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The Astrodynamics and Guidance Theory Division of the Aero-Astrodynamics

Laboratory of the Marshall Space Flight Center is examining the role of large

computers as they may be exploited in the prediction of missile performance.

The Georgia Institute of Technology and its Rich Electronic Computer Center

have been studying such exploitation as it applies to the fitting of the

Multivariant Functional Models under Contract No. NAS8-5365. Under this con-

tract, attention has been focused on models which describe missile performance

under various conditions and in response to various guidance methods.

The problem under consideration may be stated in the following manner.

Let x(t) be the instantaneous state vector with n components xi(t )

i = 1,2,...,n. The equations of motion may be taken as

F(x(t), x(t), t, u(t))= 0 ,

where F stands for a set of functions and u(t) is the guidance or control

function. Terminal conditions at some time t may be taken as
C

G(x(tc) , tc) = 0 ,

where G represents a set of functions. The set of functions G are the mission

requirements. It is desired to choose u(t) in some class of functions in order

to minimize t c. Clearly, the optimum u(t) depends on the initial conditions

x(t O) = x0 and tO . The optinm_m guidance function shall be denoted by

u(t; x0, to).

If an optimum guidance function u(t; x0, to) is chosen and an optinmum

trajectory is followed, then at some future time tI with state vector
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x(tl) = xI the newoptimum guidance function u(t; Xl, tl) must be identical

with the old guidance function u(t; Xo, to) for t _ t I. In other words, the

optimum guidance function is invariant with respect to the state vector x(t)

and the time t.

Since various factors in the system cannot be accounted for, in practice

the optimum trajectory maynot be followed. It is important then to determine

the optimum guidance function u(t; x0, to) as a function of the state vector

x0 and the time t 0. The determination of this function of the initial conditions

is called a synthesis of the optimumguidance function u(t; x0, to).

As an approach to the synthesis problem one could select a numberof initial

conditions (xi, ti) and utilize a computer to find the corresponding u(t; xi, ti).

An approximation technique can then be employedto find a functional relation-

ship between the u(t; xi, ti) and the (xi, ti). Because of simplicity, an

approximating polynomial could be assumed. Since the numberof state variables

is large (more than six), the numberof coefficients in the model would be very

large even for polynomials of low degree. Practical considerations forbid such

procedures.

As a first approach to this problen_a balanced polynomial balanced design

model was studied. It was shownthat the least squares fit which involved the

inversion of a large order matrix could be reduced to the inversion of many

small order matrices. This procedure is reported in detail in Appendix i.

While this approach overcamethe computational difficulties, there still

remained the objections of the need for a tremendous numberof data points

and approximating polynomials with several hundred terms.
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To overcomethese objections a "step-up" procedure was developed. In

the language of regression analysis, psychologists and other investigators

have for sometime studied the problem of selecting out of n predictor

variables that subset of k of them which will contribute most to the sum

of squares due to regression (leaving the smallest sumof squares due to

error).

The procedure starts with a model which assumesthe guidance function as

a linear combination of n terms (not necessarily polynomials). The procedure

attempts to select a subset k of the n terms which best fit the observational

data in the sense of least squares. First, that term is taken for which the

greatest reduction in the error sumof squares is effected. The next term is

selected again on the basis of the greatest reduction in the error sumof

squares. By continuing in this way, the most significant terms maybe obtained

one by one. Stopping criteria can be devised in terms of the final numberof

terms desired and/or essentially insignificant improvement in the reduction of

the error sumof squares. This procedure is reported in detail in Appendix 2.

Preliminary experience with the "step-up" procedure indicated that

efficient stopping and throwout criteria dependedon the class of problems

under consideration. Accordingly, it was necessary to develop experience with

this tool. Data was obtained from the Astrodynamics and Guidance Theory

Division on someseventy-five trajectories. These data were analyzed and the

"step-up" procedure applied to the fitting of the guidance functions. This

analysis is reported in detail in Appendix 3.

In order to gain further insight into the synthesis problem, the flat

earth problem was studied and an interesting graphical synthesis developed.

This study is reported in detail in Appendix 4.



The studies reported in Appendices 2 through 4 indicate that the step-

wise regression procedure shows considerable promise in the fitting of

Multivariant Functional Models. Further experience with the procedure is

necessary in order to resolve questions of roundoff and throwout criteria,

precision requirements, and sensitivity to the data base.

It is recommendedthat in addition to the fitting problem, the performance

of the various approximations be evaluated. Since complex problems tend to

limit the degree of experimentation, it is felt that the flat earth problem

investigated in Appendix 4 be utilized for further study. Controlled, but

representative, data could be generated by the method discussed in Appendix 4

or by a general numerical integration program for solving the two point

boundary value problem resulting from the Pontryagin formulation. The various

data fits can be comparedin actual control simulations using the identical

equations of motion, etc._ as those used in the data generation. Thus_ various

error analyses studies can be madecomparing such items as terminal accuracy

and the degree of optimality achieved by the various data fits.

Respectfuu_l_ submitted,
.I /J J .

I. E. Perlin

Project Director
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APPENDIX i

LEAST SQUARES ESTIMATION OF REGRESSION COEFFICIENTS

IN A SPECIAL CLASS OF POLYNOMIAL MODELS



I. INTRODUCTION

The problem with which we are concerned is that of approximating a real

valued function of several real variables given a collection of points in the

domain of the function and the corresponding values of the function at these

points. Furthermore, we are considering a polynomial approximation of the

function and are assuming the least squares criterion for the best approxima-

tion. Theoretically, then, our problem is easy -- simply use the polynomial

of the chosen degree with the least squares estimates of the coefficients.

However, from the practical point of view the problem is not so easy. Actually

finding the least squares coefficients maybe an almost impossible task when

one is fitting a polynomial of several variables and modest degree. The inver-

sion of the coefficient matrix of the normal equations is the usual problem.

The general methods for finding the least squares coefficients can be

divided into two major categories--those which apply for arbitrarily chosen

data points and those which depend on somespecial arrangement or design of

the data points. The methods thus far proposed for arbitrarily chosen data

points do not seemsubstantially to reduce the calculational difficulties from

those of inverting the coefficient matrix of the normal equations. However, if

one is willing to allow any apriori design of the data points, it is possible

to have a design which will yield an easily invertable coefficient matrix.

There is, of course, a middle ground between that of no restriction on the

arrangement of data points (design) and that of the very severe restrictions

needed to produce an easily invertable coefficient matrix. It is in this area

of moderate restrictions on the design of the data points that we have had some

success, we shall call our design of the data points a rectangular design. In

the statistical literature this design is called a factorial design.



By using a rectangular design and a special form of polynomial called a

bal&nced polynomial we have been able to calculate the least squares coefficients

with a considerable reduction in calculational difficulty in the sense that

several lower order matrices are easier to invert than one of higher order.

The process by which we calculate the least squares coefficients will be called

the step procedure.
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II. RECTANGULAR DESIGNS

Suppose the domain of the function to be approximated is a subset of

_-dimensional Euclidian space. Let (x (1) X (_)) be a typical point
, .o. ,

and define

• S. i "
i i I

Then the cartesian product

D I x D2 x ... x D _ D

will be a subset of _-dimensional Euclidian space. We define a rectangular

design to be any such D . Note that the Ti's need not be equal and the

x Q"i) need not be equally spaced.
t.
1

Step Procedure: The step procedure is most easily explained by an

example. Let us consider a function of two variables, f , and consider an

approximation of f by means of a second degree polynomial. Denoting

f(u,v) by y we have

y _ (all + a21u + a31u2) + (a12 + a22u)v + a13v2

Suppose the data is in a rectangular design, say

o _ oI x 02, Dl = (uI , ... , un) , 02 -- (vI , ..° , vm)

then we may use the step procedure to find estimates, not necessarily the

best, of the a's . The procedure is as follows:

1. Hold u fixed at say u i and define bil , bi2 , bi3 by



and consider

2
b. = a + a u. + a u.
ii ll 21 1 31 1

b. = a + a u.
12 12 22 1

bis = als

2

Yi:j = b. + b.v. + b v.ii 12 j is

2. For each fixed i find the least squares estimates of bil , bie , bis

3. Using these estimates as if they were observed values of

all + a21u i + a22u2i ' a12 + a22u i , als respectively find the least squares

estimates of all _ a21 , a22 ; a12 , a22 ; and als

Note that instead of a 6 x 6 matrix inversion as in the case of finding

direct least squares estimates of the a's _ we were only required to invert

several smaller matrices of maximum size 3 x 3 We could also have written

the polynomial approximation as

y = (a11 + a12v + alsv2) + (a21 + a22v)u + aslU2

and used the procedure just as well. The estimates of the a's in this case

would, in general, be different from those found above.

th
It is not difficult to show that in a general n degree polynomial of

variables the estimate of the coefficient of the highest power of the variable

which appears in the first step of the step procedure is indeed the least squares

estimate. We shall denote this result as theorem i In general the estimates

of the other coefficients do not have this property.
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III. BALANCED POLYNOMIALS

As motivation for considering balanced polynomials, think of expanding a

function of _ variables, x(I), ... , x(_) , in a power series in x(_) and

approximate this by the first L + 1 terms; i.e., a polynomial in x (_) of

degree L Now expand the coefficients of this polynomial in power series

in x (_-l) and approximate these series by their first L _ 1 + 1 terms.

Continue this process until all the variables have been used. Note this yields

)1
a polynomial in x" , ... , x"

general polynomial of this degree.

we have the balanced polynomial

of degree LIL 2 ... L which is not the

= L -- 2For example, if _ = 2 , LI 2

(all + amlu + aslue) + (al2 + a2mu + asmu2)v + (als + a2su + assu2)vm

This polynomial is a fourth degree polynomial in u, v but the u4, us, v4, vs ,

uSv, vSu terms are missing. Notice, however, that all the terms of the general

second degree polynomial are present. So if higher degree terms are not objec-

tionable, it would seem that if a general polynomial in _ variables of degree L

provides a reasonable approximation, a balanced polynomial in _ variables with

L. > L would give an even better approximation.
j -

In general a polynomial of the form

L1+i L +l _ -i

x(i) (x(i))i7, ... Z a_ ..._ x ... x_ , _. --
_i=i _ =i i _ I _ i

will be called a balanced polynomial. We show in theorem 2 that the step pro-

cedure applied to a balanced polynomial over a rectangular design will yield

the least squares estimates of all the coefficients.
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IV. PROPERTIES OF RECTANGULAR DESIGN AND BALANCED POLYNOMIALS

x(1)

Consider the general dth degree polynomial in the _ variables

, ... , x(x) which we shall write as

(i) all i + + al i. ix[ i) + + (terms in x (I) x (_)... ... ..... ..- , ... , of degree

_ d< d) + al. ".id+ I

We shall call x (_)
the leading variable. Clearly this general polynomial may

be written with any x(i) as the leading variable but in what follows we shall

be concerned with the specific form of the polynomial in (i) and thus the leading

variable will be x (_) If we use such a polynomial to approximate a real

valued function f of _ variables x(1) . x (_), .. , ; we have the following

result.

THEOREM i: In the case of a general dth degree polynomial in _ variables

the step procedure over a rectangular design yields the same estimate for the

coefficient of the dth power of the leading variable as the least squares

procedure over the same design.

Before presenting a proof of theorem 1 we shall exhibit an example which

shows that theorem 1 is best possible in the sense that in general the step

procedure estimates and the least squares estimates of the other coefficients

do not agree. In particular this will justify the use of the specific form

of (1) and the "leading variable" terminology.

Consider the general second degree polynomial in two variables

• u2 + (a12 isall + a21u + asl + a22u)v + a v 2
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as an approximation of a real valued function f of two real variables u,v .

Let YiJ -- f(ui ' v j) and thus suppose the expected value of Yij given by

Yij ) 2 + a22ui)v j + a 2E( = all + a21u i + aslu i + (a12 isvj

or in vector-matrix notation

E(Z) --

where

Z = x/i
1

1

1

1

1

Yll 1
Yl2

Yl3

Y21

Y22

Y23

Y3_

a21 \

2 2

u I u I UlV 1 v I v 1

2 2

u I u I UlV 2 v 2 v 2

2 2

u I u I UlV 3 v 3 v 3

2 U2Vl Vl v 2u2 U2 1

2 2

U 2 u 2 u2v 2 v 2 v 2

2 u2v3 2U 2 U 2 V 8 V 8

2 2

U S U S UsV I V I V I

2 UsY2 V2 2U S U S V 2

u

a = for i,j = i, 2, 3

The least squares estimates of the coefficients may be found by solving the

normal equations [1]

X' X a = X' .g
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If in our example we consider the rectangular design

the normal equations become

9 o 6 o -3 15 \
0 6 0 -2 0 0

6 o 6 o -2 lo

0 -2 0 i0 0 0

-3 0 -2 0 15 -21

\15 0 l0 0 -21 51/

all

a21

asl

al2

a22

als

1 1 1 1 1 1 1 1

-i -i -i 0 0 0 1 1

1 1 1 0 0 0 1 1

2 0 -i 0 0 0 -2 0

-2 0 1 -2 0 1 -2 0

4 0 i 4 0 i 4 0

The solution of this system is

1

alz = 5-_ ( 48 _i Yil + 30 _i Yi2 + 21 _i Yis - 18 _j Ylj - 18 _j Ysj )

1

a2_ = 2-8( -sZ. y_j+ 5Z. Y3j + 2y_- Y_3" 2Y3_ + Y33 )
J J

i - 18 Z - 18 Z + 27 Z + 27 Z )
asl = 5-_ ( -18 Z Yil Yi2 Yis YlJ Ysj

i i i j j

1
%2 = (

1

a22 = 5--K(

1

als = 5"_ (

- Z. Ylj + Z. Ysj + 6 Yll - 3 Yls - 6 Ysz + 3 Yss )
J J

-3 Z Yil - 9 Z Yi2 + 12 Z Yis )
i i i

3 Z Yiz - 9 Z Yi2 + 6 Z Yis )
i i i

/Y11\

i\ /Yz2\

1 .T •

#IS 1

i J21 1

1
"22 I

1 -T

J2S I

"S2 /

Now consider the same design and use the step procedure to estimate the coefficients.

Thus, write the polynomial as

b + b v + b v 2
1 2 3

15



where

b = a + a u + a u R
1 ll 21 S1

b -- a + a u
2 12 22

b = a
8 18

For fixed

b =a
2i 12

i find the least squares estimates of bli = all
2

+ a21u i + aslu.1 '

+ a2eu i , bsi = als We obtain the normal equations in v alone:

where

(v' v) hi = V'zi

The solution of this system is

bli = Yi2

i i 2

b2i = - _ Yil " _ Yi2 + _ Yis

l l i (i-l, 2, 3)
bsi -- _ Yil - _ Yie + _ Yis '

The second step is to treat the u's as observations on the polynomials

ail+ a21u + aslue , aal + a22u j als and find the least squares esti-

mates of the a's For b I the normal equations are

where

U
1

(u_ u_) ___ : u_ b__

1 u I u I / 1

U2 U2 _ --1 21 _ --1 12

U U 2

s s \ sl/ \ is/

16



The solution of this system is

all = bl2

_ 1
a21 2 (blz + hi3)

I
= _ (bn +bz3) -asl 2

b
12

= Y22

l ( + y_)-- -_ Y12

_- i (Y12 + Ys2 ) -2 Y22

In the case of b 2 the normal equations are

where

U2 =

1 U 1 1 I al2 1

i u 2 , a 2 =

1 Us \a22 /

The solution of this system is

3

&
= i Z hi = _(

al2 3 i=1 3 Zyi_ " 27 Z Yi2 + 36 Z Yis )

1
= -(b -b ) ---

a22 2 18 ii 1 ( _3y32+ +" Y31 _Y33 Y_I+ 3Y12 - 4Yls )

Note at this point that none of the step procedure estimates agrees with the

least squares estimate.

Finally consider b3 and the normal equations

where

i bsl

= = a b = bs2Us ' as is ' -s

bss

17



so that 3

Z b3j
= J=l i

als 5 - 5-_ ( 3 Z Yil - 9 Z yi2 + 6 Zyis )

which does agree with the least squares estimate of a
13

Thus, we see that the step procedure for estimating the coefficients of a

general polynomial over a rectangular design is not equivalent to least squares

estimation over the same design. However, in theorem 2 we shall give condi-

tions sufficient for the equivalence of the two procedures. We now present a

proof of theorem i in the case d = 2 , _ = 2

Appendix B.)

Consider the rectangular design

D = D I x D2 ; Dl = < u I , u 2 , u3

(For the general proof see

; D 2 = < vl , v2 , v3

and the polvnomial

(*) v2(all + a21u + a31u2) + (a12 + a22u)v + al3

written in preparation for the first step of the step procedure as

b I + b2v + b3v2

where b I = all + a21u + a31u2 , b 2 = al2 + a22u , bs = als Let

Yij = f(uivj) where f is the function to be approximated by the polynomial (*).

If we can demonstrate that the step procedure estimate of al3 = b 3 is a

linear combination of the components of X'_ , using the notation of the example,

and show that such an estimate is unbiased; then the step procedure estimate is

the least squares estimate. (See Appendix A)

18



Since the first step of the step procedure is a least squares estimation,

A

the step procedure estimate of bs , b s , is unbiased. Furthermore,

A

that is, b
si

I A

bli
*%

bs i

(V'V) -l vjYij ]

• v_Yij/

is a linear combination of

z zj YiJ ' j vjYiJ ' vjYij

for each i Since b . = a
81 13

dure gives

for each

3 .%

Zb
i=i si

i the second step of the step proce-

3

A

as the step procedure estimate of als Clearly this is unbiased if bsi

and this estimate is a linear combination of

is

ZZ ZZ ZZ 2
i J Yij ' vjYij ' vjYij• " ij ij

However, the components of X'_ are

Z Z Yij ' Z uiYij , Z 2 Z Z Z 2
i j ij ij uiYij ' " "ijuivjYij '• ij vjYij ij vjYij

so that the step procedure estimate of als is a linear combination of these

components, specifically of the first, fifth and sixth. Thus, the proof is

complete for this special case.

19



If we are willing to restrict ourselves to balanced polynomials, we may

use the following result.

THEOREM 2: The step procedure when applied to a balanced polynomial

approximation of a real function of several real variables over a rectangular

design will yield the least squares estimates of the coefficients.

Consider the special case of a balanced polynomial in two variables each

with maximum degree 2 ,

(all + a21u + a u 2) + (aim + a u + as2u2 ) v + (a + a u + a u 2) v 231 22 18 2G 33 '

as an approximation of a real function

rectangular design

f of two real variables u,v over the

o

Let Ytlt2 = f (utl, vt2) ; tI = i, 2, 3 ; t2 = i, 2, 3 •

First we shall consider the least squares criterion for estimates of the a's

and generate the normal equations ; then we shall show that the step procedure

estimates of the a's

squares estimates.

Define S by

satisfy the normal equations and are, therefore, least

s s _ s s _i-i _2-i_2= Z Z - Z Z a_2utl
=i t =i Ytlt2 4=.I.._ =l vt2tl e l

and calculate _-_

al_ 2

we arrive at the equation

Setting this partial derivative equal to zero,

2O



s 3 _1-1 G2-I 3 s 2{Z _ = Z Zti=z t lYtzt2utz vt2 _2--z _z=z _z _

s s _z-z Gz-z _2-z G2-z_

Z Z ut ut vt vt I
tl:l t2:l i' i 2 2

(_)

Now employing the properties of the rectangular design we have

3 Gz-1 G2-z 3 3 J 8 _l-Z Gz-z s _2-z Gz-z ]

Z Z vt : Z Z a# # .[(.S ut u t )( Z vt2 vt2 )_
t1:z t2:zYtzt2utz 2 _z:z _2:1 z 2 tl:Z z 1 t2:l

We shall define the matrices U,V as follows

= v :
v;

Then clearly
S _l_l CZl_ 1

Z u
tl=l tl ut z

is in the _.z_Gz position of the matrix U'U

Similarly for
s _2-z c_2-z

Z Vt "
t2: ! 2 Vt2

Thus define

s . !z-z _z-z
Z u

t :z tz utz
1

S _2-i (%2-1

: 7, v
V_2G2 t :l t2 vt 2

2

and (4) becomes

S 8 (%I - i (%2 - i S S

(_) Z Z : Z Z
=i t :l Ytzt2 utz vt2 _ :l _ :i

tz 2 z 2
A_ z_2 U_ zGzV _2G2

Equation (5) is a typical equation from the set of normal equations.

We shall now use the step procedure to estimate a coefficient, A
SIS 2

In order to facilitate the writing down of this estimate, we shall have

21



need of the following notation. Let

(u_s_) __ (u,u)-_

(v_2s2) = (v,v) -I

_i-i

and not e u
r
1

_i = i, 2, 3 S1 = i, 2, 3

_2 -- i, 2, 3 sa -- i, 2, 3

_2-1

is in the _l, rl position of U' and similarly for v
r 2

The first step of the step procedure for finding an estimate of A
SlS 2

is

A (:) = (V'V) -1V' _t
tls2 l

Z Z

r2=l _ 2 =l

_2s2 _2-!
V Vr2 Ytlr2

where It I ( Ytl I , Ytl2 , Ytl s )

step is then

The second and in this case final

A = (U'U) -1 U' a (1)

SlS 2 S 2

7,S _ S u!lSl Ii-i }a(1)_ u

rl=l _i =I rl rls 2

s s _lSl _l-I s s _2s2 _2-1
Z Z u u Z Z v v

rl=l _i=i rl =i _ =i r2 Yrlr2rl 2

Using the fact that we have a balanced polynomial over a rectangular design

we may write

A -- Z Z i Z Z u v u vs s2 Yrlr 2 rl r2
i rl=l r2=l _i=I _2=i

22



If we substitute A
SlS 2

becomes

for

8 S

Z Z

Sl=l S2----1

ASlS 2 Usl51Vs20_ 2

A_z_2 in equation (5), the right hand side

3 3 _" 8 ,3

Z z
Z Z yrz r _l =l

rl=l r2=l _ 2 =1

q_z _2-z 3 t_S_u s v_2S2vs252)}[Url Vr2 (Z 5 )(Z ]
Sl=l S1 1 s2=l

However

s _s

7. U z z U_ 5 = 5_ G

SI=I 1 1 1 1

_z _ 5z or _z --_z " Similarly,

= 0 or i depending on whether

S2=i
Vs_2 5__2

So that we

have the right hand side of (5) equal to

3 8 r 8 S _l-1

_' _' Yrlr 2 I 7. 7, u
rl=l r2=l _l_l _2=1 rl

_2-1 }
Vr2 81 IGI 5_ 2G2 =

3 3 51-1 52-1

_ Yrlr2 Ur I v r
rl=l r2=l 2

which is the left hand side of equation (5) Thus A is a solution of
SIS 2

the normal equations and the proof of theorem 2 is complete for this special

case.
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V. IMPLICATIONS AND EXTENSIONS

Comparison to ANOVA

The analysis of variance model for a factorial design which includes all

of the interaction terms is equivalent to a balanced polynomial model in which

the degree of the polynomial in a given variable is one less than the number

of levels of the factor corresponding to that variable. In the analysis of

variance model we break up the degrees of freedom for a factor into each of

the different levels and in a polynomial model we use the constant, linear,

and quadratic parts. If we have a factor at levels a, b, and c then we may

think of these three degrees of freedom as corresponding to the space spanned

by

i 0 0 1
0 i 0

0 0 i

Equivalently, we may consider the space spanned by

I! a a 2

b b 2

C C 2

The first is the analysis of variance model and the second is the polynomial

model.

A factorial design in which all interactions above order d are assumed

to be zero is equivalent to a polynomial model in which cross products involving

more than d + 1 factor are omitted.
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Relaxation of Balanced Polynomial Conditions

We have seen in theorem i that the rectangular design enables us to use

the very easy step procedure to find the least squares estimate of the coeffi-

cients of the highest power of each variable in a model which is the general

polynomial of degree d In theorem 2 we see that the rectangular design

enables us to use the step procedure to calculate the least squares estimates

of all of the coefficients of a model which is a balanced polynomial. We may

now ask; is it necessary to have a balanced polynomial to get all of the coef-

ficients by the step procedure? Is it possible to have other polynomial models

in which the step procedure gives the least squares estimates of some terms

other than just the highest power?

To gain some insight into these questions we shall consider as an_ample

the two factor model

E Yij -- P (ui' vj)

where P is a polynomial in u and v

in which u has 4 values and v has 3

Now we apply the step procedure with leading variable

P (u, v) as a polynomial in v

and the design is a rectangular design

v We write

E Yij -- Po(Ui ) + vjP1(ui) + v_'P2(u')l

_6



Then the estimates of Po ' Pl ' and P2 are given by

In particular

A

PI (ui) = L_

(vTv) "IvT

_Yij

vjYij I

Yi

where L_ stands for some linear

combination. If we assume that
PoCUi). . = a + a u + a u2O0 10 20

PI(u) = aol + allu , and Pc(u) = ao2

A

averaging P2(ui) over the values of u

then we estimate

That is

a
o2

by

A

a -- L
02 02

_ Yij

Z v
ij j YiJ

X v2.
ij j Yij

Now this is a least squares e_timate of a only if it is a linear combina-
O2

tion of the right side of the least squares normal equations. That is, only

if it is a linear combination of

T
xy

A

a
o2

/_Yij

Zu.
ij i Yij

Z u_
ij i Yij

= Zv
ij J Yij

Z u vji Yij

0 Yij

is a linear combination of these terms.

/
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We estimate a
Ol

aol

all

and a by
ll

Ui _ U21

_l

= L

/i_jYij

Z vjij Yij

Z v_
iJ J Yij

?,u.
%j lYiJ

S u. v
ij i j Yij

?, u. v2. Yij iiJ i j

Pi (Ul) I

(i i i i I Pi (um)
Ul u2 Us U4 Pi (us)

Pi (u)

T
All of the components of this vector except the last one are in x y Hence

A A

aoi or all are not least squares estimates unless the data points u.l ' vj

are such that the linear combinations symbolized by L do not involve this

last term.

Now we could also put ai2uvm in the model so as to put _ uiv_Yijj in

the right side of the least squares normal equations. By continually putting

terms in the model as needed in this example we find that to determine the

least squares estimates of all of the coefficients by the step procedure inde-

pendent of the data points (except that the design be rectangular) it is nec-

essary that the polynomial in the model be balanced. This example also indi-

cates how we would go about expanding the polynomial model so as to estimate

certain coefficients by the step procedure. Having estimated some of the coef-

ficients, we may eliminate them from y and do an ordinary least squares

regression, if it is then practicable.
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APPENDIX A: STATISTICAL BACKGROUND

such that the expected value of Yi

PI' "' "' Pm and the variance of Yi

It is assumed that the reader is familiar with such terms as expected

value, random variable, variance, etc. If no% ready reference to these

terms may be found in such books as Cramer [1] and Lo_eve [2] •

We shall be concerned here with independent random variables YI' "' " Yn

is a linear function of m parameters

is _2 , i.e.,

E(y) = Ap

Var (yi) = a2 i = i, ... , n

_' = (PI' , pn ) and A = (aij) is a knownwhere Y' = (YI' "'" ' Yn ) ' ....

real n x m matrix. We shall be interested in estimating by functions of

YI' "'" ' Yn certain linear functions of the parameters, say __'P_ where

-_' = (_i' ... , _m ) We call an estimate of -_'2 which has expected value

__'p an unbiased estimate. If the estimate is also a linear function of the

y's , say c'y c' = ( , cn_ , _ cl, ... ) , we call it a linear unbiased estimate.

Thus, c'y is a linear unbiased estimate of __'_p if and only if

E = _n'2

Since E (c'y) = c'A p we have from the previous equation

c'A 2 = __'2

as a necessary and sufficient condition for c'y to be a linear unbiased

estimate of __'p Since we shall consider all of Euclidian m-space as the

parameter space, we have equivalently

5i(. c'A = J'

29



We define V (A') to be the vector space generated by the rows of the

m x n , m _ n , matrix A' and V* (A') to the vector space orthogonal to

V (A') in the n dimensional vector space over the real numbers.

The following theorem is basic in the study of linear estimation.

THEOREM A: If _'p is a linear combination of the parameters for which

there exists a vector d' such that E (d'_) = _'p then there exists

exactly one vector 2' in V (A') for which E (2'_) = _'_ Further-

more, Var (c'y) minimizes the variance of d'y over all d' such that

E (d'y)= L'2

PROOF: To prove the first assertion consider the decomposition

d' = c' + e'

where _' is the projection of _' on V (A') and _' the projection

of d' on V* (A') Now by assumption

= E(_d'z)

but

E (d'y) : d'Ap = (c' + e') A_p = c'Ap + e'Ap = c'Ap = E (s'y)

since _' is orthogonal to the column vectors of A . Thus,

E (S'[) = E (_'_) = _'2

Now suppose -ic' belongs to V (A') and E (_) = __'P_

every p

or

E = E (S'y)

c' A p = c' A p

Then for

for all p
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which implies (_ - _') is orthogonal to V (A') , i.e., belongs to V* (A') •

However, cI - c' belongs to V (A') since each does and thus c' - c' = o'-- --l -- -- '

c' _ c' This completes the proof of the first assertion.i.e._ --i -- "

Now suppose _'_ is a linear unbiased estimate of _'_ . Then decompose

_d' into -lC' and -le' where c l' belongs to V (A') and e_ belongs to V* (A')

As before S_[ is also a linear unbiased estimate of _'p and c'

V (A') By the uniqueness argument given previously c' = c'

d' = C' + e'

= c2C'C + GRete

d' _ C' , i.e._

belongs to

Hence,

Thus, Var (d'y) = d'e2I d = aad'd = ca(c ' + e')(c + el)
---- -- n-- .... 1 --

= Var (_c'y) + _2ele I . Therefore Var(d'x) > Var (c'y) for

e'e _ 0 This completes the proof.
--l--1

We shall call this unique estimate which minimizes the variance over all

linear unbiased estimates the best estimate of _'p .

Theorem A says that if the "best" estimate of _'p is c'y then

c' = q'A' for some q' From equation (5) we see that we must have

q'A'A = _' These equations are called the conjugate normal equations.

Conversely, we have that if q'A'A = _' then q'A'y is the unique "best"

estimate of _'p

THEOREM B: (Gauss-Markov) If _'p has an unbiased linear estimate

A

then the best estimate is _'p where p are the least squares estimates

of p .

PROOF: The least squares estimates of p are those values for Pl '

Pe ' "'" ' Pn which minimize the sum of squared deviations of Yl ' Y2 '

''" ' Yn from their (estimated) expected value. Thus

n

S2 = 7. (yj - ajlPl - ajap 2 - ... - a .mp )2
j=l 3 m
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is to be minimized by choice of Pl ' P2 ' "'" Pm " Now

S2 -- (y' - p'A')(y - Ap) = y'y - p'A'y - y'Ap + p'A'Ap -- y'y - 2p'A'y + p'A'Ap

By differentiating S' with respect to each of the p's and setting these

m derivatives equal to zero we obtain

- 2A'y + 2A'Ap = 0 or

* A'Ap = A'y

A

Equations * are called the normal equations. Thus, if p satisfies the normal

equations then p is a critical point of S 2 . Now we shall show that it is

a minimum point.

Let y' be decomposed as y' = m' + e' where m' is in V (A') and e'

is in V* (A') Thus, m' = x'A' and e'A = 0 Then, y'A = x'A'A + e'A = x'A'A

or A'Ax --A'y Hence, x must satisfy the normal equations. Conversely

A A

since p satisfies the normal equations, p'A' is the projection of y' on

A A A

V (A') and hence m' = p'A' That is (y' - p'A')A = O' and p'A' is

in V (A')

COROLLARY: If Eq'A'y = _'p

squares estimates of p .

then q'A'y = _'p where p are least

PROOF: q'A' is in V (A') and by assumption Eq'A'y _ _'p Hence

by theorem A q'A'y is the unique best estimate of _ 'p . By theorem B ,

_'p is the unique best estimate of _'p . Hence q'A'y _ _'p
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APPENDIX B: PROOF OF THEOREM 1

Consider the rectangular design

D = DI x ... x D Di ti : ti = 1 , ... , Ti

and the polynomial (2) written, in preparation for step one of the step

procedure, as

(3) b(_)1 + b(_)2 x(_) + "'" + b__) (x(_))d'm + °d+1_(_)(x(_))d

where " (_) is a polynomial in x(z) . x(_'z) of degree (d - (k-l))
O k , .. , •

(x(I)
- f tl , ... , x ) whereLet Ytl...t

f is the function to be

approximated by the polynomial (2)

If we can demonstrate that the step procedure estimate of a coefficient

is a linear combination of the components of X'_ --where the matrix X arises

from writing the system

E (Yt ...t )
i

--- al14..l + ''' _ 81...i. ..Ix_ii ) + "'" +

(t(terms in x , ... , x of degree _< d) +
i

all.., id+l(X(t_))d ti = i , ... , T i

in the matrix form

E(y) -

as in the case of the preceding exampie--and show that such an estimate is

unbiased; then the step procedure estimate is the least squares estimate [5] •
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Since the first step of the step procedure is a least squares estimation

of the b(_)'s with x (I), ... , x (_'I) held fixed, the expected value of

the estimate _(_) of b (_) is " (_) = a Also the estimate
d+l d+1 Dd+l i... id+l

_(_) is itself a linear combination of
d+l

T T T

d
7. ytl ..t , 7 xt yzl...t , _ (x_ ) Yt ...t

t =i " _ t -_l T[ t ----1 T[ i _[

" (_) is independent of x (1) . , x (_) succeeding steps in the
Since Od+ l , ..

step procedure will at each stage give the mean of the result of the previous

stage over the number of data points in the present stage so that the step

procedure estimate of b (_) is
d+l

T I T

Z ... Z
t =i t =l
1 _-i

TIT ... T2 _-i

Since b _j is unbiased, this estimate will be unbiased.
d+l

also be a linear combination of

This estimate will

T I T T I T

7. "'" 7. Yt ...t ' 7 ... 7. xt Yt ...t '''''
t ----1 t -_i 1 T[ t =l t =l T[ 1
1 _ 1

T l T

7.... 7. (xt Yt ...t
t --1 t =i _ 1
1

i.e., the components of X'_ This completes the proof.

It is clear from the proof that by choosing x (i) as the leading variable

the step procedure could be used to calculate the least squares estimate of the

coefficient of (x(i)) d We are usually interested in the least squares esti-

mate of all the coefficients and in this case theorem i is not very helpful.
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APPENDIX C: PROOF OF THEOREM 2

Consider the balanced polynomial

LI+I L +l .. , i)) _Z... Z x ) .x =
=I _ =l a_l'" _ 1

1

as an approximation of a real function f of _ real variables

over the rectangular design

D = DI x ... x D_ , Di = f_]x(i)t. : t i = i, 2, ... , Ti I'
1

x(t.i)# X(s.i) , t i _ si

1 1

Let

Yt .t = f (x(1) (_))
.. tI ' "'" , Xt

1 _

x(_),...,x(_)

In what follows we shall use capital letters without affixes to denote the

appropriate collection of lower case letters for subscripting purposes, e.g.

the

step procedure estimates of the a's

L = _l' "'" ' _ "

First We shall consider the least squares criterion for estimates of

a's and generate the normal equations, then we shall show that the

satisfy the normal equations and are

thus least squares estimates.

ACTUAL PROOF: Define S by

35



S
and calculate 8 a

O_1 . . .O_

• Setting this partial derivative equal to

zero, we arrive at the equation

• = aL x (1) x .._ YT x _ ''" xt _ t _ (_ " xt _ t (_
T ll _ L ll ii _ T[K

Now employing the properties of the rectangular design we have

x(_) (_)
(4) _' YT tl(_l''" _t (_

T _

r
X (1) X (1)

(_)
= Z aL i (Z) (Z•.. xt

L "t I till till t _

x(_)) }
t_

If we let the matrix (x(i)) be denoted by X i then we have that" t._.
1 1

x(i) _ Z x(i) x(i)
._. = t ._. t ._.
i i t. 1 1 1 1

1

• '.X and from (4)
is the element in the _i ' _i position of the matrix Xl i

x(I) .. x_ _) = 7 aL ( X (I) "(_) )
(6) Z YT tl(_l" C_ _i0_i... A_ O_

T _ L _

Equation (6) is a typical equation from the normal equations.

We shall now use the step procedure to estimate a typical a, a
S ...S
1

In order to facilitate the writing down of this estimate we shall have

need of the following notation. Let

(z(i> ) a ,
.r. = Xi '
1 1

_i = i , ... , Li + i , r. = i,i ... , T.I

_.S.

1 1

( X{i,_; ) A ( X, X. )-I s , _ = i, ... , L + I= i • i i i

The first step of the step procedure for finding the estimate of a

SI_ . . . _ S

(_) = (xsx)-_ '
at 1...t___s_ X_Yt_...t _

T { L_+I _ s( }< % _ _ Z(_)YtlX _) _ r ...t r
r --i _ 1 _ _[ _-l

is
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where Y '

tI •• .t__ I

step is then

= (Ytl,...,t _I, I , "'" , Ytl,...,t _I,T ) . The second

[2)a ...t s s
1 _I-2 _[-i

)-I x' a(I)
(Xi_-I)X(x-I) _-i t ...t s

1 K- 2; [K

T

Z
r =i

L +i

L =_ x(__l) _ r
_-i _I-i

K-1

a(_)

tI ...t r s_-2 _-i

.th
The l step is thus

a(ti)
1" ""t_-i' SK-i-l_ " " " S

Finally

a = (X'X)-lx;
S ...S 1 1 kl)
1

(x' x )-_x' [i-_).._-i-1 _-i-I _-'-iia
1 't_-i' s_-i-e,.., s

K

S 2. • .S K

Tl{ Ll+l _ s }_ i 1 (i) a(_-l)
E L X(1) Z_ rls2. s

rl=l Zl=l lrl • .

TI LI+I _ s T2 Le+1
I l(1)

Z L x(_) z_ Z Z
rl =I _l = irl r2=l _2=1

T L +i T L +i

_-I _-_ _ _ s __ _T.__,_ _ _ _ s
Z Z A(_.l ) _ r Z 7. X( _x _ -(_)

r =l _ =i _-I _-l r =i _ =i _' _'_r_ Yrl.. .r
_-i _[-1 _ K

By using the fact that we have a balanced polynomial over a rectangular design

we can write

a = a

S S 1 . . .S

_zSl=ZR YR_ x(l)
x _ _ z(_) -(_)

"'" (_) _irl "'" _ r
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if we substitute as for a L in equation (6), the right hand side of (6)

becomes

(x(_.) x(_))}
Z as SICk1 S OC
S _

However

_isix(i))
Z(x(i) s.a.
S. 1 1
1

.(7. 1,2.--5
1 1 i i

, so that we have the

right hand side of (6) equal to

z(_)) 8_ }
R _ _

= Z YR (z(_) -(_))
R (Zlrl" " " _(_ r

which is the left hand side of equation (6) Thus

normal equations and the proof is therefore complete.

a is a solution to the
S
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APPROXIMATING OPTIMAL TRAJECTORIES: SELECTION OF SIGNIFICANT

ESTIMATION VARIABLES IN A LEAST SQUARES PROBLEM

The Astrodynamic and Guidance Theory Division of the Aero-Astrodynamics

Laboratory of the Marshall Space Flight Center is examining the role of

"large computers" as they may be exploited in the control and guidance of missile

performance° Under Contract No. NAS8-5365 the Georgia Institute of Technology

and its Rich Electronic Computer Center have been studying such exploitation

as it applies to the approximation of guidance functions with multivariate

functional models° Under this contract attention so far has been focused on

methods to reduce the computational and variable-selection problems in least

squares models°

Backqround

The state vector, x(t) (describing the flight of a missile through space)

has the derivative _(t). These vectors along with a vector descriptive of

the guidance function, u(t), satisfy equations of motion, which may be expressed

formally as

F[x(t), t, u(t)] = o

The missile is intended to satisfy certain mission requirements at some future

time, tc, and we may indicate these requirements in the equations describing

terminal conditions:

G[x(tc), _(tc), tc] = 0

Note that the functions F and G are themselves vectors, The guidance problem

may be expressed generally as that of choosing a%es_' guidance function u out
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of the class of possible guidance functions. In particular we may wish to choose

a function u in such a way as to minimize

t
C

_ c(x,_,u,t)dt

0

In practical situations with real missiles we could not use the exact

optimum guidance function as a function of time because of measurement errors

and so Ono The missile strays from the optimum path into a situation for which

the chosen guidance function is no longer best° It then becomes necessary to

calculate a new optimum guidance function based on new initial conditions° In

short it is important to be able to synthesize the optimal guidance function,

u, in terms of the state variables at each point in the phase space°

One approach to this synthesis which has been proposed consists in select-

ing a scatter of initial points (possibly organized in subregions of the phase

space); using a large-scale computer to determine the corresponding values of

the optimal guidance function; and then using some approximation technique

to estimate the guidance function as a function of the state of the missile.

Various considerations, both practical and theoretical, suggest that

such an approximation be based on the criterion of "least squares." Hven,

however, if attention is restricted to this well-known method, difficulties

arise. In the first place fitting a function of several variables becomes

very quickly a huge matrix inversion problem. In an earlier study done under

this contract, entitled: "Least Squares Hstimation of Regression Coefficients

in a Speci_ Class of Polynomial Models," techniques were described which reduced

the large inversion problem to a sequence of low-order inversions, when fitting

balanced polynomials to rectangular grids of data. While these techniques hold

promise in special circumstances, evidently they have a limited usefulnesso
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A second major difficulty in least squares approximations arises in deciding

which class of functions or which subset of a very large class of estimation

variables will be used to approximate the unknown function. EW_idently, a

method which elects a relatively few highly efficient estimation variables

also serves to keep the matrix-inversion problem under control, since that

computation depends directly on the number of estimation variables used.

It happens that there is a method available by means of which the incorpora-

tion of estimation variables into the approximating functions can be sequenced

in what seems usaally to be an efficient manner. We shall call this formal

procedure for activating estimation variables simply the step-up procedure.

_Fne procedure appears first to have been used by R. J. Wherry (Annalo of Math.

Stato_ 1931). More recent discussions have appearedby H. E. Anderson and

B. Fruchter (Psychometrika, 1960), and E. F. Schultz, Jr. and J. F. Goggans

(Bulletin of the Agricultural Exp. Station, Auburn Univ., 1961). Since

examples can be constructed to show that the step-up procedure is not always

optimal, the difficult problem of assessing its merit arises.

The primary concern of this report is to consider the merits of the step-

up procedure, to seek improvement in it and to investigate rules to govern

the stopping of the selection procedure.

While this and related problems are of considerable interest and pertinence

in the overall trajectory problem, they should not be considered overriding.
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Other approaches, where the goodness of approximation is more directly related

to the cost criterion or to the equations of motion and where the mission

fulfillment is more directly imposed, show at least equal promise and are being

considered for subsequent study°

Obiectives

io To conduct empirical investigation of the efficscy of using the step-

up procedure in the selection of a fixed number of estimation variables out

of a larger number in obtaining functional approximations by the method of LS.

2o To seek modifications of the procedure for the purpose of enhancing

its efficiency.

3o To develop reasonable rules which will control the process of stopping

the estimation variables selection procedure aqd to study empirically the

sensitivity of the efficiency of the estimation to variations in these

rules.

4. To explore empirically the general applicability of low-degree poly-

nomial approximation (in the sense of least squares) to representative function

of several variables.

5. To develop an efficient, flexible and unified computer program which,

in carrying out a least squares approximation, at least has the option of

utilizing such selection procedures and stopping rules as have been developed.

Plan of Research

To accomplish the aims of this part of the study research was organized

in four phases:

A. A review of the geometry, linear algebra and statistics involved in

the method of least squares and the step-up procedure. This phase extended
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to include discussions of modifications to the step-up procedure and various

criteria for stopping the selection process° Also included were algorithms for

computer programs°

Bo Development of the structure of the empirical investigations. In

this phase decisions were reached on types of functions to be estimated, data

patterns, size of data base, specific form of the estimation variables (as

functions of independent variables), how data would be obtained and reduced to

the regression format with particular regard to the important case of polynomial

approximation°

Co Development of computer programs° In this phase algorithms developed

in preceding phases were converted to programs, with attention to computational

efficiency and cost°

Do A battery of examples with interpretations and, if possible, conclusions°

In this phase a few preliminary examples were designed to test the efficiency

of using the step-up procedure. Later, more sophisticated examples were used

to develop the other objectives cited above°

Summary

A. Mathematical review (see the supporting study titled: "Selection of

Significant Estimation Variables in a Least Squares Problem: Math-

ematical Review°")

The well-known meihod of least squares (LS) is invoked to estimate a

presumed functional relationship between a dependent variable Y and a set of

independent variables Xl,...,X _ on the basis of a set of observed points.

According to the method a class of functions of the form,

a0 + aI ZI(XI,...,X ) + ... + ap Z (XI,...,X _),p
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is considered for all real sets of coefficients. The Z's are specified

estimation variables depending on the independent X'So For any function of

the above class, corresponding to an observed vector of X:s, one could compute

values z l,ooo,Z p of the estimation variables and a value

= a + alz F + o + a z , which could be compared with the correspondingo i °° p _p

observed value y of the dependent variable Yo From this specified class of

functions the method of LS selects one for which is minimized the sum of

A

squares of the deviations of the so-called predicted values y_ from the observed

values y . Such a function is called a best estimate or best-fitting approxi-

mation (in the class) in the sense of LSo

The choice of the functions to be used as the estimation variables,

ZI,Ooo,Zp, is open, giving the method great flexibility, but also making it

vulnerably dependent on the choice° In the next section of this summary some

discussion is devoted to the choice of Z's and the reduction of data to the

form of observation vectors (y_,z l,.o.,Z_p) on the variables __(Y,ZI,.oo,Zp)o

This form is now assumed°

7he least squares approach admits of an accessible geometrical interpre<

tation. Supposing there are N observation vectors_ for each estimation vari-

able Z. consider the N observed values (adjusted to the mean). These values
i

constitute the i-th estimation vector z.. Similarly, consider the mean adjusted
i

dependent-variable vector y. The LS problem translates to finding that vector

in the space spanned by the estimation vectors which lies closest to the y

vector. Gr it may be interpreted as finding the projection of the y vector

onto the estimation space.

The cosine of the angle between the y vector and its projection in the

estimation space is called the multiple correlation coefficient, R. It is a
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measure of the efficiency of the estimate, attaining a maximum of unity when

the y vector coincides with the projection estimate.

The difference between the y vector and its projection onto the estimation

space is called the error vector° A pythagorean property holds, expressing

the square of the length of the y vector as the sum of squares of the lengths

of the estimate and the error. The estimate itself can be resolved into

orthogonal components, and the same is true of the error vector°

If only k out of the p available estimation vectors are to be used to

estimate y (corresponding to selecting k out of the p possible estimation

variables), a difficult problem of deciding which k to elect arises, since

trying all combinations is ordinarily computationally infeasible°

The step-up procedure is a practical, though not always perfectly optimal,

way to select k estimation vectors° It evolves naturally from the geometric

model described above. In this procedure the first estimation vector is

chosen by finding the one on which the y vector has the longest projection

(by the pythagorean property this leaves the shortest error vector). In the

next step for each of the remaining vectors it is easy to determine the length

of a component orthogonal to the first vector chosen, whose square added to

the square of the projection on the first vector gives the square of the

projection of y on the estimation space of these two vectors° Selected is the

vector having the longest such component. The procedure is then repeated.

Since the y vector may lie in the plane of two vectors but possibly closer

to a third vector (not in the plane), the step-up procedure is not always optimal9

for it would activate the third vector first, then one of the others, but the

combination would not be as efficient as the first and second.

A modification of the procedure has been incorporated to allow for the

elimination of a vector from the active estimation set. It works in the follow-
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ing wayo The error vector foz the k selected variables is compared with the

error vector when one vector is deleted from the active estimation set° The

difference measures the net reduction of error due to the one vector deleted_

Computationally it is easy to compare the lengths of these reductions° One

may wish to eliminate a variable which contributes little net reduction° A

measure of the net reduction due to each estimation vector is provided by the

cosine of the dihedral angle formed by the plane containing the y vector and

its projection in the reduced estimaticn space, on the one hand, and the piane

containing the two projection% on the other hand° This is called the paltiai

or net correlation coefficient between the dependent variable y and the

estimation variable in question°

It appears evident that the simple rule of selecting k of p estimation

vectors will not always be a good stopping rule. From the geometrical

description several other natural criteria emerge as possible stopping rules

whose use may be varied according to considerations of the particular problem

at hand_ For example, if the multiple correlation coefficient is "very high"

the addition of other variables may seem unnecessary° Again, even if R is not

high, the modified step-up procedure may be making no appreciable improvement

in the estimate so that further addition of variables to the active estimation

set may be deemed useless° Also, depending on the criteria for continuing to

bring in new variables and to eliminate old ones, some stopping rule should be

available to guard against cycling_

The most difficult choices for these decision rules are those concerning

whether to eliminate an active estimation vector and whether adding one or

several more will make any significant reduction in the error vector° One

might adopt the rule of introducing two vectors and eliminating one, until a
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stopping rule stops the process. One might eliminate the vector to which

corresponds the lowest net correlation coefficient, provided that the co-

efficient reaches a certain "low" value° One might stop adding vectors if the

last r added make an average addition to R of less than some fixed amount°

However, caution should be exercised in the fixing of criteria, since certain

combinations of these rules increase the chances of cycling°

Finally, we have considered elimination-stopping rule combinations based

on F statistics° Briefly, an F statistic is a ratio of the average of certain

of the estimation components to the average of the error components° In a

statistical context, if the estimation components have on the average the

same length as the error components, they are considered insignificant and are

attributable to random error. In short these vectors are not considered of

estimative significance. From such a point of view there is some intuitive

appeal in the decision rule: Do not add if F _ i; do not drop if F _ I.

However, the rationale for using the F statistic rules is tenuous and, such as

it is, depends on hypotheses of a statistical model which are not always

appropriate. A fuller discussion of the statistical model is given in the

supporting study.

While the mathematical and statistical analysis suggested the foregoing

procedures and rules, it has also indicated considerable need for the

empirical tests subsequently made.

The mathematical analysis included a translation of the geometrical

steps described above into algorithms capable of being converted to computer

programs. These well-known algorithms also are developed in detail in the

supporting study with every effort made to retain geometrical interpretations

in the development.

51



Bo Structure of the Empirical Investigations

The data were organized in two main pbaseso The purpose of empirical

runs in the first phase was primarily to gain insight on the efficiency of the

step-up method for activating a subset of estimation variables out of a

large set of such variables° The principal aim of the runs in the second

phase was to explore the relative merits of various rules for stopping the

step-up procedure of adding variables to the active estimation set and rules for

eliminating such variables° Auxiliary purposes of empirical runs were to test

and correct pertinent computer programs and to obtain from divelsified experi-

ence an idea of the general validity of the LS approach as an approximation

te chni que o

As pointed out in the previous section, the generality of the method

of LS leaves considerable latitude in the selection of test cases° In organiz-

ing test runs representing a variety of problem types some of the factors on

which decisions nad to be reached included:

I° The type of function to be approximated, including its form, the

number of variables and the selection of a representative membeio

2o The class of approximating functions, ioeo a selection of the

estimation variables Z.I : Z'(XI'''°'X)I i : 1,2, ooo,p, where

(XI,.o.,X _) presumably is in the domain of the function to be

approximated°

3° The number, extent and distribution of data points°

Admittedly decisions reached during the test construction concerning these

factors were somewhat arbitrary° They were made, however, with awareness of

their significance°

Briefly_ it was decided to construct data for a few selected functions

of three variables, using a rectangular grid of data and balanced polynomials

as approximating functions° In addition, a few runs were made using activ6
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data, which were developed in certain statistical regression analyses° Except

for the actual data runs the data grids consisted of 500 or i000 points generated

from evenly spaced values of the three variables on the margins. Thus the

undoubtedly important effects (on goodness of fit) of varying the distribution

of data points or varying the types of estimating functions were not studied

here. Indeed these factors were held more or less constant in order not to

obscure the comparisons of variable-selection procedures°

These decisions led to fairly general and easy algorithms for generating

data for a given test run and reducing them to the format of LS input° Thus,

for a given function E(XI,X2,X3) = Y, a given class of balanced polynomials of

the form

Zl Z2 Z3

= Z ail&2Z3Xl X 2 X3 ,

and a given rectangular grid of points,

(Xltl'X2t2'x3t3)'

observation vectors (yF, z i , z 2,.oo , Z_p) were generated by the computer.

Here yp is the value of Y at some (Xltl,X2t2_x3t3), and the estimation variables

Z. are the several terms of the balanced polynomial of the form
1

&l &2 &3

Z. : XI X2 X31

while z i is the value of Z.I when (XI,X2_X 3) = (Xltl,X2t2,x3t3). The observa-

tion vectors were then in a form to obtain LS estimates of the coefficients in

the best-fitting balanced polynomial, or more specifically to manipulate in a

way aimed at activating the most significant estimative terms of the balanced

polynomial as described in the foregoing section.
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Runs in the first phase were limited to estimating a polynomial (of higher

order than the approximating ones) and estimating a rational function, while the

approximating balanced polynomial class was restricted to be of second degree

in X 1 and X 2 and first degree X3, which restricted the number p of estimation

variables (÷eu_s of the polynomial) to 17 or lesso The test procedure for these

runs was, for. each k = 1,2, ooo,p-l, to determinethe efficiency (multiple

correlation) of each of the (_) subsets of k vectors and compare the optimal

set with the set produced by the step-up procedure° Computer time was a limit-

ing factor in these tests°

Runs in the second phase included estimating an exponential Junction and

a few algebraic functions other than rational functions, and they included two

runs using actual statistical data° Some effort was made to include poorly

fitted functions as well as accurately fitted ones° Also, the form of the

apprcximating balance polynomial was stepped up to develop 47 estimation

variables° Usually_ for each example, several runs were initiated in which" were

varied the policies of stopping the selection prccedure or of eliminating a

variable°

CoDsidered_ but not developed in this study, was an experimental design

in which runs would be made for the various different combinations of pre-

scribed levels of the main factors thought to influence efficient variable

selection°

Co Development of Computer Programs (see the supporting study titled,

"Selection of Significant Estimation Variables in a Least Squares

Problem: Computer Programs°")

Corresponding to the two phases of the study mentioned in the last

section, two computer programs were developed. The purpose of the first
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program was to compare in a few examples the subset of k estimation vectors

selected by the step-up procedure with the optimal subset of k° This first

phase of programming was begun before the Burroughs 5000 was operational on

contractor facilities and was programmed in the ALGOL 58 compiler language

for the Burroughs 220 computer. Because of core memory limitations the

program restricts the total number of estimation vectors to twenty-five. It

would be a simple matter to translate the program to one for the more advanced

computer. This has not yet been done, primarily because the number of compari-

sons to be made even with the restriction to 25 variables makes for an almost

prohibitive amount of computation time.

The program depends on using (1) rectangular grid data and (2) a balanced

polynomial as the general form of the approximating function. One part of the

program, using as input the specified values of each of the variables and the

degree of the balanced polynomial in each variable, generates internally the

grid of data points and computes for each such point the value of each term of

the balanced polynomial. Thus the estimation vectors are generated.

Also the program allows for a procedure to be inserted to incorporate the

computation of the values of the function which is to be approximated, at each

of the grid points of data. Thus the dependent variable vector y is generated.

As an intermediate calculation the program mean adjusts the above vectors

and produces the intercorrelation matrix for all the vectors, including the

dependent variable vector. There will be LIL2...L _ p + 1 such vectors.

These are restricted in number to 25.

In the next part of the program, for each k - 2,3,..., p-l, each one of

the (P) subsets of k estimation vectors is manipulated to compare the

estimation efficiency (multiple correlation) of those subsets. For each k the

55



subset of k vectors which gives maximum efficiency is printed as is also its

corresponding multiple correlation coefficient°

In the final part of the program the estimation vectors are selected in

the order prescribed by the step-up procedure° At each stage an index of the

estimation vector introduced at that stage is printed out, as well as the

multiple correlation coefficient obtained with the set of vectors selected up

to that stage°

In this program checks were instituted to restrain the incorporation of

vectors which were practically dependent on vectors already included in the

active estimation set° Also, considerable effort was made to abbreviate the

matrix-inversion type calculations in order to produce only the multiple

correlation, since the number of such calculations, 2P - p - 2, rapidly gets

large°

The purpose of the second program, to a considerable extent based on the

assumption that the step-up procedure was reasonably efficient, was to make

available a fairly flexible program for estimations based on the method of

LS in which would be included at least options for activating subsets of the

estimation variables according to the step-up procedure and other modified

procedures, and also included would be options which could be exercised to

stop the selection. The program was done for the Burroughs 5000 in the ALGOL

60 compiler language.

As it now stands the program has several options for obtaining the basic

matrix of the dot products of the adjusted vectors (which matrix reduces to

the intercorrelations matrix when the rows and columns are appropriately

standardized).
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(1) One of these options is the same as in the previous program, except

that the admissible order of the matrix has now been increased to more

than 100o This option allows for the rapid generation of data for

experimental studies.

(2) Either the matrix of dot products or the intercorrelation matrix

may be read in directly° This allows further study, especially of

subset selection procedures, of previously studied regression problems,

least squares fittings, and so forth°

(3) Observation vectors may be directly read in. This will be the way

data will arise in most realistic problems, although values of the

estimation variables may require preliminary transformation (eogo,

if the estimation variables are terms in a balanced polynomial).

In this program, once the basic matrix has been obtained, it is retained

in memory and can be used over and over, to facilitate comparisons when various

procedures for selection, elimination, stopping are employed.

In case the intercorrelations matrix was not introduced directly the

program gives an option for computing and printing it and using it in the

remainder of the program.

In the main part of the program estimation vectors are introduced in the

priority order dictated by the step-up procedure. In addition, however, the

procedure carries options which allow for various rules to be set to make

possible the elimination of an estimation vector and the stopping of the

selection process.

At present there are two criteria either one of which may be used to

eliminate an estimation variable. One option automatically eliminates an

estimation variable after two have been included. Of course the one deleted
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is the one of lowest net correlation with the dependent variable (see Section A

preceding), In the other option the pertinent F statistic for the variable with

smallest net correlation is computed (see Section A) and is tested against a

preassigned threshold value° If it is below this value_ the variable is

deleted, It is possible to prevent any such eliminations by setting the thres-

hold equal zero,

Currently there are four criteria which can be used to stop the process of

adding estimation variables. The program effectively permits bypassing any or

all of these criteria° They are:

(I) Stop if the F ratio for the next single variable to be introduced

does not exceed that threshold value corresponding to a preassigned

significance level. The procedure stops after that estimation

variable has been added, This can be bypassed by setting the thres-

hold at zero,

(2) Stop if the current value of the multiple correlation coefficient

is sufficiently large. This can be bypassed by setting the multiple

correlation threshold at unity°

(3) Stop if the number of variables chosen reaches a preassigned number.

This can be bypassed by setting that number equal to the total number

available.

(4) Stop when the number of computational iterations for adding or eliminat-

ing a vector has exceeded a preassigned number°

It is noteworthy that the computational procedures for eliminating and for

adding a vector are the same_ once the vector has been earmarked.

It should also be mentioned that the same precautions as in the earlier

program were taken to prevent the introduction of almost linearly dependent

vectors.
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In this program of course the output includes the LS regression coefficients

of the selected estimation vectors, as well as indices of the vectors selected,

and the multiple correlation coefficients°

Do Test Runs on the Computer (see the supporting study titled, "Selection

of Significant Estimation Variables in a Least Squares Problem: Empirial

Computer Studies.")

As indicated in previous sections, these tests were broken roughly

into two phases° In a very limited way the preliminary set of tests was con-

ducted to gain a measure of confidence in the step-up procedure as a means for

selecting an efficient subset of estimation variables in a least squares model.

In the tests made a balanced polynomial of relatively low order was selected,

the terms of which provided the full set of estimation variables° Estimation."

vectors, as well as a dependent-variable vector, were generated from rectangular

design data. Dependent-variable data were computed as values of the function

which was to be approximated. As described previously, subsets of estimation

vectors selected by the step-up procedure were compared with the optimal set°

Primary difficulty in test runs arose from fact that the determination of the

actual optimal set of k vectors required comparisons of (_) sets of vectors,

where p was total number of estimation variables available. Computational

feasibility dictates that p be severely restricted.

Nevertheless_ several preliminary runs were made where p was kept to about

ii, and in all cases less than 18. Several functions were approximated. These

in general represented the class of rational functions. For one of the functions,

which had a pole in the region of data points, only a poor approximation was

obtained. Otherwise, even with low-degree polynomials, the multiple correlation

coefficient was rather high.
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In most of these tests the step-up procedure selected, at each stagej the

optimal set of variables. There was one example, however, where the procedure

did not select the optimal set of two vectors, although the correct selection

of a larger number of variables was achieved. It is also noted that, when R

became stable or nearly so, additional variables introduced by the step-up

procedure were not always optimal. It is possible that this could have been

the result of round-off error.

In general these experimental results indicated the step-up procedure is

probably quite efficient, at least when a fair scatter of points is available.

It was noted that, even when the method failed, the value of R was near optimal.

The actual occurrence of failures, even at early stages, suggested that some

means for eliminating variables would be desirable. Such techniques were

introduced and used in the second phase of testing.

For the second set of test runs the Burroughs 5000 program was used. As

mentioned earlier, this program allows for a larger number of estimation vectors

to be handled, incorporates options of data input, variable elimination and

program stops, but does not make the comparisons to determine a purely optima_

subset of estimation variables. In most of the examples studied in this phase

several runs were made for each example to throw light on the effects of changing

the pattern of variable elimination and _hop£ing rules. Attention was focused

on varying the elimination criterion', the effects of varying other rules being

discernible from the print-out, _ith the principal basis for elimination being

an F statistic (see Section A of Summary). To observe the effect of certain

stopping rules (which can be set in the program options) print-out includes for

each "sweep" (where a variable is eliminated or added to the estimation

set) the number of sweeps up to that stage, the number of estimation variables
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being used, an index of the last one eliminated or added, the F value of the F
I

statistic for a variable brought in or the F0 value of the F statistic correspond-

ing to a variable being eliminated (if it was below the criterion level)_ and the

square R 2 of the multiple correlation coefficient_ as well as the reduced R 2

which diminishes if and only if the last variable introduced gave an FI value

less than unity.

The examples included: Approximating three non-polynomial functions, with

the available variables being the 48 terms of a balanced polynomial cubic in

X 1 and X 2 and quadratic in X3 and the 500 data points generated from

X 1 = 0°25(0°25)2.50, X 2 = 0.25(0.25)2.50 and X 3 = 0o25(0o25)1.25_ approximating

a dependent variable from actual data with available variables constituting a

balanced polynomial in four variables, where the data are (as would usually be

the case in practice) not in rectangular design_ and approximating a dependent

variable from actual data where the intercorrelation matrix of available

estimation vectors was given, the presumption being that these could be non-

polynomial terms.

In the first group of example the functions chosen to be approximated were

FI(XI,X2,X 3) = exp(-Xl2X2X3)

F2 = (x14 + X23 + X32)Ix 1 + x2  x31-{

F 3 =/X12 + X22 + X32 .

As in all examples the data were mean-adjusted. The functions F1 and F3,

especially F3, were very closely approximated (in the ,range of data) by the

full set of 47 estimation vectors in the sense that R2was near unity, while

R2 for the case of F2 was near 0.9. For each example runs were made with F0
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set over a range of values from high to low. In the case where F0 was set

very low the tendency was to eliminate few or no variables and thus to be very

close to the simple step-up procedure.

The test runs for these examples showthat different subsets of estimation

variables will be selected when the elimination (and stopping) rules are varied.

They provide concrete examples wherein the step-up procedure is bettered by a

procedure modified to include an elimination criterion_ where the opposite

happens_where an FI stopping criterion of io00 (on the last variable brought in)

could stop the procedure which if continued would later introduce variables

significant at this samelevel. These test runs suggest, but not markedly or

universally, that the elimination criterion is effective in obtaining a higher

R2 for the same number of estimation variables_ that a high criterion value is

more effective for variables selected early but not for those selected later_

that the FI test may stop the procedure too soon unless modified_ that different

problems seem to need somewhat different rules_ that while the set of variables

selected may vary considerably R2 has a tendency to be fairly stable for different

procedures.

The examples with actual data provided experience with data more of the type

expected in a realistic problem. In addition the first provided a good example

in which an F stopping rule based on a single variable (last introduced) would

have stopped the procedure too soon. The last example illustrates another point,

viz. that out of 14 variables the last nine variables tested together are not

significant at 50_ level while the 6th one tested alone is significant at this

level.

It should be noted that in all the examples, in terms of the multiple

correlation coefficient, a few estimation variables usually accounted for most

of the value of R 2.
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It is recommendedthat further insight be obtained by examining the summary

data for the various test runs, given in the supporting study referred to above°

Conclusions an___dRecommendations

The step-up procedure, which first activates the one estimation variable

best in the sense of least squares, activates next the one which contributes

the most to a further reduction in the sum of least squares, and so forth, is

supported as an efficient and computationally feasible procedure for selecting

priority-rated estimation variables in a least squares approximation problem°

The nonoptimality of the procedure is manifest in practice° However, the

evidence is strong that even in such case the results are near-optimal, as

measured by the multiple correlation coefficient, R. The empirical evidence

indicates more reliability of the step-up procedure in the activation of the

earlier and presumably more significant variables than in later variables. When

a large number of estimation variables is involved, the optimal value of R appears

to be nearly reached by several subsets of estimation vectors. Thus, although

frequently in these cases the set selected by the step-up procedure is not optimal,

it is very nearly so.

If it is important to restrict the number of estimation variables, there

appears to be a need for a means of eliminating variables previously activated°

The procedure of eliminating an active variable whose net contribution to the

reduction in the sum of least squares is least (and small) is practicable and

frequently effective. Examples show, however, that the elimination modification

does not always improve on the simple step-up procedure. Moreover, it carries

the same cost as activating an estimation variable. No fixed elimination

criterion is best for any wide variety of problems. The experiments indicated

an overall tendency for a large elimination criterion to be more effective when
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the active estimation subset is small and a small criterion to be more effective

when the number of active estimation variables has become sizable°

The use of rules to stop the activation of additional estimation variables

must often depend on such factors as available computer time and rate of computer

time utilization. A comprehensive set of rules, which may be used in various

combinations, includes stopping when R is sufficiently large, when the

activation of additional variables does not contribute significantly to the

estimation, when the number of variables reaches a preassigned number or when the

computational procedure begins to cycle° Examples show that the second of

these can occasionally stop the process too soon, so that the contribution of the

last several active variables, rather than just the last one, should probably be

tested° The speed with which variables were eliminated or introduced in the

examples indicates that large blocks of variables could be introduced before

making any decision on which variables to keep active.

The study shows that at the current state of computer science it is still

infeasible to examine all combinations of subsets of estimation variables to

determine the optimal subset, unless the total number is quite small, and

thus that the need remains for such a procedure as the step-up procedure°

The study has also given evidence of the feasibility of the rapid selection of

efficient estimation variables even from a set of several hundred, using a

fairly sophisticated system of optional variable-elimination and stopping rules.

Finally, with reservation, it should be noted that in all the examples there

was a marked relative efficiency of a small set of active estimation variables

to the entire set of estimation variables available.

In view of the foregoing results the step-up procedure is recommended as an

effective means for selecting priority-rated estimation variables in a

least squares analysis. The use of the modified procedure and the various
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stopping rules is also recommended with the admonition that the various

settings ought insofar as possible to be adjusted to suit the experience of

workers familiar with the problem area under study°

Specifically, with regard to the context of estimating optimal trajectories,

ioeo with regard to the problem giving rise to this study, it is recommended

that further general analysis of the method described herein, either theo-

retical or empirical, not be undertaken, but that the method and experience

gained be applied in a series of experiments with actual trajectory data as soon

as possible, where the experience of researchers in the field and the knowledge

of physics pertinent to the problem will be utilized to help delimit the class

of approximating functions°

Finally, using methods of design of experiments and a limited class of

functions presumably pertinent to trajectory problems and including some live

data, it may be feasible to study the effects (on approximation efficiency) of

varying certain factors such as data distribution, type of approximation,

elimination criterion, and so Ono
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SELECTION OF SIGNIFICANT ESTIMATION VARIABLES

IN A LEAST SQUARES PROBLEM: MATHEMATICAL REVIEW

i. Introduction° The principle of least squares (LS) can be formulated

in the following terms° Presumed to exist is some sort of functional dependence

of one variable_ Y, called the dependent variable_ on a vector, (X1,..o,X) , of

other variables, called independent variables. Available is a number (say N)

of observations, Joe. values of Y corresponding to values of the vector (Xl,...;X)o

Next is chosen a class of admissible functions of the form,

aiZl(Xlgooo;X z) + ..o + apZp(Xl_..o,X ), where the ZI,..._Z P are fixed _unctions

of the X's and the parameters of the class are al, a2,...,a P. The functions

Z presumably are chosen to enhance the likelihood that the unknown functional
i

relationship (between Y and the X's) will benearly of the prescribed form.

Each function of the class is linear in the variables, Z1,.oo_Zp, which we shell

call estimation variables_ each function is also linear in the parameters. In

any case the basic idea in the least squares approach is to approximate the

unknown functional relationship with one of the admissible functions. For any

one of the functions in the class, corresponding to each observation, (x l,...,x )_

is the value of the function, _ = alz i + ... + apZ p, where

= Z.I (x 1,..o,X ), which is comparable with the value of Y (say yM)z_i

corresponding to this same observation, (x 1,...,x ). The sum of squares,

N

Z (_/_ - y_)2,
_=l

is taken as a measure of the estimative value of the function Y = alZ I + ... + _ Z
P P

According to the principle of least squares, out of the class of admissible

functions
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: _Y Y = aiZ l + ... + apZp?,

is chosen as an estimate of Y one function which minimizes the sum of squares

of deviations° Such an estimate (pe shall see that one does exist) is written

= Z_ biZi; we shall call such" a function a best estimate or best-fittinqas

approximation (in the class) in the sense of least squares. The sum of squares

of deviation%g IN(_yP _ yp)2, is called the sum of least squares or the residual

sum of squares due to error. The procedure of obtaining a best estimate in

the above sum is frequently called a _eqression analysis, or more properly a

linear reqression analysis. The b. are often called reqression coefficients.
i

The method of LS was known and used by Gauss over 150 years ago. He dis-

covered that under certain conditions the method of least squares in a sense

yields an optimal estimate. This is the famous Gauss-Markov theorem. Briefly,

the principal hypothesis for this theorem is that except for random deviations

the observed values of Y are values corresponding to one of the functions in

the classy. The random deviations are assumed to be statistically uncorrelated,

with a common variance and mean zero. Under the additional hypothesis of

normality of the distribution of these deviations an elegant statistical theory

of estimation and hypothesis testing can be constructed. The statistical model

is discussed briefly in Section 5 below.

The method of LS is used widely in numerical analysis even when the support

of the Gauss-Markov theorem cannot honestly be invoked. In many cases other

methods perhaps are equally or more justifiable; but often the method of LS

has an intuitive appeal in that it seeks an estimate which minimizes one obvious

measure of error.

It is also possible to consider classes of admissible functions, from which

an estimate will be chosen on the basis of the LS principle, which classes are
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nonlinear in the parameters. In many instances such problems are resolved

satisfactorily by iterative techniques. The procedure of obtaining estimates

of the parameters in such a case is called a nonlinear reqression analysis.

Excellent accounts of the statistical linear regression model are given

in GRAYBILL, SCHEFFE, and ZELEN. The method of LS is given space in most

numerical analysis books, and sometimes the nonlinear case is discussed.

E.g., see SCARBOROUGH. Nonlinear regression analysis is treated from a sta-

tistical point of view in WILLIAMS.

In applications of LS it is often the case that the number of estimation

variables, for which values are computable from observations on fndependent

variables, is very large. Certain recurring and nagging questions arise,

varying somewhat with the circumstances. If only k of p variables can be used,

which k should be chosen? Does the use of additional variables contribute

significantly to increased efficiency of estimate? The second of these

questions is not mathematically meaningful until the word "significantly" is

defined. However, in the context of a given problem, the question is one that

_requently must be raised, given meaning and acted on.

There is an obvious answer to the first question raised above, viz., to

determine by computation which of the (_) sets of estimation variables yields

the minimum sum of least squares from the data. Unfortunately this straight-

forward procedure is computationally infeasible. A more tractable and completely

reliable method of finding the optimal set of kestimation variables remains an

open problem. However, at least as early as 1931, WHERRY proposed a procedure

for selecting a reasonably efficient subset of estimation variables. This

procedure we call -- because it has become our habit -- simply the step-up

procedure. It consists in selecting first the one estimation variable best in

the sense of LS, next the one which contributes the most to a further reduction
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in the sum of LS, and so forth° In this way variables are added until some rule

stops the process. The procedure is computationally very feasible and fast°

However, it is easy to show it is not always optimal. The step-up procedure

has recently been described without much critical analysis in papers by ANDERSON

and FRUCHTE_ and SCHULTZ and GOGGANSo

The aims of the present paper are: To illuminate the method of LS in

linear regression analysis with geometrical arguments, giving clear interpreta-

ticn of certain measures of estimation efficiency_ thus to lead into a natural

development of the step-up procedure where its weakness as well as its intuitive

appeal are exposed_ to examine the geometrical structure for a procedure for

elimination of a variable previously selected, and thds mitigate the flaws in

%he step-up procedure_ to explore the statistical model for reasonable decision

rules on when to eliminate and when to keep adding variables_ and finally %o

provide a translation of the various geometrically conceived procedures to

computable algorithms.
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2o Geometric formulation of th_ princiole of least squares. The notion

A

b biZi ' out of the admissible class_whichof obtaining an estimate, Y = Z1

minimizes the sum of squares of deviations, is one admitting of accessible

and correct geometrical descriptions. Such a formulation is helpful in under-

standing the step-up procedures for selecting significant estimation variables

(to be described in the next section) and seems to hold the only hope of devising

techniques even more defensible than the step-up procedure. We proceed now

toward such a formulation.

Assumed available are the N observation vectors, (yM,z l,...,z p) , M = 1,2,..o,N,

where z i = Z°l (x l,O..,x ), as indicated in the preceding section. Associated

with each of the p estimation variables Z., i = 1,2,...,p, isthe vector,
1

lying in the euclidean N-space EN, consisting of N values z i, M = 1,2,..°,N,

observed on that variable. We shall call these vectors estimation vectors; we

write them, zi (i = 1,2,...,p); and for matrix manipulations they will be thought

of as column vectors. Hence, using the letter T to indicate matrix transpose,

T
Zoz = (Zli' z2i,o.., ZNi). In this section the N x p matrix of these estimation

vectors will be denoted as z. Similarly, the symbol y represents the vector of

the observed values of the dependent variable Y. It will be assumed, without

any real loss of generality, that N > p and that the estimation vectors are

linearly independent. Thus the estimation vectors constitute a basis of a

p-dimensional vector space Vp, lying in EN.

Consider now the sum of squares criterion. Writing the parameter vector

as a, this criterion is

N

g(a) = ,7_.,
F=I

(yF _ #p,)2 = dTd,

where d = y - _ is the vector of deviations. Note that _ = Z_ aiz i lies in
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t_:e vector space V generated by the estimation vectors and that dTd is the
P

square of the (eJclidean) distance between y and Yo Since the aim_as to deter-

_ne b such that g(b) = minlg(a)la_, the least squares problem may be interpreted

i

as finding a vector in the space spanned by the estimation vectors which lies

neare.st the dependent-variable vector y.

Geometrical intuition now supplies the correct solution to the least sqcares

problem; ViZo_ the vector in Vp lying nearest y is the projection of y onto Vp°

Other important points are indicated by the geometry° Writing y as the pro-

2 T
e = y - _, and e = e e, etco_ pythagorean relations are

jecLion of X onto Vp,

2 ^2 2
indicated° E.go_ y = y + e _ i.e., the square of the length of the dependent-

variable vector equals the sum of the squares of the lengths of the best estimate

,,eccer and the least squares residual error vector. This is often stated as,

"The total sum of squares equals the sum of squares due to regression (estimation)

plus the sum of squares due to error." Also, if _ = 7,a.z. is another vector
1 1

lying in Vp, if d :: y - y, then d2 2
= e + (_ _ _)2 Also, the e vector will be

orthogonal to V . Finally, the angle between y and its projection should be

P , j

less than the angle between y and any other vector in/V o ,Thus
, P

cos O(y,_) > cos O(y,_), where D(u,v) means the angle between vectors u and vo

In statistical terminology the cosine of the angle between two such vectors

is called a correlation coefficient. Recall that

cos e(u,v) : i Zu.v,-- 1 1

2 _/_. 2.. 2
J'u2v z_u. _.v.

1 1

In the above instance cos O(y,?) = R is called the multiple correlation coef-

ficient between y and ?o Note that this should be unity if y does indeed lie

_n Vp, and should reduce progressively to zero when the estimation space is
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less and less effective. Thus R provides a rather useful and suggestive index

of the efficiency of the estimation space. The square of the length of the least

T
squares residual error vector, e e, is another closely related measure of the

efficiency of estimation.

The situation is represented schematically in the following diagram:

Y

Z
P

z1
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The foregoing geometrical discussion can be substantiated wi_h a deta_ied

algebraic development. Such substantiation is a consequence of the argament

to follow, but the primary purpose of the argument is to make the geometrical

entities explicit, to make essential quantities computable and %o set the

stage for the next section.

The estimation space V is spanned by sets of orthogonal vectors of unit
P

length. Let z_, z_, ..., z* be one such set. Since every vector in V is aP P

unique linear combination of the estimation vectors,

z_ = qllZl + ... + qlpZp

Z W = + +
P qplzl ... qppZp

i.e., z* = zQ, where Q is a non-singular p x p matrix, and, of course,

z = z*Q -1. Also, every vector in V has a unique representation either as a
P

.. z*. If _ lies in Vp, then therelinear combination of Zl,. ,Zp or of z_,..., P

exists a unique vector a such that _ = ±_ aiz.= za, and there exists a1

vector a* such that _ = z'a*. But z = z* Q-l, so that a* = Q-la. Thus there is

a one-one correspondence between coefficient vectors a for the z basis and

vectors a* for the z* basis. In particular, if b* is such that 9 = z'b* is the

one vector in V closest to y, then _ = zb, where b = Qb*.
P

With these orthogonal vectors z* in mind an orthogonal transformation is

now imposed on the points in EN in such a way that, in the transformed space

e'
the z* become the unit vectors Ul, u2, ...,Up. Such a transformation is

accomplished with an N x N orthogonal matrix P whose first p rows are the

.T

vectors z . It is easily seen that distances and angles are preserved under

such a transformation, so that the least squares problem is in-_Brian± under
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!

the transformation. Note that the image V of V is simply the linear com-
P P

binations of the unit vectors, Ul,...,u p. Let y' = Py, and let _ = z'a* lie

in Vp, so that _' = _ a_lui" Then the square of the error vector is

+ _N ,2
dTd = d,Td , = (y' - T_ai*ui)T(y' - _ai*ui) = 7.P(yI - a*) 2 Lp+ly p .

Evidently the projection of y' onto V' ought to be the vector whose first p
P

components are those of y' and whose remaining components are zero. Thus the

a* which produce the combination of u. (i-l, 2,...,p) constituting the pro-
l 1

jection of y_ on V'p are Yi" In short, b_1 = Y_' i _ 1,2,...,p. That this is

correct algebraically can be seen in the preceding equation, where it is

obvious that these are the values of a_ which minimize the square of the error

vector. Write _' _ _ bi*ui = [y_,...,y_,O,...,O] T. Note that the residual

ST
error vector [%...,0, yp+l,...,'YN = el so that e' and _' are orthogonal.

Note also that _ (y_ - a_)2 = (_ - 3')2 and hence, from the foregoing

equation, that

dr2 .. (_,__,)2 + (y,__,)2 = (_v__v)2 + e,2.

Having seen now that, relative to an orthogonal basis of Vp, b* = z*Ty

(which follows from the fact that b_1 _ Yi'and Yi' = z_Ty for i = 1,2,...,p),

it is now desirable to obtain _ and eTe in terms of the original estimation

vectors and the dependent variable vector. But _ = z'b* = zb, where

= QQTzTb Qb* = Qz*Ty s y. Now

Q-IT Q-IT T(QQT)-I Q-l= z*Tz*Q "l" (z'Q-l) T (z*Q "l) = z z.

T T h-lg.Thus, writing h- z z and gl z y, in terms of original data, b = Also
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e2 = Z_ Yi'2_ t.2= yT z._.Ty_ y_zQQ_z_y_ (zTy)_b_ _ igi.

Thus computationally the problem is one of solving the system of eq_attcns

I_ = go in the succeeding discussion it will be important to remember the

following principle which summarizes _ch of the preceding development and

unifies the geometry and algebra of the least squares problem_ Oi_en a se± c_

k linearly independent vectors Zl,...,z k in an euclidean space and a (k+A)_t

T T
vector w, if h = z z where z = (Zl,..._Zk) an_ v = z w; then the sol_tion x

of the equations hx = v is such that zx is the projection of w onto _!_hespace

generated by the zi, and the solution effectively resolves the w vector into

its projection zx and a component, e = w - zx, orthogonal to the projection°
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3. The Step-up Procedure. In this section emphasis is shifted to the

selection of a subset of (say) k estimation vectors out of a total number of

(say) p. An optimal set of k, by definition, will be that set of k corre-

sponding to which the length of the error vector is least ( or equivalently

the multiple correlation coefficient R is most.) The plausibility of the

step-up procedure, as well as its deficiencies, will be seen from the geo-

metrical development. Computational feasibility and procedures will be

e$ident from the corresponding algebra.

For the moment we suppose that k-l vectors have been chosen and that our

purpose is to add another one from the p-(k-1) remaining. We shall refer to

estimation vectors selected as being in the active estimation space or as

being active.

With regard to a least square problem involving y and the k-I active

estimation vectors (which of course are a basis for a vector space Vk_ 1 of

dimensionality k-l) everything in the preceding section is directly applicable.

This succession of problems with 1,2,...,k_...,p vectors in the active esti-

mation space is sometimes called the succession of the 1st, 2nd,..., kth,...,pth

fittinqs. We shall frequently use a superscript to indicate the fitting, or

dimension of the active estimation space. This notation does not specify which

of the vectors are in the active estimation space, but we shall tacitly assume

they have been relabeled so that the active estimation vectors are now

zl, z2,...,Zk_ 1. According to the preceding section

_(k-1) k-1 (k-l) = z(k-l) -i) b(k-1)= Zi= 1 b. z. b(k where is the solution to the
1 1

system of equations, h(k-l) b(k-l) = g(k-l), with

h(kl) z(kl)T z(k-1) (k-l) (k-l)T (k-l)
= , g = Z y, and z = (Zl,...,Zk_l).
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Recall that ?(k-l) is the projection of y onto Vk_ I and that the residual error

(b(k-l) (k-l))vector e (k-l) has length whose square is g o

Suppose next that the kth vector to become active has been selected°

(k-l) (k-l) T
(k-l) v (k-l) where v zConsider the system of equations h (k-l) x = , =

k-I (k-l)
_ecall that Zi= 1 xi _z is _he projection of zk onto Vk_19 and

k-i (k-l)
z k' = zk - Zi= I xoz z.1 is the component of zk lying orthogonal to the space

' = ' ' thus defined
spanned by the Zl,..ogZk_lO The vectors zI Zl,Z2_ooo,zk,o..,

are a particular determination of Gram-Schmidt orthoqonal vectors° In matrix

form the matrix of the first k of these Gram-Schmidt vectors is

Zk_

(k) = z(k) Q,(k) (k_.%' , where Q' '

B

(1) (2) (k-I)
l - x I - x I o. o - x I

(2) o
0 1 - x2 ....

o

0 0

0 1

° _ x ,k-l( )

°° k-I

0 1

from the equation above°

Normalized Gram-Schmidt vectors are obtained when the columns of Q,(k)

1

are divided by (z_ • Z_)_° Thus orthonormal Gram-Schmidt vectors are
1 1

z.(k) = z(k) Q(k)

where Q(k) is upper triangular with the reciprocals of the lengths of the

Gram-Schmidt vectors in the diagonal.
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Recapitulating at this point, we have an orthonormal basis for the active

estimation space in terms of the Gram-Schmidt orthogonal vectors, where the

last Gram-Schmidt vector was the component of the last estimation vector

selected orthogonal to the space of the others.

It is interesting to note that the lengths of the Gram-Schmidt vectors

' are readily available from the original estimation vectors° In fact, usingzk

the basis Z_,o..,z_ derived from the Gram-Schmidt vectors as the orthonorm81

basis of the previous section, it follows from the results of that section

i

that z.(k) = z(k) Q(k), where Q(k) is triangular with (zk' " Zk')-_ = qkk' and

that h (k)-I Q(k) Q(k) T (k) h(k) -I (k) 2 ( , . Zk)-i= , or, writing a = , that akk = qkk = Zk ' "

Now, given orthonormal vectors, Zl*,...,Zk_l* , Zk* , from the preceding

k-i bl.2 'section the square of the projection of y onto Vk_ 1 was El= 1 . where

b.(k-1) z,(k-1)T
= y;

while the square of the projection onto Vk is Z_ .2i=1 bi ' where

b.(k) = z.(k) T
Y.

Thus, b_ 2 is the increase in the square of the projection vector obtained by

activating the estimation vector zk (whose component orthogonal to Vk_ 1 is z_);

or, equivalently, b_ 2 is the reduction in the square of the residual error

vector obtained by activating zk.

Now the principle of the step-up procedure becomes clear. Given the

problem of augmenting by one vector an active estimation set of k-l, the

answer is to choose that one for which the new projection of y in Vk has the

largest component orthogonal to the old projection in Vk_l; i.e., choose zk
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so that relative to the augmented Gram-Schmidt orthonormal system_

z_o_o_Z__l,Z_b_ 2 is maximum_

Again_ it is important to be able %0 examine what values b_.2 could have

for the various possible vectors which could be chosen as Zk, and to do this

easily in terms of the original vectors° But recall that

z_.(k) : z(k) Q(k), Q(k) b_(k) = b(k) = h(k) -1 g(k).

so that %he triangularity of Q(k) implies that

2

qkk b_ = bk (k) or b_ 2 = bk(k(i )
, o

akk

It is worth noting that the residual error vector can be considered as a

(k)
final Gram-Schmidt vector, since e = Y _ y k , where y.k. is the projection

of y onto Vk. But we have seen that the reciprocal of the square of the kth

Gram-Schmidt vector is the last diagonal element of the inverse of h _k)o Th_s,

1%

if tDe h (k) matrix being used is augmented with an additional column z (k)T y

and a symmetric row, corresponding to the dependent-variable vector y, then the

last diagonal element of the inverse of this augmented matrix will be the

reciprocal of the sum of least squares.

A computation synthesis of the procedure can be envisaged as a sequence

of qaussian elimination tableaux, where starting with
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hll ... hlp

o o

• o

h
pl .o. h
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gl "°" gp

gl

gp

yTy=G

1

0

°oo 0

• o o

e o o

• o o

V• • •

0 o.o 0 i

0o• •me 0

0

after k-i stages we have

i 0 o.. 0

° o •

o o •
• • e

' ° 0
o •

o o

0 .o. 0 1

oeo eeo 0

° •

o •

0 ...... 0

ooe •00 0

h(k-1)

1,k

l_k
(k-l)

hkk

(k-l)
0oo b 1

o

,_(k-l)
•.• Ok_1

(k-l)
°'' gk

gp(k-l)

G(k-1)
eeo

• (k-l),
all

o •

(k-l)
al,k-i

a(k-l)
k-llk-1

e

o

0° • 0

• •0 0

i0 .... 0

• • •

• e •

• " 0• Q

• •

0 ...01

•00 0

0

0

Note that --hlk(k-l)-

(k-1

_hk-l,k _

kth Gram-Schmidt vector is obtainable•

is the solution of h (k-l) x(k-l) : v(k-l) from which the

Note that

b1(k-l)--

_b(k-l)
k-1 _

is the solution of
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h(k-l) b(k-1) (k-l)
= g o Note that if zk is to be the next vector activated_

tnen to obtain solutions to h(k)x (k) = v (k) and h(k)b (k) : g(k)_ and to ob-cain

a(k) = h (k)-l_ requires only to operate on the above matr1¢,, with. elementary

Irow)., transformations so as to reduce the kth column to tr_e unit vector Ok.,

[his wi]' produce

(k-l)

b(k) gk (k) i
k - (k-l) and akk " (k-l)

hkk' hkk

2 (k-l) 2 / hkk (k-t)
Thus bk_ = gk

From the last equation it is easy to see that; to find the vector yielding

maximum bk* %One need only examine the ratios (gj(k-l)2)/hjj(k-l) for

j = K_ k÷l,.oo,p.

Note finally that_ after k vectors have been chosen_ the last diagonal

element of the inverse of the augmented matrix would be I/G (k). Hence

(k) 2
G (k) = e _ the sum of squares of residual error.

Attention is called to the obvious fact that the step-up procedure of

activating estimation vectors in the order of the further reduction made to sum

of squares of error is not necessarily optimal in selecting say k vectors out

of p.E.g, the y vector could be practically in the space of two vectors_ z_

and z2_ but lying closer to a third z3 (not in the space) than to either of the

given two. Thus the first vector selected would be vector z3. Then regardless

of: which one was selected next, the pair chosen would be inferior to h,__ _2 o

One other word of caetion is in order° The criterion for activating the

next estimation vector is a maximum ratio° The denominator of this ratio is

the sqdare of the length of the component of the new vector in the direction

orthogonal to the then current estimation space° Of course, if some of the
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remaining vectors lie in the currently active estimation space (Joe., they

are linearly dependent on vectors already chosen) they should not be considered

as candidateso Because of roundoff errors such dependency must be defined

approximately° Note that an almost dependent vector will produce a small

orthogonal component which will tend to produce a large criterion ratio (which

may be primarily an accident of roundoff error), To avoid spurious selections

caused in this way the criterion should be compared only for those vectors

whose orthogonal component exceeds a minimum value. What minimum value ought

to be chosen is at this time a matter for conjecture.
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4_ Criterion for eliminatinq insiqnificant variables° From the dlscussicn

in the preceding section it evldently may happen that, in trying to activate an

efficient set of k estimation vectors, the step-up procedure will select at cne

.:sage a vector which lateT on would be more efficiently eliminated° So far no

procedure for deactivating any o_ the active estimation vectors has been

inccrporatedo Hcweve:, the algebraic technique for eliminating an? designated

active estimation vector and obtaining the regression analysis for the reduced

set is well-knowno It is a question of deciding whether to eliminate one and

if so which one to eliminate° The purpose of this section is to proJide a

geometrically appealing and obvious answer to the second aspect of this

question° Criteria for deciding whether to eliminate a variable will be dis-

cu._sed in the next section.

7herefore we suppose k estimation vectors have oeen activated and the

corresponding analysis laid cut, say in the manner of the sequence of gaussian

tableaux :referred to in the last section, and we suppose ire decision has been

made to eliminate one of the vectors-° The question is; Which one shall we

eliminate? Fix attention on one of the active Zo, say for definiteness the
1

last one, zko Now the projection _[k)" of y onto Vk can be resolved into its

projection _(k-l)
onto Vk_ I, the space spanned by zl,.oo,zk_ I, and a componen_

orthogonal to y(k-l)o The projection _(k-l) of y(k) onto Vk_ 1 is indeed the

same as the direct projection of y onto Vk_l, so that the orthogonal component

mentioned above in the resolution of _(k) is the net effect of the active

&

vector zk in the estimation of y with y(k). Still keeping attention to Zk,

we have already seen that the squaz.e of the length of this ortbogonal component

.2 .

is bk , where in fact bk is a component in the dizect[on of the ktb Gram-Schmidt

vector generated according to the order in which the z. were selected_ Also_
1
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.2

bk
_ b_k)2

(k)
akk

where, it will be recalled,

h(J)b(J)= g(J)

for any j

a (j) =

1,2, ..,p;with h(j) z(j)T z(j) z(j)= . = , = (Zl,..o,Zj),

h(j)-Io

Recall also the pythagorean relation for each j : 1,2, o.o,p,

2 _(j)2 e(j)2(Y. Y) : y = + ,

where

_/(j)2 j .2 (j)2 N ,2
= Z b. ande = 7 Yb '

i=l i b=j+l

!
with y = Py, the image of y under orthogonal transformation. Thus, remember-

ing that b.1 : Yi"

.2

2 _(k_l)2 .2 e(k)2
y = + b k + .

Evidently bk can be interpreted as the net reduction in the square of the error

vector obtained by activating Zk, or, equally as well, as the net increment

(provided by activating zk) in the square of the active estimate.

Imagine now that the gaussian elimination has proceeded to the point of

obtaining a solution to h (k) b(k) = g(k) with a (k) = h(k)-l:
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o

eoo

o

o
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o

o

o

o

o .

I 0 .oo 0

e

°

o

o o

o o

e o

0 ooo 0

o0o

0 0

o o

0 0

0

o

o

o

o
o

1 0

0 1

But now suppose j < k and that the order in which zj and zk have been introduced

is reversed. Imagine re-scheduling the calculations in the gaussian elimination

for Ibis revision. In the tableaux this would be accomplished if in the initial

:.ab!eau the jth and kth rows were interchanged and the jth and kth columns (to

restore the initial unit matrix on the right the (p+l+j)-th and the (p+l+k)-'th

columns would also have to be interchanged), and thereafter repeating the opeza-

tions which produced the kth tableau laid out above° The solution vector b (k)

in this case would be the same as before except that the order of b. (k) and
3

bk(k) would be interchanged° Moreover, the inverse matrix would be the same

except that the jth and kth rows and the jth and kth columns would be switched,

putting ao33.(k) in the (k_k]-, position and akk (k) in the (j, j )--position. Note

k) 2 *2 (k) 2(k)
plays the role of b k and hence the quantity bj /ajjnow that bj ( /ajj

is the net reduction in the square of the error vector due to the z. vectoro
3

(k
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Now it is clear which of the k active estimation vectors should be

(k) 2 (k)

eliminated9 ViZo that zj (j _ k) for which bj /ajj is minimum° Observe

that these ratios are computable from the kth gaussian tableau set out above

without any re-computationso

Having decided which estimation vector is to be eliminated from the

active set of k, the procedure for making the elimination and obtaining the

regression analysis for the reduced set of k-i active estimation vectors is

as follows. According to the foregoing remarks no generality will be lost

if we assume that the vector to be eliminated is zko But recall that to add

zk to the active set9 zl,o.o,Zk_l, and to obtain the regression analysis

for the augmented set it was only necessary to perform on the (k-l)-st

tableau those elementary row transformations which reduce the kth column to

the unit vector u k. Therefore_ to eliminate zk it is only necessary to undo

these calculations. It is not hard to verify that the reversing calculations

are those elementary row transformations (on the kth tableau) which reduce the

kth column of the inverse a (k) back to u k.

It is of course only a notational convenience to assume that the

estimation vectors activated are the first k of the p listed in the tableaux.

The swapping of rows and columns, while tidying up the written portrayal of

the tableaux, etc., is completely unnecessary for computer handling of the

problem.

Finally we shall mention that the rule described above for deciding which

vector to eliminate is equivalent to that of eliminating the active vector that

has the smallest partial correlation with the dependent variable vector. The

partial correlation coefficient between zk (say) and y is the cosine of the

angle between e (k-l) and _k) _ _(k-l).

J % # %
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From the sketch below it is clea__ that #.his correlation decreases_ as f_._:e"

lengthII_(k) _(k-l) ll = Ibkl decreases:

/

(k-l)

\!
\,'I,,I\e(k-1)

:_(k)._ (k'-_ .-a:.7, .._

From the definition of cosine between e (k) and 9(k) _ _(k-l) it is easj to

show _vha_.

.2 a(k_l),_(K)._
2 k) bk _

,_o_e(e(k-l)_( _ /_-i))= = o(k1)b_2
' (e(k_l). e(k'l)) a(kkk)
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5o Decision rules: the statistical model. In the last section the

question answered was which active estimation variable ought to be eliminated

once the decision had been made to eliminate one° The question of constructing

decision rules to tell when to eliminate a variable was left for this section.

Defining a sweeR or iteration as a step in which either an inactive estimation

vector is activated or an active one is deactivated, an obyious type of

decision rule is the following: Activate two vectors according to the step-up

procedure, then eliminate one by the method described in the preceding section,

and continue operating under this rule until some stopping rule (see below)

stops the entire procedure. It is conceivable that such a rule would have

utility if it is important in the ultimate application to have no more than

k vectors while the cost of the extra sweeps is relatively unimportant.

Of course if of k active estimation vectors one has a psrtial correlation

with the dependent variable vector of practically zero, it would seem wise

to eliminate ito This suggests another quite arbitrary type of elimination rule:

Of the k currently active estimation vectors eliminate the one of lowest partial

correlation with y if said partial correlation is less than some level _(k),

possibly a function of k.

Another decision problem must be dealt with, viz. that of constructing a

stopping rule to stop the step-up procedure (with or without modification to

allow for deletions). Here again, certain obvious but'rather arbitrary rules

come to mind. E.g._ stop when k vectors have been activated (actually this was

the somewhat naive rule used to motivate the section on the step-up procedure).

It seems clear that, by itself, this is not a good rule, since in a particular

example a satisfactory estimate may be attainable with far fewer than k vectors
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(1..e. the multiple correlation coefficient may be already very near one with

fewer vectors or simply may not be improved "significantly" to warrant the

inclusion of more)°

We take the position at the present time of recommending a fairly

comprehensive battery of stopping rules, any combination of which might be used_

_ith a variety of sensitivity settings possible. Intuition suggests that

appropriate settings will vary with the type of problem, the usage reqaire-

ments and the burden of cost in time and money., Perhaps a battery of stopping

rules should at least make provision for stopping when a fixed number of esti-

mation veclors have been activated, when the estimate is of sufficiently high

accuracy (multiple correlation sufficiently near one), when the number of

sweeps exceeds a certain number (this acts as a safeguard against 8 cyclic

pattern of activation and elimination of vectors), and when the last r (say)

vectors activated have not produced a "significant" change in the estimate.

Again the word, "significant", requires specific interpretation before

%ne rule can be operational. One modus operandi might be: Stop the procedure

if the increase in the multiple correlation coefficient R, produced by adding.

the last r active estimation vectors, was less than _(r,k)o

Both in the question of whether to deactivate an active estimation vector

and in the question of when to stop activating estimation vectors the notion

of significan± effect arises° This suggests the possibility of resorting to a

statistical model where the techniques of testing hypotheses might be invoked

as a basis for decisions on whether to eliminate a variable or whether to stop

the activation process.

In the remainder of this section we shall sketch the outline of a

statistical model perhaps sufficiently to indicate the attractiveness of such a

decision mechanism as well as to indicate some of the limitations of such a model°
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Very briefly the model develops a statistic_ or function of the observed

active estimation vectors and the dependent variable vector, called an F

statistic which is the decision-making instrument--large F means signifi-

cance of the effects being tested and small F means nonsignificanceo Under

the hypothesis of the statistical model, and under the addi±ional hypothesis

that the effects of the estimation vectors being tested are only 'tnoise'_

effects or effects introduced by virtue of random fluctuations9 the F statistic

is expected to have a value of about unity°

Actually, the F statistic is a ratio of the average of the effects of the

vectors being tested to the average of some random error effects. In the ter-

minology developed in previous sections suppose that Zk_r+l,.o.,z k are active

estimation vectors whose combined effect is being tested. Recall thst _[k) is

the projection of y on the space spanned by Zl,.o.,zk! and that ?(k-r) is the

projection of ?[k) as well as the projection of y onto the subspace spanned by

i %

Zl,.oo,Zk_ r.
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In the F ratio the average of the effects of the r vectors Zk_r+l_,oo,Z k is

?(k) ?(k-r)measured as - times the square of the length of the vector_ -
r

1

_hile the average of error components is measured as N--q--_ times the square

of /he so-called error vector, e[k) (recall that e (k) lies in a space ot N-k

i %

aimensioi_orthogonal to the space generated by zl_oo°,Z k in which ?(k) _ ?(k-r)-

lies),, Obviously, values of the F statistic less than one would not tend to

s:]pport significant effects of Zk_r+i,ooo,Zk, while values greater than one

presumably would° With the normal law of errors assumed in the statistical

model and under the hypothesis that these supposed effects of the last r vectors

are noise effects, it turns out that the chances are approximately even that F

should exceed the critical value of unity. If the critical value is inczeased

the probability that the F statistic will exceed it diminishes rapidly. These

probabilities are tabulated for various critical values and various deqrees of

freedom (r and N-k in our case). One may establish a decision rule to reject

the hypothesis of no systematic effect (from the estimation vectors being tested)

if the value of the F statistic observed is improbably larger than one°

The decision rule is not complete until specific numbers or functions ar 9

attached to the words "improbably larger." Undoubtedly a judicious choice

depends on several factors involved in the balancing of cost and return in a

particular problem. This is one of the open questions we have tried to stady

experimentally in another supporting study.

To complete the exposition some description of the characteristics of the

assumed statistical model is warranted, although as we have mentioned there

are recent excellent accounts of this model.

In the statistical linear regression model it is assumed that_ except

for random variations9 Y is a linear function of the Z.. Thus
1

92



P
Yu = E _i zMi

i=l + _, F = 1,2;=o.,N,

where ¢ are random errors. In addition it is usually assumed that the

are uncorrelated with a common variance o2 and a mean of zero° The _i are

parameters which may be estimated in an optimal way under the circumstances.

In fact, the best linear unbiased estimate of a linear combination of the _i'
P

say q = Z _i Zi' best in the sense of smallest variance, is _ = Z b. Z.;
i= 1 i 1

where the b. are precisely those which produce the least squares estimate.
1

This is the Gauss-Markov theorem. It implies that, if the true functional

relationship is except for a random error Y = q = Z _i Zig then; faced with

not knowing the exact values of the _i' the next best thing is to use the

estimation function Y = _ = Z b. Z°.
1 1

To see the truth of this theorem we shall need to use the expected value

or mean value operator E operating on a random variable or vector or matrix,

with the expected value of a matrix of random variables being the matrix of

expected values. From this definition it follows directly that E A X B = A(EX)B,

if X is a random matrix and A and B are nonrandom matrices.

T

Now under the statistical model above, y = z_ + e, where y = (yl,...;yN) ,

( p) T ( Ni ) _T (_l _p) T ( N)z = Zl,...,z , z. = z z = =i li''''' ' ''''' ' e el,...,e , with E

(and hence y) being random vectors. According to the assumptions, E¢ = 0 so

o2jthat Ey = z_ and the e are uncorrelated with a common variance so that

Ese T = o2 I, I being an identity matrix. Note that the z. vectors are nonrandom.
1

First we show that Eb = _, i.e., that the b. are unbiased estimates of the
1

corresponding _i" In fact

Eb = Eh-lg = h-lEg = h-iEzTy = h-lzTpy =

h-lzTz_ = h-lh_ = I_ = _.
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Next we exhibit the covariance matrix of the estimates b:

E(b - Eb) (b - Eb) T = E(b - _) (b - _)T =

E(h-lg - Eh-lg) (h-lg _ Eh-lg) T =

h-iE(g - Eg) (g - Eg) T h-1,

-i
slnce h and h are symmetric° Now

E(g - Eg) (g - Eg) T = E(zTy - EzTy) (zTy - EzTy) T =

_' To21zTE(y - Ey) (y - Ey)Tz = zlEssTz = z z = d2ho

Hence_, substituting above,

E(b - Eb) (b - Eb) T = h-lo2hh -1 : h-lo2o

^ zTb _ ZTNow consider Y = Z b. Zo = as an estimate of q = 7. Z. = _oz 1 i i

Observe that

^ zTb zTh-lz T TY= =( )y ay,

T zTh-1 Twhere a = z o

A

This is what is meant by saying that Y is a linear

estimate of q; i.e. it is a linear combination of the observed v_lues of the

random dependent variable Y.

" EzTb zTEb ZTAlso EY = = = _ = q. Hence _ is an unbiased estimate of q.

Finally we must show that the variance of _ is less than that of any

other linear unbiased estimate of q. Suppose V to be another linear unbiased

T EcTyestimate of q, so that Y = clY 1 + ... + cNY N = c y, and = q.

Now consider vectors in euclidean N-space. Note that a = z(h-lz), a

vector lying in the estimation space spanned by the vectors Zl,.o.,z p. We

shall see that the vector a is the projection of c onto the space spanned by

zl,o.o,Z p.
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Since EaTy = EcTy, then 0 = E(c-a)Ty = (c-e)TEy = (c-a)Tz_°

hold only if (c-a)Tz = O. But this implies that

This identity can

(c - a)Ta = (c - a)Tz(h-lz) = O.

Hence a and c-a are orthogonal, and the pythagorean relation, c2 = a2 + (c-a)2,

holds°

The variance of Y is

- 2 = - T

= E(cTy - EcTy) (cTy - EcTy) T

= cTE(y - Ey) (y - Ey)Tc = cTEssTc

= o2cTc = o2{aTa + (c - a) T (c a)_ > o2aTa.

But of course by the same reasoning the variance of _ is o2aTa. This shows

that Y is of minimum variance°

To arrive at the F-statistic test for our decision rule in eliminating

an estimation vector, or in stopping the activation of estimation vectors,

additional assumptions are needed. Suppose that k of the estimation vectors,
k

Zl,.o.,Z k has been activated, and it happens that Y = 7. _i Z. + 8, in short
i= 1 l

that the statistical model is valid with these k variables, so that

k z(k) T
YF = i=iZ _i z i + _ or y = _(k) + E, when _ = (_I,...,EN).

Suppose, in addition to the conditions that E8 = 0 and He_ T = o2I, we require

that the e be normally distributed. Now suppose we wish to test the hypothesis

(HO) that the last r parameters _k_r+l,...,_ k are in fact all zero. (Accepting

this hypothesis implies that the activation of the last r estimation variables

adds nothing to the estimate available with the first k-r variables.)
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The baaic idea of such a test is to divide the sample space, ioeo the

space of possible values of the vector y, into a rejection reqion R and its

complement, an acceptance __ the ultimate decision rule being to reject

H in case the observed value of y falls in R. Naturally, in order to make
O

the test a discriminating or powerful one the points in the rejection region

ought to be chosen roughly so as to maximize the probability of rejection

when H is not true, while at the same time the probability of rejection when
O

H is true should be kept below a certain bound° Such a test is approximately
o

obtained by putting in R those points with highest "trade-off ratio," this

ratio being essentially the ratio of the maximum of the probability density

functions (pdf) over the entire family of pdf's defined oy the admissible valses

cl the parameters, to the maximum of the pdf's over the subfamily where the

hypothesis H holds. This ratio is called the likelihood ratio k. Such
O

points'of highest likelihood ratio are placed in R until the set is as large

as it can be and still have the desired bound or the probability of rejection

wnen H is true.
o

The optimal character of the likelihood ratio test for the problem at

/

hand is given excellent treatment in SCHEFFE.

Let D stand for the parameter space of admissible values of the p_rameterso

in our case

= {p(k) 2 I < p(k) <% o2> o}

Let _ stand for the subset of _ where H is true; i.e.
O

= {_(k), 02 I -oo < _(k-r) <'oo, _k-r+l = "'" = _k = O, 02> 0}.

96



According to the hypothesis of the model the e are normally distributed,

uncorrelated ( and hence independent) with common variance, 02 . Thus the

joint pdf of the random vector y is (for a parameter point in _)

m 1

f(y p(k),02): ]-7(2=o2)"= exp{
n=l

_ -- (k)_3(k)= (2_d2) -N/2 exp { 1 (y - z
202

k

_ 1 (Yb - Z _izb[)2}
202 i=l

)T(y_ z(k)_3(k))}o

Now to determine R i% is necessary to maximize f over _ and over _, form

the ratio X, and select values of y for which this is highest.

where k

sup f

R= {y I ×(y)= > x]sup .f -

w

is a critical value chosen so that

Pr{y_RIH° is true }<__;

here _ is called the siqnificance or rejection level of the test.

We recall now that a sum of squares of m normal independent random variables

with mean zero and variance one (N(O,I)) is said to be a Chi-square variable

with m deqrees of freedom. The ratio of the average of two such sums of

squares of independent N(O,I) variables, with m I terms in the numerator and m 2

in the denominator, is called an F variable with ml and m2 deqrees of freedom.

The probability distribution of the F variable is widely tabulated. The

following result is the one pertinent to our problem, For a statistical linear

regression model, where the errors are N(0,o 2) independently distributed, the

rejection region R of significance level 5, provided by the li_elihood ratio

criterion for rejecting H0 as described above, is given by
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R = {y ]/9(k) ¢/(k-r)2

e - _ -(k)2/(N_k)

where F "e"(_ is nhe critical value in the F distribution for which
r,N-k r,N-k

The proof of this important theorem, is obtained by constructing the

likelihood ratio k, in which the maximization problems are observed to be

essentially the least squares problem_ then reducing the inequality k(y) > k
-

w_ich defines the rejection set to the form given in the conclusion° Used in

the proof are: The orthogonal transform of y based on the Gram-Schmidt vectors

z' z' ' ' and the fact that orthogonal transforms of normali''''' k-r'Zk-r+l'''''Zk

vectors are normal. Although the proof is available in numerous references,

we sketch it here.

Lemma i. Let y be a vector of N(m , 02), independent, random variables, and

let y' = Py be an orthogonal transform of y. Then y' is a vector of N( ' o2)_
N m,

independent, random variables, with m'_ = v=l£ p_vmv, where P = (p_v). Proof:
T

Write m = (ml,..o,mN), and let G(_') be the distribution function of y'. Then

G((' ) = Pr[y' < ('] = Pr[Py < ('] = Pr[{yI _<('}]

= i (2_°2)-N/2exp[- _--_ (y - m)T(Y- m)} .
20

[ylPy _< (' }

Now_ making the transformation y' = Py in the integal, the Jacobian of the

transformation is the determinant of the orthogonal matrix P, hence in absolute

value is one; the domain of integration is transformed into [Y'IY' <--_'}_ and

the integrand becomes (2_o2) -N/2 exp- [--!-I (y' - pm)T(y ' - Pm)}.

2o 2

98



Hence

N j 1/2" f>i_ exp[G((') = T-r (2_o21 -
(yl_- J-2o2 .' - m )2}%

I

so that obviously the y_ are N(m',d2), independent.

It is a corollary of lemma 1 that, if E is a vector of N(_o2), independent

variables and 8' = Ps, P orthogonal, then ¢' is a vector of N(O,o 2) independent

variables°

(k)_(k)Lemma 2o Let y = z + _ be a statistical linear regression model° Let

z*(k) be the matrix of orthonormal vectors generated from zl,ooo,Z k by the

Gram-Schmidt process, o that z*(k) = z(k)Q (k) where Q(k) is upper triangulsr.

-1 i
Let _.(k) = Q(k) _(k) Then _k-r+l = "'" = _k = 0 if and only if

i3_ : : i3_: Oo-r+l " " <>

Proof: Suppose _k-r+l =

and the fact that q (k)-I

"'" = _k = Ol it follows from the equation _.(k) = Q(k)-l_

is upper triangular that _ : O, then 13__i : O, etc.,

* = O. The eonverse argument is the same.
until _k-r+l

Proof of the main theoreml By Lemma 2

13Ck 13. (k-r) , =: { ), o21-=< <_, 13k_r÷1 ... :13_ o, 02> 0},

(k)_(k)and of course, since y = z + _ and

z*(k)_* (k) = z(k)q(k)Q(k)-l_ (k) = z(k)_ (k) then y = z_(k)_ _(k) + e2

Now

sup[f(vi[B(k)_ , (8(k) o2)8_Q}
×(y) : _2)!(_(k )' _}sup{f(yll3(k),cl 2) , 02)

where f = (2_02) -N/2 exp [- _k ET¢},
2O2
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with _ = y - z*(k)_ *(k). Clearly the extremizations in both cases can be

T

obtalned by first minimizing ¢ _ with respect to the _, substituting these

back in, and maximizing the resulting expressions with respect to d2o

But minimizing cT is precisely the LS problem encountered before°

Using (as before) the orthogonal transform, y' = Py and ¢' = P_ where the

• z *(k)Tfirst k rows of P are

T e,T e )2 ,_ = ' = (Y_- _ + "'"+ (Yk- _)2 +
N

E yt_ 2 o
_=k+l

eT¢ * = y_, i = i, k with the value ofObviously over _ is minimized when _i "'''

T N
e £ reducing to Z ,2 = e(k)2 T

_=k+l y_ ; while £ e is minimized on w when

• = y_, i = i, k-r (recall that _* = = _ = 0 in this case),_i "°'_ "°"k-r+l

T
with the value of _ e reducing to

N

7

_=k-r+l
y_2 = (?(k) _ _/(k-r))2 + e (k)2

in this case.

Substituting these extreme values back in and maximizing the numerator and

denominator with respect to d2 ^_ e(k)2, gives for the numerator 2 _ and for the
N

denominator _2 = ?(k) _ _(k-r)_ + e(k)2
N

Replacing these in the expression for k(y) we get

i-f.._l/2 (_(k) _ _(k-r))2 N/2

X(y)= L_2J : [1 + e(k) 2 J o

Now

R = {yl X(y) _>x} = {ylLl + _(k) e(k)_-_(k-r)) 2. J N/2

= {Yl (#(k) _ _(k-r) 2)/r >_ (X2/N - I)(N - k) } ,

e(k)2/(N_k) r
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Finally, since (_(k) _ _(k-r))2 =
k (k)2 N 2

i=k-r+l tx=k+l

since

by Lemma 1 y' = P_ a vector of normal independent variables with common variance

o2, and since under the hypothesis H° Ey_ = 0 (i = k-r+l,..o,k), then the ratio

(_(k) _ _(k-r))2/r =

e(k)2/(N_k)

k

z (y[/o)2/r
i=k-r+l

N
(y.'/_) 2/(N-k)

_=k+l

is a ratio of averages of sums of squares of N(O,1) independent random

variables when H° is true° That is, the likelihood ratio is equivalent to

an F statistic when H is true.
0
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SELECTIONOF SIGNIFICANTESTIMATIONVARIABLES

IN A LEASTSQUARESPROBLEM:EMPIRICALCOMPUTERSTUDIES

The object of these studies was to investigate the usefulness of the

step-up procedure or modificationsof it, in choosing a subset of a large

numberof estimation variables which is good in a least squares sense. In

the first phase of these studies we wished to comparethe step-up procedure

w_th the procedure of finding the best subset at each stage° Because of the

large numberof matrix inversions required in the last methodwe could handle

only a very small numberof terms.

The results of the first phase are summarizedin the two examples which

follow. In the first run we note that the step-up procedure gave two terms

with R2 = 0.724 whereas the best two terms give R2 = 0.886.

Phase One - Run i

In this run the dependent variable was

F(Xl,X2, X3) = 3/(1+X_+2X3) •

The polynomial model was a balanced polynomial linear in Xl,X2, and X3, i.e.,

alXI+a2X2+a3X3+a4XlX2+asXIX3+a6X2X3+a7XlX2X3 . The 125 data points were in a

rectangular design with X1 = .25(.25) 1.25, X2 = .25(.25) 1.25, and

X3 = .25(.25) 1.25. As will be noted in this run the function F is actually

independent of X2 and hence the estimation variables Z2,Z4,Z6,Z 7 should not

enter the regression equation.
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Step-up Procedure Optimum Set

Estimation R2 EstimationVariables Variables R2

5 .569815 5 °569815

5,3 °724129 3,1 .885715

5,3,1 _957606 3,1,5 .957605

5,3,1,2 _957615 3,2,1,5 .957615

5,3,1,2,4 .957631 3,2,1,5,4 °957631

5,3,1,2,4,6 .957632 3,2,6,1,5,4 .957632

5,3,1,2,4,6,7 .957634 3,2,6,1,5,4,7 .957634

Note that the step-up procedure did not select the optimum subset of two

variables.

Phase One - Run 2

In this run the dependent variable and the polynomial model were the same

as in Run I. The 500 data points were in a rectangular design with

X 1 : .25(.25)2.50, X2 : .25(.25) 2.50, and X3 : .25(.25) 1.25.

Step-up Procedure Optimal Set

Estimation R2 Estimation R2Variables Variables

1 .702925 1 .702925

1,3 .884762 3,i .884762

1,3,5 .963786 3,1,5 .963786

1,3,5,2 .963789 3,2,1,5 .963789

1,3,5,2,6 .963791 3,2,6,1,5 .963790

]_3,5,2,6,4 °963791 3,2,6,1,5,4 °963791

1,3,5,2,6,4,7 °963791 3,2,6,1,5,4,7 .963791

In this case, the step-up procedure gave the optimal subset in each case.

Conclusions from Phase One

These runs indicated that some modification (e.g., a throw-out rule)
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might be helpful in obtaining a regression equation which would be close to

the optimal° To investigate every possible regression equation even from a

small set of terms is so time consumingthat we did not use any examplewith

a la:ge numberof terms in this phases

Phase Two

In this phase we used examples with a large number of terms° We used

various throw-out criteria to investigate the relative merits of each° We

did not find the optimal subsets.

Summary of Phase Two

In the first 12 runs in this phase we used a balanced polynomial model

tc approximate the dependent variables

4 s 2 Xl+xe_2X31--&-Fl(xl,x2,x3)= (xl+x +x3)I

F2(X I,X2,X 3) - exp(-Xl2X2X3 )

_2 2 2
F 3 (X 1 ,X2,X 3 ) = ,_XI:+X2+X3 ) .

The results of these runs are tabulated below.

_222
In the case of F 3 = J/XI_tX2+X3, the 47-term polynomial fits very well

with R2 = 0.999972. In fact the 4 terms XlX2, X2X3, X , X 2 give a fit with

R2 = 0o962o The first 7 terms obtained by the stepwise procedure are XlX2,

2 Xl, X32, and have R 2= 0.992. With a throw-out criterion >X2X3, X , X2, X2X3,

2 Xl ' X3 ' 2 fit with R2 = 0.996.Io44, however, we find that XIX2, X , X2, X2X3, X 2

Now for the case F2 = exp (-X_X2X 3) we found that the 47-term polynomial

fit with R2= 0°996° The first seven terms obtained by the step-up procedure

2 2 3 2 2 XIX2X3, and XI2X2X 3 with R2were X1, X2X3, X2, X2, X3, XIX2X3, : 0.949. With a

22 322
throw out criterion _> 0.8 we find that the seven terms X2X3, X 2, X2X3, XlX2X3,

XlX2X 3, XiX2X3, and 2 2 =XIX2X 3 is a better seven and fit with R2 0°965.
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With a throw-out criterion _ 4°9 we find that the seven terms XI, X2X3,

2 2 .3 3 2 R2XIX3,2 2 XIX2X3'_ X X2X3, XIX2X3, XIX2X 3 fit with = 0°962 and that the seven terms

2. 2 3 3 2 2 2 X_X 2 th R2XI, X!X2X3 , X_X2X3_ XIX2X3, XIX2X3, XIX2X3 , and fit wi = 0.978. We

also find in fact that the first five terms in the last fit have R2 = 0.962.

2 2 and 3 3 2 fit better than theThus the five terms Xl, XlX2X3, X X2X3, XIX2X3, XIX2X 3

seven terms given by the step-up procedure with no throw-out criterion.

4 3 2
XI+X2+X 3

- - where the denominator has zeros in the region of

In case Fl _iXl+X2__X _

fitting we find that the fit is not quite as good. The 47-term polynomial gives

R2 = 0°938. Again, however, we find that a seven-term polynomial will do

almost as well. The straight step-up procedure gives the seven terms X_X3,

_ 2 3 _ 3 2 = 0.894. With aX , X3, X2, X X2X3, XIX2X3, and X2X 3 which fit with R2

3 2 2 XI. 2throw-out criterion _ 6.3 we find that the seven terms X , X2, XIX3, X2X3,

2 2 2 3 2 fit with R2 0.902.
X2X 3, XIX2X 3, add X2X 3 =

This example also gave rise to the situation where, while X_X 3 is the

best single term, it is not one of the best two terms. The best two terms

_ 3 which fit with R2 0.733. However, the twoinvolving X X 3 are X X3 and X 1 =

3 and 2 fit with R2- 0.775. Another situation which occurred on this
terms X1 X3 =

example was that with a throw-out criterion of _ 4.9 we would arrive at a

five-term polynomial with R2 = 0.876 whereas the step-up proqedure with no

throw-out criterion leads to a five-term polynomial with R2 = 0.884. Hence,

having a throw-out criterion is not always better°

As an example of a non-balanced design with an arbitrary linear model

we used a correlation matrix given in Anderson and Fruchter, "Prediction

Selection Method," Psychometrika, Vol. 25, No. i. The results are tabulated

in Run 17. Here we found that the throw-out criterion was not used, and so
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the variables were selected by the step-up procedure without this option.

The overall fit using 14 variables gave R2 = 0.270 and an F(14;295) = 7.8

which is significant at 0°005. However, an F test of the hypothesis that the

last 9 variables have zero coefficients is not significant at even the 50_

level. The R2 for the first five terms of the step-up procedure is R2 = 0°259.

Phase Two - Run 1

4 3. 2, , Z -_
In this run, the dependent variable was F(X1,X2,X 3) = (Xl+X2,Xa)IXl_X2-2X3 I

7o fit this expression we used the polynomial model

3 3 2
7 7. 7

_.1=0 _2=0 _3=0

&l &2 Z3

a&l$2_3Xl X2 X 3 o

All the term% including the dependent variable are first adjusted for their

means° Thus we wish to find subsets of the 47 terms in this polynomial which

give the best approximation to the dependent variable. The values of F(XI,X2, X3)

£1 _2 _3

and X1X 2 X3 were all calculated at 500 points in a balanced design, in this

run we used the points X1 = 025(°25) 2050, X2 = 025(025) 2°50, and X3= 025(025) 1.25.

The throw-out criterion for this run was F0 = 1.5. A tabulation of the

N-1 (l_R2) where R2terms as they were brought in follows. (Reduced R2 is 1 - N----m

i_. the square of the multiple correlation coefficient and N = 50% the number

of observations9 and m is the number of terms in the model.)

m Reduced

Terms , R2 R2
in Model Term No Term F in F out

1 1 37 X_X3_ 1058 °680 .680

3 98,96 733 733
2 2 36 X 1 o o

2 99°34 778 °777
3 3 2 X 3 ,

3 103.15 816 ,815
4 4 9 X 2

5 5 28 X_X2X 3 292°59 °88447 °884
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Swee_

6

7

8

9

10

il

!2

13

14

!6

17

!8

19

2O

21

22

23

24

25

26

27

28

29

m

Terms

in Model

6

7

8

9

8

9

i0

9

8

9

i0

ii

12

13

14

13

14

13

14

15

16

17

16

17

Term No

43

14

!6

2

17

19

a3

37

1

10

45

5

38

2

1

40

28

43

44

12

11

4

21

Term

.32
_lX2X3

X2X 3

X 1K2

XIX2X 3

X2
3

2
XIX2X 3

XlX2X 3

.32.

XIX2X 3

X_X 3

X 3

X_X 3

33
XlX 2

X2X2

32

XIX 3

2

X 3

X 3

X_X2X 3

XIX2X 3

32

XIX2X 3

322
XIX2X 3

X I

32
X2X 3

X2X 3

3
XIX 2

F in

25.37

19.01

26°76

15o58

8°34

10.78

12.94

ii.01

15.92

14.62

6.96

6°66

6.69

3°23

2.84

3_93

3°27

1.62

F ou%

0o21

0oli

1.47

0o15

0.04

0.02

R2

°890

_894

° 900

o903

o903

o904

o906

.906

.906

.909

.911

.913

.916

.917

.918

.918

.919

.919

.920

o920

•921

.921

• 921

.922

Reduced

R2

0893

°898

o901

o901

.9O%

o905

o9O5

ogO5

.907

.909

.912

.914

.915

.916

o916

.917

.917

.9!8

.918

.918

•919

.919

.919

zo8



R.V.rn__22

In this run the dependent variable_ the polynomial model and the data

points were all the same as in Run io The throw-out criterion was F0 = 0°9.

This run should tend to throw out terms less often than Run i. This should

lead tc fewer sweeps to reach k terms but perhaps the fit for these terms will

not be as good as in Run io The tabulation through Sweep 13 is tbe identical

with Run io

m

Terms Reduced

Sweep in Model Term No Term F in F out R2 R2

13 9 43 o32
XlX2X 3 0oll °906 °905

14 i0 i X3 11o46 .909 °907

i5 9 37 X_X 3 0°05 °909 °907

16 I0 10 X_X 3 11.01 o911 .909

Sweeps 16 through 29 are the same as Run 1

29 17 21 XlX _ 1o62 °922 .919

30 16 45 3 3 0,03 .922 919
XlX 2 o

31 17 26 2 2
XlX 3 1.34 °922 o919

2
32 18 24 X1 3,09 °922 °920

33 19 13 X1X 2 1.20 .923 .920

34 20 18 X1X _ 2.86 .923 .920

35 19 21 X1X _ 0.00 .923 .920

36 20 1 X3 1.01 °923 .920

37 19 11 3 2 0.59 .923 .920
X2X 3

38 20 37 X_X 3 1.42 .923 .920

39 21 47 3 3 2
X1X2X 3 1.53 ,924 .920

1o9



m
Terms , Reduced

in Model Term No Term F in F out R2 R 2

33

40 22 45 XIX 2 2o13 °924 o921

41 23 7 X_3 1.94 °924 o921

42 22 16 XIX2X 3 0.31 .924 .921

32
43 23 23 XIX2X 3 ioi0 0924 o921

32

44 24 ii X2X 3 1.22 .925 o92i

45 25 25 X_X 3 0°92 .925 o921

Run 3

In this run the dependent variables the polynomial model and the data

points were all the same as in Run i. The throw-out criterion for Run 3 was

F0 = 8°0° This run should tend to throw out terms more often than Run I or

Run 2. This should lead to more sweeps to reach k terms but hopefully the fit

for these k terms will be better than in Run 1 or Run 2. (Compare, however 9

Run _Sweep 7, with Run i, Sweep 5 and also Run 3, Sweep 18 with Run i_

Sweep 12). Note that in Run 3 we see that the best term No. 37 is not one

of the best two terms°

m

Terms Reduced

Swee R in Model Term No Term F in F out R2 R2

1 1 37 X_X 3 1058.24 .680 .680

3

2 2 36 X 1 98.96 .733 .733

2
3 3 2 X3 99.34 .778 .777

4 2 37 X_X 3 4.88 .775 °775

3

5 3 9 X2 102.13 .814 .813

6 4 15 XIX 2 219.83 .871 .870

llO



m
Terms Reduced

Swee_ in Model Term No Term F in F out R2 R2

7 5 20 2 2
XIX2X 3 18o48 .875710 0875

8 6 26 2 2 40°36 885 0884
X1X 3 o

2
9 7 17 XIX2X 3 22°30 .890 °889

i0 6 20 2 2 5o12 889 °888
XIX2X 3 o

ii 7 5 X2X _ - 40°48 .897 .896

12 8 20 2 2 20°02 901 0900
XIX2X 3 o

13 7 15 XIX 2 6022 0900 °899

32

14 8 Ii X2X 3 12004 o903 o901

2
15 7 2 X3 2°93 0902 o90i

32
16 8 38 XIX 3 26081 0907 o906

17 9 18 XIX _ 22o83 o911 .910

3 2 8.20 912 o911
18 I0 41 XIX2X 3 o

Run 4

In this run the dependent variable9 ihe polynomial model and the data

points were all the same as in Run io The throw-out criterion was F 0 = 10-3 .

This run should not throw out variables very often, at least not until they

are very insignificant° A partial tabulation of this run follows.

m Reduced
Terms

Sweep in Model Term No Term F in F out R 2 R2

1 1 37 X_X3 I058.00 °680 0680

3 98.96 °733 .733
2 2 36 X 1

2 99.34 .778 .777
3 3 2 X 3

3 103.15 .816 .815
4 4 9 X 2

lll



5

6

7

8

9

10

11

12

13

14

15

16

20

25

30

35

40

45

50

55

60

65

66

67

m

Terms

in Model

5

6

7

8

9

i0

ii

12

13

12

13

14

16

21

22

27

30

31

34

37

40

45

46

47

Term No

28

43

4

14

16

41

45

21

46

9

1

10

2

25

24

39

9

20

34

6

42

18

9

3O

Term

X12X2X3

X2X 3

2
XIX 3

XIX2X 3

3 2

XIX2X 3

33

XIX 2

XlX23

33

XIX2X 3

3

X2

X 3

3

X2X 3

2

X 3

2

X 1

X3X2

3

X 2

22

XIX2X 3

23

XIX2X 3

2

X 2

32

XIX 2

2
XIX 2

3
X 2

F in

292.59

25.37

19,01

26°76

15o58

10o40

11,46

23o71

6.60

3.93

3o10

3°67

5.35

0.53

15.23

O. 44

0.55

1.04

5.08

out

0,00

O. O0

0.00

O, O0

O, O0

R2

.884

°890

.894

.900

°903

.905

°907

.911

.913

.913

.913

.914

.916

°920

°923

.927

°92828

.92866

.93196

.93459

.93682

.93730

.93745

.938142

Reduced

R2

.884

°889

°893

°898

.901

.903

.905

.909

o910

.911

.911

.911

.914

,917

.920

.923

.92385

°92410

.92714

.92950

.93146

.93124

.93125

.931860

112



Run 5

In this run, the dependent variable was F(XI;X2_X 3) = exp(-X_X2X3)o

We used the same balanced polynomial model as in the first four runs_ cubic

in X 1 and X2_ quadratic in X3o The 500 data points were in the same balanced

design, X 1 = 025(.25) 2°50, X2 = °25(.25) 2°50, X 3 = 025(.25) 1o25. The

polynomial model in this case should fit better than in the first four runs.

The throw-out criterion in the first runs in this series was F0 = 1o5o

m

Terms R2 Reduced
Swee_ in Model Term No Term F in F out R-

1 1 12 X 1 836043 .627 0627

2 2 4 X2X 3 529.77 o819 .819

2 212.65 0874 .873
3 3 24 X 1

2 2 308°40 922 922
4 4 8 X2X 3 0 0

3 2 2 61 94 931 930
5 5 44 X1X2X 3 . . .

6 6 16 XtX2X 3 103.35 o9a3 .942

7 7 28 XI2-X2X3 62.76 .949 .949

8 8 20 2 2
X1X2X 3 231.18 .965 0965

9 7 12 X 1 0.79 .965 .965

3 2 27.03 967 967
10 8 23 X1X2X 3 . •

11 9 22 X1X_X 3 138.53 .974 .974

3 411.57 986 986
12 10 21 XIX 2 . •

13 11 27 X_X 2 8.79 .986 .986

14 12 25 X_X 3 97.48 °989 .988

15 13 30 2 2 67.45 990 .990
XIX 2

3 2 73.37 991 .991
16 14 38 XlX 3 o
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m Reduced
Terms

in Model Term No Term F in F out R2 R2

2 0.03 991 .991
17 13 24 X 1 o

18 14 33 2 3 32.08 992 °992
XIX 2 o

19 15 39 X_X 2 23°02 .992 .992

2 2 2 75°84 993 0993
20 16 32 XIX2X 3

3 2 33.90 99431 °99412
25 17 42 XIX 2 o

2 3 2 14o09 99449 .99428
26 18 35 XIX2X 3 o

3 2 1o20 99446 °99427
27 17 23 XIX2X 3 o •

22
28 18 8 X2X 3 11.81 °99459 °99440

29 19 14 X1X _ 18.00 .99479 °99459

3 3 5°57 99485 °99464
30 20 45 XIX 2

3
35 25 21 X1X 2 11o63 °99594 °99573

40 26 21 X1X _ 1°12 °99694 °99583

44 26 21 X1X _ 0°93 .99606 °99585

Run 6

This run used the same dependent variables polynomial model and data

poinis as in Run 5. The throw-out criterion was F 0 = 009. This will tend

to throw out terms less often than in Run 5. In fact_ however9 the runs are

identical through Sweep 26.

m Reduced
Terms

Sweep in Model Term No Term F in F out R 2 R 2

25 17 42 3 2 33.90 99431 99412
XlX 2 . o

26 18 35 2 3 2
X1X2X 3 14.09 o99447 .99428

32
27 19 11 X2X 3 13.66 . 99462 o99492

28 18 20 2 2 Oo O0 99462 o99443
XIX2X 3 °
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m Reduced

Terms __ R2 R2Swee R in Model Term No Term F in F out

2

29 19 14 XlX 3 16.67 o99480 .99461

3 3 6o19 99487 °99467
30 20 45 X1X 2

3 2 0.44 99574 99555
35 23 42 XlX 2 o o

3 2 0.48 99609 99588
40 26 ii X2X 3 ° o

3 2 0.59 99608 99589
41 25 38 X1X 3 • •

42 24 14 X1X _ 0.61 .99608 °99589

2 2 0°79 99608 .99589
43 25 31 X1X2X 3 o

Run 7

In this run the dependent variable_ the polynomial model and the data

points were all the same as in Run 5. The throw-out criterion was F 0 = 8.0.

The variables brought in were the same as in Run 5 through Sweep 7o

m Reduced

Terms R2 R2
Swee_ in Model Term No Term F in F out

7 7 28 X_X2X 3 62°76 °94925 .94863

2 4.41 .94879 .94827
8 6 24 X1

9 5 44 3 2 2 4.83 ,94829 94787
XlX2X3

10 6 20 2 2 69.96 .95471 95425
XlX2X 3

ii 7 47 3 3 2 100.42 96239 96193
XIX2X 3 • .

12 6 4 X2X 3 1.81 .96225 .96187

13 5 8 2 2 1.07 96217 96186
X2X 3 • .

2 2 63.95 96651 96617
14 6 31 XIX2X 3 . •

15 7 27 X_X 2 269.22 .97836 .97809

3 2 123.13 98270 .98245
16 8 23 XIX2X 3

]-15



m Reduced
Terms

Swee_ in Model Term No Term F in F out R2 R2

17 9 4 X2X 3 73.73 _98496 °98471

18 i0 25 2 72.64 98690 98666
X1X 3 , o

22 ._
19 ii 26 XIX 3 50082 o98814 _98.90

3 52°25 98929 9890_
20 12 36 X I o o -

3 2 2 46o61 °99023 98999
21 13 44 XIX2X 3 o

22 14 30 2 2 47.15 .99109 99085
XIX 2

2 3 78.01 99233 o99211
23 15 33 XlX 2 o

24 14 47 X3X3X 2 0°88 .99232 °99211
12 3

25 13 12 X 1 3000 .99227 o99208

P6 14 8 2 2 55.18 °99306 9928"7
- X2X 3 .

27 15 22 XIX_X 3 6.18 .99314 .99295

Run 8

In this run the dependent variable_ the polynomial model and the data

points were all the same as in Run 5. The throw-out criterion was F 0 = 10 -3 .

The variables brought in were the same as in Run 5 through Sweep 80

m Reduced

Terms R2 R2
Swe__ in Model Term No Term F in F out

8 8 20 2 2 251 18 96550 °96501
XIX2X 3 •

3 2 26.72 96728 °96675
9 9 23 XIX2X 3

3
!0 i0 22 XIX2X 3 137.60 .97447 °97400

11 ii 21 XIX _ 416.70 °98623 .98595

3 32°83 98710 98681
12 12 36 X 1 • .

13 13 40 X_X2X 3 50.05 .98830 098801
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m Reduced
Terms R2 R2

Sweep in Model Term No Term F in F out

14 14 15 XIX 2 9.58 °98853 .98822

15 15 13 XIX 3 148.72 .99122 °99097

2 20°37 °99481 .99461
20 20 6 X 2

2 3 10.32 °99537 .99514
25 25 33 X1X 2

30 30 7 X_X 3 4.12 .99576 _99550

2 2 3.22 .99619 °99591
35 35 30 XIX 2

2 5°45 °99630 °99601
40 38 17 XIX2X3

3 2 2°68 99638 .99605
45 43 38 XIX 3 o

2 2 0°87 99640 .99606
50 44 8 X2X 3 °

2.X2 2 0,18 996399 ,99604254 46 32 X 2X3

3 3 2,21 996416 ,996052
55 47 46 X1X2X 3

56 46 12 X 1 0,00 ,996416 ,996061

57 47 12 X I 0.00 .996416 .996052

Run 9

In this run the dependent variable was F(XI,X2,X 3) =/_X_ 2 2+x2+x3. The

47-term balanced polynomial, cubic in X1 and X 2 and quadratic in X3, was used

as the model to fit the dependent variable over the 500 data points

X 1 = .25(.25) 2.50, X2 = .25(.25) 2.50, and X3 = .25(.25) 1.25.

As expected in this case, the fit is very good. Because of the symmetry

involved the terms in X1 and X2 should be the same, at least in the complete

model. The lack of symmetry in the way these terms were brought is interesting.

The throw-out criterion for this run was F0 = 1.5.

:].17



1

2

3

4

5

6

7

8

9

_'Z,

1!

12

!3

i4

15

16

17

18

19

20

25

3O

35

4O

m

Terms

in Model

I

2

3

4

5

6

7

8

9

8

9

i0

ii

12

13

14

15

16

17

18

23

26

27

30

Term No

15

4

24

6

7

12

2

3

4

14

19

5

9

36

17

21

39

30

1

4

16

38

20

21

Term

XIX 2

X2X 3

2
X 1

2
X 2

X X3

X 1

2
X3

X2

X2X 3

2
X1X 3

XIX22X3

X2X2

3

X2

3

X1

XIX2X2

3
XIX 2

XIX 2

22

XIX 2

XS

X2X 3

X2X1X3

3.2
XlX 3

22
XIX2X 3

3

XlX 2

F in

1337o01

98.19

309.02

1324.25

302.54

553o58

202o14

427o10

469.05

169.84

177.58

144.20

204°27

171o96

87°04

59.18

125.68

55.81

114.22

107.82

40.36

F out

1.44

O. 09

O. O0

R2

°72861

°77338

°86037

096201

°97644

°98890

°99213

°99579

°99578

°99784

.99840

.99882

°99909

.99936

_99953

°99960

.99964

.99972

.99975

.99980

.99994

.99996

.99996

.99996

Reduced

R 2

.72861

°77293

°85981

°96178

°97625

°98879

_99204

°99573

°99373

°99781

.99837

I18



m
Terms

Sweep in Model Term No Term F in F out R2

45 35 45 3 3
XIX 2 9.43 .999969

46 34 39 X_X 2 0.26 .999969

47 35 21 X1X _ 3.23 .999969

3 2 0.40 0999969
48 36 41 X1X2X 3

Reduced

R2

Run i______00

In this run the dependent variable_ the polynomial model and the data

points were the same as in Run 9. The throw-out criterion for this run was

F 0 = 0°9. The tabulation of the results is identical with Run 9 through Sweep 8.

m

Terms

Sweep in Model Term No Term F in F ou_.__t R2

8 8 3 X2 427 o10 .99579

9 9 14 XlX32 470079 .997854

10 lO 16 XlX2X 3 174.96 .998420

11 11 1 X3 212.37 .998899

3 156.79 999167
12 12 9 X2

3 230.76 999435
13 13 36 X1

14 14 13 XIX 3 279.64 .999642

15 15 45 3 3 82.42 999694
XIX 2

16 16 35 2 3 2 52.71 .999724
XIX2X 3

17 17 37 X3X3 107.84 .999774

3 47.97 .999795
18 18 21 XIX 2

19 19 39 X3X2 259.26 .999867

22
20 20 31 XlX2X 3 202.22 .999906

Reduced

R2

1/9



m

Terms

in Model Term No Term F in F out R2

3 2 76°83 °999950
25 25 23 XIX2X 3

2 2 3.73 °999957
30 28 29 XIX2X 3

40 30 45 3 3 6.72 °999960
XIX 2

2 2 4.50 .999963
50 32 29 X1X2X 3

3 2 10o53 °999967
60 36 41 X1X2X 3

2 2 2 0°86 .999968
65 37 32 XIX2X 3

Reduced

R2

Run ii

In %his run the dependent variable, the polynomial model and the data

points were the same as in Run 9. The throw-out criterion was F 0 = 8°0.

7be ,,_ariables were included in the same order as in Run 9 through Sweep 15_

m

Terms

Swse E in Model Term No Term F in F out R2 = Reduced R 2

15 13 17 XIX2X _ 171.96 .999528

_, 12 7 X_X 3 2°77 °999525

" 13 39 X_X 2 49.15 .999569

18 14 1 X3 37.69 .999600

!9 13 19 XIX_X 3 2.18 .999598

20 14 21 XIX _ 59°03 °999642

2! 15 30 2 2
X1X 2 142.48 .999723

22 16 13 XIX 3 52°63 .999750

23 17 4 X2X 3 58.95 .999778

24 18 16 X1X2X 3 60°90 .999803

25 17 17 X1X2X _ 0°20 .999802
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m

Terms

Sweep in Model Term No Term F in F out R2 = Reduced R 2

3 61.82 0999825
26 18 16 X2X 3

3

27 19 22 XIX2X 3 177078 °999872

28 20 37 X_X 3 102041 .999895

29 21 40 X_X2X 3 390o39 0999942

3 3 38026 0999946
30 22 46 XlX2X 3

35 25 38 X_X 3 10,63 0999957

2 2.26 °999957
36 24 14 XlX 3

3 3 2 7°35 .999958
37 25 47 XlX2X 3

Run 12

In this run the dependent variable, the polynomial model_ and the data

points were the same as in Run 9o The throw-out criterion was F0 = 10-3o

The variables came in the same order as in Run i0 through Sweep 28°

No throw outs were made°

m

Terms

Sweep in Model Term No Term F in F out R 2 = Reduced R 2

3 2 76,83 999950
25 25 23 XlX2X 3

3 2 6.11 999958
30 30 42 XIX 2

35 35 43 3 2 15,94 999962
XlX2X 3

40 40 28 X12X2X3 21.80 .999967

45 45 25 X12X3 28,42 .999971

2X3 11,16 .99997246 46 34 X 2X3

3 3 2 1.10 ,999972
47 47 47 XIX2X 3
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Run 13

In this run the dependent variable was F(XI,X2_X3) = exp(-X_X2X3) as in

Run 9. The polynomial model was the same47-term balanced polynomial cubic in

X! and X2_ quadratic in X3o There were i000 data points in a rectangular

design X1 = o25(_25) 2o50_ X 2 = °25(°25) 2o50_ X 3 = .25(°25) 2°50°

On this run the throw-out criterion was F0 = 1.0_

m

Terms

Sweep in Model Term No Term F in F out R2

1 1 12 X 1 1277o 16 o561

2 2 4 X2X 3 619o 57 °729

2 582 o22 o829
3 3 24 X 1

,4 4 8 2 2 472o27 o884
X2X 3

5 5 28 X12X2X 3 267 o53 o9088

6 6 16 XIX2X 3 69.37 o9147

7 7 40 X_X2X 3 225.79 o9305

3

8 8 36 X 1 27.10 o9324

32
9 9 11 X2X 3 27 o63 o9342

I0 lO 10 3
X2X 3 151.95 . 9430

3
11 11 9 X2 234.89 o9539

12 12 13 X1X 3 23.34 .9550

13 13 15 X1X 2 141.45 o 9606

14 14 44 3 2. 2 84.24 9637
XlX2X 3 °

15 15 20 2 2 257.55 9713
XIX2X 3

2 130.45 9746
16 16 14 XIX 3

!7 15 12 X I O. Ol .9746

2 307.20 980673
18 16 18 XIX 2
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m

Terms

Sweep in Model Term No Term F in F out R2

3
19 17 21 XIX 2 113.99 o982683

20 16 4 X2X 3 0053 o982674

21 17 32 ,2.2.2
XlX2X 3 20°32 o98302a

22 16 44 3 2.2
X1X2x 3 0°09 ,983023

23 17 12 X 1 31o96 ,983658

24 18 4 X2X 3 53°90 ,984415

3
25 17 9 X 2 0,75 °984403

30 22 19 XIX_X 3 8.60 0986977

35 25 44 3 2 2
X1X2X 3 6o49 °988926

36 26 22 X1X_X 3 3o53 ,988966

37 27 1 X 3 2,05 ,988989

Run 14

In this run the dependent variable, the polynomial model and the data

points were the same as in. Run 13. The throw-out criterion was F 0 = 10 -3 .

The tabulation is identical with Run 13 through Sweep 16.

m

Terms

Sweep in Model Term No Term F in F out R2

2
16 16 14 XIX 3 130.45 .9746

2
17 , 17 18 XlX 2 318.07 .98084

2 2 2
18 18 32 XIX2X 3 144.76 .98330

21 XIX __ 155.92 .98560
19 19

3 3 2
20 20 47 XIX2X 3 16.89 .98584

21 21 34 53.87 .98658
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m

Terms

Sweep in Model Term No

22 22 19

23 23 17

24 24 33

25 25 23

30 30 2

35 35 38

4O 36 22

zl5 37 40

50 40 26

35 39 21

60 42 ?

65 45 ?

66 46 ?

Term

XIX2X 3

2
XIX2X 3

23

XIX 2

32

XlX2X 3

2

X 3

3.2

XIX 3

XIX3X 3

X3X2X 3

22
XIX 3

3

XlX 2

F in

4°65

25°46

89.60

15.91

10o28

4°23

0.91

2.43

4.51

O. 05

O. O0

F out

Oo O0

O. O0

R2

°98664

°98698

°98808

.98827

°98926

°98950

°989603

°989686

°989835

°989862

°990066

°990040

.990040

Run 15

In this run, the data were taken from Bulletin 336,

Experiment Station, Auburn University, Auburn, Alabama.

The throw out was F0 = 10 -3 but was never used.

Agricultural

m

Terms

Sweep in Model Term No Term F in R2

I i 4 X 4 86 o98 .696

2 2 2 X 2 3.14 .720

2 O. 64 o725
3 3 5 X 4

4 4 3 X 3 O. 24 . 726

5 5 6 X1X 4 0.13 .728

6 6 1 X 1 O. 58 .732
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R 2

.696

.712

.710

.704

.696
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Run 16

This run used the same data as in Run 15, but the polynomial model was

taken to be a balanced polynomial linear in Xl, X2, and X 3 and quadratic in

X4o This gives 23 terms in addition to the constant term.

m

Terms Reduced

Sweep in Model Term No Term F in F out R2 R2

1 1 1 X 4 86°98 .69596 .69596

2 2 5 X3X42 3.38 .72142 071409

3 3 3 X 3 0o41 °72453 ,70964

4 4 7 X2X 4 1.13 .73314 .71091

5 5 14 X1X f 1.71 ,74590 .71686

6 6 12 X 1 5.75 ,78361 °75179

7 7 9 X2X 3 0.55 .78724 .74856

8 8 16 XIX3X 4 2°55 080340 °76040

9 9 2 X_ 1o51 .81280 .76449

10 10 23 X1X2X3X42 3.49 .83293 .78281

ii ii 4 X3X 4 0.34 .83491 .77798

12 12 6 X2 0°98 .840665 .778069

13 13 17 XIX3X42 0.74 .845059 °776197

14 14 13 XlX 4 2.02 °856626 .784939

15 13 23 XIX2X3X42 0.00 .856624 .792901

X2X4216 14 8 0.64 .860176 .790265

17 15 15 XIX 3 0.27 .861736 °784308

18 16 21 XlX2X 3 0.i0 .862309 .776253

19 17 I0 X2X3X 4 0.35 .864448 .770151
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m

Terms Reduced

Sw_eee_._ in Model Term No Term F in F out R 2 R 2

20 16 12 X I 0o00 ,,864446 °779725

2i _,_- IS XIX 2 0°50 o867,472 °775279

29 18 23 XIX2X3X42 0,89 °872836 °774572

9_ 17 21 XIX2X S 0°00 °872835 °784373

24 18 19 XIK2X 4 0_61 °876437 °780957

25 17 3 X3 0_00 °876435 ,,790476

26 18 ii X2XsX42 0o61 °879902 0787099

27 19 !2 _ 0o12 °880637 o778325

28 20 22 XIX2X3X 4 0o19 o881802 o769515

_)9 2! 3 X3 Oo 20 .883701 .761282

%0 20 19 XIX2X a 0o00 .883697 _7732i0

3[ 21 20 XIX2X42 0o13 °884550 °760023

32 22 21 XIX2X 3 0.06 °884958 °750743

o_ 22 19 XIX2X 4 0o01 °885035 °736256

%a 22 18 XIX 2 0o00 °885034 °750906

35 23 18 XIX 2 0o00 °885035 °736256

Run 17

In this run the data were a correlation matrix taken from Anderson_ Ho Eo9

and Fh-uchter_ B.,_ "Predictor Selection Metbods"_ Psychometrika_ Vol. 25_ No° 19

March 1960,, In this run the tbrow.-out criterion of F0 = i0 "3 was never used°

Swee_

m
Reduced

Terms

in Mode[ Term No _Y[i___o_n' R2 R2

I 6 56°94 °156025 o156025

2 4 21o38 °210965 °208403
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m

Terms Reduced

Sweep in Model Term No F____inQ_ R2 R2

3 3 3 10.18 .236372 .231397

4 4 13 4090 .248451 0241083

5 5 12 4.13 o258529 ,248805

6 6 10 1.38 ,261881 .249741

7 7 1 0.92 ,264125 ,249553

8 8 8 0.71 .265861 °248844

9 9 2 0.42 ,266898 °247413

10 10 5 0.37 .267803 .245837

11 11 9 0.40 ,268785 °244330

12 12 7 0.29 °269503 °242538

13 13 11 0.17 °269932 o240435

14 14 14 0.02 ,269970 .237908

Conclusions

We feel that the step-up procedure is an effective tool in the problem of

finding a regression equation with a small number of estimation variables from

a model with a large number. Using the various throw-out criteria and stopping

rules, the problems of interest could be explored. The throw-out criterion and

stopping rule which best fit the problem could be selected and then a regression

equation determined. We feel that most future investigation of this procedure

should be problem-oriented. We need the data for a problem to help develop an

effective way of handling the data.
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SELECTION OF SIGNIFICANT ESTIMATION VARIABLES

IN A LEAST SQUARES PROBLEM: COMPUTER PROGRAMS

io Comparison of variables selected by step-up procedure with optimal set.

This procedure was programmed in the ALGOL 58 compiler language for the Burroughs

220 computer° Because of limitations on the memory the procedure is restricted

to 25 variables.

The purpose of the program is to determine whether or not the step-up

procedure actually selects the best k estimation variables° This program was

preliminary to a more elaborate program for the Burroughs 5000.

First, the data are generated° The estimation variables ZI,..o,Zn_ 1 are

terms of a balanced polynomial in independent variables Xl, ....,X , Joe.,

Zk=X 1 .ooX_ , _i=O, l_°.oLi, i=l, 2,.°.,_,

where (tl,..o,_) takes on all possible values in the given range except

(0, ooo,0)o Certain terms of the balanced polynomial are to be used to estimate

a dependent variable, which is some function of the XSso It is convenient to

label this variable Z Corresponding to an index, ti=l,2 , Ti,i=l,2 ,n" ,,,) ,o, 9_,

the observed value of X.l is xit i. Thus, corresponding to the set

{(t_,.oo,t_)Iti=l,2, o..,Ti,i=l,2,...,_ } is a rectangular set of data-points

{(Xltl,O..,x t } from which are calculated ob, erved values, (Zgl"'''%,n-l'Z_n)'"

of the vector consisting of the estimation variables and the dependent variable.

Next, regression analyses are made using all possible combinations of k

estimation variables, where k=2,...,n-2. For each k, the combinations of variables

which give maximum and minimum sums of squares due to regression (and hence

maximum and minimum multiple correlation)are printed along with the sums of

squares.
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Finally, the step-up procedure is used. At the k'th step, the variable

)_(k'_s selected from those not already included which maximizes S (k'
)

kn kk "

7be procedure then uses that variable Zk9 as the pivot variable° It makes

:_._efollowing calculations:

Ski
sk" : (k')3

Skk

S (k_+l) : S (k:) Sik(k')Skj(k')
..... (k')1J z3

Skk

j : 1,2, ooon

i : l,oook-l_k+l,ooon,j:i,2, oo,_n_

In tDese calculations (Sij) is the augmented natrix of dot products of the

estimation vectors and the dependent-variable vector° The superscript k _

_,dicates the number of transformations on (Sij) in which a column has been

_;ju_O to a unit vector. _he list of variables, included in the regression,

and the sum of squares due to regression are printed°

In some cases the stepwlse procedure gave optimal solutions, while in others

_ did not. In an attempt to run the program with 18 variables the time required

to ca!culate the regression analyses for all combinations of variables turned

out to be prohibitive.

The flow chart for this program is found in Appendix A and the program list-

ing in Appendix Bo

Operatinq Instructions fox B-220 Proqram

io Load the program, with the proper procedure (FCN) inserted to calculate

tb_ independent polynomial variables and the dependent variables.

2. Load the following data card, using more than one card if necessary,

with 5 punched in the first column of each card°
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Card Contents Card Format

a) Numberof independent polynomial
variables

b) Numberof observations of
independent polynomial variable_

c) Repeat (b) for each variable

d) Order in independent polynomial

variable

e) Repeat (d) for each variable

f) Lower bound for diagonal element

g) Lower bound for difference between

Io0 and off-diagonal correlation

h) F-statistic for stopping

Skip at least one column; punch

integer

Skip at least one column; punch
integer

Skip at least one column; punch

integer

Skip at least one column; punch

floating point number

Skip at least one column; punch

floating point number

Skip at least one column; punch

floating point number; leave rest
of card blank.

3° Repeat (2) for each analysis to be made.

4o Load 2 blank cards.

2o Comprehensive proqram for selection of variables with step-up procedure

incorporatinq elimination !ules and stoppinq rules. This procedure attempts to

select the most significant estimation variables for a least squares fitting. It

has been programmed for the Burroughs 5000 computer in the ALGOL 60 compiler

language.

There are four options for obtaining the n x n augmented (Sij) matrix

(i) Either the (Sij) matrix or the correlation matrix may be read in.

(Only the diagonal and the lower triangle are read in.)

(2) Each of the M observations (z l,...,z n) may be read in. An estimate

(ml,...,m n) of the means is available. As the data are read in, the sums

131



M

, M

S.. = Z

lJ _=i

(Zpi-m i )

(Z i-m i)(Z j-mj) i = 1,2, ooon, j = 1,2, ooo,i

are calculated_ The adjusted (Sij) matrix

, S S.
S. = S. _ 1.--L--fL

13 1.3 M
i = 1,2, oo.n, j = 1,2, oo.,i

is then computed°

[3) Each observation may be generated from balanced polynomials° A set

of fixed data points (x 1,oooX ) is given° The estimation variables are

the terms of a balanced polynomials, so that

z k = x 1 Xl_2 .ooX

where Z'1 = O'l''°°'Li' i = 1,2, oo°_. Each of these combinations of exponents

(except all exponents zelo) corresponds to one estimation variable° The values

{__,oo_,xp_ may be read in, or they may be part of a rectangular design, with

each F corresponding to some value of the index (tl,ooo,t_) , where

tl = l'°°°'Ti' i = 1,2,.oo_. Values z n of the dependent variable may be read

_n or they may be computed values of a specified function, corresponding to values

XFl,O_o,X o These vectors x l,°.°,x ,z n are generated in a procedure which

may be varied with each run° As the observations z 1,ooo,Z n are generated, the

sum of squares matrix (Sij) is calculated as above°

Once the adjusted sum of squares matrix has been obtained, it may be used

for more than one analysis. The diagonal and lower triangle only are used

in the analysis° Since the matrix is symmetric, the necessary values may be

stored in the upper triangle (with the diagonal in a separate vector) for

performing other analyses under different conditions.
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If the correlation matrix was read in, it is used in the regression analysis;

otherwise, there is the option of computing and using the correlation matrix•

The matrix to be used shall be denoted as (Sij(O)) The program includes the

option of printing this matrix.

In a hand computation the system of normal equations would be solved for

regression coefficients in a sequence of gaussian eliminations, and the inverse

matrix would be built up on a unit matrix. The initial tableau <Rij(O) _ for

such an elimination and matrix inversion procedure would be defined by

Roo(0)=
13

/S. (o)
13

s.. (o)
31

i = 1,2,...n; j = 1,2,.oo,i

i = 1,2,...n-l; j = i+l, .... ,n

i = 1,2,...,n; j = n+i

i = 1,2,.o.n; j = n+l,.o.,2n, j _ n+i

The original S matrix is of the form

(o)
$ii

(o) (o)
$21 S22

s (O)Sn_l ' (o) s (o)n-l,l 2 "'" n-l,n-i

(o) s (O) Sn,n_I(°)S (0)Snl " ran
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while __qeo_.g_nal R matrix is of the form

(o) _ (o)
Sil °21

(0) (0)
$2! $22

(o) (o)
Sr-l_ i Snl i 0

(0) (0)

St.-i_ 2 Sn2 0 i

,_ (o)
Sn- 13 1 Sn-l_ 2

S (0) S (0)
nl r_

(o) s (o) o o ... z o
Sn-l_ n-i n_ n-i

S (0) S (0) 0 0 ... 0
n; n- i nn

Because of symmetry operations need be made only on the lower triangle of

':he S matrix. Hence the entire R matrix need not be stored in memory.

The etepwise procedure now begins. It is assumed that at the k'th step,

are included in _;_..e regression_ While the
e : t _mation variables Zpl _ .o., Zpk

n-k-i variables Z _ ..o,Z are excluded. The variables Z and Z
ql qn-k-i Pmax %min

/SpiPi (k')2)/Sqjqj(k')which minimize (S (k')2) (k') and maximize (Snq jnPi

=-espectively, are determined. The variable Z shall be considered significant
Pmin

(s(_'))2/s(k')
nPmi n PminPmir_

s(k:)/(M___l)
n.n

_> F0

and the variable Z shall be considered significant if
lax

(S(k')nqmax) )2/s_(k'%ax

.(k') S(k') )2/s(k') ]/(mk-2)
> FI
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where FI and F0 are criteria based on the F-distribution. FI should not be

less than FO; if it were, looping might occur.

The procedure now tests whether Z is to be dropped from the regression°
Pmin

There are two options for dropping a variable:

(i) If Z is not significant, it is dropped°
Pmin

by setting F0 equal to zero.)

(This may be bypassed

(2) The procedure alternately adds two variables and drops oneo if

Z is not to be dropped, the procedure checks whether to stop or
Pmin

not.,

There are four criteria for stopping, the first two of which are now

cbec.kedo

If Z
Pmin

is now added to the regression.

(i) If Z is not significant, it is added and then the procedure
Pmax

terminates. (This may be bypassed by setting F I to zero°)

(2) When a specified maximum number of terms have been included in the

regression, the procedure terminates. Unless otherwise specified,

this will be the number of estimation variables.

(3_ If the square of the multiple correlation coefficient is greater than

a specified amount R2max , the procedure terminates. (This may be

bypassed by setting R2 to i.)
max

(4) When the procedure has gone through a specified number of iterations,

it terminates. If the procedure is following the option of adding

two variables and dropping one, this will be three times the maximum

number of terms; otherwise, it will be twice the maximum number of

terms.

is not to be dropped, and if the procedure does not stop, Z
qmex
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The.jth colunm of the S matrix corresponds to the (j+n)-th of the R matrix

if the jth variable has been included in the regression and to the jth column

otherwise. (At all stages_ either the jth column or the (j+n)-th column of the

R matrix will be a _mit vector. '_VT_eS matrix will contain the co!unt< which is

not_ Of course the storage of the unit vector is ,_nneces_aryo)

It will be assumed that the q_h variable is to be added or dropped° (The

computational procedure is the same in both cases, it will also be assumed that

H.(k') = _ i if the j-th variable is included in the regression ai'±er k'
J

iterations and that H.(k')= + i otherwise. Note that H (k') = ,, i throughout
j n

the analysis. H depenes on the status of the qth variable before, rather than
q

after it is added or dropped.)

The following formulae determine the matrix ij

(k'+l) i
S
qq S (k')

qq

s (k')
(k'+l) = qjS

qJ S (k')
qq

j < q

(k')
(k'+l) si_

_q s (k')
qq

i > q

s. (k'+l)=S ,_,C__
zj ]_O

S (k')s (k')H.(k')H (k')

s (k')
qq

j<i<q

s (k'+l)= s (k')
zj ]_j

s. (k')s (k')

mqS (k'_J

qq

j<q<i

s ....(k'+l) : s (k')
zj ]_j

s. (k')s.(k')(k') (k')H. H,,

S (k')
qq

q< j<±
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lhis is equivalent, on adding a variable, to
(k')

R (k'+l) _ Rqj

q3 R (k')
qq

R. (k'+l) R. (k'+l) Riq(k'
)R (k' )

. = . - qJ
13 13 R (k')

qq

or, on dropping a variable, to

(k'+l) R (k')

R. : qJ
q9 R (k')

q, q+n

R..(k'+l) : R..(k') _ R.l,q+n(k')Rqj(k')

i3 13 R (k')
q,q+n

where the (q+n)-th column of the R matrix takes the place of the qth in the S

matrix when a variable is being added•

If the first k variables were included in the regression, then the R matrix

would be of the form

(k) (k) (k)
0 -Sk+l, 1 •.. -Sn_l, 1 -Snl

(k) (k) (k)
0 1 -Sk+l, k ... -Sn_l, k -Snk

(k) (k)
0 o.o 0 Sk+l,k+l (k) ... Sn_l,k+ 1 Sn,k+ _

: : : ... : :

0 ... 0 S (k) S (k) S (k)
n-l,k+l n-l,n-i n,n-i

0 °.. 0 S (k) S (k) S (k)
• n,k+l n,n-i nn

(k) (k) 0 .. O"
SII "''Skl •

; • : °
eoo • •

• • • •

(k) (k)
Skl ...Skk 0 ... 0

(k) (k)

Sk+l, 1 ...Sk+l, k 1

(k) ...S (k)o 1
Sn-l,l n-l,k

(k)
Snk (k) 0 . 0Snl .....
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tr_e polynomial estimation variables and the dependent variable°

is not used, a procedure must still be declaredo)

in effect the program ir,verts the S maiz.ix in place, proceeding from pivot

element to pivot element without rearranging rows and columns° Also, advantage

is taken of t.he symmetry in carrying out calculations in theiower triangle onlyo

For morc details the flow chart in Appendix A and the program listing in Appendix

(]may be consulted°

At this point, a list of included or acti_,e "vaziab]e._ the mean-squares due

io regression and to error, the F-.ratio, and the square of the multiple correlat-

ior coefficient are printed° There are options for printing the inverse matrix,

the reduced sum of squares matrix, the partial regression coefficients of _he

dependent ,,ariable on each of the active variables, and the regression co-

efficients of the dependent variable on the active variableso

Operatinq Instructions fo____rB-5000 Proqram

Load the program, with the proper procedure (CALC) inserted to calculate

(If that option

a)

b)

2_ Load the following data card:

Card Contents Card Format

Upper bound t.o number of in-

dependent polynomial variables

(at least I)

Punch integer; punch comma; skip at

least one space

Upper bound to number of variables

in regression analysis (both

estimation and dependent)

Punch integer; punch comma_ leave

remaining columns on card blank

3o If data are to be generated from polynomial variables, load the follow-

ing data card, using more than one card if necessar/_

Card Contents Card Format

a) Number of independent polynomial
variables

Punch integer; punch comma; skip at
least one column

b) Number of observations of in-

dependent polynomial variable (if

observations are read in, punch i)

Punch integer; punch comma_ skip at
least one column
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c)

Card Contents

Repeat (b) for each variableif

observations are read in, punch
number of observations for last

variable)

d) Order in independent polynomial

variable

e) Repeat (d) for each variable

Card Format

Punch integer; punch comma[ skip at
least one column

Leave rest of card blank

40 If data are not to be generated from independent polynomial variables,

load the following data card:

Card Contents

a) 1

b) The numner of observations

c) The number of estimation variables

o

(a)

(b)

(c)

Load the following card:

ii)

iii)

iv)

Card Format

Punch i; punch comma_ skip at least
one column

Punch integer; punch comma; skip at
least one column

Punch integer; punch comma; leave rest
of card blank

If estimates of the means are to be read in, skip 3 columns, punch TRUE:

otherwise, skip 2 columns, punch FALSE.

Punch the next 14 columns according to one of the following 4 options:

i) If data are to be generated from polynomial variables, skip 2

columns, punch FALSE, skip 2 columns, punch FALSE.

If the estimation variables are to be read in, skip 2 columns, punch

FALSE, skip 3 columns, punch TRUE,

If the sum of squares or intercorrelations matrix is to be read in,

skip 3 columns, punch TRUE, skip 2 columns, punch FALSE.

If the analysis tr be made uses a matrix which has just been used,

skip 3 columns, punch TRUE, skip 3 columns, punch TRUE.

If the matrix is to be printed, skip 3 columns, punch TRUE; otherwise,

skip 2 columns, punch FALSE.
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(d) If the intercorrelations matrix is to be used, skip 3 columns, punch

TRUE; otherwise, skip 2 columns, punch FALSE°

6o If estimates of the means are to be read in, load the following data

card, using more than one card if necessary@

Card Contents

a) Number of observations

b) Number of estimation variables in

regression analysis (including

dependent variable)

c) Estimate for mean of estimation

variable

d) Repeat (c) for each variable

e) Estimate for mean of dependent

variable

7_ Load the following data card:

Card Format

Punch integer; punch comma_ skip at

least one space

Punch integer; punch comma_ skip at

least one space

Punch number.; punch comma_ skip at

least one space

Punch number; punch comma; leave rest
of card blank

Card Contents Card Format

F-statistic for stopping Punch number; punch comma; skip at
least one column

F-statistic for elimination of a

variable
Punch number.; punch comma_ skip at
least one column

Lower bound for diagonal element Punch number; punch comma_ skip at
least one column

Maximum number of terms Punch integer; punch conma; skip at
least one column

e) Maximum value for R 2 Punch number; punch comma_ leave rest
of card blank

8o If the sum of squares or intercorrelations matrix is to be read in, load

the following data card(s):
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a)

b)

c)

d)

Card Contents

Element of matrix

Repeat (a) for each element in

row up through the diagonal

element

Repeat (a) - (b) for each row

Sum of squares of dependent

variable

Card Format

Punch number; punch comma_ skip at

least one space

Punch number; punch comma; leave the
rest of card blank

9o If tbe individual observations on the estimation variables are to be

read in, load the following data cards:

Card Contents

a) Observation on estimation

variable

b) Repeat (a) for each estimation

variable

c) Observation on dependent variable

Card Format

Punch number; punch comma; skip at
least one column

Punch number; punch comma_ leave rest
of card blank

d) Repeat (a) - (c) for each

observation

i0o If the independent polynomial variables are to be read in, load the

cards as described in (9), using polynomial variables instead of estimation

variables. The procedure CALC must specify reading these variables.

ii. Load the following card:

a) If the inverse matrix is to be printed, skip 3 columns, punch TRUE;

otherwise, skip 2 columns, punch FALSE.

b) If the reduced sum of squares matrix is to be printed, skip 3 columns,

punch TRUE; otherwise, skip 2 columns, punch FALSE.

c) If the partial regression coefficients are to be printed, skip 3

columns, punch TRUE; otherwise, skip 2 columns, punch FALSE.
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a)

d) If the regression coefficients are to be p_inted, skip 3 columns, punch

TRUE; otherwise, skip 2 columns, punch EALSEo

e) If the option of adding two variables and eliminating one is used, skip

3 columns, punch TRUE; otherwise, skip 2 columns, punch FALSE°

12o Repeat (3) - (11) for each analysis to be made°

13o Load the following data card:

0

Card Contents Card Format

Punch O; punch comma: leave rest of
card blank

14o Load end-of-deck card°
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_P_D_ B

PROGRAM FOR THE COMPARISON OF VARIABLES

SELECTED BY THE STEP-UP PROCEDURE

WITH THE OPTIMAL SET
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APPENDIX C

PROGRAM FOR THE SELECTION OF

VARIABLES WITH THE STEP-UP PROCEDURE

INCORPORATING ELIMINATION RUY_ES AND STOPPING RULES
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APPENDIX3

FITTINGGUIDANCEFUNCTIONSBY STEPWISEREGRESSION



I. INTRODUCTION

In a plumbline coordinate system x represents the distance3 in meters3

parallel to the launch azimuth; y represents the distance in meters, parallel

to the gravity gradient passing through the launch site with the radius of

the earth subtracted; and z represents the distance, in meters, in a direction

which with x and y form a right-hand coordinate system•

The state variables for a trajectory of the flight of a powered space

vehicle consist of the three space coordinates x, y, z; the three velocity

components _ _, _, measured in meters per second; the thrust per unit mass F
m

measured in meters per second per second; the time from lift off T measured

in seconds; and the rate of change of mass per unit mass _, measured per second.

The three guidance functions under consideration are the pitch steering

angle Xp_ measured in degrees; the yaw steering angle Xy# measured in degrees;

and the time remaining to cutoff of power TR, measured in seconds•

The three guidance functions

X =X
P P

X =X
Y Y

and

F mm"TR = TR (x, y, z, _, Y3 z, m' T, )

are approximated by third degree polynomials in the nine variables. With this

approximation there are 219 estimation variables (220 with a constant term

• However, since it is difficult to measure _, this variable mightincluded)
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be eliminated. In this case there would be 164 estimation variables (165 with

a constant term included).

The objective of this study was to find an optimal (or near optimal)

polynomial approximating the guidance functions by employing the stepwise

regression procedure.

The data were taken from 75 calculus of variations trajectories generated

by the Marshall Space Flight Center at Huntsville, Alabama, to simulate actual

flight. The trajectories were between 600 and 700 seconds in length with data

sampled at five second intervals from 140 seconds to cutoff. Two data bases

were used consisting of subsets of the total sampled data. The first data

base consisted of data taken at five second intervals from 140 seconds to 300

seconds, at 20 second intervals from 300 seconds to 540 seconds, and at 40

second intervals from 540 seconds to cutoff. The second data base, a subset

of the first, consisted of data samples at 140 seconds, at 260 seconds, at 500

seconds, and at 60 second intervals from 300 seconds to 540 seconds together

with data in either or both of two groups sampled at 15 second and 50 second

intervals from 540 seconds to cutoff. The second data base is weighted more

heavily near the end of the trajectory, since the guidance functions are more

critical in that region. The two data bases consist of 2605 and 1219 data

points respectively.

Several of the variables were scaled to get the elements of the sum of

squares matrix to approximately the same order of magnitude. The variables

i0"6,x, y, and z are multiplied by _, #3 and _ by 0.001_ T by 0.01, and m by

i00.

Several B-5500 runs were made using the stepwise regression procedure.

In ten of the eighteen runs X was the dependent variable, while in four runs
P
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each Xy and TR was the dependent variable. The terms involving m-_were excluded

from all but two of the runs. A detailed description of the individual runs

is given in the next section.
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II. DESCRIPTION OF RUNS

Run i

The matrix used in this analysis was the NASA supplied single precision

sum of squares matrix adjusted for the mean with X as the dependent variable.
P

There were 164 terms in the polynomial model in addition to the constant term.

The matrix was accurate to approximately eight digits before mean adjustment.

This run stopped due to accumulation of roundoff error after picking up

eleven terms. The results are shown in Table I. The column labelled "No. of

TABLE I

RESULTS OF RUN i

No of

Terms Term F R2

2.
i y z 278716.35 .9900

2.
2 y x 129.50 .9905

2.
3 Y Y 1092.25 .9932

4 F--t2 663.46 .9945
m

.2
5 yz 666.72 -9955

6 _t 2 875.77 .9966

7 y_ 282.43 .9969

8 xz 2 1105.93 .9978

9 z_ 3227 •71 •9990

i0 z2"
z 913.12 .9992

ii yz_ ......
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Terms" contains the number of estimation variables (excluding the mean)

included in the regression model at the end of that step. The column "Term"

is the estimation variable added to the model in that step. The column "F"

is the F-statisti%

N M 2!

_-. v-- Z . ,-/m-i

m z
- N-m

w=l i=l

where m is the number of estimation variables in the model; N is the number of

observations; bl_ b2, ..., bm are the regression coefficients at a stage;

YI' Y2' "'" YN are observations (mean adjusted) on the dependent variable; and

Zll , z21 , ..., ZNl , ..., Zlm , ..., ZNm are observations (mean adjusted) on the

estimation variables. The colttmn "R2'' is the square of the multiple correlation

coefficien%

N m 2

z<z 1bi _i

R2 = _=l i=l

N

_=l

2
The values of F and R are meaningless for the last term added to the model_

since the sum of squares of error went negative due to excessive roundoff.

It was hoped that this run would duplicate the results obtained at NASA_

but such was not the case. It was discovered that the difference was due to

the fact that the matrix used in the NASA run was not mean-adjusted_ while that
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used in this run was mean-adjusted. A significant conclusion from this run

was that the very high multiple correlation for a small number of terms made

confirmation to pick out the best forty terms unnecessary.

Run 2

The matrix used in this analysis was a part of that used in run i. It

was mean-adjusted and in addition to the mean had fifty-two terms in the model.

These terms were those which had been selected in run i together with those

selected by NASA. No throwout criterion was used.

This run stopped due to accumulation of roundoff error after sixteen terms

were selected. The results are shown in Table iI. The first four columns have

the same significance as in Table I. The additional column "R2 (Run i)" gives_

for comparison purposes_ the value of R2 for the same number of terms in Run i.

The higher correlation is considered better.

The object of this run was to determine why run i failed to duplicate the

NASA run. The adjusted sum of squares matrix was printed at each step for

further study. It was concluded that more precision was needed in the original

matrix. However_ it was later found that this was not a serious problem.

This run should have had the same terms enter as in run i. However_ inad-

.2
vertently the variable yz was omitted from the model. Even though this term

was left out the multiple correlation was better than in run i.
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TABLE II

RESULTS OF RUN 2

No of

Terms

1

2

3

4

5

6

7

8

9

lO

ll

12

13

14

15

16

Term

2.
yz

2.
yx

2.
YY

m

2
XZ

Y

2F
Y_

z_

m

x_

yz_

x

z

F

278716.35

129.50

1092.25

663.46

622 .O7

1480.22

3794.25

606.17

391.55

723.06

833.33

R2

.9900

.9905

.9932

.9945

.9955

.9970

.9987

.9990

.9991

.9993

.9994

R2 1)

.99oo

.99o5

.9932

.9945

.9955

.9966

.9969

.9978

.999o

.9992
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Run 3

The matrix used for this run was the same as that in run 2, except that

it was accurate to twelve significant figures (B-5500 single precision) before

mean-adjustment. No throwout criterion was used.

This run stopped after selecting thirteen terms. The results are shown

in Table III. The columns have the same significance as in run i.

TABLE III

RESULTS OF RUN 3

No of
Terms Term F R 2

o

i y z 278715.24 .9900

2.
2 y x 129.53 .9905

2.
3 y y 1092.35 .9932

4 F-t2 663.43 .9945
m

5 Y_ 622.40 .9955

2
6 xz 1472.72 .9970

7 yz_ 3554.06 .9987

8 yt 823.00 .9990

9 x 332.94 .9991

i0 y3 122.67 o9991

ii z£ 3728.64 .9996

m ( )2t ......
.2

13 xy ......
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The object of this run was to show that the NASA run could be duplicated

if precision were increased. Again this failed, because the matrix was mean-

adjusted. A comparison of regression coefficients obtained in run 2 and run 3

is shown in Table IV. The column "No. of Terms" contains the number of esti-

mation variables in the regression model at that step. The column "Term" con-

tains each variable in the model at that step. The columns "Coefficients"

with the names of the two runs contain the regression coefficients at that

stage.

Discrepancies occurred_ because of the slightly different sum of squares

matrix. This run confirmed the suspicion that the difference in the results

obtained here and at NASA was due to the mean-adjustment of the matrix.

TABLE IV

COMPARISON OF REGRESSION COEFFICIENTS FOR X - ORIGINAL MATRIX IN
P

SINGLE PRECISION (RUN 2) vs. DOUBLE PRECISION (RUN 3)

No of

Terms Term

2.
i y z - .8234568

Coefficients

Run 2 Run 3

- .8234567

.

2 y z - .4853059

2.
y x .1805880

- .4852689

.1806077

a

3 yz

.

yx

.

YY

.3400263

.7191974

.4772935

- .3399650

.7192526

.4773168

(Continued)
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TABLE IV (Concluded)

No of

Terms

Coefficients

Ter____m Run 2 Run 3

2.
y z - .6921609 - .6920876

2.
y x .6865594 .6866178

2.
y y .7106122 .7106299

F--t2 .01106846 .01106811
m

o

y z - .5068506 - .5068816

2.
y x 1.989755 1.989662

2.
y y .7014382 •7014511

F--t2 .003688024 .003687849
m

y_ - 8.378824 - 8.378211

6 .

y z - .5587895 - .5592727

2.
y x 6.607538 6.589411

2.
y y .9721991 .9712973

F-t2 .002051094 .002051780
m

y_ -38.13662 -38.02102

2
xz 39.95789 39.82414

Run 4

The matrix used on this run was the same as that used in run 3, except

that it was not mean adjusted. The mean was not considered as a variable in

the model. No throwout criterion was used.
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This run stopped due to accumulation of roundoff error after selecting

twenty terms. The results are shownin Table V. The columns have the same

significance as in Table I_ except that the variables used in calculating F

and R2 were not meanadjusted.

TABLEV

RESULTSOFRUN4

No of R2Terms Term F

.

i y z 5385402.59 .99948

2.
2 y y 302.80 .99953

3 z 535.37 .99961

4 x 204.50 .99963

5 Y 116.17 .99965

2.
6 y x 597.52 .99971

7 (_)3 115.97 .99972

8 y3 849.62 .99979

9 y_t 2748.11 .99989

i0 #3 491.29 .99991

ii yt 1882.93 .99994

12 xyt 189.91 .99995

13 _t 2 111.16 .99995

14 x# 2 554.16 .99996

15 Y_ 1108.53 .99997

16 Et 3802.84 .99999
m

2
17 z ......

(C ont inue d )
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TABLEV (Concluded)

No of
Terms Term F R2

..2
18 yz

2F

19 Y m

2o

The object of this run was to duplicate the NASA run. The first fourteen

terms were the same in the two runs. This agreement is very good considering

the high correlation involved.

The coefficients obtained on this run agree with those on the NASA run to

three significant digits through the first eight terms. An additional com-

parison was made by inverting the sum of squares submatrices in double precision.

These results and those of run 4 were more in agreement with each other than

with the NASA run. Some comparisons of coefficients are shown in Table VI.

TABLE VI

COMPARISON OF REGRESSION COEFFICIENTS FOR Xp; NOT MEAN ADJUSTED - NASA;

STEPWISE PROCEDURE (RUN 5); DOUBLE PRECISION

No of Coefficients

Terms Term NASA Stepwise DP

2.
i y z - .8484887 - .8484887 - .8484887

o

3 yz

.

YY

z

- .555oo5o - .555o4o8 - .555o4o8

.3300267 .3299901 .3299901

- 68.26085 - 68.25281 - 68.25281

(Cont inue d )
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TABLE VI (Continued)

No of

Terms

5

Term

2.
yz

2.
YY

z

X

Y

Coefficients

NASA

- •8622132

•4707735

-168•8408

57•08999

- 2.828727

Stepwise

- .8620839

•4706966

-168.7116

- 57.02029

- 2.827894

DP

- •8620839

•4706966

-168.7116

- 57.02030

- 2.827895

8 .

yz

•

YY

z

x

Y

2.
yx

(_)3

y3

- •5177044

.9110512

-136•2729

- 41.52626

- 26.72016

.6128534

•000712 70

•3381630

- .5170714

•9110047

-136•0928

- 41.45290

- 26.71975

•6134570

.00071228

.3380557

- •5170715

.9110048

-136•0930

- 41.45297

- 26.71976

•6134570

.00071228

.3380558

lO
.

yz

m

YY

z

X

Y

2.
yx

(_)3

- .4573042

1.546414

- 99•03508

- 10.74897

-114.4591

•4089275

.OOO16815

- •4563642

1.535o4o

- 98•42050

- 10.7647o

-i13.1464

.4129437

•00017921

- •4563643

1.535o43

- 98.42082

- lO.7648o

-i13.1468

.4129428

.00017921

(Continued)
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TABLEVI (Continued)

No of
Terms

i0

13

14

Term

y3

#3

•

yz

.

YY

z

X

Y

2.
yx

(_)3

y3

_3

x_

_t 2

.

yz

2
YY

Z

x

NASA

2.470939

- 1.407387

.6043025

- .3357826

1.071897

-125.2351

20 •85913

-]55.2974

.02238136

.00177447

3.807856

- •7860138

1.321196

- 4.607292

2.278608

•3072210

- •6586389

•2644380

- 88.77506

- 74.89652

Coefficients

Stepwise

2.439340

- 1.387498

.6001786

- .3344632

1.078982

-124.0098

20.43924

-151.3697

.04456476

.00172243

3.698213

- .7902662

1.298609

- 4.406400

2.131351

.2824692

- •6833111

.2103839

- 84.89537

- 82.89925

DP

2.439349

- 1.387504

•6oo18oo

- .3344556

i.o78989

-124.o111

20.44013

-151.3699

°04456466

.oo172242

3.698219

- .79o2785

1.298624

- 4.406398

2.13129o

.2824499

- .6832994

.21o4183

- 84.89571

- 82.89576

(cont inued)
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°

TABLE VI (Concluded)

No of

Terms

14

Coe fficient s

Term NASA Stepwise DP

y -144.9732 -140.6013 -140.6016

2.
y x .1242356 .1526890 .1526897

(_)3 .00212057 .00209391 .00209388

y3 3.525092 3.403921 3.403924

y#t .5923321 .6921863 .6921283

#3 6.345729 6.642542 6.642404

yt - 3.677377 - 3.435859 - 3.435833

xyt 4.989600 5.077270 5.077138

_t2 .9154489 .9405285 .9405001

.2
xy 10.38705 11.07432 11.07403

The columns "No. of Terms" and "Term" have the same significance as in Table IV.

The columns of coefficients are labelled "NAS_ " those in the NASA run; "Step-

wise, " those in Run 5; and "D R " those obtained by the double precision inver-

sion procedure.

This run confirmed the method used in the NASA run and indicated more

strongly that because of the high correlations all terms beyond the first few

were probably not needed. A great deal of accuracy was lost due to the high

correlation.
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Run 5

The matrix used in this run was the NASA sum of squares matrix_ accurate

to sixteen significant digits (NASA double precision)• The mean and most sig-

nificant variable (y2_) were eliminated in double precision, leaving about

twelve digits after the adjustment. This gives a model with 163 terms and a

fairly accurate sum of squares nmtrix. No throwout criterion was used.

This run stopped after selecting twelve terms. The results are shown in

Table VII. The columns have the same significance as in Table I, except that the

TABLE VII

RESULTS OF RUN 5

No of

Terms

i

2

3

4

5

6

7

8

9

i0

ii

12

Term

2.
yx

2.
YY

Zt 2
m

.2
yz

y_

2
XZ

yz_

_t

2.
zz

z_

x2t

F

129.57

1092.74

663.67

666.82

875.31

284.12

1096.91

293o. 59

639.18

340.26

R2

o442

.3124

4441

551o

658o

6895

7770

8911

9114

•92lO
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variables used to calculate F and R 2 are adjusted for the most significant

variable as well as for the mean. The column "No. of Terms" excludes the pre-

viously eliminated variable. The object of this run was to choose the most

accurate fit by the straight step-up procedure to compare with subsequent runs

using a throwout criterion. Mean-adjustment was used because it seems more

reasonable to eliminate the constant term since it is so easy to evaluate in a

polynomial model.

A comparison of this run with Run 1 shows that the first eight terms were

selected in the same order. This indicates that these terms are not sensitive

to slight matrix errors.

Run 6

The matrix used in this run was the NASA sum of squares matrix, accurate

to about 12 significant digits after adjustment for the mean and most signifi-

(y2_) N in double precision with the terms in the model consistingcant variable

of the terms selected in run 5 together with all terms containing _/m. (The

_/m terms had been omitted in all previous runs.) This gave a model with 66

terms. No throwout criterion was used.

This run stopped after obtaining ii additional terms. The third term brought

in was yt -_ with an F of 757. The corresponding terms in run 5 was --Ft2, brought
m m

in with an F of 664. The results are shown in Table VIII.

The columns have the same meaning as in Table I. Due to an error in the

program R 2 2.was not found. F was based on variables adjusted for y z as well as

the mean.

The object of this run was to see if the _ terms would greatly improve the
m

fit of the model. A slight programming error prevented a complete analysis of
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TABLE VIII

RESULTS OF RUN 6

No of

Terms Term F

2.
i y x 129.57

2.
2 Y y 1092.74

3 Yt-_ 756.89
m

4 x2t 326.96

5 #t2 1163.19

6 y_ 274.36

2
7 xz 1122.50

8 z_ 2770.60

2.
9 z z 362.31

_-_ 7305.95lO

.F_

ll Ymm ---

A

this study but it seems clear that the -_ terms do not make a radical improvement
m

in the least squares fit.

Run 7

In this run the matrix described in run 5 was used_ with the mean and most

significant variable (y2_) eliminated in double precision. A throwout criterion

was used. This criterion consisted of throwing out any variable which had an

F of less than F and then admitting the "best" variable if it had an F greater
c

than F . If the best variable did not have an F greater than F then F was
c c c
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halved and the process repeated. The process started with F = i000 and
C

selected the first variable with an F of 130. The entire run was made with an

,

F of 125. There was no provision for throwing out the mean or y z. The run
C

stopped after selecting nineteen terms. The results are shown in Table IX.

TABLE IX

RESULTS OF RUN 7

No of

Sweep Terms Term F in F out R2 R2 (Run 5)

2.
i i y x 129.57 .0442 .0442

2.
2 2 y y 1092.74 .3124 .3124

3 3 _ t2 663.67 .4441 .4441
m

4 4 y_2 666.82 .5510 .5510

5 5 Yt 2 875.31 .6580 .6580

6 4 _t 2 3.50 .6575 .5510
m

7 5 Y_ 269.15 .6876 .6580

2
8 6 xz 1120.15 .7769 .6895

9 7 z_ 2747.50 .8875 .7770

i0 6 y_2 1.50 .8874 .6895

ii 7 Y 128.17 .8923 .7770

2.
12 6 y y 20.90 .8915 .6895

13 7 _ 434.29 .9061 .7770
m

14 8 _ t 328.81 .9160 .8911
m

15 9 xz 300.53 .9241 .9114

16 i0 xyz 2602.78 .9607 .9210

(Continued)
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TABLEIX (Concluded)

No of
Sweep Terms Term F in F out R 2 R2 (Run 5)

2
17 9 xz 3.04 .9607 .9114

2.
18 i0 z y ...... .9210

.2.

19 ii x y .........

The column "Sweep" contains the number of steps in which a variable was either

added or dropped. The column "No. of Terms" contains the number of estimation

variables in the regression model after the step. The column "Term" contains

the estimation variable added or dropped from the model at this step. The

column "F in" contains the value of F after the step if a variable was added.

The column "F out" contains the value of F before the step if a variable was

dropped. The column "R 2'' has the same meaning as in Table I. The column "R 2

o

(Run 5)" contains the value of R _ for the same number of terms in the model in

Run 5. Again in this case, F and R- were calculated from variables which were

adjusted from the most significant variable as well as the mean.

As a sample comparison_ the best seven-term polynomial obtained on this

run had R2 = .906 while the seven-term polynomial obtained in run 5 without a

throw-out criterion had R2 = .777. This indicates that the throwout criterion

is of significant value in this model.

Run 8

In this run a sub-sample of the data used in the previous runs was selected.

A matrix with 164 terms in the model was generated and adjusted for the mean.

No throw-out criterion was used.
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This run stopped after 27 terms due to accumulation of roundoff error.

The results are shown in Table X. The columns have the same meaning as in

Table I.

TABLE X

RESULTS OF RUN 8

No of

Terms

i

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

Term

.

yz

2.
yx

2.
YY

F

y_t

.2
yz

2
x z

yz_

_t

7.

2.
z z

y( )2

¢
_._t

m

2F

m

.F
zz--

m

F

126238.18

59.66

437.03

294.lO

174.95

471.52

113.75

440.91

1096.30

302.20

54.60

39.65

39.29

188.69

182.28

102.94

72.72

R 2

9905

9909

9933

9946

9953

9966

9969

-9977

.9988

.9990

.9991

.9991

.9991

•9993

.9994

.9994

.9994

(Continued)
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TABLEX (Concluded)

No of
Terms Term F R 2

18 y# 26.71 .9995

19 _t 43.04 .9995

.F

20 yy_ 55.37 .9995

.F
21 y_ 34.41 .9995

22 _ 40.25 .9995

23 xz_ 3770.59 .9999

24 x_t ......
m

25 (_)2t ......

26 _(_)2 ......

27 _Y ......

The object of this run was to see if the order in which the terms were

chosen was data dependent. A comparison of the terms in this run with those

F
run 5 shows that in this run term 4 (y_ t) and Term 8 "'_x2z)were substitutedin

for _t 2 and xz2_ obtained in run 5. With these two exceptions the two runs
m

agreed through i0 terms.

The comparison of regression coefficients for the two runs are shown in

Table XI. The column "No. of Terms" contains the number of terms in the

model, including the one previously eliminated in Run 5. The column "Term"

contains the individual estimation variables in the model at each step. The

coefficient Of the previously eliminated variable was not available in Run 5.

Blank spaces occur in the table where the two runs selected different variables.
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TABLE Xl

COMPARISON OF REGRESSION COEFFICIENTS FOR X
P

FOR TWO DATA BASES - RUN 5 VS. RUN 8

No of

Terms

2

Coefficients

Term Run 5 Run 8

•

yz

•

y x .18061

•48438

•]_8O88

3
o

y z .... .34662

2.
y x .71925 .69356

2.
Y Y •47732 •45339

4 •

y Z ---

2.
y x .68662

2.
y y •71063

_Ft 2 .01107
m

y_t
m

- .68870

.64266

•68497

.o1581

.

y z .... .82913

2.
y x .70617 .65162

2.
y y .73218 .70280

_t2 .03333
m

F

y_t .03885

.2
yz .66818 - .48003

(Continued)
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TABLEXl (Continued)

No of
Terms

6

Term

2.
yz

2.
yx

2.
YY

_t 2
m

F
y_t

.2
yz

_2

Coefficients

Run 5

•6563 8

•9336o

.00249

- 2.2942

- .65313

Run 8

- 2.1o83

•65oo2

.91354

.oo355

- 2.2808

- .64631

.

yz

2.
yx

2.
YY

_Ft2
m

F
Ym t

.2
yz

_2

3.4174

•92357

.oo531

- 1.3794

- .82546

-18.090

- 1.5468

3.3683

.91387

.00579

- 1.4387

- .84240

-17.870

.

yz

2.
yx

2.
YY

_Ft2
m

F
Ymt

7.2391

i.0728

•01009

- 1.0858

7. 1517

1.0729

.00299

(Continued)
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TABLEXI (Continued)

No of
Terms Term

.2
yz

2
xz

2
x z

Coefficients

Run 5

- .78559

- .63313

-42.643

31.507

Run 8

- .75808

- .61376

-41.972

-16.355

.

yz

2.
yx

2.
YY

gt 2
m

F
Ym t

.2
yz

2
XZ

2
x z

yz_

13. 768

1. 1878

.o1o48

.25766

- .29513

- .88929

52.455

- 3.7618

- .28o89

13.743

1.2002

•01222

•19476

- .31o85

- .88587

-28.255

- 3.6822

i0
•

yz

.

yx

2.
YY

13.746

i. 1367

•22053

13.776

1.1958

(Continued)
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TABLE Xl (Concluded)

No of

Terms

i0

Term

Zt 2
m

.2
yz

_2

2
xz

Coefficients

Run 5 Run 8

•06o48

.o7341

i.9980 i.9416

- .39379 - .56781

-88.146 -88.150

58.915

2
x z -33.479

yz_ - 4.8790 - 4.6496

_t 1.5577 1.7201

F F t 2The comparison indicates that the two terms y_t and - are very nearly
m m

linearly related. In any case, a look at run 5 shows that _ t 2 is eliminated
m

2
with a very small F and that eventually xz is also eliminated. The coeffici-

ents for the other terms agree remarkably well.

From this run_ it seems that only about 6 terms are valid predictors but

the fit is so good that it is hard to draw a firm conclusion.

Run 9

The matrix used in run 8, with the most significant variable (y2_) omitted

from the model was used in this run. There were 163 terms in the model. No

throwout criterion was used.
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The run stopped after selecting 31 variables. The results are shown in

Table XII. The columns have the same significance as in Table I. A comparison

of R2 with that of Run 8 with the same number of terms is included.

TABLE XII

RESULTS OF RUN 9

No of

Terms Term F R2 R2 (Run 8)

,

1 y x 120293.22 .9900 .9905

2.
2 y y 487.82 .9929 .9909

3 y_ 200.71 .9939 .9933

4 z 83.50 .9943 .9946

5 ? 35.10 .9943 .9953

6 y#t 1479.98 .9975 .9966

7 _ 348.10 .9980 .9969

2t8 y 134.71 .9982 .9977

F
9 z_ _ 450.26 .9987 .9988

..r

l0 yz - 332.33 .9990 9990m

.F
ll y_t 187.36 .9991 .9991

12 y_t 281.19 .9993 .9991

_(_)2 158.81 .9994 .999113

14 t3 43.47 .9994 .9993

15 (_)2t 32.86 .9994 .9994

16 x_ _ 66 93 .9994 9994
m " "

(Continued)
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TABLE Xll (Concluded)

No of

Terms Ter____m_m F R 2 R2 (Run 8)

17 Z t2 21.73 .9995 .9994
m

.2F
18 z -- 52.20 .9995 .9995m

19 _ z t 32.81 •9995 •9995
m

20 t2 12.62 .9995 .9995

21 _t 30.43 9995 .9995
m

22 y_ t 65.75 .9995 .9995

23 xyt 27.20 .9995 .9999

F
24 xy_ 29.95 .9996 ---

25 xt 23.05 .9996 ---

26 z_ 23.76 .9996 ---

27 _t 54.20 .9996 --o

28 yz_ 93.46 .9996 ---

29 #_t .........

3o # .........

3l _t2 .........

The purpose of this run was to see if y2.z was really important or if some

other variables would serve just as well. This run showed that not only was

2.
y z not necessary but that overall the results were better without it. In par-

2. 2. R 2ticular it was not one of the best two variables since y x and y y, with =

2. 2. R2•993, were better than y z and y x, with = .991.
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This would indicate that there are a lot of different collections of terms

all of which can be madeto fit very well. There is no need, therefore, to

pick the "best" model if there are manymodels which are essentially as good.

Run i0

The matrix used in this run was the sameas that used in run 8 with the

throwout criterion described for run 7. The first term was selected with an F

of 126,000. Fc started at i000 and was eventually reduced to 0.9765625.

The run stopped after selecting 32 terms. The results, including a com-

parison with run 8, are shownin Table XIII. The results for the first six

terms are the sameas in run 8. The columns have the samemeaning as those in

Table VII (except, of course, that no variables except the meanwere previously

eliminated). Hence, F and R2 are calculated with respect to variables adjusted

for the meanonly. The conclusion drawn from this run was that there is no

reason for including more than i0 terms in the model.

TABLEXllI

RESULTSOFRUNI0

No of
Sweep Terms Term F in F out R2 R 2 (Run 8)

2.
i i y z 126238.18 .9905 .9905

2.
2 2 y x 59.66 .9909 .9909

2.
3 3 Y Y 437.03 .9933 .9933

F
4 4 y_t 294.10 .9946 .9946

5 5 y_2 174.95 .9953 .9953

(Continued)
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TABLEXIII (Continued)

Sweep

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

No of

Terms

6

5

6

7

8

7

8

9

i0

ii

12

13

12

13

14

13

12

13

14

z3

14

Term

:?t 2

F
y-t

m

y_
2

X z

yz2

.2
yz

y(F) 2

:::Zt
m

¢
F

yz--
m

2.
xy

_2

z_/r

.2
zy

¢
2

x z

z

.2.
yz

2
yz

F in

471.52

109. Ol

447.16

966.98

128.66

245.89

151.85

126.88

156.42

72.56

37.24

22.14

38.31

30.91

4.45

F out

2.54

0.89

7.07

6.49

6.0].

0.00

R2

.9966

.9966

.9969

.9977

.9987

.9987

.9989

.9990

.9992

.9992

.9993

.9994

.9994

.9994

.9994

.9994

.9994

.9994

.9994

.9994

.9994

R2 (Run 8)

.9966

.9953

.9966

.9969

.9977

.9969

.9977

.9988

.9990

.9991

.9991

.9991

9991

9991

9993

9991

9991

9991

.9993

.9991

.9993

(Continued)
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TABLE Xlll (Continued)

Sweep

27

28

29

30

31

32

33

34

35

4O

45

50

55

60

65

70

75

8O

85

90

91

92

No of

Terms

15

14

15

16

15

16

17

18

19

16

17

18

2z

24

23

24

23

24

25

26

27

28

Term

.2
z

yzl

(-Fro)2

_2 t

2
yz

F
Z --

m

7.

2.
YY

2.
xy

2. F
YYm

_(_)2

.2F
y -

m

x_t

.2
zz

x_ 2

2F
y -

m

•F
zx--

m

F in

7.79

5.76

31.70

19.25

14.72

26.41

58.46

4.47

1.82

8.31

4.60

8.15

3.55

34.84

55.83

151.28

F out

0.25

3.11

i.02

0.20

o.o6

o.97

R2

.9994

.9994

.9994

.9994

.9994

•9994

.9995

.9995

.9995

.9995

.9995

.9995

.9995

.9995

.9995

.9996

.9996

.9996

.9996

.9996

.9996

.9997

R2 (Run 8)

•9994

.9993

•9994

.9994

.9994

.9994

•9994

•9995

.9995

.9994

.9994

•9995

.9995

•9999

.9999

(Continued)
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TABLE XIII (Concluded)

No of

Sweep Terms Term F in F out R 2

.2F
93 27 z - O.O1 9997m

94 26 # 0.27 .9997

95 27 xy# 700}. 83 •9999

2.
_f_o 28 x y ......

.2F
97 29 y .......

m

98 30 y_ _F ......
m

.2
99 31 yz ......

I00 32 # ......

R 2 (Run 8)

Run ii

The matrix used in this run was the same as that used in run 5, except that

the dependent variable was Xy and the most significant variable (which was

eliminated in double precision_ together with the mean) was y. No throwout

criterion was used.

The run stopped after 12 variables were selected. The results are shown

in Table XIV. The columns have the same meaning as those in Table VII.

It was not necessary to eliminate the variable y in double precision.

However, the mean should be eliminated in double precision, since it accounted

for most of the sum of squares.
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TABLE XIV

RESULTS OF RUN ii

No of

Terms Term F R 2

2.
1 y x 2864.86 •5055

2 y{ 635.48 •5969

3 yz_ 69.47 .6066

4 xy_ 4461.35 .8483

5 Y 476.88 .8704

6 _2t 456.58 .8886

7 _t 181.31 .8954

2
8 y 228.32 .9033

9 yz 224.59 .9110

lO xy 1188.58 .9376

ii x_ ......

2
12 XZ ......

Runl2

The matrix used in this run was the NASA sum of squares matrix, accurate

to about 12 places after adjustment for the mean and most significant variable

(y) in double precision, with Xy as the dependent variable, the terms in the

model consisting of the terms selected in run ll together with all terms con-

taining _/m (which had been omitted in run ll). This gave a model with 65

terms. No throwout criterion was used.
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No -_ terms were selected for the regression equation. Hence, the results
m

were exactly the same as in run ll. This again indicates that the m terms do
m

not significantly improve the least squares fit.

Run 13

The matrix used in this run was the same as that used in run 8, except that

the dependent variable was X . No throw-out criterion was used.
Y

The run stopped after 38 terms were selected. The results are shown in

Table XV. The columns have the same significance as in Table I.

TABLE XV

RESULTS OF RUN ]-3

No of
Terms Term F R2

1 y 168.62 .1217

2.
2 y x 1555.14 .5846

3 y_ 315.24 .6702

2.
4 y y 40.63 .6809

5 x 52.63 .6941

6 z 1781.79 .8762

.2
7 yy 51.75 .8812

.2
8 zz 328.52 .9066

9 x_2 111.34 .9145

io xy_ 169.59 .9250

ii (_)3 76.39 .9295
m

(Continued)
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TABLE XV (Continued)

No of

Terms

12

13

14

15

16

17

18

19

2o

21

22

23

24

25

26

27

28

29

3o

31

32

33

Term F

. F
ZZ

m
2

Z

• . F
XZ --

m

• F
XZ --

m

. F
y_t

•F2

x_.

.2
ZX

2
•2.

xy

• • r

yz--
m

•.2
xz

,.2

yz

. F
X --

m

x:_#

x#_.

• F
yz N

XZ

y( )2

_r_t

51.33

19.45

38.82

47.88

22.42

75.40

17.97

10.51

18.87

8.76

lO.35

7.59

7.1o

3.45

6.49

5.95

5.56

5.73

1.39

3.52

2.49

3.72

R2

.9324

•9334

.9355

.9380

.9391

•9427

.9435

•944o

.9449

.9453

•9458

•9461

•9464

•9466

•9469

.9471

.9474

•9476

•9476

.9478

•9479

.9480

(Continued)
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TABLE XV (Concluded)

No of

Terms Term F R2

34 z_ ii. 54 .9486

.2
35 xx 3 i. 23 •9499

• F
36 zx -- 1646• 63 •9791

m

37 ......

38 z_t ......

The object of this run was to find if the order in which the terms were

chosen was data dependent for the variable Xy. In this case only the first

three terms agree. However_ a comparison of coefficients for these terms seems

to indicate that they are not heavily data dependent. These comparisons are

shown in Table XVI. The columns have the same significance as in Table XI.

TABLE XVI

COMPARISON OF REGRESSION COEFFICIENTS FOR Xy

FOR TWO DATA BASIS (RUN ii VS. RUN 13)

No of

Terms Term

Y

2
yx

Coefficients

Run ii

m_m

.045396

Run 13

22.173

.044057

3 Y

2
yx

y_

•30472

3.0249

19.o31

.31863

3.1979
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Run 14

Thematrix used in run 13 was used in this run with the throwout criterion

described for run 7. The first variable was selected with an F of 168 (and

hence with an Fc of 125). Fc was eventually reduced to 3.90625.

The procedure stopped after selection of 27 terms. The results including

a comparisonwith run 13 is shownin Table XVII. It is seen that the results

TABLEXVII

RESULTSOFRUN14

No of
Sweep Terms Term F in F out R2 R 2 (Run 13)

i i y 168.62 .1217 .1217

2.
2 2 y x 1355.14 .5846 .5846

3 3 Y_ 315.24 .6702 .6702

2.
4 4 y y 40.63 .6809 .6809

5 5 x 52.63 .6941 .6941

6 6 z 1781.79 .8762 .8762

.2
7 7 YY 51.75 .8812 .8812

.2
8 8 zz 328.52 .9066 .9066

.2
9 9 xz 111.34 .9145 .9145

i0 8 z 27. ii .9125 .9066

ii 9 yzl 195.63 •9247 •9145

12 8 x 8.58 .9242 .9066

.F
13 9 yy_ 50.34 •9272 •9145

14 I0 _2t 43.75 .9297 .9250

(Continued)
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TABLE XVII (Continued)

Sweep

15

Z6

17

Z8

19

2O

21

22

23

24

25

26

27

28

29

3O

3Z

32

33

34

35

No of

Terms

9

i0

ii

12

]-3

14

13

14

13

14

15

16

15

14

15

14

13

14

Z5

14

!5

Term

.2
YY

z3

F

m

2
xz

z_.

.2.
X Z

.2
zz

2.
yz

y_

2
X

2F

m

•2F
X --

m

P

m

Y

.F
ZZ--

m

•F

2F
Z --

m

2.
yz

)(_)2

F in F out

26.93

57.07

28.31

22.21

25.66

19.01

3.76

12.43

5.53

6.95

12.49

23 .o5

o.39

o•69

15.19

O.01

3.64

i0 •37

13.78

3.49

15.43

R2

.9281

•9314

•9330

•9342

.9355

•9365

•9364

•937O

•9367

.9371

.9377

.9389

.9389

•9388

•9396

.9396

.9394

.9399

•94o6

.9404

.9412

R2 ( unz3)

.9145

•925O

.9295

•9324

•9334

•9355

•933 4

.9355

•933 4

.9355

.9380

.939]

.9380

.9355

.938O

.9355

.9334

.9355

.9380

.9355

.938O

(Continued)
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TABLE XVII (Concluded)

No of

Sweep Terms Term F in F out R2 R2 (Run 13)

.2.

40 16 y z 14.33 .9426 .9321

2.
45 19 z y 12.60 .9446 .9440

.2.

50 18 y z 2.22 .9452 .9435

.2F
55 19 z -- 4.96 .9460 .9440

m

2.
60 22 y z 14.37 .9479 .9458

61 23 _ 14.85 .9486 .9461

62 24 xz_ 45.16 .9504 .9464

2.
63 25 x y 389.12 .9626 .9466

y -Fm t ...... •946964 26

F
65 27 z ....... .9471

m

for the first nine terms are the same as in run 3. The columns have the same

meaning as the run 7. F and R2 were calculated with respect to mean-adjusted

variables.

These results seem to reaffirm the conclusion that there are mny sets of

variables which would serve equally well in fitting.

Run 15

The matrix used in this run was the same as that used in run 5, except

that the dependent variable was TR and the most significant variable (which

was eliminated in double precision, along with the mean) was t. (The most

significant variable in the NASA run was _; however, it is logical that t

2 i0



would be most significant after meanadjustment, since TR is approximately a

linear function of t.) No throwout criterion was used.

The procedure stopped after selecting 14 variables. The results are shown

in Table XVIII. The columns have the samesignificance as in Table I. Due to

TABLEXVIII

RESULTSOFRUN15

No of
Terms Term F

2.
i y z 1401.83

2 t 2 5327-97
2.

3 y x 3837•12
2.

4 y y 581.56

5 x 228.87

.2
6 yy 27.66

7 _#_ 564.32

2F
8 y -- 574.61

m

• F 1708•729 yx m

i0 y_2 2263.60

ii _ F 294.55
m

.2
12 y z 354.02

.2
13 z 492.33

14 x_ ---

a slight programming error, the correlations were not found. F was calculated

with respect to variables adjusted for the mean and t.
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In this case_ it was best to eliminate the most significant variable in

double precision_ since TR is almost linear in t.

Run 16

The matrix used in this run was the sameas that used in run 8_ except

that the dependent variable was TR. No throwout criterion was used•

The run stopped after selecting 41 terms. The results are shown in Table

XIX. The columns have the samesignificance as in Table I.

TABLEXIX

RESULTSOFRUN16

No of
Term_ Term F Re

i t 545817•58 .99778

2.
2 y z 477.86 .99840

3 t2 2275.89 .99944

2.
4 y x 1499.67 .99975

2.
5 y y 308.29 .99980

6 x 118.39 •99982

.2
7 YY i0.91 •99982

8 _#_ 259. ii .99985

2F
9 y - 208.50 .99987

m

• F 700.18 .99992lO yx m

.2
ii yz 851.81 .99995

.2 F
12 x -- 117•69 .99996

m

(Cont inue d )
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No of

Terms

13

14

15

16

17

18

m9

2O

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

TABLE XIX (Continued)

Term

_t

y_t

z#

x#

xyz

x_

xt

2.
XX

..2
XZ

..2

xy

xt 2

zt 2

t 3

_(_)2
F

y-t
m

o2
yz

x:d

x2t

F

327.53

135.75

52.o9

103.71

86.59

40.34

33.38

20.25

8.92

5.97

7.o2

4.72

9.95

6.71

13.08

18.18

5.67

6.32

3.72

11.48

7.21

18.o4

(Cont inued )
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R2

.99997

.99997

.99997

.99997

.99998

.99998

.99998

.99998

.99998

.99998

.99998

.99998

.99998

.99998

.99998

.99998

.99998

.99998

.99998

.99998

.99998

.99998

F



TABLE XIX (Concluded)

No of

Terms Term F

.

35 x y

36 z#t

• . F

37 yz m

38 23

39 z_

40 _ Ft
m

2F
41 z --

m

R 2

279.06 °99998

mmm mmm

The first eleven terms were the same as in run 14. A comparison of

coefficients is shown in Table Xi<. The columns have the same significance as

TABLE XX

COMPARISON OF REGRESSION COEFFICIENTS FOR TWO

FOR 2 DATA BASES (RUN 15 VS. RUN 16)

No of

Terms

Coefficients

Term Run 15 Run 16

t .... 77.506

2.
y z 1.4816 1.3034

(C ont inue d)
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TABLE XX (Continued)

No of

Terms

i0

ii

Ter_n

t

.

yz

t2

2.
yx

2.
YY

.

yz

t 2

2.
yx

2.
YY

X

.2
YY

2F
y -

m

• F
YX m

t

.

yz

t2

2.
yx

2.
YY

x

Coefficients

Run 15

1.0214

4.6587

- 1.7560

- .44484

Run 16

-78.477

1.o42o

4.5754

- 1.7783

- .49051

.41178

8.976o

- 1.9945

- 1.1146

-6o.945

- 2.1574

- .83500

- .60183

.54114

-98.162

°45415

8.7679

- 1.9869

- 1.1007

-56.506

- 2.1189

- .88217

- .59466

.53880

3.4763

4.0752

- 2.0768

- 1.7610

- 1.4068

-37.637

3.2592

4.5254

- 2.0941

- 1.7378

- 1.3353

(Continued)
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TABLEXX (Concluded)

No of Coefficients
Terms Term Run 15 Run 16

.2
ii _ .69807 .39229

_#_ - 6.7264 - 6.2677

2F
y -- - 1.0021 - .97826

m

• F .94838 .92314

.2
yz 5.6141 5.2330

in Table XI. This again indicates that the choice of terms is not data depend-

ent. However_ as for the other dependent variables_ more terms were selected

with the smaller data base.

Run 17

The matrix used in run 16_ with the most significant varable (t) omitted

from the model_ was used in this rua. No throwout criterion was used.

The procedure stopped after selecting 23 terms. The results are shown

in Table XXI. The columns have the same significance as in Table II.

TABLE XXI

RESULTS OF RUN 17

No of

Terms

i

2

F R2 R2 (R n 16)

yt 298484.13 .99594 .99778

2.
y z 4077.81 .99907 .99840

(C ont inue d )
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TABLE XXI (Concluded)

No of
Terms

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

2O

21

22

23

Term

_2

2.
yx

2•
YY

X

.2

e• F
yz --

m

2F
y -m

• F
m

m

.2F
X --

m

t 2

Z

F

m

z2t

xt

.2
X

F
Ym

F
xy _

2.
XZ

F

628.71

2057.76

46.73

255.81

65.2o

171.67

261.31

973.93

539.56

159.08

341.00

111.82

118.78

2o.56

61.33

29.19

62.99

27.57

467.60

R2

.99938

.99977

.99978

•99982

.99983

-99985

.99988

-99993

.99995

•99996

.99997

.99997

.99997

.99997

-99998

.99998

.99998

-99998

.99998

mmn

R2 (Ru_16)

.99944

.99975

•99980

•99982

.99982

.99985

.99987

.99992

.99995

.99996

-99997

•99997

-99997

•99997

•99998

.99998

-99998

-99998

•99998

.99998

.99998
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Again_ as more variables were added the results seem to be better without

the most significant variable.

Run 18

In this run the matrix of run 16 was used with the throwout criterion of

run 7. The first term was selected with an F of 545818. During the run_ F
C

was reduced from i000 to 7.8125.

The run failed due to a machine error after selecting 21 terms. The results

are shown in Table XXII. The columns have the same significance as in Table XI.

The results for the first twelve terms are the same as for run 16.

TABLE XXII

RESULTS OF RUN 18

No of R2 R2 (Run 16)Sweep Terms Term F in F out

i i t 545817.58 .99778 .99778

2.
2 2 y z 477.86 .99840 .99840

3 3 t2 2275.89 .99944 .99944

2.
4 4 y x 1499.67 .99975 .99975

2.
5 5 y y 308.29 .99980 .99980

6 6 x 118.39 •99982 •99982

.2
7 7 YY i0.91 •99982 •99982

8 8 _#_ 259.11 .99985 .99985

2F
9 9 y - 208.50 .99987 .99987

m

i0 i0 Y _ F 700.18 •99992 .99992
m

(Continued)
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TABLE XXII (Continued)

Sweep

ll

3.2

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

3o

31

No of

Terms

ii

12

ii

12

ii

12

13

14

15

16

15

16

17

16

15

16

15

16

15

16

17

Term

.2
yz

.2 F
X --

m

.2
YY

F
y--

m

F
m

• F
ZZ --

m

x_

t 2

F
Z _

m

• F
ZZ --

m

t

xy_.

2.
yz

• F
X --

m

2r

F
y_-t

F in

851.81

117.69

271.77

i17.04

78.44

61.o2

99.04

79.07

16.95

10.75

8.09

18.44

69.36

F out

0.ll

o.65

0.13

1.84

2.03

1.56

o.o7

R2

.99995

.99996

.99996

.99996

.99996

.99997

.99997

.99997

.99998

.99998

.99998

.99998

.99998

.99998

.99998

.99998

.99998

-99998

.99998

-99998

R2 (R= 16)

.99995

•99996

.99995

.99996

-99995

.99996

•99997

.99997

.99997

-99997

.99997

.99997

•99998

•99997

.99997

.99997

-99997

-99997

-99997

.99997

•99998

(Continued)
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TABLE XXII (Concluded)

sw__T_2

32

33

34

35

No of

Terms

18

19

2O

21

Term

xz_

F
z--t

m

2
X

F in F out R2 R2 (R_ 16)

.99998

.99998

.99998

.99998
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III. SUMMARY

A summary of the runs made is given in Table XXIII.

TABLE XXIII

SUMMARY OF RUNS

The column "Run" gives

RLLTI

i

2

3

4

5

6

7

8

9

i0

ll

12

13

14

15

16

17

18

Guidance Data Thr owout Max No

Function Base Adjustment Criterion of Terms

Xp i Mean No i0 - ii

Xp i Mean No ii- 16

Xp i Mean No ii - 13

Xp i None No 16 - 20

2.
Xp i Mean; y z No i0 - 12

2.
Xp i Mean; y z No i0 - ii

2.
Xp i Mean; y z Yes i0 - ii

Xp 2 Mean No 23 - 27

Xp 2 Mean No 28 - 31

Xp 2 Mean Yes 28 - 32

Xy i Mean; y No i0 - 12

Xy I Mean; y No i0 - 12

Xy 2 Mean No 36 - 38

Xy 2 Mean Yes 25 - 27

TR i Mean; t No 13 - 14

TR 2 Mean No 35 - 41

TR 2 Mean No 21 - 23

TR 2 Mean Yes 17 - 21

Max R2 Min R2

•9992 .9900

•9994 .9900

•9996 .9900

•99999 .99948

.9210 .0442

•9607 .0442

•9999 .9905

•9996 .9900

•9999 .9905

•9376 .5055

•9376 .5055

•9791 .1217

.9626 .1217

•99998 .99778

•99998 .99594

•99998 .99778
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the run numberas used in this study. These runs are ordered first by dependent

variable and then chronologically for each variable. The column "Guidance

Function" contains the guidance function (Xp, Xy, or TR) used as the dependent

variable in the run. The column "Data Base" specifies which of the two data

bases was used in the run. The larger data base is represented by i and the

smaller by 2. The column "Adjustment" indicates for which variables, if any,

the sumof squares matrix was adjusted before entering the stepwise procedure.

If any variable is given in addition to the mean, that _riable was most sig-

nificant after meanadjustment. The values of F and R2 in the preceding tables

were calculated with respect to the variables after adjustment. The column

"Throwout Criterion" indicates whether a throwout criterion was used.

The first number in the column "Max. No. of Terms" is the largest number

of terms in the model for which the sumof squares of error remained positive.

The second is the largest number of terms found. This excludes terms for which

the matrix was previously adjusted. It was found that consistently more terms

were selected on runs using the smaller data base.

The column "Max. R2'' contains the largest value of R2_ as defined for Table

I, found. This information was not available for Run 6 or Run 15. With the

exception of run i0_ this R2 occurred with the number of terms given first in

the preceding column. In Run I0_ which used a throwout criterion 27 terms gave

R2 = .9999, as comparedto R2 = -9997 previously given by 28 terms. Comparisons

of R2 are valid only where the sameguidance function and type of adjustment

were used. The column "Min R2'' gives the value of R2 for the best single term.

Someruns were madeunder the sameconditions for different dependent vari-

ables. These combinations are: Runs 5, ii, and 15; Runs 6 and 12; Runs 18, 13,

and 16_ Runs 9 and 17; and Runs i0_ 14, and 18. These could be used for compari-

sons.
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IV. CONCLUSIONSANDRECOMMENDATIONS

The step-up procedure seemsto be an effective method for selecting

variables to estimate a guidance function. There were several questions which

arose in this study_ someof which are still unresolved. These questions

included whether the data should be mean-adjusted, whether someroundoff

criterion should be used_ whether a throwout criterion is worthwhile, whether

extra precision would be worthwhile_ whether the resulting model would be data

dependent, and whether the model would actually accomplish the mission. The

following conclusions may be drawn from the present study:

i. Mean-adjustment

There is no evidence to indicate whether or not this should be done in this

problem. In general; the computation of the sumof squares and cross products

matrix should be done about somepseudo-means. Otherwise, a great deal of

accuracy could be lost in the elimination of the first term. From a physical

point of view it would seemadvisable to include a constant term in the model.

2. Roundoff Criterion

Because of the way in which variables are introduced into this model, there

is the danger that the roundoff error could cause terms which should not be

included in the model to enter. This would happen; if one of the vectors in

the model was itself dependent on the ones previously included. To avoid this

situation, there should be somesort of lower limit on the length (diagonal

terms of adjusted sumsof squares matrix) of vectors to be included in the

regression equation. This situation has not been investigated.
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In order to develop a roundoff criterion one could_ for example_ run a

problem in which some of the independent variables are dependent or almost

dependent on other independent variables. Then one would see what kind of

roundoff criteria serve best to prevent the pick-up of these terms. One would

then see if any really important terms might be omitted because of this criterion.

3- Throwout Criterion

In general_ it seems that the best throwout criterion is based on the F

statistic. One starts by setting this F at a large number like i000. Then
C

one proceeds to admit the best term if it can be admitted with an F greater

than Fc . One then examines all included terms and eliminates those which may

be eliminated with an F less than F c. When the best term does not have an F

greater than Fc then one replaces F c by Fc/2 and proceeds as before.

In this problem in which there are many groups of about i0 terms which

are extremely good_ in the least squares sense_ the throwout criterion does not

make significant improvement. However_ the results of run 7 show an example

of some fairly good improvement resulting from the throwout criterion. In that

R2case the straight step-up procedure gave a six term model with an of .689%

while the throwout criterion described above gave a six term model with R2 =

.8915.

The throwout criterion should be used_ because it very rarely will hurt

the least squares fi% and most often will improve it.

4. Extra Precision

In any problem in which the first 2 variables explain 99_ of the variation,

these variables should be eliminated in double precision. Other than this,

multiple precision is not needed. Great precision is needed in the matrix
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inversion only if the matrix is relatively ill conditioned. Iii conditioned

matrices can be avoided by adjustment of the roundoff criterion. Thus if the

inclusion of a certain term in the model will make the matrix near singular_

then that term is nearly in the space of the previously included vectors. Thus

its residual length will be in some sense small. The proper roundoff criterion

will then prevent the inclusion of this term.

5. Data Base

The present experiments regarding data base variations have been very

limited. In some of the runs_ a data set which was a subset of the original

data set was used. For example_ in run 8 it can be seen that the coefficients

of about the first eight terms in the model were stable. This is about all

one could expect in this situation.

It may be concluded that for this problem there may be some merit in

searching for a good least squares fit which has stable coefficient over vari-

ous different data sets rather than in searching for the best least squares fit.

6. Comparison of Models

The only reasonable way to compare models is to simulate flights using

each. If the mission is not accomplished, then the model is not acceptable.

If two models both accomplish the mission (from a large class of initial points)_

then the one with the shorter time of powered flight is better.

It is recommended that further studies in the application of the stepwise

regression procedure be made. Additional experience is needed to develop effi-

cient roundoff and throwout criteria. Further study is needed to determine the

sensitivity of the model to the data base selected.
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Since the least square fit is only one aspect of the overall problem

(performance as far as mission requirements are concerned is the other) it is

necessary to evaluate the various estimators in simulated flights employing

each of these estimators. For this evaluation it is best that a simpler prob-

lem be selected. Control over the data base would be much easier with a

simpler problem and a greater variety of data bases could be investigated.
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APPENDIX 4

OPTIMAL CONTROL IN A FLAT EARTH PROBLEM



1. Int roduct ion

This report is a study in some detail of a well-known and fairly uncompli-

cated problem of optimal control in a hypothetical missile trajectory.

Still, the study serves several purposes. First of all the problem lends

itself to a complete but certainly nontrivial solution. A more complex model

can to some extent be viewed as a perturbation of this simpler one, and its

solution might be attained by corresponding methods or possibly even by itera-

tions begun with the solution to the simple problem.

Secondly, the simple model and its solution are a means for generating data

in the laboratory; i.e., optimal "flights" can be readily simulated. The

ability to generate optimal-trajectory data in a somewhat controlled manner is

essential for further fruitful studies of approximating optimal trajectories.

2. The Problem Studied

The problem analyzed is one of the so-called "flat-earth" problems.

Generally speaking 3 a missile is launched on a trajectory which is restricted

to a plane. It takes off from a certain point with prescribed velocity com-

ponents, during powered flight maintains constant thrust, and after cutoff the

missile free-falls to a target point with prescribed velocity. During powered

flight the angle of thrust is controllable. The force of gravity is assumed

to be constant. The problem is to determine the thrust angle so as to minimize

the time until cutoff (presumably this would realistically be related to mini-

mizing fuel requirements). The plane in which the trajectory lies is thought

of as being perpendicular to a plane which is called the "flat earth" for

obvious reasons.
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Ordinarily_ thinking of the entire trajectory_ the optimal thrust angle

evolves as a function of elapsed time (as well as of the initial launch and

terminal conditions). It is perhaps more pertinent to obtain the optimal thrust

angle in terms of current position and velocity; i.e._ to s_nthesize the optimal

control function. From this point of view the problem becomes one of determin-

ing the optimal current thrust angle as a function of current state conditions.

Thus synthesizing the optimal trajectory is tantamount to finding the optimal

"initial" thrust angle at various new "launch" points along the optimal tra-

jectory under new "initial" conditions.

The synthesized solution of course could be automated to respond to sensors

of state conditions_ and this could be done with on-board equipment_ provided

the computation is not too complex. (One of the aims in using approximate

methods_ such as polynomial functions of the state variables_ is to facilitate

the rapid computation of synthesized control parameters with small simple equip-

ment. )

It should be noted that in reality the time lag between sensing the state

conditions and actuating an adjustment in control causes some deviation from

the theoretically optimal trajectory. Such error_ however 3 does not accumulate_

since the next adjustment will be (nearly) optimal for whatever state conditions

obtain at that time.

3. Detailed Discussion of the Analysis

The equations of motion are based on Newton's second law_ F = ma_ where F

is a force vector and a is the acceleration vector_ within the mass.

During free-fallj after cutoff of power_ the force acting on the missile

is assumed to be only a constant gravitational forc% -rag. Hence, the equations
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of motion during the free-fall portion of flight are

0, = -g,

where _'(t), _(t) are second derivatives of the components of the position vector

(x(t), y(t)) and make up the acceleration vector a. It will be assumed that

the terminal conditions to be made at the target point at time tT are specified:

x(tT) = XT' Y(tT) = YT' x(tT) = _' Y(tT) = YT"

During the powered phase of flight_ writing F equal to the magnitude of

the force vector at (x(t), y(t)) and u(t) the controlled angle of thrust, the

force vector is resolved into

m_'(t) = F sin u(t), m_(t) = F cos u(t) - rag,

where the convention is made to measure u(t) positively in a clockwise turning

from the upward axis (positive y-axis). Thus the differential equations

governing the powered flight are

_(t) = F sin u(t), _(t) = F cos u(t) - g,
m m

with initial conditions at time tI given as

x(tl) = xI' Y(tl) = YI' _(tl) = _I' #(tl) = #I"

Note that _ is constant by virtue of the assumption of constant thrust.
m

The situation is summarized in the figure below:
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The time to cutoff is tc - t I. The synthesis problem is to determine

u(ti) _ the initial control angle (for any t I of course) so as to maintain an

optimal trajectory (one for which t - tI is minimum), subject to the equationsC

of motion and the prescribed initial and terminal condition.

Note that at cutoff time t
C

satisfied.

both sets of differential equations will be

The problem is simplified mathematically and conceptually if a relative

coordinate system is adopted. Relative to the original coordinate system the

new coordinate system has a motion due to the effect of gravity. Within the

new system the complicating effect of the gravitational field is not in

evidence.
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Mathematically the tranformation is accomplished in order to eliminate

the constant g from the differential equations. At the same time the terminal

conditions can be shifted to the origin in the relative coordinate system.

The appropriate transformation is determined by integrating the free-fall

equations so that the terminal conditions are met. Thus_ during free-fall_ in

the original coordinate system_

_(t) = %, #(t) = -g(t-t T) + YT

x(t) = _(t-tT) + XT, y(t) = -_(t-tT)2 + #T(t-tT) + YT"

Let

Xl(t)= x(t) _(tt T) -

yl(t) = y(t) + #(t-tT)2 - #T(t-tT) - YT"

Then

;_l(t) = _(t) - :_, #l(t) = #(t) + g(t-tT) -YT"

For given t > 0 (xl, Yl) and (_l,#l) are coordinates in the relative phase space.

Theorem. A necessary and sufficient condition for the missile trajectory

in the original phase space to satisfy the given equations and conditions is

that in the relative phase space the following equations and conditions will

be satisfied:

During free-fall

%if(t) = O, ym(t) = 0
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with terminal conditions

" " txl(tT) = Yl(tT) = xl(tT) = yl(T) = 0

and during powered flight

Xl (t) = --mFsin u(t), "_l(t) = --mFcos u(t)

with initial conditions

xl(tl) = XlT' Yl(tl ) = YlT' xl(tl ) = XlT' #l(tl ) = #LT'

where XlT, YLT' XlT' YLT are given in terms of XT, YT' _' #T'

tl_ tT by the transformation equations above.

Moreover_ the free-fall conditions in the relative space are met if and

only if

x(t) = y(t) = _(t) = #(t) = 0

for t > t .-- c

The proof of the theorem is straightfor_ardo Thus_ e.g._ in the powered

flight_ by differentiating the transformation equations,

_l(t) = _'(t) = Fm sin u(t)

F cos u(t) - g + g."_l(t) = _(t) + g = m

Also_ during free-fall

"_l(t) = "_(t) = 0 and'#l(t) = _l(t) + g = -g + g = O.
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And

xl(t T) = Yl(tT) = xl(tT) = #l(tT) = O,

as can be seen from the transformation equations and the original terminal

condition. But'_l = 0 implies that _l(t) is constant and since _l(tT) = O,

this constant is zero. Thus _l(t) = 0. Similarly, so is #l(t). And, by the

samereasoning, so also are xl(t ) and Yl(t) equal zero during free-fall.

As was indicated the problem is conceptually simpler in the relative

system. It reduces to that of flying to the origin under power, having no

(relative) velocity there, cutting power, subject to the initial conditions,

all in minimumtime tc-t I .

The problem in the relative coordinate system is thus analogous to that

of steering a jet-propelled iceboat on a frictionless ice rink to sometarget

point so that when the power is cut at the target point the boat will remain

on target and to accomplish this in minimal time and subject to the initial

conditions of position and velocity and the condition of operating at constant

thrust.

The speculation is that the humannervous system could learn to "solve"

such a problem very nearly optimally_ even perhaps with variable thrust capa-

bility. Whether actual "space driving" simulations of this type would be

useful, either in studying methods for approximating optimal trajectories or

in personnel training_ is perhaps an interesting question but well beyond the

scope of this project.

By virtue of the foregoing theorem it is sufficient to be concerned with

the solution to the equivalent problem in the relative coordinate system.
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With this understanding the subscript indicated the transformed variables are

dropped. It will also be convenient to choose force units so that F = i, since
m

F
--was prescribed as constant. The remaining synthesis problem in the relative
m

coordinate system is investigated by means of the Pontryagin maximality

principle.

In order to minimize time to cutoff, t c - t13 while adhering to the

conditions

_(t) = sin u(t), y(t) = cos u(t)

" tx(tl) = xI' Y(tl) -- YI' _(tl) = _I' y( I ) = #I

x(t ) = y(t ) = _(t ) = #(t ) = O,
C C e C

This principle imposes certain necessary conditions on u(t), tI <_ t _< t c-

Let zI = _, z2 = Y, z3 = x, z4 = y, z = (Zl, Z2, Z3, Z4 )T. Then the system of

two 2nd-order differential equations above is equivalent to the system of four

first-order equations

_3 = Zl' _4 = z2' E1 = sin u(t), z2 = cos u(t).

with corresponding initial and terminal conditions. Or_ more tersely,

= f(z,t), where _ = (_i,_2,_3,_4)T and f(z,t) = (fl, f2, fB, f4 )T, with

fl(z,t) = sin u(t), f2(z,t) = cos u(t), f3(z,t) = Zl, f4(z,t) = z2.

The condition imposed on u(t) in the maximality principle is that, in order

for control u(t) to transfer a missile optimally from the given initial point

to the terminal point, there must exist auxiliary forms. _(t) = ($i,_2,_3,_4)T
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such that the Hamiltonian

4

H(_, z, t, u(t)) = _.f = Z _ifi

i=l

attains a maximum on the admissible set of controls. Here _ is a solution to

the auxiliary system

= -f 4,
z

with

f
Z

8fm 3f4
eee

:
•

_fl _f4

Note that if _ = f(z,t) and @ = -fz_ , then

=f_-_

and

and, conversely, if H_ = _,and Hz = -@' then z(t) and _(t) satisfy the systems

= f(z,t) and _ = -fz_.

Applying the principle to the system at hand,
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H(4, z,t,u(t)) = f'4 = 41 sin u + 42 cos u + 43zI + 44z2

: 41 sin u + 42 cos u + 431 + 44#.

Then

_H _H

8H 8H

= = , a constantWhereupon43 -a, a constant, 44 -a'

and

_i : a(t-tl) + b, _2 = a'(t-t I) + b'.

Thus

H = [a(t-t I) + b] sin u + [a'(t-tl) + b'] cos u - a_ - a'9.

For fixed t, H is maximumwhen

41 sin u + 42 cos u = + 42 cos

is maximum,where _ is such that

_i _2
sin _ = , cos u =
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But this last is obviously a maximum when cos(u-u) = i, i.e., when u-m = 2k_

or when sin u = sin _ and cos u = cos m; i.e._

*i a(t-tl)
sin u = sin _ = =

_*i + *2 _ ) + b]2 + [a'(t-tl) + b']2

*2 a'(t-tI)
COS U = COS _ =

bl ....+-V*I + *2 .... i ) + + [a' -t I)

Finally_ this relation can be written in the form

T sin _+ sin ,
sin u =

_'T2 + 2T cos(,-_) + i
COS U =

T cos _+ cos ,

V'T_+ 2T cos(,-_)+ m

r 2 b21 ::'a +

where AT = (t-ti) , with _ = _/ a' 2 + b' 2 >_ 0,

s_id sin _ = a , cos _ = a'

"...................... 2 a,2a 2 + a '2 _a +

b b'
sin _ = ,.............. _ cos , =

• j

'{b2 + b '2 b2 + b ,2

Substituting back in the equations of motion for relative coordinate system_

evidently in order to fly an optimal trajectory it is necessary that

"_(t) = T sin # + sin _ , _(t) =

,' T + 21" cos(*-{) + 1

T cos #+cos,

"/2 + 2T cos(_-_)+ 1

with the initial and terminal conditions holding.
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It is noted next that, when T : 0 (t:ti), then sin u (tl) = sin _,

cos u (tl) : cos 9. Thus the parameter 9 in the equations is identified as

the optimal thrust angle at initial time tl; or; as it will be called; the

optimal initial thrust angle. Recalling that the principal aim is to synthe-

size the solution_ the problem reduces to finding _ as a function of the initial

(current) state. Optimal powered flight time is also of interest.

It happens that the differential equations above governing the optimal

powered flight; are solvable in closed form. It will be seen that the problem

can be reduced directly then to that of solving for the parameters in the dif-

ferential equations in terms of the initial values of the state variables.

The remainder of this discussion concerns the special particulars of this

solution. In a more general problem; say with nonconstant gravitational field

or a three-dimensional problem_ integration in closed form cannot be expected;

however_ the principle of solution is much the same_ and the simpler problem

may provide a starting point for approximations.

The integration is simplified by a rigid rotation (an orthogonal trans-

formation) of the state variable axes. Thus, let

x2

Y2

!cos ¢ - sin ¢,

I

i I
I

sin _ cos *I
I

I

I

0

cos _ - sin

sin _ cos

x I

Y

Geometrically_ the effect of this transformation is to move to a space where

the optimal initial angle ¢ is zero; i.e., optimal initial thrust is vertical.
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Under such a transformation the zero terminal conditions are not altered, but

the initial conditions in the new space are functionally dependent on _, not

known. It is true nonetheless_ and easily verified_ that x, y, 2, # satisfy

the differential equations above if and only if x2_ y2_ _2_ #2 satisfy the

following:

"x2(t) = m sin(J-, m + 2_ cos(,-@) + 1

_2(t)= [_cos(_-_)+ i]/_2 + • cos(_-_)+ 1 ,

I

!

with corresponding modifications in the initial conditions.

It can be verified directly that

T

F

2

O

2x + 2 cos e

_V'x2 + 2x cos e + 1

dx _- %2 +2T cose+i - 1 = q(T,e),

T

/-
I

[

J
O

dx

-1/X2 "_ 2X COS _ "_ I

= _ (T,e),

T

/k

I

_,/O

1
q.(x,e) dx = _. ['r(q.-1) + ._ + p cos e], p(T.,8) = q. - ,_ cos 8,

_(x,e) dx = T_ - p.

From the last differential equations, upon integrating and using the formulas

above_ for example
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_2 =A sin e

T

i

i
t

, I
uJ

0

X

_x 2 + 2x cos e + 1
dx + _2i

T T

i / F 2x + 2 cos e dx - cos e= A sin@ _ i

_ _x 2+_ cos e +l Jo

dx

_x 2 + 2x cos e + i

+ x21,

or_

22 - _2i = A sin e (q - _ cos e) = Ap(T,8) • sin e, e = _-_.

Similar derivations yield the following system of equations:

12(t) - 12i : A p sin 8

• t #2Iy2( ) - =A [p cos e + _]

x2(t ) - x2i = A T _2i + A 2 sin2 e [3P cos e + T(2p-q-1) + _]

Y2(t) - Y2i = A T _2i + A 2 cos @ A2(T__p)2 [3p cos e + T(2p-q-1) + _] +

It is of course easy to recover the solutions to the original equations

(orln_ e_ +_ _ ..... transformation) by applying the inverse transformation

These are:

_(t) -_z =A (p sin_+_ sin¢)
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f(t) =yl =A (p cos _+_ cos_)

A2
x(t) - xI = A T xI + _- sin _ [3P cos (9-@) + T(2p-q-1) + #] + A2sin @(T#-p)

A2
y(t) - YI : k T YI + _- cos # [3P cos (9-4) + T(2p-q-l) + _] + A2cos 4(T#-p)

Now at cutoff time, tc, _(t c) = #(tc) = x(t c) = y(tc) = 0, and, writing

AT = (t - tl)' qc = q(Tc' @)' etc., the final system of equations to beC C

solved is obtained:

= sin 9 + _ sin 4)_I -A(Pc c

YI = -A(Pc cos 9+ _ cos 4)C

A2 6

Xl = _- _ Pc [2 sin _ - 3 sin 9 cos (9-4)] + _c(qc+l) sin _ - _c

A2 _

Yl = _- _ Pc [2 cos * - 3 cos _ cos (9-V)] + Tc(qc+l) cos 9 - _ cos 9iC
r

The numerical procedure for solving these equations, is described and

illustrated in the subsequent paragraphs. Basically it is a ingenious nomograph-

table which is constructed by calculating values of the state variables for

various sets of % TC, A, 9_ taking advantage of the fact that A essentially

enters only as a scaling factor and of the geometry of the angles.
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First consider the transformed system

÷

u

v

i
cos _ - sin

sin _ cos

0

0

cos _ - sin

sin _ cos

I

YT

xI

Yl

- Pc sin e

- (Pc cos e + _c)

sin e
2 [3Pc cos 0 - Tc(qc+l) + _c ]

cos e
[3Pc cos 8 - TC(qC+I ) + _C ] + PC

Note that _, 4, u, v are functions only of T
C

functions in e and _ and v are even.

and e. Also, _ and u are odd

It is thus sufficient to vary e between 0 and T in the sense that values
C

of (u,v) and (6,_) for -_ < e < 0 can be obtained from the values corresonding

to 0 < e < _ by a reflection across the v-or b-axis. Of course the functions

are also periodic of period 2 _ so that altogether the domain of e may without

loss be restricted to [0,_].

From the foregoing equations a table of values, (_, 4, u, v), corresponding

to values of TC, e, with TC > 0 and 0 _< e _< _, is conceived. Actually tabu-

lated, however, is a somewhat different array. Let (_, 4, u, v) correspond to

some fixed (Tc, e) in the prescribed domain. Let T be between -_ and Tc and
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such that

and let A

u v
sin T- _ cos T = _....... ;

2 2 Vu2+ V u+v

.....

-_ 2 2
'VU +V • Then rotate and scale the (u,v) and (_,@) axes so that

1-61-

÷l

--.

0

i

c°ssin
A Lsin T cos TJ _,

I

|

!

I

0

0

,____|"1 [c°s T - sin _]
;A Lsin T cos

u

v

Table I is compiled so that corresponding to each of various values of (Tc_e)

in the domain is a quadruple (Ul' Vl _ T, A*). The angles e and T are in degrees

and the other quantities are dimensionless. Corresponding to the point

(Tc, e, UI' +i' T, A*) the point (Tc, -e, -Ul' Vl' -T, A*) would also be in

the table• Thus the table contains only Tc > 0 and @e[0,_].

It is also feasible to construct a graph displaying curves (_i_ _i) as

functions of (Tc, @). Such a graph is exhibited in Figure I. This graph is a

plot of the level curves for Tc and e as functions of Ul and Vl" It may be

used to find Tc and @ corresponding to a given (Ul' _i ) and then by recourse to

Table I we may also find T and A •

Putting the successive of transformations together gives
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TABLE I

OPTIMAL STARTING VALUES

T
C

1.00

1.00

1.00

1.00

1.00

1.00

i.i0

i.i0

i.I0

i.i0

1.20

1.20

1.20

1.20

1.20

1.20

1.25

1.25

1.25

1.25

1.30

1.3o

1.3o

1.3o

1.3o

e

177.0

178.0

178.8

179.0

179.6

180.0

178.o

178.8

179.6

18o.o

177.o

178.o

178.8

179.o

179.6

18o.o

178.0

178.8

179.6

180.0

177.o

178.o

178.8

179.o

179.6

o. 1469 -i.3969

o.1146 -i. 4038

o.o8o2 -i.4092

o.0721 -I. 41o2

0.0380 -i. 4130

o.oooo -1.414

o.2652 -i.3760

o .2046 -i. 4OOl

o. ilOO -i.4236

o.oooo -I.43

o.5155 -1.2752

0.4722 -1.3322

0.3836 -1.4o45

0.3555 -1.4215

0.2045 -1.4834

o.oooo -1.51

0.6265 -1.2786

o.5418 -1.3946

0.3078 -1.5441

o.oooo -1.6o

0.7976 -1.o831

0.8227 -1.168o

0.7864 -1.3342

0.7599 -1.3856

o.5136 -1.6294

T

14.5

ii.0

7.5

6.7

3.5

0.0

21.7

16.0

7.9

0.0

39.6

33.4

25.0

22.8

12.3

0.0

41.5

32.o

16.3

0.0

58.0

52.2

42.3

39.4

23.o

A _

0.688

0.693

O.697

0.698

O.7O3

1.000

0.654

0.642

0.632

0.63

0.615

O.586

O. 559

O. 553

O. 536

0.529

o.55o

o.512

0.478

0.469

o. 568

o.516

o.463

o.452

o.411

(Continued)
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TABLE_ (CONTI_JED)

1.3o

1.35
1.35
1.35
1.35
1.35
1.35

i. 40

1.40

i.4o

i. 40

1.40

1.4o

i.4o

I.4o

i.4o

1.4o

1.4o

1.42

i.42

1.42

1.42

1.42

1.42

1.42

1.42

i. 42

1.42

e
s

18o.o

177.o

178.0

178.8

179.0

179.6

18o.o

177.o

i78.o

178.4

178.6

178.8

179 .o

179.2

179.4

179.6

179.8

18o.o

178.o

178.4

178.6

178.8

179. o

179.2

179.4

179.6

179.8

180.0

0 0000

O. 9377

1.0362

i. 1527

i.i453

i.oo25

O. 0000

i.o33o

i.19oo

1.2882

1.351o

i.4274

i.5226

i.6487

1.8219

2.0788

2.4589

O. 0000

1.2136

1.3158

1.3818

i.4628

i. 5659

i.7o34

1.9006

2.2201

2. 8791

0 •0000

%1

-1.777

-o.9o88

-o.9587

-i.1223

-1.1891

-1.6682

-2.167

-0.6854

-0.6365

-0.6216

-0.6178

-0.6190

-0.6290

-0.6569

-0.7237

-0. 8959

-i.4850

-4.24

-0.4902

-0.4358

-0.4029

-0.3644

-0.3174

-0.2566

-0.1696

-0.0]-90

0.3882

4.53

T

0.0

69.8

66.o

58.4

55-7

35.6

0.0

82.7

82.6

82.2

81.9

81.3

80.6

79.3

77.2

73.2

62.6

0.0

89.6

90.4

90.9

91.4

92. i

92.9

94.2

96.3

lol.5

18o.o

0.394

0.554

0.491

O. 420

0.403

0.336

o.3oo

o.551

o.48o

o. 444

o. 424

o. 4oi

o.375

o.345

o.31o

o .267

0.209

O. 141

0.469

O.445

O. 424

0.4ol

o.375

0.344

o.3o8

0.263

O. 200

o.128

(Continued)
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T LE I (COnmTED)

,[
c

1.44

1.44

1.44

1.44

1.44

1.44

1.44

1.44

1.44

1.44

1.46

1.46

1.46

1.46

1.46

1.46

1.46

1.46

1.46

1.46

1.5

1.5

1.5

1.5

1.5

1.5

e

178.0

178.4

178.6

178.8

179.0

179.2

179.4

179.6

179.8

i8o.o

178.0

178.4

178.6

178.8

179.0

179.2

179.4

179.6

179.8

180.0

177.0

178.0

178.8

179.0

179.6

180.0

177.0

178.0

fll Vl T A*

i.2108 -0.3469 96.5 O. 487

1.3044 -0.2547 98.5 O. 451

i.3630 -0. 1943 99.7 0.430

i. 4327 -0. 1192 i01.3 O. 407

i. 5171 -0.0206 103.3 0.382

i. 62 lO O. 1173 106. i O. 3 53

i. 7486 0.3291 ii0.3 0.320

1.8900 O. 7037 ll7.5 0.280

1.8860 i. 5134 132. i O. 232

O. 0000 2.92 180.0 O. 192

i. 1839 -0.2151 103.1 O. 495

i.2586 -0.0929 105.9 O. 460

1.3020 -0.0126 108. i O. 441

1.3493 O. 0876 ii0.5 O. 419

1.3993 O. 2174 113.6 O. 396

1. 4470 0.3931 ll7.7 O. 370

1. 4761 O. 6441 123.7 O. 341

1. 4332 1.0227 132.9 0.309

i. 1351 i. 5909 148.7 0.277

0.0000 2.12 180.0 0.255

1.0036 -0.2506 107.8 O. 584

i.0790 -0.0078 115.0 O. 520

i. 1096 O. 3666 126.8 O. 452

1.0968 O. 4777 129.6 O. 437

O. 8270 1.1162 149.7 O. 380

0.0000 i. 41 180.0 0.354

O. 8080 -0.0321 126.6 O. 658

O. 7580 O. 1928 135. i O. 612

(Continued)
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I (COnI ED)

T
C

1.6

1.6

1.6

1.6

1.8

1.8

1.8

1.8

1.8

1.8

2.0

2.0

2.0

2.0

2.6

2.6

2.6

2.6

4.0

4.0

4.0

4.0

i0.0

i00.0

0.8

0.8

8

178.8

179.0

179.6

18o.o

177.0

178.0

178.8

179.0

179.6

180.0

177.0

178.0

179.0

180.0

177.0

178.0

179.0

180.0

177.0

178.0

179.0

180.0

180.0

i8o.o

20.0

4o.o

T A _

O. 6261 O. 4397 147.7 O.571

O. 5811 O. 4939 150.2 O. 563

0.3301 O. 6792 164.6 O. 538

0.0000 O. 755 180.0 O. 530

O. 4962 -0.0196 146.7 O.844

O. 4039 0.0887 154.6 O. 820

0.2871 O.1761 162.8 O. 802

O.2580 O. 1918 164.7 O. 799

O. 1317 O. 2379 172.4 O.789

0.0000 O.254 180.0 O. 788

0.3443 -0.1349 156.0 1.032

0.2669 -0.0769 162.3 1.018

0.1624 -0.0272 169.6 1.006

0.0000 0.0000 180.0 1.0

0.1869 -0.4286 166.6 1.553

0.1397 -0.4104 170.3 1.548

0.0822 -0.3961 174.6 1.545

0.0000 -0.389 180.0 1.54

0.1607 -0.7665 172.6 2.648

0.0790 -0.7615 174.8 2.647

0.0461 -0.7577 177.2 2.646

0.0000 -0.755 180.0 2.646

180.0

180.0

8.4

13.3

0.0000 -1.141

0.0000 -i.385

0.0353 -1.4130

0.0707 -1.4085

7.00

70.6

0.566

o.565

(Continued)
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TABLE I (CONTINUED)

T
C

o.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0

60.0

80.0

i00.0

120.0

i40.0

i5o.o

160.0

i65.o

i7o. o

175.0

178.o

180.0

20.0

4o.o

6o.o

80.0

i00.0

120.0

140.0

150.0

160.0

165.0

170.0

175.0

178.0

i8o.o

20.0

40.0

O. 1061 -i. 4013

O. 1412 -i. 3916

O. 1747 -i. 3802

0.2032 -1.3695

0.2165 -1.3659

o.2088 -1.3708

0.1802 -1.3831

O. 1531 -1.3922

O. 1143 -i. 4022

0.0619 -i. 4107

0.0254 -1.4136

O. 0000 -i. 414

O.0393 -i. 4124

O.0790 -i.4069

O.1196 -i.3975

O. 1615 -1.3840

0.2048 -1.3662

0.2488 -1.3451

0.2896 -1.3250

0.3038 -1.3201

0.3058 -1.3257

0.2916 -1.3360

0.2616 -1.3544

0.i945 -1.3831

O. 1146 -I.403 8

O.0000 -i. 414

0.0423 -i. 4121

0.0853 -1.4055

T

19.5

25.0

29.6

32.3

3i.5

28.8

23.4

19.3

14.o

7.5

3.0

o.o

7.7

i5.3

22.6

29.6

35.7

4o.5

42.6

41.6

38.0

34.4

28.9

19.9

ii.0

0.0

8.6

17.0

A _

O. 564

O. 563

O. 562

O.559

O.557

0.557

O.559

O. 560

O.562

0.565

O.566

O. 566

o. 7o7

O. 7o6

o.7o5

O. 703

o.7oo

o.696

O. 689

O. 684

0.679

0.678

O. 678

0.683

0.693

o. 707

O. 848

o. 847

(Continued)
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Z (C0nI U D)

T
C

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

e

6o.o

80.0

i00.0

120.0

14o .o

15o.o

16o.o

165.o

170.0

175.0

178.0

18o.o

20.0

4o.o

60.0

80.0

i00.0

120.0

140.0

150.0

160.0

165.0

170.0

175.o

178.o

180.0

20.0

4o.o

61 @I

0.1300 -1.3941

O. 1771 -1.3769

0.2282 -1.3528

0.2852 -1.3197

0.3521 -1.2753

o.3919 -1.2483

0.4394 -1.2187

O. 4681 -1.2046

O. 5020 -i. 1955

O. 5328 -1.2202

O. 4722 -1.3322

O. 0000 -i.51

0.0446 -i. 4118

O. o9o2 - i.40 43

o.1379 -1.3911

0.1890 -1.3707

0.2459 -1.3406

0.3123 -1.2959

0.3976 -i. 2249

O. 4551 -i. 1698

o.5361 -i. 0860

O. 5958 -i. 0224

O. 6858 -0.9296

O. 8677 -0.7762

i. 1900 -0.6365

0.0000 -4.24

0.0464 -1.4116

0.0940 -1.4033

T

25.4

33.5

41.1

48.o

53.4

55.1

55.5

54.9

52.9

46.4

33.4

0.0

9.3

18.5

27.8

36.9

45.9

54.7

65.6

67.8

72.6

75.3

78.4

81.8

97.6

0.0

9.9

19.9

A _

0.846

0.843

0.838

o.831

o.816

0.803

0.78o

0.760

0.727

0.661

o.586

0.529

O. 99O

0.986

0.986

0.983

0.977

0.966

0.943

o.92o

O. 877

0.838

o.773

O. 645

o.48o

O. 141

i. 131

1.130

(Continued)
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TABLEI (CONT GED)

"I-
C

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

2.0

2.0

60.0

80.0

i00.0

120.0

i40.0

i5o.o

i60.0

i65.0

i70.0

175.0

178.o

180.0

20.0

40.0

60.0

80.0

i00.0

120.0

14o.o

150.0

16o.o

i65.o

170.0

175.0

178.o

180.0

20.0

40.0

dl @I T A-_

O. 1439 -1.3885 29.8 1.127

O.1980 -i. 3653 39.9 i.123

0.2588 -i. 3301 50.0 i. i15

0.33i2 -i.2750 60.6 i.lOi

O.4257 -i. 1800 72. i i.071

0.4896 -1.0996 78.9 1.040

O. 5762 -0.9660 87.4 O.984

O.6347 -0. 8564 93. i O.936

O.7106 -0.6807 i01.i O. 862

O.8027 -0.3237 115.2 O. 735

O.7580 +0.1928 135.3 O. 612

0.0000 O.755 180.0 O. 530

0.0478 -i. 4114

0.0968 -i. 4024

O. 1485 -i.3863

0.2046 -1.3608

0.2680 -1.3212

0.3434 -1.2576

O. 4400 -i. 1438

0.5012 -1.0451

O. 5736 -0.8810

O. 6110 -0.7492

O. 6370 -0. 5500

O. 5921 -0.2142

o.4o59 o.0887

o.oooo o.254

io. 5

21.0

31.7

42.5

53.7

65.7

79.5

88.1

99.4

107.1

117.6

135.2

154.5

180.0

ii.0

22. i

0.0489 -i. 4112

0.0990 -i. 4017

1.272

1.271

1.268

1.263

1.254

1.237

i. 201

i. 162

1.1o5

1.057

0.989

o.891

0.82o

o. 788

1.414

1.412

(Continued)
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I (C0n D)

T
c

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.4

2.4

2.4

2.4

2.4

2.4

2.4

2.4

2.4

2.4

2.4

2.4

2.4

2.4

60.0

80.0

i00.0

120.0

14o.o

15o.o

16o.o

165.o

170.0

175.0

178.0

18o.o

20.0

4o.o

6o.o

80.0

i00.0

120.0

14o.o

150.0

16o.o

165.0

170.0

175.0

178.0

i8o.o

17o.o

175.o

61 91 T A _

o.1519 -i.3845 33.3 1.4o8

o.2o95 -i.357o 44.8 i.403

o.2743 -1.3138 56.9 1.392

o.35o7 -1.2436 7o. 1 1.373

O.4443 -i. 1166 85.8 1.340

O.4983 -i. 0072 95.8 i.297

O.5495 -0.8313 108.8 i.237

O.5638 -0.6981 117.4 i.192

O. 5496 -0. 5137 128.9 i.135

O.4471 -0.2549 146. i i.062

O.2669 -0.0769 162.2 i.018

O.0000 O.0000 180.0 i.000

O.0503 -i. 4109 ii. 9 i.696

O. 1019 -i.4006 23.8 i.694

O.i563 -1.38i7 36.0 i.69O

0.2i52 -i.35i3 48.7 1.683

0.2807 -1.3032 62.2 i.671

O.3550 -i.2246 77.3 i.649

O. 4363 -i.0848 95.7 i.606

O. 4722 -0.9705 107.2 I.570

O. 4862 -0. 8028 121.7 i.517

O.4705 -0.6903 130.9 i.482

O. 4205 -0. 5553 142.2 i. 443

0.3006 -0.4034 156.9 i. 401

O.1636 -0.3216 168.7 1.380

o.oooo -o.291 18o.o 1.373

o.3161 -o.6682 151.8 l.91

o.2118 -o.5862 163.8 i.884

(Continued)
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TABLE I (CONTINUED)

T
C

5.0

5.0

5.0

5.0

i0.0

lO. 0

i0.0

i0.0

lO. 0

lO. 0

lO.O

i0.0

i0.0

i0.0

i0.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

17o.o

175 .o

178.o

18o.o

20.0

4o.o

6o.o

80.0

i00.0

120.0

i4o.o

150.0

i60.0

170.0

i8o.o

20.0

40.0

6o.o

80.0

i00.0

120.0

i4o.o

i5o.o

16o.o

i7o.o

180.0

T A _

O. iii0 -0. 5474 172.4 i. 874

O. 0000 -0. 534 180.0 i. 872

0.1945 -0.9241 i62.0 3-399

0.1247 -0.8983 170.4 3.394

0.0641 -0.8878 175.8 3.392

o.oooo -o.885 18o.o 3.39

0.0432 -1.4109 16.0 7.070

0.0861 -1.4009 34.2 7.065

0.1277 -1.3835 51.8 7.058

0.1666 -1.3577 70.0 7.048

0.1994 -1.3226 89.2 7.035

0.2201 -1.2778 109.5 7.021

0.2173 -1.2254 131.2 7.008

0.2011 -1.1985 142.7 7.003

0.1697 -1.1735 154.6 7.000

0.1148 -1.1531 166.9 7.000

o.oooo -1.141 18o.o 7.oo

0.0331 -i. 419 18.3 14.141

0.0653 -i. 4048 36.8 14. 137

0.0951 -1.3929 55.6 14.130

O. 1209 -1.3763 74.7 14.122

0. 1400 -i. 3555 94.4 14. 114

O. 1482 -i.3316 i14.8 14.107

O. 1394 -1.3071 135.9 14. 103

O. 1257 -1.2958 146.7 14. 103

O. i032 -1.2862 157.6 14. 104

0.0678 -i. 2791 168.7 14. 105

0.0000 -i. 275 180.0 14. i0

(Continued)
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T
C

6o.o

60.0

60.0

6o.o

60.0

6o.o

6o.o

6o.o

6o.o

60.0

6o.o

e

20.0

4o.o

60.0

80.0

i00.0

120.0

14o.o

15o.o

16o.o

17o.o

18o.o

0.0183 -1.4131

0.0357 -i. 4099

O.0509 -i. 4048

o.o629 -1.3981

0.0701 -1.3903

o.o7ol -1.3823

o.o635 -1.375o

0.0556 -1.3720

0.0442 -1.3696

O.0279 -1.3681

0.0000 -_1.37

T

19.4

38.8

58.4

78.1

98.1

i18.3

138.7

149.0

159.3

169.6

18o .o

A _

42.425

42.423

42.419

42.415

42.411

42.4O9

42.401

42.411

42.4]_2

42.414

42.414
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Figure I. Graph of starting values versus initial conditions.
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cos
l

AA <sin (_'+T),
- sin (_+T)I

cos (_+TU
0

ixl
i

-- lET

(AA*2)!I sin (@+T), cos (_+T)ji ,,,

r

÷i

0

1

But; beginning with the initial conditions; it is easy to determine _+T=5

and A' = AA such that

I cos 5 - sin 5 xI

A'2 sin 5 cos 5 Yl = 1

In fact; 5 is such that

x I
sin 8 =

YI
; COS 5 =

xI + YI

• 2
and A'2 =. Xl2 + YI"

;

Then_ applying the transformation

i [c°s 5 - sin 5]sin 5 cos 5

to

Y±I yields(_i'÷l)"

From the graph corresponding to (Ul' Vl ) is read a pair (Tc, 0); and then from

the table is read 3 corresponding to (Tc, e), values of T and A*.
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But,

A !

_= $ - T, A =--_, tc " tl = A _c"
A

By way of illustration consider the following example. What is the optimal

current thrust angle and time to freefall, given that current state relative to

the origin in the relative coordinate system is xI = 300 meters, Yl = -400

meters, Xl = 0 m/sec, 31 = -50 m/sec with constant thrust F/m = 4m/sec 2.

First, in units of thrust the state vector is (Xl' 91' Xl' Yl ) =

(0, -i .5, 75, -i00).

Se cond_

sin _ = 75 = 0.6, cos 8 = -i00 = -0.8,
r

_52 + lOO2 /752,+ lOO2

so that $ " 143.1 ° Also, A '2 _1752 1002= . = + = 125, and A' = 5_5 -" i1.18.
¥

Third_

7

u I cos 8 - sin 8 i Xl_ -0.8 -0.6 !
i ! 1 i

o.62

Lo.B94J

Fourth, from the preceding graph_

T = 1.525, _ = 179.5 °•
C

Fifth, from the preceding table,

T : 151.i° -- .• A 0.425
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Finally,

= 5 - T = 143.1 ° - 151.1 ° = -8 °,

A'
A =--g= 26.3

A

and

tc - tI = (26.3) 1.525 = 40 seconds.

Thus, the optimal steering angle at current time is -8° (measured from

the vertical axis in the relative coordinate system), and the time to cutoff

along an optimal trajectory is 40 seconds.

4. Summary and Recommendations

Equations of motion governing the two phases of flight are immediate

consequences of Newton's second law. The control function (angle of thrust)

enters into the equations for the powered phase of the flight.

Putting the problem in a relative coordinate system, which has a motion

with respect to the old due to the gravitational field, effects a considerable

simplification in the analysis both computationally and conceptually.

The Pontryagin maximum principle is applied to restrict the control function

in the differential equation to a form which is necessary to make the optimal

flight (i.e., to reach engine cutoff time in minimum time), while still

reaching the target from the initial state.

It happens that the resulting differential equations, presumably describing

the optima I flight, can be integrated in closed form to yield a system of alge-

braic equations which must be solved for time to cutoff and initial thrust angle
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in terms of the initial state conditions. This final result is a synthesis of

the control function, the current optimal thrust angle always being calculable

from an input of current state conditions into the system of algebraic equations.

A numerical procedure for solving these equations is presented. It is

based in part on simplification through rotation and scaling transformations.

Natural extensions of this problem abound, and it is recommended that

some of these be explored. E.g., it is believed that almost exactly the same

mode of solution, although somewhat more complicated, can be developed if the

gravitational field is nonconstant. Also, it is recommended that the same

approach, including numerical schemes, be attempted for the three-dimensional

analogue.

It is recommended that further study be given to computerizing the scheme

for solving the system of equations, and that these procedures be made inde-

pendent of the fact that the integration was in the present case performed in

closed form.

It is further recommended that the current flat-earth model be used in

conjunction with a computer to generate a controlled but representativ@ spec-

trtun of data to be used as a benchmark for evaluating v_rious methods of

approximating an optimal trajectory, such as, for example, a best fit poly-

nomial or a piecewise linearization of the control function.
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