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The Astrodynamics and Guidance Theory Division of the Aero-Astrodynamics
Laboratory of the Marshall Space Flight Center is examining the role of large
computers as they may be exploited in the prediction of missile performance.
The Georgia Institute of Technology and its Rich Electronic Computer Center
have been studying such exploitation as it applies to the fitting of the
Multivariant Functional Models under Contract No. NAS8-5365. Under this con-
tract, attention has been focused on models which describe missile performance
under various conditions and in response to various guidance methods.

The problem under consideration may be stated in the following manner.
Let x(t) be the instantaneous state vector with n components xi(t)

i=1,2,...,n. The equations of motion may be taken as
F(x(t), x(t), t, u(t)) =0 ’

where F stands for a set of functions and u(t) is the guidance or control

function. Terminal conditions at some time tc may be taken as

6(x(t,), t,) =0,

where G represents a set of functions. The set of functions G are the mission
requirements. It is desired to choose u(t) in some class of functions in order
to minimize tc. Clearly, the optimum u(t) depends on the initial conditions

x(to) = XO and to. The optimum guidance function shall be denoted by

u(t; xo, to).

If an optimum guidance function u(t; X0 to) is chosen and an optimum

trajectory is followed, then at some future time tl with state vector



x(tl) = x, the new optimum guidance function u(t; x tl) must be identical

l’
with the old guidance function u(t; Xy to) for t > t,. In other words, the
optimum guidance function is invariant with respect to the state vector x(t)

and the time t.

Since various factors in the system cannot be accounted for, in practice
the optimum trajectory may not be followed. It is important then to determine
the optimum guidance function u(t; Xy to) as a function of the state vector
X, and the time tO. The determination of this function of the initial conditions

is called a synthesis of the optimum guidance function u(t; x., t

o’ O)'

As an approach to the synthesis problem one could select a number of initial
conditions (Xi’ ti) and utilize a computer to find the corresponding u(t; X5 ti).
An approximation technique can then be employed to find a functional relation-
ship between the u(t; X, 5 ti) and the (Xi’ ti). Because of simplicity, an
approximating polynomial could be assumed. Since the number of state variables
is large (more than six), the number of coefficients in the model would be very
large even for polynomials of low degree. Practical considerations forbid such
procedures.

As a first approach to this problem,a balanced polynomial balanced design
model was studied. It was shown that the least squares fit which involved the
inversion of a large order matrix could be reduced to the inversion of many
small order matrices. This procedure is reported in detail in Appendix 1.

While this approach overcame the computational difficulties, there still

remained the objections of the need for a tremendous number of data points

and approximating polynomials with several hundred terms.




To overcome these objections a "step-up" procedure was developed. In
the languaege of regression analysis, psychologists and other investigators
have for some time studied the problem of selecting out of n predictor
variables that subset of k of them which will contribute most to the sum
of squares due to regression (leaving the smallest sum of squares due to
error).

The procedure starts with a model which assumes the guidance function as
a linear combination of n terms (not necessarily polynomials). The procedure
attempts to select a subset k of the n terms which best fit the observational
data in the sense of least squares. First, that term is taken for which the
greatest reduction in the error sum of squares is effected. The next term is
selected again on the basis of the greatest reduction in the error sum of
squares. By continuing in this way, the most significant terms may be obtained
one by one. Stopping criteria can be devised in terms of the final number of
terms desired and/or essentially insignificant improvement in the reduction of
the error sum of squares. This procedure is reported in detail in Appendix 2.

Preliminary experience with the "step-up" procedure indicated that
efficient stopping and throwout criteria depended on the class of problems
under consideration. Accordingly, it was necessary to develop experience with
this tool. Data was obtained from the Astrodynamics and Guidance Theory
Division on some seventy-five trajectories. These data were analyzed and the
"step-up" procedure applied to the fitting of the guidance functions. This
analysis is reported in detail in Appendix 3.

In order to gain further insight into the synthesis problem, the flat
earth problem was studied and an interesting graphical synthesis developed.

This study is reported in detail in Appendix L.



The studies reported in Appendices 2 through i indicate that the step-
wise regression procedure shows considerable promise in the fitting of
Multivariant Functional Models. Further experience with the procedure is
necessary in order to resolve questions of roundoff and throwout criteria,
precision requirements, and sensitivity to the data base.

It is recommended that in addition to the fitting problem, the performance
of the various approximations be evaluated. Since complex problems tend to
limit the degree of experimentation, it is felt that the flat earth problem
investigated in Appendix 4 be utilized for further study. Controlled, but
representative, data could be generated by the method discussed in Appendix L
or by a general numerical integration program for solving the two point
boundary value problem resulting from the Pontryagin formulation. The various
data fits can be compared in actual control simulations using the identical
equations of motion, etc., as those used in the data generation. Thus, various
error analyses studies can be made comparing such items as terminal accuracy

and the degree of optimality achieved by the various data fits.

submitted,

Lol
I. E. Perlin
Project Director




APPENDIX 1

LEAST SQUARES ESTIMATION OF REGRESSION COEFFICIENTS
IN A SPECIAL CLASS OF POLYNOMIAL MODEIS



I. INTRODUCTION

The problem with which we are concerned is that of approximating a real
valued function of several real variables given a collection of points in the
domain of the function and the corresponding values of the function at these
points. Furthermore, we are considering & polynomial approximation of the
function and are assuming the least squares criterion for the best approxima-
tion. Theoretically, then, our problem is easy'--simpli use the polynomial
of the chosen degree with the least squares estimates of the coefficients.
However, from the practical point of view the problem is not so easy. Actually
finding the least squares coefficients may be an almost impossible task when
one is fitting a polynomial of several variables.and modest degree. The inver-
sion of the coefficient matrix of the normal equations is the usual problem.

The general methods for finding the least squares coefficients can be
divided into two major categories--those which apply for arbitrarily chosen
data points and those which depend on some special arrangement or design of
the data points. The methods thus far proposed for arbitrarily chosen data
points do not seem substantially to reduce the calculational difficulties from
those of inverting the coefficient matrix of the normal equations. However, if
one is willing to allow any apriori design of the data points, it is possible
to have a design which will yield an easily invertable coefficient matrix.
There 1s, of course, a middle ground between that of no restriction on the
arrangement of data points (design) and that of the very severe restrictions
needed to produce an easily invertable coefficient matrix. It is in this area
of moderate restrictions on the design of the data points that we have had some
success. We shall call our design of the data points a rectangular design. In

the statistical literature this design is called a factorial design.



By using a rectangular design and a special form of polynomial called a
balanced polynomial we have been able to calculate the least squares coefficients
with a considerable reduction in calculational difficulty in the sense that
several lower order matrices are easier to invert than one of higher order.

The process by which we calculate the least squares coefficients will be called

the step procedure.




IT. RECTANGULAR DESIGNS

Suppose the domain of the function to be approximated is a subset of
n-dimensional Buclidian space. Let (x(l), cee x(n)) be a typical point
and define

D ={x(i)°t=l e, T X, #x ift;és}.

i ti ) i ’ 7 Ty ti si i i

Then the cartesian product

will be a subset of m-dimensional Euclidian space. We define a rectangular

design to be any such D . Note that the Ti's need not be equal and the

xil) need not be eyually spaced.
i

Step Procedure: The step procedure is most easily explained by an

example. Let us consider a function of two variables, f , and consider an
approximation of f by means of a second degree polynomial. Denoting

f(u,v) by y we have

~ 2 2
y = (all +a,u+a.u ) o+ (312 +a,u)v o+ a,.v" .
Suppose the data is in a rectangular design, say
D =1D x D,, D = (ul y eee un) , D, = (vl s eee vm)

then we may use the step procedure to find estimates, not necessarily the
best, of the a's . The procedure is as follows:

l. Hold u fixed at say u, and define bil s biz s bis by



b. = a + a_u + a_ u,
i1 11 211 31 1
b. = a + a_u,
iz 12 2271
. = a
bls 13
and consider
~ 2
y.. ® b, + b, v. + b, v,
ij i1 iz j iz j
2. For each fixed 1 find the least squares estimates of bil s biz ’ bis
3. Using these estimates as if they were observed values of
2 . .
a ! + a . a respectively find the least squares
&1 7 85,9 tauy s 8, 22%1 7 13 p veLy d 4

estimates of 811 5 81 5 85 5 815, 855 5 and a4
Note that instead of a 6 x 6 matrix inversion as in the case of finding
direct least squares estimates of the a's , we were only required to invert

several smaller matrices of maximum size 3 x 3 . We could also have written

the polynomial approximation as

~ 2 2
y = (all +ta . v+a v ) o+ (821 + azzv)u + &g .u

and used the procedure Jjust as well. The estimates of the a's in this case
would, in general, be different from those found above.

It is not difficult to show that in a general nth degree polynomial of
n variables the estimate of the coefficient of the highest power of the variable
which appears in the first step of the step procedure is indeed the least squares
estimate. We shall denote this result as theorem 1 . In general the estimates

of the other coefficients do not have this property.

10




IIT. BAIANCED POLYNOMIALS

As motivation for considering balanced polynomials, think of expanding &
function of =x variables, x(l), ces x(“) » in a power series in x(ﬂ) and
approximate this by the first Ln + 1 terms; i.e., a polynomial in x(“) of

degree Ln . Now expand the coefficients of this polynomial in power series

in x(n_l) and approximate these series by their first Ln-l + 1 terms.

Continue this process until all the variables have been used. Note this yields

(1) , o)

a polynomial in x‘'7/, ... of degree L1L2 .o Ln which is not the

general polynomial of this degree. For example, if x5 = 2 , Ll = L2 = 2

we have the balanced polynomial

(a

+a_u+a__ud)vd

u2) + (a 13 23 33

2
+ a + 8 +a_u+a__ut)v + a
Zlu 22 32 ) (

11 31 12

This polynomial is a fourth degree polynomial in u, v but the u?%, u®, v*, v3

usv, vdu terms are missing. Notice, however, that all the terms of the general
second degree polynomial are present. So if higher degree terms are not objec-
tionable, it would seem that if a general polynomial in x variables of degree L

provides a reasonable approximation, a balanced polynomial in x variables with

min Lj > L would give an even better approximation.
J=1,...,xn

In general a polynomial of the form
L1+l Ln+l

.1 @ (), oy

zl 1 4 =1 21"'£n 1 7 i

will be called a balanced polynomial. We show in theorem 2 that the step pro-
cedure applied to a balanced polynomial over a rectangular design will yield

the least squares estimates of all the coefficients.

11



IV. PROPERTIES OF RECTANGULAR DESIGN AND BAIANCED POLYNOMIALS

Consider the general dth degree polynomial in the n variables

(1) (=)

X' T, see , X which we shall write as

(1) (n)

(1) a + o +oa) x + ...+ (terms in x*7/, ..., x

f ree
11...1 W17 of deg

< a) + al...ld+l( (ﬂ )

We shall call x(ﬂ) the leading variable. Clearly this general polynomial may

(1)

be written with any x as the leading variable but in what follows we shall

be concerned with the specific form of the polynomial in (1) and thus the leading
variable will be x(n) . If we use such a polynomial to approximate a real

. .
valued function f of =x variables x( ), cee x(ﬂ) ;5 we have the following

result.

THEOREM 1: 1In the case of a general dth degree polynomial in n variables
\ the step procedure over a rectangular design yields the same estimate for the
i coefficient of the dth power of the leading variable as the least squares

procedure over the same design.

Before presenting a proof of theorem 1 we shall exhibit an example which
shows that theorem 1 is best possible in the sense that in general the step
procedure estimates and the least squares estimates of the other coefficients
do not agree. In particular this will Justify the use of the specific form
of (1) and the "leading variable" terminology.

Consider the general second degree polynomial in two variables

2 2
a +.a8_u + a + a + a_u)v + a v
11 21 Slu ( 12 22 ) 13

13



as an approximation of a real valued function f of two real variables u,v .

Let yi,j = f(ui , vj) and thus suppose the expected value of yij given by

2 2
Ely. .) = a + a_u, + a_ uT + |(a + &a_u,)v, + a_v
(yiJ) 11 2171 a1’y (a2 22%) 3 18" 3

or in vector-matrix notation
E(y) = Xa
where
= 2 2
¥ = [V X = /1 1 Y Wy, v,V
2 2
Y12 1 1 Uy W, Yy Vo
2 2
Yia 1 v, uw wvy Vs Vs
2 2
Vo1 1w, uw wyv v, v]
2 2
Yoz 1 uy, uz; uwyv, v, V3
2 2
Yos 1 u, u; Uy, Vg Vg
2 2
Va1 1 Ug ug usv, v, vI
2 2
Yao 1 u, ug u,v, v, Vs
2 2
Yas 1 a ug u,v, Vq vy
g = /&), for 1,3 = 1, 2, 3

8o

a

31

12 }
22
813

The least squares estimates of the coefficients may be found by solving the

normal equations [1]

1k




If in our example we consider the rectangular design

D=DlxD2 ; Dl={-l,0,l} D2={-2,O,l}

the normal equations become

9 0 6 0 -3 15 8, 1 1 1 1 1 1 1
6 6 0 -2 0 0 a5, -1 -1 -1 0 0 O

6 6 0 -2 10 as | - 1 1 1 0 o o 1
0 -2 0 10 0 0 CIR 2 0 -1 0 0 0 -2
-3 0 -2 0 15 -21 8., 2 0 1 -2 0 1 -2
15 0 10 0 -21 51 a ., L o 1 4 o 1 &4

The solution of this system is

a, =5%(h82yi1+502y12+212yi8-lBZylj-lBZySJ.)
i i i J J
8y = g ( 5y .+ 5Ly .+ 2y - - 2y + )
21 28 PR PRH 11 V13 a1 Yaa
1
a . —gE(-lBZ.yil-l8z.:in-182y13+27>;.ylj+27z}y33)
i i 1 J J
-1
a12-%(-Zylj+2ysj+6yll-3yls-6ysl+5y33)

[P
i

1
22 EH( -5§'yil-9gyi2+l22yi3)

1 1

1
%1a ?—I(BEyil-9Zyi2+6§yia)

1

Now consider the same design and use the step procedure to estimate the coefficients.

Thus, write the polynomial as

b + bv + bve
1 2 3

15

O O O P =

el R SR Sy

Y11




where

. . . . 2
For fixed 1 find the least squares estimates of bli = all + azlui + aSlui ’
b .=a _+a_u, , b ,=a We obtain the normal equations in v alone:
2i 12 2271 ai 13
' = t
(V' V) by vy,
where : o .
1 v, v bli Yiy
= 2
Vo=l ove v ’ Ei = b2i ’ i T Y2
2
1 Va Vs bai Via
The solution of this system is
bli = yi2
b = - 1 .].' +_2.
2i 6 Y11 "3 Y273 Yis
- 1 1
Pay T BV "3 Y2 T3 Vs (1=1,23)
The second step is to treat the u's as observations on the polynomials
2 .
a,, teau+ajus , a, +a,u , a.,. and find the least squares esti-
mates of the a's For b, the normal equations are
1] . 1]
(Ul Ul) 8 =Ubh
where
2
/l bt T 811 2%
- - 2 -
Uy =+ wy uz i, 8 “|Ba ] =1 12
1 u u® a b
3 3 31 13

a

+ a_.u
11

+ a
21 3

u
1

12 22

13

16




The solution of this system is

8,1 % b12 = Yoo
1 1
81 % "3 (bll * blB) -T2 (y12 + yaz)
1 1 ’
8, T 3 (bll + bls) - b, = 2 (ylz + ysz)
In the case of b2 the normal equations are
1 - 1
(Uz Uz) g8, = Uzb,
where
1 u
1 a
Uz = |1 u, s a, = > b, =
a
1 u, 22

The solution of this system is

+ by

Yy

22

23

+ 3y

3
1 o
812 T 3 igl by = N (-32 Yia ~ 27 L Yia * 56 L Yis )
1 1
8 T 3 ( LIV ) = 12 (- Va1 = a2

33

11

12

- by

13

Note at this point that none of the step procedure estimates agrees with the

least squares estimate.

Finally consider b3 and the normal equations

(Ug U5) &g = Ug Dy

where

17

bal

32

33

)



so that a

Lb, .
=1 J _ 1
a . = J_T;- = 35 (3 Z‘yil - 9 Z,yiz + 62 Yia )

which does agree with the least squares estimate of a18

Thus, we see that the step procedure for estimating the coefficients of a
general polynomial over a rectangular design is not equivalent to least squares
estimation over the same design. However, in theorem 2 we shall give condi-
tions sufficient for the eéuivalence of the two procedures. We now present a
proof of theorem 1 in the case d =2 , n =2 . (For the general proof see
Appendix B.)

Consider the rectangular design

D = Dl X D2 3 Dl = '{ U, 5 U, , ug }' 5 D2 = '{ Y Va.}

and the polynomial

(*) (a.. +a_u+ a, 2

2 .
1 o1 u<) o+ (alz +a_u)v + a_v

1 22 13

written in preparation for the first step of the step procedure as

2
bl + b2v + bsv

= 2 = =
where b, a,, tautaju’, b, a,, +8a,.u, b, 8,5 - Let
iy = f(uivj) where f is the function to be approximated by the polynomial (*).
If we can demonstrate that the step procedure estimate of al:3 = b3 is a

linear combination of the components of X'y , using the notation of the example,
and show that such an estimate is unbiased; then the step procedure estimate is

the least squares estimate. (See Appendix A)

18




Since the first step of the step procedure is a least squares estimation,

the step procedure estimate of b3 5 b3 ;, 1s unbiased. Furthermore,

~ L.,
Py J 1

- 1 -1
b (v'v) 2 vJle
bai Z v

1

that is, bsi is a linear combination of

2

J J
for each 1 . Since bai = a13 for each 1 the second step of the step proce-
dure gives a A
1§1b3 i
3

as the step procedure estimate of a Clearly this is unbiased if bsi is

13

and this estimate is a linear combination of
XXy.. , ZXv y , L1V
ig 1d ij i

However, the components of X'y are

ZZy.. , lZ'.JuyJ s Zulle s ZJuJ_vJyiJ , Zvjyl‘j s Z:,jvJyIJ

so that the step procedure estimate of a is a linear combination of these

13
components, specifically of the first, fifth and sixth. Thus, the proof is

complete for this special case.

19



If we are willing to restrict ourselves to balanced polynomials, we may

use the following result.

THEOREM 2: The step procedure when applied to a balanced polynomisl
approximation of a real function of several real variables over a rectangular

design will yield the least squares estimates of the coefficients.

Consider the special case of a balanced polynomial in two variables each

with maximum degree 2 ,

(all +a_u+a__ud)

2 2y 2
o1 a1 + (a._+a_u+a ud) v + (a._ +a_u+a _u® v%,

12 22 32 13 23 33

as an approximation of a real function f of two real variables u,v over the

fectangular design

D = D, x D, , D, = '{ Uy , Uy , Uy }' » D, = '{ Vy s Vo, Vg }' .

Let y = f(u ,v,) ; t, =1,2,3 ; t_ =1,2,3 .
.t t t, 1 2

First we shall consider the least squares criterion for estimates of the a's
and generate the normal equations ; then we shall show that the step procedure

estimates of the a's satisfy the normal equations and are, therefore, least

squares estimates.

Define S by
3 a3 .{ 3 a £y-1 £ =1 }?
S =t Ei tZ . Ve ¢ - r 2 A Ve,
= = 1°2 4. =1 g =1 172 "1
1 2 2 1
)
and calculate = S . Setting this partial derivative equal to zero,
aa a )
1%2

we arrive at the equation

20




2 £,

3 3 3
)y lv2= zza“{z Tu ou v
2= =1 =

v

£y-1 Q-1 £y-1 02-1:}

172 t =1 t =l 1 1

Now employing the properties of the rectangular design we have

3 3 Q-1 Q,-1 3 3 3
() ¥ X VA A = Y X a, , (2
t1=1 t2=1 12 "1 2 zl=1 z2=1 172 t

We shall define the matrices U,V as follows

u

2
1 u, uj
= 2 =
U = > Us vV =
2
Uz U
S 4-1a-1
1
Then clearly 2 u u is in the £Z.,
t t 121
t =1 1 1
1
3 £_-10Q
Similarly for 2 v v . Thus define
t t
t =1 2 2
2
3 L. -1 «
1 1
U = Y u u
£,0 t =1 t ¥
1
% £ -1 a2
v = v v
£ =1 t2 Tz
2
and (4) Dbecomes
3 3 al-l az-l 3 3
(5) 2 2, Vet U Vi = 2 2 AZ
t =1 t =1 172 1 2 =1 g =1
1 2 1 2

zl-l a, -1 3 £. -1 Q, -1

u WZE v v
t1 t) to=1 t, 't

2

1 v, Vi

2

1 2 Vs

2

1 v, Va3

position of the matrix

Equation (5) is a typical equation from the set of normal equations.

We shall now use the step procedure to estimate a coefficient, A

S

In order to facilitate the writing down of this estimate, we shall have

21

t

2

Uu'u

1S

2



need of the following notation. Let

£18, pooy =1
(v™ ") = (u'v) £ 0= 1,23 s = 1,273
£2S2 -1
(v ) = (vv) £, = 1,2, 3 s, = 1,2, 3
zl-l £,-1
and note u, is in the zl,rl position of U' and similarly for v. .
1 2

The first step of the step procedure for finding an estimate of A

1°2
is
Ail) = (V'V)- V! Xt
152 1
3 3 Losy £o-1
= X '{ L v v Yy
r2=l z2=1 I'2 1r2
where th = ( yfll s ytlz , ytls ) . The second and in this case final
step 1is then
A, = (WD a(1)
172 S
3 3 £ s £ -1
= 2 '{ XU e u * }' a(l)
rl=l £l=l T I‘ls2
3 3 £.s. £.-1 3 3 £_s f_-1
1®1 %1 22 “2
= 2 U u, 2, v V. yr r
r =1 zl=1 1 r1=1 22=1 2 172

Using the fact that we have a balanced polynomial over a rectangular design

we may write
3 3 3 4.8, £_s., £, -1 £,-1
A = ) Y _{ ¥y y S U 171 yz2a, 2 }
1

rr r r
172 = 1 2
zl 1 32=1

22




If ve substitute A_ _  for A in equation (5), the right hand side

becomes

3 £ s
However r ut? Uz a - 82 a = O or 1 depending on whether
s, =1 11 11
2 £55,
£, #a  or £, =a . Similarly, L V Vog = 8 o - Sothatwe
5,=1 272 272

have the right hand side of (5) equal to

3 3 Q-1 a-1
X Ly u v
r.=1 r_=1 rlr2 Ty Ta
1 2
which is the left hand side of equation (5) . Thus AS is a solution of

s
1°2
the normal equations and the proof of theorem 2 is complete for this special

case.

23



V. IMPLICATIONS AND EXTENSIONS

Comparison to ANOVA

The analysis of variance model for a factorial design which includes all
of the interaction terms is equivalent to a balanced polynomial model in which
the degree of the polynomial in a given variable is one less than the number
of levels of the factor corresponding to that variable. In the analysis of
variance model we break up the degrees of freedom for a factor into each of
the different levels and in a polynomial model we use the constant, linear,
and quadratic parts. If we have a factor at levels a, b, and ¢ then we may

think of these three degrees of freedom as corresponding to the space spanned

by
1 0 o
0 0
O 0 1

The first is the analysis of variance model and the second is the polynomial
model.

A factorial design in which all interactions above order 4 are assumed
to be zero is equivalent to a polynomial model in which eross products involving

more than d + 1 factor are omitted.

25



Relaxation of Balanced Polynomial Conditions

We have seen in theorem 1 that the rectangular design enables us to use
the very easy step procedure to find the least squares estimate of the coeffi-
cients of the highest power of each variable in a model which is the general
polynomial of degree d . In theorem 2 we see that the rectangular design
enables us to use the step procedure to calculate the least squares estimates
of all of the coefficients of a model which is a balanced polynomial. We may
now ask; is it necessary to have a balanced polynomial to get all of the coef-
ficients by the step procedure? Is it possible to have other polynomial models
in which the step procedure gives the least squares estimates of some terms
other than just the highest power?

To gain some insight into these questions we shall consider as an example
the two factor model

Eyyy = Pluy, vy

where P 1is a polynomial in u and v and the design is a rectangular design
in which u has 4 values and v has 3

Now we apply the step procedure with leading variable v . We write

P (u, v) as a polynomial in v .

E = P 2
Yi o(ui) + ijl(ui) + ija(ui)
1 2
V1 V; Vi1
Let v =1 5 vy . Let yi = yiz
2
1 3 Vs yia

26




Then the estimates of Po s Pl , and P2 are given by

PO (ui)
2 T -1 T
P, (ui) = (viv) v vy .
P, (ui)
LY.,
~ Jle
In particular Pﬂ (ui) = Lﬂ % vjyij where Lz stands for some linear
X vy, .
J Jle
combination. If we assume that P (u.) = a +a u+a u® R
o i 00 10 20
Pl(u) = a,, +a,u , and P (u) = a_, then we estimate a__ by
averaging P2(ui) over the values of u . That is
2y,
ij V13
; = L 2 v, Y.
o2 o2 i3 J ij
z v3y. .
ijg 4 3

Now this is a least squares eStimate of 8, only if it is a linear combina-
tion of the right side of the least squares normal equations. That is, only

if it is a linear combination of
Ly,
ij ij
2 u, Y
ij 1
Z u?
L v,
ij J yl
u, v,
ij i Yy ij

Z vy,
i3 d 71

A
a02 is a linear combination of these terms.
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We estimete G and a__ by
Py (ul)

-1
a b2, 1111 P, (up)

A
< 2
a,, Lu, L uj u, u, u, u P, (us)

P, (u4)

All of the components of this vector except the last one are in xTy . Hence

A

A
aOl or all are not least squares estimates unless the data points u; o, v

J
are such that the linear combinations symbolized by L do not involve this

last term.

Now we could also put alzuvz

in the model so as to put % uivjyij in
the right side of the least squares normal equations. By continually putting
terms in the model as needed in this example we find that to determine the
least squares estimates of all of the coefficients by the step procedure inde-
pendent of the data points (except that the design be rectangular) it is nec-
essary that the polynomial in the model be balanced. This example alsoc indi-
cates how we would go about expanding the polynomial model so as to estimate
certain coefficients by the step procedure. Having estimated some of the coef-

ficients, we mayeliminate them from y and do an ordinary least squares

regression, if it is then practicable.
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APPENDIX A: STATISTICAL BACKGROUND

It is assumed that the reader is familiar with such terms as expected
value, random variable, variance, etc. If not, ready reference to these
terms may be‘found in such books as Cramer [1] and Loeve [2] .

We shall be concerned here with independent random variables Yo «oes ¥

n
such that the expected value of Yy is a linear function of m parameters

2

Pys «ees pm and the variance of yi is o, i.e.,
E(y) = Ap
Var (yi) = 2 i=1 ..., n
where y' = (yl, ey yn) , p'= (pl, cen pn) and A = (aij) is a known

real n xm matrix. We shall be interested in estimating by functions of
yl,\ cee s Y certain linear functions of the parameters, say £ '_p where
2= (8, ..., zm) . We call an estimate qf £'p which has expected value
£'p an unbiased estimate. If the estimate is also a linear function of the
y's , say c'y, c¢' = (cl, ey cn) ;, we call it & linear unbiased estimate.

Thus, c'y 1is a linear unbiased estimate of £'p 1if and only if

E(c'y) = £'p

Since E ( c '_z) =c 'A D we have from the previous equation

c'Ap = £'p
8s & necessary and sufficient condition for c¢'y to be a linear unbiased
estimate of £'p . Since we shall consider all of Euclidian m-space as the

parameter space, we have equivalently

(5)+ c'A = g
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We define V (A') to be the vector space generated by the rows of the
mxn, m<n, mtrix A' and V* (A') to the vector space orthogonal to
V (A') in the n dimensional vector space over the real numbers.

The following theorem is basic in the study of linear estimation.

THEOREM A: If £'p 1is a linear combination of the parameters for which
there exists a vector d' such that E (Q'l) = £'p then there exists
exactly one vector ¢' in V (A') for which E (c'y) = 4'p . Further-

more, Var (c'y) minimizes the variance of d'y over all 4' such that

E(d'y) = 2'p
PROOF: To prove the first assertion consider the decomposition

' = c¢' + e’

1

where c¢' 1is the projection of d' on V (A') and e' the projection

of d' on V*(A') . Now by assumption

4'p = E(d'y)
but
E(a'y) = a'ap = (c'+e')Ap = cAp+e'Ap = c'Ap = E (c'y)
since e' 1s orthogonal to the column vectors of A . Thus,

E(c'y) = E(@y = 2'p

Now suppose gi belongs to V (A') and E (ejy) = £'p . Then for
every p
E(c'y) = '
(c¥) E(c'y)
or
c,Ap = c'Ap for all p
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which implies (Ei - ¢') 1s orthogonal to V (A') , i.e., belongs to V* (A') .

However, Ei - ¢' belongs to V (A') since each does and thus Ei -c¢'=o

i.e., Ei H E' . This completes the proof of the first assertion.

Now suppose d'y is a linear unbiased estimate of £2'p . Then decompose

d4' into ¢! and e, where c; belongs to V (A') and e, Dbelongs to V* (A') .

As before Eiz is also a linear unbiased estimate of £'p and gi belongs to

V (A') . By the uniqueness argument given previously Ei = c' . Hence,
- - 2 - -2 - a2 1 .
' =c' + gi Thus, Var (d4'y) = d'o Id =o%a'd =o' + gi)(g + &)
= o%c'c + oggisl = Yar (e'y) + ozgigl . Therefore Var(d'y) > Var (¢'y) for
d' #c¢' , i.e., ele, # 0 . This completes the proof.

We shall call this unique estimate which minimizes the variance over all

linear unbiased estimates the best estimate of Z'p

Theorem A says that if the "best" estimate of £'p is c'y then
c' = q'A' for some q' . From equation (5) we see that we must have
q'A'A = £' . These equations are called the conjugate normal equations.

Conversely, we have that if q'A'A = £' then q'A'y is the unique "best"

estimate of £'p .

THEOREM B: (Gauss-Markov) If 4'p has an unbiased linear estimate

then the best estimmte is 2'5 where p are the least squares estimates
of p.

PROOF: The least squares estimates of P are those values for P, >
P,y «vv pn which minimize the sum of squared deviations of Yy 5 Yoo

RN from their (estimated) expected value. Thus

n
s = ¥ (y

2
- 8, - a, - ... = 8,
A 5P T @4aPs Jmpm)
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is to be minimized by choice of P, p2 s eee pm . Now

s2 = (y' -p'A')(y -Ap) = y'y - p'A'y - y'Ap + p'A'Ap = y'y - 2p'A'y + p'A'Ap .
By differentiating S' with respect to each of the p's and setting these

m derivatives equal to zero we obtain

- 2A'y + 2A'Ap

o] or

* A'Ap = A'y

Equations * are called the normal equations. Thus, if 5 satisfies the normal
equations then 5 is a critical point of S2 . Now we shall show that it is
a minimum point.
Let y' be decomposed as y' = m' + e' where m' is in V (A') and e
is in V* (A') . Thus, m' =x'A' and e'A=0 . Then, y'A=x'A'A + e'A = x'A'A
or A'Ax = A'y . Hence, x must satisfy the normal equations. Conversely
since 5 satisfies the normal equations, ﬁ'A' is the projection of y' on
V (A') and hence m' = p'A' . That is (y' - p'A')A = 0' and p'A' is

in VvV (A")

COROLLARY: If Eq'A'y = 4'p then q'A'y = 2'5 where p are least

squares estimates of p .

PROOF: q'A' is in V (A') and by assumption Eq'A'y = £'p . Hence

by theorem A q'A'y 1is the unique best estimate of £'p . By theorem B ,

£'p is the unique best estimate of £'p . Hence q'A'y = E'ﬁ
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APPENDIX B: FPROOF OF THEOREM 1

Consider the rectangular design
D = D x x D D, = ‘{ x(i> : 0, =1 cen T ‘}
1 T n ’ i ti : i ’ O |

and the polynomial (2) written, in preparation for step one of the step

procedure, as

(3) bgﬁ) + bin) x(“) ol + bgﬂ) (x(ﬂ))d-l + bgfl (x(ﬂ))d

where bi“) is & polynomial in x(l), cee x(“_l) of degree (4 - (k-1) )

Let ¥y = f (x(l), cee x(“)) where f 1is the function to be
tl"'tﬂ tl tﬂ

approximated by the polynomial (2)
If we can demonstrate that the step procedure estimate of 8 coefficient

is a linear combination of the components of X'y --where the matrix X arises

from writing the system

- (1)
Elyy ) = 8 % - i %, et
1 T i
(terms in xil), cee xgﬂ) of degree < d) +
1 n
(n),d
811, g% ) ’ =1, » Ty
in the matrix form
E(y) = Xa

as in the case of the preceding example--and show that such an estimate is

unbiased; then the step procedure estimate is the least squares estimate [3] .
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Since the first step of the step procedure is a least squares estimation

1 -
of the b(ﬁ)'s with x( ), cen x(ﬂ 1) held fixed, the expected value of
. () () .. (1) _ ,
the estimate bd+l of bd+1 is bd+l = al...ld+l . Also the estimate
ggfz is itself a linear combination of
Tn Tn Tn
Loy g o L xin>yt g 2, L (Xiﬂ))d Ve ...t
t=1 "1""""g t=1 x 1777 'x t =1 L 1" 7w
5 n 1t
Since béfi is independent of x(l), ooy x(n) succeeding steps in the

step procedure will at each stage give the mean of the result of the previous

stage over the number of data points in the present stage so that the step

procedure estimate of b(ﬂ) is
d+1
T
1 -1 A
.z plx)
t=1 t =1 0%
1 n-1
Tl T2 Tﬂ-l

o

Since dii is unbiased, this estimate will be unbiased. This estimate will

also be a linear combination of

T T T T T T
s tet () ts (e
z ... L Yy . Z ... L XY FREES ... L (xt ) Yy &
t =1 t =1 tee =1 =1 e =1 =1 ot
1 Tt 1 n ) b T o n t by m . T
i.e., the components of X'y . This completes the proof.

It is clear from the proof that by choosing x(l) as the leading variable
the step procedure could be used to calculate the least squares estimate of the
coefficient of (x(l))d . We are usually interested in the least squares esti-

mate of all the coefficients and in this case theorem 1 is not very helpful.
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APPENDIX C: PROOF OF THECREM 2

Consider the balanced polynomial

L.+1 L +1
1t

1 . .y £.-1
- L1 () (3)y71
e Lo TR TR ? £,
£ =1 £ =1 1 n 1 7 i
1 k14
as an approximation of a real function f of = real variables x(l) x(ﬂ)

g ey

over the rectangular design

Let

e = TG )
1 7 T

In what follows we shall use capital letters without affixes to denote the

appropriate collection of lower case letters for subscripting purposes, e.g.

L = {zl, ey zﬁ}

First we shall consider the least squares criterion for estimates of
the a's and generate the normal equations, then we shall show that the
step procedure estimates of the a's satisfy the normal equations and are
thus least squares estimates.

ACTUAL PROOF: Define S by

‘ 2
P P S )

t ... ' A 1t 171
N tTt 14 21 ﬂﬂ 4 TR
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3 s
and calculate S S . Setting this partial derivative equal to
(oo}
1 7
zero, we arrive at the equation

o (m) ()

t L Tta
LA I S

Now employing the properties of the rectangular design we have

t T
¢

(1) () _ { (1) (1) () () }
(L) 2y x coox T = E ap (%lxtlzlxtlal) o (2 Xtﬁzn xtna )
If we let the matrix (xii% ) be denoted by Xi , then we have that
25

i)

i
t

is the element in the £, , @, position of the matrix XjX, and from (4)

‘ (1) () (
(6) % Yp Xp g xt:ozﬁ = E SRS

Equation (6) is a typical equation from the normal equations.

We shall now use the step procedure to estimate a typical a, as S
108,

In order to facilitate the writing down of this estimate we shall have

need of the following notation. Let

(1) N _ )
(z,, ) &%, 2;,=1, ...,Li+1, r,=1, ..., T,
i1
ﬁisi N
! - =
(X(i))=(xixi) si,zi 1, , L.+ 1
The first step of the step procedure for finding the estimate of as < is
. lJ“‘l T
T L +1
t....t B = o
1 aerSx o Tt et r =1 t= () Lr byt T
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where Y! = (y ’ s ¥
bt ) tyeent 5l t ..,tﬂ_l,Tn) . The second
step is then
(2) 1 1 (l)
a = (X ¥ ) a
Tn Lt ’
- t .{ Tt (n 1)n 1 Z(n 1) a(1)
= n-1 2 r
Taer * zﬂ-l n-1 n-1 t -2 ®-1 1
The 1th step is thus
(i) 1 -1 (i‘l)
a = (X, X . )X _ ., a
tl"'tﬂ-i’sﬁ-i-l"" S n-i-1"g-i-1 n-i-1¢ tﬂ-l’ t-i-2, s
Finally
ag s = (XE)TX a(’s"l:) .
105, 11 1 2 8,
T L.+1
1 1 ’zlsl
1 -
= 2 ‘{ 2 X(l) Zﬁ l }.aiﬂsl)..s
rl=l ﬂl=l 1-1 172° T
T, L,+1 T, L+1
1 1 AN (1) 2 2 S, (2)
R ¢) T %l
rl=l ,el=l l 1 I‘2=l ﬂz_l
Tn 1 Ln 1+l Y/ Tn L +l £
EOT amnye™) Tt oy,
r =1 f-1" -l r =1 § =1 T 17w
n-1 ﬂ-l Tt 1

By using the fact that we have a balanced polynomial over a rectangular design

we can write

£a8y (1) () }
8s F asl...sﬁ = g-{ YR % x(1) ’ (n) ZE R Zz:r
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If we substitute a, for a; in equation (6), the right hand side of (6)

L
becomes
(1) () }
E.{ 85 (Xslal' Xsﬂan)
Jj
v {Z[z(l) 20y x o x(2) Zx’”‘x(“))]}
R R LT (ElI‘l e ﬂ)(sl (2 1 1) (sTr (n) s
However
Z(xzisix(i)) = 5 = { Pty that we have th
(1) “s.a.’ = Ch.a, 1,4, =q  ° SO Thatwe have the
Si 1 1 11 1 1
right hand side of (6) equal to
Y, {Z gl1) gm0 5 ... B } = 2 (1) g
RyR L( IR zﬂrﬁ) £,Q; 2o RyR(ozlrl aﬂrﬂ)

which is the left hand side of equation (6) . Thus a, isa solution to the

normal equations and the proof is therefore complete.
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APPROXIMATING OPTIMAL TRAJECTORIES: SELECTION OF SIGNIFICANT
ESTIMATION VARIABLES IN A LEAST SQUARES PROBLEM

The Astrodynamic and Guidance Theory Division of the Aero-Astrodynamics
Laboratory of the Marshall Space Flight Center is examining the role of
"large computers" as they‘may be exploited in the control and guidance of missile
performance. Under Contract No. NAS8-5365 the Georgia Institute of Technology
and its Rich Electronic Computer Center have been studying such exploitation
as it applies to the approximation of guidance functions with multivariate
functional models. Under this contract attention so far has been focused on
methods to reduce the computational and variable-selection problems in least

squares models,

Background
The state vector, x(t) (describing the flight of a missile through space)
has the derivative %(t). These vectors along with a vector descriptive of

the guidance function, u(t), satisfy equations of motion, which may be expressed

formally as
Flx(t), x(t), t, u(t)] = o

The missile is intended to satisfy certain mission requirements at some future

time, tc, and we may indicate these requirements in the equations describing

terminal conditions:
Glx(t ), x(t ), t ] = 0

Note that the functions F and G are themselves vectors. The guidance problem

may be expressed generally as that of choosing & "best' guidance function u out
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of the class of possible guidance functions, In particular we may wish to choose
a function u in such a way as to minimize

t
c

f c(x,%,u,t)dt
0

In practical situations with real missiles we could.not use the exact
optimum guidance function as a function of time because of measurement errors
and so on, The missile strays from the optimum path into a situation for which
the chosen guidance function is no longer best. It then becomes necessary to
calculate a new optimum guidance function based on new initial conditions. 1In
short it is important to be able to synthesize the optimal guidance function,
u, in terms of the state vafiables at each point in the phase space,

One approach to this synthesis which has been proposed consists in select-
ing a seatter of initial points (possibly organized in subregions of the phase
space); using a large-scale computer to determine the corresponding values of
the optimal guidance functionj and then using some approximation technique
to estimate the guidance function as a function of the state of the missile,

Various considerations, both practical and theoretical, suggest that
such an approximation be based on the criterion of "least squares." Even,
however, if attention is restricted to this well-known method, difficulties
arise, In the first place fitting a function of several variables becomes
very quickly a huge matrix inversion problem. In an earlier study done under
this contract, entitled: "Least Squares Estimation of Regression Coefficienfs
in a Specia} Class of Polynomial Models," techniques were described which reduced
the large inversion problem to a sequence of low-order inversions, when fitting
balanced polynomials to rectangular grids of data. While these techniques hold

promise in special circumstances, evidently they have a limited usefulness,
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A second major difficulty in least squares approximations arises in deciding
which class of functions or which subset of a very large class of éstimation
variables will be used to approximate the unknown function. Evidently, a
method which elects a relatively few highly efficient estimation wvariatbles
also serves to keep the matrix-inversion problem under control, since that
computation depends directly on the mumber of estimation variables used.

It happens that there is a method available by means of which the incorpora-~
tion of estimation variables into the approximating functions can be sequenced
in what seems usually to be an efficient manner. We shall call this formal
procedure for activating estimation variables simply the step-up procedure.

The procedure appears first to have been used by R. J. Wherry (AEEEEQ of Math.
Stat., 1931). More recent discussions have appeared by H. E. Anderson and

B. Fruchter (E§ychometrika, 1960), and E. F. Schultz, Jr. and J. F. Goggans

(Bulletin of the Agricultural Exp. Station, Auburn Univ., 1961). Since

examples'can be constructed to show that the step-up procedure is not always
optimal, the difficult problem of assessing its merit arises.

The primary concern of this report is to consider the merits of the step-
up procedure, to seek improvement in it and to investigate rules to govern
the stopping of the selection procedure.

While this and related problems are of considerable interest and pertinence

in the overall trajectory problem, they should not be considered overriding.
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Other approaches, where the goodness of approximation is more directly related
to the cost criterion or to the equations of motion and where the mission
fulfillment is more directly imposed, show at least equal promise and are being

considered for subsequent study.

Objectives

1. To conduci empirical investigation of the efficacy of using the step-
up procedure in the selection of a fixed number of estimation variables out
of a larger number in obtaining functional approximations by the method of LS,

2. To seek modifications of the procedure for the purpose of enhancing
its efficiency.

3. To develop reasonable rules which will control the process of stopping
the estimation variables selecticn procedure and to study empirically the
sensitivity of the efficiency of the estimation to variations in these
rules, |

4, To explore empirically the general applicability of low-degree poly-
nomial approximation (in the sense of least squares) to representative function
of several variables,

5. To develop an efficient, flexible and unified computer program which,
in carrying out a least squares approximation, at least has the option of

utilizing such selection procedures and stopping rules as have been developed,

Plan of Research

To accomplish the aims of this part of the study research was organized

in four phases:
A. A review of the geometry, linear algebra and statistics involved in

the method of least squares and the step-up procedure. This phase extended
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to include discussions of modifications to the step-up procedure and various
criteria for stopping the selection process, Also included were algorithms for
computer programs,

B, Development of the structure of the empirical investigations. 1In
this phase decisions were reached on types of functions to be estimated, data
patterns, size of data base, specific form of the estimation variables (as
functions of independent variables), how data would be obtained and reduced to
the regression format with particular regard to the important case of polynomial
approximation,

C. Development of computer programs. In this phase algorithms developed
in preceding phases were converted to programs, with attention to computational
efficiency and cost.

D, A battery of examples with interpretations and, if possible, conclusions,
In this phase a few preliminary examples were designed to test the efficiency
of using the step-up procedure. Later, more sophisticated examples were used

to develop the other objectives cited above.

Summary
A, Mathematical review (see the supporting study titled: "Selection of
Significant Estimation Variables in a Least Squares Problem: Math-
ematical Review,")
The well-known method of least squares (LS) is invoked to estimate a
presumed functional relationship between a dependent variable Y and a set of
independent variables Xl”"’xﬁ on the basis of a set of observed points.

According to the method a class of functions of the form,

a. + a Zl(xl""’xn) + +.0 + a

0 1 Zp(xl,e..,X ),

P T
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1s considered for all real sets of coefficients. The Z's are specified
estimation variables depending on the independent X's. For any function of
the above class, corresponding to an observed vector of X's, one could compute
values zpl,coo,z of the estimation variables and a value

pp
& = a + a,z + o0 + apzup’ which could be compared with the corresponding

B 0 17l

observed value yp,of the dependent variable Y. From this specified class of
functions the method of LS selects one for which is minimized the sum of

squares of the deviations of the so-called predicted values Qp from the cbserved
values yp' Such a function is called a best estimate or best-fitting approxi-
mation (in the class) in the sense of LS,

The choice of the functions to be used as the estimation variables,

z

l,“o,Zp, is open, giving the method great flexibility, but also making it

vulnerably dependent on the choice., 1In the next section of this summary some
discussion is devoted to the choice of Z's and the reduction of data to the
form of observation vectors (yp,zpl,on.,zpp) on the variables (Y,Zl,.oo,Zp)o
This form is now assumed.

The least squares approach admits of an accessible geometrical interpre-
tation. Supposing there are N observation vectors, for each estimation vari-
able Zi consider the N observed values (adjusted to the mean). These values
constitute the i-th estimation vector Zi. Similarly, consider the mean adjusted
dependent-variable vector y. The LS problem translates to finding that vector |
in the space spanned by the estimation vectors which lies closest to the y
vector. Qr it may be interpreted as finding the projection of the y vector
onto the estimation space.

The ccsine of the angle between the y vector and its projection in the

estimation space is called the multiple correlation coefficient, R. It is a
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measure of the efficiency of the estimate, attaining a maximum of unity when
the y vector coincides with the projection estimate.

The difference between the y vector and its projection onto the estimation
space is called the error vector. A pythagorean property holds, expressing
the square of the length of the y vector as the sum of squares of the lengths
of the estimate and the error. The estimate itself can be resolved into
orthogonal components, and the same is true of the error vector,

If only k out of the p available estimation vectors are to be used to
estimate y (corresponding to selecting k out of the p possible estimation
variables), a difficult problem of deciding which k to elect arises, since
trying all combinations is ordinarily computationally infeasible,

The step-up procedure is a practical, though not always perfectly optimal,
way to select k estimation vectors. It evolves naturally from the geometric
model described above. In this procedure the first estimation vector is
chosen by finding the one on which the y vector has the longest projection
(by the pythagorean property this leaves the shortest error vector). In the
next step for each of the remaining vectors it is easy to determine the length
of a component orthogonal to the first vector chosen, whose square added to
the square of the projection on the first vector gives the square of the
projection of y on the estimation space of these two vectors. Selected is the
vector having the longest such component. The procedure is then repeated.

Since the y vector may lie in the plane of two vectors but possibly closer
to a third vector (not in the plane), the step-up procedure is not always optimal,
for it would activate the third vector first, then one of the others, but the
combination would not be as efficient as the first and second.

A modification of the procedure has been incorporated to allow for the

elimination of a vector from the active estimation set. It works in the follow-
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ing way, The error vector for the k selected variables is compared with the
error vector when one vector is deleted from the active estimation set, The
difference measures the net reduction of error due to the one vector deleted.
Computationally it is easy to compare the lengths of these reductions., One
may wish to eliminate a variable which contributes 1little net reduction. A
measure of the net reduction due to each estimation vector is provided by the
cosine of the dihedral angle formed by the plane containing the y vector and
its projection in the reduced estimaticn space, on the one hand, ard the piane
containing the two projectioss on the other hand., This is called the partiai
or net correlation coefficient between the dependent va;iable y and the
estimation variable in question,

It appears evident that the simple ruie of selecting k of p estimation
vectors will not always be a good stopping rule. From the geometrical
description several other natural criteria emerge as possible stopping rules
whose use may be varied according to considerations of the particular problem
at hand., For example, if the multiple correlation coefficient is "very high"
the addition of other variables may seem unnecessary. Again, even if R is not
high, the modified step-up procedure may be making no appreciable improvement
in the estimate so that further addition of variables to the active estimation
set may be deemed useless, Also, depending on the criteria for continuing to
bring in new variables and to eliminate old ones, some stopping rule should be
available to guard against cycling,

-The most difficult choices for these decision rules are those concerning
whether to eliminate an active estimation vector and whether adding one or
several more will make any significant reduction in the error vector, One

might adopt the rule of introducing two vectors and eliminating one, until a
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stopping rule stops the process. One might eliminate the vector to which
corresponds the lowest net correlation coefficient, provided that the co-
efficient reaches a certain "low" value. One might stop adding vectors if the
last r added make an avérage addition to R of less than some fixed amount,
However, caution should be exercised in the fixing of criteria, since certain
combinaticns of these rules increase the chances of cycling.

Finally, we have considered elimination-stopping rule combinations based
on F statistics. Briefly, an F statistic is a ratio of the average of certain
cf the estimation components to the average of the error components, 1In a
statistical context, if the estimation components have on the average the
same length as the error components, they are considered insignificant and are
attributable to random error. In short these vectors are not considered of
estimative significance, From such a point of view there is some intuitive
appeal in the decision rule: Do not add if F £ 13 do not drop if F 2 1.
However, the rationale for using the F statistic rules is tenuous and, such as
it is, depends on hypotheses of a statistical model which are not always
appropriate. A fuller discussion of the statistical model is given in the
supporting study.

While the mathematical and statistical analysis suggested the foregoing
procedures and rules, it has also indicated considerable need for the
empirical tests subsequently made.

The mathematical.analysis included a translation of the geometrical
steps described above into algorithms capable of being converted to computer
programs., These well-known algorithms also are developed in detail in the

supporting study with every effort made to retain geometrical interpretations

in the development.
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B, Structure of the Empirical Inves*igaticons

The data were organized in two main phases. The purpose cf empirical
runs in the first phase was primarily to gain insight‘on the efficiency of the
step-up method for activating a subset of estimation variables out of a
large set of such variables. The principal aim of the iuns in the second
phase was to explore the relative merits of various rules for stopping the
step-up procedure of adding variables to the active estimation set and rules for
eliminating such variables. Auxiliary purposes of empirical runs were to test
and correct pertinent computer programs and to obtain from diversified experi-
ence an idea of the general validity cf the LS approach as an apprcximation
technique,

As pointed out in the previous section, the generality of the method

of LS leaves considerable latitude in the selection of test cases. In organiz-
1ng test runs representing a variety of problem types some of the factors on
which decisions had to be reached included:

l. The type of function to be approximated, including its form, the
number of variables and the selection of a representative member.

2. The class of approximating functions, i.e. a seiection of the
estimation variables Z, = Z (X;,...,X ) i = 1,2,...,p, where
(xl"°"xn) presumably is in the domain of the function to be
approximated.

3. The number, extent and distribution of data points.,

Adﬁittedly decisions reached during the test construction concerning these
factors were somewhat arbitrary. They were made, however, with awareness of
their significance,

Briefly, it was decided to construct data for a few selected functions

of three variables, using a rectangular grid of data and balanced polynomials

as approximating functions. In addition, a few runs were made using active
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data, which were developed in certain statistical regression analyses., Except
for the actual data runs the data grids consisted of 500 or 1000 points generated
from evenly spaced values of the three variables on the margins. Thus the
undoubtedly important effects (on goodness of fit) of varying the distribution
of data points or varying the types of estimating functions were not studied
here. Indeed these factors were held more or less constant in order not to
obscure the comparisons of variable-selection procedures,

These decisions led to fairly general and easy algorithms for generating
data for a given test run and reducing them to the format of LS input, Thus,
for a given function F(Xl,X2,X3) =Y, a given class of balanced polynomials of

the form

1 2, 3
a X, "X, X, 7,
L1L2L3 1 72 73

Y = =

and a given rectangular grid of points,
(X 9 X » X )9
lt1 2t2 3t3
observation vectors (yu, zul, zp2,.oa, ZHP) were generated by the computer,
Here yp is the value of Y at some (xlt ,x2t2,x3t3), and the estimation variables

1
Zi are the several terms of the balanced polynomial of the form

while 2,5 is the value of Z, when (Xl,X2,X3) = ( sXgy ). The observa-

X ' X
ltl 2t2 3

tion vectors were then in a form to obtain LS estimates of the coefficients in
the best-fitting balanced polynomial, or more specifically to manipulate in a

way aimed at activating the most significant estimative terms of the balanced

polynomial as described in the foregoing section.,
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Runs in the first phase were limited to estimating a polynomial (of higher
order than the approximating ones) and estimating a rational function, while the
approximating balanced polynomial class was restricted.to be of second degree
in Xl and X2 and first degree X3, which restricted the number p of estimation
variables (Teme cf the polynomial) to 17 or less, The fest procedure for these
runs was, for each k = 1,2,...,p-1, to determine the efficiency (multiple
correlation) of each of the (E) subsets of k vectors and compare the optimal
- set with the set produced by the step-up procedure. Computer time was a limit-
ing factor in these tests.

Runs in the second phase included estimating an exponential tunction and
a few algebraic functions other than rational functions, and they included two
runs using actual statistical data. Some effort was made to include poorly
fitted functions as well as accurately fitted ones, Also, the form of the
apprcximating balance polynomial was stepped up to develop 47 estimation
variables, Usually, for each example, several runs were initiated in which were
varied the policies of stopping the selection prccedure or of eliminating a
variablie,

Considered, but not developed in this study, was an experimental design
in which runs would be made for the various different combinations of pre-

scribed levels cf the main factors thought to influence efficient variable

selection.

C. Development of Computer Programs (see the supporting study titled,
"Selection of Significant Estimation Variables in a Least Squares
Problem: Computer Programs,")

Corresponding tc the two phases of the study mentioned in the last

section, two computer programs were developed. The purpose of the first
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Program was to compare in a few examples the subset of k estimation vectors
selected by the step-up procedure with the optimal subset of k. This first
phase of programming was begun before the Burroughs 5000 was operational on
contractor facilities and was programmed in the ALGOL 58 compiler language

for the Burroughs 220 computer. Because of core memory limitations the
program restricts the total number of estimation vectors to twenty-five. It
would be a simple matter to translate the program to one for the more advanced
computer. This has not yet been done, primarily because the number of compari-
sons to be made even with the restriction to 25 variasbles makes for an almost
prohibitive amount of computation time.

The program depends on using (1) rectangular grid data and (2) a balanced
polynomial as the general form of the approximating function. One part of the
program, using as input the specified values of each of the variables and the
degree of the balanced polynomial in each variable, generates internally the
grid of data points and computes for each such point the value of each term of
the balanced polynomial. Thus the estimatioh vectors are generated.

Also the program allows for a procedure to be inserted to incorporate the
computation of the values of the function which is to be approxiﬁated, at each
of the grid points of data. Thus the dependent variable vector y is generated.

As an intermediate calculation the Program mean adjusts the above vectors
and produces the intercorrelation matrix for all the vectors, including the
dependent variable vector. There will be LlL2...L“ = p + 1 such vectors.
These are restricted in number to 25.

In the next part of the program, for each k = 2,3,..., p-1, each one of
the (i) subsets of k estimation vectors is manipulated to compare the

estimation efficiency (multiple correlation) of those subsets. For each k the
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subset of k vectors which gives maximum efficiency is printed as is also its
corresponding multiple correlation coefficient.

In the final part of the program the estimation vectors are selected in
the order prescribed by the step-up procedure. At each stage an index of the
estimation vector introduced at that stage is printed dut, as well as the
multiple correlation coefficient obtained with the set of vectors selected up
to that stage.

In this program checks were instituted to restrain the incorporation of
vectors which were practically dependent on vectors already included in the
active estimation set. Also, considerable effort was made to abbreviate the
matrix-inversion type calculations in order to produce only the multiple
correlation, since the number of such calculations, P - p - 2, rapidly gets
large.

The purpose of the second program, to a considerable extent based on the
assumption that the step-up procedure was reasonably efficient, was to make
available a fairly flexible program for estimations based on the method of
LS in which would be included at least options for activating subsets of the
estimation variables according to the step-up procedure and other modified
proceddres, and also included would be options which could be exercised to
stop the selection., The program was done for the Burroughs 5000 in the ALGOL
60 compiler language.

As it now stands the program has several options for obtaining the basic
matrix of the dot products of the adjusted vectors (which matrix reduces to

the intercorrelations matrix when the rows and columns are appropriately

standardized),
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(1) One of these options is the same as in the previous program, except
that the admissible order of the matrix has now been increased to more
than 100, This option allows for the rapid generation of data for
experimental studies,

(2) Either the matrix of dot products or the intercorrelation matrix
may be read in directly. This allows further study, especially of
subset selection procedures, of previously studied regression problems,
least squares fittings, and so forth,

(3) Observation vectors may be directly read in. This will be the way
data will arise in most realistic problems, although values of the
estimation variables may require preliminary transformation (e.g.,
if the estimation variables are terms in a balanced polynomial),

In this program, once the basic matrix has been obtained, it is retained
in memory and can be used over and over, to facilitate comparisons when various
procedures for selection, elimination, stopping are employed.

In case the intercorrelations matrix was not introduced directly the
program gives an option for computing and printing it and using it in the
remainder of the program.

In the main part of the program estimation vectors are introduced in the
priority order dictated by the step-up procedure. In addition, however, the
procedure carries options which allow for various rules to be set to make
possible the elimination of an estimation vector and the stopping of the
selection process.,

At present there are two criteria either one of which may be used to
eliminate an estimation variable, One option automatically eliminates an

estimation variable after two have been included. Of course the one deleted
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is the one of lowest net correlation with the dependent variable (see Section A
preceding). In the other option the pertinent F statistic for the variable with
smallest net correlation is computed (see Section A) and is tested against a
preassigned threshold value, If it is below this value, the variable is
deleted., It is possible to prevent any such eliminationé by setting the thres-
hold equal zero.

Currently there are four criteria which can be used to stop the process of
adding estimation variables. The program effectively permits bypassing any or
all of these criteria., They are:

(1) Stop if the F ratio for the next single variable to be introduced
does not exceed that threshold value corresponding to a preassigned
significance level., The procedure stops after that estimation
variable has been added. This can be bypassed by setting the thres-
hold at zero.

(2) Stop if the current value of the multiple correlation coefficient
is sufficiently large. This can be bypassed by setting the multiple
correlation threshold at unity,

(3) Stop if the number of variables chosen reaches a preassigned number.
This can be bypassed by setting that number equal to the total number
available.

(4) Stop when the number of computational iterations for adding or eliminat-
ing a vector has exceeded a preassigned number,

It is noteworthy that the computational procedures for eliminating and for

adding a vector are the same, once the vector has been earmarked,

It should also be mentioned that the same precautions as in the earlier

program were taken to prevent the introduction of almost linearly dependent

vectors.
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In this program of course the output includes the LS regression coefficients
of the selected estimation vectors, as well as indices of the vectors selected,

and the multiple correlation coefficients,

D, Test Runs on the Computer (see the supporting study titled, "Selection
of Significant Estimation Variables in a Least Squares Problem: Empirial
Computer Studies,")

As indicated in previous sections, these tests were broken roughly
into two phases. In a very limited way the preliminary set of tests was con-
ducted to gain a measure of confidence in the step-up procedure as a means for
selecting an efficient subset of estimation variables in a least squares model.
In the tests made a balanced polynomial of relatively low order was selected,
the terms of which provided the full set of estimation variables., Estimation.
vectors, as well as a dependent-variable vector, were generated from rectangulér
design data. Dependent-variable data were computed as values of the function
which was to be approximated. As described previously, subsets of estimation
vectors selected by the step-up procedure were compared with the optimal set,
Primary difficulty in test runs arose from fact that the determination of the
actual optimal set of k vectors required comparisons of (E) sets of vectors,
where p was total number of estimation variables available. Computational
feasibility dictates that p be severely restricted.

Nevertheless, several preliminary runs were made where p was kept to about
11, and in all cases less than 18, Several functions were approximated, These
in general represented the class of rational functions. For one of the functions,
which had a pole in the region of data points, only a poor approximation was
obtained. Otherwise, even with low-degree polynomials, the multiple correlation

coefficient was rather high,
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In most of these tests the step-up procedure selected, at each stage, the
optimal set of variables. There was one example, however, where the procedure
did not select the optimal set of two vectors, although the correct selec*tion
of a larger number of variables was achieved. It is alsq noted that, when R
became stable or nearly so, additional variables introduced by the step-up
procedure were not-always optimal. It is possible that this could have been
the result of round-off error.

In gereral these experimental results indicated the step-up procedure is
probably quite efficient, at least when a fair scatter of points is available.
It was noted that, even when the method failed, the value of R was near optimal.
The actual occurrence of failures, even at early stages, suggested that some
means for eliminating variables would be desirable. Such techniques were
introduced and used in the second phase of testing.

For the second set of test runs the Burroughs 5000 program was used. As
mentioned earlier, this program allows for a larger number of estimation vectors
to be handled, incorporates options of data input, variable elimination and
program stops, but does not make the comparisons to determine a purely optimal
subset of estimation variables. In most of the examples studied in this phase
several runs were made for each example to throw light on the effects of changing
the pattern of variable elimination and <.opriag rules. Attention was focused
on varying the elimination criteric:. che effects of varying other rules being
discernible from the print-out, with the principal basis for elimination being
an F statistic (see Section A of Summary). To observe the effect of certain
stopping rules (which can be set in the program options) print-out includes for
each "sweep" (where a variable is eliminated or added to the estimation

set) the number of sweeps up to that stage, the number of estimation variables
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being used, an index of the last one eliminated or added, the FI value of the F

statistic for a variable brought in or the Fo value of the F statistic correspond-
ing to a variable being eliminated (if it was below the criterion level), and the
square R2 of the multiple correlation coefficient, as well as the reduced R2
which diminishes if and only if the last variable introduced gave an FI value
less than unity.

The examples includeds Approximating three non-polynomial functions, with
the available variables being the 48 terms of a balanced polynomial cubic in
Xl and X2 and quadratic in X3 and the 500 data points generated from
X)

a dependent variable from actual data with available variables constituting a

= 0,25(0.25)2.50, X, = 0.25(0.25)2.50 and Xq = 0.25(0.25)1.25; approximating

balanced polynomial in four variables, where the data are (as would usually be
the case in practice) not in rectangular designy and approximating a dependent
variable from actual data where the intercorrelation matrix of available
estimation vectors was given, themresumption being that these could be non-
polynomial terms,

In the first group of example the functions chosen to be approximated were

2

Fl(xl,xz,x3) = exp(-xl x2x3)

(x4 e 3452 - Iy |
F, = (xl + Xy Xy )|xl + X, 2x3|

3 2 2 2
Fy _/xl X+ X

As in all examples the data were mean-adjusted. The functions Fl and F3,
especially F3, were very closely approximated (in the .range of data) by -the
full set of 47 estimation vectors in the sense that Rz'Was-near unity, while

2
R~ for the case of F2 was near 0,9, For each example runs were made with FO
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set over a range of values from high to low. In the case where FO was set
very low the tendency was to eliminate few or no variables and thus to be very
close to the simple step-up procedure,

The test runs for these examples show that different subsets of estimation
variables will be selected when the elimination (and stobping) rules are varied.
They provide concrete examples wherein the step-up procedure is bettered by a
procedure modified to include an elimination criterion; where the opposite
happensy where an FI stopping criterion of 1.00 (on the last variable brought in)
could stop the procedure which if continued would later introduce variables
significant at this same level. These test runs suggest, but not markedly or
universally, that the elimihation criterion is effective-in obtaining a higher
R2 for the same number of estimation variablesj that a high criterion value is
more effective for variables selected early but not for those selected later;
that the FI test may stop the procedure too soon unless modifiedj that different
problems seem to need somewhat different rules; that while the set of variables
selected may vary considerably R2 has a tendency to be fairly stable for different
procedures,

The examples with actual data provided experience with data more of the type
expected in a realistic problem. In addition the first provided a good example
in which an F stopping rule based on a single variable (last introduced) would
have stopped the procedure too soon. The last example illustrates another point,
viz. that out of 14 variables the last nine variables tested together are not
significant at 50¥% level while the 6th one tested alone is significant at this
level.

It should be noted that in all the examples, in terms of the multiple
correlation coefficient, a few estimation variables usually accounted for most

of the value of R2,
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It is recommended that further insight be obtained by examining the summary

data for the various test runs, given in the supporting study referred to above.

Conclusions and Recommendations

The step=-up procedure, which first activates the one estimation variable
best in the sense of least squares, activates next the one which contributes
the most to a further reduction in the sum of least squares, and so forth, is
supported as an efficient and computationally feasible procedure for selecting
priority-rated estimation variables in a least squares approximation problem.

The nonoptimality of the procedure is manifest in practice. However, the
evidence is strong that even in such case the results are near-optimal, as
measured by the multiple correlation coefficient, R. The empirical evidence
indicates more reliability of the step-up procedure in the activation of the
earlier and presumably more significant variables than in later variables. When
a large number of estimation variables is involved, the optimal value of R appears
tc be nearly reached by several subsets of estimation vectors. Thus, although
frequently in these cases fhe set selected by the step-up procedure is not optimal,
it is very nearly so,

If it is important to restrict the number of estimation variables, there
appears to be a need for a means of eliminating variables previously activated.
The procedure of eliminating an active variable whose net contribution to the
reduction in the sum of least squares is least (and small) is practicable and
frequently effective. Examples show, however, that the elimination modification
does not always improve on the simple step-up procedure., Moreover, it carries
the same cost as activating an estimation variable. No fixed elimination
criterion is best for any wide variety of problems. The experiments indicated

an overall tendency for a large elimination criterion to be more effective when
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the active estimation subset is small and a small criterion to be more effective
when the number of active estimation variables has become sizable.

The use of rules to stop the activation of additional estimation variables
must often depend on such factors as available computer time and rate of computer
time utilization. A comprehensive set of rules, which may be used in various
combinations, includes stopping when R is sufficiently large, when the
activation of additional variables does not contribute significantly to the
estimation, when the number of variables reaches a preassigned number or when the
computational procedure begins to cycle. Examples show that the second of
these can occasionally stop the process too soon, so that the contribution of the
last several active variableé, rather than just the last‘one, should probably be
tested. The speed with which variables were eliminated or introduced in the
examples indicates that large blocks of variables could be introduced before
making any decision on which variables to keep active.

The study shows that at the current state of computer science it is still
infeasible to examine all combinations of subsets of estimation variables to
determine the optimal subset, unless the total number is quite small, and
thus that the need remains for such a procedure as the step-up procedure,

The study has also given evidence of the feasibility of the rapid selection of
efficient estimation variables even from a set of several hundred, using a
fairly sophisticated system of optional variable-elimination and stopping rules.

Finally, with reservation, it should be noted that in all the examples there
was a marked relative efficiency of a small set of active estimation variables
to the entire set of estimation variables available,

In view of the foregoing results the step-up procedure is recommended as an
effective means for selecting priority-rated estimation variables in a

least squares analysis. The use of the modified procedure and the various
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stopping rules is also recommended with the admonition that the various
settings ought insofar as possible to be adjusted to suit the experience of
workers familiar with the problem area under study.

Specifically, with regard to the context of estimating optimal trajectories,
i.e., with regard to the problem giving rise to this study, it is recommenced
that further general analysis of the method described herein, either theo-
retical or empirical, not be undertaken, but that the method and experience
gained be applied in a series of experiments with actual trajectory data as soon
as possible, where the experience of researchers in the field,and the knowledge
of physics pertinent to the problem will be utilized to help delimit the class
of approximating functions,

Finally, using methods of design of experiments and a limited class of
functions presumably pertinent to trajectory problems and including some iive
data, it may be feasible to study the effects (on approximation efficiency) of
varying certain factors such as data distribution, type of approximation,

elimination criterion, and so on,
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SELECTION OF SIGNIFICANT ESTIMATION VARIABLES
IN A LEAST SQUARES PROBLEM: MATHEMATICAL REVIEW

1. Introduction. The principle of least squares (LS) can be formulated

in the following terms. Presumed to exist is some sort of functional dependence

of one variable, Y, called the dependent variable, on a vector, (Xl"'°’xn)’ of

n other varisbles, called independent variables. Available is a number (say N)

of observations, i.e. values of Y corresponding to values of the vector (Xl,...,Xﬂ)e

Next is chosen a class of admissible functions of the form,

8,2 )\ 1

of the X's and the parameters of the class are al, a2,...,ap. The functions

9°OO,XK) + ...+ apr(X ,..O,Xn), where the Zl,...,,Zp are fixed functions

Zi presumably are chosen to enhance the likelihood that the unknown functional
relationship (between ¥ and the X's) will be' nearly of the prescribed form.

Each function of the class is linear in the variables, Zl"“”’zp’ which we shall
call estimation variables; each function is also linear in the parameters. In

any case the basic idea in the least squares approach is to spproximate the

unknown functional relationéhip with one of the admissible functions. For any

one of the functions in the class, corresponding to each observation, (Xpl""’xpﬁ)’
is the value of the function, ?p = alzpl + ... t apzup, where

2 = z, (xpl"'°’xpn)’ which is comparable with the value of Y (say yp)

corresponding to this same observation, (xpl""’xpn)’ The sum of squares,

is taken as a measure of the estimative value of the function Y = alZl + ... t apr

According to the principle of least squares, out of the class of admissible

functions
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Y = alZl + ...t apr s

Y-

is chosen as an estimate of Y one function which minimizes the sum of squares

of deviations., Such an estimate (we shall see that one does exist) is written

v

as ¢ = Z? bizi; we shall call‘such‘a function a best estimate or best-fitting

approximation (in the class) in the sense of least squares. The sum of squares

of deviations,ZT(§u - yp)2, is called the sum of least squares or the residual

sum of squares due to error. The procedure of obtaining a best estimate in

the above sum is frequently called a regqression analysis, or more properly a

linear regression analysis. The bi are often called regression coefficients.

The method of LS was known and used by Gauss over 150 years ago. He dis-
covered that under certain conditions the method of least squares in a sense
yields an optimal estimate. This is the famous Gauss-Markov theorem. Briefly,
the principal hypothesis for this theorem is that except for random deviations
the observed values of Y are values corresponding to one of the functions in
the class y The random deviations are assumed to be statistically uncorrelated,
with a common variance and mean zero. Under the additional hypothesis of
normality of the distribution of these deviations an elegant statistical theo;y
of estimation and hypothesis testing can be constructed. The statistical model
is discussed briefly in Section 5 below.

The method of LS is used widely in numerical analysis even when the support
of the Gauss-Markov theorem cannot honestly be invoked. In many cases other
methods perhaps are equally or more }ustifiable; but often the method of LS
has an intuitive appeal in that it seeks an estimate which minimizes one obvious
measure of error.

It is also possible to consider classes of admissible functions, from which

an estimate will be chosen on the basis of the LS principle, which classes are
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nonlinear in the parameters. In many instances such problems are resolved
satisfactorily by iterative techniques. The procedure of obtaining estimates

of the parameters in such a case is called a nonlinear regression analysis.

Excellent accounts of the statistical linear regression model are given
in GRAYBILL, SCHEFFE, and ZELEN. The method of LS is given space in most
numerical analysis books, and sometimes the nonlinear case is discussed. |
E.g., see SCARBOROUGH. Nonlinear regression analysis is trested from a sta-
tistical point of view in WILLIAMS,

In applications of LS it is often the case that the number of estimation
variables, for which values are computable from observations on independent
variables, is very large. Certain recurring and nagging questions arise,
varying somewhat with the circumstances. If only k of p variables can be used,
which k should be chosen? Does the use of additional variables contribute
significantly to increased efficiency of estimate? The second of these
questions is not mathematically meaningful until the word "significantly" is
defined. However, in the context of a given problem, the question is one that
frequently must be raised, given meaning and acted on.

There is an obvious answer to the first question raised above, viz., to
determine by computation which of the (E) sets of estimation variables yields
the minimum sum of least squares from the data. Unfortunately this straight-
férward procedure is computationally infeasible. A more tractable and completely
reliable method of finding the optimal set of k. .estimation variables remains an
open problem. However, at least as early as 1931, WHERRY proposed‘a procedure
for selecting a redsonably efficient subset of estimation variables. This
procedure we call -- because it has become our habit -- simply the step-up
procedure. It consists in selecting first the one estimation variable best in

the sense of LS, next the one which contributes the most to a further reduction
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in the sum of LS, and so forth, In this way variables are added until some rule
stops the process. The procedure is computationally very feasible and fast.
However, it is easy to show it is not always optimal. The step-up procedure
has recently been described without much critical analysis in papers by ANDERSON
and FRUCHTER, and SCHULTZ and GOGGANS. |

The aims of the present paper are: To illuminate the method of LS in
linear regression analysis with geometrical arguments, giving clear interpreta-
ticn of certain measures of estimation efficiency; thus to lead into a natural
development of the step-up procedure where its weakness as well as its intuitive
appeal are exposed; to examine the geometrical structure_for a procedure for
elimination of a variable previously selected, and thus mitigate the flaws in
the step-up procedure; to explore the statistical model for reasonable decision
rules on when to eliminate and when to keep adding variables; and finally to
provide a translation of the various geometrically conceived procedures to

computable algorithms.
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2. Geometric formulation of the principle of least squares. The notion

A

of obtaining an estimate, Y = 2? bizi’ out of the admissible classjymmich
minimizes the sum of squares of deviations, is one admitting of accessible

and correct geometrical descriptions. Such a formulation is helpful in under-
standing the step-up procedures for selecting significant estimation variables
(to be described in the next section) and seems to hold the only hope of devising
techniques even more defensible than the step-up procedure. We proceed now
toward such a formulation.

Assumed avalilable are the N observation vectors, (Yp’zpl"'°’z )y p=1,2,...,N;

kP

where z , = Z, (x presesX )s as indicated in the preceding section. Associated

Bl 1 pT
with each of the p estimation variables Zi’ i=1,2,...,p, is the vector,
lyihg in the euclidean N-space EN, consisting of N values z g0 BT 1,2,..0,4N,
observed on that variable. We shall call these vectors estimation vectors; we

write them, zs (1 = 1,2y...,p); and for matrix manipulations they will be thought

of as column vectors., Hence, using the letter T to indicate matrix transpose,

To

Z, = (Z,.5 Zocsooes Zns)o
i 1i? “2i’ ’ Nl)

In this section the N x p matrix of these estimstion
vectors will be denoted as z. Similarly, the symbol y represents the vector of
the observed values of the dependent variable Y. It will be assumed, without
any real loss of generality, that N > p and that the estimation vectors are
linearly independent. Thus the estimation vectors constitute a basis of a
p-dimensional vector space Vp, lying in EN.

Consider now the sum of squares criterion. Writing the parameter vector

as a, this criterion is

where d = y - ¥ is the vector of deviations. Note that § = 2? 3,2, lies in
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t-e vector space Vp generated by the estimation vectors and that de is the
s>uare of the {eaclidean) distance betwgen y and y¥. Since the aim was to deter-
wine b such that g(b) = minig(a) afs the least squares problem may be interpreted
as finding a vector in the space spanned by the estiﬁation vectors which lies
nearest the dependent-variable vector vy.

Geometrical intuition now supplies the correct solution to the least squares
problem; viz., the vector in Vp lying nearest y is the projection of y onto Vpn
Otrer important points are indicated by the geometry. Writing ? as the pro-
jection ot y onto Vp, e =y - ?, and 92 = eTe, etc., py*thagorean relations are
indicated. E.g.; y2 = ?2 + e2; i.e., the square of the ;ength o1 the dependent-
variable vector equals the sum of the squares éf the lengths of the best estimate
vecter and the least squares residual error vector. This is often stated as,

"The total sum of squares equals the sum of squares due to regression (estimatior)
plus the sum of squares due to error." Aléo, ify= Zaizi is another vector

lying in Vp, ifd =y -9, then 4% = &2 + (v - 9)2. Also, the e vector will be
crthogonal to Vpo Finally, the angle between y and itg'p;ojection should be
less than the angle between y and any other vector iq/bp: Thus

cos 6(y,y) > cos 6(y,¥), where 6(u,v) means the anglé between vectors u and V.

In statistical terminology the cosine of the angle between two such vectors

is called a correlation coefficient. Recall that

2u, v,
cos 0(u,v) = {uev) = ——tt
Vu2v2 VEMfZVf

In the above instance cos 6(y,¥) = R is called the multiple correlation coef-

tficient between y and y. Note that this should be unity if y does indeed lie

in vp, and should reduce progressively to zero when the estimation space is

T2




less and less effective. Thus R provides a rather useful and suggestive index
of the efficiency of the estimation space. The square of the length of the least
squares residual error vector, eTe, is another closely related measure of the
efficiency of estimation.

The situation is represented schematically in the following diagram:
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The foregoing geometrical discussion can be sutstantiated with a detailed
algebraic development. OSuch substantiation is a consequence of the argument
to follow, but the primary purpose of the argument is ﬁo make the gepmetrical
ertities explicit, to make essential quantities computable and to set tre
stage for the next section. |

The estimation space Vp is spanned by sets of orthogonal wectors of unit
length. Let z¥ z¥ be one such set. OSince every vector in Vp is a

1 23, o0 23

unique linear combination of the estimation vectors,

* = H

z7 qllzl + ...+ qlpzp
z¥ = q .2, + ... + q__2
P pll PP P

i.e., z* = zQ, where Q is a non-singular p x p matrix, and, of course,
-1 . . . .
z = z2*%¥Q ~. Also, every vector in Vp has a unique representation either as a

linear combination of z .,zp or of z¥

l,...,z;. If § lies in'Vp, then there

100

exists a unique vector a such that ¥ Z§ aizi= za, and there exists a unique

vector a* such that ¥ = z*a*. But z = z* Q_l, so that a* = Q Ya. Thus there is
a one-one correspondence between coefficient vectors a for the z basis and
vectors a* for the z* basis. In particular, if b* is such that § = z*%b* i3 +the
one vector in Vp closest to y, then § = zb, where b = Qb*.

With these orthogonal vectorsz* in mind an orthogonal transformation is
now imposed on the points in EN in such a way that, in the transformed space
EN: the z* become the unit vectors Uy, u sl Such a transformation is
accomplisé;d with an N x N orthogonal matrix P whose first p rows are the
vectors Z* - It is easily seen that distances and angles are preserved under

such a transformation, so that the least squares problem is invariant under
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1
the transformation. Note that the image Vp of Vp is simply the linear com-
binations of the unit vectors, ul,...,up. Let y' = Py, and let § = z*a* lie

in Vp, so that §' = Zﬁ a; u Then the square of the error vector is

i

ata = artar = (y' - Zh;ui)T (y* - Za;ui) = Zﬁ(yi - a*i*)2 + TN

‘2
D+ lyu

Evidently the projection of y' onto Vé ought to be the vector whose first p

components are those of y' and whose remaining components are zero. Thus the

a} vhich produce the combination of vy (i=1,2,...,p) constituting the pro-

Jection of y* on Vé are yi. In short, b; = yi, i=1,2,...,p. That this is

correct algebraically can be seen in the preceding equation, where it is

obvious that these are the values of a; which minimize the square of the error
"

vector. Write §' = Zi b;ui = [yi,...,yﬁ,o,...,o ‘Note that the residual

error vector [O0,...,0,y!
[; ;:yp+

Note also that Zg (y{ - a"i(')2 = (§$ - ?')2 and hence, from the foregoing

1 yﬁ]T = e' 5o that e' and §' are orthogonal.
ey

equation, that

Having seen now that, relative to an orthogonal basis of Vp, b* = z*Ty

*x7T
i

it is now desirable to obtain § and eTe in terms of the original estimation

(which follows from the fact that b; = yi and yi = z¥y for 1 = 1,2,...,Dp),
vectors and the dependent variable vector. But § = z*b* = zb, where
b = Qb* = Qz*Ty = QQTzTy. Now

T T
(QQT)-l = Q-l Q-l = Q-l z""Tz*Q-l = (z*Q'l)T (z*Q'l) = 202,

Thus, writing h = sz and g = zTy, in terms of original data, b = h—lg. Also
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e2 =) yiz = b*2 = yT Z*Z*Ty = yIzQQTzTy = (zTy)Tb = Zbigi,

Thus computationally the problem is one of sclving the sysiem of equaticrns
ht = g. In the stucceeding discussion it will be importan®t *o rememver tae
following principle which summarizes much of the preceding development and
unifies the geometry and algebra of the least squares problem: Civen a set <t
k linearly independent vectors ZyreresZy in an euclidean space ard a [(k+l)-st
- ; = 7 = ] T . . AT
vector w, 1f h = z z where z = (zl,...,zk) and v = z"w; then the sol.tion x
of the eguations hx = v is such that zx is the projection of w onto “h= spac:

generated by the 25 and the solution effectively resolves the w wvezxtor in*o

its projection zx and a component, e = w - zx, orthogonal to the projection.

76




3. The Step-up Procedure. In this section emphasis is shifted to the

selection of a subset of (say) k estimation vectors out of a total number of
(say) p. An optimal set of k, by definition, will be that set of k corre-
sponding to which the length of the error vector is least ( or equivalently
the multiple correlation coefficient R is most.) The plausibility of the
step-up procedure, as well as its deficiencies, will be seen from the geo-
metrical development. Computational feasibility and procedures will be
e&ident from the corresponding algebra.

For the moment we suppose that k-1 vectors have been chosen and that our
purpose is to add another one from the p-(k-1) remaining. We shall refer to

estimation vectors selected as being in the active estimation space or as

being active.

With regard to a least square problem involving y and the k-1 active
estimation vectors (which of course are a basis for a vector space vk—l of
dimensionality k-1) everything in the preceding section is directly applicable.
This succession of problems with 1,2,...,k,...,p vectors in the active esti-
mation space is sometimes called the succession of the lst, 2nd,..., kth,...,pth
fittings. We shall frequently use a superscript to indicate the fitting, or
dimension of the active estimation space. This notation does not specify which
of the vectors are in the active estimstion space, but we shall tacitly assume

they have been relabeled so that the active estimation vectors are now -

Z:i9 Zhsees52 1« According to the preceding section
1 2 k-1

?(k_l) = 2?;1 bgk-l) zi = z(k-l) b(k-l), where b(k-l) is the solution to the
system of equations, h(k—l) b(k_l) = g(k-l), with
(k1) | 2 (k1) 2 (K l), g(k 1) o (k1) Y, and 2 (k-1) . (zl,...,zk_l).
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Recall that ?\k 1) is the projection of y onto V

(k- : 1
vector e\ 1) has length whose square is (b(k *)og

k-1 and that the residual error

(k‘l))

o

Suppose next that the kth vector to become active has been selected.

) T
Consider the system of equations h(k-l) x(k_l) = v(k'l) (k-1) z(K-l) z

Recall that Z xl(k 1) z5

(k-1)
LR z“11"

, where v

is the projection of z onto'Vk_l, and

k

zs is the component of z, 1lying orthogonal to the space

k

spanned by the zl,..ugzk_lo The vectors zi = zl,zé,oou,zi,o.., thus defined

sre a particular determination of Gram-Schmidt orthogonal vectors. In matrix

form the matrix of the first k of these Gram-Schmidt vectors is

- (1) (2) (k-1)
1 Xy X oo Xy
O l - X2(2) 000 E
2o (0 200 ) here () .0 1 e
. o (k1)
. . . Xk-1
0 0 0 1 ]

from the equation above.

Normalized Gram-Schmidt vectors are obtained when the columns of Q'(k)
1
are divided by (zi . zi)g° Thus orthonormal Gram-Schmidt vectors are

(k)

() 00 )

(k)

where Q is upper triangular with the reciprocals of the lengths of the

Gram-Schmidt vectors in the diagonal.

78




Recapitulating at this point, we have an orthonormal basis for the active
estimation space in terms of the Gram-Schmidt orthogonal vectors, where the
last Gram-Schmidt vector was the component of the last estimation vector
selected orthogonal to the space of the others.

It is interesting to note that the lengths of the Gram-Schmidt vectors
z; are readily available from the original estimation vectors. In fact, using

k

the basis z¥*,...,2¥ derived from the Gram-Schmidt vectors as the orthonormal

1 k
basis of the previous section, it follows from the results of that section
_1
that z*(k) = z(k) Q(k), where Q(k) is triangular with (zé . zi) 2 = Uy ? and
-1 T -1
that h(k) = Q(k) Q(k) s or, writing a(k) = h(k) s that a (k) = q . (z! -
kk kk k
Now, given orthonormal vectors, zl*,...,zk;l*, zk*, from the preceding
section the square of the projection of y onto vk-l was E?;i bi*2, where
T |
o (k1) e (k-1)T
. . . . k 2
while the square of the projection onto Vk is zi=l b? s Where
T
o (€)= (0T
Thus, bﬁz is the increase in the square of the projection vector obtained by
activating the estimation vector z, (whose component orthogonal to vk-l is zé);

or, equivalently, b§2 is the reduction in the square of the residusl error
vector obtained by activating Z)

Now the principle of the step-up procedure becomes clear. Given the
problem of augmenting by one vector an active estimation set of k-1, tbe

answer is to choose that one for which the new projection of y in V, has the

k

largest component orthogonal to the old projection in Vk—l; i.e., choose 2,

9



s0 that relative to the augmented Gram-Schmidt orthonormal system,
zfgnnoszi_l,z*9b§2 is maximum,

Again, it is important to be able to examine what values b?z could have
for the various possible vectors which could be chosen as 2,5 and to do this

easily in terms of the original vectors. But recall that

K (k)

(k) o h g

(k) _ (k) Q) 0 L)

=2z Q y Q b* b

(k)

56 that the triangularity of Q implies that

b () o2 Lk

b , OT b

=
Gk %k %k

It is worth noting that the residual error vector can be considered as a

(k) _ . §(k) ~ (k)

tinal Gram-Schmidt vector, since e , where y is the projection

K But we have seen that the reciprocal of the square of the kth
Gram-Schmidt vector is the last diagonal element of the inverse of h(k)o Thus,

(k) (k)T

matrix being used is augmented with an additional column z y

of y onto V

it the h
and a symmetric row, corresponding to the dependent-variable vector y, then the
last diagonal element of the inverse of this augmented matrix will be the
reciprocal of the sum of least squares.

A computation synthesis of the procedure can be envisaged as a sequence

of gaussian elimination tableaux, where starting with
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hll LN N ] hlp gl l O o o0 O O
o 1 ] . ] L] L]
. . . . .. 0
h O o 0 0 O l o
e 0@ h
pl pp 9%
T
9; soe gp Yy y=G O o oo 0 1
after k-1 stages we have
(k-1) (k-1) (k-1) (k-1)
1 0O ... O hl,k voo bl 11 coe al,k-l 0 ... O 0
0 . . . . . . . . .
:) O. O
° (k-1) (k-1) | _(k-1) (k-1)
0 ... O 1 ihy e »e- Py q-1,1 "t 31k-1lo0 ...
(k-l) (k-l) ° °
o o ¢ O * 0 0 o hkk o e 0 gk : : lO»...
c-°.,° . .
. . . . . . N 0
o . vee O g k1) 0 ...01 10
0 -] © L B ] 0 e o0 LN N ] G(k-l) L I ] LN BN ) L BN ) 0 LN BN O l
T (k-1)7] . 1y .
Note that hlk is the solution of h(k 1) x(k 1) = v(k 1) from which the
. (k-1
- -
P-1,k b, (k-1)
, - 1
kth Gram-Schmidt vector is obtainable. Note that . is the solution of
(k-1)
D1
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h(k—l) b(k_l) = g(k_l)o Note that if z, i3 to be the next vector activated,

then to obtain solutions to h(k)x(k) = v(k) and h(k)b(k) o g(k)

(k) k)-1
a

, and to obtain

= h( , regquires only to cperate on the above matrix with elementary

(row) transformations so as to reduce the kth column to the urit vector a4y -

This wil:i prodece

. (k-1)
(k) _ 2k (k) i
b = - (k1) and a3y, = (k1)
‘kk ‘kk
32 (k-1)
2 (k-1)°/ hyy .

: o * =
Thus bk 9

From the last equation it is easy to see that; to tind the vector yielding

-1)2 -
maximam b *2,one need only examine the ratios (gj(k 1) (k-1) for

k )/ny 5

3= Ky ktlyeoo,pe

Necte finally that, after k vectors have been chosen, the last diagonal

(k)

element of the inverse of the augmented matrix would be l/G . Hence

(k) . (k)2 .
G = e s, the sum of squares of residual error.

Attention is called to the obvious fact that the step-up procedure of
activating estimation vectors in the order of the further reduction made to sum
of squares of error is not necessarily optimal in selecting say k vectors out
of p. E.g. the y vector could be practically in the space of two vectors, z,

and 2y kut lying closer to a third Z4 (not in the space) than to either of the

given two. Thus the first vector selected would be vector Z5e Then regsrdless

of which one was selected next, the pair chosen would be inferior to Ly Toe
One other word of caution is in order, The criterion for activating the

next estimation vector is a maximum ratio. The denominator of this ratio is

the square of the length of the component of the new vector in the direction

orthogonal to the then current estimation space. Of course, if some of the
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remaining vectors lie in the currently active estimation space (i.e., they

are linearly dependent on vectors already chosen) they should not be considered
as candidates, Because of roundoff errors such dependency must be defined
approximately. Note that an almost dependent vector will produce a small
orthogonal component which will tend to produce a large criterion ratio (which
may be primarily an accident of roundoff error). To avoid spurious selections
caused in this way the criterion should be compared only for those vectors
whose orthogonal component exceeds a minimum value. What minimum value ought

to be chosen is at this time a matter for conjecture.
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4, Criterion for eliminating insignificant variables, From the discussicn

1n the preceding section it evidently may happen that, in trying to activate an
efficient set of k estimation vectors, the step-up procedure will select at cne
=tage a vector which later on would be more efficiently eliminated, Sc far no
precedure for deactivating any of the active estimation vectors has been
inccrporated, Hcwever, the algebraic technique for eliminating any designated
active estimation vector and obtaining the regressicn analysis for the reduced
set 15 well-known, It is a question of deciding whetrer to eliminate one and
if so which one to eliminate, The purpose ot this section is to prcvide a
geometrically appealing and obvious answer to the second aspect of this
question., Criteria for deciding whether to eliminate a variable will be dis-
cussed in the next section.

Therefore we suppose k estimation vectors have peen activated and the
corresponding analysis laid cut, say in the manner of the sequence of gaussian
tableaux referred to in the last section, and we suppose tre decision has been
made to eliminate one of the vectors. The question is: Which one shail we
eliminate? Fix attention on one of the active z,, say for definiteness the

* (k)

last one, Zp o Now the projection y

projection ;(k_l)

of y onto Vk can be resolved into its

onto Vk-l’ the space spanned by zl,ogo,zk_l, and a component

*(k-1) A (k-1) o 2(k)

orthogonal to y . The projection y of y onto V is indeed the

k-1

same as the direct projection of y onto V so that the orthogonal component

k-1’

A
mentioned above in the resolution of y(k) is the net effect of the active

vector z, in the estimation of y with ;(k). Stiil keeping attention to Z, s

we have already seen that the square of the length of this orthogonal component
2
. * - * 3
is bk , where in fact bk is a component in the direction of the kth Gram-Schmidt

vector generated according to the order in which the z, were selected, Also,
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%*
jo
~
N

[V]

—

~ ~
S

where, it will be recalled,

NEDREPINE)

. AT . .
for any J = 1,2,...,p5 with h(J) = Z(J) Z(J)’ Z(J) = (zl"oo’zj)’
' =1
2 =
Recall also the pythagorean relation for each j = 1,2,...,p,
.12 .12
2 A
(y.y) = y2 = y(J) ;o)
where
.12 b %2 12 N
§(J) = Z b, and e(J) = Z y'2 ,
i=1 p=j+l
with y' = Py, the image of y under orthogonal transformation. Thus, remember-
¥*
3 — t
ing that bi = Yy
2 2 2
A - *
T L
%2

Evidently bk can be interpreted as the net reduction in the square of the error
vector obtained by activating 2,5 OT,y equally as well, as the net increment
(provided by activating zk) in the square of the active estimate.

Imagine now that the gaussian elimination has proceeded to the point of

() ) = k) ien oK) = h(k)_l-

obtaining a solution to h e|
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(k) W@ )
l o [PV ) O hl,k“-l @ 9 0 hlp bl all o Cc O O o v o O o
0 . of ¢ . p, K (k) . : | e
° ° ° J ° JJ] ° ° ° 0
- (k) )| o (k) k)
o oo a' 000 0
0 ..., 0 1 hk,k+l - hkp bk akk 0 0
(k)
O 0o 00 0 o e Q gk+l o 0 e l o on o o O
. . S . . 0 Y ol ¢
0 oo 0 oo g(k) oo o 0 ... 0 11 O
9]
o ... of ... ALV B o ... ol1

But now suppose j < k and that the order in which zj and z, have been introduced

is reversed., Imagine re-scheduling the calculations in the gaussian elimination
for this revision. In the tableaux this would be accomplished if in the 1nitial
tabieau the jth and kth rows were interchanged and the jth and kth columns (to
restore the initial uni* matrix on the right the (p+l+j)-th and the (p+1+k )-th

columns would also have tc be interchanged), and thereafter repeating the opera-

tions which produced the kth tableau laid out above. The solution vector b(k)
(k)

in this case would be the same as before except that the order cf bj and

(k
bk' ) would be interchanged. Moreover, the inverse matrix would be the same

except that the jth and kth rows and the jth and kth columns would be switched,

(k) (x)
K

putting aj; in the (k,k)- position and a in the (j,j)-position. Note

k
2 . 2 |
now that bj(k) /ajj(k) plays the role of bka , and hence the quantity bj(k) /ajj(k)

is the net reduction in the square of the error vector due to the z. vector.
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Now it is clear which of the k active estimation vectors should be
2
eliminated, viz. that 25 (3 € k) for which bj(k) /ajj(k) is minimum. Observe
that these ratios are computable from the kth gaussian tableau set out above
without any re-computations,

Having decided which estimation vector is to be eliminated from the
active set of k, the procedure for making the elimination and obtaining the
regression analysis for the reduced set of k-1 active estimation vectors is
as follows. According to the foregoing remarks no generality will be lost
if we assume that the vector to be eliminated is Zp . But recall that to add
z, fo the active set, ZisesosZy g and to obtain the regression analysis
for the augmented set it was only necessary to perform on the (k-1)-st
tableau those elementary row transformations which reduce the kth column to
the unit vector Uy e Therefore, to eliminate zZ, it is only necessary to undo
these calculations., It is not hard to verify that the reversing calculations
are those elementary row transformations (on the kth tableau) which reduce the
kth column of the inverse a(k) back to Uy e

It is of course only a notational convenience to assume that the
estimation vectors activated are the first k of the p listed in the tableaux,
The swapping of rows and columns, while tidying up the written portrayal of
the tableaux, etc., is completely unnecessary for computer handling of the
problem.

Finally we shall mention that the rule described above for deciding which
vector to eliminate is equivalent to that of eliminating the active vector that
has the smallest partial correlation with the dependent variable vector. The
pértial correlation coefficient between z, (say) and y is the cosine of the

(k-1) g 306D _ (kL)

A
angle between e and y
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From the ske®ch below it is clzar +kat “ailz correlation decreases az tre

. Alk-1 *
length IIy(k) -y )|| = |bk| decreases:
From tte definition of cocine between e(k) and §(k) - ?(k-l) it is eazy to
show <Tha<t
2 ro\2
* (k-1), (k)
wos? oD B | gel)y L I C DI
’ (e(k-—l) e(k—l)) k a(kS
) kk

88




5., Decision rules: the statistical model. In the last section the

question answered was which active estimation variable ought to be eliminated
once the decision had been made to eliminate one. The question of constructing
decision rules to tell when to eliminate a variable was left for this section,

Defining a sweep or iteration as a step in which either an inactive estimation

vector is activated or an active one is deactivated, an obvious type of
decision rule is the following: Activate two vectors according to the step-up
procedure, then eliminate one by the method described in the preceding section,
and continue operating under this rule until some stopping rule (see below)
stops the entire procedure. It is conceivable that such a rule would have
utility if it is important in the ultimate application to have no more than

k vectors while the cost of the extra sweeps is relatively unimportant.

Of course if of k active estimation vectors one has a partial correlation
with the dependent variable vector of practically zero, it would seem wise
to eliminate it. This suggests another quite arbitrary type of elimination rule:
Of the k currently active estimation vectors eliminate the one of lowest partial
correlation with y if said partial correlation is less than some level «(k),
possibly a.function of k.

Another decision problem must be dealt with, viz. that of constructing a
stopping rule to stop the step-up procedure (with or without modification to
allow for deletions). Here again, certain obvious but rather arbitrary rules
come to mind. E.g., stop when k vectors have been activated (actually this was
the somewhat nagve rule use? to motivate the section on the step-up procedure).
It seems clear that, by itself, this is not a good rule, since in a particular

example a satisfactory estimate may be attainable with far fewer than k vectors
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{1.e. tne multiple correlation coefficient may be already very near one with
fewer vectors or simply may not be imprcved "significantly" to warrant the
inclusion of more).

We take the position atl the present time of recommending a fairly
comprehernsive battery of stopping rules, any combination of which might be used,
with a variety of sensitivity settings possible. Intuition suggests that
appropriate settings will vary with the type of problem, the usage require-
ments and the burden of cost in time and meney. Perhaps a battery of stopping
rules should at least make provision for stopping when a fixed number ot esti-
mation vectors have been activated, when the estimate is of sufficiently high
accuracy (multiple correlaticn sufficiently near one), when the number of
sweeps exceeds a certain number (this acts as a safeguard against & cyclic
pattern of activation and elimination of vectors), and when the last r (say)
vectors activated have not produced a "significant" change in the estimate.

Again the word, "significant", requires specific interpretation before

the rule can be operational. One modus operandi might be: Stop the procedure

if the increase in the multiple correlation coefticient R, produced by adding
tre last r active estimation vectors, was less than B(r,k).

Both in the question of whether to deactivate an active estimation vector
and in the question of when to stop activating estimation vectors the notion
of significant effect arises. This suggests the possibility of resorting to a
statistical model where the techniques of testing hypotheses might be invoked
s a basis for decisions on whether to eliminate a variable or whether to stop
the activation process.

In the remainder of this section we shall sketch the outline of a

statistical model perhaps sufficiently to indicate the attractiveness of such a

decision mechanism as well as to indicate some of the limitations of such a model.
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Very briefly the model develops a statistic, or function of the observed
active estimation vectors and the dependent variable vector, called an F
statistic which 1s the decision-making instrument--large F means signifi-
cance of the effects being tested and small F means nonsignificance. Under
the hypothesis of the statistical model, and under the additional hypothesis
that the effects of the estimation vectors being tested are only '"noise"
effects or éffects introduced by virtue of random fluctuations, the F statistic
is expected to have a value of about unity.

Actually, the F statistic is a ratio of the average of the effects of the
vectors being tested to the average of some random error effects., In the ter-
minology developed in previous sections ;uppose,that zk_rﬂ,.p.,zk are active
estimation vectors whose combined effect is being tested. Recall that ?(k) is

the projection of y on the space spanned by CERREFEN and that Q(k_r)

(k)

is the

projection of ¥ as well as the projection of y onto the subspace spanned by

Z. yecosZ

1? k-r°

9l



In the F ratio the average of the effects of the r vectors z is

k_r+lyeoo,zk

measured as i times the sguare of the length of the vector, Q(k) - ?(k—r);

. Do s 1 .
while the average of error components is measured as ¥ -k times the squsare

L0 (k)

of trhe so-called error vector, (recall that e lies in a space ot N-k

aimensionsorthogonal to the space generated by zl,ooo,zk in which ?(k) - §(k~r)
lies). Obviously, values of the F statistic less than one would not tend to

support significant effects of z R while values greater than ore

k-r+1°°
prasumably would. With the normal law of errors assumed in the statistical
model and under the hypothesis that these supposed effects of the last r vectors

are noise effects, it turns out that the chances are approximately even that F

shiculd exceed the critical value of unity. If the critical value is increased

:he probability that the F statistic will exceed it diminishes rapidly. These
probabilities are tabulated for various critical values and various degrees of
freedom (r and N-k in our case). One may establish a decision rule to reject
the hypothesis of no systematic effect (from the estimation vectors being tested)
i1 the vaiue of the F statistic observed is improbably larger than one.

The decision rule is not complete until specific numbers or functions are
attached to the words "improbably larger." Undoubtedly a judicious choice
depends on several factors involved in the balancing of cost and return in a
particular problem. This is one of the open questions we have tried to study
experimentally in another suéporting study.

To complete the exposition some description of the characteristics of the
assumed statistical model is warranted, although as we have mentioned there
are recent excellent accounts of this model.

In the statistical linear regression model it is assumed that, except

tor random variations, Y is a linear function of the Z.. Thus
i
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P
y, = 2

u Bi z]J.i+€ s B = 1,25.04,N,
i

1 B

where eu are random errors. In addition it is usually assumed thst the €

. . 2
are uncorrelated with a common variance ¢© and a mean of zero. The Bi are
parameters which may be estimated in an optimal way under the circumstances.

In fact, the best linear unbiased estimate of a linear combination of the Bi’
p

say n = 2 Bi Zi’ best in the sense of smallest variance, is ¥ = 2 bi Zi’
i=1

where the.bi are precisely those which produce the least squares estimate.

This is the Gauss-Markov theorem. It implies that, if the true functional
relationship is except for a random error Y=n=2 Bi Zi’ then, faced with
not knowing the exact values of the Bi’ the next best thing is to use the
estimation function Y = ? =2 bi Zi'

To see the truth of this theorem we shall need to use the expected value

or mean value operator E operating on a random variable or vector or matrix,

with the expected value of a matrix of random variables being the matrix of
expected values., From this definition it follows directly that E A X B = A(EX)B,
if X is a random matrix and A and B are nonrandom matrices.

Now under the statistical model above, y = zf + e, where yT = (yl,...,yN),

T T
z = (zl,...,zp), z, = (zli""’zNi)’ B

= (pl,...,ﬁp), el = (el,...,sN), with €
(and hence y) being random vectors. According to the assumptions, Ee = O so
that Ey = zB; and the Ep are uncorrelated with a common variancebdz, so that
EeeT = o2 I, I being an identity matrix. Note that the z; vectors are nonrandom.
First we show that Eb = B, i.e., that the bi are unbiasgd estimates of the

corresponding Bi' In fact



Next we exhibit the covariance matrix of the estimates b:

E(b - Eb) (b - Eb)! = E(b - g) (b - B)T -

E(h"lg - En"lg) (h'lg - EnTlg)T =

-1 . T -1
h "E(g - Eg) (g - Eg)" h 7,

since h and h_l are symmetric, Now
T T T T T \T
). = E(z'y - Ez'y) (z'y - Ez'y) =

ZTE(Y - BEy) (y - EY)TZ = zlEseTz = zTo2Iz = o2ho

E(g - Eg) (g - Eg

Hence, substituting above,

E(b - Eb) (b - Eb)" = h™le?hn ™t = n7le?,
' . y -T . T
Now consider Y = 2 b, Z, = Z b as an estimate of =2 B. Z, = Z .
171 i 71

Observe that

=2 = (z'h7iZh) y = aTy,

< ¥

where aT = ZTh-lzTo This is what is meant by saying that Y is a linear

estimate ¢f n; i.e. it is a linear combination of the observed values of the

random dependent variable Y.

Also EY = EZTb = ZTEb = ZTB = n. Hence Y is an unbiased estimate of 1.

AN

Finally we must show that the variance of Y is less than that of any

other linear unbiased estimate of f. Suppose ¥ to be another linear unbiased

li

estimate of 5, so that Y = Clyl + ... + SN T cTy, and EcTy .

Now consider vectors in euclidean N-space. Note that a z(h—lZ), a

vector lying in the estimation space spanned by the vectors zl,.o.,zp. We

shall see that the vector a is the projection of ¢ onto the space spanned by

i
L

l,n.o,zpa

ok




Since EaTy = EcTy, then 0 = E(c-a)Ty = (c-e)TEy = (c-a)TzBo This identity can

hold only if (c-a)Tz = 0. But this implies that
(¢ - a)Ta = (¢ - a)Tz(h-lz) = 0,

Hence a and c-a are orthogonal, and the pythagorean relation, c2 = a2 + (c-a)2,

holds.

: ~
The variance-of Y is

E(Y - EY)? = E(Y - EY) (Y - EY)!
T T T \T
= E(c'y - EcTy) (c'y - Ec'y)
= ¢ E(y - Ey) (y - Ey)Tc = cTEeeTc

2.T¢ = oz{aTa + (¢ - a)T (¢ - a)} > o2aTa.

]
Q
O
o

|

But of course by the same reasoning the variance of ? is oQaTa. This shows
that Q is of minimum variance,

To arrive at the F-statistic test for our decisiop rule in eliminating
an estimation vector, or in stopping the activation of estimation vectors,

additional assumptions are needed. Suppose that k of the estimation vectors,

k
ZyseoesZy has been activated, and it happens that Y = 2 Bi Zi + e, in short
i=1 ‘
that the statistical model is valid with these k variables, so that
K .
- o (k) (k) T _
y, = 121 B; 201 + e, 0Ty =2 B + e, when ¢ = (el,...,eN).

Suppose, in addition to the conditions that Ee = O and EesT = 021, we require
that the Ep be normally distributed. Now suppose we wish to test the hypothesis
(Ho) that the last r parameters Bk-r+l""’Bk are in fact all zero. (Accepting
this hypothesis implies that the activation_of the last r estimation variables

adds nothing to the estimate available with the first k-r variables.)

9



The baaic idea of such a test is to divide the sample space, i.e. the

space of possible values of the vector y, into a rejection region R and its

complement, an acceptance reqion, the ultimate decision rule being tc reject

HO in case the observed value of y falls in R. Naturally, in order to make

the test a discriminating or powertul one the points in the rejection region
ought to be chosen roughly so as to maximize the probability of rejection

when HO is not true, while at the same time the probability of rejection when
HO is true should be kept below a certain bound. Such a test is approximately
obtained by putting in R those points with highest "trade-off ratio," this

ratio being essentially the ratio of the maximum of the probability density
functions (pdf) over the entire family of pdf's defined by the admissible values
¢t the parameters, to the maximum of the pdf's over the subfamily where the

hypothesis Ho holds., This ratio is called the likelihood ratio A. Such

points‘of highest likelihood ratio are placed in R until the set is as large
as it can be and still have the desired bound or the probability of rejection
wrien Ho is true.

The optimal character of the likelihood ratio test for the problem at

/
hand is given excellent treatment in SCHEFFE.

Let Q@ stand for the parameter space of admissible values of the parameters.

In our case

2 = (%), 62 | =< ¢, 62> 0},

Let w stand for the subset of Q where Ho is true; i.e.

W = {B(k)) 02 I < < B(k—r) <.

- . — 2
0y B4y T over =P =0, 0°> 0}
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According to the hypothesis of the model the ep are normally distributed,
uncorrelated ( and hence independent) with common variance, 02. Thus the

joint pdf of the random vector y is (for a parameter point in Q)

. (k) 2 - N ‘It 2 -% ' - 1 _ IZ(: )2
f(y; B- 'y o) I:lf (2m6°)72  exp § g (v, Z N }
= (21622 exp { - —1—2 (y - 2Rt )Ty -  (k)glkdyy,
26

Now to determine R it is necessary to maximize f over Q and over w, form
the ratio \, and select values of y for which this is highest,

sup f

R={YI)\(Y)=ssjp'f2)‘-a} ’

where xa is a critical value chosen so that
Pr{yeRIHo is true }S s

here & is called the significance or rejection level of the test.

We recall now that a sum of squares of m normal independent random varizbles

with mean zero and variance one (N(0,1)) is said to be a Chi-square variable

with m degrees of freedom. The ratio of the average of two such sums of

squares of independent N(0,1) variables, with m terms in the numerator and m,

in the denominator, is called an F variable with m. and m, degrees of freedom.

1 2
The probability distribution of the F variable is widely tabulated., The

following result is the one pertinent to our problem. For a statistical linear
regression model, where the errors are N(O,OZ) independently distributed, the
rejection region R of significance level @&, provided by the likelihood ratio

criterion for rejecting Ho as destribed above, is given by
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2
A k A -
R = {y Iky( ) . gl-)%y ) 5 (@) }
(k)2 - I‘,N‘k ’
e /(N-k)
where F(a) is the critical value in the F distribution for which
r,N-k r,N-k
() -
Pr {Fr,N—kZFr,N—k} = a

The proof of this important theorem, is obtained by constructing the
likelihood ratio x; in which the maximization problems are observed to be
essentially the least squares problem, then reducing the inequality A(y) > xa
wrich defines the rejection set to the form given in the conclusion. Used in
the proof are: The orthogonal transform of y based on the Gram-Schmidt vectors
zi,...,zé_r,zé_r+l,...,zi and the fact that orthogonal tfansforms of normal

vectors are normal. Although the proof is available in numerous references,

we sketch it here.

Lemma 1. Let y be a vector of N(mu, 02), independent, random varisbles, snd

let y' = Py be an orthogonal transform of y. Then y' is a vector of N(m', 02),
N

independent, random variables, withm' = Z p m, where P = (p ). Proof:
v=l BV V pv

Write m' = (ml,..,,mN), and let G(%£') be the distribution function of y'. Then

G(e') = Prly' < &'] = pr[Py < &'] = Pr[{ylPy < £'}]
24-N T
= f (27m6°) /2exp{— -la (y - m) (y -m} .
2¢
{ylpy < &'}
Now, making the transformation y' = Py in the integal, the Jacobian of the

transformation is the determinant of the orthogonal matrix P, hence in absolute

value is onej the domain of integration is transformed into {y'ly' < E'}; and

N/2

the integrand becomes (2n02)” exp- {—lE (y' - Pm)T(y' - Pm)}.

20

98




Hence

N (é'
M ( ’1/2 . - 2
I_I lw 2no exp{ 202 (Yﬂ mﬁ) } dyd ’

so that obviously the y& are N(m',dz), independent.

It is a corollary of lemma 1 that, if € is a vector of N(de), independent

variables and €' = Pg, P orthogonal, then €' is a vector of N(O,cQ) independent
variables.

Lemma 2, Let y = (k)B(k) + ¢ be a statistical linear regression model. Let

z*(k) be the matrix of orthonormal vectors generated from ZysooesZy by the
Gram-Schmidt proSiss, so that z*(k) = z(k)Q<k) where Q(k) is upper triangular,

Let B*(k) = Q(k) B(k). Then Bk-r+l = vee = Bk'= 0 if and only if

Bi-r+l T e T Bt =0

Proof: Suppose Bk-r+l = ,.. = Bk = 0; it follows from the equation B*(k) = Q(k)_lB

-1
and the fact that Q(k)

is upper triangular that ﬁi = 0, then Bi-l = 0, etc.,
until B§~r+l = 0. The converseargument is the same.

Proof of the main theorem:¢ By Lemma 2

o= (), 62w < k) ¢, Bt ap = oee = BE =0, 0% >0},
and of course, since y = z(k)ﬁ(k) + & and
z*(k)B* ,(k )Q(k)Q(k)-lB(k) - z(k)ﬁ(k), then y = z*(k)ﬁ*(k) + e,
Now
Ay) = supff(v;B(k),d2)|(_(k), ¢%)eq}
sup{f(ysﬁ(k),OQ)l(BTk), dz)ew}
where f = (2nc2)-N/2 exp {- ;iE eTe},
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(k )y (k)

with € =y - 2¥ g% . Clearly the extremizations in both cases can be
obtained by first minimizing ETE with respect to the 5?, substituting these
back in, and maximizing the resulting expressions with respect to 02c

But minimizing eTe is precisely the LS problem encountered before,

Using (as before) the orthogonal transform, y' = Py and €' = P& where the
g (k)T
first k rows of P are z¥ ,
T T 2 2, N
ee=ce'¢e = (y! -BX) T+ .o+ (y -PO)T+ oz y'e
1 1 k k . B
p=k+1

Obviously ETE over € i1s minimized when B? = y{, i=1,...,k with the value of
N 2
ele reducing to 2 y'2 =_e(k)
p=k+l ¥

B¥ =y!, i = L...,k-r (recall that B¥ . = ... = Bf = 0 in this case),

. T . . ..
3 while € € is minimized on w when

with the value of eTe reducing to

N
by Y'2 = (s,(k) - ?(k'r))Q + e(k

p=k-r+l

)2

in this case.

Substituting these extreme values back in and maximizing the numerator and

ay o (K)2 .
denominator with respect to 02, gives for the numerator 82 = & N and for the
() o len)3 | (k)2
denominator 5° = N .
Replacing these in the expression for x(y) we get
..1»2.. A k A k' 2_. N
o1 = [V [ Gtz 2
v) = |23 L BE I
d e
Now
o ' S _ o lk)y® N/2
R = {yix(ly) 2 2.} = {yl|1 > A
y = vl L ] > 2}
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k 2 N
Finally, since (?(k) - ?(k r))2 = z y{z and e(k) = I y'2, since
i=k-r+l p=k+1
by Lemma 1 y' = Py, a vector of normal independent variables with common variance

02, and since under the hypothesis H_ Eyi =0 (i = k-r+l,...,k), then the ratio

k
RV
ﬁ(k) - Q(k-r))er ) i:k?r.’.l (yi/o) /r
(k)2 N ] 2 -
e’ /(N-k) z  (y'/o)¢/(N-k)
p=k+l H

is a ratio of averages of sums of squares of N(O,1) independent random
variables when Ho is true. That is, the likelihood ratio is equivalent to

an F statistic when Ho is true,
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SELECTION OF SIGNIFICANT ESTIMATION VARIABLES
IN A LEAST SQUARES PROBLEM: EMPIRICAL COMPUTER STUDIES

The object of these studies was to investigate the usefulness of the
step-up procedure or modificationsof it, in choosing a subset of a large
number of estimation variables which is good in a least squares sense. In
the first phase of these studies we wished to compare the step-up procedure
with the procedure of finding the best subset at each stage. Because of the
large number of matrix inversions required in the last method we could handle
only a very small number of terms.

The results of the first phase are summarized in the two examples which
follow., In the first run we note that the step-up procedure gave two terms

with R2 = 0,724 whereas the best two terms give R2

1

0.886.

Phase One - Run 1

In this run the dependent variable was

_ 2

The polynomial model was a balanced polynomial linear in Xl,X2, and X3, i.e,.,

ale+a2X2+a3X3+a4XlX2+a5XlX3+36X2X3+a7XlX2X3. The 125 data points were in 3

rectangular design with X, = ,25(,25) 1.25, X, = .25(.25) 1.25, and

1 2

X3 = ,25(.25) 1.25. As will be noted in this run the function F is actually

independent of X2 and hence the estimation variables 22,24,26,27 should not

enter the regression equation.
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Step-up Procedure Optimum Set

Estimation 5 Estimation 5
Variables R Variables R
5 . 569815 5 .269815
5,3 » 724129 3,1 .885715
9,3,1 . 957606 3,1,5 _ .957605
5,3,1,2 . 957615 3,2,1,5 2957615
5,3,1,2,4 ' 2957631 3,2,1,5,4 .957631
5,3,1,2,4,6 . 957632 3,2,6,1,5,4 2957632
5,3,1,2,4,6,7 .957634 3,2,6,1,5,4,7 .957634

Note that the step-up procedure did not select the optimum subset of two

variables.

Phase One - Run 2

In this run the dependent variable and the polynomial model were the same
as in Run 1. The 500 data points were in a rectangular design with

X, = .25(.25)2.50, X, = .25(.25) 2.50, and X, = .25(.25) 1.25,

1 2 3
Step-up Procedure Optimal Set
Estimation 5 Estimation 2
Variables R - Variables R
1 . 702925 1 . 702925
1,3 . 884762 3,1 .884762
1,3,5 . 963786 3,1,5 . 963786
1,3,5,2 . 963789 3,2,1,5 .963789
1,3,5,2,6 963791 3,2,6,1,5 .963790
1,3,5,2,6,4 .963791 3,2,6,1,5,4 963791
1,3,5,2,6,4,7 .963791 3,2,6,1,5,4,7 .963791

In this case, the step-up procedure gave the optimal subset in each case,

Conclusions from Phase One

These runs indicated that some modification (e.g., a throw-out rule)
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might be helpful in obtaining a regression equation which would be close to
the optimal. To investigate every possible regression equation even from a

small set of terms is so time consuming that we did not use any example with

a la:ge number of terms in this phase, -

Phase Two
In this phase we used examples with a large number of terms. We used
various throw-out criteria to investigate the relative merits of each., We

did net find the optimal subsets,

Summary of Phase Two

In the first 12 runs in this phase we used a balanced polynomial model

tc approximate the dependent variables

_u4.03,..2 M, |~
Pl(Xl,XQ,X3) = (xi+xé+x3)|xl+x2 X3

_ 2

Fo(X]5X55X5) = exp(-X]X,X,)
AR

F3(X1,X2,X3) = (xr+xé+x3).

The results of these runs are tabulated below.

In the case of F :AVX2+X§+X2

3 1 3’

with R2 = 0,999972, In fact the 4 terms X1X2, X2X3, Xf, Xg give a fit with
> ,

R™ = 0,962, The first 7 terms obtained by the stepwise procedure are xlx

2,

XX, X2, X2, X2, X., X2, and have RZ = 0.992. With a throw-out criterion >
pt3s Ay Koy XoXgs Xy Xy, +992. 2
2 .2 .2

. 2 .. . 2 _
1.44, however, we find that X1X2, Xl, X2, X2X3, Xl, X3, X2 fit with R™ = 0,996,

Now for the case F2 = exp (-XfX2X3) we found that the 47-term polynomial

fit with R2 = 0,996, The first seven terms obtained by the step-up procedure

2 2 2 3,22 2 . 2 _ .
1r X5» X5, X[X3X3, X XX, and X;X,X, with R = 0.949, With a

the 47-term polynomial fits very well

were Xl’ X2X X

39
throw out criterion 2 0.8 we find that the seven terms X.X X2 X2X2 x3x2x2
= - 273 71y Ttz 17t

2 2,2 . . . 2 _
X1X2X3, X1X2X3, and X1X2X3 is a better seven and fit with R™ = 0,965,
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With a throw-out criterion > 4.9 we find that the seven terms Xl’ X2X3,

2,2 2 2,2 .3,3.2 .., . 2 R
X1X3, X1X2X3, X1X2X3, XlX2X3, X1X2X3 fit with R 0.962 and that the seven terms
i 2 2.2 3,3,2 2,2 2 . . 2 _
Xl, XlX X3, X1X2X39 X1X2X3, XlX2X3, XlX2X3, and XlX2 fit with R™ = 0,978, We
also find in fact that the first five terms in the last fit have R2 = 0,962,
Th the five terms x X, X X X2X X X X2X2 and X3X3X2 fit better than the

us the 12 M170%3r Mtotye Mot 17273 T

seven terms given by the step-up procedure with no throw-out criterion.

K+
In case Fl =;ﬁ========T where the denominator has zeros in the region of
. TC
X X543
fitting we find that the fit is not quite as good. The 47-term polynomial gives
R2 = 0.938. Again, however, we find that a seven-term polynomial will do

almost as well. The straight step-up procedure gives the seven terms Xf 3

3,2 3 2 3,2 . . - 2 _ .
Xl’ X3, X2, X1X2X3, X1X2X3, and X2X3 which fit with R® = 0.894. With a
throw-out criterion 2> 6.3 we find that the seven terms Xf, Xg, xfxg, X1X2X§,
2 2.2 3,2 .. . 2 _
X2X3, X1X2X3, and X2X3 fit with R™ = 0,902,

This example also gave rise to the situation where, while XfX3 is the

best single term, it is not one of the best two terms. The best two terms

involving XfX3 are XfX3 and Xf which fit with R2 = 0.733. However, the two
terms X3 and X2 fit with R2-= 0.775. Another situation which occurred on this

1 3

example was that with a throw-out criterion of 2> 4.9 we would arrive at a
five~-term polynomial with R2 = 0,876 whereas the step-up procedure with no
throw-out criterion leads to a five-term polynomial with R2 = 0.884. Hence,
having a throw-out criterion is not always better.

As an example of a non-balanced design with an arbitrary linear model

we used a correlation matrix given in Anderson and Fruchter, "Prediction

Selection Method," Psychometrika, Vol. 25, No. 1. The results are tabulated

in Run 17. Here we found that the throw-out criterion was not used, and so
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the variables were selected by the step-up procedure without this option.

The cverall rit using 14 variables gave R® = 0,270 and an F(14,295) = 7.8
which is significant at 0.005. However; an F test of the hypothesis that the
last 9 variables have zero coefficients is not significant at even the 50%

level. The R2 for the first five terms of the step-up procedure is R2 = 0,259,

Phase Two -~ Run 1

.. . . VI JC I v Ay | B
In this run, the dependent variable was F(Xl,X2,X3) (Xl+X2+X3)|Xl-rX2 A

Te fit this expression we used the polynomial model

All the terms; including the dependent variable are first adjusted for their

means. Thus we wish to find subsets of the 47 terms in this polynomial which

)

give the best approximation to the dependent variable. The values of F(Xl,X2~,X3
YRR
1,2

ard Xl X2 X3 were all calculated at 500 points in a balanced design. In this

run we used the peints X, = .25(.25) 2.50, X, = .25(.25) 2.50, and X.= .25(.25) 1.25,

1 2 3
The throw-out criterion for this run was FO =1,5, A tabulation of the

terms as they were brought in follows. (Reduced R® is 1 - %f# (1-R%) where R?

i the square of the multiple correlation coefficient and N = 500, the number

of cbservations; and m is the number of terms in the model.)
m

Reduced
Terms , 5 5

Sweep in Model Term No Term F in F out R R
] 1 37 xfx3 1058 ,680 ,680
2 2 36 xf 98.96 ,733 ,733
3 3 2 Xg 99,34 . 778 o 177
4 4 9 Xg 103.15 .816 ,815
5 5 28 xfx2x3 292,59 .88447 ,884
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m

Terms , Redu;ed
Sweep in Model Term No Term F in F out R R
6 6 43 xfx§x3 25,37 ,890 ,839
7 7 4 XX, 19,01 894 .893
8 8 14 xlxé 26,76 ,900 ,898
9 9 16 K XX, 15,58 .903 ,901
10 8 > % 0,21  .903 ,901
i1 9 17 xlx2x§ 8.34 .904 ,903
12 10 19 xlx§x3 10,78 .906 .905
13 9 43 xfx§x3 0.11 .96 905
14 8 37 x§3 1.47 906 L6058
15 9 1 X, 12.94 ,909 ,907
16 10 10 XX, 11,01 .911 .909
17 11 45 xfxg 15.92 .913 .912
18 12 5 x2x§ 14.62 ,916 .914
19 13 38 xfxg 6.96 .917 ,915
20 14 2 xg 6,66 ,918 .91€
21 13 1 X, 0.15 .98 ,916
22 14 40 xfx2x3 6.69 .919 .917
23 13 28 xfxzx3 0.04  .919 .917
24 14 43 xfx§x3 3.23 .920 .918
25 15 44 xfxgxg 2.84 .920 .o18
26 16 12 X, 3.93 .921 .918
27 17 11 XX 3,27 .921 .919
28 16 4 X X, 0.02  .921 .919
29 17 21 xlxg 1.62 ,922 .919
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Bra 2

In this run the dependent variable, the polynomial model and the data
points were all the same as in Run 1. The throw-out criterion was Fo = 0,9,
This run should tend to throw out terms less often than Run 1. This should
lead tc fewer sweeps to reach k terms but perhaps the fit for these terms will

not be as good as in Run 1. The tabulation through Sweep 13 is the identical

with Run 1.

m Reduced

Terms 5 5
Sweep in Model Term No Term F in F out R R
3.0 i
13 9 43 KKK, 0.11  .906 .903
14 10 1 X, 11.46 .909 ,907
15 9 37 xfx3 0,05  .909 .907
15 10 10 xgx3 11.01 .911 ,909
Sweeps 16 through 29 are the same as Run 1
29 17 o1 xlxg 1,62 .922 .919
30 16 45 xfxg 0.03  .922 ,919
3l 17 26 xfxg 1.34 .922 .919
32 18 24 xf 3,09 .922 ,920
33 19 13 X X, 1.20 .923 .920
24 20 18 xlxg 2.86 .923 ,920
35 19 21 xlxg 0.00  .923 .920
36 20 1 X, 1.01 .923 .920
37, 19 11 xgxg 0.59  .923 .920
38 20 37 xfx3 1.42 .923 ,920
3.3.2

39 21 47 X XoK2 1.53 .924 .920
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m

! Reduced
Terms s 5

Sweep in Model Term No Term F in F out R R

40 22 45 xfxg 2.13 . 924 .921
a1 23 7 x§x3 1.94 .924 ,921
42 22 16 X1X2X3 0.31 .924 .921

3,2

43 23 23 X1X2X3 1,10 .G24 .921
44 24 11 xgxg 1,22 .925 .921
45 25 25 xfx3 0,92 ,925 ,921

Run 3

In this run the dependent variable, the polynomial model and the data
points were all the same as in Run 1. The throw-out criterion for Run 3 was
FO = 8,0, This run should tend to throw out terms more often than Run 1 or
Run 2, This should lead to more sweeps to reach k terms but hopefully the fit
for these k terms wili be better than in Run 1 or Run 2. (Compare, however,
Run 3, Sweep 7, with Run 1, Sweep 5 and also Run 3, Sweep 18 with Run 1,

Sweep 12). Note that in Run 3 we see that the best term No. 37 is not one

ot the best two terms,

Te?ms | ) Red;ced

Sweep in Model Term No Term F in F out R R
1 1 37 Xfx3 1058.24 .680 .680
2 2 36 x> 98.96 .733 .733
3 3 2 X2 99.34 778 777
4 2 37 XfX3 4,88 775 75
5 3 9 Xg 102,13 .814 .813
6 4 15 X1 %5 219.83 .871 .870
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m

Reduced
Terms 5 5
Sweep in Model Term No Term F in F out R R™
7 5 20 xlxgxg 18.48 875710  .875
8 6 26 xfxg 40,36 .885 .884
2
9 7 17 X XX 22.30 .890 .889
2.2
10 6 20 X Xok 5.12  .889 .888
11 7 5 x2x§ - 40,48 .897 .896
2.2
12 8 20 X, XoX3 20,02 ,901 ,900
13 7 15 X X, 6,22  .900 .899
14 8 11 xgxg 12.04 .903 901
15 7 2 xg 2,93 .902 ,901
16 8 38 xfxg 26.81 .907 .906
17 9 . 18 xlxg 22.83 .911 .910
3, .2
18 10 a1 XX X5 8.20 .912 ,911

Run 4
In this run the dependent variable, the polynomial model and the data
points were all the same as in Run 1. The throw-out criterion was FO = lOmB.

This run should not throw out variables very often, at least not until they

are very insignificant. A partial tabulation of this run follows.

m

Reduced
Terms 5 5
Sweep in Model Term No Term F in F out R R
1 1 37 xfx3 1058. 00 .680 ,680
2 > 36 xf 98.96 .733 ,733
3 3 2 xg 99. 34 778 777
4 4 9 xg 103.15 .816 .815
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Sweep
5

6

10
11
12
13

14

16
20
25
30
35
40
45,
50
55
60
65
66

67

m

Reduced
Terms 5 5
in Model Term No Term F in F out R R
5 o8 xfxzx3 292,59 .884 .884
3
6 43 xlx§x3 25,37 .890 .889
7 4 X X, 19.01 .894 .893
8 14 xlxg 26.76 .900 .898
9 16 X XX, 15.58 .903 ,901
3, L2
10 a1 XXX 10. 40 .905 .903
11 45 xfxg 11.46 .907 .905
12 21 xlxg 23.71 .911 .909
3.3
13 46 XK 6.60 .913 ,910
12 9 xg 0.00  .913 .911
13 1 X, 3.93 913 .11
3
14 10 XX, 3.10 .914 .11
16 2 xg 0.00  .916 .914
o1 25 xfx3 3.67 .920 917
22 24 xf 0.00  .923 .920
27 39 xfx2 5,35 .927 .923
30 9 xg 0.00  .92828  .92385
3l 20 xlxgxg 0.53 92866 .92410
34 34 x2x3x 15.23 93196  .92714
1%2%3
37 6 xg 0.00  .93459  .92950
40 42 xfxg 0.44 93682  .93146
45 18 xlxg 0.55 93730  .93124
46 9 xg 1.04 93745  .93125
47 30 xfxg 5.08 938142  .931860
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Run 5
In this run, the dependent variable was F(Xl,X2,X3)

We used the same balanced polynomial model as in the first four runs, cubic

- 2
= exp( x1x2x3)a

in Xl and X2, 3°

= ,25(,25) 2.50, X

quadratic in X The 500 data points were in the same balanced

design, X = ,25(.25) 2.50, X, = .25(.25) 1.25. The

1 2 3

polynomial model in this case should fit better than in the first four runs.

The throw-out criterion in the first runs in this series was FO = 1,5,
m
QTerms . 5 Redaced

Sweep in Model Term No - _Term F in F out R R

1 1 12 X, 836.43 .627 627

2 2 4 XX, 529,77 .819 ,819

3 3 24 X2 212,65 ,874 .873

4 4 8 xgxg 308.40 .922 ,922

5 5 44 XXoHS 61,94 .931 .930

3 6 16 XX X5 103,35 .943 ,942

7 7 28 XXXy 62,76 .949 ,949

8 8 20 X XoX5  231.18 .965 .965

9 7 12 X, 0.79  .965 . 965

10 8 23 X X3 27,03 .967 .967

11 9 22 XXX,  138.53 .974 .974

12 10 21 xlxg 411,57 .986 .986
13 11 27 X2X, 8.79 .986 ,986

14 12 25 XX, 97.48 .989 .988

15 13 30 X2 67.45 .990 .990
16 14 38 xfxg 73.37 1,991 .991
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m

Terms , Red;ced
Sweep in Model Term No Term F in F out R R
17 13 24 xf 0.03 .99l .991
18 14 33 xfxg 32,08 .992 ,992
19 15 39 xfx2 23,02 ,992 .992
20 16 32 xfxgxg 75,84 ,993 .993
25 17 42 XX2 33.90 99431 ,99412
26 18 35 X2X%2 14,09 .99449  .99428
27 17 23 X, XoX2 1,20  .99446  .99427
28 18 8 XX2 11.81 ,99459  ,99440
29 19 14 XX 18,00 ,99479  ,99459
30 20 a5 xfxg 5,57 .99485 99464
35 25 21 xlxg 11.63 99594  ,99573
40 26 21 X X3 1.12  .99604  ,99583
44 26 21 X X5 0.93 99606  .99585

Bun 6

This run used the same dependent variable, polynomial model and data
points as in Run 5, The throw-out criterion was Fo = 0,9, This will tend
to throw out terms less often than in Run 5. In fact, however, the runs are

identical through Sweep 26,

m

Reduced
Terms > o
Sweep in Model Term No Term F in F out R R
05 17 42 xfxg 33.90 .99431  .99412
2 18 35 xfxgxg 14.09 .99447  .99428
27 19 11 xgxg 13.66 99462  .99492
08 18 20 xlxgxg 0.00  .99462  .95443
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m

Terms ) Reduged

Sweep in Model Term No Term F in F _out R R

29 19 14 X %5 16.67 ,99480  ,99461
30 20 45 xfxg 6,19 .99487  ,99467
35 23 42 XX2 0.44  .99574  .99555
40 26 11 X%5 0.48  .99609  ,99588
a1 25 38 XK 0.59  .99608  .99589
42 24 14 X X5 0.61  .99608  ,99589
43 25 31 XX, 0.79 99608 .99589

Run 7
In this run the dependent variable, the polynomial model and the data
points were all the same as in Run 5. The throw-out criterion was FO = 8.0,

The variables brought in were the same as in Run 5 through-Sweep 7.

m

. Reduced
erms 2 2
Sweep in Model Term No Term F in F out R R

7 7 o8 xfx2x3 62.76 94925  .94863
8 6 04 xf 4.41  .94879  .94827

3.2.2

9 5 44 X2x212 4.83  .94829  .94787
10 6 20 xlxgxg 69.96 L95471  .95425
11 7 47 XXoX3 100,42 .96239  .96193
12 6 4 X X, 1.81  .96225  .96187
13 5 8 xgxg 1.07  .96217  .96186
14 6 31 xfxgx3 63.95 .96651 96617
15 7 27 xfx2 269.22 .97836  .97809
16 8 23 xlxgxg 123.13 98270  .98245

15



m Reduced

°Terms . 5 5
Sweep in Model Term No Term F in F out R R
17 9 4 XX, 73,73 ,98496  ,98471
18 10 25 xfx3 72.64 98690 98666
19 11 26 xfxg 50,82 ,98814 98790
20 12 36 xf 52,25 ,98929 98305
21 13 44 XXoK2  46.61 ,99023 98959
22 14 30 xfxg 47.15 99109 ,99085
23 15 33 xfxg 78,01 ,99233  ,99211
24 14 47 xfxgxg 0.88  .99232  ,99211
2 13 12 X, 3,00 .99227  .99208
2¢ 14 8 xgxg 55.18 ,99306  ,99287
27 15 22 xlxgx3 6.18 .99314  ,99295

Run 8
In this run the dependent variable, the polynomial model and the data
.. 3
points were all the same as in Run 5. The throw-out criterion was FO = 10 7,

The variables brought in were the same as in Run 5 through Sweep 8.

m

Terms 5 Red;ced
Sweep in Model Term No Term F in F out R R
8 8 20 xlxgxg 251.18 96550  ,96301
9 9 23 xlxgxg 26.72 96728 96675
10 10 22 xlx§x3 137.60 97447 ,97400
11 11 21 xlxg 416.70 98623 .98595
12 12 36 X 32.83 98710 .98681
13 13 40 xfx2x3 50. 05 .98830 98801
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m

Terms ) Redu;ed

Sweep in Model Term No Term F in F out R R
14 14 15 X,X, 9.58 .98853  .98822
15 15 13 X X, 148.72 99122 ,99097
20 20 6 X2 20,37 99481 .99461
25 25 33 X3%3 10,32 99537 99514
30 30 7 X2X, 4,12 99576 99550
3 35 30 xfxg 3.22 99619 ,99591
40 38 17 X X 5,45 ,99630 99601
45 43 38 X3%2 2.68 .99638 99605
50 44 8 X2x3 0.87 99640  .99606
54 46 32 xfxgxg 0.18 996399 .996042
55 47 46 XK 2.21 996416 996052
56 46 12 X, 0.00  .996416 .996061
57 47 12 X, 0.00 996416 996052
Run 9

In this run the dependent variable was F(X ,X,,X,) =;¢xf+x§+x§. The
47-term balanced polynomial, cubic in Xl and X2 and quadratic in X3, was used

as the model to fit the dependent variable over the 500 data points

X, = ,25(.25) 2.50, X

1 = ,25(.25) 2.50, and Xy = .25(.25) 1.25,

2
As expected in this case, the fit is very good. Because of the symmetry

involved the terms in Xl and X2 should be the same, at least in the complete

model. The lack of symmetry in the way these terms were brought is interesting.

The throw-out criterion for this run was FO = 1.5,
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m
Terms

Reduced

Sweep 1in Model Term No Term F in F out R2 R2

| 1 15 XX,  1337.01 72861 . 72861
2 2 4 X X, 98.19 77338 77293
3 3 24 xf 309,02 86037  .85981
4 4 6 xg 1324.,25 96201 96178
5 5 7 xgx3 302,54 97644 97625
6 6 12 X, 553,58 98390  ,98879
7 7 2 x§ 202,14 99213 .$9204
8 8 3 X, 427,10 99579 ,99573
9 9 4 X2X3 1.44 .99578 . 99273
10 8 14 xlxg 469.05 .99784  ,99781
1 9 19 X XoKy  169.84 .99840  .99837
12 10 5 x2x§ 177.58 ,99882

13 11 9 X 144,20 ,99909

14 12 36 xf 204,27 .99936

15 13 17 xlx2x§ 171,96 ,99953

16 14 21 X X5 87,04 ,99960

17 15 39 xfx2 59.18 .99964

18 16 30 Xx2 125.68 .99972

19 17 1 X, 55,81 .99975

20 18 4 X X, 114,22 . 99980

2 23 16 XX X,  107.82 .99994

30 26 38 xfxg 40. 36 ,99996

35 27 20 xlxgxg 0.09  .9999

40 30 21 X X5 0.00  .99996
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m

T Reduced
erms 2 2
Sweep in Model Term No Term F in F out R R
45 35 45 xfxg 9.43 .999969
46 34 39 xfx2 | 0.26  .999969
47 35 ol xlxg 3.23 .999969
3, .2
48 36 41 XX N 0.40 ,999969

Run 10
In this run the dependent variable, the polynomial model and the data
points were the same as in Run 9., The throw-out criterion for this run was

FO = 0,9, The tabulation of the results is identical with Run 9 through Sweep 8.

m

Reduced
Terms 5 5
Sweep in Model Term No Term F in F out R R
8 8 3 X, 427,10 .99579
9 9 14 xlxg 470,79 .997854
10 10 16 XXXy 174,96 .998420
11 1 1 X, 212.37 .998899
12 12 9 xg 156.79 .999167
13 13 36 xf 230.76 .999435
14 14 13 X X, 279,64 .999642
15 15 45 xfxg 82.42 .999694
2.3.2
16 16 35 x2x3x 52.71 .999724
| 15253
17 17 37 xfx3 107.84 .999774
18 18 21 xlxg 47.97 .999795
19 19 39 xfx2 259,26 .999867
20 20 31 xfxgx3 202,22 .999906

19



m

Reduced
Terms 5 5
Sweep in Model Term No Term F in F out R R
o5 05 23 xlxgxg 76.83 .999950
| 20 .2
30 8 29 XX X5 3.73 ,999957
40 30 45 xfxg 6.72 .999960
20 .2
2
50 32 29 XX %5 4,50 .999963
60 36 a xfxzxg 10.53 .999967
63 37 32 x2x2x2 0.86 .999968
1%0%3 '
Run 11

In this run the dependent variable, the polynomial model and the data
points were the same as in Run 9. The throw-out criterion was FO = 8,0,

The varisbles were included in the same order as in Run 9 through Sweep 15,

m
Terms 2 5
Sweep in Model Term No Term F in F out R™ = Reduced R
2 i
15 13 17 XX X5 171,96 .999528
, 2 |
i 12 7 XX, 2,77 ,999525 |
L 13 39 xfx2 49.15 999569
18 14 1 X, 37.69 ,999600
2
) Q
19 13 10 X X2X, 2.18 .999598
20 14 o1 xlxg 59,03 .999642
21 15 30 xfxg 142.48 .999723
22 16 13 X X, 52,63 .999750
23 17 4 XX, 58,95 .999778
04 18 16 X XX, 60.90 .999803
2
25 17 17 XX X2 0.20 .999802
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m
Terms

Sweep in Model Term No Term F in F out R2 = Reduced R2

26 18 16 XX, 61.82 ,999825

27 19 22 XXX, 177.78 .999872

28 20 37 XXy 102, 41 .999895

29 21 40 XXX, 390.39 .999942

30 22 46 XK, 38.26 .999946

35 25 38 XX, 10,63 ,999957

36 24 14 X X5 2,26 .999957 }
37 25 47 xfxgxg 7.35 ,999958 ‘

Run 12
In this run the dependent variable, the polynomial model, and the data
points were the same as in Run 9. The throw-out criterion was FO = 10.3o

The variables came in the same order as in Run 10 through Sweep 28,

No throw outs were made,

m

|
|
Terms 5 5 ‘
Sweep in Model Term No Term F in F out R™ = Reduced R
3.2
25 5 23 X, Xo%5 76.83 .999950
30 30 42 xfxg 6.11 .999958
3.2 ‘
35 35 43 XXXy 15.94 .999962 ‘
40 40 28 xfx2x3 21.80 .999967 |
45 45 05 xfx3 28,42 .999971
46 46 34 xfxgx3 11.16 .999972
a7 47 47 xfxgxg 1.10 .999972
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Run 13

In this run the dependent variable was F(Xl,X2,X3) = exp(-xfx2x3) as in

Run 9. The polynomial model was the same 47-term balanced polynomial cubic in

X, and X2, quadratic in X There were 1000 data points in a rectangular

1 3°

design X; = .25(.25) 2.50, X, = ,25(.25) 2.50, X, = ,25(.,25) 2,50,

2 3

On this run the throw-out criterion was FO = 1.0,

m
Terms >
Sweep in Model Term No Term © _F in F_out R
1 1 12 X, 1277.16 ,561
2 2 4 XX, 619.57 .729
3 3 24 xf 582,22 .829
4 4 8 xgxg 472.27 .884
5 5 o8 xfx2x3 267.53 .9088
6 6 16 X XX, 69.37 9147
3
7 7 40 XXX, 205.79 .9305
8 8 36 xf 27.10 .9324
3.2 ‘ _
9 9 11 x3x 27,63 .9342
%3
10 10 10 xgx3 151.95 .9430
11 11 9 xg 234,89 ,9539
12 12 13 X X, 23.34 .9550
13 13 15 X X, 141 .45 .9606
3.2.2
4 (-]
1 14 44 XX2X2 84,24 9637
2.2
15 15 20 . .97
2 X, X%3 257,55 9713
16 16 14 xlxg 130. 45 .9746
17 15 12 X, 0.0l .9746
18 16 18 xlxg 307.20 .980673
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m

Terms 5
Sweep in Model Term No Term F in F out R
19 17 21 xlxg 113.99 . 982683
20 16 4 X2X3 0.53 . 982674
2,2,2 .
21 17 32 X1X2X3 20,32 .983023
22 16 44 X3X2X2 0.09 ,983023
17273
23 17 12 Xl 31.96 . 983658
24 18 4 X2X3 53.90 .984415
25 17 9 X 0.75 . 984403
2
30 22 19 X1X2X3 8.60 . 986977
3,22
35 25 44 X1X2X3 6.49 . 988926
3
36 26 22 X1X2X3 3.53 . 988966
37 27 1 X3 2.05 . 988989
Run 14
In this run the dependent variable, the polynomial model and the data
points were the same as in.Run 13. The throw-out criterion was FO = 10-3.
The tabulation is identical with Run 13 through Sweep 16.
m
Terms 5
Sweep in Model Term No Term F in F out R
16 16 14 X% 130. 45 .9746
17 .17 18 X X2 318.07 .98084
18 18 32 xfxgxg 144,76 .98330
19 19 21 X X5 155.92 . 98560
20 20 47 x3x3x2 16.89 .98584
17273
21 21 34 53.87 . 98658
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Sweep
22
23

24

60
65

66

Run 15

m
Terms

in Model

22

23

24

25

30

35

36

37

40

39

42

45

46

Term No Term
2
19 X1X2X3
2
17 XlX2X3
2,3
33 X1X2
3,2
e
23 XlX2X3
2
2 X3
3.2
38 Xlx3
22 X X3X
17273
40 X3X X
17273
2,2
26 XlX3
3
21 X1X2
?
?
?

F in

4.65
25.46
89.60
15.91
10,28

4,23

0.91

2.43

4,51

0.05

0.00

In this run, the data were taken from Bulletin 336, Agricultural

Experiment Station, Auburn University, Auburn, Alabama,

The throw out was F, =1

Sweep
1

2

m
Terms

in Model

1

2

0 0™3 but was never used.
Term No Term F in
4 X4 86,98

2 X2 3.14

2

5 X4 0.64

3 X3 0.24

6 X1X4 0.13

1 Xl 0.58

124

F_out R2
. 98664
. 98698
.98808
. 98827
. 98926
. 98950
. 989603
0.00 . 989686
.989835
0.00 . 989862
»990066
»990040
.990040
Reduced
R R
.696 .696
.720 .712
. 725 . 710
726 .704
.728 .696
.732 .693




Run 16

This run used the same data as in Run 15, but the polynomial model was

taken to be a balanced polynomial linear in Xl, X2, and X, and quadratic in

3

X4° This gives 23 terms in addition to the constant term.
Te?ms ) Red;ced
Sweep in Model Term No Term F in F out R R
1 g 1 X, 86.98 69596 .69596
2 2 5 XX, 3.38 72142 ,71409
3 3 3 X, 0,41 72453 70964
4 4 7 XX, 1.13 .73314  ,710091
5 5 14 xlx‘42 1.71 .74590  .71686
6 6 12 X, 5.75 ,78361 75179
7 7 9 XX, 0.55 78724 .74856
8 8 16 XXX, 2.5 ,80340  ,76040
9 9 2 X2 1,51 81280  .76449
10 10 23 X, X X X,? 3.49 .83293  .7828l
11 11 4 XX, 0.34 .83491  .77798
12 12 6 X, 0.98 .840665 . 778069
13 13 17 XX X,> 0.74 .845059 . T76197
14 14 13 X X, 2.02 .856626 784939
15 13 23 X XXX, 0.00  .856624 .792901
16 14 8 xx,2  0.64 .860176 790265
17 15 15 X X, 0.27 861736  ,784308
18 16 21 X XX;  0.10 .862309  .776253
19 17 10 XXX, 0.3 .864448  .770151
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m

-Terms u ‘ ) Red;ced
Sweep in Model Term No Term F in F_out R R
20 16 12 Xl G, 00 .B64446 o 179725
21 L7 13 X1X2 0,50 867472 175279
22 18 23 X1X2X3X42 0.89 .87283¢ . 774572
23 17 21 XlX2X3 0.00 .872835 . 184373
24 18 .9 Xl'5(2)(4 0.61 . 876437 . 780957
25 17 3 X3 0.00 .87€435 . 790476
25 18 11 XX, 0.€l .879902  ,787099
27 1¢ 12 Xl 0.12 . 880637 . 178325
28 20 22 X1X2X3X4 0.19 .881802 . 169515
29 21 3 X3 0,20 .B883701 . 761282
30 20 19 X1X2XA 0.00 .B83697 . 773210
3t 21 20 XX X,°  0.13 .884550 760023
22 22 21 X1X2X3 0.06 . 884938 ., 750743
23 23 i9 XlX2X4 0.01 .885035 . 136256
R4 22 18 XlX2 0,00 .885034 . 7150306
35 23 18 X1X2 0.00 .885035 . 7136256
Run 17

In this run the data were a correlation matrix taken from Anderson, H, E.
3 3

and Fruchter, B., "Predicter Selection Methods™, Psychometrika, Vol. 25, No. 1,

March 1960,

m
Terms

Sweep in Mogel Term No _Fin_

1 1 6 56,94

2 2 4 21,38
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R2

.156025

.210965

In this Tun the throw-out criterion of Fy = 10"> was never used.

Reduced
R2

2156025

. 208403




Terms , Red;ced

Sweep in Model Term No F in R R
3 3 3 10.18 .236372 »231397
4 4 13 4,90 .248451 .241083
5 5 12 4,13 +258529 . 248805
6 6 10 1.38 .261881 .249741
7 7 1 0.92 .264125 249553
8 8 8 0,71 .265861 » 248844
9 9 2 0.42 .266898 .247413
10 10 5 0.37 .267803 . 245837
11 11 9 0.40 . 268785 » 244330
12 12 7 0.29 +269503 . 242538
13 13 11 0.17 . 269932 .240435
14 14 14 0.02 .269970 .237908

Conclusions

We feel that the step-up procedure is an effective tool in the probiem of
finding a regression equation with a small number of estimation variables from
a model with a large number. Using the various throw-out criteria and stopping
rules, the problems of interest could be explored. The throw-out criterion and
stopping rule which best fit the problem could be selected and then a regression
equation determined. We feel that most future investigation of this procedure
should be problem-oriented. We need the data for a problem to help develop an

effective way of handling the data.
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SELECTION OF SIGNIFICANT ESTIMATION VARIABLES
IN A LEAST SQUARES PROBLEM: COMPUTER PROGRAMS

1. Comparison of variables selected by step-up procedure with optimal set.

This procedure was programmed in the ALGOL 58 compiler language for the Burroughs
220 computer, Because of limitations on the memory the procedure is restricted
te 25 variables,

The purpose of the program is to determine whether or not the step=-up
procedure actually selects the best k estimation variables. This program was
preliminary to a more elaborate program for the Burroughs 5000,

First, the data are generated. The estimation variables Zl"'°’Zn- are

1

terms of a balanced polynomial in independent variables X1’°°"Xn’ i.€0,

L L

1 T

Zk:Xl eoox’rt . Li:.o, l,oooLi, izl, 2,05.,‘",

~ where (Ll,a.a,lﬂ) takes on all possible values in the given range except
(0y0..,0). Certain terms of the balanced polynomial are to be used to estimate
a dependent variable, which is some function of the X's, It is convenient to
iabel this variable Zn' Corresponding to an index, ti=1,2,..,,Ti,i=l,2,.o.,n,
the observed value of Xi is xiti° Thus, corresponding toc the set
{(ti"°°’tn)lti:l’2’°°"Ti’izl’z"’°’n} is a rectangular set of data-points

{(xltl,oue,xntﬁ} from which are calculated observed values, (zul""’zu,n-l’zun)3 -

of the vector consisting of the estimation variables and the dependent variable,
Next, regression analyses are made using all possible combinations of k

estimation variables, where k=2,...,n-2. For each k, the combinations of variables

which give maximum and minimum sums of squares due to regression (and hence

maximum and minimum multiple correlation)are printed along with the sums of

squares,
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Finally, the step-up procedure is used. At the k'th step, the variable

2
1 1
ic¢ selected frem those not already included which maximizes Sﬁi i//géi )o

The procedure then uses that variable 2kg as the pivot variable. 1t makes

=he folleowing calculatione:

(k')

; S
ki+l) ki .
ij( = “‘16:77 ij=1,2,c..0n
Skk
) oy S (k')g (k')
(ki+1) _ X _ ik ki o _ ..
i3 = Sij - ') i = lyoook-l,ktl,00on,j=1,2,50-0,

In these calculations (Sij) is the augmented ratrix of dot products of the
estimation vectors and the dependent-variable vector., The superscript k'
1~dicates the number of transformations on (Sij) in which a column has been
~oduced 1o a unit vector. The list of variables, inciuded in the regressicn,
and the sum of squares due to regression are printed. |

In some cases the stepwise procedure gave optimal solutions, while in others
it did not. In an attempt to run the program with 18 variables the time required
to calculate the regression analyses for all combinations of variabies turned
out to be prohibitive.

The flow chart for this program is found in Appendix A and the program list-

ing in Appendix B,

Operating Instructions for B-220 Program

1, Load the program, with the proper procedure (ECN) inserted to calculate
th¢ incependent polynomial variables and the dependent variables, ”
2, Load the following data card, using more than one card if necessary,

with 5 punched in the first column of each card.
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Card Contents : Card Format

a) Number of independent polynomial Skip at least one columnj punch
variables integer

b) Number of observations of Skip at least one columnj punch
independent polynomial variable: integer

c) Repeat (b) for each variable

d) Order in independent polynomial Skip at least one columnj punch
variable integer

e) Repeat (d) for each variable

f) Lower bound for diagonal element Skip at least one columnj punch
floating point number

g) Lower bound for difference between Skip at least one columnj punch
1.0 and off-diagonal correlation floating point number

h) F-statistic for stopping Skip at least one columnj; punch

floating point number; leave rest
of card blank.

3. Repeat (2) for each analysis to be made.

4, Load 2 blank cards.

2. Comprehensive program for selection of variables with step-up procedure

incorporating elimination rules and stopping rules. This procedure attempts to

select the most significant estimation variables for a least squares fitting. It
has been programmed for the Burroughs 5000 computer in the ALGOL 60 compiler
l_anguageo

There are four options for obtaining the n x n augmented (Sij) matrix

(1) Either the (Sij) matrix or the correlation matrix may be read in,
(Only the diagonal and the lower triangle are read in.)

(2) Each of the M observations (z ) may be read in. An estimate

p'l,...,zpln

(ml,.,.,mn) of the means is available. As the data are read in, the sums
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S, = = (zi-ml)

Lo e

, M

S;57 2 (Z“i-mi)(zuj-mj) i = 1,2,000n, § = 1,2,,..,1
=l

are calculated, The adjusted (Sij) matrix

' S.S.

s..=s5,, -—=1I 1= 1,2,000n, 3 = 1,2,000,i

is then computed.

(3) Each observation may be generated from balanced polynomials., A set
of fixed data points (xpl,ouoxpn) is given., The estimation variables are
the terms of a balanced polynomials, so that

L L in

where Li = O,l,.,o,Li, i=1,2,,..m. Each of these combinations of exponents

(except all exponents zero) corresponds to one estimation variable. The values
X - ,nw,xwt may be read in, or they may be part of a rectangular design, with

each p corresponding to some value of the index (tl,ooo,t , where

»)
t.l = l,ooo,Ti, i=1,2,..4t. Values z}m of the dependent variable may be read
in or they may be computed values of a specified function, corresponding to values
xpl,ooo,xpnu These vectors xpl’°°°’xpn’zpn are generated in a procedure which
may be varied with each run. As the cobservations zpl,uo,z}m are generated, the
sum of squares matrix (Sij) is calculated as above,

Once the adjusted sum of squares matrix has been obtained, it may be used
tfor more than one analysis. The diagonal and lower triangle only are used
in the analysis, Since the matrix is symmetric, the necessary vaiues may be

stored in the Opper triangle (with the diagonal in a separate vector) for

performing other analyses under different conditions.
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If the correlation matrix was read in, it is used in the regression analysis;
otherwise, there is the option of computing and using the correlation matrix.
The matrix to be used shall be denoted as (éij(0%>' The program includes the
option of printing this matrix.

In a hand computation the system of normal equations would be solved for
regression coefficients in a sequence of gaussian eliminations, and the inverse
matrix would be built up on a unit matrix, The initial tableau (Bij(oz> for

such 21 elimination and matrix inversion procedure would be defined by
1=1,2500en3 J = 1,2,000,1
i = 1,2,...1'1"1; j = i+l,_.oo,n

i=1,2,0.05n5 § = nt+i

1 =1,2,,00n3 j = ml,..0,2n, j # nHi

The original S matrix is of the form

(0)
1

s (0 g (0

21 22
(0) (0) (05
Sn-l,l Sn-l,2 ”'Sn-l,n-l
0 (0) (0) o (0)
snl( ) 5.5 ..sn,n_l S
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wr2le tae original R matrix is of the form

(0) ~ (0) (0) (0)
Sll Soq e Sr_-l, 1 Snl 1 0 oo 0
~ (0) (0) (0) (0)
854 S50 e %EL2 S5 o 1 ... O
{rh ~ A
(<) (o) (0) ()
Sp-1,1 Sp-1,2 oo Spine1 Sppp-r 0 O 010
4
5 (0 5 10 ... 8 (0) s (0 o 0 ...01
rnl riz r,n-1 nn

Becauze of symmetry operations reed be made only on the lower “riangle of

4

e 8 matrix, Hercze the entire R matrix need not ve stored in memory.
The :tepwise procedure now begins. + 1s assumed that at the k'tkh step,

K e timation variakles Z ,.oo,Zp are included in the regressiorn, while the
1 k
n-k-1 variables 2 ,...,Z are excluded. The variables 2 and Z
9 qn-k-l max Inin

2

l l
waich minimize (S (k! ) )/ ) and maximize (S (k ) )/S )
Py 1p1 143 JqJ
rezpectively, are determined. The variable Zp shall be considered significar+
min

.._,
[}

(k' /a(k )

D s
Pmln pmlr.pmln

-' —
s\ /vk-1) ©
nn

and the varizble Z shall te considered significant if
ax
nqmax qmaxqmax

> F
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where FI and FO are criteria based on the F-distribution. FI should not be

less than FO; if it were, looping might occur.

The procedure now tests whether Z is to be dropped from the regression.
min
There are two options for dropping a variable:
(1) 1f z is not significant, it is dropped. (This may be bypassed

min

by setting F. equal to zero. )

0

(2) The procedure alternately adds two variables and drops one. If
Zp . is not to be dropped, the procedure checks whether to stop or

min
not.

There are four criteria for stopping, the first two of which are now

checked,

(1) 1f z is not significant, it is added and then the procedure
termiEZEes. (This may be bypassed by setting F. to zero. )

(2) When a specified maximum number of terms have been included in the
regression, the procedure terminates. Unless otherwise specified,
this will be the number of estimation variables.

(3) If the square of the multiple correlation coefficient is greater than
a specified amount Rzmax’ the procedure terminates. (This may be
bypassed by setting R2max to 1.)

(4) Wnen the procedure has gone through a specified number of iterations,
it terminates. If the procedure is following the option of adding
two variables and dropping one, this will be three times the maximum
number of termsj otherwise, it will be twice the maximum number of
terms,

If 72 is not to be dropped, and if the procedure does not stop, Zq

Pmin ma.x
is now added to the regression.
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The jth column of *he S matrix corresponds tc the (j+n)-th of the R matrix
if the jth variable has been included in the regression arnd to the jth column
otherwise. (At all stages, either the jth column or the {j+n)-*kh column of the
E matrix will be a unit vector. The S matrix will contain the colums which is
not. Of course tre cstorage of the unit vector is unnecessary.)

It will be assumed that the qth variable is to te added or Jropped. (The
computational procedure is the same in both cases. It will also ve assumed that
Hj(k') = « 1 if the j-*h variable is included in tne regression after k'
iterations and that H.(k')= + 1 otherwise. Note that Hn(k’) = + 1 throughout
the analysis. Hq éepends on the status of the gth variable before, rather than
after it is added or dropped.) |

. . . . (k'+1)
The following formulae determine the matrix Dij :

g (1) __ 1
aq g (%)

qq
(k")
(x'+1) _ Sgg .
qq
(k")
(k'+1) Sl
R 1> aq
qq
(k")o (k") (k") (k")
(k'+1) (k) S s . /E AT H
1] =Sy - :J T Jei<a
aq
(k") (x)
(x'+1) _ . (x') S S . .
19 “Si5 - 12 O J<a<i
qq
(k") (x"), (k") (k")
1 1 S, S, H. H
Sij(k +1) lj(k ) _ ig qu(k'7 J ! q< i<t
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This is equivalent, on adding a variable, to

(o) Pgpt
k'+1) _ j
qj T p &N
qq
k'), (k")
o () o (k1) _ Rig Ry
ij ij (k")
qq
or, on dropping a variable, to
1
(k'+1) R .(k )
faj R
g, afn
R (kD (k)
g (k'+1) _ o (k') _ “i.gtn qi
i) i) ALY
q,arn

where the (gtn)-th column of the R matrix takes the place of the gth in the S

matrix when a variable is being added.

If the first k variables were included in the regression, then the R matrix

would be of the form

B - (k) - (k) -
L% S ot "S-, 3
. (k) (k)
0 1 %wlx e Sm1¢ =S
... (k) (k)
0 k1, kt1 e Sn-l,k+l S
0 ... (k) (k)
0 Sn-l,k+1 n-1l,n-1 S
0...0 (k) (k)
. Sn,k+l Sn,n-l S
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in etfect the program inverts the S matrix in place, proceeding from pivot
zlement to pivot element without rearranging rows and columns., Also, advantage
is taken of the symmetry in carrying out calculations in the lswer triangle only.
For mcre details the filow chart in Appendix A and the pregram listing in Appendix
C may be consultec,

At this point, a list of incliuded or active wvariabiec, the mean-squares due
10 regression and tc error, the F-ratio, and the square of the multiple correlat-
ior ccefficient are printed. There are options for printing the inverse matrix,
the reduced sum of squares matrix, the partiél regression coefficients of the
dependent variable on each of the active variables, and the regression co-

efticients of the dependent variable on the active variables.

Operating Instructions for B-5000 Program

i. Load the program, with the proper procedure (CALC) inserted to calculate
the polynemial estimation variables and the dependent variable. (If that option
i¢ not used, a procedure must still be declared.)

2, Load the following data card:

Card Contents Card Format
a) Upper bound to number of in- Punch integerj punch commaj skip at
dependent polynomial variables least one space

(at least 1)

b) Upper bound to number of variables Punch integerj punch commaj leave
in regression analysis (both remaining columns on card blank
estimation and dependent)

3. If data are to be generated from polynomial variables, load the follow-

ing data card, using more than one card if necessary:

Card Contents Card Format
a) Number of independent polynomial Punch integerj punch comma; skip at
variables least one column
b) Number of observations of in- Punch integer; punch comma$ skip at
dependent polynomial variable (if least one coliumn

observations are read in, punch 1)
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Card Contents Card Format

Repeat (b) for each variableif
cbservations are read in, punch
number cf observations for last
variable)

Order in independent polynomial Punch integer; punch comma; skip at
variable least one column
Repeat (d) for each variable

Leave rest of card blank

4, If data are not to be generated from independent polynomial variables,

load the following data cards

Card Contents Card Format

a)

b)

1 Punch 13 punch commaj skip at least
one column

The number of observations Punch integer; punch commaj; skip at
least one column
The number of estimation variables Punch integerj punch comma; leave rest

of card blank
5., Load the following card:
(a) If estimates of the means are to be read in, skip 3 columns, punch TRUE:
otherwise, skip 2 columns, punch FALSE,
(b) Punch the next 14 columns according to one of the following 4 options:
i) If data are to be generated from polynomial variables, skip 2
columns, punch FALSE, skip 2 columns, punch FALSE._
ii) If the estimation variables are to be read in, skip 2 columns, punqh
FALSE, skip 3 columns, punch TRUE,
iii) If the sum of squares or intercorrelations matrix is to be read in,
skip 3 columns, punch TRUE, skip 2 columns, punch FALSE,
iv) If the analysis t- be made uses a matrix which has just been used,
skip 3 columns, punch TRUE, skip 3 columns, punch TRUE.
(c) If the matrix is to be printed, skip 3 columns, punch TRUE; otherwise,

skip 2 columns, punch FALSE,
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(d) If the intercorrelations matrix is to be used, skip 3 columns, punch
TRUE; otherwise, skip 2 columns, punch FALSE,
6. If estimates of the means are to be read in, load the following data

card, using more than one card if necessarys

Card Contents Card Format
a) Number of observations Punch integer; punch comma; skip at
least one space
b) Number of estimation variables in Punch integerj punch comma, skip at
regression analysis (including least one space

dependent variable)

c) Estimate for mean of estimation Punch number; punch comma, skip at
variable least one space

d) Repeat (c¢) for each variable

¢) Estimate for mean of dependent Punch numberj; punch commaj leave rest
variable of card blank

7. Load the following data card:

Card Contents Card Format

a) F-statistic for stopping Punch numberj; punch commaj skip at
least one column

b) F-statistic for elimination of a Punch numberj punch commaj skip at
variable least one column
¢) Lower bound for diagonal element Punch numberj; punch comma, skip at

least one column

d) Maximum number of terms Punch integer; punch comma; skip at
least one column

e) Maximum value for R2 Punch numberj punch comma, leave rest
cf card blank

8. If the sum of squares or intercorrelations matrix is to be read in, load

the following data card(s):
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Card Contents Card Format

c)

d)

Element of matrix Punch numbers punch comma, skip at

least one space

Repeat (a) for each element in
row up through the diagonal

" element

Repeat (a) - (b) for each row

Sum of squares of dependent Punch numberj punch commaj leave the
variable rest of card blank
9, If the individual observations on the estimation variables are to be

read in, load the following data cards:

10,

Card Contents Card Format

a) Observation on estimation Punch numberj punch commaj skip at
variabie least one column

b) Repeat (a) for each estimation
variable

» c) Observation on dependent variable Punch numbers punch comma$ leave rest
of card blank

d) Repeat (a) - (c) for each

observation

If the independent polynomial variables are to be read in, load the

cards as described in (9), using polynomial variables instead of estimation

variables, The procedure CALC must specify reading these variables.

11.

a)

b)

c)

Load the following card:

If the inverse matrix is to be printed, skip 3 columns, punch TRUE3
otherwise, skip 2 columns, punch FALSE.

If the reduced sum of squares matrix is to be printed, skip 3 columns,
punch TRUE; otherwise, skip 2 columns, punch FALSE.

If the partial regression coefficients are to be printed, skip 3

columns, punch TRUEj; otherwise, skip 2 columns, punch FALSE,
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12,

13,

If the regression coefficients are to be printed, skip 3 columns, punch
TRUE; otherwise, skip 2 columns, punch FALSE.

If the option of adding two variables and eliminating one is used, skip
3 columns, punch TRUEj otherwise, skip 2 columns, punch FALSE.

Repeat (3) - (11) for each analysis to be made.

Load the following data card:

Card Contents Card Format

14,

Punch O3 punch comma; leave rest of
card blank

Load end-of-deck card.
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APPENDIX A

FLOW DIAGRAMS
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APPENDIX B

PROGRAM FOR THE COMPARISON OF VARIABLES
SELECTED BY THE STEP-UP PROCEDURE
WITH THE OPTIMAL SET
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APPENDIX C

PROGRAM FOR THE SELECTION OF
VARIABLES WITH THE STEP-UP PROCEDURE
INCCRPORATING ELIMINATION RULES AND STOPPING RULES
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APPENDIX 3

FITTING GUIDANCE FUNCTIONS BY STEPWISE REGRESSION




I. INTRODUCTION

In & plumbline coordinate system x represents the distance, in meters,
parallel to the launch azimuth; y represents the distance in meters, parallel
to the gravity gradient passing through the launch site with the radius of
the earth subtracted; and z represents the distance, in meters, in a direction
which with x and y form a right-hand coordinate system.

The state variables for a trajectory of the flight of a powered space
vehicle consist of the three space coordinates x, y, z; the three velocity
components X, ¥, Z, measured in meters per second; the thrust per unit mass g
measured in meters per second per second; the time from 1ift off T measured
in seconds; and the rate of change of mass per unit mass g& measured per second.

The three guidance functions under consideration are the pitch steering
angle Xp, measured in degrees; the yaw steering angle Xy’ measured in degrees;
and the time remaining to cutoff of power TR, measured in seconds.

The three guidance functions

F

[ ] L] ] ﬁ
X = XP (X: Yo Zy Xy, ¥, Z, o’ T, E):

D

L] [ ] [ 3 F ﬁ
Xy = Xy (x: Yo Z, X, ¥, 2, o’ T, E):

s o o F m
TR = TR (x; Y> Zy, X, ¥, 2, o T, E)

are approximated by third degree polynomials in the nine variables. With this
approximation there are 219 estimation variables (220 with a constant term

included). However, since it is difficult to measure

H B

» this variable might
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be eliminated. TIn this case there would be 164 estimation variables (165 with
a constant term included).

The objective of this study was to find an optimal (or near optimal)
polynomial spproximating the guidance functions by employing the stepwise
regression procedure.

The data were taken from 75 calculus of variations trajectories generated
by the Marshall Space Flight Center at Huntsville, Alsbama, to simulate actual
flight. The trajectories were between 600 and TOO seconds in length with data
sampled at five second intervals from 140 seconds to cutoff. Two data bases
were used consisting of subsets of the total sampled data. The first data
base consisted of data taken at five second intervals from 140 seconds to 300
seconds, at 20 second intervals from 300 seconds to 540 seconds, and at 4O
second intervals from 540 seconds to cutoff. The second data base, a subset
of the first, consisted of data samples at 140 seconds, at 260 seconds, at 500
seconds, and at 60 second intervals from 300 seconds to 540 seconds together
with data in either or both of two groups sampled at 15 second and 50 second
intervals from 540 seconds to cutoff. The second data base is weighted more
heavily near the end of the trajectory, since the guidance functions are more
critical in that region. The two data bases consist of 2605 and 1219 data
points respectively.

Several of the variables were scaled to get the elements of the sum of
squares matrix to approximately the same order of magnitude. The variables

X, ¥, and z are multiplied by 10"6

, %, 7, and £ by 0.001, T by 0.01, and % by
100.
Several B-5500 runs were made using the stepwise regression procedure.

In ten of the eighteen runs Xp was the dependent variable, while in four runs
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each Xy and TR was the dependent variable. The terms involving % were excluded

from g1l but two of the runs.

is given in the next section.

A Qdetailed description of the individual runs
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IT. DESCRIPTION OF RUNS

Run 1

The matrix used in this analysis was the NASA supplied single precision
sum of squares matrix adjusted for the mean with Xp as the dependent variable.
There were 164 terms in the polynomial model in addition to the constant term.
The matrix was accurate to approximately eight digits before mean adjustnent.

This run stopped due to accumuilation of roundoff error after picking up

eleven terms. The results are shown in Table I. The column labelled "No. of

TABLE T

RESULTS OF RUN 1

gce)n?lz Term F R2
1 yei 278716.35 .9900
2 yoR 129.50 .9905
3 ygfz 1092.25 .9932
4 E2 663.46 .9945
5 22 666.72 .9955
6 7t 875.77 .9966
7 yx 282.43 9969
8 xz° 1105.93 .9978
9 z% 3227.71 9990
10 228 913.12 .9992

no ya&
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Terms" contains the number of estimation variables (excluding the mean)
included in the regression model at the end of that step. The column "Term"
is the estimation variable added to the model in that step. The column "F"

is the F-statistic,

M 2/
.l ol
\) b, 7z 3/m-l
L./'—/ \\\ 1 I“"l ‘/’
F = pu=1l ‘i=1 ,
%L m 2
v\
- b -
L <y“ VAT
u=1 i=

where m is the number of estimation variables in the model; N is the number of
observations; bl’ b2, coey bm are the regression coefficients at a stage;
Y1r Yps eees yN are observations (mean adjusted) on the dependent variable; and

z._ are observations (mean adjusted) on the

le’ Zel, esoy ZN]_, * ooy Z]_'[n, e ey Nm

estimation variables. The column "R2" is the square of the multiple correlation

coefficient,

The values of F and R2 are meaningless for the last term added to the model,

since the sum of squares of error went negative due to excessive roundoff.
It was hoped that this run would duplicate the results obtained at NASA,

but such was rot the case. It was discovered that the difference was due to

the fact that the matrix used in the NASA run was not mean-adjusted, while that
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used in this run was mean-adjusted. A significant conclusion from this run
was that the very high multiple correlation for a small number of terms made

confirmation to pick out the best forty terms unnecessary.

Run 2

The matrix used in this analysis was a part of that used in run 1. It
was mean-adjusted and in addition to the mean had fifty-two terms in the model.
These terms were those which had been selected in run 1 together with those
selected by NASA. No throwout criterion was used.

This run stopped due to accumulation of roundoff error after sixteen terms
were selected. The results are shown in Table IT. The first four columns have
the same significance as in Table I. The additional column "R2 (Run 1)" gives,
for comparison purposes, the value of R2 for the same number of terms in Run 1.
The higher correlation is considered better.

The object of this run was to determine why run 1 failed to duplicate the
NASA run. The adjusted sum of squares matrix was printed at each step for
further study. It was concluded that more precision was needed in the original
matrix. However, 1t was later found that this was not a serious problem.

This run should have had the same terms enter as in run 1. However, inad-
vertently the variable yig was omitted from the model. Even though this term

was left out the multiple correlation was better than in run 1.
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TABIE II

RESULTS OF RUN 2

lui;n_?lsf Term F R R° (Run 1)
1 y2i 278716.35 .9900 «9900
2 vk 129.50 .9905 .9905
3 ¥ 1092..25 9932 .9932
4 %2 663.46 .99L5 .99L5
> v 622,07 +9955 «9955
6 %22 1480.22 .9970 <9966
7 y 3794 .25 .9987 .9969
8 y2§ 606.17 .9990 .9978
9 zX 391.55 .9991 +9990

10 L 723 .06 .9993 .9992
11 Xyt 833.33 <999k -
12 yak - - .
13 X - —-- —--
1k yis - - ---
15 z . —— .-
16 p'q -— _— ——
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Run 3

The matrix used for this run was the same as that in run 2, except that
it was accurate to twelve significant figures (B-5500 single precision) before
mean-adjustment. WNo throwout criterion was used.

This run stopped after selecting thirteen terms. The results are shown

in Table ITI. The columns have the same significance as in run 1.

TABLE III

RESULTS OF RUN 3

ggrroni Term ¥ R2
1 ygé 278715 .24 .9900
2 | YR 129.53 .9905
3 Yy 1092.35 9932
i %te 663,13 9945
5 yx 622.40 .9955
6 ng 72,72 .9970
7 vz 3554.06 .9987
8 vt 823.00 9990
9 x 332.94 »9991
10 v 122.67 .9991
11 zZX 3728 .64 .9996

12 (5%

13 x5° -
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The object of this run was to show that the NASA run could be duplicated
if precision were increased. Again this failed, because the matrix was mean-
adjusted. A comparison of regression coefficients obtained in run 2 and run 3
is shown in Table IV. The columm "No. of Terms" contains the number of esti-
mation variables in the regression model at that step. The column "Term" con-
tains each variable in the model at that step. The columns "Coefficients"
with the names of the two runs contain the regression coefficients at that
stage.

Discrepancies occurred, because of the slightly different sum of squares
matrix. This run confirmed the suspicion that the difference in the results

obtained here and at NASA was due to the mean-adjustment of the matrix.

TABIE IV

COMPARISON OF REGRESSION COEFFICIENTS FOR xp - ORIGINAL MATRIX IN
SINGIE PRECISION (RUN 2) vs. DOUBLE PRECISION (RUN 3)

Coefficients
No of
Terms Term Run 2 Run 3
1 y22 - .8234568 - .8234567
2 y2é - k853059 - 4852689
7% .1805880 .1806077
3 y2é - .3L400263 - 3399650
yzi .7191974 . 7192526
2 ®
yvy L772935 L773168

(Continued)
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TABLE IV (Concluded)

Coefficilents
No of
Terms Term Run 2 Run 3
L y2£ - 6921609 - 6920876
¥R 686559k 6866178
y2§ . 7106122 . 7106299
%tg .01106846 .01106811
5 y22 - 5068506 - .5068816
yok 1.989755 1.989662
y2§ .T014382 . 7014511
%tg .003688024 .003687849
yx - 8.378824 - 8.378211
6 NG - .5587895 - .5592727
ygi 6.607538 6.589411
5 9721991 9712973
Etg .00205109) .002051780
yX ~-38.13662 -38.02102
xz° 39.95789 39.824h1L
Run L

The matrix used on this run was the same as that used in run 3, except
that it was not mean adjusted. The mean Was not considered as a variable in

the model. No throwout criterion was used.
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This run stopped due to accumulation of roundoff error after selecting
twenty terms. The results are shown in Table V. The columns have the same
significance as in Table I, except that the variables used in calculating F

and R2 were not mean adJjusted.

TABLE V

RESULTS OF RUN 4

No of

Terms Tern F R

1 y2é 5385402.59 .99948
2 ¥y 302.80 .99953
3 z 535.37 .99961
L X 204.50 99963
5 y 116.17 .99965
6 yo% 597.52 199971
7 (£)3 115.97 99972
8 e 849.62 .99979
9 y&t 2748.11 .99989
10 573 491.29 .99991
11 yt 1882.93 .9999h
1 Xyt 189.91 .99995
13 it2 111.16 99995
1 x3° 504,16 .99996
15 e 1108.53 199997
16 e 3802.8l .99999
17 22 - —_————

(Continued)
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TABLE V (Concluded)

No of 5
Terms Term F R
18 §3° --- —--
2%
19 Yy ﬁ - ———
F.2
20 2(2) ——- -

The obJject of this run was to duplicate the NASA run. The first fourteen
terms were the same in the two runs. This agreement is very good considering
the high correlation involved.

.The coefficients obtained on this run agree with those on the NASA run to
three significant digits through the first eight terms. An additional com-
parison was made by inverting the sum of squares submatrices in double precision.
These results and those of run 4 were more in agreement with each other than

with the NASA run. Some comparisons of coefficients are shown in Table VI.

TABLE VI

COMPARISON OF REGRESSION COEFFICIENTS FOR Xp’ NOT MEAN ADJUSTED - NASA,
STEPWISE PROCEDURE (RUN 5), DOUBLE PRECISION

No of Coefficients
Terms Term NASA Stepwise DP
1 Vo3 - .8LBLEsT - .8LBL8sT - .8hBLEsT
3 ygﬁ - « 5550050 - -5550&08 - .5550&08
vy .3300267 .3299901 .3299901
Z - 68.26085 - 68.25281 - 68.25281
(Continued)
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TABLE VI (Continued)

No of Coefficients
Terms Term NASA Stepwise DP

5 ygé - 8622132 - .8620839 - .8620839
V5 M707735 706966 706966
z -168.8408 -168.7116 -168.7116
x 57.08999 - 57.02029 - 57.02030
y - 2.828727 - 2.,827894 - 2.827895

8 y2é - 517704k - 517071k - 5170715
y2§ .9110512 .9110047 .9110048
z -136.2729 -136.0928 -136.0930
x - 41.52626 - 41.45290 - 41.45297
v - 26.72016 - 26.71975 - 26.71976
y2i .6128534 .6134570 .6134570
(&3 .00071270 .00071228 .00071228
¥ +3381630 .3380557 .3380558

10 yzi - Jhs73042 - JLs636h2 - JL563643
yzj 1.54641L 1.5350k0 1.535043
z - 99.03508 - 98.42050 - 98.42082
X - 10.74897 - 10.76470 - 10,76480
y -114k.4591 -113.1464 -113.1468
¥R 4089275 1129437 14129128
<§>3 .00016815 .00017921 .00017921

(Continued)
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TABLE VI (Continued)

No of Coefficients
Terms Term NASA Stepwise DP
10 y3 2.470939 2.4393L0 2.439349
yyt - 1.4o7387 - 1.387L498 - 1.38750k4
32 .6043025 .6001786 .6001800
13 ygi - .3357826 - .33Lk632 - .33L4h556

vo3 1.071897 1.078982 1.078989
z -125.2351 -12L.0098 -124,0111
X 20.85913 204392k 20.44013
y -155.297h -151.3697 -151.3699
ygi .02238136 LOUL56LT6 -OLL56LE6
(%)3 0017747 .00172243 .00172242
y3 3.807856 3.698213 3.698219
vyt - .7860138 - .7902662 - 7902785
y3 1.321196 1.298609 1.29862k
vt - L.,607292 - L.ko6koo - L.406398
xyt 2.278608 2.131351 2.131290
242 .3072210 2824692 2824499

1k y22 - .6586389 - .6833111 - .6832994
ygy 26414380 .2103839 .2104183
z - 88.77506 - 84.89537 - 84.89571
x - 74.89652 - 82.89925 - 82.89576

(Continued)
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TABLE VI (Concluded)

No of
Terms

L

Term

Coefficients
NASA Stepwise DP
-1k ,9732 -140.6013 -140.6016
.1242356 1526890 .1526897
00212057 .00209391 00209388
3.525092 3.403921 3.403924
.5923321 .6921863 .6921283
6.345729 6.6425L2 6.642k0h
- 3.67T7377 - 3.435859 3.435833
4 .989600 5.077270 5.077138
.91541489 .9k05285 .9405001
10.38705 11.07k32 11.07k03

}l

The columns "No. of Terms" and "Term" have the same significance as in Table IV.

The colums of coefficients are labelled "NASA," those in the NASA run; "Step-

wise," those in Run 5; and "DP," those obtained by the double precision inver-

sion procedure.

This run confirmed the method used in the NASA run and indicated more

strongly that because of the high correlations all terms beyond the first few

were probably not needed.

correlation.
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Run 5

The matrix used in this run was the NASA sum of squares matrix, accurate
to sixteen significant digits (NASA double precision). The mean and most sig-
nificant variable (ygi) were eliminated in double precision, leaving about
twelve digits after the adjustment. This gives a model with 163 terms and a
fairly accurate sum of squares matrix. No throwout criterion was used.

This run stopped after selecting twelve terms. The results are shown in

Table VII. Thecolumns have the same significance as in Table I, except that the

TABLE VIT

RESULTS OF RUN 5

;2322 Term __F R
L ¥ 129.57 .Oll2
2 ¥y 1092. 7k 312k
3 gﬁe 663 .67 bl
L vz 666.82 .5510
5 yt2 875.31 .6580
6 v 28k, 12 .6895
7 o 1096.91 L7770
8 NERS 2930.59 .8911
9 Xzt 639.18 .9114
10 zgi 340.26 .9210
11 2% --- .
12 Xt - ——-
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variables used to calculate F and R2 are adjusted for the most significant
variable as well as for the mean. The column "No. of Terms" excludes the pre-
viously eliminated variable. The object of this run was to choose the most
accurate fit by the straight step-up procedure to compare with subsequent runs
using a throwout criterion. Mean-adjustment was used because it seems more
reasonable to eliminate the constant term since it is so easy to evaluate in a
polynomial model.

A comparison of this run with Run 1 shows that the first eight terms were
selected in the same order. This indicates that these terms are not sensitive

to slight matrix errors.

Run 6

The matrix used in this run was the NASA sum of squares matrix, accurate
to about 12 significant digits after adjustment for the mean and most signifi-
cant variable (ygi)N in double precision with the terms in the model consisting
of the terms selected in run 5 together with all terms containing m/m. (The
/m terms had been omitted in all previous runs.) This gave a model with 66
terms. No throwout criterion was used.

This run stopped after obtaining 11 additional terms. The third term brought
in was yt % with an F of 757. The corresponding terms in run 5 was 5#2, brought
in with an F of 66Lk. The results are shown in Table VIII.

The columns have the same meaning as in Table I. Due to an error in the

2 .
program R~ was not found. F was based on variables adjusted for y2z as well as

the mean.

The object of this run was to see if the % terms would greatly improve the

fit of the model. A slight programming error prevented a complete analysis of
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TABLE VIII

RESULTS OF RUN 6

No of
Terms

10

11

ZX

e
8|

=l

S PORELAINS

4

F
129.57
1092.74
756.89
326.96
1163.19
274 .36
1122.50
2770.60
362.31
7305.95

this study but it seems clear that the

in the least squares fit.

Run 7

sls.

In this run the matrix described in

significant variable (yei) eliminated in

terms do not make a radical improvement

run 5 was used, with the mean and most

double precision. A throwout criterion

was used. This criterion consisted of throwing out any variable which had an

F of less than Fc and then admitting the "best" variable if it had an F greater

than Fc. If the best variable did not have an F greater than FC then Fc was
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halved and the process repeated. The process started with Fc = 1000 and
selected the first variable with an F of 130. The entire run was made with an
Fc of 125. There was no provision for throwing out the mean or ygé. The run

stopped after selecting nineteen terms. The results are shown in Table IX.

TABLE IX

RESULTS OF RUN 7

No of

Sweep Terns Term F in F out R R® (Run 5)
1 1 ¥k 129.57 .0kkp .Okko
2 2 ygjr 1092. 74 312k 312k
3 3 = 663.67 Al S|
L L yig 666.82 .5510 .5510
5 5 yte 875.31 .6580 .6580
6 L %@ 3.50 L6575 .5510
7 5 yX 269.15 L6876 .6580
8 6 xz2 1120.15 L7769 .6895
9 7 ZX 2747.50 .8875 L7770
10 6 y22 1.50 .8874 .6895
11 7 Ng 128.17 .8923 .T770

12 6 V¥ 20.90 .8915 .6895
15 7 % 434,29 .9061 L7770
1l 8 % t 328.81 .9160 .8911
15 9 Xz 300.53 .9241 L9114
16 10 Xyz 2602.78 L9607 .9210

(Continued)
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TABLE IX (Concluded)

No of 5 >
Sweep Terms Term F in F out R R” (Run 5)
17 9 x2° 3.0k .9607 .911k
18 10 zzy - - .9210
19 11 %2y - - e

The column "Sweep" contains the number of steps in which a variable was either
added or dropped. The column "No. of Terms" contains the number of estimation
variables in the regression model after the step. The column "Term" contains
the estimation variable added or dropped from the model at this step. The
column "F in" contains the value of F after the step if a variable was added.
The column "F out" contains the value of F before the step if a variasble was
dropped. The column npen has the same meaning as in Table I. The column "R~
(Run 5)" contains the value of Rg for the same number of terms in the model in
Run 5. Again in this case, F and R2 were calculated from variables which were
adjusted from the most significant variable as well as the mean.

As a sample comparison, the best seven-term polynomial obtained on this
run had R2 = .906 while the seven-ternm polynomial obtained in run 5 without a
throw-out criterion had R2 = .(77. This indicates that the throwout criterion

is of significant value in this model.

Run 8

In this run a sub-sample of the data used in the previous runs was selected.

A matrix with 164 terms in the model was generated and adjusted for the mean.

No throw-out criterion was used.
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This run stopped after 27 terms due to accumulation of roundoff error.

The results are shown in Table X. The columns have the same meaning as in

Table I.
TABLE X
RESULTS OF RUN 8

Terns _Term __F R®
1 y2::; 126238.18 .9905
2 ygi 59.66 .9909
3 Yy 457.03 19953
b yob 294.10 .9946
5 y# 174.95 .995%
6 t° 471,52 .9966
'’ yX 113.75 .9969
8 Xz 140.91 L9977
9 yzX 1096.30 .9988
10 ‘ x5t 302.20 .9990
11 z 54.60 .9991
12 223 39.65 .9991
13 y(2)? 39.29 19991
14 P 188.69 .9993
15 A %t 182.28 .9994
16 T 102.94 .999k
17 zéI:—n 72.72 999k

(Continued)
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TABLE X (Concluded)

g;;;; Term F R2
18 vy 26.71 .9995
19 it 430k .9995
20 yi= 55.37 9995
21 = 3441 19995
22 7 %0.25 .9995
23 xzk 3770.59 .9999
2l x%t —— ——
25 ($)% .-
26 5;(51;1)2 - -—
27 Xy - -

The object of this run was to see if the order in which the terms were
chosen was data dependent. A comparison of the terms in this run with those
in run 5 shows that in this run term k& (y%iﬁ and Term 8 (xgz) were substituted
for %tg and xzz, obtained in run 5. With these two exceptions the two runs
agreed through 10 terms.

The comparison of regression coefficients for the two runs are shown in
Teble XI. The colum '"No. of Terms" contains the number of terms in the
model, including the one previously eliminated in Run 5. The column "Term"
contains the individual estimation variables in the model at each step. The
coefficient of the previously eliminated variable was not available in Run 5.

Blank spaces occur in the table where the two runs selected different variables.
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COMPARISON OF REGRESSION COEFFICIENTS FOR Xp

TABLE XI

FOR TWO DATA BASES - RUN 5 VS. RUN 8

No of
Terms

Coefficients
Run 5 Run 8

-— . 48438
.18061 .18088
— 34662
. 71925 .69356
L7732 45339
—_— .68870
.68662 .6L266
. 71063 .68L97
.01107

.01581
- .82913
.70617 65162
.7%218 . 70280
.03333

.03885
.66818 .18003

(Continuegd)
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TABLE XI (Continued)

No of
Terms

Coefficients
Run 5 Run &
—— - 2.1083
.65638 .65002
.93360 .9155k
.00249
.00355
- 2.2942 - 2.288
- .65313 | - .6h631
_— - 1.5468
3.h170 3.3683
92357 91387
.00531
00579
- 1.3794 - 1.4387
- .82546 - .8k2ko
-18.090 -17.870
- - 1.0858
7.2391 T7.1517
1.0728 1.0729
.01009
.00299

(Continued)
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TABLE XI (Continued)

No of
Terms

10

Coefficients
Term Run 5 Run 8
yi© - 78559 - .75808
2 - 63313 - 61376
X -42.643 -41.972
x2° 31.507
Xz -16.355
N - - .28089
ygk 13.768 13.743
¥y 1.1878 1.2002
e .01048
ygt .01222
yég 25766 . 19476
2 - .29513 - .31085
NpS - .88929 - .88587
xz° 52.455
oz -28.255
yzXx - 3.7618 - 3.6822
vo3 - .22053
y2k 13.746 13.776
yzy 1.1367 1.1958

(Continued)
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TABLE XI (Concluded)

No of Coefficients
Terms Term Run 5 Run 8
10 e 06048
m
F

y=t LOT341
yéz 1.9980 1.9416
e - 39579 - .56781
yx -88.146 -88.150
ng 58.915
Xz | -33.479
yzX - 4.8790 - 4.6L96
%5t 1.5577 1.7201

The comparison indicates that the two terms y%i; and §£t2 are very nearly
linearly related. In any case, a look at run 5 shows that %‘tg is eliminated
with a very small F and that eventually x22 is also eliminated. The coeffici-
ents for the other terms agree remarkably well.

From this run, it seems that only about 6 terms are valid predictors but

the fit is so good that it is hard to draw a firm conclusion.

Run 9

The matrix used in run 8, with the most significant variable (ygi) omitted
from the model was used in this run. There were 163 terms in the model. No

throwout criterion was used.
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The run stopped after selecting 31 variables. The results are shown in
Table XII. The columns have the same significance as in Table I. A comparison

of R2 with that of Run 8 with the same number of terms is included.

TABLE XTI

RESULTS OF RUN 9

ﬁi_r;; Term F R R° (Run 8)
1 vox 120293 .22 .9900 .9905
2 N4 487.82 .9929 .9909
3 yz 200.71 -9939 .9933
i 2 83.50 9943 .99L6
> }; 35.10 .9943 .9953
6 yyt 1479.98 <9975 .9966
7 y5 348.10 .9980 .9969
8 yot 134,71 .9982 L9977
9 zy z% 450.26 .9987 .9988

10 y & 352.33 .9990 .9990
11 yg t 187.36 .9991 .9991
12 vzt 281.19 .9993 .9991
13 2(2)? 158.81 .999h .9991
14 £ 45 .47 .99k .9993
15 (g)gt 32.86 L9994 .9994
16 Xy -E 66.93 .9994 .999k

(Continueqd)
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TABLE XII (Concluded)

No of

Terns Term F R R° (Run 8)
17 4 21.73 .9995 999k
18 2L 52.20 .9995 .9995
19 x4 32.81 .9995 .9995
20 +2 12.62 .9995 .9995
21 e 30.43 .9995 .9995
22 yot 65.75 19995 .9995
23 Xyt 27.20 .9995 .9999
2l xy< 29.95 19996
25 xt 23.05 .9996 ——
26 z3% 23.76 .9996 _—
27 vt 54.20 .9996 ——-
28 yz2 93.46 .9996 -
29 ot ---
50 y
31 xt2 - --- —--

The purpose of this run was to see if ygi was really important or if some
other variables would serve just as well. This run showed that not only was
ygi not necessary but that overall the results were better without it. In par-
ticular it was not one of the best two variables since ygk and ygy, with R2 =

.993, were better than ygi and yek, with R2 = .991.
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This would indicate that there are a lot of different collections of terms
all of which can be made to fit very well. There is no need, therefore, to

pick the "best" model if there are many models which are essentially as good.

Run 10

The matrix used in this run was the same as that used in run 8 with the
throwout criterion described for run 7. The first term was selected with an F
of 126,000. Fec started at 1000 and was eventually reduced to 0.9765625.

The run stopped after selecting 32 terms. The results, including a com-
parison with run 8, are shown in Table XIII. The results for the first six
terms are the same as in run 8. The columns have the same meaning as those in
Table VII (except, of course, that no variables except the mean were previously
eliminated). Hence, F and R2 are calculated with respect to variables adjusted
for the mean only. The conclusion drawn from this run was that there is no

reason for including more than 10 terms in the model.

TABLE XIII

RESULTS OF RUN 10

No of 5 o
Sweep Terms Term F in F out R R” (Run 8)
1 1 yzi 126238.,18 .9905 9905
2 2 Pk 59.66 .9909 .9909
3 3 ¥y 457.03 19933 19933
4 " ygt 294.10 .9946 -9946
5 5 yt 174.95 19953 19953

(Continued)
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TABLE XIII (Continued)

201

No of 5 5
Sweep Terms Term F in F out R R” (Run 8)
6 6 ytg h71.52 .9966 .9966
7 5 ot 2.34 L9966 19953
8 6 NpS 109.01 .9969 .9966
9 7 2 4h7.16 9977 19969
10 8 yzx 966.98 .9987 .9977
11 7 yég 0.89 .9987 .9969
12 8 y(5)? 128.66 19989 9977
13 9 £l 245.89 .9990 .9988
1k 10 7 151.85 .9992 .9990
15 11 yzg 126.88 .9992 .9991
16 12 yXz. 156.42 -9993 .9991
17 13 5 72.56 9994 9991
18 12 e 7.07 .99k .9991
19 13 Z3y 37.24 999k .9991
20 1k 25" 22,14 .999k 9993
21 13 &5 6.49 .9994 .9991
22 12 o 6.01 L9994 .9991
23 13 z 38.31 999k .9991
2k 1k vl 30.91 999k .9993
25 13 Zky 0.00 9994 .9991
26 14 y22 h.hs .999L .9993
(Continued)



TABLE XIII (Continued)

202

No of o o
Sweep Terms Term_ F in F out R R~ (Run 8)
27 15 32 7.79 999k 999k
28 1k yzk 0.25 .999k .999%
29 15 () 5.76 9994 999
30 16 524, 31.70 .9994 .9994
31 15 yz* 3.11 9994 999k
30 16 © 19.25 .9994 .9994
33 17 Z5y 1h.72 .9995 .999k
3L 18 5’2‘6 26.41 .9995 .9995
35 19 22 58.46 19995 19995
Lo 16 z 1.02 .9995 .9994
b5 17 ¥y 0.20 19995 .99k
50 18 5 b b7 .9995 .9995
55 21 Yy 1.8 19995 19995
60 2k z(-g)e 8.31 .9995 --
65 23 yit 4.60 .9995 .9999
70 2L yg I—B; 8.15 .9996 -
75 23 Xt 3.55 .9996 9999
80 2L 257 0.06 .9996 -
85 25 xt° 34, 8L .9996 -
90 26 ygg 0.97 .9996 —--
91 27 zjt 55.83 -9996 ---
92 28 2% & 151.28 .9997 -
(Continued)



TABLE XIII (Concluded)

No of . o 5
Sweep Terms Term F in F out R R” (Run 8)
93 27 ig% 0.01 .9997 —-
9k 26 i 0.27 .9997 _—
95 27 Xyy 7003.83 .9999 —
96 28 xgy .- _— _—
o7 29 oI
98 30 yio - - e
99 31 y --- - -
100 32 i - ——- _—

Run 11

The matrix used in this run was the same as that used in run 5, except that
the dependent variable was Xy and the most significant variable (which was
eliminated in double precision, together with the mean) was y. No throwout
criterion was used.

The run stopped after 12 variables were selected. The results are shown
in Table XIV. The columns have the same meaning as those in Table VII.

It was not necessary to eliminate the variable y in double precision.
However, the mean should be eliminated in double precision, since it accounted

for most of the sum of squares.
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TABLE XIV

RESULTS OF RUN 11

Terns Tern _r _R
1 v % 286L4.86 5055
2 v 635.48 5969
3 yzX 69.47 .6066
I XyX LL461.35 . 8483
5 ¥ 476.88 870k
6 52t 456.58 8886
7 Xt 181.31 8954
8 a 228.32 9033
9 vz 22L.59 9110

10 xy 1188.58 L9376
11 XX -— -
12 xz _— —

Run 12

The matrix used in this run was the NASA sum of squares matrix, accurate
to about 12 places after adjustment for the mean and most significant variable
(y) in double precision, with Xy as the dependent variable, the terms in the
model consisting of the terms selected in run 11 together with all terms con-
taining m/m (which had been omitted in run 11). This gave a model with 65

terms. No throwout criterion was used.
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No % terms were selected for the regression equation. Hence, the results
were exactly the same as in run 11. This again indicates that the % terms do

not significantly improve the least squares fit.

Run 13

The matrix used in this run was the same as that used in run 8, except that
the dependent variable was Xy' No throw-out criterion was used.

The run stopped after 38 terms were selected. The results are shown in

Table XV. The columns have the same significance as in Table I.

TABLE XV
RESULTS OF RUN 13

Terms Term _F R”
1 ¥ 168.62 .1217
2 yei 1355.14 .5846
3 vz 315.24 L6702
4 ¥y 40.63 .6809
5 X 52.63 L6941
6 z 1781.79 .8762
7 v 51.75 .8812
8 232 328.52 .9066
9 x3° 111.34 .9145

10 XyX 169.59 9250
1 () 76.39 .9295

(Continued)
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TABLE XV (Continued)

.9324
933k
9355
.9380
-9391
.9k
9435
.9kLo
.9kLg
.9kh53
.9458
.9Lk61
.9L6k
.9466
.9L69
L9hT71
LOhTh
9476
9476
.9L78
94719
.9480

206

No of
Terms Term F
12 «(5)° 51.33
13 Xyt 19.45
14 25 = 38.82
15 22 4L7.88
16 xz Z 22,42
17 X2 g 75.40
18 yT 17.97
19 &(%)2 10.51
20 XZ 18.87
21 2% 8.76
22 z(-r—}’;)2 10.35
23 kg& 7.59
o yi < 7.10
25 52 3.45
26 552 6.49
27 % 5.95
28 x&y 5.56
29 Xy 3.7%
30 yi T 1.39
31 xz 3.52
32 y‘(g)2 2.49
33 vzt 3.72
(Continued)




TABLE XV (Concluded)

Terns Term _r R
3 zX% 11.5k .9L86
35 *k® 31.23 .9499
36 zX % 1646.63 .9791
37 y --- ---
38 25t - -

The object of this run was to find if the order in which the terms were
chosen was data dependent for the variable Xy. In this case only the first
three terms agree. However, a comparison of coefficients for these terms seems
to indicate that they are not heavily data dependent. These comparisons are

shown in Table XVI. The columns have the same significance as in Table XI.

TABLE XVI
COMPARISON OF REGRESSION COEFFICTIENTS FOR Xy

FOR TWO DATA BASIS (RUN 11 VS. RUN 13)

No of Coefficients
EEEEE Eﬁ;g Run 11 Run 13
2 y - 22.173
ygx .045396 .04Los57
3 y - 19.031
ygx 30472 .31863
Vg 3.0249 3.1979
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Run 14

The matrix used in run 13 was used in this run with the throwout criterion
described for run 7. The first variable was selected with an F of 168 (and
hence with an Fc of 125). Fec was eventually reduced to 3.90625.

The procedure stopped after selection of 27 terms. The results including

a comparison with run 13 is shown in Table XVII. It is seen that the results

TABLE XVII

RESULTS OF RUN 14

Sweep Eé;;; Term F in F out R R° (Run 13)
1 1 y 168.62 .1217 L1217
2 2 ygk 1355.1k4 .5846 .5846
3 3 yZ 315.24 L6702 L6702
L L ¥y 40.63 6809 6809
5 5 x 52.63% L6941 L6941
6 6 z 1781.79 .8762 .8762
77 yi° 51.75 .8812 .8812
8 8 25° 328.52 .9066 .9066
9 9 32 111.34 L9145 L9145

10 8 z 27.11 .9125 .9066
11 9 yzx 195.63 <9247 L9145
12 8 X 8.58 .92k2 .9066
13 9 yys 50,34 .9272 L9145
14 10 ¥t 4575 19297 19250

(Continued)
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TABLE XVII (Continued)

209

No of o o
Sweep Terms Term F in F out R R” (Run 13)
15 9 yj,-z 26.93 .9281 .9145
16 10 22 57.07 .931L .9250
17 11 % 28.31 .9330 .9295
18 12 Xz 22.21 L9342 .932L
19 13 z2 25.66 .9355 L9334
20 14 23 19.01 .9365 .9355
21 13 z% 3.76 L9364 <933k
22 14 ygé 12.43 .9370 .9355
23 13 g 5.5% 9367 933k
2k 14 N 6.95 L9371 .9355
25 15 o2 12,49 L9577 L9580
26 16 5<21—Fn 23.05 .9389 .9391
27 15 £ 039  .938 9380
28 1k v 0.69 .9388 .9355
29 15 zérgn 15.19 .9396 .9380
30 14 y< 0.01 .9396 .9355
31 13 2 < 5.6k .939M L9334
52 14 #(2)° 10.37 19599 .9355
33 15 ()% 13.78 .9L06 .9380
3l 14 vos 3.49 .9kl .9355
35 15 y(%)2 15.43 .9kl12 .9380
(Continued)



TABLE XVII (Concluded)

No of

Sweep  Terms Term Fin F out R R° (Run 13)
4o 16 yeé 14,33 9426 .9321
45 19 255 12.60 .9LL6 .9Lko
50 18 ;;rgé 2.22 952 9435
55 19 igg 4,96 .9460 .94ko
60 22 ygé 14.37 L9479 L9458
61 23 Xz 14.85 : .9L86 .9L61
62 oL Xz 45,16 .9504 9k6l
63 25 x25r 389.12 L9626 9L66
6L 26 y% t -—- - 9469
65 27 zg _— _— .obT71

for the first nine terms are the same as in run 3. The columns have the same
meaning as the run 7. F and R2 were calculated with respect to mean-adjusted
variables.

These results seem to reaffirm the conclusion that there are many sets of

variables which would serve equally well in fitting.

Run 15

The matrix used in this run was the same as that used in run 5, except
that the dependent variable was TR and the most significant variable (which
was eliminated in double precision, along with the mean) was t. (The most

significant variable in the NASA run was ng however, it is logical that t
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would be most significant after mean adjustment, since TR is approximately a
linear function of t.) No throwout criterion was used.
The procedure stopped after selecting 14 variables. The results are shown

in Table XVIII. The columns have the same significance as in Table I. Due to

TABIE XVIII

RESULTS OF RUN 15

No of
Terms Term _F
1 yez 1401.83
2 £° 5327.97
3 ygi 3837.12
b 5 581.56
5 X 208.87
6 yi° 27.66
7 XyZ 564 .32
8 yel-lfg 57k .61
9 & IEH 1708.72
10 yée 2263.60
11 3 29455
12 ygz 354.02
13 52 h92.33
14 XXZ —-———

a slight programming error, the correlations were not found. F was calculated

with respect to variables adjusted for the mean and t.
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In this case, it was best to eliminate the most significant variable in

double precision, since TR is almost linear in t.

Run 16

The matrix used in this run was the same as that used in run 8, except
that the dependent variable was TR., No throwout criterion was used.
The run stopped after selecting 41 terms. The results are shown in Table

XIX. The colums have the same significance as in Table I.

TABLE XIX

RESULTS OF RUN 16

No of 5
Texms lerm _— B
1 t 545817.58 .99778
> 2 477.86 .99840
3 +2 2275.89 .999kL
I Pz 1499.67 .99975
5 Yy 308.29 199980
6 x 118.39 .99982
7 5 10.91 .99982
8 52 259.11 .99985
9 a g 208.50 .99987
10 i % 700.18 .99992
1 yie 851.61 .99995
12 22 % 117.69 99996

(Continued)
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TABLE XIX (Continued)

g;z;; Term F R2
13 vt 327.53 .99997
1k yit 135.75 .99997
15 z§ 52.09 .99997
16 X3 103.71 .99997
17 Xyz 86.59 .99998
18 vy Lo.3k .99998
19 x%2 33.38 99998
20 xt 20.25 +99998
21 % 8.92 .99998
20 %32 5.97 .99998
23 %5 7.02 199998
2l vyt h.72 .99998
o5 xt2 9.95 .99998
26 2t° 6.71 -99998
27 t3 13.08 .99998
o8 &(%)2 18.18 .99998
29 y Tt 5.67 99998
30 j2z 6.32 .99998
31 o 3.72 .99998
32 o7 11.48 .99998
33 xXyy 7.21 .99998
3L X% 18.04 .99998

(Continued)
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TABLE XIX (Concluded)

No of

Terms Term F R2
‘ 35 Xy 279.06 .99998

36 zyt -— _—
LK. F

37 yz = - -—-

38 3 — —

39 z% —— ——

40 : £ ——- ——-

m .

b1 2 E —— ——

m

The first eleven terms were the same as in run 14. A comparison of

i coefficients is shown in Table XX. The columns have the same significance as

i TABIE XX

COMPARISON OF REGRESSION COEFFICIENTS FOR TWO
FOR 2 DATA BASES (RUN 15 VS. RUN 16)

‘ No of Coefficients
| Terms Term Run 15 Run 16
2 t --- -T7.506
: y22 1.4816 1.303k4
(Continued)
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TABLIE XX (Continued)

No of

10

11

Terms

Coefficients

Term Run 15 Run 16
t - -78.477
ygi 1.,0214 1.0420
2 L.6587 L.575k
ygi - 1.7560 - 1.7783
¥y BN - 49051
t - -98.162
ygé 141178 5415
2 8.9760 8.7679
& - 1.9945 - 1.9869
¥ - 1.1146 - 1.1007
X -60.945 -56.506
y3° - 2,157k - 2.1189
32 - .83500 - .88217
+° £ - .60183 - 59466
& % L5411k .53880
t --- -37.637
ygi 3.4763 3.2592
t2 4.0752 L, 5254
vo1 - 2.0768 - 2.0941
¥ - 1.7610 - 1.7378
X - 1.L068 - 1.3353

(Continued)
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TABLE XX (Concluded)

No of Coefficients
Terms Term Run 15 Run 16
11 32 .69807 .39229
xyZ - 6.7264 - 6.2677
2 z _ 1.0021 - .97826
7 % .9L838 9231k
yi2 5.6141 5.2330

in Table XI. This again indicates that the choice of terms is not data depend-
ent. However, as for the other dependent variables, more terms were selected

with the smaller data base.

Run 17
The matrix used in run 16, with the most significant varable (t) omitted
from the model, was used in this run. No throwout criterion was used.
The procedure stopped after selecting 23 terms. The results are shown

in Table XXI. The colums have the same significance as in Table II.

TABLE XXI

RESULTS OF RUN 17

No of o 5
Terms Term F _R° R” (Run 16)
1 vt 298L8L .13 .9959L .99778
2 ¥yt 4077.81 .99907 199840
(Continued)
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TABLE XXI (Concluded)

No of

Terms

~N N U W

10

11

13
1h
15
16
17
18
19
20
21

22

23

Term

'

o oo d

vy

\V]

e
Ne

e <§' i
Blid Bl Bl

™ E 1
g2l

Mo

ot

628.71
2057.76
46,73
255.81
65.20
171.67
261.31
973.93
539.56
159.08
341.00
111.82
118.78
20.56
61.33
29.19
62.99
27.57
L67.60
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B (Run _16)
«999kk
«99975
99980
-99982
99982
99985
99987
+99992
«99995
99996
< 99997
«99997
<99997
«99997
+99998
99998
+99998
-99998
99998
99998
«99998




Again, as more variables were added the results seem to be better without

the most significant variable.

Run 18

In this run the matrix of run 16 was used with the throwout criterion of
run 7. The first term was selected with an F of 545818. During the runm, F,
was reduced from 1000 to T.8125.

The run failed due to a machine error after selecting 21 terms. The results
are shown in Table XXII. The columns have the same significance as in Table XI.

The results for the first twelve terms are the same as for run 16.

TABLE XXII

RESULTS OF RUN 18

No of 5 5
Sweep Terms Term F in F out R R” (Run 16)
1 1 t 545817.58 .99778 .99778
2 2 yei L77.86 .998L40 .99840
3 3 2 2275.89 <999kl «999kk
4 S 1499.67 99975 .99975
5 5 yei 308.29 .99980 .99980
6 6 x 118.39 .99982 .99982
T T y&e 10.91 .99982 .99982
8 8 XyzZ 259.11 «99985 -99985
9 9 y2 g 208.50 .99987 .99987
10 10 yiE 700.18 -99992 .99992
(Continued)
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TABLE XXII (Continued)

Sweep ggrl?lg Term F in F out RS R® (Run_16)
1 11 y5° 851.81 .99995 .99995
12 12 2 E 117.69 .99996 -99996
13 11 N 0.11  .99996 .99995
14 12 x5 27177 .99996 .99996
15 11 %92 0.65  .99996 .99995
16 12 3 127.0k .99997 .99996
17 13 y = 78,4l 199997 .99997
18 1h z 61.02 .99997 .99997
19 15 2t = 9.0k +99998 .99997
20 16 Xyt 79.07 ’ 99998 99997
21 15 2 0.13 +99998 «99997
o0 16 2 g 16.95 .99998 -99997
23 17 Xy 10.75 .99998 +99998
ol 16 2% % 1.8 .99998 .99997
25 15 £ 2.03  .99998 .99997
26 16 xy? 8.09 .99998 .99997
27 15 AL 1.56 99998 .99997
28 16 = 18.44 .99998 -99997
29 15 %5 0.07  .99998 .99997
30 16 v 69.36 .99998 .99997
31 17 yi4 .99998

(Continued)
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TABIE XXII (Concluded)

Sweep
32
33
3k
35

No of
Terms Term
18 xzy
F
19 Z -El t
20 XyZ
21 x2

F in

F out

R (Run 16)
.99998
.99998
.99998
.99998
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A summary of the runs made is given in Table XXIII.

III.

SUMMARY

TABLE XXTIIT

SUMMARY OF RUNS

The

column "Run" gives

Run ;ﬁiiﬁlgi Eiﬁi‘ Ad justment gﬁfé'?ﬁn Bgi'xf['g:(r)'ms Mex R©  Min R
1 Xp 1  Mean No 10 - 11 .9992 .9900
2 Xp 1  Mean No 11 - 16 «999k .9900
3 Xp 1 Mean No 11 - 13 .9996 .9900
L Xp 1  None No 16 - 20 .99999 .99948
5 Xp 1 Mean, ygé No 10 - 12 .9210 OLL2
6 Xp 1 Mean, ygi No 10 - 11 - -—
T Xp 1 Mean, v Yes 10 - 11 .9607 L0kk2
8 Xp 2 Mean No 23 - 27 .9999 9905
9 Xp 2 Mean No 28 - 31 .9996 .9900

10 Xp 2  Mean Yes 28 - 32 9999 9905
11 Xy 1 Mean, y No 10 - 12 L9376 5055
12 Xy 1 Mean, y No 10 - 12 .9376 .5055
13 Xy 2 Mean No 36 - 38 9791 .1217
14 Xy 2 Mean Yes 25 - 27 .9626 1217
15 TR 1 Mean, t No 13 - 14 -— -
16 TR 2 Mean No 35 - b1 -99998 99778
17 TR 2 Mean No 21 - 23 .99998  .9959k
18 TR 2  Mean Yes 17 - 21 .99998 .99778

|
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the run number as used in this study. These runs are ordered first by dependent
variable and then chronologically for each variable. The colurm "Guidance
Function" contains the guidance function (Xp, Xy’ or TR) used as the dependent
variable in the run. The column "Data Base" specifies which of the two data
bases was used in the run. The larger data base is represented by 1 and the
smaller by 2. The column "Adjustment" indicates for which variables, if any,
the sum of squares matrix was adjusted before entering the stepwise procedure.
If any variable is given in addition to the mean, that variable was most sig-
nificant after mean adjustment. The values of F and R2 in the preceding tables
were calculated with respect to the variables after adjustment. The column
"Throwout Criterion" indicates whether a throwout criterion was used.

The first number in the column "Max. No. of Terms" is the largest number
of terms in the model for which the sum of squares of error remained positive.
The second is the largest number of terms found. This excludes terms for which
the matrix was previously adjusted. It was found that consistently more terms
were selected on runs using the smaller data base.

The colum "Max. R°" contains the largest value of R2, as defined for Table
I, fouﬁd. This information was not available for Run 6 or Run 15. With the
exception of run 10, this R2 occurred with the number of terms given first in
the preceding column. In Run 10, which used a throwout criterion 27 terms gave
R2 = .9999, as compared to R2 = .9997 previously given by 28 terms. Comparisons
of R2 are valid only where the same guidance function and type of adjustment
were used. The column "Min R2" gives the value of R2 for the best single term.

Some runs were made under the same conditions for different dependent vari-
ables. These combinations are: Runs 5, 11, and 15; Runs 6 and 12; Runs 18, 13,
and 16; Runs 9 and 17; and Runs 10, 14, and 18. These could be used for compari-

sS0Nns .
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IV. CONCLUSIONS AND RECOMMENDATIONS

The step=-up procedure seems to be an effective method for selecting
variables to estimate a guidance function. There were several questions which
arose in this study, some of which are still unresolved. These questions
included whether the data should be mean-adjusted, whether some roundoff
criterion should be used, whether a throwout criterion is worthwhile, whether
extra precision would be worthwhile, whether the resulting model would be data
dependent, and whether the model would actually accomplish the mission. The

following conclusions may be drawn from the present study:

1. Mean-adjustment

There is no evidence to indicate whether or not this should be done in this
problem. In general, the computation of the sum of squares and cross products
matrix should be done about some pseudo-means. Otherwise, a great deal of
accuracy could be lost in the elimination of the first term. From a physical

point of view it would seem advisable to include a constant term in the model.

2. Roundoff Criterion

Because of the way in which variables are introduced into this model, there
is the danger that the roundoff error could cause terms which should not be
included in the model to enter. This would happen, if one of the vectors in
the model was itself dependent on the ones previously included. To avoid this
situation, there should be some sort of lower limit on the length (diagonal
terms of adjusted sums of squares matrix) of vectors to be included in the

regression equation. This situation has not been investigated.
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In order to develop a roundoff criterion one could, for example, run a
problem in which some of the independent variables are dependent or almost
dependent on other independent variables. Then one would see what kind of
roundoff criteris serve best to prevent the pick-up of these terms. One would

then see if any really important terms might be omitted because of this criterion.

3. Throwout Criterion

In general, it seems that the best throwout criterion is based on the F
statistic. One starts by setting this FC at a large number like 1000. Then
one proceeds to admit the best term if it can be admitted with an F greater
than Fc' One then examines agll included terms and eliminates those which may
be eliminagted with an F less than Fc' When the best term does not have an F
greater than Fc then one replaces Fc by Fc/2 and proceeds as before.

In this problem in which there are many groups of about 10 terms which
are extremely good, in the least squares sense, the throwout criterion does not
magke significant improvement. However, the results of run 7 show an example
of some fairly good improvement resulting from the throwout criterion. In that
case the straight step-up procedure gave a six term model with an R2 of .6895,
while the throwout criterion described gbove gave a six term model with R2 =
.8915.,

The throwout criterion should be used, because it very rarely will hurt

the least squares fit, and most often will improve it.

4, Extra Precision
In any problem in which the first 2 variables explain 99% of the variation,
these variables should be eliminated in double precision. Other than this,

multiple precision is not needed. Great precision is needed in the matrix
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inversion only if the matrix is relatively ill conditioned. Il1l conditioned
matrices can be avoided by adjustment of the roundoff criterion. Thus if the
inclusion of a certain term in the model will make the matrix near singular,
then that term is nearly in the space of the previously included vectors. Thus
its residual length will be in some sense small. The proper roundoff criterion

will then prevent the inclusion of this term.

5. Data Base

The present experiments regarding data base variations have been very
limited. In some of the runs, a datas set which was a subset of the original
data set was used. For example, in run 8 it can be seen that the coefficients
of about the first eight terms in the model were stable. This is about all
one could expect in this situation.

It may be concluded that for this problem there may be some merit in
searching for a good least squares fit which has stable coefficient over vari-

ous different data sets rather than in searching for the best least squares fit.

6. Comparison of Models

The only reasonable way to compare models is to simulate flights using
each., If the mission is not accomplished, then the model is not acceptable.
If two models both accomplish the mission (from a large class of initial points),
then the one with the shorter time of powered flight is better.

It is recommended that further studies in the application of the stepwise
regression procedure be made. Additionsl experience is needed to develop effi-
cient roundoff and throwout criteria. Further study is needed to determine the

sensitivity of the model to the data base selected.
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Since the least square fit is only one aspect of the overall problem
(performance as far as mission requirements are concerned is the other) it is
necessary to evaluate the various estimators in simulated flights employing
each of these estimators. For this evaluation it is best that a simpler prob-
lem be selected. Control over the data base would be much easier with a

simpler problem and a greater variety of data bases could be investigated.
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APPENDIX L4

OPTIMAL CONTROL IN A FLAT EARTH PROBLEM



l. Introduction

This report is a study in some detail of a well-known and fairly uncompli-
cated problem of optimal control in a hypothetical missile trajectory.

Still, the study serves several purposes. First of all the problem lends
itself to a complete but certainly nontrivial solution. A more complex model
can to some extent be viewed as a perturbation of this simpler one, and its
solution might be attained by corresponding methods or possibly even by itera-
tions begun with the solution to the simple problem.

Secondly, the simple model and its solution are a means for generating data
in the laboratory; i.e., optimal "flights" can be readily simulated. The
ability to generate optimal-trajectory data in a somewhat controlled manner is

essential for further fruitful studies of approximating optimal trajectories.

2. The Problem Studied

The problem analyzed is one of the so-called "flat-earth" problems.
Generally speaking, a missile is launched on a trajectory which is restricted
to a plane. Tt takes off from a certain point with prescribed velocity com-
ponents, during powered flight maintains constant thrust, and after cutoff the
missile free-falls to a target point with prescribed velocity. During powered
flight the angle of thrust is controllable. The force of gravity is assumed
to be constant. The problem is to determine the thrust angle so as to minimize
the time until cutoff (presumably this would realistically be related to mini-
mizing fuel requirements). The plane in which the trajectory lies is thought
of as being perpendicular to a plane which is called the "flat earth" for

obvious reasons.
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Ordinarily, thinking of the entire trajectory, the optimal thrust angle
evolves as a function of elapsed time (as well as of the initial launch and
terminal conditions). It 1s perhaps more pertinent to obtain the optimal thrust
angle in terms of current position and velocity; i.e., to sxgthesize the optimal
control function. From this point of view the problem becomes one of determin-
ing the optimal current thrust angle as a function of current state conditions.
Thus synthesizing the optimal trajectory is tantamount to finding the optimal
"initial" thrust angle at various new "launch" points along the optimal tra-
jectory under new "initial" conditions.

The synthesized solution of course could be automated to respond to sensors
of state conditions, and this could be done with on-board equipment, provided
the computation is not too complex. (One of the aims in using approximate
methods, such as polynomial functions of the state variables, is to facilitate
the rapid computation of synthesized control parameters with small simple equip-
ment.)

Tt should be noted that in reality the time lag between sensing the state
conditions and actuating an adjustment in control causes some deviation from
the theoretically optimal trajectory. Such error, however, does not accumulate,
since the next adjustment will be (nearly) optimal for whatever state conditions

obtain at that time.

3. Detailed Discussion of the Analysis

The equations of motion are based on Newton's second law, F = ma, where F
is a force vector and a is the acceleration vector, within the mass.
During free-fall, after cutoff of power, the force acting on the missile

is assumed to be only a constant gravitational force, -mg. Hence, the equations
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of motion during the free-fall portion of flight are

|
\
|
|
Z(t) = 0, i(t) = -8
where X(t), 5(t) are second derivatives of the components of the position vector |

(x(t), y(t)) and make up the acceleration vector a. It will be assumed that

the terminal conditions to be made at the target point at time tT are specified;

During the powered phase of flight, writing F equal to the magnitude of

the force vector at (x(t), y(t)) and u(t) the controlled angle of thrust, the

force vector is resolved into
wX(t) = F sin u(t), mf(t) = F cos u(t) - mg,

where the convention is made to measure u(t) positively in a clockwise turning

from the upward axis (positive y-axis). Thus the differential equations

governing the powered flight are

f(t) = % sin u(t); y(t) = g

cos u(t) - g,
with initial conditions at time tI given as

X(tI) = X Y(tI) = Yy i(tI) = iIJ &(tl) = yI.

Note that % is constant by virtue of the assumption of constant thrust.

The situation is summarized in the figure below:
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The time to cutoff is tc - tI. The synthesis problem is to determine

u(tI), the initial control angle (for any t. of course) so as to maintain an

I

optimal trajectory (one for which t, -t 1s minimum), subject to the equations

I
of motion and the prescribed initial and terminal condition.

Note that at cutoff time tc both sets of differential equations will be
satisfied.

The problem is simplified mathematically and conceptually if a relative
coordinagte system is adopted. Relative to the original coordinate system the
new coordinate system has a motion due to the effect of gravity. Within the

nevw system the complicating effect of the gravitational field is not in

evidence.
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Mathematically the tranformation is accomplished in order to eliminate
the constant g from the differential equations. At the same time the terminal
conditions can be shifted to the origin in the relative coordinate system.

The appropriate transformation is determined by integrating the free-fall
equations so that the terminal conditions are met. Thus, during free-fall, in

the original coordinate system,
x(t) = &5, F(t) = -g(t-t;) + 9y,
x(t) = %(t-tg) + xp, y(t) = - %(t-tT)g + Jp(t=ty) + vy
Let
% (%) = x(8) - % (6-t) - %
y(8) = ¥y(6) + §e-t1)7 - F(6-ty) - v
Then
%, () = %(£) - %5 F,() = §(t) + glt-ty) -Jg.

For given t > 0O (xl,yl) and (il,il) are coordinates in the relative phase space.
Theorem. A necessary and sufficient condition for the missile trajectory
in the original phase space to satisfy the given equations and conditions is
that in the relative phase space the following equations and conditions will
be satisfied:
During free-fall

#,(6) = 0, ¥,(¢) = 0
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with terminal conditions

xy(t) = ¥y(tn) = %y (6) = ¥ (k) = O
and during powered flight
% (4) = £ sin u(t), §-(t) = & cos u(t)
1 m 2 V] n

with initial conditions
Xl(tI) = XlT} yl(tI) = le) Xl(tI) = xlT) yl(tI) = le}
where Xyn; Yqqo Xy jlf are given in terms of Xn, Yns iT’ &T’

tI, tT by the transformation equations above.

Moreover, the free-fall conditions in the relative space are met if and

only if

x(t) = y(t) = 2(t) = y(t) =0

fort >t .
- ¢
The proof of the theorem is straightforward. Thus, e.g., in the powered

flight, by differentiasting the transformation equations,

%,(6) = ¥(t) g sin u(t)

V,(t) = F(t) + g =

=3

cos u(t) - g + g.
Also, during free-fall

l(t) = 'X'(t) = 0 and '}’l(t) = .y'l(t) +g=-g+g-=0.
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%, (tg) = 7y () = & (tg) = 7, (4,) = O,

as can be seen from the transformation equations and the original terminal
condition. But'il = 0 implies that il(t) is constant and since il(tT) = 0,
this constant is zero. Thus )'cl(t) = 0. Similarly, so is ;;rl(t). And, by the
same reasoning, so also are xl(t) and yl(t) equal zero during free-fall.

As was indicated the problem is conceptually simpler in the relative
system. It reduces to that of flying to the origin under power, having no
(relative) velocity there, cutting power, subject to the initial conditions,
all in minimum time tc-tI.

The problem in the relative coordinate system is thus analogous to that
of steering a Jjet-propelled iceboat on a frictionless ice rink to some target
point so that when the power is cut at the target point the boat will remain
on target and to accomplish this in minimal time and subject to the initial
conditions of position and velocity and the condition of operating at constant
thrust.

The speculation is that the human nervous system could learn to "solve"
such a problem very nearly optimally, even perhaps with variable thrust capa-
bility. Whether actual "space driving" simulations of this type would be
useful, either in studying methods for approximating optimal trajectories or
in personnel training, is perhaps an interesting question but well beyond the
scope of this project.

By virtue of the foregoing theorem it is sufficient to be concerned with

the solution to the equivalent problem in the relative coordinate system.
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With this understanding the subscript indicated the transformed variables are
dropped. It will also be convenient to choose force units so that g = 1, since
% was prescribed as constant. The remaining synthesis problem in the relative
coordinate system is investigated by means of the Pontryagin maximality
principle.

In order to minimize time to cutoff, tc - tI, while adhering to the

conditions
X(t) = sin u(t), ¥(t) = cos u(t)
x(t;) = x5 y(tp) = yp, &(ty) = %, J(6p) = 7
x(t ) =yt ) = 2(t ) = §(t) =0,

This principle imposes certain necessary conditions on u(t), tr <t <.

s e _ _ _ T
Let Zy =%, 25 =7, z3 =X, 2, =Y, 2= (zl,za,z3,zu) « Then the system of
two 2nd-order differential equations above is equivalent to the system of four

first-order equations

i3 =2y, %) =z, ﬁl = sin u(t), 2, = cos u(t).

2

with corresponding initial and terminal conditions. Or, more tersely,

L] o * [ * - T T .

z = f(z,t), where % = (21’22’23’Zh) and f(z,t) = (fl’f2’f3’fh) , Wwith
fl(z,t) = sin u(t), fg(z,t) = cos u(t), f3(z,t) = 25 fh(z,t) =z

2.

The condition imposed on u(t) in the maximality principle is that, in order
for control u(t) to transfer a missile optimally from the given initial point

to the terminal point, there must exist auwxiliary forms. v(t) = (Wl;W2:W3:Wh)T
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such that the Hamiltonian

H(‘V} z, t, u(t)) = Yof = Z qfifi

i=1

attains a maximum on the admissible set of controls. Here ¥ 1s a solution to

the auxiliary system

\If='fz \V:
with
E )
5z 3z
£ o= . :
Z
afl afh

and
i' af
OH 1
i i

and, conversely, if Hw = Z and H = -f, then z(t) and y(t) satisfy the systems
Z = £(z,t) and ¥ = -f Ve

Applying the principle to the system at hand,
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H(V,z,t,u(t)) = T = Uq sinu + ¥, cos U+ Yazy + )7,

¥, sin u + ¥, cos u + w3i + wui.

Then
By =y, =0 -y,
Whereupon WS = =-a, a constant, wu = -a', a constant
and
v = alt-ty) + b, ¥, = a'(t-t;) + ',
Thus

H = [a(t—tI) + b] sin u + [a'(t—tI) + Db'] cosu -ax - a'y.

For fixed t, H is maximum when

: N
¥, sin u + ¥, cos u.—~wéj.+ ¥, cos (u-w)

is maximum, where w is such that

v v
Sinu)z——l-—,cosuz-——2—-
2 2 2 2
vl + V5 v
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But this last is obviously a maximum when cos(u-w) = 1, i.e., when u-w = 2kg

or when sin u = sin w and cos u = cos W; i.e.,

) . vy a(t-t)
sin U = sin W = —————

.2 2 ) 2 : 12
Sy v N\ Jlalt-ty) + 017 + [a'(b-tp) + b']
v a'(t-t_)
COs u = cos W = __%_,4_ = - L . *
N2 2 2 e 112
AR~ Y [a(t-tI) + 11" + [a (t-tI) + b']
Finally, this relation can be written in the form
sin u = - T sin @ 4+ sin ,cosu=r_é:cosg+cosw ,
V24 or cos(¥=-g) + 1 Vai© 427 cos(y-gf) + 1
e
where AT = (t—tI), with % = \a_a_-i_-_b_é_ >0,
"a'" + b!
1
and sin ¢ = _A__‘_?‘W___’ -, cos = &
' 2 N\ L2 '
. a +a ra + a
t
sin ¢ = b —— , COs { = ——b: .
VP 4 b2 LBe 4+ bre

Substituting back in the equations of motion for relative coordinate system,

evidently in order to fly an optimal trajectory it is necessary that

, §(b) = —LCos Frcosy

V1% 2 cos(V-g) + 1 \‘/72 + 271 cos(v-g) + 1

with the initial and terminal conditions holdirig.
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Tt is noted next that, when 7 = 0 (t=tI), then sin u (tI) = sin v,
cos u (tI) = cos y. Thus the parameter | in the equations is identified as
the optimal thrust angle at initial time tI, or, as it will be called, the
optimal initial thrust angle. Recalling that the principal aim is to synthe-
size the solution, the problem reduces to finding ¥ as a function of the initial
(current) state. Optimal powered flight time is also of interest.

It happens that the differential equations above governing the optimal
powered flight, are solvable in closed form. It will be seen that the problem
can be reduced directly then to that of solving for the parameters in the dif-
ferential equations in terms of the initial values of the state variables.

The remainder of this discussion concerns the special particulars of this
solution. In a more general problem, say with nonconstant gravitational field
or a three-dimensional problem, integration in closed form cannot be expected;
however, the principle of solution is much the same, and the simpler problem
may provide a starting point for approximations.

The integration is simplified by a rigid rotation (an orthogonal trans-

formation) of the state variable axes. Thus, let

! - )

IR , cos ¥y = sin wi | X
: | : 0 |
y2 151n ¥ cos W: ; y
: :
: .
- T e e e ---- o e o e o e - . - .
1 .
i | i
gxg ! cos Yy = sin ¥ E X
, ° L
Y, 1 siny cosy . ¥y
- A - i

Ceometrically, the effect of this transformation is to move to a space where

the optimal initial angle ¥ is zero; i.e., optimal initial thrust is vertical.
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Under such a transformation the zero terminal conditions are not altered, but
the initial conditions in the new space are functionally dependent on ¥, not
known. It is true nonetheless, and easily verified, that x, y, %X, ¥y satisfy
the differential equations above if and only if Xps Yoo ie, 52 satisfy the

following:

1

ie(t) T sin(g-y) WJTQ + 21 cos(y=¢f) + 1

¥, (

t)

|_l
-

[t cos (g-y) + 1]/ W‘\/72 + 1 cos(y=-g) +

with corresponding modifications in the initial conditions.

It can be verified directly that

r
1 [ 2x + 2 2] a2
5 v/ ﬂ‘_+ cos dx = '/'r +21T cos B8 +1 -1-= q(T,Q),
AVxe +2x cos 8 + 1
T
| e m 2s 1490 |y (q,0),
0 ‘/xe + 2x cos 6 + 1+cos®

1
5 [r(a-1) + 4 + p cos 6], p(7,8) = q - £ cos 6,

Q
N
&
@
-
&
1}

’Tﬂ-p.

JS—

L
—
&

<D
~
5
H

From the last differential equations, upon integrating and using the formulas

above, for example
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T
X .
dx + x2

X, = A sin © f
|
Y vae + 2x cos 6 + 1 1
o
T T
1
- A sin 6 {‘l ! 2x + 2 cos 0 dx - cos 6 [ dx
2 i -v.llr2 Vz
L wé Vx“ + 2x cos 6 + 1 X +2x cos 6+ 1
+ X,
2I
or,
%, - %, =Asine (@ - £ cos 6) = Ap(1,6) - sin 6, 6 = @-y.
I

Similar derivations yield the following system of equations:

=A psing

%, (t) - %
2 2

je(t) - igl =A [p cos 6 + 2]

[3p cos 6 + v(2p-a-1) + 2]

_ . 2 sin @
x,(t) - X, =hTx, +A —F5—
T I
2 cos 6 [3p cos 6 + T(2P"q"l) + g] + AZ(TZ"P).

¥5(t) -y21=ATy21+A ——

It is of course easy to recover the solutions to the original equations

(prior to the orthogoual transformation) by applying the inverse transformation.

These are:

}Z(t)—f(I=A(psinﬂ+zsin\lr)
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I
I}

v(t) 91 A (p cos g+ £ cos V)

2

x(t) X AT iI + %T sin ¢ [3p cos (g-V) + T(2p-q-1) + £] + Agsin v(TL-p)

2
yr = AT yI + %? cos ¢ [3p cos (g-¥) + T(2p-g-1) + 2] + A2cos y(tL-p)

y(t)

Now at cutoff time, t , i(tc) = ;;r(tc) = x(tc) = y(tc) = 0, and, writing
AT = (tc - tI), q, = q(Tc, 6), etc., the final system of equations to be

solved is obtained:

. - - . + .
X A(pc sin ¢ Zc sin )

yr = -A(pC cos ¢ + zc cos V)

o=
no
\
—

f
Xp =% J p. [2sin V¥ - 3 sin ¢ cos (g-¥)] + Tc(qc+l) sin ¢ - £, sin g

L——

o
R
NI

Vr =5 ¢ B, [2 cos ¥ - 3 cos & cos (@-V)] + Tc(qc+l) cos @ - £, cos ol

. J

The numerical procedure for solving these equations, is described and
illustrated in the subsequent paragraphs. Basically it is a ingenious nomograph-
table which is constructed by calculating values of the state variables for

various sets of V¥, T2 A, 7, taking advantage of the fact that A essentially

enters only as a scaling factor and of the geometry of the angles.
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First consider the transformed system

-y e - - -
U cos § - sin E iI
1 1
= i 0
. A 1 .
v sin ¢ cos ¥ ! yI
‘
- = | ememremccscecscsrcecos-n- e .o oS- | | wm--,
| H
i |
u :l cos ¢ = sin ¥ XI ;
0 )| =
1 2 {
; 1A . ;
v ‘ ' sin cos ¥ | yI ,
L i t N _
-p sin 6 i
- (p.  cos 6+ )
sin 6
- =3 [3pc cos 8 - Tc(qc+l) + Bc]
cos 6
’— 5 [3pc cos 6 - Tc(qc+l) + zc] + P,

Note that 4, Vv, u, v are functions only of . and 6. Also, U and u are odd
functions in 6 and v and v are even.

It is thus sufficient to vary 6 between O and Te in the sense that values
of (u,v) and (G4,V) for -x < 6 < O can be obtained from the values corresonding
to 0 < 6 < n by a reflection across the v-or v-axis. Of course the functions
are also periodic of period 2 , so that altogether the domain of 6 may without
loss be restricted to [O,n].

From the foregoing equations a table of values, (&, ¥, u, v), corresponding
to values of T 6, with Ta > 0 and O <6< is conceived. Actually tabu-
lated, however, is a somewhat different array. ILet (4, ¥, u, v) correspond to

some fixed (TC, §) in the prescribed domasin. Let T be between -n and T, and
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such that

u v
sin T = —— , cos T = ——;
S V 2i?
* LEh
2 2 . o
and let A = ju +v . Then rotate and scale the (u,v) and (4,V) axes so that
o i cos T - sin T} 3 T
! 1 [ J;
L = - ©
iﬁl E A Lsinyp cos T i v
S T U L e e _——
i | [}
o :
e ; E 1 [cos T - sin TJ u
' 5 1" %0
1 0 A e sin T cos T | v

Table I is compiled so that corresponding to each of various values of (TC,G)
L) L] *
in the domain is a quadruple (ul, vl, T, A ). The angles 6 and T are in degrees

and the other quantities are dimensionless. Corresponding to the point

* *
(Tc, 0, ﬁl, vl, T, A) the point (Tc, -6, -ﬁl, éi, -T, A ) would also be in

the table. Thus the table contains only T, > 0 and 6e[0,n].

It is also feasible to construct a graph displaying curves (ﬁl, 61) as
functions of (Tc, 6). Such a graph is exhibited in Figure 1. This graph is a
plot of the level curves for T, and 6 as functions of ﬁl and Gl. It may be
used to find T, and 6 corresponding to a given (ﬁl, ﬁl) and then by recourse to

*
Table I we may also find T and A .

Putting the successive of transformations together gives
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TABLE I

OPTIMAL STARTING VALUES

N T = N e e i N s e e e

T I R T

.00
.00
.00
.00
.00
.00

.10
.10
.10
.10

.20
.20
.20
.20
.20
.20

.25
.25
.25
.25

510
.30
.30
.30
.30

177.
178.
178.
179.
179.
180.

o O O o O O

178.
178.
179.
180.

oS O @ O

177.0
178.0
178.8
179.0
179.6
180.0

178.0
178.8
179.6
180.0

177.0
178.0
178.8
179.0
179.6

L1469
L1146
.0802
.0721
.0380
.0000

o O O O ©o O

.2652
.2046
.1100
.0000

o O O O

5155
o2
.3836
3555
.20ks
.0000

o O O O O O

.6265
.5418
.3078
.0000

o O O O

7976
.8227
. 7864
<7599
.5136

o O O O O

ﬁl T A
-1.3969 14.5 0.688
-1.4038 11.0 0.693
-1.4092 7.5 0.697
-1.hk102 6.7 0.698
-1.4130 3.5 0.703
-1.h1k 0.0 1.000
-1.3760 21.7 0.654
-1.4001 16.0 0.642
-1.4236 7.9 0.632
-1.43 0.0 0.63
-1.2752 39.6 0.615
-1.3322 33.4 0.586
-1.hoks 25.0 0.559
-1.k215 22.8 0.553
-1.483) 12.% 0.536
-1.51 0.0 0.529
-1.2786 41.5 0.550
-1.3946 32.0 0.512 -
-1.544]1 16.3 0.478
-1.60 0.0 0.469
-1.0831 58.0 0.568
-1.1680 52.2 0.516
-1.33k2 4o.3 0.L463
-1.3856 39.4 0.452
-1.6294 23.0 0.411

(Continued)
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TABLE I (CONTINUED)

Te 2] 1’11 x’rl T A

1.30 180.0 0.0000 -1.777 0.0 0.394
1.35 177.0 0.9377 -0.9088 69.8 0.554
1.35 178.0 1.0362 -0.9587 66.0 0.491
1.35 178.8 1.1327 -1.1223 58.4 0.420
1.35 179.0 1.1453 -1.1801 55.7 0.403
1.35 179.6 1.0025 -1.6682 35.6 0.336
1.35 180.0 0.0000 -2.167 0.0 0.300
1.%0 177.0 1.0330 -0.6854 82.7 0.551
1.k 178.0 1.1900 -0.6365 8.6 0.480
1.40 178.4 1.2882 -0.6216 8.2 0.4u4h
1.50 178.6 1.3510 -0.6178 81.9 0.4koh
1.4 178.8 1.ho7h -0.6190 81.3 0.401
1.40 179.0 1.5226 -0.6290 80.6 0.375
1.40 179.2 1.6487 -0.6569 79.3 0.345
1.k0 179.4 1.8219 -0.7237 77.2 0.310
1.40 179.6 2.0788 -0.8959 73.2 0.267
1.40 179.8 2.4589 ~1.4850 62.6 0.209
1.k 180.0 0.0000 -L.2h 0.0 0.141
1.4 178.0 1.2136 -0.4902 89.6 0.482
1.k2 178.4 1.3158 -0.4358 90.4 0.445
1.42 178.6 1.3818 -0.4029 90.9 0.Lk2h
1l.hk2 178.8 1.4628 -0.364L 91.4 0.4k01
1.b2 179.0 1.5659 -0.3174 92.1 0.375
1.42 179.2 1.7034 -0.2566 92.9 0.344
1.42 179.4 1.9006 -0.1696 9k.2 0.308
1.hb2 179.6 2.2201 -0.0190 96.3 0.263
1.k2 179.8 2.8791 0.3882 101.5 0.200
1.42 180.0 0.0000 4.53 180.0 0.128

(Continued)
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TABLE I (CONTINUED)

Ta 2 1‘1] w'r] T A
1.4h 178.0 1.2108 -0.3469. 96.5 0.487
1.44 178.4 1.3044 -0.2547 98.5 0.451
1.44 178.6 1.3630 -0.1943 99.7 0.430
144 178.8 1.4327 -0.1192 101.3 o0.4o7
1.44 179.0 1.5171 -0.0206 103.3 0.382
1.44 179.2 1.6210 0.1173 106.1 0.353
1,44 179.4 1.7486 0.3291 110.3 0.320
1.44 179.6 1.8900 0.7037 117.5 0.280
1.44 179.8 1.8860 1.5134 132.1 0.232
1.4, 180.0 0.0000 2.92 180.0 0.192
1.46 178.0 II 1.18%9 -0.2151 103.1 0.495
1.46 178.4 1.2586 -0.0929 105.9 0.460
1.46 178.6 1.3020 -0.0126 108.1 0.h4k1
1.46 178.8 1.3493 0.0876 110.5 0.419
1.46 179.0 1.3993 0.2174 113.6 0.396
1.46 179.2 1.4470 0.3931 117.7 0.370
1.46 179.4 1.4761 0.6441 123.7 0.341
1.46 179.6 Il 1.4332 1.0227 132.9 0.309
1.46 179.8 1.1351 1.5909 148.7 0.277
1.46 180.0 0.0000 2.12 180.0 0.255
1.5 177.0 1.0036 -0.2506 107.8 0.584
1.5 178.0 1.0790 -0.0078 115.0 0.520
1.5 178.8 i 1.1096 0.3666 126.8 0.452
1.5 179.0 1.0968 0.4777 129.6 0.437
1.5 179.6 0.8270 1.1162 149.7 0.380
1.5 180.0 0.0000 1.h41 180.0 0.35k
1.6 177.0 0.8080 -0.0321 126.6 0.658

.6 178.0 lL 0.7580 0.1928 135.1 0.612

(Continued)
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TABLE I (CONTINUED)

Te 6 ﬁl \'rl T A
1.6 178.8 0.6261 0.4397 7.7 0.571
1.6 179.0 0.5811 0.4939 150.2 0.563
1.6 179.6 0.3301 0.6792 164.6 0.538
1.6 180.0 0.0000 0.755 180.0 0.530
1.8 177.0 0.4962 -0.0196 1L6.7 0.844
1.8 178.0 0.4039 0.0887 154.6 0.820
1.8 178.8 I o.2871 0.1761 162.8 0.802
1.8 179.0 0.2580 0.1918 164.7 0.799
1.8 179.6 0.1317 0.2379 172.4 0.789
1.8 180.0 0.0000 0.254 180.0 0.788
2.0 177.0 0.3443 -0.13L49 156.0 1.032
2.0 178.0 0.2669 -0.0769 162.3 1.018
2.0 179.0 0.1624 -0.0272 169.6 1.006
2.0 180.0 0.0000 0.0000 180.0 1.0
2.6 177.0 0.1869 -0.4286 166.6 1.55%
2.6 178.0 0.1397 -0.4104 170.3 1.548
2.6 179.0 0.0822 -0.3961 174.6 1.545
2.6 180.0 0.0000 -0.389 180.0 1.54
4,0 177.0 0.1607 -0.7665 172.6 2.648
k.o 178.0 0.0790 -0.7615 174.8 2.647
4.0 179.0 0.0461 -0.7577 177.2 2.6L46
o) 180.0 0.0000 -0.755 180.0 2.646

10.0 180.0 0.0000 -1.141 180.0 7.00
100.0 180.0 0.0000 -1.385 180.0 70.6
0.8 20.0 0.0353 -1.4130 8.4 0.566
0.8 40.0 0.0707 -1.4085 13.3 0.565
(Continued)
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TABLE I (CONTINUED)

250

To ] ﬁl v T A
0.8 60.0 0.1061 -1.4013 19.5 0.56k
0.8 80.0 0.1h412 -1.3916 25.0 0.563
0.8 100.0 0.1747 -1.3802 29.6 0.562
0.8 120.0 0.2032 -1.3695 32.3 0.559
0.8 140.0 0.2165 -1.3659 31.5 0.557
0.8 150.0 0.2088 -1.3708 28.8 0.557
0.8 160.0 0.1802 -1.38%1 23.4 0.559
0.8 165.0 0.1531 -1.%922 19.3 0.560
0.8 170.0 0.1143 -1.4022 k.0 0.562
0.8 175.0 0.0619 -1.4107 7.5 0.565
0.8 178.0 0.0254 -1.4136 3.0 0.566
0.8 180.0 0.0000 -1.h41k 0.0 0.566
1.0 20.0 0.0393 -1l.412Y4 7.7 0.707
1.0 40.0 0.0790 -1.4069 15.3 0.706
1.0 60.0 0.1196 -1.3975 22.6 0.705
1.0 80.0 0.1615 -1.38L40 29.6 0.703
1.0 100.0 0.2048 -1.3662 35.7 0.700
1.0 120.0 0.2488 -1.3451 Lko.s5 0.696
1.0 140.0 0.2896 -1.3250 L2.6 0.689
1.0 150.0 | 0.3038 -1.3201 41.6 0.68k
1.0 160.0 0.3038 -1.3257 38.0 0.679
1.0 165.0 0.2916 -1.33%60 34,4 0.678
1.0 170.0 0.2616 -1.3544 28.9 0.678
1.0 175.0 0.1945 -1.3831 19.9 0.683%
1.0 178.0 0.1146 -1.4038 11.0 0.693
1.0 180.0 0.0000 -1.41h 0.0 0.707

20.0 0.0k423 -1.4121 8.6 0.848
40.0 0.0853 -1.4055 17.0 0.847
(Continued)



TABLE I (CONTINUED)

Ta 6 1'11 T'Tl T A
1.2 60.0 0.1300 -1.3941 25.4 0.846
1.2 80.0 0.1771 -1.3769 33.5 0.843
1.2 100.0 0.2282 -1.3528 1.1 0.838
1.2 120.0 0.2852 -1.3197 48.0 0.831
1.2 140.0 0.3521 -1.2753 53.4 0.816
1.2 150.0 0.3919 -1.2483 55.1 0.803
1.2 160.0 0.4394 -1.2187 55.5 0.780
1.2 165.0 0.4681 -1.2046 54.9 0.760
1.2 170.0 0.5020 -1.1955 52.9 0.727
1.2 175.0 0.5328 -1.2202 46,4 0.661
1.2 178.0 0.h722 -1.3322 33.4 0.586
1.2 180.0 0.0000 -1.51 0.0 0.529
1.k 20.0 0.0446 -1.4118 9.3 0.990
1.k 40.0 0.0902 -1.4043 18.5 0.986
1.4 60.0 0.1379 -1.3911 27.8 0.986
1.4 80.0 0.1890 ~-1.3707 36.9 0.983
1.4 100.0 0.2459 -1.3406 45.9 0.977
1.4 120.0 0.3123 -1.2959 54,7 0.966
1.4 140.0 0.3976 -1.2249 65.6 0.943
1.4 150.0 0.4551 -1.1698 67.8 0.920
1.4 160.0 0.5361 -1.0860 72.6 0.877
1.k 165.0 0.5958 -1.0224 75.3 0.838
1.4 170.0 0.6858 -0.9296 78. 4 0.773
1.4 175.0 0.8677 -0.7762 81.8 0.645
1.k 178.0 1.1900 -0.6365 97.6 0.480
1.4 180.0 0.0000 -L.2k 0.0 0.141

.6 20.0 0.0464 -1.4116 9.9 1.131
1.6 4o.0 0.0940 -1.4033 19.9 1.130

(Continued)
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TABLE I (CONTINUED)

Te 6 1'11 W'rl T A
1.6 60.0 0.1439 -1.3885 29.8 1.127
1.6 80.0 0.1980 -1.3653 39.9 1.123
1.6 100.0 0.2588 -1.3301 50.0 1.115
1.6 120.0 0.3312 -1.2750 60.6 1.101
1.6 140.0 0.k4257 -1.1800 72.1 1.071
1.6 150.0 0.4896 -1.0996 78.9 1.040
1.6 160.0 0.5762 -0.9660 87.4 0.984
1.6 165.0 0.6347 -0.8564 93.1 0.936
1.6 170.0 0.7106 -0.6807 101.1 0.862
1.6 175.0 0.8027 -0.3237 115.2 0.735
1.6 178.0 0.7580 +0.1928 135.3 0.612
1.6 180.0 0.0000 0.755 180.0 0.530
1.8 20.0 0.0478 -1.411k 10.5 1.272
1.8 4o0.0 0.0968 -1.ko2k4 21.0 1.271
1.8 60.0 0.1485 -1.3863 31.7 1.268
1.8 80.0 0.2046 -1.3608 ho.s5 1.263
1.8 100.0 0.2680 -1.3212 53.7 1.254
1.8 120.0 0.3434 -1.2576 65.7 1.237
1.8 140.0 0.4400 -1.1438 79.5 1.201
1.8 150.0 0.5012 -1.0L451 88.1 1.162
1.8 160.0 0.5736 -0.8810 99.4 1.105
1.8 165.0 0.6110 -0.7492 107.1 1.057
1.8 170.0 0.6370 -0.5500 117.6 0.989
1.8 175.0 0.5921 -0.2142 135.2 0.891
1.8 178.0 0.4039 0.0887 154.5 0.820
1.8 180.0 0.0000 0.254 180.0 0.788
.0 20.0 0.0489 -1.4112 11.0 1,414
0 k0.0 0.0990 -1.4017 22.1 1.412
(Continued)
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TABLE I (CONTINUED)

253

T, 6 oy v, T A*
2.0 60.0 0.1519 -1.3845 33.3 1.408
2.0 80.0 0.2095 -1.3570 Ly, 8 1.4k03
2.0 100.0 0.2743 -1.3138 56.9 1.392
2.0 120.0 0.3507 -1.2436 70.1 1.373
2.0 140.0 0.4443 -1.1166 85.8 1.340
2.0 150.0 0.4983 -1.0072 95.8 1.297
2.0 160.0 0.5495 -0.8313 108.8 1.237
2.0 165.0 0.5638 -0.6981 117.4 1.192
2.0 170.0 0.5496 -0.5137 128.9 1.135
2.0 175.0 0.4471 -0.2549 146.1 1.062
2.0 178.0 0.2669 -0.0769 162.2 1.018
2.0 180.0 0.0000 0.0000 180.0 1.000
2.4 20.0 0.0503 -1.4109 11.9 1.696
2.4 40.0 0.1019 -1.4006 23.8 1.694
2.4 60.0 0.1563 -1.3817 36.0 1.690
2.4 80.0 0.2152 -1.3513 48.7 1.683
2.4 100.0 0.2807 -1.3032 62.2 1.671
2.k 120.0 0.3550 -1l.2246 7.3 1.649
2.k 140.0 0.4363 -1.0848 95.7 1.606
2.4 150.0 0.4722 -0.9705 107.2 1.570
2.4 160.0 0.L4862 -0.8028 121.7 1.517
2.k 165.0 0. k705 ~0.6903 130.9 1.48
2.4 170.0 0.4205 ~-0.5553 2.2 1.443
2.4 175.0 0.3006 -0. 4034 156.9 1.401
2.4 178.0 0.1636 -0.3216 168.7 1.380
2.4 180.0 0.0000 -0.291 180.0 1.373
3.0 170.0 0.3161 -0.6682 151.8 1.91
3.0 175.0 0.2118 -0.5862 163.8 1.884

(Continued)



TABIE I (CONTINUED)

T, 0 8y v, P A*
3.0 178.0 0.1110 -0.5474. 172.4 1.874
3.0 180.0 0.0000 -0.534 180.0 1.872
5.0 170.0 0.1945 -0.92k1 162.0 3.399
5.0 175.0 0.1247 -0.8983 170.k4 3.394
5.0 178.0 0.0641 -0.8878 175.8 3.392
5.0 180.0 0.0000 -0.885 180.0 3.39

10.0 20.0 0.0L432 -1.4109 16.0 7.070
10.0 40.0 0.0861 -1.4009 34,2 7.065
10.0 60.0 0.1277 -1.3835 51.8 7.058
10.0 8.0 0.1666 -1.3577 70.0 7.048
10.0 100.0 0.1994 -1.3226 89.2 7.035
10.0 120.0 0.2201 -1.2778 109.5 7.021
10.0 1ub.o 0.2173 -1.2254 131.2 7.008
10.0 150.0 0.2011 -1.1985 2.7 7.003
10.0 160.0 0.1697 -1.1735 154.6 7.000
10.0 170.0 0.1148 -1.1531 166.9 7.000
10.0 180.0 0.0000 -1.181 180.0 7.00

20.0 20.0 0.0331 -1.419 18.3 14,18
20.0 4o.0o 0.0653 -1.40L48 36.8 14.137
20.0 60.0 0.0951 -1.3929 55.6 14.130
20.0 80.0 0.1209 -1.376% 4.7 14,122
20.0 100.0 0.1k00 -1.3555 9l .k 14,114
20.0 120.0 0.1482 -1.3316 114.8 1k.107
20.0 140.0 0.1394 -1.3071 135.9 14.103
20.0 150.0 0.1257 -1.2958 146.7 14.103
20.0 160.0 0.10%2 -1.2862 157.6 1k.104
20.0 170.0 0.0678 -1.2791 168.7 14.105
20.0 180.0 0.0000 -1.275 180.0 14.10

( Continued)
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TABLE I (CONCILUDED)

60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0

20.
4o,
60.

100.
120.
1%40.
150.
160.
170.
180.

o O O O O O O O O O o

O O O O O O O O O O O

.0183
0357
.0509
.0629
.0701
.0701
.0635
.0556
.0kl2

.0279
.0000

-1.4131
-1.4099
-1.4048
-1.3981
~-1.3903
-1.3823
-1.3750
~1.3720
-1.3696
-1.3681
~1.37

19.4
38.8
58.4
78.1
98.1
118.3
138.7
149.0
159.3
169.6
180.0

ches
423
419
U415
411
.409
o1
L1
A412
L1k
ko,

hih
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W.L cos (U+1), - sin (P+7) E - M)'cI—f '15.11
* ' 0

AA { sin (¥+1), cos (¥47) E | iI Gl
............................. S i S S N

; ['cos (P+1), - sin (¥+1)) |x 0

0 : 1 z : 1

E (AA*2) !i_sin (¥+1),  cos (¥+1) : 1 1

J R A L

But, beginning with the initial conditions, it is easy to determine ¥+T=§

*
and A' = AA such that
ll:cos%-sina[x“J o
5 } 1 t
Al =
sin 8 cos B yI 1

In fact, & is such that

X ¥
sin8=———I s COS B = L
2 2 2 2
ot \/XI * V1
2 2. 2
d A" =" .
and A ; Xp + Y1

Then, applying the transformation
1 {cos ® = sin 5]
1
.8in & cos SJ

i

; yvields (4., v.).
i 1’1

e

to

e

From the graph corresponding to (ﬁl, w'rl) is read a pair (—rc, 6); and then from

*
the table is read, corresponding to (Tc’ 8), values of T and A .
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But,

Al
P=8-T,A="x%,t -t =AT.

c I c

=

By way of illustration consider the following‘example. What is the optimal
current thrust angle and time to freefall, given that current state relative to
the origin in the relative coordinate system is Xp = 300 meters, y1 = -L00

meters, % = O m/sec, jI = -50 m/sec with constant thrust F/m = hm/secg.

I
First, in units of thrust the state vector is (iI, iI, X1 yI) =

(O} -1 05) 75; "lOO)-

Second,
sin & = 2 - 0.6, cos 5= FHIEQQ_NMU = -0.8,
'\/‘752 + 100° 75° 4+ 1007
. L
. o 2 2 2 , —.
so that & = 143.1°. Also, A' =7\/75" + 100 = 125, and A' = 5V5 = 11.18.
Third,
ra ~cos & - sin B | %) -0.8 0.6 \’o L To.621
1 A S ! | '
L =S N | .
= T \ i= i = ! .
i, lsin & cos 8| L;}Ij T8 | g6 -0.8.) Liz.5  Lo.8oul

Fourth, from the preceding graph,
T, = 1.525, g = 179.5°.

Fifth, from the preceding table,

° *
T =151.1° , A = 0,425 .
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Finally,

¥=5-17=143.,1° - 151.1° = -8°,
A
and
t,- b= (26.3) 1.525 = 40 seconds.

Thus, the optimal steering angle at current time is -8° (measured from
the vertical axis in the relative coordinate system), and the time to cutoff

along an optimal trajectory is 40 seconds.

L. Summary and Recommendations

Equations of motion governing the two phases of flight are immediate
consequences of Newton's second law. The control function (angle of thrust)
enters into the equations for the powered phase of the flight.

Putting the problem in a relative coordinate system, which has a motion
with respect to the o0ld due to the gravitational field, effects a considerable
simplification in the analysis both computationally and conceptually.

The Pontryagin maximum principle is applied to restrict the control function
in the differential equation to a form which is necessary to make the optimal
flight (i.e., to reach engine cutoff time in minimum time), while still
reaching the target from the initial state.

It happens that the resulting differential equations, presumably describing
the optimal flight, can be integrated in closed form to yield a system of alge-

braic equations which must be solved for time to cutoff and initial thrust angle
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in terms of the initial state conditions. This final result is a synthesis of
the control function, the current optimal thrust angle always being calculable
from an input of current state conditions into the system of algebraic equations.

A numerical procedure for solving these equations is presented. It is
based in part on simplification through rotation and scaling transformations.

Natural extensions of this problem abound, and it is recommended that
some of these be explored. E.g., it is believed that almost exactly the same
mode of solution, although somewhat more complicated, can be developed if the
gravitational field is nonconstant. Also, 1t is recommended that the same
approach, including numerical schemes, be attempted for the three-dimensional
analogue.

It is recommended that further study be given to computerizing the scheme
for solving the system of equations, and that these procedures be made inde-
pendent of the fact that the integration was in the present case performed in
closed form.

It is further recommended that the current flat-earth model be used in
conjunction with a computer to generate a controlled but representative spec-
trum of data to be used as a benchmark for evaluating various methods of
approximating an optimal trajectory, such as, for example, a best fit poly-

nomial or a piecewise linearization of the control function.
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