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ABSTRACT ,331048
The second quantum correction to the phase shift in a collision
between particles with spherically symmetric potentials is obtained,
using the method of Curtiss and Powers. In this expression the
potential is nct s=srricted to monotonic functions; the results
apply to a poterntial with an attractive minimum. The classical
limit and the rirst guantum correction, both developed earlier for
monotonic potentials, are also rederived so that they may be used
with potentials vcssessing a minimum. These expressions are then
1) (z)
used to develep series expressions for C;> and Gp , the so-
called cross secticns for diffusion and viscosity, respectively.
« OV wa QY - -
These expressions for and are used to obtain the classical
limit and the quautum corrections to the transport collision
integrals,
@fz)
In the cage of the effect of statistics on collisions
&
between like wolecules is also considered. It is found that is
not modified by ztatistics, at least through terms of order -» . [;J
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CHAPTER I

INTRODUCTION

At the macroscopic level the interaction of objects is an easily
observed phenomenon. ¥From such cbservations it is possible, using
Newtonian mechanics, to cglculate changes that occcur in a system as
a result of the interaction. In particular, the transport of mass,
momentum and energy from one part of the system to another can be
calculated. It is possible to do this for two reasons: (1) the
objects are large enough to be seen, and (2) a finite time is
required for the process to occur. This can be demonstrated by
considering a batter disturbing the steady state of a baseball in
flight from the pitcher to the catcher by hitting it. The bat
imparts momentum and energy to the ball and changes the position of
its mass from home plate to the outfield. These three quantities
are transferred to an cutfielder (if he can catch the ball on the
fly). By observing the flight of the ball one could calculate the
amount of mass, momentum, and energy transferred.

At the molecular level we are denied one of the two advantages
given above. In the study of molecular phenomena we are blind.
However, because it does take a finite time for the mass, momentum,
and energy to be distributed throughout the system, it is possible
to observe the effect of these transfers. We call ithe properiles of
the gas which represent the rate at which these transport processes

take place, the diffusion coefficient, viscosity, and thermal



conductivity respectively.
The mechanism by which these transport processes take place is
molecular motion and collisions. It is the purpose of the kinetic

theory of g

Y]

ses to relate these macroscopic properties to the inter-
action of the particles on a molecular level, Thus, one must under-
stand the dynamics of the collision process.
I, , ; s . .
The development of the kinetic theory begaa with the pioneering
work of Clausius, Maxwell, and Boltzmann in the last half of the

nineteenth century. It reached its first plateau of development with

. 2 . s . .
the publicaiicn by Boltzmarn™ of his paper on the integro-differential
eguaticn for (e Lime doveicpment of the distribution function which
describes the scate of the gas. In developing this equation Boltzmann

considered colliisions that involved two particles. He was limited to
collisions of this low order because of the complexity of the
mathematics iuvolved in treating cocllisions of more than two particles.
In studying these collisions he used the tools at hand, Newtonian
mechanics. His iuntegro-differential eqguation proved to be so
intractable that it defied solution for forty-four years.

The soluticn of Boltzmann's equation was the second plateau in
the development of the kinetic thecry of gases. This feat was

‘ . N 3.

accomplished almost simultanecusly by Chapman™ in England and
Enskog in Swedeu. They arvived at integral expressions for the
transport coefficients which involved the parameters of a collision:

the angle of deflection, the impact parameter, and the energy of a




collision. They alsc intreduced into the equations the important
fundamental concept of a cross section for a collision. It is this
quantity which serves as a link between the classical and quantum
treatment.

After the discovery of quantum mechanics in 1925, it was
recognized that Boltzmann's treatment was an approximation in that
he had treated the collisions classically. It became necessary,
theiefore2, to modify Boltzmann's work to treat the collisions
quantum mechanically.

The treatwert of scattering theory using quantum mechanics
proved to be woth more difficult than the same problem treated
classically. in the rirst place, the uncertainty principle makes
the exact definition of zuch things as an angle of deflection and
an impact parameter impossible. However, the concept of a cross
section for a c¢ollision, which is the probability that a particle
will be scattered in a given direction, is consistent with the
quantum picture. With this premise Uhlenbeck and Uehling5 in 1932
(and later Massey and Mohrb) recast Boltzmann's collision integral
into a form containing the cross section. Classically the cross
section is a function of the erergy and the angle of deflection and

has the form

b
O"(Ezl/): aon¥ j;, (1-1)



4_\

wnere ,2/ is the angle of deflection, b i1s the impact parameter,
and EE is the energy.

The corvespondirng expieszicn in quantum mechanics was derived
[

by Faxen and Holtswmark din 1927, For collisicns involving particles

that are not alike {thai are distinguishable) the cross section is

r(E,7)= S | @ue(e ™) fresd)] aoo
YE %o

where f} is the,{é£ Legendre polynomial, 32( is the,(zl phase
shift (to be derimed later) for the collision, and .JQ is Planck's
censtant divedea by 2% and the square root of twice the reduced
wmass of the coliiding particles. Tio the eveni that the particles
are identical the Pauli principle leads to a modification of this
expression {(the treatment of tdeutical particles points out the
second major difference bLetween classical and quantum mechanics.
In classical mechanics the parcticles, even identical particles,
can be followed aiong their entire trajectories. In quantum
mechanics the particles, if they are identical, can only be 'observed"
separately before the coilision and then after the collision).

It is very easy, geometvrically, to picture exactly the angle
of deflection of z collision, The phaze shift, while a little
more difficult to pictare conceprually, does have geometric
significance. 11 we lmagine that the collision takes place with

one particle fired and the other colliding with it (the one




dimensional reduced picture) we may represent the ihcoming particle
as a plane wave. 1If the scatterer exerted no effect (the potential
of interaction is zero) on the incoming wave, the wave would pass
through the scattering center. For convenience, however, let us
imagine the "scattered” wave as expanded in terms of spherical waves
centered on the scatterer. Now let us suppose that the scatterer
does exert some effect on the incoming wave. The exact nature of the
effect will depend, of course, on the form of the intermolecular
potential. Again we can expand the scattered (truly scattered this
time) wave in terws of spherical waves. I1f we compare these two
sets of waves atb a point so far from the scattering center that its
influenve is nil, we would find that the spherical waves would not
coincide. This is the result of the action of the scatterer. The
difference, in radians, between the nth zero (as counted from the
scattering center) cf the scattered wave and the nth zero of the
unscattered wave (both very far from the scattering center) for the
same Api component of the spherical wave expansion is the phase
shift ?2( (of course, the zero of the wave functions need not have
been chosen; the nth maximum, minimum, or any similar point on
both waves could have been used. ).

Once an expression for the cross section had been derived, it
would seem to be straightforward to calculate the phase shifts and
hence the transport properties. However, no exact formula for the
phase shift existg, in generzl, and one is faced with the chore of

fitting approximate methods into the scheme. Of course, one could



integrate Schrgdinger”s equation withand without the potential and
get the phase shifts directly. Such a procedure has been usedg-12
and the transport properties calculated. This method suffers
numerically in that for high energy the time required for the
calculation is pronibitive Tlts, with this method one is restricted
to low energv (the higher the energy, the greater the // value
necessaryy and, thus, tc low temperature. Another alternative is to
use a s-uiolassical expressicn for the phase shift. This approach

is effective at tempovatures intermediate berween the low temperature

quantum fangs eod the aigh tewperature classical range. This

_ . . . .13, -
crocedoso was iirst used by Je Beer and bird in 1954. They used
che pl st sevies and 1ound the first quantum correction to the

transport properties for purely repulsive potentials. An analogous
procedure, not restricted to repulsive potentials, is used in thisg
thesis. The semiclassical merhod used is that due to Curtiss and
Powers.

In this thesls the Curtiss-Powers expression for the phase shift,
which gives the phase <kift as a series in powers of Planck's
constant, is extended to three terms. Expressions for the first
two moments of the cross section, Q(l)and Qﬁ)(the so-called
cross section for ditfusion and viscosity, respectively), are then
derived asg power series in Af to the AHGL term (for dimensional
consideraticus the crderiung parameter is changed from _Ag to de

. . ¥
Boer 's dimeunsionless guautum parameter N ). From these




) O, 1 1,1)
expressicns the omega integrals, _(1 ?"" and _fl(' are obtained,

A"
again as a series in




CHAPTER 1II

THE QUANTUM CORRECTIONS AND THE TRANSPORT PROPERTIES

The second quantum correction to the phase shift in a collision
between particles with spherically symmetric potentials is obtained,
. - . . . 14 . .
uging the method of Curtiss and Powers. In this expression the
potential is not restricted to monotonic functions; the results apply
to a potential with an attractive minimum. The classical limit and
the firsv quantum correction, both developed earlier for monotonic
potentials, are also rederived so that they may be used with potentials
possessing z mi~imum. These expressions are then used to develop
. , - - (1] @) .
series ewvpressions for {y " and CP , the so-called cross sections
for diffusion snd viscosity, respectively. For purely repulsive
‘L c . , /za- . . .
potentials this is a series in . For potentials with a minimum
, , ' p3 .
the series also contains terms in and . These expressions
Vs Q% . . s
for and , in turn, are used to obtain the classical limit
a . NolCK
and the quantum corrections to the omega integrals and

ﬂ( 2,2)

are calculated.

It is from these quantities that the transport properties

@ 1,1
In the case of C;) (and _()f ’2) ) the effect of statistics
on collisions between like molecules is also considered. It is found
that Cyﬁ) (arnd thus ,fl(%2>) is not modified by statistics, at

4
least through terms of order /E .



1. Quantum Corrections to the Transport Cross Sections for

Repulsive Potentials.

The material contained in this section has been published

1
previously. > A reprint of this publication forms Appendix I of
this thesis. To preserve continuity, however, a brief resume of
this paper is presented here.
a 2
In deriving the expressions for O and O(), it is necessary
(¢ (2

to start with the exact quantum mechanical form of Q ) and @ ),
These are well kncwn and were first derived in the form used in this
work by Kramers. The higher moments of the cross section, O(g)

)

, etc., are needed for the higher approximations to the
(3)
solution of Beltzmann's equation. The expression for O was
1

apparently first published by Mason, Smith and Munn. 1 A general
expression for O is derived in Appendix II.

a»
Explicitly, the Kramers' expressions for @ and Qﬁ)are

oD

ORE *L';__—l Z (j+/)%2(71+,—77/) (2.1-1)

£=o0

2). o1 U+ N (L+a) -
O( E (;+%) /""'\2(’71,;7_—77}) (2.1-2)

L=0
The Curtiss-Powers series for the phase shift is

e

Tk = Z 2973 71(1) | (2.1-3)

J=1




. | 2 (2) , c
Explicit expreszssions for 7/ and 72 were gbtained previously.

The explicit expression for 725{3) is

- £ 2.1-4
,71(3): /G”T" (E-4) %x (2 -)
x | -3 . 9 07 ¢~ ¢
/67“‘5—(}5"’ £ L/’Y'l'l ¢,/1 A3 P/ - /&3 b3
¢(/V) b b b3 ptv??
IR (I /3 3AyipH 576 ¢7R
L 29 4;)// d’(\/) n 1_}_7¢/// ¢{IV)_“ $3 ¢//‘2 ¢(’V)
T Isso /3 asgo ¢’3 /440 ¢4
7oVt 7870 % 7 2%
g e Ty oE 92 76

The Euler-Maclaurin approximation may be used to transform

@n)and @(2) to an integral over /

correction terms. In addition, one transforms the integral over/

the sum cver /(/ in plus

to an integ:ation over I—— where L is defined as

| =

(2.1-5)

It is also ccnvenient tc define.the following functiong

7
- 9’:710) 7 d Yo 7 - ._‘)_217_'.9_
7«.»,3'”7;‘_ X po= By RS JL
Y 5. 02) o (3)
W ooy L2 7 =, L7 (2.1-6)
Mo JL Mo J L
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Explicitly these functions are

o [Z =L fdr -2 (E=#)3 ]

]

Lo
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/ ] X P4
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b
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+

B
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(2.1-8)

(2.1-9)

(2.1-10)

|
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where is the effective potential defined as

and ¢ 1is the interwolecular potential.

carried out over the range of -y~ such that

FE -9 >0

ﬁ???’"

3

(2.1-12)

The integration is

( 2.1.-13)
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In terms of these functions Q[/) and Q[Z) are found to be
o0
aYy_ Yo ] (2.1-14)
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Since both (} and are expressed as power series
in ,4? , these forms are veeful in those cases where the quantum

effects begin to play a small enr gignificant role in collisions

between molecules which interact through purely repulsive potentials.

2. Quantum Correctiong to the Transport Cross Section for Potentials
with a Minimum.
The existence of a winimum in the petential introduces two
complications into the development of the cross sections as outlined

in the previous section., The first of thesz difficulties arises in

14

the derivation of the terms in the phase shift expansion, Eqn. (2.1-3).

Since the effective potential has z maximim and a minimum for

certain values of the energy and angular momentum, it is necessary

. . . Z

in the derivation of 7(/ a 3> (but not ‘Z70)) to
// e 74

integrate by parts {see Egn. {37} of reference 14) around these




points so that ¢) does not appear in the denominator of the

integrands (this point will be discussed in Chapter V.). This
complication creates no great difficulty and the final expressions
for ?Z;a) s ?2%(}) and the functions derived from them

(corresponding to those in Eqns. (2.1-8) through (2.1-11)) are
[~

15
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The limits of integration for these functions are discussed
in Chapter V.

The second complication is much more subtle and more laborious

z 3

to overcome. The integration of ’ZQ(—) and z&{') (and also the
five functions Eqns. {2.2-3) through (2.2.-7)) between ¥; and 7z
(the turning points in the well. See Section 4 of Chapter V.) does
not give zero as ¥ = 7} zoes to zero. That is, for a given
energy these functions are discontinuous at a value of b such that
T =T . It becomes necessary, then, to modify the use of the
Euler-Maclaurin approximation to take this discontinuity into
account.

The discontinuity occurs, in general, for some non-integer

e g

value of . , which shall be defined as /F . The integer A is

. . / . .
the first integer less than _17 and thus A +/ is the first integer

7
greater than A . With these definitions it is possible to write

Q//) as

- o=t )
-ﬁ"—ffl‘ = O///H)Ml@“,—;&)(// (2.2-8)
b Ehloem D Liin Ao |

+ (a+/)_x/:mi/>7a+,-77a)
% .
+[H (A + /)M1(7/4+,")2e)4/
+ ézj,ézﬂr- j};h20u4,121444-;4« /;Zé177b1 /c1-+/
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/
If the definition of Eqn. (2.1-5) is used to define an L

Eqn. (2.2-8) can be written
7/

E®Y _ Loy . dJL (2.2-9)
b or / W /7“1 ) X

%) T

d

_/ R d L
'),Z %
///f [7? a) . (, ) L

/ L A ()™ e a
///-/Ex+ 2)J
- ) < 5
L’ [jfj /7/4-/ )

v 6t %ml@")j
R %——WM‘(M%),[

-+ (a+/)-Aff’/Ha/77a+/_)7“)

(1)
where /g is

/
a)f/) QL" + 3 (2.2-10)

2
This procedure gives for 0 )

EG)Q)_
e gy 4

)
([—’),[ 0? /7€+z 72@) 4z

5
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@ -,
+m At /7,7(+z"77/> él_

(as3))

2 “ 2 L

“4 R o @Hz"&)flf
(a-2)L

y bhoe-D ki T /u

+%€i%{~WMM / at+E)f

178 a+/)

R &
P e L /?/aw“ 770"’)

(a - /}/\(’/(j‘( 71 Z)
T = Tnea=7a)
z/
where

| 4, 2 AR
0?(27:,_21;(/#-2 ; ;‘ ¥/L)) (2.2-12)

The Euler-Maclaurin terms at L: ;Zj for 6)(/) s L:zl
for C;(i) , and Z_: o for both, are evaluated in the same manner
as for the monotonic potential and the same results are obtained.
For the integrals in the range ([C“ .z!)j’ / /) for & )
and (}/&f‘-%),ly) L /) for ép(i) , and the Euler-Maclaurin
terms evaluated at ( - —::)/f for @ @ and ( —-_—{-)j for @G)

6
it is necessary to expand the integrals about 1 &) (that is, the

left hand limit) as they were expanded about L= O for the




monotonic potential. Likewise, for the integrals in the range

(L/) (a+%)j) for Q(’) , and ([/) /a+T3)j)
for C}’)ﬁ) , and the Fuler-Maclaurin terms evaluated at (af%)j

for Qn)&nd [a+—%>j for @(z) , it is necessary to expand
e
| +)

the integrands about (the right hand limit). The evaluation
of these terms is carried out in a manner similar to that for the
monotonic potential in Appendix I and are not repeated here.

The terms extracted from the sums in Eqns. (2.1-1) and (2.1-2)
are treated in a slightly different manner. Since the phase shifts
involved in the difference are on different "sides" of the dis-
continuity, ic¢ is impcssible to make the same type of expansion as
ig used in Egyn. (16) of Appeundix I. Instead, each phase shift is

/’G)
L @

‘-
expanded about or L depending, of course, on which

side of the discontinuity it is. The difference between the two

phase shifts, e.g. ')7a+,~ Na is

s
7 e,
— = —_ ) -
Da+ 17 Da — j 2/—w)a—/ 7{,.,) ,\_,> (2.2-13)
<=0
(This expression is to be compared with Eqn. (18) of Appendix I)
where
)‘f%’(/ ,)“‘Z/rrg a[—z)r.'.?_
VvV ( ) - : 3 :fa‘/ - —— 77(4-"*)
Ayt §—7 (=2/+2)! QLeTeTr L (2.2-14)

and
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142 )
N(_) (a_j/)(—zlr*fz

¢ =2k +2
J (’,,‘)
n, -1 (- Z/r+l)! Qj_""zl"*z 7/ (2.2-15)

(These last two expressions are to be compared with Eqn. (19) of
Appendix 1.)

The integer & is a function of /J? in a very complicated
manner ; so complicated in fact that it is impossible to incorporate
its dependence into the series development. To avoid this difficulty

we say that on the average

/ /
a = / - a (2.2-16)

That is, 1if all possible values of the energy for which three
turning points exist are considered, the discontinuity would occur,
on the average, half way between two integer values of the angular
momentum quantum number. With this definition it is possible to

4
obtain expressions for 00>and @ as series in . In

. @/)
particular becomes

00)= () (2.2-17)

MO M {om 'C

Yor) 7 . ! - . .
+ 427 fmi[—,:fz/fz,wz,:y- Flaarr P> v9)
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e,
The series for is disappointing in that the terms in,£7
4 | -
and can not be summed. The term involved in the term analogous
. . . . @)
to the logarithm in Eqn. (49) of Appendix I. Explicitly, C;

becomes, to terms in,/Jg B

Qﬁ? - () (2.2-18)

Morno LoncC
-
2r /7 .
+ X FL -l v E) 3 n X))
- @) / &
+2A—w1(’3‘2/ + < 2/1.:;)

+2Ml(2 %@)""— £S5

A Ry 2 BN IR 7
+[ /92/@) Ve 74(2’+)‘74{2")]*

t 2o 3L+ ZL)+ 3 172, e 22E)
42 - 1240 + (gL i)
M;n (2/5:7+32’i’

MR (3 2424_ 257

V& 3 2E
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These expressions are valid only when the energy is such that
three turning points are possible. For other energies (that is,

energies above the critical value, below which there can be three
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turning points and above which there can only be one) the expressiocns
) () , : ‘
for CP 7 and 6? are those givern in Eqns. (2.1~14) and (2.1.-15).
. 7’ 4 .
However, the expressionz for ;Y;o, ;?ho, 20 > Qﬁ. , and 9&ag1ven by
\ X
Eqns. (2.2-3) chrough (2.2-7) must be used because of the that
appears in the dencminator ol these integrands.
The added contributions for potentials with a minimum are rather
puzzling because they give contributions from just one point on the

3
trajectory. Also, these contributions introduce terms in_dg andzz7 .

3. The Quantum "orrections to the Omega Integrals and the Transport
Coefficierts.
. ) 16 e
The omega intagrals are deflined as

>0

T ! L _a
D)= L G [T ke

where 4L is the reduced mass of the colliding particles, T s
the temperature and n is Boltzmann's ceonstant.
_ ’ GDC?) ) . 5354)
The series for makes 1t possible to write _12 as
a series in ,Jg . For convenience, the series for CQ is

written as

67/? )< &cgj)"lj 67 I(f)“/‘—/ 1@1/[) +j 3@_5 )"‘j 4/@ g)"

*(2.3-2)




for ,17 = 1 and 2 . Substitution of this series into the expression

for _f2‘1”4) gives

@)= &7’4)+j_[2 21,4)+//1_/21/21,4)

clL

A 0G0

(2.3-3)

where

|

—— ==
e Aral A'“L/Z/ﬂfe /rrﬁ AH@&)@)Jf (2.3-4)

-~

and the subsuript ¢ represents Cl zZ ,x ,7M ,orlV.

J
The transport coefficients, self diffusion, & , Vviscosity,
37 , and thermal conductivity, (3 , may be written in terms of
. 17 o
the omega integrals. Explicitly,

- 3KkT
Y = g/)_()(m)

_ _ShkT (2.3-5)
7 = ?‘_-Q (Z)l)

/) _ . S Cor ﬁ’7-
RN I

where /7 is the density and Ca is the specific heat at constant

volume per unit mass.
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Formally, this is as far as the treatment can be taken. In
order to proceed to numerical results an intermolecular potential

must be specified.




CHAPTER III

THE SQUARE WELL

Before proceeding to the evaluation of the expressions obtained
in Chapter II for a realistic intermolecular potential, a simple
model potential that demonstrates some of the important points of
the theory is treated.

1. The Potential
The potential used in the square well potential defined by
P = — € T £ o

(3.1.-1)
,@: O Y > g

The effective potential, which is defined as

¢ = w + = (3.1-2)

Figure 3-1
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This potential has twc features which demonstrate the properties of
the three turning point problem: (1) it is zero beyond 7= ¢~ and
thus the role of the centrifugal potential is not modified by the
potential itself, (2) the limiting expressions for Cp(y)and Cp(i>

can be evaluated exactly.

2. The Range of the 7~ Integration

In analyzing the dynamics of a two body collision using
classical mechanics, a quantity called the angle of deflection is
defined. It is the angle through which the relative velocity
vector turns as the particles come in from infinity, collide, and
go out to intivity again. The angle of deflection is given by the

e @y sion

/?: V= Lﬁv— T*i(E_gz;)‘Il (3.2-1)

where the range of the integration on 7 is from the distance of

closest apprcachh of the particles to infinity. That is, over one-

half of the trajectory. The distance of closest approach is the

largest positive root of E?__¢> . This expression defines the

point where the total energy of the colliding particles E? is all

in the potential energy of interaction and the centrifugal potential.

At this peint on the trajectory the radial velocity becomes zero, -

the radial velocity vector reverses direction, and the particles

begin tc separate.




From Fig. {(3-1), however, it is seen that for scme values of the

energy there are three positive roots of [;“¢“:C). The largest
root is again the classical turning point. The two lesser roots are
the turning points of a particle trapped in the potential well.

When only two body, classical collisions are permitted, particles

34

trapped in the well cannot leave and no particles can get into the well.

The quantum mechanical treatment of the dynamics of a two body

collision introduces the possibility of tunnelling through the barrier

into the inner region. In the Curtiss-Powers semi-classical treatment

of this problem it is found that the inner region does contribute in
a manner analogous to the outer region. That is, toc obtain the
quantity 2( of Eqn. (3.2-1) (and all other quantities integrated
over the trajectory) it is necessary to integrate from 77 to 72
and from Y3 to infinity, where 7} , 72 , and 73 are the
three roots of £~ ®=0 with 7 <€ 7y LT3 . Moreover, even in
the limit as_az goes to zero the integration over the inner region
contributes.,

It is convenient st this point to differentiate between this
limit and the purely classical result., In this work an expression
is called "classical’ (and labelled with the subscript &¢ ) if
it is derived from clasciral mechanics. An expression is called a
"classical limit' (and labeiled with the subscript CiL ) if it is

the limit as ,J? goes to zero of a semi-classical treatment.



The effect of this inner region is considered by comparing the

(h)

classical, classical limit, and the quantum expressions for C; and
sz );
3. The Classical Expression for 4?(7;nd (;)ﬁ?

In order to obtain expressions for Cpnqand C;O{ the
first and second moments of the cross section, it is necessary to
obtain an expression for the cross section itself. The differential

. , . 18
cross section is defined as

b dé
r(E )= ain ¥ JT (3.3-1)

where 2V is the angle of deflection of the collision and b is

defined as In a geometric sense, b is the distance at

VE
which the two particles would pass each other if the potential of

interaction was zero. The angle of deflection is calculated using
Eqn. (3.2-1). Since the range of the potential is ¢, particles

with an impact parameter greater than O  pass each other without

effect. For f)fé g~ , the angle of deflection is

A . S0 -4
v= W-‘l%"”“(/+§~%) =24/drril-3) T
(&) ]

Further, a dimensionless parameter is defined as
!
— E+6)§"
= E (3.3-3)
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The integrals are straightforwardlg and the expression for ;y is
found to be
2{ = L b . __é_)
G/VW";_‘ A~rTT<ea| 75,

(3.3-4)

This expression is inverted to give b as a function of ;2/

0%
N e 3.3-5)
Tint T S P & )

2

Equation (3.3-4), (3.3-5), and (3.3-1) are combined to give

0"1771(7)60—.2'%"‘/) /’)’)— Coa _/}_—/‘)

U (1 +%2 =2 o2 )t cou X

& ()=

(3.3-6)

as the expression for the classical differential cross section.

For the sake of completion (and also to show the effect of the
inner region which is considered in detail in the next section),
the total cross section is derived. The total cross section is

. 20 . . . .
defined as the integral of the differential cross section over all

angles
@55://0‘ (%, E)d_ (3.3-7)

Since 0‘(?%; f) is independent of the azimuthal angle this expression

can be integrated to give
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1%,-r]
Cpa:: 277’0/ U’(Q’)f)M 9% o/;k (3.3-8)

The upper }limit of the integration is found by considering the angle

of deflection in a collision where b= o~ . From Eqn. (3.3-4),

!

%i — d Gyzroa e (3.3-9)

Therefore, C;éﬁ becomes
/

dareeed 5y
C;kg.: 770*1qq€//ﬂ(% Coﬂﬂ%“'/)(57" Coa %gw)
O (/‘/'7’)1— A » C.of.z_-%)l

M%C/Z/ (3.3-10)

To complete the integration let

X= C’“’% (3.3-11)
then
dx=—Laini 42 (3.3-12)
acZ= 0, x=1 ;at X = L arece L , X= b

The expression for Cpe( is then

/
= 2 7’/ =
(QQ AT P ;4’* (/*hl—lmx)a o’x (3.3-13)
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The numerator is expanded and the integrals evaluated 21 After

considerable algebra, the total cross section is found to be

Che= 72 (3.3-14)

This is to be expected since the potential is spherically symmetric

and has a finite cutoff at v = o

The expression for 6964 in terms of the cross section is

. . 3 ?/.
ar G
Geg = 1 77/ -
&

s, % o, X)sin ¥ d ¥ (3315

‘ a7
In terms of the change of variable given in Eqn. (3.3-11) C;25€ is

Q@(/) Y 7r 03 (}7/);—;).{%1—’\’))1 (1—x) d x  (3.3-16)

After considerable algebra it is found that

z LN a
007 s (7 +/U)_,£Z—/) /Zy)

n+/
mn—)

(r= 12 Bn3+ & + 79y +2)
Ent

(3.3-17)

The expression  for CQ(A)in terms of the cross section is
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/
aa/yw?«,—

(2)
‘27’ n 3V (g, ) ¥ (3.3-18)

Gee

In terms of X this is

(2) = //%x—-/)/'r) x) .
o' S nt (1o 2 X( 11— x%) dx (3.3-19)

After even more algebra it is found that -
r

Y2 o O )03+ ) 1) oy + 1
(.))22—77’(7 I /qufy,_, /

)2 (1S5 74305 64 3555 + 409 % + #3220 - )
] 50"

(3.3-20)

@f/l 2)
The limiting forms of and ¢¢ for large and small

¥*
E = ¢ are interesting. First, as E —> o0 , M —> [ . As

can be easily seen from Eqns. (3.3-17) and (3.3-20)

o — O
24 E *_, oo (3.3-21)
¥— o
E¥ 23
In the limit of small , MW—>=< . The logarithm is expanded

in the series

A+ / ‘
/‘Zy‘}%—' /'sz (3.3-22)
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and this series is used in Egns. (3.3-17) and (3.3-20). The limiting

forms are fcund to be

!
() _ et /€ E *T / + ’
&_ 0—[/__7_5__ ) __.?._E + .

(3.3-23)

) 2)
Thus, both CQ and 67 approach their respective rigid sphere
values as E‘f“> O . The first moment, C9(7), approaches from
below, while (57 approaches its rigid sphere value from above.
The approach to the rigid sphere limit can also be seen by
examining the nature of the differential cross section in the low
energy 1imit; Equation (3.3.-4) is rewritten to give

K
C,eﬁ%:: ¢%z~’_(/_b) (/ 2 (3.3-24)

This is substituted in Egn. (3.3-6) to.give

/ Ly
B (=8 (- 2)7- 1]

= — _ ¥
S
L
[M - (/ b) ( b >1j (3.3-25)

(R



As —>°So this expression reduces to

o
a; =g a

N— oo

1
(3.3-26)

which is the rigid sphere limit.

4. The Classical Limit Expressions for (”and Q(L)

The difference between the classical limit and the classical
expressions in this problem is that the former includes the
contribution of the inner region. Thus, the classical limit
expressions for C;)O.)and Cg(i)are larger than the classical
expressions for the same quantities by the addition of the effect
of the tunnelling collisions.

Figure (3-2a) shows the collision region of the classical
treatment. Figure (3-2b) shows the collision region of the classical

limit treatment. That is, in the classical limit there is a

Collision * Collision

region region

o T a Ra

Figure 3-2a Figure 3-2b
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contribution to the differential cross section for é’;>0—

The contribution to the angle of deflection for tunnelling

collisions is

2/ /R ;2%/7“/‘"1 b/g/-,-y—l(/ﬂ'-%—-———} TLhLno

Y,= O ho>no (3.4-1)

The integrals are straightforward and give for ;%;.
[fz-gma(;:) 0~<b\< na (3.4-2)

Thus, there is a.contribution to ;z/ in the classical limit for
impact parameters as great as ¢ ” . The full classical limit

expression for the angle of deflection is given by a combination of

Eqn. (3.3-4) and (3.4-2).
Q[W(j,bf)—m( )] 0< b<
2/61_: —;Lcw—z/(—ec_(}é;) oL b <

O b =om

(3.4-3)
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A plot of this function is given in Chapter VI. The curve is
continuous at b== 0" , but its slope is discontinuous.

The tunnelling contribution to the differential cross section
is obtained by use of Eqns. (3.3-1) and (3.4-2). The expression is

/
03 = 3 otn? (3.4-4)

The fact that the tunnelling contribution to the differential
cross section is independent of the impact parameter is rather
interesting. 1In general, the differential cross section is a function
of the energy ai:d the impact parameter (the differential cross section
is usually written as a function of the energy and the angle of
deflection. However, since the angle of deflection is a post-
collision property it seems more logical, in this case, to speak
of the impact parameter, which is a pre-collision parameter. Since
the two are related, e.g., by Eqn. (3.4-2); this preference is
immaterial. It is usually easier to express X as a function of

b/) . Equation (3.4-4) says, in effect, that if the impact
parameter is between ¢ and 0 77 , the probability of a particle
being scattered into a solid angle cJ_fz is dependent only on the
energy.

The tunnelling contribution to the total cross section is
derived, as was the classical total cross section, by use of
Eqns. (3.3-8) and (3.4-4). The limits of integration in this case

are found from Eqn. (3.4-2). The expression for the tunnelling




total cross section is
CQIE alak (771—— /) (3.4-5)

The classical limit total cross section is the sum of Eqns. (3.3-14)

and (3.4-5) and is

e = 7 ortnt (3.4-6)

Since ¢ 7 1is the largest impact parameter for which tunnelling
can occur, the total cross section is represented in space as a
circular area of radius ¢ 7 , even though the potential cuts off
at a distance O . The fact that 7 goes to infinity as fn*
goes to zero means that the cross section expands in this limit.
This property of the tunnelling cross section has a strong effect
on CQ(VLnd CQGJ in the low energy limit.

By use of Eqns. (3.3-15), (3.3-18), and (3.4-4), the tunnelling

) G
contributions to 69 and CD )are found to be

OQ E ‘::% (”71— 7)*? (3.4-7)

(3.4-8)

44



45

It will be noticed that as » approaches infinity (that is,

0
as E* approaches zero), both 69 % and Cpli) go to infinity

as m? . These quantities, when added to (3.3-17) and (3.3-20)

respectively make the classical limit quantities go to infinity as

E‘k
goes to zero.

» a
In the upper limit, that is, as ZT goes to infinity, CDz{
) A 7)
and # 80 to zero as "fp¥a . By way of contrast, e¢ and

6 /
C;@? go to zero more slowly, as ‘Zg;i_ﬂél 'Z:;

al Iy,
5. Quantum Expressions for Cp and GD * .

6)(7)

Equations (2.1-1) and (2.1-2) of Chapter II give
s
and in terms of the phase shifts. For the square well

potential the phase shifts have been obtained by Mott and Massey.

Their result can be written in the form

,7 =a/v_yém(_ /)/J,Pérlﬁt/(""’)l;{ (P%) + Mrl+{/,l/’a») L_{ Q/,)
j MO‘J;_}_Z_; (J’/V‘)J,;.*E(J/zr)*#/f J’}_'L:’ (J‘od') ];_I_gfy/a-/

(3.5-1)

where

and (3.5-2)
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N*
and is defined by Eqn. (5.1-4). Because of the complexity of
g “ ) . 6)”
this expression, numerical procedures were used to obtain and
CDQ) '
@) @) @)
It is necessary, then, to compare (3)62 s cL , and G%?AA

numerically. This procedure is explained in Chapter V.




CHAPTER 1V
THE EFFECT OF THE ATTRACTIVE PART OF THE LENNARD-JONES (12,6)

POTENTIAL ON THE TRANSPORT CROSS SECTIONS

The role of the attractive part of Lennard-Jones (12,6) potential
in the quantum and semi-classical calculations of the transport cross-
. . @)
sections (particularly 6) has been debated for many years. One
of the first quantum calculations of the transport cross-sections
. 25
for the Lennard-Jones (12,6) potential was made by de Boer. He
carried out these calculations using the parameters for He
Because of limited computing facilities he was unable to extend his
¥ G
calculations beyond E" = 1.5. He found that the quantal G) )'was
, @) .
less than the pure classical QQ at every energy considered. 1In
13 . s
1954 de Boer and Bird, using the WKB method, obtained the first
quantum correction to the transport cross-sections. They argued
that at high energies only the repulsive part of the potential was
important and so calculated the classical term and the first quantum

correction for the T /2%

potential. They found that for this
: . , : @) . .
potential their semi-classical 67 was higher than the classical
(2) |
CQ calculated using the Lennard-Jones (12,6) potential (again,
the parameters for He[‘L were used). They concluded, therefore, that
o
the quantum and the pure classical curves crossed at about L =4 .
| | 11 G
In 1964 Munn, Smith and Mason = calculated the pure quantum C;)z)
.ow
using the (12,6) potential and the parameters for He4, out tokl = 16.

) G
Their quantum Cs) lies below the classical Cs) 1)at all computed
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energies. They concluded therefore, that the crossover predicted by
, . E*’ :
de Boer and Bird did not take place at = 4 ; and that de Boer
and Bird had extended their calculation to energies too low for the
attractive part ¢f the potential to be neglected. However, since the
first quantum correction of de Boer and Bird is positive, Munn,
. . 6)(57
Smith, and Mason concluded that the quantum must cross the
. ok .

classgical limit at a much higher energy.

It is the purpose of this chapter to ascertain the influence
of the attractive part of the potential on the classical limit and the
first two quantum corrections to the transport properties. Also,
since at very high energies the attractive portion of the Lennard-
Jenes (12,6) potential can be neglected, the expressions obtained
in Chapter II carn be checked at high energies.
1. The Perturbation

The attractive part of the Lennard-Jones (12,6) potential

is taken to be a perturbation on the repulsive part. To effect an
ordering of the perturbation series, a parameter, A , is

introduced into the poteutial, so that
Rl /a o€
D= 46[(7) ——/)('r) ] (4.1-1)
This persmeter ig eventually set equal to unity.

2. The Perturbation Expansion

The perturbation series is obtained by expanding the




@)
expressions for the C;Q (for a potential with a minimum) in a
Taylor series about A < 0 . This series is valid only in the
limit of high energy. Since the terms peculiar to the attractive
potentials, Eqns. (2.2-17) and (2.2-18), are zero except at very

low energies, they are neglected in this treatment. Therefore C;%?)

can be written

= Qi L+ A D

(4.2-1)

The perturbation series for GD may be written as the

double sum

6}5@7: Z A"'//a”@ 6),%0 (4.2-2)

J A J
or explicitly in the expanded form

Y= O c LS v AL 4
+/) ;(o(> ""AJAQ/{[) 1

/23

+ /)1672::(/ 4o (4.2-3)



where

@) _ Oz)}

(X% €e iz o

@ _ M”‘”/

‘o dA l=zo
Qa)ﬁa@f‘)

2o o)/)L A=z O

The explicit expressions for

and Q,_? )are

L= oF|

)

96)” (4.2-4)

o™

A= o

@) _ Q?)/
0a C;}Y A= O

) ) )
Cpoj 670! ) 6701 ) 67/0 0//)

@

6)(52) = :.L__?i//_ Mllﬁof):o d¥ (4.2-5)

il

Q) aw [
Goy= ") d L

N

L

2

J .
'""_—f/"""z%zo

4L

o) 23 (1],

/ /
—TL (I,o/);o)acaa 2:’(,0/):0

LB r e Xl 20

(4.2-6)

/

.

/l:o)nc”"L 2 7{20)=

A=0

(4.2-7)
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Q= [ (el ) L, ot Aol g
+[_ %Jz/,].—.o 710 L (l//o /) 0)4
+ _{Z“ }’:/)na %o/,]: o

+

—3(50 (%o ,) o) + [- W;o//) ° M Q]{,o) =0
"_‘—‘(2//0 -) %a/):o

(/2/,0 (o) )

(4.2-8)

%’0

,Qﬁ’:a”’jgz‘ﬁr“ L2 ]0) ;7[/220 ) coazlzo},):o (4.2-9)

/2/},,02))0+[y//°
+ Lklolho%a/ho J

2 (1) = 2 L) Wl ] o)
I a4 !

+L§ﬂz°}) o 21}/_2/20//,) o H%ol,):o

C() - Q3/(77/L 32/10/’\::\0-’1')'){“/»:0(“ (4.2-10)

[

-
/ F 07, / By
///):iE?I_/d {/?:a /A o oA /,) o+ T 2:/) o oA / mz%o},}:o

RIS ol N J

+ -—

[ 9% Ny 7 _

L dA /FO HF 2P {,; o MQ%O/,,M (4.2-10)

:/'—(gl_'}_.(l///tz//lﬂ);l %%E/Aw-
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- i
; QXeo
)(2) a’” c/L %‘LKZ/ZQ}A:O)RQT /):o “4’*’”2%0},):0 (4'2-12>
.._QZP — e JZ/ZG
155, ‘;m—/,):q
Hal¥l,o il”/a o | coz A 1))
M“\% Lz?i/o//):d —Q%o/):o
L : ]
(). 523/ *Xyo 9% (4.2-13)
4)/.0 r C) Af 2,/40},1:o+2 dA /,):a)cez IO/):O JZ i

In derivin;,

chaese expressions the derivatives with respect to

A of :khu 25;43 , and ,Q%o are introduced. Explicitly
triese functices &
| DX, / W ¢7
% i; é[ JT (E“‘¢) q¢/ 75¢/& (4.2-14)
/ dl/no s / [ F40 16§ ¢72 %
L &l _ _ 4 Y 7 12873\ (4.2-15
Y C) [ T{E ¢) /(¢/31 T/J‘d,/x ‘)")4¢/! -’r/‘/¢"y )
L 945 ¢ e 2]
-~ = 4 ¢7 s 80
w o, TC€ c/r(/f $)7% =T i i Lﬂ_
L Teé (4.2-16)
ECI TS VAR AN VTRE ke
/7 ¢/3 - 1o @73 _7_/0 ¢/,1
1 2% , o ]
£ e broeL Jin (e o7
-
X —%“5559 $7 535 ¢7+ /a0 $7° 26797 1334”7 ¢//J
T/t ¢ ~- 1/ ¢/3 10 ¢4 v prs + /0 ¢,/;? + 9 ¢7I
NERR AT L Lt A VY A BT 2as s(V)
I e Y A I X X




In dealing with the potential

_ —\'* )
W__ l?“é (—-r-—> (4.2-18)

it is advantageous to make a change in variable to dimensionless
quantities defined by

/

L _ L E Y7
Y= TF - )/o— VE (4?6 0,1) (4.2-19)

In terms of these quantities it is possible to write Eqns (4.2-5)

through (4.2-13) in the form

N
C;)ofj) = (‘#ELG“) 6 /}f) (4.2-20)
) &)
Qc{// B (_ég—) Bo (4.2-21)

/
w0 [ E e X
OOA = (47’?)6 C (o} (4.2-22)

(4.2-23)
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/

= pn &)
O;?):(?)l(f;e) ) B/ (4.2-24)

s
) /€ 1/ E Vs a)
Ozo ‘\/E/) 4%) Ag (4.2-25)

a4 g @ a0 g gl

are integrals dependent only on the exponent in the potential and

where R
the numerical coerficient of the potential (which in this case are
12 and 4 respectively). This change of variables is advantageous
because it removes the energy entirely from the integrals, which
is possible for these one constant potentials. This point is
discussed further in Chapter V.
the sategeate B0, ana AL

integrals o , and ¢ have been recalculated by the

author as a means of checking the numerical method against previous

(7]
calculations of these quantities. Further, the integrals Cfd 5

) (1 6 ) 7 G
Coz /4/ ’), /4/2)j 51 l s 51(2) /42 , and /422)

have been evaluated and the results are discussed in Chapter VI.

3 2

3. The Omega Integrals
. . Q% . :
With these expressions for the a similar series
(!.4) , .
for the (2 integrals can be obtained, as was discussed in

Chapter IT. Since the energy dependence of the CQ is explicit,




2 .
it is possible to evaluate the .(l( ”4)1ntegrals exactly in terms
of the gamma functions and the numerical constants introduced above.
)A)

As an example of this, the integral _(2 is evaluated in detail.

Equation (4.2-20) is substituted into Eqn. (2.3-1) to give

-
baerr 1 J0) (45) f%
1, (T)=2 As 2%« (r7) 7L/ er d E (4.3-1)
For comvenience let
_ _E
X= 5T (4.3-2)
hich gives
) | 435?/ 2 s
T - X >
_(Zf’”)zlz% 27 u (/TT; [e XEIE Ix 43y

0=
The integral is of the gamma function type26 and thus _1’2 is

) a) [Fv
J)fﬁ = ‘i 1) Q:r/u ( ) /4 +?’"’) (4.3-4)

By similar methods we find
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(4,2) _ ) !
N0 ‘i‘ Bo \/2/;/1 g /——I(/.L‘f/) (4.3-5)

/
G ] €, !
0L O )t Tl d) wve

//)/z //4(1’/2’;(7; (486)301”T) A—T//*”‘ ) (4.3-7)

/
-_— , .
ﬂ/j 4> 7 B)a)/;:: /—ég—)a (7)) % / /4 +‘f/) (4.3-8)

(4,4)___/_451)/?( /)z‘ I T
ﬂzo A 2 N BRE (}r‘}')gz ,(4-/-?‘5—) (4.3-9)

This double series shows the effect of the attractive part of
the Lennard-Jones (12,6) potential on the classical value and the
quantum corrections to the transport properties and their cross

sections. The terms '"00", "01", and '02'" give the classical limit
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and the first and second quantum corrections for a gas of molecules
which repel each other as the iqverse twelfth power of the distance
between them.

The terms ''10", "11", and "20", in conjunction with "00",
"01", and "'02'", provide a check at high energies on the results
using the Lennard-Jones potential. The numerical work involved
in the latter calculations is much more complex. This is discussed

in the next chapter.
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CHAPTER V

NUMERICAL PROCEDURES

The difficulties in the numerical evaluation of the expressions
obtained in Chapters II, III, and IV can be divided in;o two types:
(1) the evaluation of the Bessel functions in Eqn. (3,5-1) and (2)
the numerical integrations involved in the evaluation of the omega
integrals in Chapter II and IV. The former problem is reasonably
straightforward and offers no great difficulty. The latter problem,
however, is complicated in that the omega integrals are really
double integrals involving very nasty and ill-behaved functioms,
These integrals also depend on whether the potential is monotonic or

has a minimum. These cases are treated separately.

1. Dimensionless quantities
Before proceeding to the numerical calculations, it is
convenient to introduce several dimensionless quantities. For this

purpose the intermolecular potential is taken to be of the form

;ﬁ: gF(%:) (5.1-1)

where € 1is an energy parameter (the depth of the well for potentials
with a minimum) and O~ is a length parameter (the point where
()= O for potentials with a minimum). In terms of these

parameters we define the following reduced quantities:
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¥ *x_ 7T
= = 7= —¢
b d *“é_—* E ) : __E__ (5.1-2)

/@%‘:_ﬁ qs*- %ﬂ‘ b*‘LE*

€ A

d?) (f)47
It is convenient to make CQ and —jﬁl dimensionless by

27
dividing then by their corresponding classical rigid sphere values

Thus,

(z)
@Cﬁ)*‘: | ,
o+ E)f N
D 2 )+{( ]/'Td_
(5.1-3)
2
Q& =

&ZP4)}( =
£ EI_KJH,)!H_,&_'_ )+/—/>f]7,a.z

| +2

It is also convenient to introduce a dimensionless quantum
parameter involving Planck's constant. This parameter, called the

de Boer quantum parameter, is defined as

h
5.1-4
NI e oo

X =

This is the de Broglie wavelength of the relative motion of two
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molecules, with relative kinetic emergy € , divided by the
characteristic length 0" . since —/4:* is introduced ounly as a
dimensionless parameter, it is rather unfortunate numerically that
% , and notc 7 was used in the definition.
With the aid of these definitions, the equations of the
previous chapters may be written in dimensionless form. It is
understood that although the stars may be dropped all succeeding

equations are in terms of dimensi onless quantities.

2. The Square VWe!! Potential

It has not been possible to compare analytically the

. , . v . (;)0) 6)6)
classical, classical 1imit, and quantum expressions for and

[¢]

for the square well potential. The complicated nature of the
expression for the phase shifts, Eqn. (3.5-1) apparently makes this
impossible. As a result of this, it is necessary to resort to a
numerical comparison. The classical and classical limit expressions
for @Vanda @), Bans. (3.3-17),(3.3-20), (3.4-7), and (3.4-8),
are very easy to evaluate numerically since the energy is related

to 77 by Egqn. (3.3-3). The quantum calculation of (g)(7énd GD(E)
is more complicated because it is necessary to first evaluate the
phase shifts, Eqn. (3.5-1), for many values of _/( and then use
these phase shifts in Equns. (2.1-1) and (2.1-2). The calculation
of the phase shifts depends on the calculation of the Bessel

functions, which were calculated by the method described by Olver.28
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) )
The calculztion of C)) and Qﬁstarts at /= O and proceeds

toMmax t 2, whereféiulx iz the first integer greater than

/ - A7 /+£*.
e O X

N

(5.2-1)

wl o

This value of‘Aa corresponds to the largest value of b for which
the energy of collision is in the collision region (see Fig. 3-2b
of Chapter 111). TFor greater values of b (and thus L ) the
particles do not interact and so the phase shift goes to zerc.

In this manner it 1s possible to obtain @Ognd @Q)as
numerical fructionsg of the emergy for the classical, classical limit,

oy )
S

guantum casea. These three quantities are compared in Chapter VI.
3. Mcnotopnic Potertials
The <alculaticn of the omega integrals for monotonic

potentials, while somewhat involved, is a reasonably straightforward
application of well~known numerical procedures. The omega integrals
are triple integrals over the trajectory of the particles, the impact
parameter, and the energy. The last integration, as was demonstrated
in Chapter 1V, car be dope analytically.

The integratior over the trajectory (actually over one-half of
the trajectory) to get the functions in Egns. (2.1-7) through
(2.1-11) and (4.%-14) through (4.2-17) has the limits (“T; , O )

where Y is the positive real root of the equation
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P
E* — ¢¥= O (5.3-1)

Explicitly this equation is
- kA - £ (5.3-2)

29 ,
The Newton-Raphson method ~ was used to find the root.

The integrands of the functions in Eqns. (2.1-7) through
(2.1-11) and (4.2-14) through (4.2-17) are such that they have a
pcle of order one-half at the lower limit of the integration. The
numerical iulegration in this case is most easily done using the
) 30
Gauvss-Mehler method.

The integration cver b , or since there is a change of
integration for this potential, over ’yb , to obtain the
: : . 31
integrals was carried ocut using the Gauss-Legendre method. The
range of integration is ( 0,00 ). However, since the integrand
becomes small long before the upper limit is reached, it is only
necessary to integrate to about Yo = 2

It was shown in Chapter IV that the integration over the energy

can be carried out analytically in terms of gamma functions. This

is possible because potentials of the type

d

= —= 5.3-3
w 3 ( )

are really one constant ( d ) potentials and it is always possible
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0 make a change of variable (as is done in Chapter IV) that factors
a)

the energy cut of the C3> integrale. In general, this substitution

is

. | ‘
_L__{ £)¢ -
)/o N _J_J_) (5.3-4)

For two constant pctentials, such as the Lennard-Jones potential,
this is not possible and the omega integrals must also be carried

out numerically. This point is discussed in the next section.

4. Porventials with a Miciasam
Wwhile the wmethods of integration over the trajectory and
the impact parsmeter remain the same as for monotonic potentials,

their application is quite different for potentials with a minimum.

63

Morecver, the omega integrals must be handled in an entirely different

)
manner because the energy dependence of the (;> integrals does
not factor out.
A typical potential with a minimum, and the one chosen for

this work, is the Lennard-Jones (12,6) potential defined as
Ty )€
@ = L%e[/?) */?) J (5.4-1)

where € is the depth of the minimum and ¢ is the value of

when ;p = 0 . The reduced effective potential
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»*

) o ) o bvf(lE*
hag both & maximum and a minimum for values of the product
e Ao 3¢ 3 ,
below a critical value I S . For values above this
critical value the effective potential decreases monotonically.
b¥TE™
The effective potential is plotted for various values of
H.%a, b, ¢, and d
The fact that the effective potential has a maximum and a
2
- , . 5‘*5'* .

minimem for some values of means, of course, that its
derivative 1s zero st tpese points., Tt becomes necessary, then,

: , = ( ~ X
in deriving the =xpressions for 3& ) and Z&ZS)(and thus the five
basic functicns (Egns. (2.1-6))to integrate by parts around these
points. To get a clearer picture of exactly what the final range
of integration is, three cases are considered. These are shown graph-
ically in Fig. 5.4a, b, ¢, and d. These plots show the effective
potential and the horizontal line representing the energy of the
particular collision. The intersections of the curve and the
straight line are the turning points (lower limit of integration)
on the trajectories.

In Case I the energy and the impact parameter are such that

Jo~
or¥

parts, Eqn. {(57) of reference 14, employed in the derivation of the

is zero at two points on the trajectory. The integration by

phase shift series is not valid at these points. However, if a
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point \/ is chosen between ¥v; and 3,,.,, and a point Qp is

it is possible to integrate by parts between

chosen beyond T3 »

Ry and V' and C; and infinity., Between V and & nothing
mcre can be done to simplify the integrals.
Case II is handled in exactly the same manner; V' is chosen

betweer Y; and Yo, , and Cg) is chosen between Ywm ¢ and T2
J o*
or*

become zero. Thus, the integration by parts is used to simplify the

Case II1 is simple because nowhere on the trajectory does

expressions.
In the derivation of the five basic functions Eqns. (2.1-7)
through (2.1-11), it is necessary to consider these three cases also.
While the choice of \/ and Cp is immaterial, subject to the

gbove limitaticus, they are defined for convenience as

{
Case 1: \/:I(Y, +'7',m‘~,,‘> Q:’Tfmcxx"f'/

Case 11: v: 31: (T' * Tom "‘") O: Tl (T’m ¢ +T7—)
(5.4-3)
The integration is done using the Meller-Gauss methed, just as
for the monotonic potential. In the integrations from \/ to CP
the Mehler-Gauss is also used.
The integration over the impact parameter is also complicated
by the existence of the maximum and minimum in the effective

¥
potential. TFor energies above E =J the integrands become very
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»*
small rapidly for increasing b . Thus, the upper limit of
= L .
integration is taken to be 5*:'~§ and not b*se . For energies
t
in the range, ¥< E¥<Q the integration over b is broken into the
*e o . .
regions (0, 1.8) and (1.8,4). Finally, for F"<.% the integration
x
£ -
over b is broken into three parts: from 4¥=0 to a value of b
| . X . .
such that the maximum of is just tangent to the energy line,
, b .
from the latter point to the value of such that the minimum of
»
7 is just tangent to the energy line, and from this point to
*
b - 4 . In all of these cases the Gauss-Legendre method of
numerical integration is used.
O re of
Since the are of interest in themselves, a change of
e . . @@’*
variables is made in the omega integrals so that the are
W
calculated as a function ofzéq E . This was advantageous

@)*
because the G) change slowly for large E o . The change of

. . "z = ¥ .
variables is 24, E and the omega integrals are

oo

-/
(l,2)¥ [ Y242 @r [ y |
= J / Q -4 43 - Z
Q! Ca+)] T ancp (44 )2 ¥ o st dz
- 0
(5.4-4)
The integrals, for various j and -4 are calculated using Hardy's
32 ‘
rule. The highest temperature for which these integrals may be
accurately calculated depends on the range of energies used in the
* .
calculation of the 6) integrals. In order to estimate the error
. E i .
due to truncating the range of , an integration can be done

. w)*
(for all of the temperatures considered) with all of the @ set
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equal to unity. Since the integral of the full range is unity
- 7750 . .
{(with. 69 = 1), the deviation from unity serves as a good estimate
of the truncation error.

All of the numerical work was carried out on the CDC 1604

computer at the University of Wisconsin Numerical Analysis Laboratory.
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CHAPTER VI

DISCUSSION OF RESULTS

In this chapter the results of the numerical evaluation of the
GDAW:Qd the _ffﬁgod)t&e presented for the three potentials studied
in this thesis. For the square well potential the classical and
classical limit expressions for the Cpc2)¥'are compared; A
comparison is also made of the high reduced energy and temperature
values of the @&)*and the ﬂ/j)A):or the (12-6) potential
with the results of the perturbation expansion. Both of these
latter developments are explored.

Tables of (3>{7l¥and 69(%)*as functions of the reduced

o)
energy are presented along with the _() ’77 for (}%,4) equal to
(L,1), (1,2), (1,3), (2,2), (2,3) and (2,4) as functions of the

reduced temperature for the (12-6) potential. Various plots are

also presented.

1. The Square Well Potential
Figure (6.1-2) shows for the square well potential the classical,
(1%
the classical limit, and the quantum CQ " for_/fk = 1 (the plots

OH@* ¥
for 8 are of the came form and so only C;> is presented in

¥ *
Cga and éﬁf

this comparison). The limiting forms, s

discussed in Chapter III, are also illustrated in this plot. The
(7 ¥

quantum (;7 is smooth down to a reduced energy of about .95

and then begins to oscillate, finally becoming very large (probably
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going to infinity) at low reduced energy.

_ (1)% (+
Figure (6.1-3) again shows er. and c/ along with

A s,
(;bux for = .5. The quantum curve has many more oscillations
»H ¥
for this value of_/{. than for—/i = 1. The oscillaticns begin
higher on the reduced energy scale, are much sharper, and the peaks
6)//)* ‘
are not as high. The general trend is that f~ is lower for
« ¥
_/1 = .5 than for_11. = 1.
' ¥
Finally, Fig. (6.1-4) shows the same quantities for,Jd_ = .1
- NF
At this low value of the oscillations appear to be almost
wiped out. Again the general trend is that the quantum curve is
lower, becoming large at an extremely low reduced energy. Because
of computer time requirements it was impossible to go to lower

*
values of.x4. .

Figure (6.1-5) is a plot of the partial sums (see Eqn. (2.1-1))

(7)%
of Qf*) (for E ¥=].§ ) versus (//’L "7/-)_4.* . From

Eqn. (5.2-1) we see that

(/(‘* ZIZ/L ¥= 2o \isE¥ (6.1-1)

! A
and thus (/54-7i>,AL is a constant for fixed energy. Thus, the
. * .
same scale on the abscissa can be used for all values of_/i . The
partial sums all become greater than the classical limit before the

three turning point region is reached. The contribution from the
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three turning point region is very small for small values of_/q_#<.
(A

As a matter of fact, most of the contribution to the C;>i4~comes

from a region near the top of the well. This may be a diffraction

effect caused by the sharpness of well.

The results presented here are somewhat inconclusive. At high
reduced energies the quantum, classical limit, and classical curves
appear to approach a common limit, with the quantum curve approaching
from the came side as the classical limit. At lower reduced energies
and lower values of _/1_*' , however, the quantum curve moves in
between the classical limit and the classical curves.

While this votential gives nice integrals in the classical
iimit, it would be difficult to consider the higher terms in the
series because the potential does not possess continuous derivatives.
It may be, then, that this comparison is not valid because the
series using this potential may not have a classical limit (that is,
the semiclassical development may not be valid for this potential
because of the discontinuous derivatives).

This view is supported by calculations34 for the Lennard-Jones
(12-6) potential. For this differentiable potential the classical
Timit of the phase shift does agree with the quantum calculations
in the three turning point region.

With this cornfidence in the validity of the classical limit

we proceed to a more realistic potential.



77

2. Purely Repulsive Potentials and the Perturbation Expansion

@ ¥ *
Equation (4.2-3) gives C;7 as a double series in /4?

and A . Since A is simply an ordering parameter it is set
equal to unity at this point. Also, for dimensional reasons.ﬁg is

n*
replaced by_/l_* . In terms of the calculated coefficients 67

2%
and are
(1) % ¥ ! 3% _a * 1) ld
Q = 1.3180 E € + 3.4609 x 107°F A¥ 44,7294 x 10 3}3"? +...

Slpx-2 .-2 +-3 90

~4.3008 x 107 F" 7T - 6.3468 x 107°FT A ..
-lpr¥-=~

+8.9255 x 10 LEYTE 4 ... (6.2-1)

(2)% 2t - -l e - U o
G = 1.5938FE*F + 3.9115 x 100 E¥ AN %+ 9.8558 x 10 F AN kL

[~

K
1 o e a1 - W
-8.6472 x 10"V E Y73 - 1.4923 x 107 CEXF AN

7
+1.6120 F¥~¢ +

(6.2-2)
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The terms in these expressions are written in the same order as
Eqn. (4.2-3).

Some general features are common to both of these expansions.
The first 'row' of numbers contains only positive numbers (at least
through terms in -/L-*A‘, the second '"row' numbers are all negative,
and the third row has one positive number. Since this occurs in
both cases it leads to the conclusion that this may be a general
rule. A study of the results for the Lennard-Jones (12-6) potential
at high reduced energy supports this conclusion. The asymtotic

. N I o

nature of the expansions is also apparent, moreso in Cp than
because of the much greater coefficients.

At high reduced energies these series expressions should
approach the corresponding classical limit and second and fourth
quantum corrections for the Lennard-Jones (12-6) potential. At a

1%

reduced energy of 630.96 the comparison of cL is

(1) ¥
cL = .45003

—L& = -.00585
<
(6.2-3)
JL (1%
€L _  .o0048

444 0}*} = 44445
. 66 T

Sum



2) ¥

For ¢ L the comparison is

(2)+
cL = .54420
967&]*
<t . -.01175
oA
P
J 1L= .00087
o
Sum = .53332

In both cases the error is in the fourth place.

Qel

(6.2-4)

G ¥

!L—J‘ = .53292

Both values

obtained from the perturbation expansion are higher than the

corresponding result for the Lennard-Jones potential.

If the

series in the classical limit is alternating (as is indicated by

the first three terms), the fourth term would be negative and

make the agreement even better.

Thus, even at this high energy

at least four terms in the series are needed for excellent

agreement.

At the same energy the comparison for

(1) ¥
yig is

79
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C;h = 45.4851 x 10°°

- (6.2-5)
c)éi; _ 6

L - L4.0045 x 100

- / -
Sum = 1.4806 x 10°° CQQX‘ZLT = 1.3351 x 107

2) *
For T the comparison is

(¥ _s
C;bz = 6.1993 x 10

(6.2-6)
c)cpfﬂ*’
___jséL = -0.9416 x 107>
-6 (i)*7 -5
Sum = 5,2577 x 10 7 3= 5-0998 x 10

(1%
These results appear somewhat surprising since for (;)ﬂ- the sum

of the iwou terws in the perturbation series gives a result greater
(2) %

than the result for the Lennard-Jones potential while for (i)zr

the opposite is true. An analysis of the behavior of the results

for the Lennard-Jones potential as a function of the energy explains

this seemingly anomolous behavior. Up to a reduced energy of about
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(1% (2)%
44 both and Gzz are negative, but becoming less
(2)%
negative. At a reduced energy slightly greater than 44 C;EI
becomes positive and continues to become greater. At a recuced

2) ¥
energy of about 112 C;g; goes through a maximum and begins to

decrease and approaches the perturbation result from above. The

¥ (1) %
behavior of T appears to be the same, but ‘77 does not
become positive until about 631 on the reduced energy scale.

Thus, it probably does not reach a maximum until a much greater
energy.

() ¥
At a reduced energy of 630.96 the comparison for $aA is

¥
-8 /)-t/ 7
(;21 = 33,4792 x 10 -3 = 4.2263 x 10 (6.2-7)

1)K
For the comparison is
(1) % -8 (2) ¥ _7
Ir = 7.,2505 x 10 a4 = 1.0561 x 10 (6.2-8)

In both cases the result for the Lennard-Jones potential is above
and decreasing to the perturbation series result.

This perturbation series, like most perturbation series,
probably behaves asymptotically. That is, as lower reduced energies
are considered the higher terms in the series become large and

overwhelm the first few terms in the series. However, for a finite
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number of terms and for high enough reduced energy the finite series
behaves nicely. The series for the classical limits (the first
columns of Eqns. (6.2-1) and (6.2-2)) are much better behaved than
the series for the quantum corrections. Likewise it appears that
the series for the first quantum corrections are better than those
for the second quantum corrections. From this behavior it seems
that the series is asymtotic in.44;* as well., Thig is to be
expected since the phase shift series, which is the basis for this
work, is probably asymtotic.

The perturbation series for __O(I)/)* and ﬂ(z)z)*are
roughly the same, comparatively, as that for C;yq)*;nd C;ﬂi)*'.
The results can not be expected to be as good because the omega
integrals are transforms on the energy and thus have contributions
from an energy range (see Eqn. (2.3-1)).

(1) 1)¥

In terms of the calculated quantities the series for __(2

(151) ¥
and _112 ) are

_(2 d) /)_‘sg

A - =] g¥2
= 1.13637%7F + 1.7304 x 10 °7

+2.1935 x 10 °T¥"%
x_ 2

. _2 B :
-2.5697 x 10 1T* T - 28124 x 102 T* Ty + ... (6.2-9)

el
34,1975 x 107X T*°C + ...
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-

e
2,2 4 - - ¥ . M
ﬁ ) 1.29787 %7€ + 1.3038 x 107 °F* ! AT 4 1.7778 x 10737 ¥ AP +--
(6.2-10)

- 2 - 3 2
-4.0013 x 107 1T¥°F -3.3062 x 10727 3_N1%" ..

_1 7
+7.1597 x 107 T ¥ 77
1)1)%
At a reduced temperature of 50 the comparison of "OC(L)
from the perturbation series with that of the Lennard-Jones
potential is
‘l /)*
L2577 59201
C)ﬂ(/)/)*
~5—,—)—~—-= -.01893 (6.2-11)

1 hr)%
_élzfz__.= . 00437

J A

.57745 L
I

[

Sum

(2, 1)t
For - ‘ 2CL) ) the comparison is




84

-Q/Z)z)*
= 67615

c)ﬂ (LV¥

= -.02948 (6.2-12)
o A

v ) (2e)¥
——‘..___a "Q = .00746

J)*
(2)2)"1
Sum = .65413 cL I-F = .64924
(0¥
As in the case of the Cl the agreement is very good. However,

the agreement is not quite as good, as is expected from the

comments above.
G, )%
For "QI[ the comparison at a reduced temperature of 50 1is

(h1)* -5
077" = 34608 x 10

14
)N .
ok~ gy -

- 7.9547 x 10
dA

~~
(<))
ro
|
=
(8}
~r

- (’)’)7 -
Sum 4,493 x 1072 g = ~1.9272 x 10

4



85

(2,2) %
For _.(2 ) the comparison is

¥
(z,2) -4
QI = 2.6076 x 10 (6.2-14)

-4

C)—[z(z,z)
24

.9351 x 10

[2)1)7
Sum = 1.6725 x 10 -4 —D ~-J =1.2231 x 10 4

These results ewmphasize the remarks above concerning the behavior of

(‘2( )4)*
the in relation to the transform nature of these integrals.

NP
The agreement for is fair, but not quite as good as

O Q) (hn*
ar ; the agreement for iy is poor, even poorer than

1)+
for /s

(> ) :
For .OIZZ the comparison at this reduced temperature is

(1,1)% ()"
v = 1.6841 x 107° _(2 ‘ .y = 6.0885 x 104 (6.2-15)

(L) ¥
For ‘ ZIZ the comparison is

()% (L)%
”)
Iv = 1.3649 x 10 -6 _[2 - = 3,1129 x 101 (6.2-16)

C1,1)%
The agreement here is extremely poor, especially for “‘(-)‘IZ ?
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The reason for this is again the nature of the omega integrals;
_— 9 cer

they have contributions from all energies. The 77 become

Q /-()4) *
extremely large at low reduced energies and weight the I
heavily even at a reduced temperaturg of 50 (the behavior of the

(%
<;> for the Lennard-Jones potential is discussed in the next

sections).

In general, the comparisons are quite good. This creates
confidence in both the perturbation calculations and the calculations
for the Lennard-Jones potential. Not only do the high reduced

) ¥
ener gy CQ check but the high reduced temperature behavior of
(01 )%
the ,12 is as expected, which serves somewhat as a check on

ol

the of lower reduced energy.
6)/17* (¥
The crossover of fh% and (;Z:L which is touched upon in

the introduction to Chapter IV is discussed in the next section.

3. The Lennard-Jones (12-6) Potential

The existence of a minimum in the potential function has a very

O *

marked effect on the low energy behavior of the C;) , which differs
greatly from the low energy behavior for the monotonic potential.
While the classical 1limits are effected lecast in ma
inclusion of the inner region into the 7 integration for reduced
energies below .8 1is probably the most profound result of these

(1)¥
calculations. The effects on the classical limits of CQ and

)%
(;f' are markedly different. In the three turning point region
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the classical limit cf CQ(”*ES always greater than the classical
value. For (Sy(b*’the situation is not so straightforward. For a
reduced energy of .8 down to about .3 the classical limit is slightly
less than the classical value. Below a reduced energy of about .3 ,

however, the classical limit is greater than the classical value.

(n«
It may be possible to explain this increase in c, and decrease
Q) *
in ¢i by examining the integrals for the classical limits.

The classical limits of Eqns (2.2-17) and (2.2-18) may be written

QY= /(/~ Con Yao) b d b
(i)* i//f (//"‘ 64?1. (zo;> A (j A

)k
Since in 6721_ the integrand involves Ce—2 2&0; the integrand

(6.3-1)

, . ()%

is always less than or equal to b . However, in cL the
integrand involves just CzanZﬁoand thus can be as great as 2 b

It may be, then, that the inner region contributes just enough toil&ofa

67 ()% (1) %

alter the integrands so as to reduce ¢ L and increase cL in

the range of energies from .3 to .8 . Plote of the classical and
6)(/)* 67(2)*
classical limits of and are shown in Figs. (6.3-1)
and (6.3-2).
)%

Since the classical limits of the C3> are different from

the classical values below a reduced energy of .8, the classical
. ﬂ/ﬂ) 2 )¥

limits of the . ditfer from the classical values over an

(1)1)%
extended range of temperature. The classical limit of __(iZ g
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is greater than the classical value up te a reduced temperature of
about 5 . At a reduced temperature of .2 the classical limit is
about 20 per cent larger than the claszical value. This difference
decreases rapidly and is only abcut 4 per cent at a reduced
temperature of .5.

One aspect of this increase in the classical limit over the

—Q(’) 1) %

classical value of is particularly interesting. 1In a
quantum mechanical calculation of the omega integrals, Imam-Rahajoe,

. , 12
Curtiss, and Bernstein found that for reduced temperatures

(1) 1) ¥ *

between .3 and 5 the {2 calculated for—L7 = 3 was less

(7, 1)% (1, ¥
than .Iz 2 calculated for_,/?_“t = 2 which was lezs than _[2

*
calculated fordl. = 1. For reduced temperatures greater than .6
O,10*
the classical values of .l<2 as calculated by Monchick and

33 (1, 1)% ‘ Z’*
Mason are greater than the _sz calculated for = 1,
However, for reduced temperatures between .3 and .6 the classical
( )/’) ’)* ¥
values are less than the calculated fot_/z = 1 . But the
(Q(Z/f*
classical limit as calculated in this thesiz is greater than
fora/L = 1 over the entire range cf reduced temperatures down
9 (1,)%
to .1 . Below a reduced temperature of about .1 the
v/ n
for the various values of cross one another and the order is
not that described above.
(2)1)*
The classical limit of —12 is practically equal to the
212 )K .
classical value of _f]_( ’ . Above a reduced temperature of .2

the classical limit is slightly greater; below .2 it is considerably

greater than the
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. L ﬁ . N &7
classical value. Unfortunately, while the classical limit of
is greater than the classical value, it iz not large enocugh to be
ﬂ (2,2)¥% w )
greater than forell, = 1 for reduced temperatures
below about .4
- | | (0)¥
The general nature of the quantum corrections o the
is that they are quite large for reduced energiez below .8 (in
the three turning point region) and well behzved and smz2ll for
reduced energies ahbove .8 . That this is the case is unot toco
surprising because it was suspected from the beginning that the
series was asymt.iia,
The quantum corrections to the cmega integrales, as would be
expected, are smwall at high reduced temperature: and large at low
. _441*“4 . )
reduced temperatuares. The terms in are exceptions to this
and are somewhat disappointing in that they are large even at
reduced temperstures of 50

ﬂ//)d)*'

A comparison of the guantum corrections for with

1,12 , .
’ quantum mechanical re=zults for fixed

:

. : 1
previously published

* © o - v R o g
values of./]. ig difficult because of the magnitude of quantum
' “/1*@
corrections. The terms linear and cubic in- are negligibly
small except at low values of the reduced temperature where all
of the other quantum corrections are even larger. The terms
D ¥ . . .

quadratic in_A are the most interesting of the guantum
corrections. Both il and — 211 reflect nicely the

@)
behavior of their respective C;§[ . However, bcth are so




small at high reduced temperstures in compariscn to their respective
classical limits, that except for large _44_* (e.g., about,JZ* = 4
which is urnrealistic for large reduced temperaturez) they are of
the same magnitude as the rumerical uncertainty in the classical
limits. Even so, as was shown by the perturbaticn calculations in
(2 )% ()*
the last section, these values of _JE and /A are
probably correct.
Nok-au

If the magnitude of the I is such that the results
cannot be checked at high reduced temperatures, their signs offer
further confirmetion th=t they are correct. The guantum calculation

) ; (2yer¥ ,

of _[2.! and 2 show that for reduced temperature of

/ /) K (2,2)%
f1< 4 is less than, and ﬂf}u
greater than the corresponding classical valuesz. The signs of

7, )% (2,2)% .
_flfg.) and ‘1’2 at a reduced temperature of 50 confirm

this.

aboutr 50

At lower values of the reduced temperature the effect of the
()X > (2 )%
very large T and v for reduced energies below

N (0% ) ¥

.8 weights the quantum corrections and IV. to a very
_Q (2,2)%

great extent., This is particularly noticeable in T

which is positive for reduced temperatures less than 13 instead of

becoming increasingly negative at lower values of the reduced

temperature as the guantum calculations indicate it should. On

Ci,)*
the other hand, JI 1is too negative at the low reduced

temperature end. Below a reduced temperature of gbout 2 the
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quantum corrections become very large.
The high reduced tempersture behavior of the sz is very
Y v 12 %
much the same az the high reduced energy behsvior of the .
, (D) * . .
It is apparent that G T goes from negative to positive, passes
through 2 maximun and decreases slowly with increasing reduced

(Z)l)*
energy. The same phencmenon would be observed in _12 i if the

reduced teuperature range was extended further. The crosscver from

negative to pesitive i3 the one originally proposed by de Bcer and
13 (2) ¥ (2)*
Bird. Since the n~uuzatum corrections T and ‘Tv at

high reduced enei oy ave both positive such a crosseover of the
classical aud juzutur carves dees cccur. The actuwal point on the

reduced evergy -~cale where the crossover does cccur ig a function

¥ , ¥
of_J4_ . However, fvr reascnable "y the crossover cccurs at

an energy =o bigh that the quantum corrections are about nil compared

to the classizza! limit,
On the foll~wirg pages are presented varicus graphs and tables

associated witl the guantities calculated in this thesis.
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