reflection are satisfied. Thus,

where ( O, _ ) are related to ( _ , _r) by the laws of reflection; __

is the normal of a scattering element. Hence, a scattering element

will contribute if its normal is in the plane formed by ot and e and

midway between _ and _ .

By relating _ 2._ _._ and _ K8 d.¢ , Equation (II- 2)

can be reduced for the backscattering case (G(= _ , ,_ = O ) to

Sz : aS  z-3)

which states that the probability frequency function of the tilt angles

of the scattering elements {slope) is the same as scattering law. This

probability function of the tilt angle, 0f , can be found when some kind of

joint probability density Is assumed for the horizontal scattering length

and height variables. The joint density is then expressed in spherical

coordinates in r and o( and _ (_) is obtained after an integration over r .

For the geometrical laws to apply, this method requires the surface

to be covered with plane-scattering elements of unspecified size. However,

even so it is not sufficient for the. laws of geometrical optics to hold,

since these plane scatterers are of finite sizes so that some kind of

reradiating pattern rather than a single ray should be considered. Thus,

his result predicts an incorrect behavior when compared with the experi-

mental results of Pettit and Nlcholson[ 1931] and Lynn et. al. [1964].

A completely similar idea was employed by Ornstein and Van der Berg [1937]

to solve the problem of the scattering of sound from a statistically rough

surface.
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(iii) The Luneberg-Kline method

This method of analysis bases on expressing the scattered and

the transmitted waves at a surface boundary in series expansions in

powers of the wavelength. Substituting this series into the wave equation

leads to a set of first order linear differential equations in a particular

coordinate system. The constants of the solutions to this set of equations

are then determined by the boundary conditions.

The series in question is called the Luneberg-Kline series

[j,oob o 1,62] fo,,.

e (n-4)

where _ and _, are the propagation constant and wavelength respectively.

EquationaI-4)was shownby nine[ 19Sl] to be. solution of the vector
Helmholtz equation. Thus, the functions 4_(£) and E(_:) are defined by

differential equations obtained by substituting {II-4) into the Helmholtz

equation and equating like powers of _k.. Proceeding in this manner

leads to the following set of equations

IvsJ_" = I (n-sa)

I

}tv's>Eo:

(II-5b)

(II-5c)

Note that the expression _o e as defined by (II-Sa) and

{II-5b) constitutes a solution of the zero wavelength limit of Helmholtz's

equation. Consequently, it forms a geometrical optics field. Equation

(II-Sc) shows that the higher order terms of the series give corrections to

the geometrical optics field and that they can be obtained by an iterative

procedure initiated with _o . By means of a change of variables

Kline 1951; Jacobson , can to give1962] (II-5) be solved

• D
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I
where _0 is proportional to the phase measured at the boundary and

( _, _, _ ) is the coordinate system defined in part by the distance

measured along the geometrical optics rays and in part by ( 4, x/') the

point of incidence of a ray on the interface. Note that such a change

of variables simplifies CII-5b) and {II-5c) to first order linear differential

equations, since V,S -V _ _/_ . The constants _o (4,_) and

_n ( 4, _t" ) are determined from the boundary conditions on _0 ( $, _t, U" )

and En( _, _, t/" ) respectively, if one assumes that the integration

is to be performed over the rays from the boundary to the point at which

the field is to be evaluated. The quantity, Vz_ ,

where _$ , _

system.

is givenby

The main restriction on this method is the difficulty in computing

the metric coefficients from the geometrical structure of the ray system in

order to find _'_ . Thus, the problem will be much easier to solve when

there is no multiple reflection and shadowing. Clearly, the roughness

of the surface in question has to be large compared with the wavelength

so that a few terms of the series will suffice. The advantage of this

method is that it gives an indication as to how good is the geometrical

optics approximation for a given problem. What is more, it supplies all

the correction terms.

The extension of this method to the case of random roughness has

not been made. It is, however, clear that the restriction on large scale

roughness compared with the wavelength cannot be removed.

_ / -¢,.,,-)

, and _ are the square roots of the metric coefficients

and _vu- respectively of the ( $ , _., _r ) coordinate
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1959]

(iv) Th e geometrical optics method

The coherency matrix, J , is defined as follows [Born and Wolf

J = (II-9)

where Ex and Ey are the x- and y- components of the electric vector of

an electromagnetic wave traveling in the Z - direction, E _ denotes

the complex conjugate of E .and < .., _ indlcates time averaging. The

trace of the matrix gives the total intensity of the wave and the non-

diagonal terns indicate the correlation between the components of the

electric vector in the x- and y- directions. Thus, for completely

polarized wave, the determinant J is zero; for completely unpolarized

wave, the non-diagonal terms are zero and (E_ E2> = < E) El> •
Other cases then define partially polarized waves.

By calculating the coherency matrix of the reflected wave,

[1964] solved the problem of a partially polarized wave scatteredMltzner

from a rough plane interface. Both the case where the surface is

considered to have a number of specular points and the case where the

surface roughness is described statistically were treated.

The problem of reflection from a tilted plane was treated first

and leads to the result that the coherency matrix, j refl , of the

wave reflected in a given direction is related to the coherency matrix of

wave, jinc , by a linear matrix transformation [see Figurethe incident

II-2]

jw-/_ _ p j _ -_, (II-lO)

where

I
p -

K
Ba B4 Ral - B, 8_ _a.
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K .__

hl. =

B2=

the transpose conjugate of p

% •

I - [ _e _,_e' + _C_'-e)_e_._e'_] z

B3= _ (#'- _) _e'

B4 : _. (,_'-4_) _.8

R a , R_ are the Fresnel reflection coefficients for the vertically
and horizontally polarized waves respectively

/
I

reference plane at z = 0

M. Boundary

M 2 Plane

Y

\ /
\ /

\ /
Z

Figure II-2

Geometry of the tilted plane problem
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O, (9' are the angles made by the incident and the reflected rays

respectively with the positive Z - axis; _ and _ ' are the corresponding

azimuthal angles. In general, the boundary plane is tilted with respect

to the reference plane; _ is a unit vector normal to the boundary plane.

In the far zone and the absence of multiple reflection, shadowing

and refraction, (If-10) can be extended to include the case of reflection

from a rough plane through a roughness factor _ as

j'S" -- P J "F*
= [ I- e, e 2

where _ (C_O- _8') 4

'Z l

The summation is taken over aU appropriate specular points In the

illuminated area, A; the fxx, fyy, fxy are the partial derivatives of

the surface. For a statistically rough surface, _ becomes then a

random quantity. The most outstanding feature In tl_s method is that

although only laws of geometrloal optics are employed, complete

information about the state of polarizatlon of the reflected wave Is

obtained.

2.3 Case of surface roughness small compared with the wavelength

Under this general category we shall describe methods that work

for surface irregularities of amplitude small compared with both the

wavelength of the incident radiation and the local radii of curvature of

the mean surface. Also, the slope of the surface should be much less

than unity. These restrictions lead naturally to the method of Raylelgh

and the method of perturbation. The latter can also be used to give an

approximate solution of an integral equation and thus leads to a different

set of restrictions on the method.

(i)The method of small perturbation

The basic concept involved in the treatment of small perturbation

is to replace the effect of the surface roughness by an equivalent source

distribution on the mean surface. Most of the treatments have been

restricted to a perturbed plane surface [Bass and Bocharov 1958; Rlce 1951;
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-1

Miles 1952; etc.J , but actually it applies to any surface where an

appropriate orthogonal curvilinear coordinate system can be used

[Mitzner 1964_.

The main steps to be taken in solving an almost plane interface

problem are as follows. Let the equation of the interface between two

dielectric media be Z = Z,(x,y)-- Z,(ro ), where ro is a point on the

unperturbed plane surface, _o- Then the perturbed electric field can

be written as

Cn-12)

where _ is the total unperturbed field-- incident plus reflected -- and

_"_ (r<) is the perturbation field of order Z,". Let there be no sources

in the neighborhood of the interface. Then at a point on the surface, i.e.

at _= i_t*_÷_Z= F.+ _ Z, , Taylor's expansion gives

Let _ be the unit local normal vector pointing from medium one

to medium two. Then _ ($) must satisfy the following boundary condition

or C{ - 7'Z.) X a_ ---0 (II-14)

where V' = ;

Substitution of {II-13) into (II-14) leads to

(II-15)
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Equating terms of the same order gives

x = = [Z a
_)---_ + (aEe) V'Z, ] (II-16)

where the fact that _. K V'Z, = _X[AF__ VJZ.]and that 4_ E"

on the plane surface is used.

Equations (II-1 6) and (II-17) give the equivalent magnetic surface

currents on the plane surface up to the second order in perturbation.

Higher order perturbations can, of course, be determined in the same way.

The field everywhere can now be found by using either Ktrohhoff's

formula[Bass._ and Bocharov 1958] or dyadic Green's function [Mitzner

1964J. Except that the method is restricted to slightly rough surface,

it gives exact solution to the problem and it works also for statistically

rough surfaces [Mttzner 1964] .

(ii) Rayleigh-Rice method

Rice [1951] gave a direct generalization of the Rayleigh method

for solving the scattering problem to the case of a vector wave and a

random surface. He treated the problem of a plane wave incident from

the dielectric side on an interface between a dielectric and an arbitrary

medium. The main idea involved in solving the problem is to assume

a representation in series of plane waves for each component of the

scattered field with random coefficients. These coefficients are then

determined approximately throughboundary conditions on the interface

and the divergence relation in space. In what follows we outline only

the case of scattering from a perfectly conducting surface.

Let the equation of the perfectly conducting rough surface be

given by

(II-18)

a_ = p.lr/L
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where the double summation extends from -Q0 to_ for both m and n,

and L is assumed to be very large. The coefficients P (m,n) are taken

to be independent random variables subject only to the condition

P(-m,-n) = P*(m,n) (II-19)

where the asterick denotes the complex conjugate. This condition is

imposed to make f(x,y) real. The coefficients P(m,n) are further assumed

to be distributed normally about zero and the four independent random

variables formed by the real and imaginary parts of P(m, n)and P(m,-n)

all have the same variance. Thus, the following results hold

< p<._,_)> =o

< PCm,_) P(u.,v)> = o t_.,v)_(-,',.-n), (II-20)

< Pc,-,.)P'c,-,.)> =

Here < .,, > denotes that m and n are held fixed and the average

taken over the universe of the real and imaginary parts of the P(m,n)'s.

The reason why the variance is chosen in this way is that, as seen

by considering <_}_, _)> with L --w _ and changing the sums into

integrals, _(_, _) _p_._ represents the contribution to <_,_)_ of

those components in {II-18) lying between p and p+dp radians/meter

in the x - direction and between q and q+dq radian/meter in the y -

direction.

With such a model for the surface, the total field in the space

Z > _(_, @) corresponding to a horizontally polarized incident wave

is written _ee Figure II-3]

E,..= X A,,,,E Or,-,n, z) (n-2z)
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E_ = _ Cm_ E(_n, _, 7.)

6_. E(Yn_ n, z)

where

E (m_ n_z) = _ [-; ,.c-7_, __)-_ b(,%.)_]

= incident wavelength

is an Integer so that the angle of Incidence

and the

e between the Incoming ray

_. -axis is restricted to certain discrete values given by

)

incident wave reflected wave
Z

Figure II- 3

Geometry of the scattering problem
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The coefficients Am., B_. , Cm.

by the relation,V-_ = o, which gives

can now be determined

0-.I A_ _" _.n 8_,. -F [,Crn,n) = 0 (II-22)

together with the condition that the tangential component of _.E

vanish on the perfectly conducting surface, i.e.

E,. - N_ ( E_ N_ t E_N_ + E,,N,) = o

where

magnitudes of the components of

must

(II-23)

N is the unit vector normal to the surface. Now the order of

N is

By neglecting terms of order O(_3_ (II-23) becomes

I_ - N_E, =o

E_ - N_ E,_ = 0 (II-25)

Approximate the coefficients Am., 8r.. , C,-n and E (m, n, Z ) as

a sum only of their first and second order terms. Thus, (II-25) becomes

[J- E =o

+ (0 .

Equating the first and the second order terms to zero leads to

A (i)Z ,,_. E(._, .,o) =o

- {J) O) 0

(1) 0 A (j)

[- (_-) {') R {_)

(II-27)
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After equating the coefficients of

the identity,

the coefficients

u)

B t_)

J'mn E (nl_nJO) = _-

E(m, n, o) to zero and using

{a)
B t,I and B¢_)A t,} A_n , -.. ,,,,_

l_rI ,

3atPCm-_, .-t)ECm,.,o)

are found to be

= o

_u)

{I} - {*)
where C_tl. can be expressed in termn of Br.n through (II-22) giving

u) (0
C.,., = - _n B_. /6C_,n)

Hence. the field components are obtained by substituting (II-28) into

(II-21),

(ii-_.9)
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The average and the mean square value of the field corresponding

to a random non-periodic surface can now be determined using (II-29)

and the statistical properties of the surface,

Thus,

im

(n-30)

where

h..

I
- )

In going from the summation to the integration,

approach infinity.

L was assumed tO
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<.IE=,.I"> = o

= "br _ y_, E _

= I{A

f,* i _ -z_ _4c_- _, s)/4

where

f 0

_ _- II, I z
(II-31)

Other generalization and special cases such as the case of a

finite conducting surface, the question of surface waves and a vertically

polarized incident wave are also included in Rice's work.

It is interesting to observe that the notion of small perturbation

is used in determining the coefficients Ann , _-in , etc. In fact,

Lysanov L19551 showed that the results obtained by Rayleigh method

and that of small perturbation are identical. However, in some specific

problems the perturbation method may prove more convenient from the

computation standpoint. The results of Rice can also be shown to be
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the same as obtained by the perturbation method FMitzner 1964]. An
.J

approach which is similar but less approximate than Rice has been used

by Schouten and Hoop [195_, Ku_yenov[1963] and Lapin _96_.

(iii) Integral equation method

The basic features of this method are as follows. A solution

of the wave equation for the half space Z _ Z _:L) is written by means

of the Green's formula. The boundary conditions on the rough surface

then lead to an integral equation for the field on the surface. It has

been shown [Meecham 1956; Lysanov 19551 that for a sufficiently flat

absolutely reflecting surface on which the boundary condition, _ - o ,

is satisfied for Z - _(z) , the integral equation can be solved

approximately. We sketch below the approach of Meecham[1956].

In view of Figure II-4, the field at a point, P, is for a one

dimensional surface

where _ represents the incident wave;

HtJ_ the Green's function, is the zero order Hankel function
• a

of the first kind, appropriate to a two-dimensional problem.

n_j_. are the unit local normal vectors.

Figure II-4

Diagram used to describe Equation (II-32)
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By allowing the point, P, to approach the surface point•

and utilizing the boundary condition, _ =0 , (II-32) becomes

(1),

I. IZ . O)
_: c_) = 47 H. C_%)

r_

'" [H'%'*'= _T (:0
_I) + KC% m)]

(II-33)

where _(_,)_Ca)= _:)(_..,_C_,[) -- _o¢O(_iX __..,i)

angle (_ is defined in Figure II-4.

Under the following two conditions,

and the

_Z M )2{"t-Z- << i

and 4(Z r4 < I • where _- 2_ / 9k•

( _'r ,_a ) will be small so that the method of perturbation applies.

• _.Z M represent the bounds on 7_,6*-)and _[--_

_ c:(,.)= / a@_)

F0h) = ._ @:(.O

respectively.

Note that M(X,, _a) is of the first order while

zero order perturbation.

Assume in accordance with small perturbation theory that _(W.)

can be written as a series of terms of different orders of magnitude• i.e.

H('}(_/_-_[) is of the

(II-34)

Define _X_(_) by the relation,

Then, the following set of equations hold,



26

_ j_(O
y -- -

I

(II-35)

This set can be solved by a method due to Levi-Civita F18951 . With

"1_@(,) found, the problem is solved.

It should be pointed out that like the previous two methods,

the vertical roughness is required to be small compared with the wavelength,

but unlike the other methods, the horizontal scale roughness is restricted

only by the condition, ( _ j ¢:< t . Hence, it has the advantage

over the Rayleigh method as well as the perturbation method in that the

error incurred through its use is of second order in the slope of the

reflecting surface while for the other two methods it is of the first.

2.4 Case of surface rouqhness of assumed shapes

In this case the scattering problem is treated by assuming that

the surface corrugations possess simple shapes. Then the problem

becomes a boundary value problem that can be solved either exactly

or approximately. The main advantage in such a treatment is that it

facilitates a study of the transition from short wavelength to long

wavelength conditions and in some case exact theoretical investigation

of polarization problems.
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(i) Twersky's method

A method of determining the reflection coefficient, R, and the

differential scattering cross section per unit area, 0" , of a random

distribution of arbitrary bosses on a ground plane was devised by

Twersky [1956J. The analysis is based on a Green's function form-

ulation of the problem of a single boss,; R and _" then follow from an

approximation of the ensemble averaged energy flux which takes account

of multiple coherent scattering. The final form of fl" and R were found

in terms of the scattering amplitude of an isolated bQss, their average

number in unit area, and the given incident wave. Explicit expressions

are obtainable for arbitrary hemispheres and circular semi-cylinders.

For the case of a single boss consider the two dimensional

problem of the scattering of a plane wave by a cylinder parallel to the

Z- axis (Figure II-5).

The solution to the equation

(v• + k')

Figure II-5

=0 (II-36)
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is sought subject to prescribed boundary conditions on the cylinder's

surface. As r -,- _ the scattered wave should vanish and _r,

therefore, reduces to the incident plane wave,

= e

where r 2= x 2+ y2 and _ =t_n -l(y/x).

radiation condition requires the difference,

outgoing cylindrical wave. Thus,

Also, the two dimensional

U=_r- "_. ,, tO be an

where the integral is over the scatterer's surface, and

normal. (Note that f H'" (_lr-_'l)j _ (£')} - 0).

where &t (,F.r) is the scattered wave. Recall that the Green's function

for the two dimensional problem is the zero order Handel function of

the first kind _ ¢', _ h], ".0 orse and Feshbac . Now, apply Green's

theorem to U.(_) and _ Hou)(k]£-_"I)/4; _(r,_)and _r'¢i-5_,) label

a field point and a point on the scatterer's surface respectively.

Integrating over a volume external to the scatterer leads to

t,) ' A= 7Cdja.H0( l£-nl)]4
(II-39)

For convenience we use Twersky's notation and write (II-39) as

(II-39)

n is the outward

where

In the far zone, the following approximation holds,

~ (zlrr kr)

HC r)

(Z/_Tr kr)_ e

)

Since scalar wave is being discussed here, one can use an

due to Rayleigh _907| -- who showed that the fieldimage technique
t. -I
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scattered by a circular semicylinder protruding from a conducting plane

under an incident plane wave equals the field scattered by an entire

cylinder in free space illuminated by two incident waves: the originally

incident wave and its image with respect to the plane. This technique

shows that the scattering amplitudes of a boss on a rigid {+) or free

{-) plane x = 0 are (For the analogous vector case see Twersky, 1957)

Thus, the total wave functions for the boss problem are given by

If there are various cylinders distributed along the plane x = 0

with their axes parallel to the Z- axis, then the total field can be

assumed to be a plane wave plus a superposition of waves scattered

by individual cylinders, i.e.

(II-42)

_(_s)iS__ the total field at a point _s on the surface.

Consider as before the far zone case.

CZ) is

The asymtotic forms for

where Gj. , the "multiple scattered amplitude of cylinder 1 of the

configuration, " is a function of the positions of all scatterers because

is the total field including effects of other scatterers.

For a single configuration, the total time averaged energy flux

per unit area divided by the time-averaged incident flux density is

according to Twersky [1957, 1959, 19623
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=
(II-43)

where r = r / r a unit vector.

Re denotes the real part.

* denotes the complex conjugate.

The ensemble average of the reflected part of _ , _r , is

then found to be _wersky 1957]

_- _ + ) _ = -.,

nl
where _[ and _P are the directions of incidence and specular

reflection, and where _ is a unit vector from a point on the distri-

bution ,,rS to the observation point ,l_ • The function R is the

coherently reflected power density, and 6" ( _ , _i ) is the

incoherent power scattered into unit solid angle around _ by unit

area of surface. For a uniformly random distribution of identical bosses

on a free or rigid base plane, the following expressions for R, d" are

obtained on neglecting incoherent multiple scattering,

k*
(II-45)

where _ is the average number of scatterers in unit area and k = 2K/_. ;
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[_ is the unit vector in x- direction. Note _ ( _.* , _; ) = _ (7,;;-o()

since either _0, _g ; or _ , l[ -0( can be used to denote the

directions of incidence and reflection.

Equations (II-44), (II-45) give results in the general form where the

exact form of _ ( _0 , _ ) is not known. For the particular case of

semi.hemispheres or semi-cylinders with large separation distances

between them, the specific form for _ ( _.," , _w ) can be found

[Twersky 1957J . This method then allows us to take into account

multiple scattering and permits exact theoretical investigation of

polarization problems.

Though not mentioned in the above brief survey of the concept

used in the above method, this method allows investigation also of

the transmission problem of a random screen. It can be extended to

treat distributions of non-identical scatterers [Twersky 1957] Q

(ii) Deriugen's method

[1954] investigated the problem of plane wave scatteringDeriugen

from a periodic surface with rectangular grooves. His method of approach

is as follows: the region containing the grooves is treated separately from

the region above it; solution to the wave equation is then sought in each

region and these solutions must match at the imaginary plane boundary

between the two regions. This matching at the boundary leads to an

infinite system of linear algebraic equations for the amplitudes of the

scattered waves. This system of equations is solvable by the method

of successive approximations.

In order to obtain a solution to the wave equation in the region

containing the grooves, the groove must take on a shape that fits into

a separable coordinate system sothat the method of separation of

variables can be applied. For the case investigated by Deriugen, the

general solution in the region containing the grooves will contain plane

waves traveling in opposite directions; while the general solution in the

region above will contain plane waves either propagated or attenuated

in a direction away from the surface, if the incident wave is not counted.

Such an approach permits investigation of the field distribution

at the mouth of the grooves [Deriugen 1953] and the phenomenon of

surface resonance which occurs when the period of the rough surface is

about an integral number of wavelengths.
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2.5 Exact solutions

The exact methods to be described here result in very complicated

expressions that require high speed computers. These expressions,

though useless in providing an indication of the field variations due to

the change of a particular parameter, are useful for checking the

approximate results obtained by other methods and, of course, are

valuable for cases where no approximate methods apply. The essence

of such methods is to solve exactly an integral equation that results

from the boundary conditions.

(i) Marsh's method

By starting out with a plane wave representation of the scattered

wave in integral form, the unknown generalized spectrum of the scattered

wave is determined by expanding it in a power series in O" , the rms

surface height, and the coefficients involved are then found through a

theorem of Wiener in generalized harmonic analysis. This paper by

Marsh is quite short and we shall follow through his main development.

Consider a plane wave incident upon an irregular one dimensional

surface, _.(_-) , on which the wave potential vanishes. Then the

boundary condition gives

_(:t,Z.) e "_ e -- 0 (II-46)

where is the angular frequency of the incident wave;

k is the wave number;

oC , _ are the direction cosines of incident wave normal
with respect to _. , Z axes respectively;

_(_} Z) is the scattered wave except for the time factor.

follows

where

Now assume a plane wave representation for _(Z, 7, ) as

= e

G

(II-47)

is the generalized spectrum of
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The combination of (II-46) and (II-47) gives

-_C_+_¢_) { -;(x_- _)

-e = J

for - o0 < _ < co

The problem now is to determine

take the form,

G(X)

_G (A) (II-48)

which is assumed to

(II-49)

Substituting (II-49) in (II-48) leads to

-;(_ +r¢_)
e

=I e-;O'{ _'S) oz_ °t '{At(A)

f -e _

m-o m.I m.0 .-0 ,! .<_,,._<>,)o"

Equating equal powers of leads to

e4_'IFir;)". _ f e.-;_I(;_s>'_EA_ (;9--a _I-so)

Equation (!I-S0) constitutes an infinite set of simultaneous

linear equations for the determination of the A m (A)'s. This set can

be solved by using the following relation according to WienerL1933J

#"- ,,,'!

which gives the generalized spectrum in wave number space in terms of

that wave as
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q-

(II-51)

Thus, for tn = o , (II-50} gives

e'; = - e &4. (_)

Note that (II-52} takes the form of (II.47}.

is found to be

Hence, by (II-51),

(II-52}

(II-53}

Similarly, Am is found for m ),o to be

cH ,)

From the above two equations the Am's can all be determined•

Consequently, G(_} is known•

The same method can be extended to the case of mixed boundary

conditions and three dimensional problems. The final answer is in the

form of a series of integrals operated upon by the operator defined in

(II-51). Thus, it is clear that the expression is quite complicated,

but numerical work is possible [Marsh et. al. 196_

(ii) Another method

The Helmholtz solution to the scalar wave equation gives the

total field at a point above the surface, S'. As the observation point

approaches the scattering boundary, an inhomogeneous Fredholm integral

equation of the first kind is obtained for either the Dirichlet or the

Neumann problem. A series solution in terms of a complete set of

orthogonal functions is then possible for such an integral equation.
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The formal solution for the scattering of a scalar wave by a

surface, S', may be derived from the Helmholtz formula to be [Stmtt, J.W.
194_

_' _ n° (II-55)""I,1-

where G( p, s) = eikr/R is the free space Green's function. _'($') and

(_ (P) are the wave potential functions on the surface and at a point P

in space respectively. "n' is the unit normal on _'; #; ; is the incident

wave. On the surface, _ ', for Dirichlet problem it is assumed that

&LfiS _9 = 0. This corresponds to a free surface or pressure release

surface in the acoustical case or perfectly conducting surface in the

electromagnetic case. Then (II-55) becomes

II _ b(Cg'_ _lq' (II-S6)4R , ' 0

where S now represents the observation point on the scattering surface

( g, , _z , _ ); and 8' the source point on the scattering surface

( _J' ' g_' ' _'3' )" Let the mean surface fit into a constant surface of

some orthogonal coordinate system. Then dS' can be written as

(II-57)

where the _i's are the scale factors. Hence, (II-56) can be written as

(II-58)

I

Let _n( _i , _

over the region of integration. Then the following expansions are posslble

where

) be a complete set of normalized functions orthogonal
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By substituting (II-59)into (ii-58) and integrating over S'

expression is obtained

, the following

The problem nowls to determine C.'s. If _n ( _J , _) ls an

orthogonal set of functions, the C. 's can be easily found by quadratures.

If not, let _ be the orthogonal set of functions constructed from the

set, b n, by the Gram-Schmidt procedure [Courant and Hilbert 1937] .

Then _ (S) can be expressed in terms of _ also. Thus,

(II-61)

where 0($.

procedure and

are coefficients obtained from the Gram-Schmtdt

%= "
Hence,

C. = _T[ _ 6L_ OC{,_ (II-62)

(An explicit expression for the o_ _n Is derived in Morse and Feshbach

Thus, the integral equation is solved. From the method of approach,

It is clear that the same technique would work for the Neumann problem.

This method is simpler both in principle and in the form of

solution than the Marsh's method. However, Such a series solution is

equally non-informative and numerical means is indispensable.



37

CHAPTERIII

A THEORYOF BISTATIC RADARRETURN
FROM A STATISTICALLYROUGH SURFACE

3.1 Introduction

A theory is developed here for scatter in any direction of an

electromagnetic wave incident upon a statistically rough surface such

as the ocean surface or any uniformly rough natural terrain. The

Kirchhoff-Huygens scattering theory is used. The surface roughness is

described in terms of a Gaussian distribution of heights about the mean

surface and an exponential autocorrelation function of height with

distance. A unique feature of this development is a coordinate trans-

formation that permits exact evaluation of an integral without the

approximation of the autocorrelation function required by techniques of

other workers. The terms, which involve the partial derivatives of

the surface and have so far been ignored either partly or completely in

radar return calculations, are all evaluated. It is shown that these

terms give significant contribution for angles of incidence starting at

about 20" for the backscattering. It is also shown in the derivation

of the Poynting vector that these terms do not result from the artificial

discontinuity of surface currents around the edge of the illuminated area.

The results have been specialized to the backscatter case, and

compared with lunar as well as earth observations. They appear to fit

the data over a wider range of angles than previous theories [Isakovich
"w

1952; Daniels 1961; Hayre 1961; Hughes 1962; Hagfors 1964J.

To simplify the results to be derived, we make the following

as sumptions:

(1) The surface is perfectly conducting

(2) There is no overshadowing of one part of the surface by
another; there is no multiple reflection.

(3) The incident electromagnetic plane wave is reflected at
every point of the surface as though an infinite plane wave
were incident upon the infinite tangent plane at the point.

(4) The random surface Z(x,y) is continuous in the mean and
differentiable over a finite region D.

Except for the tangent plane approximation, other assumptions

inherent to the Kirchhoff's method VBeckmann andare not Spizzichino
L
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-1

1963] . However, the resulting ease in obtaining an answer is greatly

increased. For a discussion on shadowing and multiple reflection see

Beckmann and Spizzichino, 1963; Bass and Fuks, 1963; and Beckmann,

1964.

3.2 The scattered field

Let us assume a time variation of the form, e iwt, for the

incident wave. Then the scattered field at a point P from the surface

Z (x,y) becomes (by the scalar-vector analog of Green's theorem

[Unz 1958] ), except for the time factor,

E -- _1,0

where _$ : the scattered electric field

G
1

= -_-exp [-i k r], the Green's function

= total electric and magnetic fields

uJ = angular frequency of the incident wave

= permeability of the space

_r = the illuminated area

n , R are defined in Figure III-1
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Figure III-1
The incident and scattered waves

Now if there is a boundary line between the illuminated and

shadow regions, the current distribution is discontinuous across the

boundary. Thus, for the fields to satisfy Maxwell's equations, a line

distribution of charge may be introduced along the boundary line so

that the source density functions will satisfy the equation of continuity.

Assume this is done. Then for the far zone field, (iII-1) becomes [see

Figure III-13 .

L.

4-r[ _:o
r

e r .e

(a. 3 e

(III-2a)

where _ is a unit vector in _0 direction _.-" 4_ _, and the line

integral is along the boundary of the illuminated area.
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Further simplification by means of Stokes theorem and the

_l_ne_p_o_ion ¢_ede_11__e foundinSilve_[1949]_tangent

leads to

r

where H,,: is the incident magnetic field.

As we shall see later, the second term in (III-2b) drops out

in the Poynting vector expression, so the additional line integral

introduced has no effect on the scattered power.

In the far zone, the scattered electric and magnetic fields are

related through

Ro X _S (III-3)

where _ is the intrinsic impedance of free space.

Hence, from (III-1) and (III-3) we have

3.3 The scattered power

If E is polarized in the plane of incidence, then

The Poynting vector is by definition
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In view of (III-5), it becomes

×

A;

where
I

= _t4+_ -_ Z_<

I< - _u"_ _

To express In terms of the surface,

] (III-6)

7. (x, y), we note that

£

= / Z_ ,
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P-.o = -_. ,u_e_,..4, ,,%
+ Z c._aO

A

Ho = yHo (III-7)

where the quantities with a caret are unit coordinate vectors and

Zy are the partial derivatives of Z(x,y).

Thus, using (III-7) we can write (III-6) as

ZX,

= H; Ez,_ z,_P [e_K +

= . CZ,Z,.+,)-[_e,.,.-÷-z,_o][__._

J

;_ (_'- f,)

(III-B)
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where _ - _' = (sin_( - sin_} sln_ ) (x-x')+ slnO cos _ (y-y')

+ (cose + cos< ) (z- z')

Our interest lies in the mean value of the Poynting vector

To determine it, we shall make use of the Karhunen-Lo_ve theorem in

the same manner as was done by Hoffman [1955J. This appears necessary

for the evaluation of terms involving the partial derivatives of the

surface. The theorem states that a random process defined by the sample

function Z (x,y) continuous in the mean on a closed set, D, has

on D

with

an orthogonal decomposition

if and only if the _A,mn'S are the eigen values and the _mn (x,y) are

the orthonorrnal eigen functions of its correlation function. Then the

series converges in the mean on D uniformly. The bar in (III-9) denotes

the mathematical expectation. (A proof of the theorem is given in

Appendix 1 )

By the theorem above, an expression for the autocorrelation

function of Z(x,y) in terms of the eigen functions can be found,

(III-1O)
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Let us now assume

process with zero mean over the set

that
m

Zm. = 0

Z(x,y) to be a stationary Gaussian random

D. It then follows from the theorem

¢_. : [ (III-11)

Note that the Z, inn'S are Gaussian random variables, since

we assume Z(x,y) to be a Gausslan processFLo_ve 1955]. With the

above theorem and _II-10) and _II-ll), we can obtain the relations

below. (Details are found in Appendix 2)

(III-12)

Z_ _ [r4_scz-z')]

z. z_, ,._ [r,_e(z- z')]

_r

= - Io-_'-a-t.C_
a_Jj

(III-15)

where r is the autocorrelatlon coefficient, u = x'-x, and B is a

function of angles to be defined later.

Applying (III-12) through (III-I5) to (III-8), we find the average

value of the Poyntlng vector to be

P

÷ S'(Z. +Z,') e

"_ C Z_Z_' e
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_"]1 k%-_s_-(i-r')
(nI-16)

where 2 I ,z.

:_

, :,k,,1

, ;_

I

-- R)_,t _"

'*7_" _')*"

3.4 Radar echoes

As an application of (III-16), we consider now the problem of

radar returns from a homogeneous statistically rough surface. The

assumption of a Gaussian distribution for Z(x,y) about some basic

plane is a reasonable one[Hayre 1961; Daniels 1961, 1962]. For the

case of a pulse radar we assume in addition the following:

(a) The variation of the angle of incidence, o( , over the
domain of integration is negligible.

(b) The radius of correlation is much smaller than the dimensions
of the illuminated area.

(c) The change in S [see Figure III-1] over the domain of
integration is negligible so far as the factor 1/S is
concerned, but it's effect on the phase Is taken into
account.
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(d) The illuminated area is pulse limited.

Since we are going to integrate over the illuminated area, At,

it is convenient to express the average power in terms of the variables

S and _" rather than x and yFsee Figure III-27
i. J

Figure III-2

Geometry of the radar problem

In Flgure III-2, we relate 8', _" to S and _ by

We also have from Figure III-2 the following

 n-17)

! ! • I ! t I ' (_
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_'= fc_._ _ = _'_ c_'
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The use of cosine law gives the following relations between @5 and _"

It can be shown by choosing (X'o = 90 ° and _ close to 90 °

that the Jacobtan of the system is (see Appendix 3)

and

u= -? _ -_9 _ (III-18)

Observe that in order for _ to be a coordinate designating the location

of the beam in the _ direction, narrow-beam antennas must be used.

Our assumption (a) about o( , of course, must be satisfied at the same

time. It may appear that (K will have to be rather large. Actually,

what is more important is that the dimension of the illuminated area in

the _ direction should be small compared with _. Consequently, it

may turn out that assumption (a) holds for o( "._ 1 ° .[Moore 1957J .
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Now in terms of the variables S, _" , t , _ , (III-16) becomes

_F

@at _ _(

(III-19)

where A =
O

BQ

S o = the mean value of S

The limits on S and _F [Davies 1954; Moore 1957] are given by

2 °
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where T is the pulse length,

The limits on t and

approximated as

/2 = 2 cos -1 (h/So).

[Davies 1954; Moore 1957] may be

- O_ , _ • 03 (III-21)

To perform the integration it is clear that some form of the

autocorrelatton coefficient must be assumed. The works of Hayre and

L_,_,_n_e__[_,_,]on__.oex_e_m_n_o__e_u._o,_v_n_Moore

and Pettengill [1963] show that the exponential form gives the best

result over the range of the incident angle from 0 ° to about 25 ° .

Hence, letting C -----_c_ _- _(_ + (Tc_)m /_.] , where

a is the horizontal correlation distance, we obtain from (III-19) the

following

o._3 o.I

(III-22)

where
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To evaluate the integrals in (III-22), we make the following change

of variables

Then (III-22) becomes

R.I

+

, -2-L

where

_o_._._-_ R_ ,_',(_ ,_

• !

K = _(_'¢"B"

(III-23)

Upon expanding _x_ _ FC _'_ (- "_/o.. ) ] into a series

in K _(- _/_u), we see that the integration with respect to _ becomes

a trivial matter. The integration with respect to _ ' can be performed

by means of standard contour integration technique by the following change

of variables onto a unit circle.

0.,_e'=(z -_ z')/z • # Z-I, ,_.,,_e = (z - )/z; de'= 4Z/_Z
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The advantage of evaluating the integral this way is that no

approximation needs to be made for the autocorrelation function as in

the works of Hayre and Davies; also, the terms (which involve partial

derivatives of the random function Z(x,y) in {III-8) ) that have been

neglected in the works of Winter [1962] and others are evaluable in

the same manner. (Details of the evaluation are given in Appendix 4)

The final result of the integration for -P is as follows (see

equations (6), (12), (18) and (24) in Appendix 4)

o.. , [

I 1)- ¢.n+,) l:Cn*O- _.
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""I
K°_,., 1-i-_ (n-,)! 0_

n:l

.a2,..o(

" e

M'-.o
K n f n+l

i (_'-c?-,,)_ ,]
R'-c,,,"c)]C,,+I-2e'

n-o n !

r_4-2. + _,_(I_,-,_, [" n-.l- 2 -l- 2 O;_ '_]

4-
_"- cn_'.) ("+_')

(III-24)
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where

_'= [ c.-e,)'-, ,t'-c-p_t _')3 v.-

i' : _ C_-_ - _L.o _.k.,l,)

= half the width of the illuminated area

For the special case of backscattertng (i. e. the transmitter

and the receiver in the same location with _ = - 77/2 , _( :

equation (III-24) reduces to

_ -I_ K n

,_._,o¢ .:i

i

n,l

I '_cP'_'t) ] :_ ]I-+ _,__._,_ I. _, -_, e_i\:p_

+ a 40_'(_ _(1";_') J * e'-_.n*'O ]



-c.. 1

i, o..(f-._) _. <2,,,]1 t+t_'"-c.+_) I [n.J -2

where now (2 = [ n_+ __t_] v_

ii

I_ = _ _" _'_ _._-_

I

-f- 2 _"]
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(III-25)

It is seen thai the first term in {III-25) takes the-same form as

Hayre [1961] except for a constant that appears in theobtained by

denominator. We believe that this is due to the fact that Hayre made

an approximation to the autocorrelation coefficient before he performed

the integration.

For the case of the forward scattering along the direction of

specular reflection (III-24) also applies. However, since both p and

q are zero in this case, limits must be taken. Thus, with 0(" = 8 ,

= /_ /2 and letting p, q --_ 0, we obtain the following (see

Appendix 5)

I

(.÷2) _
(III-26)
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The equations obtained above for the mean power are not only

complicated, but they also take on the undesirable form of an infinite

series. This series can be eliminated if K is sufficiently large. For

then the autocorrelation coefficient can be approximated by

Integration of (III-23) then leads to the following expression for the

averaged power (see Appendix 6)

l_---_ _ ,-

-K',_ [K-2 ] + Z_,'

.-t-
i ( "i<'"I'D ' z :' l

[_ o( ,_-,.._ e 2 _'_+l_ L _,< I_>"I _"

""K"_ D" [ K - 2

+J._fr-K"+_-"]_'

(III-27)
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where
]K = 2_Ho 2

D = [!< _

I

P = [Ki_-t

D" [ _"_= I-

K'= Ke I

K"= K÷ 2_

C T -_orL/_o0z

,_"of', _') ] '_"

_-cp', _")) '/"

fL I

The special case of backscattering now takes the form

I-L+,°.,,,.-'CI j'+.°'J,+

' f K"

4-
I D''K'_ K" 2..

,,j_,_ K')'+

(III-P-B)
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where now, I) =

D [ K'_ ÷ _?'] '/_

K = J¢_¢' c_z_

I
K = Ktl

For the case of forward scattering along the specular direction,

(III-27) reduces to

This result indicates an increase of the reflected mean power with the

increase of the incident angle. Such a behavior checks with the experimental

result of Taylor [1964-I.
L J

3.4 Comparison with experiments

In Figure 3, 4, and 5 curves are plotted using (111-28) for

comparison with the experimental results of moon returns obtained by

Evans and Pettengill [1963] and Lynn et. al. [1964]. The experimental
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curves of Evans and Pettengill are obtained using circular polarization

and the results given here are for vertical polarization. Thus, the

comparison is not meaningful when the angle of incidence is too large,

say, over 45" . Comparison is also made with earth data obtained by

Taylor [1959] in Figure 6, Dye [1959] and MacDonald [1956]in Figure 7.

It is seen that there is a very definite improvement over the works of

Daniels [1961], Hayre [1961j and Hughes [1962 ]. This is due to the

contribution of the second and other terms which prevent the too rapid

drop off at angles of incidence from about 20 ° on.

It is interesting to observe that bycombining the integrated

results of the firsttwo terms in _II-28) approximating D' by D,

we obtain a term of the form (Appendix 6)

A I + k- '  Iz,

where A= [ <A ]z*W_

This term has the similar behavior as the results of Beckmann [1963]

and Hagfors [19643for that range of of for which _'o6 4< _ . It

is important to note that the rest of the terms in (III-28) are not negligible

when _ _. 30 ° (see Figures 3-7).

In all the Figures crosses will be used to indicate the final

theoretical results and circles to indicate the theoretical results with

contributions from terms higher than the first derivative ignored.

Parameter values are tabulated in Table I.
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TABLE I

PARAMETERS TO FIT VARIOUS DATA

EXPERIMENTER

Evans

Pettengill

Lynn et. al.

Taylor

Taylor

Dye

Macdonald

TYPE OF

TERRAIN

Moon

Moon

Moon

WAVELENGTH

(cm)

3.6

68

0.86

A

Smooth Concrete

Smooth Asphalt

Ocean

Ocean

Ka

X

x

24

20

133

3

13

5

900

20
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CHAPTER IV

SOME PROBLEMS ABOUT THE RADAR SCATTER THEORY

6O

4.1 Introduction

The results of the comparison between the theory and the various

experiments in the previous Chapter bring about a number of questions.

First of all, the statistical parameters of the surface appear to have

a frequency dependence. Experimental investigation also bears out

[Evans 1962J. The conclusion arrived at by the experimentthis fact

is that radar measurements yield information only about the presence

of irregularities on the surface that have sizes ranging from less than

one to tens of wavelengths. Structures which are considerably smaller

than the wavelength may never be detected and large structures may

be examined only if they are not covered by smaller irregularities. A

general theoretical proof of the above conclusion is as yet lacking, but

for cases where Kirchhoff's approximation applies it is possible to show

that these measured statistical parameters are, indeed, frequency

dependent and characterize irregularities only of sizes seen at the

given frequency. The true statistical parameters of the surface are

obtainable only when the exploring wavelength is about four times

larger than the standard deviation of the surface. Detailed discussions

on the frequency dependent property will be found in the next section.

As a whole, the moon does not have a uniform distribution of

structure sizes in all directions. Thus, it is questionable whether or

not the fitting of the moon return in the previous Chapter has any

meaning. If, however, the exploring wave has sampling filter effect,

then the result of curve fitting may still be meaningful, since this

requires structures of some instead of all sizes to be uniformly distri-

buted over the moon's surface.

Still another observation that should be made from previous

results is that the fitting of curves gets bad in general after about 35 ° .

Many reasons are, of course, possible; it may be due to inadequate

description of the surface autocorrelation function; it may be due to some

shadowing and multiple reflections, or maybe it is because of the

depolarization and polarization effects in the case of moon returns and
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perhaps imperfect conductivity of the surface. However, it is known that

the roughness of a surface modifies the scattered field far more than its

properties EBeckmann and Spizzichino 19631 . The effectselectrical

of shadowing and multiple reflections should still be negligibly small

up to 50 ° for relatively flat surface[Beckmann 1964J, The same is true
r-

of polarization[ Ament 19 60J and depolarization [Evans and Pettengill

1963J. Thus, the effect is most likely due to the use of an autocorrelation

function which does not describe adequately the surface in question.

A discussion on this problem will be found in section 4.3, where we

see that a more adequate autocorrelation function of the surface does

lead to a very close fit from near vertical to near grazing.

Since the purpose of investigating radar returns is, in this case,

to learn about the surface structure sizes, having an exact theory that

is too involved and, consequently, non-informative is not a desirable

solution. On the other hand, an approximate theory that takes care

only of main contributions and is able to provide useful information

about the surface may very well be more desirable. Since a random

surface is characterized by its probability distributions and autocor-

relation function of surface heights, the use of appropriate functions

becomes essential.

Besides the questions mentioned above, the size of the illuminated

area also presents a problem. It is clear that while structures large

compared with the dimensions of the illuminated area cannot have signi-

ficant effect on the mean return power, large undulations of sizes

comparable in dimension to the illuminated area will certainly have

some effect. In the case of backscattering, the effect will be seen

to give rise to a lower mean return power. Detailed discussion on this

problem will be given in section 4.5 .

4.2 The problem of frequency dependence of the measured statistical
parameters of the surface.

Many authors[Daniels 1961; Hayre 1961; Winter 1962; Hughes

1962; Fung and Moore 1964J have treated the rough surface scattering

problem as a statistical one and employed the Kirchhoff-Huygens

Principle to obtain an approximate expression for the mean return power.

Attempts were also made to fit the moon and the earth data to determine
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the statistical P

parameters for the rough surfaces LHayre 19 61, 1963;
-I

Evans and Pettengill 1963; Muhleman 1964 J. It turns out that the

numbers obtained for the correlation distance and the standard deviation

of the surface heights or the rms slopes are different at different

frequencies. The question, therefore, arises as to the meaning of

these numbers and their relations, if any, to the true statistical

parameters of the surfaces. In what follows, we restrict our considera-

tions to surfaces with Gausstan distribution of surface heights which

are characterized by monotone decreasing surface correlation functions.

We also restrict ourselves to cases where Ktrchhoff's approximation

Beckmann and Spizzichlno 19637 applies.

4.2.1 The effective parameters and their significance

The expression for backscattered angular power obtained by

Beckmann [ 1963] is

£°
where K = I_,I[2 <(T./A)Z _:@

= wavelength of the incident radiation

D = half the radius of the illuminated area

_(_)= surface autocorrelation coefficient with which is

associated a correlation distance, _.

now the case of near vertical incidence. [ For aConsider

discussion of the relation between structure sizes and larger angles of

incidence from the vertical see Fung and Moore, 1964J. Then the

value of K depends mainly on the ratio of cr to "_ . For a given

surface K depends then on _ alone. If the value of K is big due

to small "A , _'(_') cannot deviate from unity very much before

[- _ ( I- _C_)) 3 becomes so small that integration over larger
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values of _ gives negligible contribution to the integral. In general,

for any given small fixed E , we can find corresponding to a given

frequency a _l' O < _l < D , such that

SoD I" -K['- r(,)_

Observe that the value of _0 , as defined above varies as

frequency varies, since K is a function of frequency. If £ is chosen

small enough, we can write

I" i _' -k [j - rc_}]

Now, let ._ = I- r(t 1) •

because _l does. Let us define

coefficient, as

Then _ depends on _.

[_) , the effective correlation

o _ E ( lj (IV-3)

Substituting (IV-3) in (IV-2), we have

° -_[ ,- r(_)fl

" JoC__') _ _[-_ (,- _r,_J)- '+TJ__

where

I

CF = O" _ , the effective standard deviation of the surface.
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Since (J" of the surface is a fixed number, 0" depends on

frequency the same way 4_ does. At the frequency which allow

(IV-2) to hold, the mean power return curve obtained from the experiment

is thus seen to result by (IV-4) from an effective surface defined by _'

and _'j(_) . If _[ ' is the correlation distance associated with f,(_),

then ([' and _ ' are the statistical parameters obtainable from fitting

the experimental curve. This must be so since two points on the

surface that are farther apart than _j could not be distinguished.

This then places an upper limit on the structure size that can be

observed at this frequency. Thus, when Hayre [1961] obtained a

good fit of the moon data with _ = 9k and O" = 0.1 _ at

= 68 cm, it is actually _.' and O" ' which he obtained.

4.2.2 Estimate of O" '

Consider the factor, _ [- K"I ( ! - _ {_))] which is

unity at _ = 0 and down to, say, _[_6] at _ = _! , where b

is a positive real number and _l has the same significance as defined

previously so that f'l [7,) = 0. Hence, at _ = _l

Since q =

(IV-5)

If a reasonable range of the values of

2.5 x l0 -3 and 3.3 x l0 -4 corresponding to

vertical incidence, the order of magnitude of

_x_ £- b ] is between

6 _ b 4 8, then at near

¢" ' in terms of _ is

(T' _ 0.21 -A
(iv-6)

The above relation together with _ ' associated with f,{_) gives

an indication as to what range of structure sizes are being seen at a

given frequency, i.e. it shows the frequency sampling effect on surface

structures. It also explains why a small 0" to _, radio will fit the
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experimental curve while the actual 0" of the surface may, in fact,

be much larger than _ .

From the discussions above, we conclude that in general,

the statistical parameters obtained by fitting the experimental curves

are the effective parameters and they do not equal to the actual parameters

of the surface. They characterize the portion of the structures on the

surface that have been seen at the given frequency. The effective

standard deviation of the surface will, however, coincide with the

actual one when the wavelength used is of the order of about four

times the actual standard deviation of the surface. To illustrate the

above ideas, let us consider the moon data at "A = 68 cm. The best

fit to the angular power return curve using only the zero order term

in the mean return power expression gives a value of 110 for the

parameter, [ hi. / ( 4-11 _.L) ] z [Evans and Pettengill 1963J.

This leads to the relation

= | _ _. _. a. meters (IV-7)

The result of this paper shows that the relation should be

_' : I _' _- 0" _" (IV-8)

Using (IV- 6) we get

9,.' =i 7_r ( o,2l K o.&8)_ 3.96 meters

If, on the other hand, one believes that _ and ff

values, then the following result is obtained for

value of 1000 m is used for 0" of the moon,

This value of

are not effective

when a reasonable

is larger than the circumference of the moon[
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4.3 The problem of angular dependence of the mean return power and
surface autocorrelation function.

Radar returns from terrestrial and lunar rough surfaces have been

explained in part by many theories. As yet, however, there is no theory

that can explain satisfactorily the variation with angle of incidence of

the observed signals over the entire range from normal to near grazing,

although attempts have been made in this direction [Muhlemanvarious

1964; Beckmann 1964]. As we mentioned before there are many factors

that effect the return power at large angles of incidence. Up to the

moment each explanation is given in terms of only one factor; Beckmann

[1964] considered shadowing effect and Muhleman[ 1964 ]assumed the

existence of effective slopes. A rigorous theory that takes into

account the vector nature of the wave, the depolarization effect due

to rough surface scattering, the shadowing and multiple reflections

and the inhomogeneity and imperfect conductivity of the surface is

definitely lacking. However, it may not be desirable to have such a

theory unless it can provide us with more useful information about the

surface and in a practical way. With this view in mind, we concentrate

on the question of proper description of the surface roughness and try to

obtain an approximate result that takes care only the dominating returns.

Our previous discussion has shown that the effective surface-

height autocorrelation function is wavelength dependent, although the

actual function is of course a property of the surface alone. Various

observations also indicate that scattering behavior of rough surfaces

a wavelength variation of 9_z to 4'* [Janza 1963J. Part ofhas

this wide range is due to differing types of wavelength variation at

different angles with the vertical. Part of the variation quoted for

experiment is undoubtedly due to nonidentity of the illuminated areas

and to experimental difficulties. Another point that needs to be made

before we can arrive at an effective surface -- height autocorrelation

function is that the effective standard deviation of the surface is angular

dependent. To see this, consider the power returned to Q due to an

spherical wave (see Figure IV-I). From the work of Davies[ 1954],incident

the power Is given by
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PF

= P_6 Af c_t_oCff

Jf f '
_v-9)

where Af is the receiving antenna aperture

Pt is the power transmitted

G is the antenna gain

[_ is the slant height

t'k is the wavelength of the transmitted wave

is the random function of position denoting the height
of the surface

Z

e

e'

N

i

Figure IV- 1

Disposition of radar and surface
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I

Let = +'t
!

and e = e + • Then _[V-9) becomes

5=

(IV- 1 O)

To find the mean power, the quantity

must be averaged with respect to an appropriate density function, which

is usually assumed to be Gaussian. It is important to observe that

the quantity to be averaged is given by (IV-11) and is not

(iv- z)

the expression used by Davies and others. However, when the correlation

distance is small compared with the distance required for significant

variation in coso£ , (IV-12) is a good approximation; i.e. it is

reasonable to approximate cos _ ' by cos _ . The average of (IV-12)

with respect to a Gaussian joint probability density is then given by

where ([ is the standard deviation of the surface heights and r is the

associated correlation coefficient.

Since the variables involved in averaging the phase term of

(IV-II) are Z Ox_a_( and Z' _mu_' , not Z and _.' ,

the product O- _ o¢ must be considered as a single quantity rather

than as the product of two unrelated quantities. We define this as

the effective standard deviation of heights about the mean,

I

= 4 c =C (IV-Z4)
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The autocorrelation function must also be defined in terms of the

effective heights Z, ce_ oC and z' c_ _ ' . By definition it is

therefore

Z _ _' z' e_W'
(IV-15)

where the bar denotes the ensemble average. As with the averaging

process involved in determining (IV-13), it is often possible to consider

cosM as essentially constant over the region of correlation, so

that the local average involved in (IV-15) is given by

Thus, the radar return is determined by an effective height

above the mean surface and its statistical parameters, not by the

actual height and its statistics. The effective height includes both

the properties of the surface and a parameter of the experiment, the

angle of illumination. For rough surfaces phase coherence of the signal

is lost over a sufficiently short distance so that the bias factor cos0C

may be considered to be the same for all elements of the population

involved in the local region over which the averages must be performed.

Hence, the averages performed involve the height as the random

variable, with the cos oC as a constant multiplier.

Application of the theory often involves consideration of returns

from a wide range of angles, either separately or as elements of a

power superposition of random contributions from different angles. In

such considerations, the fact that all measures of height must be

multiplied by cos oC must not be ignored. It is unreasonable to

expect a correlation coefficient for z alone to be effective in describing

the ground in such a theory. In the next section a correlation coefficient

is postulated in which the effect of the cos _ is taken into account.

4.3.1 The proposed effective correlation coefficient.

Properties of the surface enter the power return expression

only through the correlation function and the standard deviation. Thus,

any attempt to determine the properties of a surface that will return a
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mean scattered power must be concentrated on these two quantities.

The standard deviation is a single number to be determined, whereas

is a function. Thus, a form must be assumed (or determined)

for this function, and parameters of the function ascertained so that

the theory gives the desired form for the return.

Previously postulated correlation functions have involved

simple one- or two-parameter expressions. Because of the wide

variability obtained from most measurements of the earth performed from

aircraft, this seemed accurate enough, although no one has claimed

to have a function that agrees with observed variation of scattering

with angle of incidence over a wide range. The usual statement is

that different theories are called for in different ranges of angle of

incidence.

A popular correlation function, which fits the function obtained

along simple contours on terrestrial maps reasonably closely, is the

exponential _ = _ _- _ / L ] • This is a one-parameter function,

for the only parameter is the correlation length. If the correlation

length L is large, the surface structure is presumed to be large.

If the ratio L/_" is large, the slopes are small, and the return is

much stronger near the vertical than at angles of, say, 30 ° . If the

correlation distance is small, the structure is small, and the signal

is weaker at normal incidence than for large structure but stronger at

large angles with the normal than for large structure.

It has been observed in many experiments that the value of

correlation distance L that gives a good fit to the scattering curve

measured near-normal results in a theoretical scattered signal at

middle incidence angles that is much weaker than the observed signal.

The value of L that would give the observed signals at middle angles

is much less than that required to fit the observations near normal.

Figure IV-2 shows typical sample exponential autocorrelation

functions that could be made to fit the two ranges of an experimental

scattering curve. Here the larger correlation distance, which fits

near normal, is L, and the smaller one is _ . The entire significant

contribution of the middle-angle autocorrelation function occurs for

small values of _ so that _x_ [- _/LJ is essentially unity. This
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suggests that the choice of an autocorrelation function that will fit

observation over a wide range of angles demands careful attention to

the shape of the function at its very beginning, for a steeper decline

of the correlation for short distances is required to obtain significant

returns at middle angles.

Lunar measurements have been made more accurately over a

wide range of angles than terrestrial measurements [Evans and Pettengill

19 63 ]. The rapid decrease of the initial part of the return clearly

i_

suggests that this part is due to relatively large, flat facets. At a

later time delay the return is slowly decreasing, which implies that

the surface appears to be rougher or the contribution is from smaller

structures. At a still later time, we expect only structures with

significant slopes to contribute significantly, and these are likely to

be still smaller. Thus, the return curve suggests, in accord with

the above discussion, at least three different sizes of scatterer. A

correlation function that behaves for small lag distances like one for

a very rough surface, and behaves like one for a somewhat smoother

surface with larger structure, and finally behaves like one for a surface

with large, relatively flat structures is called for.

Returns at large angles from small structures alone would be

due to an exponential correlation function having a very small correlation

distance. The intermediate returns from intermediate angles call for

an exponential with intermediate correlation distance. The large returns

at small angles call for a large correlation distance.

The following correlation coefficient is suggested to account

for these various sizes of structures. In fact, it has four components,

accounting roughly for the angular ranges 0 ° to 20 ° , 20 ° to 50 ° , 50 °

to 80 ° . For motivation to the form of _(_ ), seeto 70 ° and 70 °

Appendix 7.
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where I< = 4 6"¢' _"

the effective standard deviation of the surface heights.

_k = wavelength

L, L , D..', _"

c.a,_._
are the correlation distances of various structures

are appropriate constants.

The assumed autocorrelation function may be interpreted in

terms of a multi-point fit to a continuous spectrum of sizes of structures

on the surface or a description of several discrete sizes of surface

structure. The former interpretation seems to be a more reasonable

one, although no distinction can be made on the basis of the data.

Let us now write (IV-16) in the form

f(_,) : e + K#_ -_

. { ,..if,i-,<,(-,_1/,_

H-
-J_i,4,

¢.

+ _ -_[K C_-'_14"

- e

;"/'-)] }
(IV-I 7)

From (IV-17) it is seen that the log term is zero both when

is zero and when _ approaches infinity. Further examination shows

that the effect of the log term is to cause the f_ (_) to decrease
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faster for a range of small values of _ . This, in fact, is a desirable

effect, since smaller structures decorrelate faster, and thus they have

been taken into account with this correlation coefficient.

A plot of f'£_) with respect to _ does not show appreciable

difference from a plot of _ [-17_1/I... ] . However, if we plot I -

and compare it with I - z,_ [-!_1/L ] (see Figure IV-5), we

see that the difference is tremendous for small values of _ . Since

the integral in (IV-18) is negligibly small except for small _ , it is

clear that such an autocorrelation function produces quite a change in

the return power as compared with a simple exponential autocorrelation

function.

4.4 An approximate mean power return expression for backscattering
and comparison with experiments.

From (IV-IO) and (IV-13), the expression for the mean return

power is

 V-lS)

where the limits of integration are as follows [Davies 19543

_D

.- _ ,_

Making use of the fact that

the integrated result to be

G

_V-Z9)

for the moon is large, we obtain
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,,, - 3A.

where P,, ¢?

(w-2o)

The theoretical curves obtained from (IV-20) are compared with

the experimental results reported by Evans and Pettengill for both

_. = 3.6 cm and _ = 68 cm. These are plotted in Figures IV-3

and 4. The values ofA ° , A 1 , A 2 , andA 3 are obtained by trial

and error, and so are the constants c, d, f and g. This last set

of constants denotes the relative levels of the terms in (IV-20). One

of them, therefore, may always be taken to be one. Comparison is
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also made with the experimental results of Lynn et. al. [19641 at

= 8.6 mm in Figure IV-6, T  'o l19491,nF,_ure IV-7, Dye
.J

and MacDonald [19561inFigure IV-8, Grant and Yaplee in Figure IV-9.

L- _J &. -J

It is worthwhile to compare the results obtained here with the

results of a single exponential obtained in Chapter III. The theory of

this chapter gives better fit in all cases. However, the results of

Chapter III are in many cases good enough. The question arises as

to why is this so. For a continuous distribution of structure sizes

which is approximately linear or close to being linear, it is reasonable

that a fairly good result is obtained by a single exponential-approximation

to its correlation function. However, if the distribution of structure

sizes is discontinuous or continuous but with large variations, then

a single exponential Cannot be a good approximation to the correlation

function at a frequency which is sensitive to the part of the distribution

function that possesses either a discontinuity or a large variation. Thus,

in Figure IV-7, both theories give pretty good fit at Ka band, but at

X band the single exponential theory does not give as good a result.

In fact, the value of A that fitsthe first portion of the experimental

curve cannot fit at large angles of incidence from say, 30 ° on; whereas,

an intermediate value of A, the A-value that lies between A, and A 1 of

the theory in this chapter, gives better overall fit but poorer at small

angles. This indicates that a single exponential is, as expected, an

overall approximation to a more complete autocorrelatlon function. This

fact is also clear from other fittings of experimental curves especially

those of Grant and Yaplee in Figure IV-9 and the 8.6 mm moon return

in Figure IV-6.

Observe that a larger return at large angles of incidence may

be interpreted as follows- there are structures of proper size present

that are responsible for it; while a smaller return may mean absence

or insufficient number of structures of proper size. Now the use of a

single exponential function for the autocorrelation function involves a

parameter, the correlation distance, which is an average obtained with

all sizes of structures taken into account. However, the average is of

such a nature that the effect of big structures dominates. Thus, it

cannot account very well for small structures when there are a lot of

them nor can it indicate their complete absence when there is none.
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This explains why a single exponential theory may give a larger or

smaller return than the experimental results. It also explains how

the more complete autocorrelation function introduced in this chapter

helps to give a clearer understanding of the surface structures.

In Table II parameter values for fitting the experimental

curves using the theory of this chapter are tabulated. In Table III

values of the parameter A from Table I and those of parameter Ao
from Table II are tabulated side by side together with their associated

correlation distances for ease of comparison. The correlation distances

are calculated under the assumption that the effective standard deviation

at a given frequency is 1/4 the wavelength.
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TABLE III

COMPARISON OF PARAMETER VALUES OF A IN TABLE I

WITH THOSE OF A IN TABLE II
o

TOGETHER WITH THE ASSOCIATED CORRELATION DISTANCES

78

Experimenter

Pettengill

Evans

Lynn et. al.

Taylor

Dye

MacDonald

Terrain

Moon

Moon

Moon

Smooth

Concrete

Ocean

Ocean

Wavelength A A L°= _ ;[_
: 4

(cm) o (cm)

68 110 133 560

3.6 18 20 12

O. 86 1.8 3 0.905

Ka 10 13 2.48

x 500 900 52.6

24 10 13 59.5

4

(cm)

614

12.6

1.16

2.8

70.6

67.7
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FIGURE IV-2

SAMPLE EXPONENTIAL AUTOCORRELATION FUNCTIONS
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4.5 Effect of the size of the illuminated area on radar measurements

f- 1

Experimental evidence |Evans 1962| shows that when large

structures are covered with small structures on top of them, only the

small structures can be detected. Using the notion of a composite

rough surface Beckmann [19647 showed that If small structures have

larger rms slopes, then it is, indeed, the small structures that dominates

the scattered return signal. The exact nature as to how the return is

affected by large undulations comparable in size to the illuminated area

has, however, not been treated. We attempt below to consider the

special case of a Gaussian surface characterized by an exponential

correlation function of surface heights at near vertical incidence.

Consideration is also restricted to backscattering.

The backscattered mean return power due to an incident plane

wave Is LBeckmann 19 63 p. 87.]

P = K' e (IV-Zl)
1°

where of is the angle of incidence of the Incident wave relative to
mean ground plane

_[_[)= correlation function of the surface

_l = constant of proportionality

Since the large undulations are assumed to be of slze comparable

to the illuminated area, the mean power given by (IV-21) is obtained as a

mean only over the small structures on top of these large undulations

(see Figure IV-IO).

mean ground plane for

large undulations . '\

_illuminated area

Figure IV-10
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A different mean ground plane is needed if we want to calculate the

average return power with respect to these big undulations. This can

be done by writing (IV-21) as

(IV-22)

and average over

_ (--_/L)
we get

8 (see Figure IV-IO). Taking _ (_) to be

• where L is the correlation distance and integrate

P

where

Then•

(IV- 2 3)

K' L _

K"= (2_,_-)÷

A = ( 2&(r •

Assume lel < 3° and I /_ (_'_()z/

(IV-23) can be approximated as follows

c._*(o-_,z) I< L-

P_ f [L- _ ,4 K z e'_'
C'_ir' (.e "tK,) _ + 12
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J

(IV-24)

If the large undulations were not present, the approximated

power expression is

Comparison of (IV-24) with (IV-25) shows that the major effect,

T , due to the presence of large undulations is,with higher order terms

neglected,

T -- - z _ 2_06) (IV-26)

If we assume that the probability distribution for 8 is known,

then the change in the mean power return due to these large undulations is

where m 1 and m 2 are the first and second moments of $ respectively.

It is thus seen that the large undulations will cause a drop in the mean

return power.
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The investigation in the previous chapters presents a complete

theory based on Kirchhoff-Huygens principle on radar scattering together

with some of the associated problems which help to clarify the physics

of the radar return problem. A rather long expression, (III-24), was

obtained for the mean scattered power in all directions which can,

however, be simplified in various special cases. Comparison with

experimental results then led to the investigation of the frequency

dependence of the radar-measured statistical parameters of the surface

and a more detailed autocorrelation function of the surface-heights,

f c -i l/L

(I-

(see Eq. IV-16).

The nature of frequency dependence of the said parameters was

shown to be such that in general, only the effective parameters are

obtained through fitting the experimental mean power return curves. The

true parameters of the surface are measured only when the exploring

wavelength is about four times the standard deviation of the surface and

when the near-vertical incidence data are used. At larger angles of

incidence the smaller structures are comparatively more effective and

their character can be examined through the use of the more detailed

autocorrelation function mentioned above. This novel correlation

function was shown to give a more adequate description of the surface

especially when more than one size of structures are present on the

surface or when the distribution of structure sizes is not everywhere
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continuous. For the case where all the structures are about the same

size, this correlation function will reduce to a single exponential.
With this more detailed autocorrelation function and the

knowledge of the nature of frequency dependence of the measured

statistical parameters of the surface, estimates can then be obtained

on these parameters. This is the first time estimates are obtained with

frequency-dependent effect taken into account; this is also the first

time smaller structures on the surface are distinguished and their

sizes estimated. Other works cannot single out the effect of frequency

dependence nor can they tell the presence of smaller structures. Thus,

no meaningful estimate was possible, and those works can provide,

at most, an explanation.

Since knowledge of the structure sizes on a given surface is

the most important result that we have arrived at, we summarize below

as to how estimates are obtained.

Consider a set of parameter values obtained through fitting

experimental curves by the theory in Chapter IV. From Table II we

have

Experimenter Terrain

MoonPettengill

Taylor

Lynn et. al.

Smooth
Concrete

Moon

(cm) I A° A1 A2

68 Ii0 0.25 0.011

3 50 O. 27

0.86 1.8 0.05 0.02

_.(cm) _t(cm)

560 26.7

16.7 1.22

0. 905 0.151

5.6

0.0955

where the _ ; e4 _ = D, £, .Z, are the correlation distances

and are obtained through the use of the argument on frequency dependence

of these measured statistical parameters of the surface, namely, O" and

_ . The relations used are from Chapter IV,
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The parameters, _" ) _ then characterize the largest structures

seen at the wavelength, A.. Since 0" is determined mainly by

the large structures seen, the ratio 0"/_ o can be taken to be the

rms slope in accordance with the definition of Evans and Pettengill [19 63 ].

Presence of small structures is indicated by _ , ; >/ I but 17"/2;,

_ I does not seem to have any meaning. This is easily seen in

view of Figure V-1, where the largest structure drawn are the ones

characterized by _o and the smaller structures are the ones

characterized by any one of the _;tA , _ >. I •

mean ground plane

4

Figure V-1

A surface with two types of structures

It is worth emphasizing that the rms slope defined by 0" / 2o

is not the actual rms slope of the surface, since the effect of smaller

structures characterized by _t , ; >- I , have been ignored in

its consideration and 0" , _.0 are in general, frequency sensitive

parameters. What is more, the rigorous definition of rms slope is

{ C _Z/_,)2. I j/2" [Felnsteln 1954]which does not necessarily

coincide with O" / le •

Since the main results are derived from the Kirchhoff method, they

are obviously invalid where the method does not apply. Hence, future

work on the same subject but for cases where the Kirchhoff method is

not valid is of great Importance. This can be done by either improving
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the tangent plane approximation in the use of Huygens principle or

employing a totally different approach. When necessary, the exact

methods discussed in Chapter II may be used. However, many curves

have to be plo£ted using a high speed computer before any physical

insight can be gained.

A preliminary study on the effects of the size of the illuminated

area on radar measurements at near-vertical incidence comes out with

the result that the presence of large undulations comparable in size to

the illuminated area will cause a drop in the mean return power.
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APPENDIX 1

J

PROOF OF KARHUNEN-LOEVE THEOREM

Theorem: A random process defined by the sample function

Z(x,y) continuous in the mean on a closed set, D,

has on D an orthogonal decomposition,

with

.k

%]-

z.. : ["4

if and only if the _k mn are the eigen values and the _._. (x,y)

are the or_honormalized eigen functions of its correlation function.

Then, the series converges in the mean on D uniformly. ONe give

a proof below for a real random process).

Proof: 0 Show _)_... , _ ._.(x,y) are the eigen values

and elgen functions of the correlation function.

J.

inn
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= Z X.. %.cx,_)
%-

This shows that "A p_ 's are the eigen values and the

fc_/; _',_'_ ?,ic< _/,_ _'_d'

_Sp_. (x, y)'s are the or_honormalized eigen functions of its correlation

function, _ (x,y; x',y').

@ Using the fact that _N. (x,y) are orthonormalized eigen

functions of _(x,y; x'y'), we shall show that the random

coefficients are orthogonal in the sense defined. Also,

9k"% _. [Xj _) Z_. converges to

Z(x, y) in the mean.

Then,

Let us define the random coefficients Zp% by

"Z ..

we have
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since _,_, =0 is not an admissible eigen value.

To show that _- _'_

Z(x,y) in the mean, let

m't,_ r'ln

A direct calculation shows that

_.. (_,_) Z.,. converges to

_'" _'l '"" Arl

-,- . C_,#).

Hence,

rq!

Now Mercer's Theorem [Courant and Hilbert I p. 138.]states that
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Thus,

m
D

Hence, by definition

Zc_,O)- _. g.,n
_2.

mn
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APPENDIX 2

ENSEMBLE AVERAGES

below The ensemble averages of the following quantities are found

fl) ;_sz

_ /_ ;,_ez
"" e

Z _

/ - ------

e 2o_ d_

e

: l2

Since

(2-1)

(2-2)
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Hence (2-I) and (2-2) implies

" =I)(Recall, (;._,_

-i ;L

r**j

(ii)

Z,ze ;&ez = _ h._

=_o_ _"o_'_I__ _ _-__'_t

i,,.1 n _ i'vl tl

(2-3)

where = -_
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(iii)

e

= ,.,i, [-_ z c2° ]

where

o" = o-c_, _} _ or' --- o" c,:', _,)

(2-4)

For stationary random process, O" is a constant and (2-4) becomes

(2-s)
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(iv)

-I

where
2M. e ;_a(z-zgj

w

-.L
,t

;_.s Cz - z')Z_. e

: i_t_{_-_=__ , ]

(2-6)
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For stationary random process,

(2-7)

, Z* '
where _£ = XJ-X. , _ = _ (_ _ ; '_ )

Similarly,

;_s¢z-z')
Z_.' e

For stationary process, (2-8) becomes

(2-8)

(z-o)

(v)

where :Z C= z_
Z.. z_ e

__ _ i_rI_;c_z,_]
= ,le.. xc_%
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.. )

•". Z_Z,' e;t_Cz-a9

,f "=4' _°=_

llb

_8_.__

(2-10)

For stationary process

,ke EZ- z')
ZzZ_'¢



A. 3-1

APPENDIX 3

TRANSFORMATION OF COORDINATES

Since we want to integrate over the illuminated area, it is

convenient if we express our x,y coordinate in terms of some

appropriate coordinate S, _" [see Figure A-l]

Figure A- 1

Geometry of the radar problem

We can accomplish this by going in two steps:

terms of _ and 4 and (ii) express

and _" . Thus, from Figure A-l,

(i} express x,y in

and @ in terms of
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f= _-_

| L

where A = cosc_'o

B = sin d'o

The fact that
COS ¢ =

_'- A_ will be

shown later. Now (A-3-1) and (A-3-2) can be written

5 (A-3- 3)

%

_S B_Y

B

4_

k

k
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Thus, the Jacobian is

J _..

- a4,_¥
B

B

L

L_

_ _L _ _
" B

. )

(A-3-4)

The element of area ' I: I__ _ _ _ _ _"

Let _! ---- _* "_
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_c_._) - ,__ _+ _)..1
J

.I_
B

l

I

= '-I_ __-_¢_/) +_5

. , , . _f)__yI

_-3-5)
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.I
2

cs+_) _¢o<+.i ) _ c_,t ) ,e_..coc÷_.).
:ZB _
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I -.2__

(A- 3-- 6}
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If we consider the case of narrow beam and short pulse problem

with sufficiently large angle of incidence, then we can choose our

reference axes to be such that

_ Ti'/2. (A-3-7)

This choice implies r _ 7[/2.

(A-3-5) and (A-3-6) becomes

Hence the Equations, (A-3-4),

J =a _ -__r_ = ¢_
(A-3-8)

(A-3-9)

+ k_ _ _? _ _ ]

(A-3-10)
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Note that the choice of reference leads to

A= O,

B=I.

To find _ in terms of S and _ .

hi._.
I

Figure A- 2

Geometry for relating to S and

From Figure A-2• we have

(A-3-11)

Also• ,.. _z z

Noting that
4.

S - , So = --/u----

from (A-3-11) and (A-3-12),

(A-3-12)

• we have
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I + I _ 2_"_ I"

e-,_F- 0--_04boo('°
c

_C_'o (A-3-13)
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_) Consider

APPENDIX 4

EVALUATION OF INTEGRALS IN (III-23)

(i)

Where

/<I -J" _/

This integral can be written as

f_ _e'_o_c_ _,_o_

(2)

Now consider the following integral

-(_- _ _ ; _

l
I

i_v Ae' (3)
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Let _'= (z÷z")/z

Then (3) becomes

_Z

n
_Z,

and de'- _z/r_..

-_;Z ,4z

where Z, [plus sign)

Z z (minus sign)

Residue due to Z s aside from the factor

(Z- Z,)L z-z,

-; (z- z.) _ _ ;zz (z- z,)
( z -z,) ÷ IZ =Z!

= ; (z e z,) ]

J
Z= Z,

t n (¢ - ",_/"

Thus (3) becomes

2q i Residue
_ argo /

= _'n'no,.'[._:' _-_"Cf +
(4)
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For the case, n = 0, the limits for the variables "It , and _' and

consequently t_ will give rise to a delta function behavior. However,

these limits are approximate values. Actually, integration should be

carried out over a finite area. Thus, a more accurate result is to go

back to (22) and for an illuminated area of size 22. x 2_ we

have instead of (3)

-:,_f ;f,.E

(s)

Assuming constant gain over the illuminated area and negligible variation

for S in the lntegrand, we have then some trivial integration over the

variables, S and _". The final result for this term in view of (4), (5),

and (2) is

Bc -so,4.e-K
+ Z -'-'-- _7 F}o. L-e

_=1 n!

(6)
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where E = _ _,_ 6"_ and note that

(II) Consider the integral

where

: -_, ;ztB0 a
-<

¢I=@

(8)

The integral with respect to _ and

= _0 de'

cL

(9)

Transform onto the unit circle we get

_I z - z "_ dz_ )
(Z I o+I
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where

(z'- I) c17-,

(z- z,)_ (z - z.)"

ntl
el, ± (n.+l_-.-.-<-- )a t

_-_

Residue at Z = ZI is

IZ, = 7,I

4

-q

ZZ.- /

(z - z,)3
Z=Zl

m

I
i w

r,+l a

+ , 3

Hence (9) becomes --.2iT _ ,f'

(,-_-) + ,,
The final result of (8) then becomes in view of (11)

z _o¢ 0,. nl
ri=O

(10)

(11)
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n/

• (12)

(III) Consider the integral

i

(13)

where (_ = 4A_z_

(14)

In (14) the value of the integral,

f ;z fz'-z + z°')_= _ tz- z,)'<z-z,)" -_ c,_-r,_)_

r ;( z _ - _.z" + t) az
=_ (f-_{):z cz-z,?(z-zO_

(1s)
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where Z, _Z_ are as defined in _I)

Residue at Z = 0 is

m

[

(i6)

times residue at Z, = 2! gives

-;[(Z_-|)[_Z/(Z'Z*) -(Z*-I)(SZ-ZL)]IZ2(Z_ Z,) 3
Z: Z a

=?[ _(a'-,) [z*Cz-_zM, 3Cz- z-_)_]
- z"c_.' _, if- -.... ][ Z =ZI

..z_(z -_z.) + _z- z.).
Z - 3Z, _Z - Z-

(z- z,)_ z'(z-z,9

. 2S/_z+z_..).....
[z,- z_) 3

-I

gZ l - Z, ]

zi_Cz,-Z,)_ J

Z!
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n+l

,I _ ,_+._.._o_I

(17)

' Iwhere _ - (__ _'I , _ _._:L

Thus (15) is given by _.TI _ times the sum of the residues at _, = o

and Z - 71 •

Further integration with respect to S and t[" leads to the

following final result for (13),

n÷l I

p., .... r_.i- II'-i_.

2
(18)

+(, f-_.- n+'-"21-I-
_L



(IV) Consider now the integral of the form,

A. 4-9

= g;! (, q'_ ..qoe_-K
X

/_-"0

• _g _ket

=/C,C,q"_o e "<

__ ffffc_ = tj/jj, o
acd_

fir !

Let us consider first the integration with respect to 8 '

,T1

[ .+1 _'o O' _

Z ,,Z_ )2 _Z

zl Z

J

l_ eo

(19)

(Z-z,) (z- z 0 z _

(20)
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Residue at Z = 0 is

-I

[ cz- z,) Cz- z.)cz'. ,).tz -(z'.,O"[cz-z,) tz-z_ _, -1(z - z,)• cz - zO*
z=#

; Z I "f Z_ (21)

2or-;_) z,"z)

Note

2 Cn..,-i)
ZI+Za =-

z,z, - - el'"+ _')

P-;_

Hence (21) becomes

2c_-_p

(22)

Residue at Z = ZI is

-t" (Z1÷+ 2Zl* _ I)

2 <9-_) z,_cz,"z,)

[ Zta Z
+

i ]

z,_(z,-z.)J
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- -c _ _f-!;)

_;_-I- _ L._'
q. 2 [ t'n-.._'__" Y",_o,_- 'r f_* '_"3

w

•_[ C,_+,)%,_'-(r_._-y-)3v,

.(r_-o_-,-,)• dc,,,)'¢_',_9]
(

Final result for (1 9) after further integration with respect to S

is

and

3)

+ _J_ ( [e'-¢_t03_ (24)

where e' = [c,+0_+
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APPENDIX 5

THE LIMITING VALUE OF (1II-24) AS

"_ _/'Z ' O( = 0 AND ,,_, _"_ O.

Consider terms of the form

[_'- c.,,) J_- 1:-(°*,:>÷ _*o ,/,,

-_) 1_•. [ _t _o_,, [ on,I) - 2<_'J

I , 2.'" 4/_ _'-_,,),1 , - _e'J=
-i

(1)

'I - = n_-I

t
(2)

From (I) and (2), (III-24) becomes in the limit

n='l ,_: n! I
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_°f' 'tn'--T zC..l_ +. 20_÷I)

_=_ _'! = (n,z) _"
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APPENDIX 6

EVALUATION OF (III-23) FOR THE CASE OF LARGE K

:6) Consider the integral

where

K = _."¢'*C e_e+ e._ocJ2

The two integrals with respect to and 0 Is

(1)

Let

_o 2r(

= dO j

(_ __,p_'-_ _e' )_

dO' - dz @t-T_' _ =(z+z')/2

(2)

_e -Cz z,/z
)

(2) becomes

-[zAz

(¢-;_)_(z- z,)'Cz-z_)"
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where

k_
±

Residue at Z = Z I is

_z (;. Lkf
_=Z I

4

° K
¢U

The integral in (2) is then given by

and the final result for (1) after further integration with respect to

S and [ is

KI Ao _ CT 2_., _ _¢_
z _'_ IZ_'t_c_ _ T)]';_

(4)
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where ]_

Note the way this integral is evaluated is the same as the corresponding

one in Appendix 4 with n replaced by K and leave out the factor

_-'K f I¢'".
rl=D rl I

Thus, we need not do other integrals,

but only have to use the results of Appendix 4 accordingly.

A particular approximate expression for backscattering for this

case when K >7 i is as follows

+

+ A'
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2_

-f (s)

where
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APPENDIX 7

MOTIVATION FOR THE PARTICULAR FORM OF THE
SURFACE-HEIGHT CORRELATION FUNCTION

The result of DanielsF19611 shows that the backscattered

power and the signal correlation function is related through Hankel

Transformation, i.e.

where p([K) is the average return power

_ (_[) the signal correlation function,

K

_- =

_=

)x=

rt._)=

J, =

=exp _-k_ [I -

standard deviation of the surface

a./_,

wavelength

surface-height correlation coefficient

zero order Bessel function

Thus, the inverse transform gives

_'_(_)-- JoCa4<_) L e..,_%(]

,.t._ "

-IC[I-rc_)] - _[ [m

0

(2)
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It is, thus, seen from (2) that the surface-height correlation

coefficient should have the form as given by (2).
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