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ANALYTICAL DETERMINATION OF TRANSFER FUNCTIONS FOR 

RC COMMUTATED NETWORKS 

SUMMARY 

A method of analysis for  obtaining the transfer functions fo r  RC commutated net- 
works is presented in this report. The method is illustrated by analyzing two configura- 
tions of a commutated network which were studied during the development of an  adaptive 
tracking notch filter at Marshall Space Flight Center. The analysis is performed by 
generating a recurrence equation and the summation of two infinite series. The total 
frequency spectra f o r  the commutated network output can be calculated using the input 
spectrum, the transfer function of the commutated network, and the transfer function of 
a linear filter. The resul ts  show the comparison between the frequency response using 
the theoretical transfer function and an actual RC commutated network. 

SECTION I. INTRODUCTION 

Before the N-path filter analysis technique [ 13 was presented in the literature, 
analysis of RC commutated networks was either restricted to simple circuits consisting of 
only a few commutated elements o r  contained mathematical approximations which invali- 
dated the results except over specific intervals [21. Tbis paper develops a method of 
analysis to obtain exact frequency spectra fo r  most RC commutated networks. 
been achieved, with the aid of the N-path filter development, by adding a feedback loop to 
the o r igpa l  N-path filter, introducing a phasing parameter,  and developing a technique 
for  generating a recurrence equation. 

This has 

In many respects,  a commutated RC network behaves in a linear manner. How- 
ever ,  a very important nonlinearity is the generation of sideband frequencies that result 
from commutating the capacitors. This phenomenon is quite similar to that encountered 
in sampled-data systems. F o r  a single input frequency (signal frequency) , the output 
will contain a signal ( o r  primary) frequency component and an infinite number of side- 
band components. 
characteristics at the signal frequency. This report presents the derivation of the 
transfer function fo r  two different configurations of commutated networks and also an 
expression for  calculating the frequency spectra of the sideband components. T4e term 
"transfer function" as used in this report is defined in Section V. 

The term "frequency response" is used herein to  denote the network 



In Section II, the equivalence between the commutated network and the N-path 
filter is presented. A general expression is then derived for  an  N-capacitor configura- 
tion. It is shown that the sideband frequencies depend on the number of capacitors and 
the phasing between the commqtating functions. An expression is derived in Section I11 
for  the open loop characterist ics of the equivalent N-path filter configuration. 

The derivation of the recurrence equation is presented in Section IV. The ex- 
pression presented in Section V gives the complete frequency domain characteristics of 
the four-capacitor coupled configuration. 
function for  the uncoupled configuration can be obtained from the results in Section V. 
How the sideband spectra can be calculated using the transfer function and the input 
spectrum is discussed in Section VII. Some experimental results obtained from an actual 
RC commutated network and how it compares with theoretical results are shown in the 
last section. 

Section VI shows how the transfer 

The formulation of the general expression in Section 11 was taken from Reference 
I. It is included here  so that this analysis will have continuity and provide background 
information to show how the phasing between commutating functions affects the sideband 
frequencies. 

SECTION II. GENERAL EXPRESSION FOR COMMUTATED NETWORK 

The two RC commutated networks, shown in Figures I and 2,  were studied during 
the development of an adaptive tracking notch fi l ter  [ 31. Reference 3 presents the deriva- 
tion of the integral equations describing the input/output relationship for the two commu- 
tated networks. Equivalent circuits for  these configurations are shown in Figures 3, 4A, 
and 4B. 
configurations, as suggested by their equivalent circuits. The equivalence between the 
two networks for  the uncoupled case,  shown in Figures 4A and 4B, can be ascertained by 
considering the feedback gain for each path in Figure 4A. The feedback gain between 
integrator output and integrator input is pf( t) k,. Because pi( t) is a unity square wave, 
the term pi( t) is unity for all  values of time; thus each feedback path can be represented 
by a resis tor  R across  each of the integrators as shown in Figure 4B. 

The te rms  ffcoupledvf and Tk"oupledT7 have been adopted to define these two 

From Reference 3,  the integral equations describing the circuits in Figures I and 
2 are: 

4 t 
I 

-y(t)  = - 7 Pi(t)  j- Pi( t )  [N t )  + K'Y(t)  1 dt (coupled) ( 1) 
i= I 0 

KR 
R where T = Ri c ,  K' = - , K is potentiometer setting, 

2 
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FIGURE I .  COUPLED CONFIGURATION O F  COMMUTATED NETWORK. 
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FIGURE 2. UNCOUPLED CONFIGURATION O F  COMMUTATED NETWORK. 

FIGURE 3 .  EQUIVALENT CIRCUIT FOR COUPLED COMMUTATED NETWORK. 
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FIGURE 4A. EQUIVALENT CIRCUIT FOR UNCOUPLED COMMUTATED NETWORK. 

FIGURE 4B. EQUIVALENT CIRCUIT FOR UNCOUPLED COMMUTATED NETWORK. 
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i=l 

R 
R 

where T = RIC and ko = A, y(t)= yi( t )  

It is easy to verify that equations I and 2 a lso describe the equivalent networks in 
Figure 5 illustrates an N-path filter for  which a general expression is 

The pi( qi) functions in Figure 5 are equal in amplitude, but 
Figures 3 and 4A. 
derived in Reference I. 
shifted in phase relative to one another. The h networks are identical and time-invariant. 
Although pi is identically equal to qi ,  the input and output commutating functions are 
represented by different symbols for mathematical convenience. 

It is obvious that if a general expression exists fo r  the N-path fi l ter  of Figure 5, 
the solution for the uncoupled case (Fig.  4B) can be obtained by specifying N,  pi;and h. 
An examination of Figures 3 and 4B also suggests that the uncoupled configuration can be 
treated as a special case of the coupled configuration by making K' = 0 and modifying 
the network h. The approach taken in this report  is therefore to derive the coupled case 
t ransfer  function and then, by making a change in variables,  obtain the uncoupled case 
t ransfer  function. The N-path fi l ter  that will be analyzed is shown in Figure 6 and is 
equivalent to an N-capacitor coupled case. After deriving the general expression, N will 
be set equal to four to correspond to the original commutated network. 

The commutating functions pi( t) and si( t) can be expressed by a Fourier series 
as : 

Since pi( 9.) ( i = 2, 3 ,  . . . N) is equal in magnitude to pi( t) and is shifted in phase 
1 

relative to pi( t) by a fixed amount, the ith commutating function can be expressed in 
t e rms  of pi(t)  by 

00 

jmwot P e  m 
-jmwoh( i-I) 

pi(t) = pi [ t  - ( i -  I) A I  = C e 
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FIGURE 5. N-PATH FILTER. 

FIGURE 6.  N-PATH FILTER WITH FEEDBACK. 
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00 - jnw i-I) jnw ot 
Qn e qi(t) = qi [t - ( i  - i) A I  = e 

TO 
YN 

where A = - 

4. 

To is the period of the commutating function 

N is the number of parallel feed forward paths (a lso equal to the number of 
commutated capacitors) 

y is the phasing parameter (equal to I o r  2 ) .  

Describing the ith path of Figure 6 ,  the following equations a r e  written in 
Laplace transform notation where use has been made of the complex translation theorem. 

00 

- j m w o  ( i - i )  A wi(s) = e pm [ X (  s - j m w o )  + K'Y( s-jmwo) 1 

Z ~ ( S )  = W ~ ( S )  H ( s )  

Substituting equations 7 and 8 into equation 9 and then summing over i, the output 
is expressed by: 

N 
- jhwo( m+n) (i-I) 

~ ( s )  = yi(s) = e PmQnH(s  - jnwo) X i s  - j q ( n  + m)]  
i= I i , n , m  

-jhwo( n+m) (i-I) + K '  e PmQnH(s - Muo) Y [ s  - jwO(n + m) 1 . 
i , n , m  

7 
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Since i appears only in the exponent of e in equation 10, the summation over i is 
recognized as a geometric series. Let 

-jAwo (i-I) (n+m) . N 

i& 
B; C e  

27r 
From the definition of A, it is seen that bo = - Substitutingfor Aw0 into 

equation I1  gives YN 

N -j27r(i-i)(-+0, n+m 
B -  e 

i= I 

n+m 
YN 

If n and m are such that - is an  integer, i. e. , 

then each term in the geometric series is unity, giving the result  that B = N. 

If the condition expressed by equation 13 is not satisfied, then upon using the 
closed form expression for a geometric se r ies ,  equation 12 becomes 

n+m 

(n+m) 

I - e  -j2n (7) 
B =  

- j2n 
I - e  7" 

n + m  
where - f k .  YN 

In Reference I no mention was made of the phasing parameter y ;  thus it was 
assumed to be unity by their  definition of A. For  this reason, it is necessary to deviate 
from the outline given in Reference I and now specify that p and q are square waves. 

n + m  
This ensures that - in equation I 4  will always be an integer since P, and Qn a r e  zero 

Y 
unless m and n are odd (m + n will be even). With this specification, it is seen that 
the numerator in equation 14 is always zero and the denominator is always nonzero. Thus 

8 



B = N if n + m = kyN where k = 0, &I, *2, . . . and 

B = 0 if n + m  #kyN. 

Substituting the constraints given by equation 15 into equation 10 and then writing equation 
10 as two equations gives 

whene k ranges over all integers and n ranges over only the odd integers. Hereafter 
the range of k and n in the summation symbol will be dropped where no ambiguity occurs. 

Equations 16A and 16B describe an N-capacitor commutated network, for  

H( s) = -, with a phase shift of - radians between adjacent commutating functions. 

Letting s = ju it is seen from equation 16A that the term yN ( for  a given wd) determines 
the location of the sideband frequencies relative to the input signal frequency. A more 
detailed discussion on the phasing parameter is contained in Reference 4. For  this re- 
port ,  N will hereafter assume the value four and y will be two. It should be noted, 
however, that making y = 2 instead of y = I has the same effect on the sideband frequen- 
cies a s  doubling the number of commutated capacitors. 

I 2n 
TS YN 

SECTION III. CLOSED FORM EXPRESSION FOR F ( k , s )  

From equation 16A it is seen that the output Y (  s) is represented as a sum of 
weighted functions of both the input and output. The term F ( k ,  s) is the weighting func- 
tion and describes the open-loop characterist ics of the N-path filter. To determine the 
effects of the weighting function, it must first be expressed in a usable form. 

For  N = 4 and y = 2, F ( k ,  s) is defined as 

9 



This can be written as 
00 

F ( k , s )  = 4 [PBkVn Qn H ( s  - jnwo) -k P Q-n H ( s  + 1 
8k+n n=l  

where n is now all positive odd integers. 

Fo r  the square wave commutating functions, pi( t) (Fig. 7) , the Fourier coef- 
ficients are given by 

It follows that Pn = -P -n' - also 

'8k+n 8k - n 

'8k-n 
-= -  

8 k t - n  a 

Using these relations, equation 17 becomes 

[(8k + n) H ( s  - jnwo) - (8k - n) H ( s  + jnwo) 1 .  'n P8k-n 
F(k,s)  = 8 k - t n  

n 

Tpe Laplace transform for  the network h is 

-i H ( s )  = - where T = RIC. 
T S  ' 

-1 Hence H( s - jnwo) = 
T ( S  - jnwoj 

-1 
H(S + jnd0) = ~ . '  

T ( S  + jnwo) 

FIGURE 7 .  COMMUTATING FUNCTION. 
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Substitution of equations 19 and 20 into equation 18 gives 

- F(k , s )  = 3 QnP8k-n [ 8k + n 
7 8 k + n  s - jnwo s + jnwo n 

After  substituting fo r  Qn and P8k-n and putting the te rms  in brackets over a common 

denominator, the expression for F( k,  s) becomes 

The te rms  to be summed a r e  now written a s  two te rms  by partial fraction ex- 
pans ion. 

The following relation w a s  taken from Reference 5. 

00 
7r2 t a n e  - -  ~ - 1 c 48 8 e  

7- k=i (2k-1)2 - 

Using equation 24, the closed form expression for F ( k , s )  becomes 

It is seen that for  k = 0 

tan p F(0 ,s )  =-4  rs (1- ) 



and for  k # 0 

4 tan p F ( k , s )  = 
T p ( S  - j 8 k ~ o )  

SECTION IV. DERIVATION OF RECURRENCE EQUATION 

Using equations 25 and 16, the general expression for  the commutated network 
can be written a s  : 

4 7rS where a. = - and P = j - . 
7 2w 0 

In making an attempt to solve equation 28 for Y (  s) in te rms  of the input, it becomes 
apparent that another equation is needed that eliminates Y( s - j8kwo) from the right hand 
side of the equation. It should be noted that the extra equation is not required whenever 
the equivalent N-path filter has zero feedback gain, i. e. , K1 
logous to the kcoupled case where the output Y (  s )  is expressed in te rms  of the input as 
a sum of weighted functions. It would appear reasonable to expect that the final expres- 
sion for  Y( s) describing the coupled configuration would be of the s a m e  general form as 
in the uncoupled configuration, i. e. , the sum of weighted functions of the input. If the 
two expressions are to be s imilar  in form,  then by equation 28 a relationship that ex- 
presses  Y( s - j8kwo) in t e r m s  of Y( s) and X( s - j8kwo) should be found. This type of 
relationship can be derived f o r  the coupled configuration and it is referred to as the re- 
currence equation. 

0. T y s  would be ana- 

The required form of the recurrence equation suggests that a change of variables 
be made in equation 28 by substituting ( s  - jm8wo) fo r  s. 

tan 47rk tan p - 
Y [ ( s  - j8wo(k + m) 1 h k  p+47rm 

s - j8wo(k+m) -ao K1 
k 

12 



The admissible values of m in equation 29 are specified to be all integers except 
zero. 

To facilitate the derivation of the recurrence equation, it is convenient to ex- 
press  equation 28 as three t e rms ,  the first two te rms  corresponding to k = 0 and k = m 
and the third term being written as a summation. 

a. tan p 
P(s - j8mwo) 

+ [ X ( s  - j8moo) + K'Y(s - j8mwo) 1 

In a s imilar  manner, except for  k=-m instead of k=m, equation 29 is written as 

[X( s) + K'Y( s )  1 an tan P 
s ( p  +4nm) 

Y ( s  - jSmoO) = 

X@- j8wo(k + m ) l +  K'Y(s-1 j8on(k +- m ) )  
s - j8wo(k + m) 

. 1 ~~ - +- 
k=- 00 p + 4 m  

k#O 
k#-m 

In the last term of equation 31, substitute r = k + m. Because the integer values 0 and 
-m were deleted from the summation over k ,  the values m and 0 will be deleted from 
the summation over r. The substitution from k to r places in evidence that, except for  
a difference in coefficients, the summation term in equation 31 is identical to the sum- 
mation term in equation 30. To make the coefficients in the two summations correspond, 
multiply equation 31 by ( p  + 47rm) and equation 30 by p .  Equation 31 now becomes 

13 



X ( s  - j8mwo) + K ' Y ( s  - j8mwo) 
s - j8mwo 1 - a. ( p  + 47rm - tan p )  

r f O  
r#m 

Rewriting equation 30 by multiplying through by p gives 

1 P Y ( s )  = -cuo(P - tan P )  

7 X ( s  - j8mon) + K ' Y ( s  - j8mwn) 
s - j8mwo + a.  tan P 

X ( S  - j8kwo) + K ' Y ( s  - j8kwo) 
+ a o t a n P  c [ s - j8kw0 k=- 00 

k f  0 
k#m 

Subtracting equation 33 from equation 32 gives 

LZ& [X(s) + K ' Y ( s )  ] ( p  + 4 ~ m )  Y ( s  - j8mwo) - p Y ( s )  = 
S 

X(s - j8mwo) + K ' Y ( s  - j8mwo)J 
s - j8mwo - a 0 ( p  + 4Tm) [ 

Simplifying equation 34 to solve for  Y( s - j 8 m ~ o )  gives 

s +K'Cro) Y ( s )  + c ~ & ( s )  - c ~ , & ( s  - j8mwo) 
Y ( s  - j8mwo) = ( s - j8"o + K ' a o  

( 34) 

( 35) 

14 
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Equation 35 is the recurrence equation and has the properties that permit the 
general expression to be solved explicitly for  Y ( s )  . 
riving the recurrence equatioii provides a method of analysis for  handling a much la rger  
class of RC commutated networks than jus t  the two considered in this paper. 
important fact regarding the recurrence equation is that the analysis can be made for  any 
number of commutated RC elements. 
be very large so that the sideband components would be very high in frequency and hence 
of negligible magnitudes. 
could be obtained from equation 16 by retaining only the te rms  corresponding to k = 0. 

It should be emphasized that de- 

The most 

Previously, most of the analysis assumed N to 

Under these conditions , an  approximate transfer function 

SECTION V. TRANSFER FUNCTION FOR COUPLED CASE 

With the closed form expression for  the open loop characteristics of the N-path 
filter [ F ( k ,  s) I and the recurrence equation just derived, it is now possible to  solve the 
general expression for  the output of the commutated network in terms of the input. 

By substituting equations 26, 27,  and 35, into equation 16 ,  the expression for Y(s) 
becomes 

Y ( s )  = F( 0 , s )  X ( s )  + K I F (  0 , s )  Y ( s )  $. 

tan p X ( S  - j 8 k W  
+ Q o -  ( s  - j 8 k ~ ~ + i ' ~ ~ ~ )  ' 

k=+ i P 

To obtain a closed form expression, it is necessary to  compute the series 

Using partial fraction expansion and defining s f  = s + Kf CY o, equation 37 can be 
written as 

15 



From Reference 5, 

Making use of equation 39, equation 38 becomes 

After substituting fo r  F( 0, s) from equation 26 and representing equation 40 by D ,  equa- 
tion 36 can now be written as 

Equation 41A completely characterizes the four capacitor commutated network. The 
output Y( s) contains the input transform X( s) and, in addition, a n  infinite number of 
shifted input transforms given by the infinite series. The coefficient of X ( s )  in equation 
41A is referred to as the transfer function of the commutated network. The remaining 
te rms  in equation 41A describe the sideband spectra when jw is substituted for s. It is 
convenient to represent equation 41A as 

16 



so that the transfer function will be defined as 

7rk 
7' 2 wo 

p = -  , and D is given by equation 40. 4 
where a0 = - 

Two undetermined parameters in equation 42 are the RC time constant T and the 
feedback gain K'. Equation 42 represents a bandpass filter centered about wo. 
bandwidth is primarily determined by T and the gain at w o  is determined by K'. 
make the gain unity at wo, Reference 4 shows that K' must be set equal to 

The 
To 

I 
l + k  K ' =  

k 
( 43) 

where the index k in equation 43 corresponds to the order  of harmonics that are present 
on the output of the commutated network. The sideband frequencies become harmonics 
of w o  when the input frequency is equal to  w i .  F o r  the four-capacitor case being con- 
sidered, the harmonics present are the 7th, 9th, 15th, 17th, . . . . Using equation 43, 
K' should be set equal t o  

= 0.95. I 
I 1  
7 9  

K' = 

i + T + T + .  . . ( 44) 

SECTION VI. TRANSFER FUNCTION FOR UNCOUPLED CASE 

For  the uncoupled case, K' = 0; therefore , the equation corresponding to  equation 
36 is 

X ( s  - j8kw 
Y(s) = Fi(0 , s )  X(S) + :z s - j8kwo ") 

17 



Fl( 0 ,  s) is s imilar  to F( 0 ,  s) , the difference being a result of a different network 
h fo r  the uncoupled case as compared to the coupled case. 
for  the uncoupled case can be written as 

The transfer function H(s) 

-kn 
H ( s )  = ~ ( s  + a )  

where a = and k, is the dc gain. .To obtain Fi( 0 , s )  from F( 0 , s )  , it is sufficient 
to make the following substitutions in equation 26: T is replaced by T/k0 and s is re- 
placed by s + a. Tfien 

/ tan n j ( s  + a) \ 

Equation 48 is the t ransfer  function of the four capacitor uncoupled configuration. A 
more complete description of the characterist ics for  the uncoupled case is given in 
Reference 6. 

SECTION VII. AMPLITUDE SPECTRA FOR SIDEBAND FREQUENCIES 

Since a commutated network will  produce sideband frequencies in addition to the 
signal frequency, it is advantageous to know their magnitudes. This is particularly im- 
portant whenever a feedback control loop is involved because the sideband frequencies 
that are fed back will produce a component of the signal frequency in the output of the 
network. 

The spectra f o r  the sideband frequencies for  the coupled case a r e  obtained from 
the second te rm of equation 4iA and a re  given by 



Representing F*(s) as the transfer function (eq. 42),  it can be shown that equation 
49 can be written a s  

where 

G(s) = (S + K ' C Z ~ ) .  

By the definition given in equation 50, the term Yk( s) is 

The components yk(t) can be expressed as the product of a c a r r i e r  signal and a 
modulating function with the aid of the complex translation theorem. The advantage of 
writing yk(t) in this manner is that for a sinusoidal input the steady state oscillation is 
readily determined. The amplitude and phase of the oscillation can be computed by 
evaluating the frequency response of known.functions. 

Let 

jw t x(t) = Ae 

then 

A 
X(s )  = - 

s - j o  

The shifting theorem states that 

-1 

x - ' F ( s )  = e b x  F(s + b) ,  

Using equation 51, the components yk(t) are 

19 



To compute the steady state oscillation of Yk(t), it is only necessary to 
evaluate the residues for those poles that l ie on the imaginary axis,  since the re- 
maining poles give r i s e  to transient terms that decay to zero with time. The poles of 
[ G( s + jw + j8kwo) F*( s + jw + j8kwo) + a o ]  a2e the same as the poles of F*( s) but are 
shifted in frequency (equations 42, 49, and 50). Because F4 (s) exhibits a stable fre- 
quency response, it is concluded that the only residue to be calculated is that of the pole 
at the origin. Representing the steady state oscillation of Yk(t) by Ysk(t), 

j u t  The above representation of the sideband components is for  an input x ( t )  = Ae 
If the input is not sinusoidal, but is specified by its Fourier transform X( ju) , then the 
following equation should be used. 

-1 

-j8kwot Multiplying by e gives 

Dropping the inverse transform and letting s = j u ,  the spectra of the sideband components 
can be computed using the input spectrum , the transfer function evaluated at frequency 
w + 8kw0, and the transfer function of a linear filter G evaluated at two different fre- 
quencies. Thus, it is evident that the maximum amplitude of the sideband component 
yk( t) , occurring at frequency w + 8kw0, is given by the absolute value of 

[an + G( jw + j8kuo) F* (jw + jskw,,)] 
X( jw) G( jw) 

Yk( jw + j 8 k ~ o )  = 
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The complete frequency spectrum for each sideband frequency can be computed 
from equation 55 by letting k assume different values. It can also be shown, using 
equation 55, that when t;, is equal to  wo, the 7th, 9th, i5th, . . . harmonics are approxi- 
mately equal to -i /7,  4i/9,  -1/i5, . . . . 

- 
I 
I 

SECTION VRI. EXPERIMENTAL AND THEORETICAL RESULTS 

I 
CO M MUTATE D I 

In the adaptive tracking notch filter, the commutated network is employed as 
shown in Figure 8. As stated previously, the commutated network has a bandpass filter 
characterist ic;  thus when used as in Figure 8 with an additional feed forward path, the 
resulting circuit will be a notch filter. To compare theoretical results with those ob- 
tained experimentally, it was necessary to  form the function 

I 

Figures 9A and 9B show the amplitude and phase of equation 56 for three values of 
T. In each case,  K' was equal to  0.95 as given by equation 43. Figure 10 shows a com- 
parison of the amplitude response between the experimental results and the theoretical 
results for  7 = i. 0 second and K' = 0.95. 

NETWORK I 

The frequency response using the uncoupled commutated network is approximately 
equal to the coupled commutated network for  large 7 (greater than I. 0 second). For 
smaller  values of T, the two cases do not give the same results because the quadrature 
component in the output signal is much larger  for  the uncoupled case than it is in the 
coupled case. Reference 4 discusses the effects a quadrature component has on the notch 
filter frequency response. Reference 6 contains a more detailed analysis on the un- 
coupled case than is presented in this report. In addition, it considers several  parameter 
variations that are not mentioned in this analysis. 

NOTCH FILTER 
1 

-------------- 
, I  

r 
I 

FIGURE 8. NOTCH FILTER. 
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SECTION M. CONCLUSIONS 

This report  sum,marizes a method for  analyzing a linear network containing RC 
commutated elements. Application of this method yields two equations that completely 
characterize the total output signal. Although the method was illustrated by analyzing a 
specific network, the techniques used in developing this analysis can be applied to other 
types of RC commutated networks. It was shown that the o rde r  of the generated har- 
monics is dependent on the number of capacitors and the phasing between the commutating 
functions. For certain types of commutated networks [ 21 , the phasing parameter is 
constrained to be unity because of the type of commutating functions employed. In general, 
if the commutating function contains both even and odd harmonics, the phasing parameter 
is forced to  be unity; if the commutating function contains either all odd harmonics o r  
all even harmonics, then ei ther  value of the phasing parameter can be selected. For  the 
notch filter application, the value two was used to eliminate as many low frequency 
components as possible. 

The commutated network exhibits certain useful properties that cannot be easily 
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obtained from conventional f i l ters .  
narrow bandpass o r  notch filter for low frequency operation that does not depend on mag- 
netic components. Furthermore,  because the center frequency is controlled by electronic 
circuitry (e. g. , a phase-locked loop) , the filter has the capability of continuous tracking 
o r  can be programed to sweep over a rather broad frequency range. The second property 
is the periodic filtering characterist ics over certain frequency bands. A s  the number N 
is increased, the frequency response of the filter approaches that of the ideal comb filter. 
A third property is that the gain and bandwidth of the commutated network can be con- 
trolled independently by the feedback gain K' and the RC time constant, respectively. 

The first property is the realization -of a very 
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