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Abstract

The purpose of this study is to investigate possible explana-
tions of the observed ESR spectra in the rutile-type crystals of Sn0,,
Ti0p, and GeO,, with vanadium as an impurity. The observed electronic

ﬁf tensors cannot be accounted for by the simple crystal field theory,
and there is ambiguity in the energy level diagram. Molecular orbital
theory is used in a semiempirical calculation with the linear combina-
tion of atomic orbitals approximation (LCAO).

The crystal region consisting of the vanadium ion and the six
ligand oxygen ions is selected to be studied. The atomic orbitals to be
used in the LCAQO approximation are chosen. These are the nine vanadium
3d, 4s, 4p orbitals, and the twenty-four ligand oxygen 2s, 2p orbitals.
It is argued that the hybridization of the oxygen orbitals is needed to
account for the influence of the rest of the crystal, and these hybrid
orbitals are constructed. Then it is shown how Group Theory can simplify
the secular equation and formulate the selection rules.

The use of group theory requires the construction of LCAD trans-
forming according to the irreducible representations (I.R.) of the D2h
group. These combinations are constructed by the method of projection
operators.

The group overlap integrals are calculated, and the valence state
ionization potentials (VSIP) of the oxygen and vanadium ions are

estimated.

ix




Then the reduced secular equations are solved using the VSIP as
parameters. The best solutions are selected by using as a monitor
either the vanadium charge or the %, tensors. The results are compared
and the need of a reduction in the original estimate of the 4T -elec-
tron VSIP is recognized. Also, it is concluded that charge self-consist-
ency alone is not adequate in selecting the best solutions, but rather
the detailed charge distribution among the orbitals must show self-
consistency.

Finally, the following results are given:

(a) The ground state in all cases is of the form - o<|17”>+§\>§‘;y"v>
where .10<0< <.20 and ﬁ':ﬁ.99.

(b) The pertinent to the 2} tensor levels are in order of increas-
ing energy, the xy (filled), xz (filled), yz (filled), xZ-y?
(ground state with one unpaired electron), yz (empty), xz (empty),
and =xy (empty).

(c) The small admixture of the |3?$ state in the ground state is
relatively important in calculating. Zﬁ&céll .

(d) The ground state in (a) can explain the anisotropic part of the

hyperfine tensors.

(e) All obtained results seem to agree with the recently observed

ESR spectra of Mo5+ aad W5+ in TiO,.




CHAPTER I

INTRODUCTION

The purpose of this study is to investigate possible explana-
tions of the observed ESR spectra in the rutile-type crystals of Sn0,,
Ti0,, and GeO) with vanadium as an impurity.

Gerritsen and Lewis1 were the first to study the paramagnetic
spectrum of vanadium in Ti0,. They attributed the spectrum to a single
3d electron of tetravalent vanadium occupying a substitutional site in
the crystal. The experimentally deduced Ck’ tensor ( €&X.= 1.915,

ég = 1.913, O = 1.956) had almost complete axial symmetry

Y 2

about the z-axis, and the application of the theory of Abragam and
Pryce2 was expected to give the splitting of the lower triplet, ‘ti
However, calculation revealed inconsistencies, since the calculated
splittings differed by a factor of two-and-a-half depending on whether

%“: C}z‘ or %_I_: %X:J %y was used. They commented that
perhaps the rhombic component of the crystalline field was responsible
for making the theory inapplicable. An attemptrby Ré140 to account for
the iy and A tensors of V4+ in rutile by considering the rhombic com-

41
ponent of the field and the covalent bonding proposed by Stevens  was

3
not successful either. Later, Marley and MacAvoy observed the ESR




spectrum of vanadium in Sn0,. Again the ESR spectrum was attributed to
substitutional vanadium, but the %' tensor showed nearly axial sym-
metry around the Y axis; they tried to interpret this by the improb-
able assumption that the doublet e1x lies lower than the triplet

‘tjv B In 1963, Kasai4 suggested that the rhombic part of the crys-

talline field has an important role in splitting the lower triplet

kS 7
It was also argued that the xXo=Y state would be the

i)

lowest due to the stabilizing effect of the two tin ions lying on the

5
y -axis close to the vanadium ion. In 1964, From, Kikuchi and Dorain
investigated the large superhyperfine structure in SnOZ:V. They con-

curred that the ground state is x?ﬁ-~yz' and that the next level is

the state . X2 . The latter was arrived at by fitting the observed %r

values to the usual crystalline field formulas:

Ng =20 . A

%x Eyz % EX}
However, a point-charge-crystalline-field-type calculation showed (see
Appendix G) that the levels are in the order xk_ \//27>(2,\/2 , and xy
The same year, Siegel6 observed the ESR spectrum of vanadium in tetrag-
onal GeO2 and obtained values comparable to that in 'I‘iO2 and equally
difficult to interpret.

Since Sn02 is an important material in the production of con-

ducting glasses, and GeO, exhibits both the crystalline and amorphous

state related to glasses, the study of the electronic behavior of the




vanadium impurity may reveal important properties of conducting glasses.
On the other hand, all three materials may have important quantum elec-
tronic properties. Theoretically, the interest is equally great because
the spectra are due to a single unpaired electron, which can be thought
of as the simplest case of magnetism.

The principal results reported in this thesis are:
(a) The ground state is of the form - x , 2: S +? \X )/ )
where .10 { X < 20 and ﬁfv 99.

(b) The excited states are in the order of increasing energy:

ly2y, Ix3),Ixys  amd 2%

The first two states are inverted with respect to the prediction based
on the simple crystalline field formulas.

(¢) The observed g} tensors and the anisotropic parts of the
hyperfine tensors A can be explained.

{(d) Results are applicable to the cases of Mo5+ and W5+ in rutile.
(The electronic structures of V4+, M05+, and W5+ are similar, with a
3d, 4d, or 5d unpaired electron outside filled shells respectively.)

The general theory is given in Appendix A. Chapter II states
the assumptions needed to make the calculation feasible. The difficult
problem of how to restrict the calculation to a limited number of ions
surrounding the impurity ion and still get reliable results is con-
sidered. Only the nearest neighbors are taken into account for the sp

hybridization of the valence electrons. Group theoretical methods are

used to reduce the labor of solving the secular equation.



As described in Appendix A the secular determinant contains

Coulomb integrals H: and group overlap integrals f; The latter

L ty
are calculated by using self-consistent field radial functions. How-
ever, the Coulomb integrals Hii are taken as semiempirical parameters.
This necessitates a trial and error method which is monitored by the
self-consistency of the assumed and calculated vanadium charge. In

addition, the %_ tensor is taken as monitor of the calculation.

Finally the results are discussed and conclusions are drawn.




CHAPTER 11

RUTILE CRYSTAL STRUCTURE AND SYMMETRY

This chapter presents certain fundamental ideas essential for
the development of the theory to be followed in dealing with the problem
of vanadium in the rutile-type structures. First the rutile crystal
structure is given and then the use of the symmetry properties is

examined.

1. Crystal Structure

The crystallographic data of Sn0O,, TiO; (rutile) and GeO,
(tetragonal) crystals, all having the rutile structure, are given in
Figure 1 and Table 1.

The macroscopic symmetry is tetragonal, but the metal sites have
the orthorhombic symmetry £>X$v , and the oxygen sites the orthorhombic
symmetry <;11) . £>1L/ represents collectively the following sym-
metry elements: three two-fold axes perpendicular to each other, three
mirror planes perpendicular to them respectively, a center of inversion,
and the identity element. Figure 1 shows that for the central metal
ion, each of the x- |, Y- and 2 - axes is a two-fold symmetry axis and
the planes perpendicular to them are the mirror planes. Similarly,

C

LU represents collectively a two-fold symmetry axis with two mirror
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TABLE 1

CRYSTALLOGRAYHIC DATA OF SnO,, TiO, AND GeO,

SnOz Ti02 GeOy
o (&) 4.737 4.593 4.395
c &) 3.185 2.959 2.859
ria. w) 3.876 3.674 3.502
(a. W) 3.887 3.757 3.637
Coscfl .63031 .64815 .63107..
¢ 51° 495 50°9

‘planes perpendicular to each other, both containing the axis. For

example, the site of the oxygen ion #3 has a two-fold axis parallel to
the x-axis, the diagonal plane Xy as a mirror plane and the plane per-
pendicular to the y-axis and passing through the oxygen #3 site, as
another mirror plane. The unit cell has two types of metal sites, A

and B. All considerations will be referred to type A. The axes of type

B are rotated 90° about the crystal c-axis with respect to type A site.

2. Additional Assumptions

Certain assumptions needed for a semiempirical molecular orbital
calculation will be considered (see Appendix A for the general theory).
It is assumed that the valence electrons move in orbitals CFV satis-

fying the Schrodinger equation

Hg () @, =B, ¢, (w) @



where F*q& is the one-electron effective Hamiltonian. The Fi%%
is taken to be the same for all valence electrons, even when they occupy
excited states. In addition, the linear combination of atomic orbitals

(LCAO0)
M

de:E C: (f‘-‘ (2)

is used to provide a trial function for solving Eq. (1). The selection
of the n atomic orbitals (%L to be used in Eq. (2) rests on intuition
and experience, while the coefficients C; as well as the energy

eigenvalues are given by solving the secular equation,

M\H&‘ES&V\: © kisl,a..m @

where by definition

M= <o Hyle, > @

S‘Lk; <C?w.\ CHV> )

The application of the above program to a crystal is hopelessly
complicated by the great number of atomic orbitals needed in the expan-
sion of Eq. (2). Therefore further assumptions are required to simplify
the problem to a solvable one.

For this, a region of the crystal around the vanadium impurity
is defined, as small as possible, where there is a high probability of
finding a specific number of electrons. The problem is confined to this

region and these electrons. Also, the interaction of the rest of the




crystal must be considered. The smallest region then will be that con-
taining the vanadium ion and the six ligand oxygen ions. The electronic
configuration of the oxygen atom is [}%ej 25L 2 4 , and that of
vanadium atom LA] 3&,3 L\‘SL , where [HE} and LA] represent the
core of filled shells (see Appendix A) having the helium and argon con-
figurations respectively. The set of nine vanadium 3d, 4s, 4p, and the
twenty-four oxygen 2s, 2p, orbitals will be used as the trial solution

for Eq. (1); i.e.,

»
CPV = %T. % (6)

to solve the problem

‘—{ﬁﬁ q{/:: Ei CFL @

Equation (3) yields a 33x33 determinant. Group theory can be used to
reduce this determinant to smaller 2x2 and 3x3 secular determinants.
Then the calculation is simplified and the various states can be clas-
sified according to the irreducible representations (I.R.) of the sym-
metry group. This allows the formulation of new selection rules that
replace the ones found in atomic spectroscopy. The lack of spherical
symmetry in H% renders classification into s-, p-, d-, states, etc.,
impossible.

Another question must be considered: So far, the assumptions
made do not allow for any interaction from the rest of the crystal. The
vanadium ion and the six ligand oxygen ions are treated as a complex,

i.e., as if they were isolated in space and were not part of an
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extensive three dimensional structure. Complex-type calculations have
been made by Wolfsberg and Helmholtz,22 by Ballhausen and Gray,23 and by
Kuroda, Ito and Yamatera.24 What is needed here is a modification to
account for the extensive crystal structure.

To be more explicit, consider oxygen ion #5 of Figure 1 as an
example. In the complex-type calculation all ions, except the central
vanadium and the nearest six oxygen ions, are ignored so that only the
bonding of oxygen #5 with the central vanadium is considered. The obvi-
ous bonding scheme is: (a) a hybrid orbital of the form sinﬁ?(Zs)S +
cossg'(sz)S which is directed toward the central vanadium ion, result-
ing in a greater overlap s; (ET) with the appropriate vanadium orbital
than either one of the (25)5 and (2pz)5; (b) the orbital orthogonal to
it cos??(Zs)s -sin3§(2pz)5 directed away from the vanadium ion and
therefore nonbonding; and (c) the two orbitals (2px)5 and (2py)5 pos-
sibly involved in =T - bonding. The angle ?§ is determined by the
requirement that F‘(?T) = Y%%%;;il be a minimum (VSIP is discussed
in Appendix H). This is done for example in ref. 23. In minimizing the
fraction Ff(%) , a compromise is achieved between the tendency for
greater overlapping by forming ligand hybrid orbitals and the promotion
energy (see Appendix H) needed for the formation of these hybrid
orbitals. However, if one considers the two metal ions, with which the
oxygen ion #5 is to be bonded in addition to the vanadium ion, the bond-
ing schemes just discussed is not appropriate since none of the con-
sidered orbitals is directed toward these two metal ions. Therefore a

25,26
small total overlapping will result in a less stable situation. ’
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On the other hand, the sp2 hybridization scheme, for which the (25)5

(2pz)5 and (2py)5 orbitals form three hybrid orbitals directed toward
the vanadium ion and the two metal ions, will result in a greater total
overlap and therefore is more stable. The (2px)5 is not hybridized with
a possible involvement in 7T - bonding. Hybridization requires an

39

increase in the promotion energy which is expected to be compensated

by better and more numerous bondings.

2

3. Oxygen sp“ Hybrid Orbitals

The sp2 hybridization assumption was made in an effort to
account for the influence of the part of the crystal that is left out-
side of the region containing the vanadium ion and the six ligand oxy-

gen ions. Now the problem of constructing these hybrid orbitals will be

dealt with. These are linear combinations of the usual 2s, 2p functions
of the same center, which are directed towards the neighboring metal
ions, thus securing greater overlapping and therefore a larger binding
energy.2 »26 Since the three metal ions lie in the same plane, as in
Figure 2, only the 2s, 2px and 2py atomic orbitals can be used. Fur-
thermore the orthogonality condition is imposed on these hybrids, so
that they can form bonds with the metal ions independently of each
other. Such normalized hybrid orbitals along the x direction and along
the directions of metal ions 2 and 3 are, respectively:

sin®¥ "' (2s)+cosS " (2p,)

sin%® ' (2s)+cos " (2p,) (8)

singy ' (25)+cos%'(2p3)
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METAL ION Ay
3 OXYGEN ION #3

180 -, 1

—_— e ——> X
180 -4, METAL ION

VANADIUM ION

Fig. 2. Coordination of the Oxygen Ions in the
Rutile-Type Structures
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where 2p2 and Zp3 are the 2p orbitals having the directions of atom 2
and 3 respectively. The same mixing coefficients are used in the last
two hybrids due to symmetry. Orthogonality between the first and second

hybrids gives
<sin'9 "(2s)+cosD "(2px)lsin% ' (2s)+cosS "(2py)> =0 (9)
sing " sinS '+cosI " cosy ' cosd 12=0 (10)
and between the second and third hybrids gives:
sinz%'ﬁ-cosz%' cos% 23 =0 (11)

From Eq. (10), (11), the known angles %12 = 180- Cfl and

Y 23 = 2 cfl , the mixing coefficients are calculated. Table 2 summa-
rizes the results for the three crystals $n0,, TioZ’ GeO,. The hybrid
orbitals are written as @ = sin'd (2s)+cosd (2p). The longer metal-

oxygen bond is specified by 9 ", and the shorter one by ¥ '.

TABLE 2

COEFFICIENTS OF THE OXYGEN HYBRID ORBITALS
6 = sinW (2s)+cos¥ (2p)

SD,OZ Ti02 Ge02
sin ' 413 .371 411
cos o' .911 .929 .912
sin g " .812 .851 .814
cos J" .584 .525 .582
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The construction of the hybrid orbitals & effects an addi-
tional simplification to the trial function (b\’ in Eq. (6) and
therefore to the secular determinant Eq. (3), which is reduced from
33x33 to 21x21. At each ligand oxygen ion, three ( orbitals replace
one 2s and two 2p atomic orbitals so that the total number of functions
in the expansion Eq. (6) remains thirty-three. However, of the hybrid

& orbitals only those directed toward the central vanadium ion will
be considered in treating the selected region of the vanadium ion and
the surrounding six oxygen ions. Obviously the other & hybrid
orbitals are involved in bonding with the neighboring metal ions.

Therefore, referring to Figure 3, the following twelve ligand orbitals

co“.L:s'w\%'(?vs)ﬁ—c,os%'(?VP%)\L : (?VPY)-L Coi=La3 s

. u i
&= Supd (Xﬂvco%(i@v (%Px)g} , y=8,6  av

and the nine vanadium orbitals 3d, 4s, 4p will be considered in the

expansion Eq. (2). Thus 2l
P, ‘L; S (14)

In Eq. (13) the numerical subscripts of the orbitals denote the oxygen
ions to which they belong, and the coordinate subscripts refer to the
ligand left-handed coordinate systems of Figure 3. The use of Eq. (4)

as a trial function in solving Eq. (1) results in the 21x21 secular
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determinantal equation:

~

det | Hm- e bw\ = 0 Lh=l,2 .. a9

4, Reduction of the Secular Determinant
by Group Theory and Selection Rules

This section will consider the use of group theory to reduce the

secular determinant of Eq. (15) and to derive the selection rules.
First a simplified argument will be presented based on the fact that the
[Dllv group is an Abelian group and then a general theorem of group
theory will be stated.
(a) Reduction of the Secular Determinant.

The reduction of the secular determinant depends upon the fol-
lowing argument: The region under consideration is centered at a metal
site of symmetry I>7qzv . The symmetry operators of this group leave
the Hamiltonian P* ee% invariant, i.e., they commute with it. Thus for

every symmetry operator T of this group:

T He(ﬁ = Heg%—\— (16)

Furthermore l>L{v is an Abelian group (the symmetry operators commute
among themselves). If several operators commute among themselves it is
possible to choose basis functions which are simultaneous eigenfunctions
of all the operators. Any two such functions are orthogonal if they
differ in the eigenvalue of any one of the commuting operators. The
character table of £>X%» group (see Appendix C) shows that there are

only eight different types of basis functions for the symmetry
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operators. Note that the characters are the eigenvalues of the symmetry
operators. This is generally true when one deals with one-dimensional
I1.R. Any basis function must transform according to one of the eight
irreducible representations. For example the function xy belongs to the
B (or rq 3j' or r71% ) irreducible representation.

In a matrix representation based on ‘% simultaneous eigenfunc-

tions of the symmetry operators of the g)ig\ group, Eq. (16) becomes
2T Hy = » i, T, (17)
y oty R T T LbTb"

However, the T matrix is diagonal since eigenfunctions of the T operator

are used. Therefore, Eq. (17) reduces to

. L - =T .
T HoozHu et (18)
RO \ \"“ - ‘(\\
or ! \LL_T{ik‘ Mg = (19)
Thus the off-diagonal matrix element rT’L< is zero if the eigenfunc-

tions L and &u give different eigenvalues for the operator T. Since
there is always a symmetry operator with different eigenvalues in two
different I.R. (it is exactly this property that distinguishes the vari-
ous I.R.s), all energy matrix elements Fii R are zero, if L and ‘C
refer to functions transforming according to different I1.R. of the E%.R
group. The same applies to the matrix E;L£{ in Eq. (15) because the
whole argument can be repeated when the Hamiltonian operator is replaced

by the unit operator.
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Therefore, if instead of the 21 atomic orbitals Cfl in Eq.
(14) combirations of them transforming according to the I.R. of the
rhombic symmetry group are used, the secular determinant Eq. (15) will
be reduced to a number of smaller determinants equal to the number of
the different I.R.'s contained in the combinations of the CfL's.
The order of each one of these determinants will be equal to the number
of qk's belonging to an irreducible representation.

(b) Selection Rules.

To formulate the selection rules one must find a way to deter-
mine if a matrix element of the form

O] me ) (V)
M :<L\)L 6& k‘)‘\0 /\ ' o

(2) V)
is identically zero or not. Let the functions (F s &{{
() b 1Y )t

L b
and the operator Cj%b transform according to the :)t ,

and rkt{‘ I.R.'s respectively. Since the matrix element Eq. (20) is a
number it should remain invariant under the application of all the sym-
metry operators of the £>1£v group. The application of a symmetry

)
operator to Eq. (20) results in multiplying each one of the L¥, ( )

() ) -

C?;b , and L}{ by the corresponding eigenvalue which is given
3

in the character table in the Appendix C. Therefore the matrix element

Eq. (20) is not zero only if the product of the characters (eigenvalues)

, (3) e () (V)
which correspond to L*[ s Cak s QP_ for every symmetry
L 13
operation of the group is equal to unity.

(c) General Theorem of Group Theory.

n general, both the reduction of the secular equation and the

selection rules are based on the following theorem of group theory:
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The matrix element Mi.' of Eq. (20) is nonzero only if the reduction of
o)
the direct product D(r’)® D contains the I.R. D (D\) . For a
20 (

proof see, for example, Heine. When the operator O’k‘* is the Ham-
iltonian H C“T or the unit operator, the I.R. D e is the identity

*e ) . V)
I.R. Then the product is merely , and for a

v

nonzero matrix element the I.R. D(}) must be the same as D( ) .
Thus all off-diagonal matrix element Hik and g‘_k are zero for

functions ({)_ and L\) belonging to different I.R.'s.
L

}




CHAPTER 111

LINEAR COMBINATIONS OF ATOMIC ORBITALS (LCAO) TRANSFORMING
ACCORDING TO THE I.R.'S OF THE D2h GROUP
Chapter II-4 demonstrated that in order to simplify the secular
determinant Eq. (3), combinations of atomic orbitals transforming
according to the I.R. of the £>l£x group are needed. The symmetry
classification of the metal orbitals is as shown in the character table
in Appendix C. For the ligand orbitals the method of projection opera-
tors is convenient in constructing the combinations which transform
according to the I.R. In the case of one-dimensional representations
the recipe is simply
*
N (3\)
q) = N Z’X (T ch_ (21)
T L
(@) T
where ? is any member of the original set of orbitals, Tx (
L
is the character of the transformation T for the irreducible repre-
) . o (),
sentation :k , N 1is a normalization constant, and C? is the
orbital which transforms according to the )\ th I.R., expressed as a lin-

o)
ear combination of the (% 's. Occasionally the function (¥ (2

~

L
is zero. This happens when the function %L already has symmetry
L

properties incompatible with the irreducible representation O\ s

i.e., its projection on :A is zero.

20
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The functions ?, to be used in Eq. (21) are the twelve
L

ligand orbitals in Eq. (13). For a sample application of Eq. (21) con-

sider Q;' . The symmetry operators T applied to it give:

x Y % '3 Y %
E C'l C’~ CL I Gﬁ, M N

(22)

6| 6 6; 6, 6, G, 6, 6 6,

Multiplying by the characters of the B I.R. and summing one gets:
G -G - E - - - G - 6 - \
6,1635-6,-6,+G3 +6,-6,-~6,=4(5,-6,+6,-G,) (53

or after normalization

% A

The final twelve ligand combinations are listed in Table 3. The signs

in front of these functions are chosen so that the majority of the over-
lap integrals with the metal orbitals is positive. This is dome to
facilitate programming for the IBM 7090 computer.

Table 3 contains also the metal orbitals given in Appendix C.
The last column indicates the number of metal and ligand functions which
transform according to each I.R. According to Chapter II-4, nonzero
matrix elements F*L‘L and f; l{g may occur only between functions
of the same I.R. Therefore if the twenty-one functions of Table 2 are
used in the expansion Eq. (14) instead of the functions Eq. (13), the
secular determinant Eq. (15) splits into eight smaller ones. The dimen-

sion of these smaller determinants is exactly equal to the number
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appearing in the last column of Table 3. Thus one gets eight secular

equations of the form
MlHi&-ESIkl: 0 (25)

where L) ﬁ, refer to the five functions of the A I.R., to the two
functions of the B I.R., etc. The eigenstates belonging to the dif-
ferent I.R. are denoted by Ay, AZ’ A3, A4, Ag; By, By; C1, Cy, C3; . .
Hl’ Hy, H3. For example, a 5x5 determinant corresponds to the I.R. A

(or N L% oxr rtck ) with five eigenfunctions of the form

(,!I l+5> + Cz' 3 ol.21 \.\. CB\gd'x‘-y"/ N cq\®‘>+ Ce \ ®s> (26)

For a particular case, the five coefficients C-L and the five eigen-

states Ai , obtained by solving the corresponding secular equation,

are given in Table 7 of Chapter V-2,




CHAPTER IV

COMPONENTS OF THE SECULAR EQUATIONS

In order to solve the secular Eq. (25), the overlap integrals
E;L & and the energy matrix elements Filxm as defined in Eqs. (4)
and (5) must first be determined. The indices refer to the functions of
Table 2 and not to the atomic orbitals. This chapter describes ways of

obtaining the ES{ k .

1. Group Overlap Integrals

When combinations of ligand functions transforming according to
the various I.R.'s are used, the overlap integrals E;IQV are called

group overlap integrals because they involve more than one two-center

overlap integrals. Their evaluation is straightforward but tedious.
For example, consider the D I.R. for which there are the metal orbital
3dyz and the ligand TV -orbital CX&; , as shown in Table 3. The

group overlap integral is given by

IE J%:B@LH\&."& @)

By substituting CX: from Table 3:

I: %[<( Py)| 3 d')'g> - <\( P)lj 3 d'yz> —pr )3\3 o\_72>_f<@43&_\,>— (28)

24
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An integral like <(‘Dy>‘\3©k Y}\ is called a two-center integral

e

because the function (P) is centered at the oxygen ion #l1, and the
b

3d at the vanadium ion.

Yz

Since there are many tabulations of two-

centered integrals referred to a spheroidal coordinate system (see

Figure 4) one must express the central metal orbital

3 = R(AsimB. sim s 6 29)

in four different coordinate systems which have their 2 -axis point-

ing towards the ligand oxygen #1, #2, #3, and #4 respectively, and their

K -

» Yy — axes parallel to the X , >/ axes of the left-handed

systems at the individual ligand oxygen. Figure 3 shows that the above-

mentioned transformation can be accomplished by substituting for cos O

sin 6

4, where X and P are angles in the rotated coordinate systems, which

® sin @ and sine ® cos @ the expressions given in Table

play the role of & and @ of the old system.

TABLE 4

TRANSFORMATION OF THE SPHERICAL HARMONICS

Sine sin@ Sine cos@

Ligand cose
1 -sin sin{S A -B R AN
2 -sin  sinf A+B +-A
3 -sinox sinf A+ 3B +T+ A
4 -sin ox sinf A -B -T+ A
5 -cos X sinX sinp -sine cos?
6 +cos (X -sinX sinP -sin X cos @

3
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where A=coscr e sin ™ cosP , B = SinCr s cos™X , = sincr e sin X .
1 i )

cosp ,

A = cosg e cos o™X .
%,

Therefore

L%K(g)"R (r) (—S'wcxsbv.F) (Coscrls&u\ o cosP——STM(flCos:x )>

N \( FY)%

—((®),

R(r) sinaox sivB)(Cos ¢ simaxcosptsing cosed)

R (1) (- Sinoxsivg) (€05 Simeccosp+ SW\@COS“)\>

+ << Py)q ' R(rm (=St oxsinp) (“COSCFEW\ o GS%_S.W‘%C Oso{)%

= L <P),R(MSL‘V\O<SW\PK L}SL'\/\({,COSOK)>
- _27 4sL'mcrl<(Py)lP\(M Stm sim? CoSO<>

Ly

=L simg(lp, )\3d_yz>

= 2 sw\<f<%[3 l 3d

The <15ZP

(30)

Sd-Tr> is a two-center overlap integral. Following

this method and neglecting any ligand-ligand overlapping, the following
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nonzero expressions for the group overlap integrals were obtained for

each 1I.R.

A (Nig)

Alle = 2525 | bshy cosTap M s\]L
A \5:&{3‘@5'@5‘ As>+cos%“<z[>€\u s>}})
AH==[sin8d2s\3d. 0, + cosB L] ).
ARG R[S 2.0y 4 cofidp 34,0,

A3l :\B (C OS'NQL- Slm"%) [siu%@s l3d.6,> + Lo%@&\ 3 o\_d>} _
B (N 3q )

c

D

E

BNz a3 s G Cos cfism%'@ﬂ 3ele ) + CC@I@ @\3°Le>] :

Ciav = %cosq <%Pn\3d—-¢>
CB=NBp | 2y 5,
(Nua)

D\%= Asivig (p_ | '3&!.1T>_

F_\ﬂ\j: K [SLM%\\<?’S\ L P6‘>+CO%\\<2'\DG\ L P€>’X S

ER=2Rp | bp e

L

(31)

(32)

(33)

(34)

(35)
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Z g !jg,u}
2 12=2sing  Siwdts [ hp Ypcofil2p) ey ao

H “;Mu.).

M1% = 2cos &, {31'\/\%'<7Vs \4‘;6\74- co§ 42&\ L‘Feﬂl
H13=\% {up | “Fﬂ)-\

37

where | stands for the shorter vanadium-oxygen distance and % for

the longer one. A, B, C, D, E, Z, H stand for N N N s

‘% ? 3% 3 z,%

N , N , N and N , and the numbers denote the orbitals in
4% 2w hw

the corresponding I.R. as listed in Table 2. For example, C13 denotes

the group overlap integral of the first (i.e., 3dyz) and third (i.e.,

CXS.) orbitals in the N%% I.R.

2. Two-Center Overlap Integrals

It was seen that the group overlap integrals can be expressed
in terms of two-center overlap integrals. In this paragraph the method
of calculating the latter will be considered. For example, let the

integral <§t§

units and the radial parts are given as

R(s)=N_ v o e

L}P be calculated when the distances are in atomic
~

v
amd. R(L‘LR;):NL W:e, Pl (38)

Note that the normalization constants Na and Ny are given for the

radial part only. Then
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(e SN N €L P2 o

& g Vi Al (39)
G =B (fem) oSt =D (1 g )
p = e feoss, = B (L-Em)
de=( Q) (gor")dEdmdg o
peg (el B
9z & (- pR
Anlp)= (T X" dx »
E)w\(%): S-' eV %" dx
the integral <2/s.'5\% > becomes
el T " ek

¢
(B En) B (- )dE sl dhg




31

\I— 3 53 's 3 4 _ V]
=NNE (%)Jg P (TR «AEB-TBrER-1TBIB,)dS

‘NNJ_3 %—[HB"-ZAB F}B+F}8 1H€>+B]

(42)

Similar expressions for the two-centered integrals needed in this work
have been derivefi and are listed in Appeundix D. The A and B integrals
are tabulated in Refs. 32, 33, 34, and overall two-center integrals in
Ref. 35. For the present problem the integrals A and B were calculated

43 23,27
by a MAD program using the following SCF radial functions. ’

For
oxygen
R (2s) = .5459@ (1.80)+.4839 &) (2.80)
R (2p) = .6804 ¢(1.55)+.4o38 ¢ (3.45)
% N
For vanadium
R (3d) = .52430836 q) (1.8289)+.49893811 ¢ (3.6102)
3 3
+ .11312810 q) (6.8020)+.00545223 (‘) (12.4322)
3 3
R (4s) = R (4p) = -.02244797 cp (23.9091) -.01390591 q; (20.5950)
1 v

+.06962484 ¢%(10.16666)+.06773727 ¢3 (9.3319)

-.09707771 q)3(5.1562)-.024620956 ¢3(3.5078)

+.04411542 ¢ (3.8742)+.36068942 ¢H(1.8764)
[

+.608999600 \"¢q(1.1462)+.14868524 c‘)q( .7800)
(44)



where

32

b, ()= Np™™

Ymt+L

(R

m)!

(45)

The final results for the group overlap integrals (see Appendix D) are

given in Table 5.

GROUP OVERLAP INTEGRALS

TABLE 5

S0, Ti0, GeO,

Al4 494 495 .525
Als 425 445 456
A24 -.148 -.162 -.180
A25 .217 .233 .255
A34 -.053 -.045 -.063
B12 .251 .278 .305
c12 .090 112 .128
c13 .099 .113 .126
D12 .110 131 .157
E12 . 604 .627 .630
E13 .325 .359 .395
212 . 504 474 .502
H12 409 404 .408
H13 .227 .243 .259
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3. Diagonal Energy Matrix Elements

The most subtle point in solving the secular Eq. (25) is the
estimation of the energy matrix elements. Since these cannot be
obtained from first principles, semiempirical methods to approximate
them from known experimental spectroscopic data will be developed. Two
types of energy matrix element are distinguished in the secular Eq.
(25): (a) the diagonal elements F+H?S’ called Coulomb integrals, and
(b) the off-diagonal ones HI{S , called resonance integrals.

The Coulomb integral ++li gives the potential ehergy of an
electron in the i-th orbital. It can be taken equal to the free atom
(or ion) ionization energy of an electron on this orbital to the zero-th
approximation. For a hybrid orbital, the weighted average is taken, and
for an orbital consisting of linear combination of ligand orbitals again
the ionization energy of one of the similar ligand orbitals is taken.
However, a better estimate of the +4LL’5 is obtained by means of the

concept of the valence state ionization potential (VSIP). A discussion

of the procedure is given by Moffitt29 (see also Appendix H).

To use Moffitt's tables29 for the oxygen VSIP, a binding scheme
must be adopted. Here it will be shown that the adoption of the ionic
states ()+ and \/z‘ for the oxygen and vanadium respectively, can
satisfy the symmetry requirements and the production of the ESR spectrum
in a homopolar binding scheme with oxygen Sffl hybridization. From
Figure 1 the spatial arrangement of ions in the rutile structure sug-
gests a valency of three (V3) for the oxygen ions and a valency of six

(V6) for the metal ions. This implies that there are three and six
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electrons with uncorrelated spins in the respective valence states (see

Appendix H). The oxygen ion configuration giving valency of three is

O: [ He) s i 2p %

According to Figure 2 and the discussion in Chapter II-3, the 2s, 2px,
and 2py form hybrid orbitals with three spin-uncorrelated electrons.
The other two electrons will occupy the 2p, orbital forming the so-
called lone pair. Such an electron will be denoted as pe . For an
overall crystal neutrality the metal ions must have a double negative
charge. This implies that for vanadium there are seven valence elec-
trons outside the argon core. This is expected if one considers the six
bonds with the surrounding oxygen ions and the single unpaired electron
which produces the ESR spectrum.

The bonding scheme fits the requirement of the symmetry and of
the number of electrons except that oxygen has a much greater electro-
negativity than vanadium,11 and Pauling's electroneutrality principle11
asserts that the charge on each ion is in the range -le to +le. One can
overcome these difficulties by assuming a partially ionic character of
the bonds so that electronic charge is shifted towards the ligands,
resulting in a small positive charge for vanadium and a correspondingly
small negative charge for the oxygen ions. As it will be seen, the
molecular orbital calculation will determine this ionicity of the bonds.
In this sense the charges C)ﬁ., \v/xr.will be considered from now on as
nominal charges.

Of course, none of the above problem arises if one considers a

Q-
purely ionic bonding with \/l++ and () . The nearest noble gas
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configuration is achieved for oxygen and metal ions except for \\/#+
which is left with one valence electron producing the ESR spectrum.
However, it is believed that a purely ionic bonding is generally rare
outside the I-VII compounds.
' + -1
The VSIP's of () calculated here are 416396 cm ~, 277022
- -1
cm 1, and 253122 cm for an s-, p-, and p£ - electron respectively.

The oxygen atom in the rutile structures is assumed to have the

configuration
R %
O:ls Zsiﬁ %FX%PY

with three unpaired spins. The corresponding valence state, according

to Moffitt, is designated as S Z?I Xy(\é) with promotion energy
%(*P)JHL(’“PH%}_(”D\: 154626.63 com™
H.

The fact that 2s, 2p,, and zpy hybridize does not change this energy,
as the configuration remains unchanged. This is called first-order
hybridization. To estimate the ionization potential (I.P.) of an s-
or p-electron, the valence state of the final configuration must also
be considered. Thus, for an s-unpaired electron
S P“( \/3)_> PA(\/&)
for a p-unpaired electron (46)
SPH(V“* ) spl Va)

for a %’ -electron of the lone pair

<p*(Va) — 5 5p’(Va)
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Therefore:
(s ) + 4
VSIP of (p ) = (I.P. of O ground state)-promotion energy to sp (V3)+
(pt) 4
+promotion energy to spg(Vz) of O
sp~(Vy)

Ly 41148097 .82 277022.09cm™ L

124197 .90 253122.20cm”

-1
287472.15 416396.42cm
= (283550.9 cmY) - (154626.63 cm” ) = >(47)

as the promotion energies to Pq'( VL) s SPB(\&) and SP3(\/4\
of 0++ are given by:

3 1

3 (PleLl(D), ﬁ%( D°)+%(‘ D)4 3( P°>+1TCP°)

L 3
and
5.0 3 .0 3 L o
5 ) D)yl D
l_e(S )+E(S )+ ‘6( )+ \6( )
respectively.

0
The VSIP of () and C) are calculated next and found to be
- - -1
222000 cm 1, 115300 cm 1, and 98968 cm  for an s-, p-, and p - elec-
o] -1 -1 -1

tron of C) respectively, and (80000 cm® ), 16200 cm , and 3710 cm
for the corresponding electrons of C) . The procedures are as
follows: It was seen that the polarity of the bonds is expected to
decrease the positive charge on the oxygen center and most likely to
reverse it. In such a case the VSIP will be different, clearly smaller,
so that it needs to be re-estimated. Since the tables give spectros-
copic data of the elements with integral electronic charge, the VSIP of

fractional charge is to be obtained by interpolation. Next we need to
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see how to estimate the VSIP of an oxygen which is effectively neutral

(or with -liev charge) because of the polarity of the bonds. For this

it is assumed that the VSIP of the isoelectronic ion will be a good

approximation. For an effectively neutral oxygen or for C) , the

neutral nitrogen atom N

(o]

and the carbon negative ion C are con-

sidered instead. All VSIP for N° and C-, except for the 2s elec-

tron of C  are obtained

30
from a table given by Skinner and Pritchard.

A value of about 10 eV is not unreasonable for the C~ 2s electron.

The procedure of calculating the VSIP is the same as in the previous

paragraph. The values taken from the tables of Skinner and Pritchard

are:

(a) Valence state energies in eV.

(b) Ionization potentials

¢ (s%p3,%)

234
N (s p3, S)

C (9.38) extrapolated
N 14.23

C 8.14

Nt 11.64

C 9.69

Nt 14.03

C -

Nt (27.2) extrapolated
in eV.

c(s2p? 3p) 1.7

N"’(szp2 %p) 14.54
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Finally the VSIP of the vanadium d electrons are estimated.

The results are summarized in the following table.

vcoth vh(Feh) Ve (Mn°)
4p 165658 cm™t 102308 cm™ ! 38722 cm™ !
4s 219465 127369 54762
3d 295997 141178 62516

Moffitt does not give tables for 3d electrons, so the following pro-
cedure was adopted. The isoelectric series for vanadium in the rutile
structure with nominally seven electrons, but with an effective charge
of zero, +le and +2e, is Mn°, Fe+, co™. According to Moore's tables
and notation,28 the I.P. of Mn° (O 65 ) to Mn+(0, 75\) is 59960 cm-l.
The average of the two states of Mn°, 1gPo (0,79—1- ‘*P/M and

6o T _
P P (Q_ S + L&. P\L‘ , is 21257.74 cm 1; therefore
VSIP of 4p electron z 59960-21237.74-0=38722.26 cm-l (48)

The average, also, of the two states of Mn°, @éD(@ {D'I"Llsl{\\
4 _ -
and Q DKO\.{D-F L}.S \L) , is 19784.41 cm 1; the average of QL 5(D

of Mn+ is 14586.16 cm-l. Therefore

VSIP of 4s electron = 59960-19784.41+14586.16=54761.75 cm_]'
(49)
The same procedure is applied for Fet and Co'H'. The 3d VSIP for

Mn®, Fe+, and Co™" are estimated from the tables given by Slater31 and

Watson.
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In Table 6 the valence state ionization potentials for the vana-
dium charge range O to +.65e and the corresponding oxygen range O
to -.325e are tabulated. Interpolation is used to obtain the VSIP's of
the electrons on the vanadium orbitals 4p, 4s, 3d and on the oxygen
orbital of the lone pair % , for various fractional net charges of the

vanadium and oxygen ions. For the electrons on the hybrid orbitals

G = Sia%d (2s)+ COSQCY'(%P) (50)

the VSIP's are the weighted averages:
(VSIP) = sin®% ' (VSIP of 25)+cos’S' (VSIP of 2p) (51)

These are calculated for the integral values of the net ionic charge and
then interpolated. The values of sind' and cosd' are taken from
Table 2,

These VSIP's present a weak point in all semiempirical calcula-
tions. However, there are two reassuring factors: (a) the use of iso-
electronic-ion parameters does not affect the type and relative
positions of molecular orbitals as the iscelectronic principle
asserts,32 and (b) since the VSIP's are used as parameters in solving
the secular determinant even the numerical results will not be greatly

different if the right parameters are chosen.

4. Off-Diagonal Energy Matrix Elements

The off-diagonal energy matrix elements, or resonant integrals,

. 33 .
F+lk are even more difficult to estimate. Mulliken's assertion
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that H"k is 1.5 to 2 times the quantity S‘b (HLl + H‘o‘o )/z

is often followed. Wolfsberg and Helmholtz used both 1.67 and 2. More
2

recently Gray and Ballhausen, 3 and Lipscomb38 used 2. However, the

geometric mean seems to give a better fit than the arithmetic mean, so

throughout this work H,-_- will be approximated by

3
Hl}) = _%S‘L‘})V Hil H\o}) (52)
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CHAPTER V

SOLUTION OF SECULAR EQUATION

1. Energy Eigenvalues

Chapter III showed that the original secuiar Eq. (15) is reduced
to other smaller Eqs. (25) by using LCAO transforming according to the
‘i.R. of the Eafu group. To each I.R. corresponds a secular equation
whose order depends on the number of functions belonging to it. For
example, Table 3 shows that there is a secular equation of fifth order
corresponding to the irreducible representation A. The group overlap

A

integrals é)i%’ and the diagonal energy matrix elemients‘H.L were

calculated in Chapter IV (see Tables 5 and 6). The latger is found to
vary with the assumed ion charge. The former, however, does not seem to
vary appreciably, according to the SCF calculations of Watson,27 so that
no correction is applied. The off-diagonal energy matrix elements are
found by the approximation Eq. (52).

Secular Eqs. (25) are solved on the IBM 7090 computer, using a
program written in MAD language (see Appendix J). The input consists of
diagonal energy matrix elements H

C The off—diaéBna} elements }+" are calculated by the program

O Ly

following Eq. (52). The output consists of the one-electron eigenstates

i and the group overlap integrals
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and eigenvalues of the vanadium and oxygen valence electrons in the MO
scheme. Also, the fraction of the orbital charge that can be assigned
to vanadium is given (for more details on this see the next section,
v-2).

Thus in Figure 5 the electron eigenvalues of Sn02:V are shown.
The VSIP of vanadium in the range 0 to +65e and of oxygen in the corres-
ponding region O to -.325e are taken from Table 5 and used as parameters
(see below). Only nineteen orbitals are shown: two others, A5 and Ez,
having energies around +90 Kcm'l, are omitted. The central part of
Figure 5 is drawn again in Figure 6. The levels are designated accord-
ing to their symmetry. The subscripts are used to distinguish the vari-
ous levels of the same symmetry. Similar curves for TiOZ:V and Ge0,:V
are drawn in Figures 7 and 8 respectively. Energy eigenvalues are tabu-
lated also in Appendix E.

The similarity of the three spectra for Sn0O,, TiOz, and Ge0O, is
striking, as well as the fact that the relative positions and values of
the energy levels are sensitive to small changes in the ionic charge.
Figure 5 shows that the A3 level crosses the four levels E3, H3, [X3 >,
C,. The levels A, and B, cross some levels also. Similar results apply
for the Ti0,:V and Ge0,:V.

Now a justification is needed for treating the VSIP's as param-
eters. The difficulties in obtaining reliable values of the VSIP's were
explained in Chapter IV. On the other hand, it is noticed that the

energy eigenvalues depend rather critically on the VSIP's used. There-

fore, any calculation based on a single set of VSIP's (i.e., on one
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assumed vanadium charge) cannot be expected to give results in quantita-
tive agreement with experiment. Thus it is clear that to find the best
set of VSIP another physical quantity is needed to monitor the calcula-
tion. Usually the ionic charge is taken as the means of achieving self-

consistency. This is explained below.

2. Charge Self-Consistency

To select the best set of VSIP's and thus the solution of the
secular Eqs. (25), the vanadium charge is taken as a monitor.

A trial and error method is as follows: (a) A vanadium charge
is assumed. (b) The corresponding VSIP's of vanadium and oxygen are
selected from Table 6 and the secular equations are solved. (c¢)- This
solution is then used to calculate the vanadium charge which is compared
to the assumed value. (d) The above procedures are repeated with dif-
ferent assumed vanadium charges until agreement is reached in step (c¢).
When agreement is reached one says that charge self-consistency is
fulfilled.

To carry out this program one must determine which MO's are
occupied and then calculate the charge on the vanadium ion from the MO's.
The charge is calculated (see Appendix J) as follows: The solution of
the secular Eqs. (25) provide twenty-one eigenvalues and eigenfunctions.
A typical set of eigenvalues and eigenfunctions is given in Table 7.

The simplest normalized eigenfunctions, like the Bl’ are of the form

k{): < vaa—n + ¢ CP{.L% (53)




50

TABLE 7

EIGENFUNCTIONS OF VANADIUM IN SnO, FOR AN
ASSUMED VANADIUM CHARGE OF +.25e

1

Energy in cm” Eigenfunctions
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The orbital charge normalized to 1 is

{ k’)’b dv = cz,'-o- AC, C‘L<CPVQM[ ¢[L%> + CZ =1 (54)

Following Mulliken's suggestion,34 the fraction of MO charge on the
vanadium is set equal to the charge qf found purely on vanadium, plus
half of the overlap charge 3L% Ci/é;\/_‘t , i.e., the effective

charge on vanadium due to orbital QP is taken equal to
C,% C D (55)
1 t 4 Cz, v-1

The generalization of this procedure to more complicated orbitals is

obvious. In Figure 9 the fraction of the MO charge assigned to vanadium
is plotted for the first thirteen molecular orbitals of Sn02:V vs. the
assumed vanadium charge. It is observed that this fraction does not
change for some of the MO's such as A, E;, Hy, Cyp, and |X3 >. This is
exemplified in Appendix F for the Aj level. For the six MO's By, 4,
Zl’ Hl’ Al’ E,, there is a gradual decrease in the value of the orbital
charge fraction assigned to vanadium from left to right, which corres-
ponds to a gradual diminishing of the coefficients of the metal parts of
the MO's. For the MO's Dy, €y this variation is larger.

Next we need to determine which of the above orbitals are occu-
pied. A total of twenty-five electrons need to be accommodated in the
MO's. There are three electrons from each oxygen ion--two electrons on
2p orbital and one a & hybridized one--and seven electrons from the

vanadium ion, as seen in Chapter VI-3. Following Pauli's principle, two
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electrons are accommodated in each MO starting from the energetically
lower one until the number of electrons is exhausted.

The above twenty-five electrons are divided into two groups,
twelve electrons on the oxygen 2p orbitals and thirteen electrons on the
metal and & oxygen orbitals. The nonhybridized oxygen 2p orbitals
are distinguished from the rest because they have an almost symmetrical
orientation with respect to the vanadium ion and two of the neighboring
metal ions, so that their charge can be considered as belonging equally
to any one of the crystal regions centered at the vanadium ion and the
two neighboring metal ions. On the other hand, other orbitals assign
their charge completely to the region centered at the vanadium ion.

The assumption of having twelve electrons in 2p ligand orbitals
and thirteen in metal or @G orbitals is compatible with the situation
that exists at the right-hand side of Figures 5 and 9 (i.e., for an
assumed vanadium charge close to zero). In fact, the six orbitals Cl,
Dl’ E3, H3, ’CX3:> , and C2 accommodate twelve electrons on 2p oxygen
orbitals. The rest are placed in metal and & orbitals. When the
twenty-five electrons are exhausted, it is seen that the ground-state is
the A; with one unpaired electron.

However, on the left-hand side of the figures (assumed vanadium
charge close to +.60e) the situvation is different since twelve electrons
go into the first six orbitals, and the next four into C1 and D1 orbit-
als. The latter are of metal character and not of ligand 2p. The next
orbital A3 is also of metal character. This results from the fact that

the metal orbitals are more stable than the oxygen 2p ones in this
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region of the assumed charge. If all the twelve electrons of the ligand
2p orbitals migrate to metal orbitals only one-third of them would be
attracted to vanadium orbitals and the other two-thirds into neighbor-
ing metal orbitals, provided no drastic energetic changes occur with
respect to vanadium ones. Therefore in such a case only seventeen elec-
trons (13+1/3¢12) need be accommodated. It was seen that the left-hand
part of the diagram can accommodate at least eighteen electrons before
2p ligand orbitals are used. This implies that only seventeen electrons

have to be placed on the left, giving again, A_ as the ground state.

3

The situation at the center of the diagram is not clear. Fortunately

the slopes of the C, and D, curves in Figure 9 are quite steep at the

1 1
center, so that the ambiguity region is reduced appreciably.
In both cases, the wave function for the ground state A, can be

3

written as a Slater's determinant

!Ai A, B, E - (¢ A (56)

LT 7T 3

The unpaired molecular orbital A3 determines the transformation proper-
ties of the determinant. The same results hold true for TiOZ:V and
GeOZ:V. The net vanadium charge can now be calculated using Figures 5
and 9 and the fact that seventeen electrons are placed on the MO when
the assumed vanadium charge is greater than +.35e and twenty-five when
it is less than +.30e. Figure 10 plots the calculated vs. the assumed
vanadium charge in the region 0 to +.65e for Sn0,:V. Charge self-con-
sistency is shown to occur for an assumed value of about +.27e. Simi-

larly, +.26e and +.25e are obtained for TiO,:V and GeOZ:V. Table 7

2
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gives the eigenfunctions and eigenvalues for Sn0,:V corresponding to

+.25e.

3. Detailed Charge Self-Consistency

Usually a semiempirical calculation stops when charge self-con-
sistency is achieved. However, for an overall consistency of the calcu-
lation the detailed electron distribution and the VSIP's should be
compatible. That is, not only must the assumed and calculated net
charges agree, but also there must be an agreement at the assumed and
calculated orbital charge distribution which determines the VSIP.

As shown in Figure 9, at the assumed vanadium charge of +.25e
the six & -bonding orbitals give rise to the electronic charge dis-
tribution on the average as follows: 15% on the central metal ion and
85% on the six ligand oxygen ions, although it was assumed a 50% dis-
tribution when the VSIP's were calculated in Chapter IV-3. Similarly,
for the 7T -orbitals Cy, C,, Dl’ E;, Hy, and leX%> , a 100% distribu-
tion on the ligand ions was assumed in contrast to the calculated dis-
tribution which shifts roughly 35% of the electronic charge to the metal
ion for the orbitals C1 and D1 and 7% for the orbitals E3 and H3. On
the average, 147% of the T -orbital charge is shifted towards the
metal ion. Therefore, relatively, the & -orbital VSIP's should be
increased and the TT-orbital VSIP's decreased.

In order to see the effect of such a correction, the calcula-
tions were repeated in the region from +.60e to +.40e by reducing the

VSIP's of the T -electrons only. The results for Sn0,:V with a
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reduction of 35000 cm”1 and 45000 cm-l are shown in Figures 11, 12, and

9. 1In Figure 9 the dotted lines represent changes produced by the T
reduction of 35 Kcm-l. Charge self-consistency occurs at about +.40e.

It is observed that there is a change in the energy level position of

the C , D , E , H, and '\‘X£> symmetries as well as in the electronic

charge distribution.

Table 8 summarizes the assumed electronic charge occupancy of

the © and 7T oxygen orbitals in the bonding scheme of Chapter IV as

well as in the calculated one.

TABLE 8

ASSUMED AND CALCULATED & AND TT ORBITAL OCCUPANCY

Orbital Assumed Calculated
no T VSIP reduction 35 Kem 1 417 VSIP red.
G 50% 85% 76%
T 100% 86% 94%

It is observed that the calculated values in the second colummn of

Table 8 imply a correction to the VSIP calculated in Chapter IV. The
smaller charge of the T orbitals (86%) with respect to the assumed one
(100%) indicates a reduction of the corresponding VSIP due to the
decrease in the electron-electron repulsion energy. Similarly, the VSIP
of the @& orbitals should be increased. In the last column the

results are listed when the T electron VSIP is reduced by 35 Kcm-l.
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The charge occupancy of the -1 orbitals increases to 94% while that of
the & orbitals decreases to 76%. These changes are in the direction
that requires smaller reduction in the 7T electron VSIP. Therefore, in
principle, consistent values of VSIP should exist with respect to the
occupancy of the T and g orbitals by the electronic charge. The
determination of these consistent VSIP does not seem feasible without

additional information (see also Chapters VI-1 and VII-2).




CHAPTER VI
THE ELECTRONIC % AND A TENSOR
In this chapter the electronic 9} tensor is used as a monitor
instead of the ionic charge. The solutions that satisfy the ﬁ} tensors

are singled out and compared with those found in Chapter V. The hyper-

fine tensor A provides additional checking.

1. The Electronic Q Tensor as a Monitor

As stated in the Introduction, the purpose of this work is to
attempt an explanation of the observed ESR spectra in the rutile-type
crystals having vanadium as an impurity. In Chapter V-2, the -valence
electronic levels were found using self-consistency. Since these solu-
tions can be used to calculate the electronic tensors, the next step
would be to compare the experimental results on the s} tensors with the
calculated ones. However, due to the approximate nature of the semi-
empirical methods, the set of VSIP's which gives the best charge self-
consistency is not necessarily expected to give the best fit for the E}
tensor. Furthermore, in Chapter V-3, the need of changing the VSIP's
to obtain detailed charge self-consistency is pointed out. The need of

9T -orbital VSIP reduction was determined but not its amount. In view

of these facts it is felt that the experimental tensors have to be used

61
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as monitors in selecting the best solutions out of the many ones found
in Chapter V. This procedure is followed in this section.
The experimentally found deviations of the 5} tensor from the

free electron value are given in Table 9,

TABLE 9

EXPERIMENTAL DEVIATIONS OF % TENSORS COMPONENTS FROM THE
FREE ELECTRON VALUES FOR VANADIUM IN SnO,, TiOZ, Ge0,

A%xx A%w A‘%&
Sn0y:V -.061 -.097 -.057
Ti0,:V -.085 -.087 - 044
Ce0,:V -.079 -.079 -.037

The theory for the Q} tensor when the ground state is a singlet
(orbital) has been worked out by Pryce.35 The components of the most

general (} tensor are given by

:2(3}) _} /\L‘b> (57)

where

Z(O L] 'n><’n| il o>

(58)
'n}{o - Eo

is a real, symmetric, positive, definite tensor and O\ is the spin-

orbit coupling constant. Excited states are denoted by |fn> Using the
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transformation properties of the eigenfunctions and the operators as
shown in Appendix C and recalling that the ground state belongs to the
identity I.R., one observes that:

(a) All off-diagonal elements /\I' (1,75 g>\ in the relation Eq.
(57) are identically zero. The reaion is that in Eq. (58) the excited
state \'71> should belong to the same I.R. with the corresponding

N

operator L‘l or L_% for a nonzero matrix element and each one of the
A ~ ~

L‘X s L‘y s L_2> transforms according to a different I.R., namely,
D, C, and B respectively (see Appendix C).

(b) The only nonzero diagonal matrix elements /\11 occur with excited

states belonging to the B, C, or D I.R. The ESR spectra of vanadium in

Sn0,, TiO,, and GeD,, reveal an electronic spin of § = 1/2. Therefore,

the excited states can occur in two ways: In the expression (56) of the

ground states as a Slater determinant either the orbital A, is replaced

3
by one of the higher lying orbitals of symmetry B, C, D or one of lower
lying orbitals of symmetry B, C, D\}szggplaced by the A3 orbital (see
"N o A
Figure 13). The operators L_ :;Zl {ai are one-electron oper-
a1

ators, so that

AR EE, D AR LIAA -3 A =2 (3| |AY ok -

There are two eigenfunctions of type B, two of type D, and three of
type C that must be considered (the Bl’ BZ’ Dl’ D2’ Cl’ 02 and 03 of
Table 6). Using the following relations:
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@xlxz— 71) =-(|x2&>

é\x I zl> - - L\r;) \‘/-Z)
zylxl-)'» -} ’XZ-.> (60)
(12> = islxe

@lx‘—%) =2l

b iz> =0

and neglecting contributions from the nonmetal parts of the orbitals

(see Discussion) one gets:

d ( \/z‘ @,%L\/j (2)- &1%L(Y2)>'L
- E

/\ gl<

1/
LT
\pL (v3)f -0, 13 (Y%)—O;%y Llv2 )>’

t‘ﬂ{ tpl _

] L - N 2 T2

’: :«:\;‘L,L l_‘ﬂ“zk Vit QJX&’ZZ'J d‘i [@,2%\/_3'1‘ Cbx?v_ y%J

- - —

i ED%— EA3 EHZ"‘ \:DL -&

(61)
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EE E-E, |l
"¢, A, s e (63)
i ]

2 %
AN, =C - li" _ b [Z@xz,_ym]x

= (64)

where CLI’ Ei . Ci . CLi are the coefficients of the corresponding
metal parts in the molecular orbitals A, B, C, and D respectively, and

@: is the one-electron spin orbit coupling constant. The minus sign
before the second term in the first brackets is due to the fact that the
charge transfer transitions affect electrons with opposite spin.,36 The
coefficients CLL » k)[____ and the energy terms EA3’ EB1 . . . wWere
obtained in Chapter V for the range of the assumed vanadium charge +.65e
to 0. This range is extended to -.40e in this chapter. The needed

energy matrix elements in the interval 0 to -.40e are taken from Chapter

IV-3 with the necessary interpolations.
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The calculated values of /\‘L‘L are plotted in Figures 14,
15, and 16 for Sn0,:V, TiOZ:V, and Ce0,:V respectively. A significant
point to note is that /\it is always larger than /\XX . From the

Eq. (57) one gets

A%n:’?"} N L=X, 7,2 (3

Therefore, the calculated A% is always absolutely larger than
Tt
A% although the experimental results (see Table 9) show the
XK
opposite. The spin-orbit parameter 3\ is taken as constant in the

range 140 —

to 250 cm'1 according to Moore's spectroscopic tables.

The results so far indicate that none of the sets of the VSIP
derived in Chapter IV can be compatible with the observed % tensors.

In Chapter V-3, the first need for a change of the VSIP's used was seen.
Now an additional factor is added. It is interesting to see what
changes in the values of the VSIP's are needed to account for the
observed % tensor and how these changes compare with the results found
in Chapter V-3.

Consider first (}X and %Y . The calculated and experi-
mental values are tabulated in Table 10. The calculated values were
obtained by selecting the points (see arrows in Figures 14, 15, and 16)
giving the best agreement between experimental and calculated values of
A%‘_ (L = X, )l) . The spin-orbit coupling parameter .;\ was taken
to be L2L50 cm

So far %i was not considered. Fcr this problem one notes

that the calculation of /\2% involves the energy levels A3, El, and
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B2 (see Figure 13). These levels remain unchanged by the v electron
VSIP reduction mentioned in Chapter V-3, in contrast to /\)(>< and ,\7),
which involve the levels Di and C,‘_ . The last two sets of levels

are both affected by the +y-electron VSIP reduction.

TABLE 10

OBSERVED AND CALCULATED $ TENSOR COMPONENTS OF VANADIUM
IN 5n0,, Ti0,, AND GeO,

q. g, 9,

obs. 1.939 1.903 1.943
Sn0,:V cal. 1.943 1.903

obs. 1.915 1.913 1.955
Ti0,:V cal. 1.928 1.898

obs. 1.921 1.921 1.963
Ge0,:V cal. 1.949 1.819

The components of /\ tensors were calculated with a +r-electron VSIP

1

reduction of 35 Kem L and 45 Kem™! in the interval +.60e to +.40e of the

assumed vanadium charge. The results are plotted in Figures 17, 18, and
19 for SnOZ:V, '1‘102

figure corresponds to the 45 Kx:m-1 reduction. In the case of SnOZ:V

:V, and Ge02:V respectively. The upper part of each

agreement is achieved at +.40e with 45 Kcm-l reduction. A charge self-
consistency calculation requires a vanadium charge of +.4le (see Figure
12). Therefore, an almost exact coincidence of the two methods is

reached. Similar results can be found with TiOZ:V and GeOZ:V, although
a greater TT-electron VSIP reduction is needed (10 Kcm-1 to 20 Kcm-]'

more) .
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The result of the previous paragraph is that a choice of the
Tr-electron VSIP can be made so that the calculated value of %}}
is the same as the experimental value. Thus Table 10 is completed.
Whether this choice of the VSIP represents also the crystal reality and
not just a mathematical device is not known. It is observed, though,
that the change needed by the s} tensor in the VSIP of -T-electrons
coincides with the similar need of the detailed charge self-consistency

(see also Chapter VII-2).

2. The Hyperfine Interaction Temsor A

The hyperfine tensor A can also be used to check the results
found in Chapter V. The anisotropic part of the hyperfine tensor A
depends on the form of the ground state wave function, and the discus-
sion that follows is limited to this state.

The ESR spectra of vanadium in SnOz, TiOz, and GeO2 reveal a
strong hyperfine interacticn of the unpaired electron with the wvanadium
nucleus. Experimental values of the hyperfine teasor in units of 10-4
cm = are given in Table 11. Since the relative sign of the hyperfine
tensor components cannot be determined, they are assumed to be all of
the same sign so that the isotropic part becomes maximum., Subtraction
of the isotropic part leads to the following components of the aniso-

tropic part listed in Table 12.
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TABLE 11

EXPERIMENTAL HYPERFINE TENSOR COMPONENTS OF VANADIUM
IN $n0,, Ti0,, AND GeO,

e i

— —

- Ay Ay Az
SnOZ:V 21 44 144
Ti0,:V 31 43 142
Ge0,:V 37 38 134
TABLE 12

ANISTROPIC PART OF THE HYPERFINE TENSOR COMPONENTS
DEDUCED FROM EXPERIMENT

amis amis o Lamis
Ax Ay : Az
Sn0,:V -49 -26 75
TiOZ:V - =41 -29 70
Ge0y:V -33 -32 65
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In Chapter V-2, it was found that the A3 level was the ground
state. Its form is given in Table 7 of Chapter V. In Appendix F the
coefficients of the metal parts of the A3 level are listed for the
interval +.65e to -.50e of the assumed vanadium charge. The variation
of these coefficients is negligible. Therefore any result based on
these coefficients does not depend critically on the assumed vanadium
charge. For the discussion of the anisotropic part of the hyperfine
tensors only the parts of the ground state wave functions that contain
the metal \X12->/x:> and \ 221> states are needed. These are taken
from Appendix F. The vanadium charge is taken as +.40e because of the

results found in Chapter VI-1. Using the relation

R S SR LR (50

and the coefficients in Appendix F, one gets

Sr0,:V 912 |x2-y> +.154 | X222
Ti0,:V 1929 |x%-y> +.126 | x%-2% (67)
Ge0,:V 907 |x°-y%> +.160 | x°-z2>

The field produced at the center by an electron in the orbital
lxzt:y%)has a relative strength of 1, 1, and -2 when an external mag-
netic field is applied along the x, y, and z axes respectively, while
for the orbital kx%-2?> it is 1, -2, and 1. When the occupational
probability for an orbital is less than one, the relative strengths have
to be multiplied by that probability. For example, the coefficient of

the|><2.y%§ state of Sn0,:V is .912 in Eq. (67), the occupational
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probability is (.912)2,’:’, .82 and the field produced at the nucleus will
be proportional to .82, .82, and -1.64. In this way, one gets from Eqgs.
(67) the following relative strengths of the magnetic field and therefore

of the hyperfine interaction.

TABLE 13

CAICULATED RELATIVE STRENGTH OF THE MAGNETIC FIELD
AT THE VANADIUM NUCLEUS DUE TO THE
GROUND STATE ELECTRONIC CHARGE

X y z
Sn0,:V from |\ y¥y  .820 .820 -1.640
-2y .o26 -.052 .026
Total .846 .768 -1.636
Ti0,:V .881 833 - -1.714
Ge0,:V . .854 782 -1.636

Normalizing them to the A:ms of Table 11 one gets the results in

Table 14.
TABLE 14
CALCULATED ANISOTROPIC PART OF THE HYPERFINE
TENSORS NORMALIZED TO A‘z""“s‘
amis anis m-v\i;
Ax Ay A,
Sn0,:V -39 -36 75
Ti0,:V -36 =34 70
GeOy:V -34 -31 65
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The agreement with the experimental data of Table 11 is good. For
kY
Sn02:V and Ti0,:V, it is noted that a greater contribution of theJZ)

state is required than indicated by the coefficients in Appendix F.




CHAPTER VII

DISCUSSION AND CONCLUSIONS

In conclusion, a summary of the obtained results is presented

with some additional discussion.

1. Summary of Results

The main results found in this work are:

(a) The ground state is found to be A3, which is mainly x"— 7"
as K::lsai.4 and From, Kikuchi, and Dorain5 indicated earlier, but with a
small admixture of 2-2' and an even smaller admixture of 4s orbital.
These admixtures are caused by the rhombic component of the crystalline
field. In a tetragonal or axial field this admixture would be symmetry
forbidden. As evident from Appendix F, the admixture coefficients are
relatively constant over a wide region of the assumed vanadium charge
from +.65 to -.50. The relatively lower admixture of the 2’“ state in
Ti0, can be attributed to the smaller rhombicity that this crystal pre-
sents with respect to the other two.

(b) The ordering of the levels involved in the %, tensor is
found invariably to be Bl(xy) , Cl(xz) , Dl(yz), A3(x2-y2) s Dz(yz) .
C3(x2), Bz(xy) in increasing energyl‘\z(see Figures 5, 6, 7, 8, and 11).

The levels D2, C3, and BZ above the ground level A3(x2-y2) correspond to

17
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the levels of the crystal field theory. It is observed that Dz(yz) is

below C3(xz) whereas the simple crystal field theory predicts the

reverse order. The formulas (62), (63), and (64) derived in Chapter

VI-1 show the importance of the E’" admixture in calculating the

A(} values., For example, in SnOZ:V the relative importance of ad-
[

mixture is given by the fraction

[O’x%_y% - O\,z_%\/g]%: [98‘14‘ \7\)3\[?]7\/,: %b’
[0 a5 P[99 ]

This fraction shows that the admixture of -.133'2—2'> in the ground

(68)

state introduces a factor of 2.5 in the value of A% with respect to

A%X . The numerical values of the coefficients az?el taken from
Appendi: F. (Note that this admixture gives an occupational probability
of the state )22’>, of less than 2%.)

(c) The small admixture of 22/ function is important also in
explaining the features of the anisotropic part of the hyperfine tensor
components.

(d) Although a tetragonal symmetry implies a 13, tensor of axial
symmetry, the converse is not always true. The same ordering of levels
can be compatible with very different % tensors, as found in Sn02:V
and Ti0,:V.

(e) In a heuristic way, assuming a ground state of the form
- 0(, 2%>+P’X2‘—>/2’> , the coefficients OC and F that satisfy

the anisotropic parts of the hyperfine tensor are found to be:
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2293 2% +.958 i xP-yiy

—.232 ] 2Y> 40972 | Doy

—.083i

7Y 4.996 |x°-y? N

for Sn02:V

for TiOZ:V

for Ge02:V

(f) Using the above ground states and neglecting the effects of

any charge transfer transition and of any admixture of ligand functions

in the excited states D2(yz), C3(xz), and Bz(xy), the following sequences

of levels satisfy the observed Q} tensors.

Sn02:V TiOZ:V Ge02:V
B, (xy) 31900cm™ 42400cm™ ! 53200cm™ 1
C4(x2) 11000cm™! 10700cm™! 8160cm™!
D, (y2) 1650cm™L 1895cm™ 4550cm ™t
A3 0 0 0
For the sake of comparison, the calculated levels of SnOZ:V are given
below when a reduction of the —T7T -electron VSIP of 35 Kx:m-1 and 45 K:c:m'-1
are used (see Chapter VI-1)
Reduction in  TT7-Electron VSIP
35 Kem™ ! 45 Kem™
B, (xy) 24202 24202
C3(xz) 7599 6767
D, (yz) 5315 4662
A3 0 0
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(g) Finally, the discussion in the next section shows that the
ligand parts of the MO, which were neglected in the calculation of the

[ﬁ;%ﬁ_ in Chapter VI-1, may have absolute contributions of from 5% up
LL

to 25%.

2. 'Discussion

The freedom in choosing the VSIP of the -T-electrons independ-
ently from the G -electrons is enoﬁgh to bring the values in the right
region although the necessary reduction in the above VSIP is found to be
somewhat large. Further study of this matter is desirable. For the
moment one can observe that even within the framework of this calcula-
tion a smaller reduction of the -TT-electron VSIP is really needed.

The Z&%Ll'values are due to the interplay of the spin-orbit coupling
and the orbital Zeeman perturbations.

In formula (58) one of the matrix elements is due to :A!i’ié and
the other to tﬂ' L: . Due to l//ﬁ3 dependence of the S - O coupling
parameter, only metal-metal and ligand-ligand terms need be kept in the
first matrix element. In the second matrix element, though, the metal-
ligand terms may become appreciable depending on the overlapping of
metal and ligand functions.37 Since the A3 level cohéists almost exclu-
sively of metal functions, no correction is needed in the S - O matrix
elements.

The cofrection due to the orbital Zeeman term amounts in sub-

stituting
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d.; [d,; + d,': <’><,v|$'z>] Lov d?:

2

[c;+ e, |x2>+c:<fx5|xz>] for ¢
i [bf’ E:< ¢, 'xy}] | for ‘:iv

(69)

‘U"

in formulas (62), (63), and (64) respectively, where the orbitals

B[ (i_: 1)2)’ Ci (I:zl,?)), and Df. (L: l,?-) are written as follows:
But bilxys+by| 9>

Cil*2>+ CL/|’7&>+ Cill|’x5>

",‘

~

d’i\\/z>+ d_:|‘XL>

-

(70)

(see Appendix I).

Since the coefficients b2, €3, and d2 of the corresponding anti-
bonding orbitals are negative, a reduction is implied in the calculated
values of /\Il by using the Egqs. (62), (63), and (64). Similarly, the
positive coefficients bl’ s and dl of the bonding orbitals imply also a

reduction in the values of /\LL . A numerical calculation gives the
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’
reductions of /\1i5 listed in Table 15, when the assumed vanadium
charge of +.40e and the ~T-electron VSIP reduction of 35 Kcm-1 are

used.

TABLE 15

REDUCTION IN ALL VALUES DUE TO LIGAND ORBITAL PARTS
AT +.40e ASSUMED VANADIUM CHARGE AND 35 Kem~l
TT-ELECTRON VSIP REDUCTION

Sn0,:V Ti0,:V ) Ge0,:V
4.5% 6.0% 8.5%
5.5% 8.5% 10.5%

25.0% 45.0% ) 47 .5%

From Table 15 one observes that the inclusion of the ligand part

has the greatest effect on /\}2: . In Chapter VI-1 the reduction of the

TT-electron VSIP was used for the purpose of reducing /\}%_ . Now a
more careful calculation of the orbital Zeeman matrix elements with the
inclusion of the ligand part shows that the required —T-electron VSIP
reduction is less by about 10 Kcm“1 to 20 K.cm-1 than the original esti-
mate. However, Table 15 is somewhat misleading for the following
reason. The much greater percentage in the reduction of the /\22_ with
respect to the /\Xx and AV)’ is partly due to the greater contribu-
tion of the charge transfer process. The latter point is made clear in

Table 16 where the contributions from crystal field and charge transfer

transitions are shown. If one decides to consider the reductions in the
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?
/\IIS due to the ligand orbital part, then the calculated values of
ZX )

the Ai]_?s become too small to fit the observed %L'L S . Thus a
point corresponding to a smaller vanadium charge than the .40e is
needed, according to Figures 14, 15, and 16, for such a point the charge
transfer contribution to /\}} becomes much smaller than the value
listed in Table 16. A rough estimate gives 18%, 22%, and 25% for the

last row of Table 15.

TABLE 16

CRYSTAL FIELD AND CHARGE TRANSFER CONTRIBUTIONS TQ THE
/\ TENSOR COMPONENTS IN Sn0,:V IN UNITS OF 10" cm
(.40e METAL CHARGE AND 35 Kem™! REDUCTION IN
=TT -ELECTRON VSIP)

/\,xx /\77 /\Z't
Crystal field 10.014 17.797 13.853
Charge transfer -.170 -.538 -2.529
Total 9.844 17 .529 11.325

This thesis has been concerned with the properties of vanadium

5+ >+
in Sn0,, TiO,, and GeO Recent ESR spectra of Mo and W in TiO

2° "2 2 2

44 X
have been reported. Comments on these experimental results are given

in Appendix K.




APPENDIX A

GENERAL THEORY

The Hamiltonian for a system of {b nuclei and N electrons is

'y Z,N &/ . a 54
_ e AN % 2y 2y e _
kLT E T B
N
-2

vy

&,

Z Z & +Z_ & (A-1)
.3 YVI% <K r?.l’

To this Hamiltonian one should have added terms depending on the elec-
tron spin, the nuclear spin, quadrupole moments, etc., but due to their
smallness in comparison with H they are neglected. Thus the Hamil-

tonian H in Eq. (A-1) is spin independent.

The Schrddinger equation for a statiomary state 1is

H \P = E q) (A-2)

7
The Born-Oppenheimer approximation simplifies Eq. (A-2) to

5, N i, N & %
_E T omy Z2vel 5y EE
RALIE R Wi VY-, 1\ VE‘
S b s
N %
o -
+:L<Ti, w,k@d_t@eﬂ
84
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Equation (A-3) is simplified to

(A-4)

by using the definition

koo 2,07
= - ;53 ) ¢
Ed-E L

Wy G

(A-5)

Unfortunately, only approximate numerical solutions of Eq. (A-4) can be
obtained by the use of high speed computers in the veryvsimple cases of
small molecules. The difficulty comes from the last term giving the

electron-electron interactions.

The Electron-Independent Model.

The simplest (and crudest) approximation in solving Eq. (A-4) is
to neglect completely the electron-electron interaction, i.e., to solve

the equation:
N 1,

A ™ k 23 e ( (L2 N)
;(— ?v—'”l_vu. s%_—%@d l)z"'N):EJ}P yN---

[ (A-6)

H)
As the Hamiltonian is a sum of one-electron operators, the solutions of

Eq. (A-6) are of the form of product functioms:

@d(L,z-“N):cﬁKl(n @K%(Z)___@KN(N) @)



86

7
where the qj S are solutions of the equation

i Z ,N <I>ﬁ £ B .

A wave function @K(L) which depends on the spatial coordinates of one
electron only is generally called an orbital. If the one-electron wave
function depends on the spatial and spin coordinates it is called a

spin-orbital. When the Hamiltonian is independent of spin, a spin-

orbital is a product of an orbital and a spin function like

@ (1) x (1) or k(L)P (L) \
Thus, every product function of the form (A-7) can produce ?u prod-
uct functions, if spin is included. However, not all of them are
necessarily possible, on account of the Pauli's principle and the indis-
tinguishability of the electrons, which are both satisfied if a product

function like

@Klm (1) @KLWP ). () o (N)

N (4-9)

is replaced by the normalized Slater determinant, which will be abbre-

viated usually as

@Klm o (1) CI)K%(MP () ____@K <N)°<(N)‘

N

(A-10)
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Self-Consistent (SCF).

The previous approximation, in neglecting the electron-electron
interaction term, brought a great simplification of the problem, but one
does not expect to get anything like the true energy eigenfunctions and
eigenvalues.

In the SCF approximation, each electron is considered to move in
a fixed effective electric field which is obtained by averaging over the
positions of all the other electrons, in addition to the field produced
by the nuclei. Therefore, each electron is expected to be described by
an orbital (or a spin-orbital) and the Hamiltonian becomes again a sum
of one-electron operators with product functions as solutions of the

Schrodinger's equation. Using a trial function of the form:
L XOR FOR I
Pyrd b g

and applying the variational principle to minimize

E:@lH)%
- <4 e

where H 1is the Hariltonian in Eq. (A-4) one gets the following N

(A-12)

Hartree equations:

_ E_ ¢. U-) (A-13)

1f, instead cf a product function, a Slater determinant like Eq. (A-10)

is used one get39 the following N Hartree-Fock equations:




Yy 9, Ly
Lt

_~fl{<q5i/ (%)’-Y?_i_ Cbi (2)> CI)L’ (l):Ei CI)L )

(A-14)

The term self-consistent field is appropriate since each ép[ depends
on every @i’ and whichever orbital @L one chooses, it must come
as a solution of the Schrodinger equation in which the potential energy
due to all the other orbitals has been calculated by means of the
gil ! S

The self-consistent orbitals are obtained by iterations. In
general, the results of SCF calculations are good but the calculations
are quite complicated and lengthy, and the wave functions are expressed

in a numerical table or at best as sums of many analytical functions.

Atoms .

If there is only one nucleus, i.e., k = 1, and the potential
X
CID_,(?»)’_@__. @_, (%)
L ri_, L
LL

is, if necessary, averaged (approximation) over all directions so as to

be always spherically symmetric, then the Hamiltonian of the Hartree
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equations (A-13) becomes spherically symmetric and the solutions can be

expressed8 as hydrogen-like orbitals.

¢

’n;{,'m: Cg'n,!; @) @ (%) (4-15)

10
This is in agreement with an empirical method that Slater had suggested

(r)

£, m

earlier.

Molecules (Complexes, Solids).

The presence of many nuclei does not allow spherical symmetry
(even approximately), and the problem c¢f solving Eq. (A-13) or Eq.
(A-14) becomes extremely difficult. Only for the hydrogen molecule have
SCF-molecular orbitals (SCF-M0O) been obtained.12 An approximation that

is widely used in "small molecules'" like HF, H,, CH, CH_, . . . is to

2° 2
consider a linear combination of atomic orbitals centered on the nuclei
of the molecule (the term '"molecule" will be used collectively for
molecules, complexes, and solids), i.e.,
d=Yc ¢ (8-16)
L 4 L % L4

See Refs. 13 to 19.

Semiempirical Methods.

The result of the Hartree SCF method was to change the Hamil-

tonian of Eq. (A-4) into a sum of one-electron operators of the form:

k 3 N
A Gy %y (det D @)de
e 'L-ZT T‘;—J{i’:l b, i CPV( %
'L';éi. (A-17)
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The last sum of integrals is the operator whose expected value expresses
the Coulombs potential energy of the i-th electron (strictly speaking of
an electron in the i-th orbital) due to the average field of the rest of
the electrons, and it is different for different orbitals. However, if
two orbitals are approximately in the same relative position with res-
pect to the others, one anticipates almost the same expectation values.
This idea is reflected, also, in the Slater's rules which give the same
screening constant @  for all the orbitals of the same group. The case
of complex molecules is certainly more involved as there is no-spherical
symmetry in the Hamiltonian. As a more complex situation needs more
drastic measures, the following assumptions are made:

(a) Electrons are divided into core and valence electrons.

(b) Core electrons form closed shells that affect the-motion of the
valence electrons only through the screening of the corresponding nuclei.

(¢c) Each of the valence electrons moves on an orbital <@\/

satisfying the Schrodinger equation

Heg 1 B 1121~ %%V "L e \/(W) P,

“E, D, ()

X .
where Ei~ is the effective charge of the g-th nucleus and

\/(f‘»)

to the rest of the electrons.

(A-18)
is the average potential energy of the valence electron due
(d) The function XVZ()?) is the same for all valence electrons even

if they occupy orbitals corresponding to an excited state of the group

of valence electrons.
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9.1 \Y/
(e) ‘h S and (_Y:) are not to be used explicitly.

Suppose that one knows the He%& and let i(fk be a complete,
L
but not necessarily orthogonal, set of one-electron functions that obey
the same mathematical restrictions as the valence orbitals. Then one

can always expand @V in an infinite series:
@ 2o
=l C . (A-19)
vor i

Substituting in Eq. (A-18)

'—ﬁfs L“_LC $:- L'.L S - 420
and multiplying on the left by cr ( }): L , 2) .. -oo) and integrat-

ing one gets an infinite number of equations:

P
¥ ¥ -
Lead[q Mo 6 47 Bl g drjzo b
1=1 & gﬁ' L b L
(A-21)
Since there are mathematical and practical difficulties in dealing with
an infinite number of equations, one generally restricts the expansion

(A-19) to a small number -\ of functions @ hoping that with the
L

)
proper selection of Cf_', S and the best coefficients CI. S the
L

n
@V’\)gl_ci q)i.

approximation

(A-22)

7
will be adequate. The selection of the proper Ci: S rests on intui-

tion and experience, but the best coefficients C § are determined
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rigorously by the variational method, i.e., one minimizes
" Hoy ®
E‘ f@\/ He&& v d.b
= " é@
H)\, v dv

Thus (see Appendix B), the following secular equations and

(A-23)

secular determinants are obtained:

"
ECL(H[%‘E%&):O k, = LA oo a-20)

det \ HH%- E S‘LRJ:O 'L,%.:: L,2---m (405

_ [, x o = g¥
Hik: [ (Ft He%f& q)k,d o omd S'“@‘_f . (FROL’U (4-26)

*
Since the Hamiltonian coperator is hermitian F*ii._— }{ L and
X
¥*LS = F{%i.; if the functions q17 S are real, as is almost always
L
the case, then }*-— = }1‘1_ . As for the set of orbitals qL to be
Ly 5 L
used, generally, atomic orbitals centered at the different nuclei are
m
selected so that @V: 2_ C. Cf). is a linear combination of atomic
L L L

orbitals (LCAO). The selected atomic orbitals are the energetically

. 14 . .
lower valence orbitals as the atoms-in-molecules method implies. At
an infinite separation of the nuclei, the valence electrons are rigor-

ously on atomic orbitals. However, at a smaller separation of the

nuclei the LCAO is only an approximation.




APPENDIX B

APPLICATION OF THE VARIATION METHOD TO LINEAR FUNCTIONS

Substituting relation (A-22) into (A-23) and using definitions

- /;*c c. Ry
Z C. C: S‘A (B-1)
Ly ¢ §

Normalization of ¢v requires that

ZC_ C.g._:l (8-2)
LY ¢ 3 L&

Bringing the denominator on the left side and differentiating with res-

(A-26)

pect to C , one gets

NE Ny Y
. ‘%QCSL E% Zﬂch bth (a%% L éHLé

(B-3)

For a minimum in energy, necessarily

%E =0 , &:-‘-,?\J--_’Y\ (B-4)
(Bck

Therefore

b ashy
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EZ 2J2f-cif3i&4:: ;ng.<:i F1l%,

(B-6)
or .,
ZCKH\ - ES. ):O k=1%...m
=l 1 ik L&, (B-7)
For a nontrivial solution, necessarily
HL‘&, - ESL‘R": 8] (B-8)
The coefficients C:L7$ are determined by solving the equations:
44
CiL |y
.ZC [H‘L‘ES‘L]:—H"L +E§l
] G L b j b
(B-9)
for the ratios —%%i— and then using the normalization condition (A-2).
i




APPENDIX C

GROUP CHARACTER TABLE FOR THE SINGLE-VALUED

IRREDUCIBLE REPRESENTATIONS

c:‘cz;c};; }6'&‘ GY' ¥
—— —
A ]1% 'Nl%“ 1! 112 1 1; 1 1 1 32"»_V"2‘f%__),7v;5
B T'L} ;N}J% 1 -1=-1l 1 1!-1 -1 Xy ;L—k
c l‘,,% | Nag 1] 1 -1% 1 -1? 1/-1]2% ;l—y
D | Ty fNu% Lo 1) -1?-1 1lyz 5 L,
N Ny, 1 1l 1171 -1
E r%w'N,mg 1’-1‘-15-1 11 2
z 1 T N, | 1) 1)-101 1%-1"15)’
B | Maw [Ny a1l 1l il X
N,v%® Nag -1l 1] 1.1 I-1 1| Nug
I\T,V%fzifl\h,.(,s 12-1;-1 SRR N3%
N, ® N, -1§ 15-1 1 -1§ 1]-1 Nyo
N,.® N, 1: 11 TRERE Nl%
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APPENDIX D

TWO-CENTER OVERLAP INTEGRALS

The two-center overlap integrals are calculated using the fol-

lowing formulas:

K=Cisi3d >N (2 )Wama +A(-3B,+ 5B+
+ A 3B+ 4B =3B, )+ A, (3B, HB DB 1A PSR F3B)+
+ AS(-60+ 3‘?.)9)
| N 3B
LL:<2s\3Pg):NQNb-9:&T,V—)[ B-AB IR B.12A B A8~ A, &)
L9=<Rslbipy= NNB (&) er;r Al\6q+ B) + A, (485 B)
“UALR B+ A (-8, +LBYHA (BB )~ A, B
Mi=<hsl395 NN T (ST ABS A8+ 2R B 20 07001 A ]
M=¢Aslbsd=N leTY[AB AAB; ABHHAB-ABIAAE: AE)
N =<2p, 13d. ) = NN [l-\ 3B+B)+MB+B)
+ A, (3P +8,)- A ge)+5e>) a,(8,+8,)+ A (-B;138,)]
0 =<, |3d.y= NN3"r( [A (B,-B)+A,(-818 )+
+A (48] tA (B - B)+AL‘ -8) A8+ &)
Pl=<2p, | 3p >=NNZ )L[[.\Dgs— A B~ H%( B 1+R(B6,)

+A 8,- AB,

Pz—@? |4 »=NN, 2 ) EAQBL+2HSE>3+HHBO—%3(BL+ B)+
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+hn6B+2A 6 -AB
2 6 1 3 o h )
Q= <ap [35>=NN B (B]]-n B 44 (26,-8)+ 24 8, - 28 B+
+A (B -28)+A e]
A2=<ap | 1sy=NN B (B[A €+ (B-28) A (-38+28)
+h,28,+28 )m t:us 38,)+ R (-38+8 1+ A e]
Rl= <9»P1T|3P_W) NN [ﬁ B+ 8)A (B,-B)+A [B,-B)
+A, (-8 +8) 4R (- B+6)+H () B)]
Ra=<2p_|hp d=N NN3 ) [A B8 )+A B - 28)+A8
- RB+A(-26+ aeL)mq(eL B)+ 95\263 28) +a‘\ B;q)]
The radial parts are given by P\ (P_):N r'"'le'y"v . However, many
times the radial part of an Mg P fnP O’;“ md function is given with a
smaller exponent as in (38) or as a sum of functions of different expo-

nents as in (44). In such a case one should be careful to look for the

proper principal quantum number. For example, the computed expression

of <2/s ‘L*Pg> in the text will appear as <%5| 3P6'> in the

tables since the radial part of [+P is given as R (L_ ) =
S ‘
—Np¥ o P N et
__NV“ e and not as R (L}Pa) Nf“ e t" . values of

the two-center integrals are given below.

Sn0,:V Ti0,:V Ge0,:V
K; .109 128 146
Ky .108 .120 1132
L1- -.002 -.002 -.003
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APPENDIX E

ENERGY EIGENVALUES IN Kem ! FOR Sn0,:V

.65 .55 .45 .35 .30 .20 .10 .00
111. E, 106.5E, 101. E, 94.5E, 90.5E, 82.5E, 73.5E, 67. Ag
93.5A45  91.5A5 88. A5 84.5A5 83. As 78.5A5 73. A5  63. Ep
1.52, 1.52, 1.52, 1.52, 1.2y 1.2y 1.2y 1.2
-10. H, -10. B, -9.5H, =-9.H, -8.5H, -8.H, ~-7.Hy -6.Hp
-61. C3  -64.5C, -64.5B, -62.5B, -61. Ay =-57. Ay =-52.5Ay -48. Ay
-62.5D, -66. By -£5.5A, -62.54, -61. B, -57.5B, -53.5B, -49. B,
-65.5C)  -66. Dy =-67.5C3 -69.5C3 -69.5C3 -67.5C3 -63.5C3 -58. Cg
-65.5 -69. Ay -70. D, -72.D, -72. D, -69.5D; -65. Dy =-59.5Dy
-66.585 -70. C, -75. C, -80.C, =-8l.5A3 -75. A3 -69. A3 -62.5A3
-70. Hy  -70. -75. -80. -82.5, -88. C, -93.5C, -99. C,

-71. Ay -74. Hy -78.5H3 -83. H3 -82.5  -88. -93.5  -99.
-71.5E3  -75.5E3 -79.5E3 -84. E3 -85, Hy -89.5H3 -94.5H3 -99.5H3
-107. Ay -99. Ay -91. Ay -84.5A; -86. E3 -90.5E3 -95. E3 -99.5E,
-108. Dy -101. Dy -94.D; -91.D; =-90. Dy -92. Dy =-95.5D; -100. D;
-108.5€; -101.5G; -95. €1 -92.5C; -91.5G; -93. C; -96. Gy -100.5C;
-115. H; -115. H; -116.5H; -118.5H; -121.5H; -125. H; -130. H; -135.5H
-118.52; -118. 2z -119. Ey -121. z; -122.52) -126. Zj -130. Z; -135.52;
-122. By -119.55; -119.5B) -121.5B; -123.5B; -127.5B; -132. By -137. B
-127. A4 -125.54, -126. A, -127. A, -128.54, -131.5A, -135. A, -139. A,
-159. Ey -1€l. E; -163.5E; -166.5E; -169. E; -174. E; -180.5E; -188.54;
-164. A} -165.5A) -167.5A) -170. A -172.5A; -177. Ay -182.5A; -189. E;
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ENERGY EIGENVALUES IN Kem . FOR Ti0,:V

.65 .55 .45 .35 .30 .20 .10 .00
153.5E5 147. E5 139.5E; 130.5E3 125..E3 114. E5 10l. E5 87. Eg
105. Ag 103, Ay 99.5A3 95. A5 93. A5 88. Ag 82. Ay 75.5Ag
-8.52y,  -8. 2, -8.2Z, =7.529 -7.2Zy =6.52, <-6. 2y =5.2Z,
-9. Hy  -8.5H, -8.5H, -8.H, -7.5H, -7.H, =-6.5Hy -5.5H,
-59.5C3 -60. B, =-59. B, -57.5B, =-56. By -53.5B, =-50. B, -45.5A,
-60. By  -62.5C; -61.5Ay =-59. A, =-57.5A, -54. A, -50. Ay -46. By
-61. D, -64.5A, -65. C5 -66.5C5 =-66.5C; -65.Cy -6l.Cy -56.5C3
-65.5, -65.D, =-68.D, =-69.5D, -69.5D, -67.5D, -63.5D, -58.5D,
-65.5 -70. C, -75.C, =-80.C, -8l.5A5 -75. Ay -69. A3 -62.5A,
-66.54,  -70. -75. -80.  -82.5C, -88.Cy -93.5C, -99.C,

-70.5Hy  -74.5H3 -79. H3 -83. Hy -82.5  -88. -93.5  -99.
-72.5E, -76. E, -80.5E, -84.5E, -85.5Hy -90. H; -94.5H; -99.5H,
-107. A3 -99. A3 -91. A3 -84.5A3 -86.5E; -91. E, =-95.5E, -100. E,
-108.5Dy -101.5D; -95.D; -92. D; -91.5D; -93. Dy -96. D; -100.5D;
-109. €y -102.5C; -96.5C; -94. C; =-93.5C; -94.5C; =-97. C; -101. C
-112.54; -112. Hy -113.5H; -115.5H; -117.5H; -121.5H; -126.5H; -132. H;
-115. 2y -114.52 -115.52; -117. 2 -119. Zj -122.52; -127. Z; -132. 2
-122. By -119.5B; -118.5B; -120. By -121.5B; -125. By -129.5B; -134.5B;
-126. &, -124. A, -124. A, -125. A, -126.54, -129. A, -132. A, -136. A,
-165.5€; -167.5E; -170. E; -173. E; -175.58; -181. E; -188. E; -195.54;
-170.5A; -172.5A1 -174. Ay -177. A, -179.5A; -184. A; -189.54; -196.5E;
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ENERGY EIGENVALUES IN Kem — FOR GeO,:V

.65 .55 45 .35 .30 .20 10 .00
176. E3  170. E3 161.5E,4 151.5E3 145.5E3 133. E; 118.5E; 102.5E,
137.5A, 135.54, 130.54, 125. A, 122.5a, 116. 4, 108.3A, 99.54,
.52, .52, .52, .5z, .52, .52, .52, .52,
5.5H, 4. Hy -5.H; -4.5H, -4.5Hy -4.H, -4.Hy -3.5H,
-56.5B;  -36.5By -54.5B) -53. B, -52. B, -49.5B, -45.5A5 -41.5As5
-60.5A5  -59. A5 -56. A, -53.5A5 -52. Ag -49. A5 -46. B, -42.5B,
-57.53 -60.5C3 -63.C3 -64. C; -64. Cq -62.5C5 -59. C3 -55. C4
-59.5D;  -62.5D, -65.5D; -67. D, -67. D, -65.D, -6l.D, -56.5D,
-65.5, -70.C, -75.C, -80 C, -81.5A3 -75. A3 -69. A3 -62.5A4
-65.5 -70. -75. -80. -82.5C, -88.C, -93.5C, -99.C,

-71. B3  -77. E, -79.5H; -83 5H, -82.5 -88. -93.5 -99,
-73. E;  -90. Hy -81. E, -84.5A4 -85.5H; -90. Hy -95. Hy -99.5H,
-107. A3  -99. A; -91. A; -85. E, -87. E, -91.5E, -95.5E, -100. E,
-109. D; -102.5D; -96.5D; -93.5D; -93. D; -94. D; -97.D; -101. D,
-109.5¢; -103. C; -97.5C; -95. C; -94.5C; -95.5C; -98. C; -101.5C,
-115. Hy -119.5z; -116.5H; -118.5H, -120.58y -125. Hy -129.5H; -135.5H;
-118.52; -125. B; -119. Z; -120.5Z; -122.52; -126. 23 -130. Z; -135.5Z;
-125.58y -124. By -122. By -124. By -125.58y -129. B; -133, By -138. B;
-129.54) -129.54, -128. A, -129. A, -130.54, -133. A, -136. A, -139.54,
-160. E; -162. E; -164. Ey -167. E, -169.5E; -174.5E; -181. E, -189. A
-166.54) -168. A) -169. Ay -172. A, -174. A, -178. Ay -183. Ay -189. E,




APPENDIX F
VARIATION OF THE Z”AND 4S ADMIXTURE IN THE GROUND STATE Aq
Sn0,:V Ti02:V Ge02:V
Assumed
Vanadium 4s 2’" X \/7" L 2% e y‘b LFS 21/ XX'—- y'i/
Charge
.65 073 -.139 .986 068 -.114 .992 .082 -.140 .987
.55 071 -.135 .988 .059 -.110 .992 078 -.136 .987
45 069 ~-.133 .989 .058 -.108 .992 .077 ~-.135 .988
.35 .068 -.132 .989 .057 ~-.108 .992 076 -.134 .988
.30 .068 -.132 .989 .057 -.107 .993 .076 -.134 .988
.20 067 -.131 .989 056 ~.106 .993 075 -.133 .988
.10 .067 -.130 .989 .056 ~.,106 .993 749 -.133 .988
.00 .066 -.130 .989 .055 -.105 .993 074 -.132 .988
-.10 065 -.130 .989 .055 -.105 .993 074 -.132 .988
-.20 065 -.129 .989 .054 -.105 .993 073 -.132 .989
-.30 064 -.129 .990 054 -.104 .993 073 -.131 .989
-.40 .064 -,128 .990 .053 -.104 .993 072 -.131 .989
-.50 .063 -.128 .990 .053 -.103 .993 072 -.130 .989
102




APPENDIX G

POINT CHARGE CRYSTALLINE FIELD CALCULATION OF THE
ELECTRONIC LEVELS OF Sn0O,:V

Using Watson's radial functions the following splitting of the
nearest 3d vanadium electronic levels is obtained. The number of the
nearest ions, which have been considered in each case, is written in
parentheses. The cases with 8 and 32 nearest ions are considered
closest to reality because the corresponding total charge of the com-
plex is zero.
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Appendix G Table
22
XY XY
252 —
X z Z22
XY
Xz
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ey ——
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APPENDIX H

VALENCE STATE, VALENCE STATE IONIZATION POTENTIAL

(VSIP), VALENCY AND PROMOTION ENERGY

A simplified discussion of the water molecule is given to
clarify the above ideas.

The ground configuration of oxygen is _LS’U 2,5% Z‘F% Z,F LP

3 P 14

and it is a I? with the two unpaired electrons having parallel spins.
The ionization energy28 is 109836.7 cm-1(13.614 eV). The water molecule
is formed by pairing each of these two electrons with the electrons of
the two hydrogen atoms (neglect hybridization). The two oxygen elec-
trons are randomly oriented with respect to each other. If by some
imaginary process one could remove the hydrogen atoms and still keep
the spins of the two oxygen electrons uncorrelated, the state of the

oxygen atom would be a valence state. The number of the spin-uncorre-

lated electrons determines the valency of the state. In this example,

the oxygen is divalent. The ionization energy of one of the valence

electrons is less than in the case of the single oxygen atom by the

amount that is needed to uncouple the two electrons from the triplet
i -1

state. Since the singlet state £> is 15867.7 cm =~ higher than the

3
ground state J? the valence state ionization potential (VSIP) is
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less than in the free atom by the amount i(o)-p —t_.(15867'7)’ where the
factors 2 and 1. take into account the spin multiplicity. From this
example, it is obvious that the valence state is not a spectroscopic
state and excitation to it is not physically possible. It is a non-
stationary state. The amount % (o)+_t(15867.7) is usually referred

to as the promotion energy.

In general, the orbital part of the valence state of an ion can
be a linear combination of the form o(|215>+§\2,[;> , for example,
which is referred to as a hybrid orbital. 1In this case, the promotion

energy might have, also, a contribution from the hybridization.




APPENDIX T

EFFECTS OF THE LIGAND ORBITAL PART IN THE CALCULATION

OF TEE ZEEMAN MATRIX ELEMENTS

Using the notation in Eq. (70) for the calculation of /\xx

one has the matrix elements:

<x,i,°|z>+a,,“ ,,IX y>lL\<LIy2>
®<,w%>+d | >‘L\ W2 >0 IX = '>’%>>
- éd E aJ,x-ﬂX”- y's | d., [i V543 21>]>

® é,y;_«w- o 1%, 'a,zm(—i.\lg)|yz->+0;,:yt(-t)|yl>
=d, ((szl\lg + 0, Y‘,"L) [0\,-L S OJ_Q}E‘ L OJXx_\/m) t
+ O\_.L (—- OJIN'L\E -1 Oux,iy,, )<’Xz‘}y2>]

) '
= me,,_y,ﬁ QJE,V\E J o [cL.L+ o <A, | yzﬂ
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APPENDIX J

COMPUTER PROGRAM IN MAD LANGUAGE FOR SOLVING
THE SECULAR EQUATIONS (25)

SCOMPILE MADs EXECUTEs PUNCH OBJECT
PRINT COMMENT $1 SOLUTION OF YHE CHARACTERISTIC VALUF PROBLFM
1 (A-LBIX=0 $
PRINT COMMENT $0 WHERE A AND B AREF SYMMETRIC MATRICESs AND B
1 IS POSITIVE DEFINITE $
DIMENSION A(400sV)s BU4ONSVIsX(400sV)e APRIME(400sV)sE(400,V)
DIMENSION D(400sV)s UT(400sV)e R{40O0sV)Ie ST(400eV),
1S(400,V)s LAMBDA(4004V)s YT(400sV)
FQUIVALENCE(NIRsSTsEY o tUTeSsYTeX) s (APRIMFL,LAMBDAY) o
1(V(2)4N)
VECTOR VALUFS V=241,0
INTEGER NolsJoX,CH
START READ AND PRINT DATA
EXECUTE ZEROe(A(191)e0eAlNIN)sB(1s1l)eeeBININ))
READ AND PRINT DATA
THROUGH LOOP1sy FOR I= 2s19leGeN
THROUGH LOOP1y FOR J = 1s19JeFel
AllaJ)==2%B{IsJI®SQRT G{A( T2 1Y %RA(I»J))}
AlJs1) = AllIe )
t.OOP1 B(Jy1) = B(l, I
IND1=5,
IND2=5,
IND3=5,
IND&=5.
INDS5=5,
IND6=5,
THROUGH LOOP1As FOR I=1451s I4GeN%®*N
LOOP1A D(1)y=B(I)
SCFACT = 1,
INDI=EIGN(D(1)sNoleUT(1)4SCFACT)
WHENEVER IND1eFe3e
CONTINUE
OR WHENEVER INDl1.FEels
PRINT COMMENT $0 B MATRIX NOT ACCEPTED BY SUBROUTINE $
TRANSFER TO FND
OR WHENEVFR TAND1.Fe2e
PRINT COMMENT $0 CHARACTERISTIC VALUES OF B MATRIX SCALED BYS
PRINT RESULTS SCFACT
TRANSFER TO END
END OF CONDITIONAL
THROUGH LOOP2s FOR I=1s191eGeN
WHENEVER Di(ls11eLEeOe
PRINT COMMENT $0 B MATRIX IS NOT POSITIVE DEFINITE s
TRANSFER TO FND
OTHERWISE
R{Is11=D(141)ePe—-e5
LOOP2 END OF CONDITIONAL
THROUGH LOOP3s FOR I=1,191eGeN
THROUGH LOOP3s FOR JU=1sle JeGeN
WHENEVER lefeJ
CONTINUE
OTHERWISE
R(1+J1=0¢
LOOP3 END OF CONDITIONAL
IND2=DPMATL (INsSTI1)UTIIN)
WHENEVER IND2eFe0es TRANSFER TO END
THROUGH LOOP 54 FOR 1=14191eGeN
THROUGH LOOP S, FOR J=z1319JeGeN
S(I+JY=ST(Js1)
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LOOPS

LOOP6

LOOPS

LOOP?

LOOPBA

LOA

Los

LocC
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APRIME(T9J)=ST (1)

IND3=DPMAT. (NsAPRIME(1)sA(1))

WHENEVER IND3eEeOes TRANSFER TO END

IND4=DPMAT 4 (NsAPRIME(1)9S(1))

WHENEVER IND4«EesOes TRANSFER TO END

THROUGH LOOP6¢ FOR [=22419 TeG,N

THROUGH LOOP6y FOR Jz=1lyls JeEl

APRIME(1sJ) = APRIME(J,1)

SCFACT =1,

INDS5=EIGN« (LAMBDA(1)sNs1oYT(1)sSCFACT)

WHENEVER INDSeEe3e

CONTINUE

OR WHENEVER INDS5eEele

PRINT COMMENT $0 APRIMF MATRIX NOT ACCEPTFD BY SURROUTINE $

TRANSFER TO END

OR WHENEVER INDS5¢Ee24

PRINT COMMENT $0 CHARACTERISTIC VALUES SCALED BY $

PRINT RESULTS SCFACT

END OF CONDITIONAL

INDS=DPMAT (NoYTI(11,STt1))

THROUGH LOOPTs FOR I=14191eGeN

XSUMSQ = O,

THROUGH LOOP8s FOR JUx1,1y JeGeN

THROUGH LOOP8s FOR K=1419KeGoeN

XSUMSQ=XSUMSQ+X{1sJ)#X (I sK)%B(JsK)

ROOT = XSUMSQePee5

THROUGH LOOPTs FOR J =191y JeGeN

X{IeJ)aX(19J}/ROOT

PRINT COMMENT $0 CHARACTERISTIC VALUES §$

THROUGH LOOP8Ay FORI=141¢leGeN

PRINT RESULTS LAMBDA(I,1)

PRINT COMMENT $0 THE ROWS OF THE FOLLOWING MATRIX ARE THE NOR
IMALIZED CHARACTERISTIC VECTORS $

PRINT RESULTS X(lsl)eeeX(NsN)

DIMENSION MA(5)sMB(2)sMC(3)sMDI(2)sME(3)oMZ(2)sMH(3)
THOVA(5) yHOVB(2) sHOVC(3) sHOVD( 2 ) sHOVE(3) sHOVZ(2) sHOVH(3)»
2CHA(B5) s CHB(2) s CHC(3) 3 CHD(2) 9 CHF(3) s CHZ (2) 4 CHH(3)

WHENEVER CHeE.l

THROUGH LOA 4 FOR J=1313JeGe%

MA(IY=S(Js1)%#S(Je1)+S(Je2)%S(Je2)4S(Je3)%S(Uy3)

HOVA(JIaS{Js1 ) #S50Jsd)%¥B(1+4)+S(Je1)¥S{IeBI%B(1+5)48(Js2)%S1{
1J94)%#B(2+4)45(J92)8S{Us5)%B(2,514S(Js3)%S(Jebs)¥B(3,4)

CHA{JY=MA(JI+HOVA(J)

PRINT RESULTS MA(J)sHOVA(JS) sCHALD)

OR WHENEVER CHeEe2

THROUGH LOB 4 FOR JU=1419JeGse?

MB(J)=StJIs11%S(Je])

HOVBLJ)=S(Je1)%S5(J92)%B(1,42)

CHB(J)=MB (J)+HOVB(J)

PRINT RESULTS MB(J)sHOVB(J)sCHB(J)

OR WHENEVER CHeEe3

THROUGH LOC +FOR J=19149JeGe?3

MC(J)2S(Js1)%S(Jsl)

HOVCUJ)=S(Je1 )RS (Je2)%B(192)4+S5(Js1)%S(Jes3)#R(193)

CHC(J)y=sMC { JI4HOVC ( J)

PRINT RESULTS MC(J)oHOVC(J) sCHC(U)

OR WHENEVER CHeEe4

THROUGH LOD » FOR J=14519J,Ge2

MD(J)=S(Js11%S(Js1)
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HOVD(J)=S(JUs11%S5(Jes2)2B(192)
CHD () =MD (J)+HOVD (J)
LoD PRINT RESULTS MD (J) sHOVD(J) s CHD (D)
OR WHENEVER ZTHeEe5
THROUGH LOE +FOR JxlslpJeGe3
MEtJ)=S(Js11%5(Js1) )
HOVE(J,'S(J'I)'S(J’Z)*B‘loZ,*S'JOl’.S(Jl3)'e‘lo3’
CHE(JYsME( J)}+HOVE L J)
LOE PRINT RESULTS ME(J)sHOVE(J) sCHE(J)
OR WHENEVER CHeFoeb
THROUGH LOZ 9 FOR J=l4leJeGe?2
MZIJ)=STJe1)%StUy1)
HOVZ(J)=S(Je1)%S5(Js21%B(102)
CHZ(J)=MZ{J)+HOVZ (J)
L0z PRINT RESULTS MZ(J)oHOVZ(J)eCHZ(J)
OR WHEREVER CHeFe7
THROUGH LOH +FOR J21914JeGe3
MH{JY=S(Js1)8S5(Je1)
HOVH(J)'S(JDI)*S(J’Z,*B(102)+S(J01)*S(Jt3"3(193’
CHH{ J 1 =MH ( J)+HOVHI D)
LOH PRINT RESULTS MH{J) ¢HOVH(J) sCHH )
END OF CONDITIONAL
WHENEVER SCFACT.Eale
CONTINUE
OTHERWISE
PRINT COMMENT S0 ERROR MATRIX NOT COMPUTEDS
TRANSFER TO END
END OF CONDITIONAL
END PRINT COMMENT SO INDICATOR VALUES $
PRINT RESULTS IND1l, IND2s IND3, IND&s INDS,IND6
TRANSFER TO START
END OF PROGRAM
SDATA
N=S,CH=] =
A(I:l’--BIOBOQQA(ZOZ)3—0967000OA(303)=‘096700g’A(b'#}‘~1°52000’
A(5+5)=2-15648004,
Bl{191)%1¢45B(292)%1e9B(353)21e9B(491)=eb936TTs~4188237s-4052T8440100
B(Se11%44160209,1906T1sB(5,5)=1,s =
N=2,(H=2 =
A{191)=~96T70049A(202)3-1052004+
Bllel)=1,3B(251193,251278s1,9 *
R=3,CH=3 =
A(l1+1}%~08600049A(25212-T9400e9sA(343)5-79400¢9
Blls11=10eB(251)2e089538,41,sB(3,1)2,0994664009100 *
N=2oCH=4 =
A(1+1)=<08600049A(292)==T794004¢
B(Is1)=149B(291)=011028091¢s &
"I’ oCH=S L ]
A(l141)=-55800,9A(292)2-163230¢9A(3+3)=—-7940049
Bilsl)=loeBl(291)%e612076+149B(291)8623228160000l00 *
N=2oCH=E #
Al(101)==6252049A(292)=—1052004+
Bllol)=1,49Bl251)%508168B914s *
N=3 4CH=T &
Af{191)==5580049A(252)=<-11280049A(3+3)=~T94004»
Bl{l91)=149Bl25112,409328+91,9B(351)26227028+s00910ee *




APPENDIX K

Mo5+ AND W5+ IN TiO2

Recently the ESR spectra of M05+ and W5+ in Ti0, were observed.

The following values for the 5} and A tensor components were found

experimentally
% (} % Ay Ay A,
* 7 z (in 10’4cm'1)
Ti02:M05+ 1.8155 1.7923 1.9167 24.66 30.80 65.73
T1022W5+ 1.4731 1.4463 1.5945 40.51 63.34 92.01

Following the calculation in Chapter VII-1, the ground state wave func-

tions and the crystal field energy levels listed below were found:

Ground State w.f. Energy Levels

Ti0,:Mo”" 3261 2%y 065 xR yhy AE(xy)=(23)(3.000)
(X}\ = (9\")\) (12.800)
(y2)= (22)) (260

- (x* W= ©

Ti0,:W -.397) 2%y +.920|¥ -y A:E(X‘Y)ifll\(83'5°°)

(x2) =(2D) (3-930)
(y2) = (R 247

(xt y¥=©0
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It is observed that the same form of ground state and the same sequence
of energy levels are obtained for the cases of Ti0,:V, Sn0,:V, and
Ge0,:V. The admixture of the 1 2%) state is a little larger and the
first excited state |yi> is found quite close to the ground state.
Of course the numerical results in fhis Appendix are only suggestive
that the same situation exists for Moy- and W5+ as for V4+. However, it
is significant to note that in the five different cases of Ti0,:V,
TiOy:Mo, TiO,:W, Sn0,:V, and GeOy:V the same form of the ground state
and the same sequence of the excited states can explain the experimental

results of the % tensors and of the anisotropic parts of the A

tensors.
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ERRATA

pP. 4: Add the following note at the end:
Note: The ground state is often referred to as being the xz-yz. In the context
of the molecular orbital theory as used in this thesis, the term "ground state' refers to

the energetically highest occupied orbital in the Slater determinant.
P- 29 1.9: Replace Table 2 by Table 3

p- 31 1.5: Delete the whole line and replace it by the following:

are tabulated as well as some two-center integrals. For references see
pP- 31 1.6: Replace Ref. 35 by Ref. 24.

p- 63 bottom: Replace Table 6 by Table 7

p. 103 1.5:Delete the word '"nearest"

p- 104: The level at the middle of the first colum is yz, not x=z.

p. 105 1.5: Replace Helmheltz by Helmholtz




