

HIGHER ORDER APPROXIMATIONS OF RUNGE-KUTTA TYPE

by E. Baylis Shanks
George C. Marshall Space Flight Center Huntsville, Ala.

HIGHER ORDER APPROXIMATIONS OF RUNGE-KUTTA TYPE
By E. Baylis Shanks
George C. Marshall Space Flight Center Huntsville, Ala.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

\square
\square

\square

TABLE OF CONTENTS

Page
SUMMARY 1
FORMULATION OF THE PROBLEM 1
GENERAL FORMULAS FOR ORDERS BELOW 4 8
GENERAL FORMULAS FOR ORDER 4 9
FORMULAS FOR ORDER 5 12
FORMULAS FOR ORDER 6 15
EFFICIENT FORMULAS THROUGH ORDER 8 18

HIGHER ORDER APPROXIMATIONS OF RUNGE-KUTTA TYPE

SUMMARY

The fourth-order formula of Runge-Kutta has been used extensively to obtain approximate solutions of differential equations of first, second, and higher orders. This formula requires only four evaluations of the function involved in the differential equation while the fifth-order formula of Kutta-Nystrom requires six evaluations of the function. The sixth-order formula of Huta is not known as well, and has the disadvantage of requiring eight evaluations of the function. No formulas of higher order except those developed in this investigation seem to exist in the literature. These formulas are "selfstarting" and therefore extremely useful in combination with efficient "continuing" procedures.

Formulas of higher order, including the seventh and eighth orders, are developed in this paper. Moreover, more efficient formulas requiring fewer evaluations are developed for orders five and six. All possible formulas are displayed for those orders below five.

FORMULATION OF THE PROBLEM

1. General. The differential equations considered are of the form $y^{\prime}=f(x, y)$, since systems of the first and higher orders are reducible to an application of this result. The function f is assumed to be analytic in a sufficiently large neighborhood of the initial point ($\mathrm{x}_{\mathrm{O}}, \mathrm{y}_{\mathrm{O}}$).

Let f_{i} be defined by the equation

$$
f_{i}=f\left(x_{o}+a_{i} h, y_{o}+a_{i} h \sum_{j=0}^{i-1} b_{i j} f_{j}\right),
$$

where $f_{o}=f\left(x_{o}, y_{o}\right)$ and $i=1,2, \ldots, n$. Consider the finite series

$$
Y=y_{o}+h \sum_{i=0}^{n} c_{i} f_{i}
$$

The $a_{i}, b_{i j}, c_{i}$ are parameters to be determined so that Y and the solution $y\left(x_{0}+h\right)$ of the given differential equation will agree to some desired degree of accuracy.

It is immediate that a necessary and sufficient condition that the Taylor series for Y and the Taylor series for the solution $y\left(x_{0}+h\right)$ of the given differential equation agree through terms in h^{m} is that

$$
\begin{equation*}
\left(\mathrm{f}^{(\mathrm{k}-1)}\right)_{0}=\mathrm{k} \sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}}^{(\mathrm{k}-1)}\right)_{o} \tag{1}
\end{equation*}
$$

for $k=1,2, \ldots, m$, where the symbol $f^{(k)}$ is used for the k th derivative of the function $f\left(x_{0}+h, y\left(x_{0}+h\right)\right)$.

To specify a given formula, the coefficients may be detached as follows:
Formula
$a_{1} \quad a_{1} b_{10}$
$\mathrm{a}_{2} \quad \mathrm{a}_{2} \mathrm{~b}_{20}+\mathrm{a}_{2} \mathrm{~b}_{21}$
-
-
-
$a_{n} \quad a_{n} b_{n_{0}}+a_{n} b_{n_{1}}+\ldots+a_{n} b_{n, n-1}$
$c_{0}+c_{1}+\ldots+c_{n}$

This array specifies the formula

$$
Y=y_{0}+h \sum_{i=0}^{n} c_{i} f_{i}
$$

where

$$
\begin{aligned}
& f_{o}=f\left(x_{0}, y_{0}\right) \\
& f_{1}=f\left(x_{0}+a_{1} h, y_{0}+a_{1} h b_{10} f_{0}\right) \\
& f_{2}=f\left(x_{0}+a_{2} h, y_{0}+a_{2} h\left(b_{20} f_{0}+b_{21} f_{1}\right)\right. \\
& \cdot \\
& \dot{\cdot} \\
& \dot{f}_{n}=f\left(x_{0}+a_{n} h, y_{0}+a_{n} h\left(b_{n_{0}} f_{0}+b_{n_{1}} f_{1}+\ldots+b_{n, n-1} f_{n-1}\right)\right)
\end{aligned}
$$

Such arrays will be used consistently to specify such formulas.

$$
\text { Let } 1=\sum_{i=0}^{n} c_{i} \text { and } 1=\sum_{j=0}^{i-1} b_{i j} \quad \text { for } i=1,2, \ldots, n \text {. Let } i_{1}+2 i_{2}+\ldots+k i_{k}=k
$$

$Q_{i t}^{1}=a_{i}$, and

$$
\begin{equation*}
Q_{i t}^{k}=a_{i} i_{1}\left(\prod_{r=1}^{i_{2}} 2 a_{i} \sum_{j=1}^{i-1} b_{i j} Q_{j t_{r}}^{1}\right) \cdots\left(\prod_{r=1}^{i_{k}} k a_{i} \sum_{j=1}^{i-1} b_{i j} Q_{j t_{r}}^{k-1}\right) \tag{2}
\end{equation*}
$$

for $k=2,3, \ldots, m-1$. Finally, let

$$
\begin{equation*}
1=(k+1) \sum_{i=1}^{n} c_{i} Q_{i t}^{k} \tag{3}
\end{equation*}
$$

for $m \geq 2$ and $k=1,2, \ldots, m-1$. These equations are sufficient conditions that the equations (1) be satisfied, giving a formula of order m, as is proved in a paper presented by the author at the summer meeting of the American Mathematical Society in Boulder, Colorado, on August 29, 1963. An abstract of this paper appears in the American Mathematical Society Notices, Volume 10, Number 5, Issue No. 69, August, 1963. The subscripts t and t_{r} in the $Q_{i t}^{k}$ are introduced to distinguish the different products for fixed i and k.

The equations (3) can now be written for each $k=1,2, \ldots, m-1$ in succession. Such equations for the first two values of k are given next.

$$
\begin{aligned}
\mathrm{k}=1: & 1=2 \sum_{\mathrm{j}_{1}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{j}_{1}} \mathrm{a}_{\mathrm{j}_{1}} \\
\mathrm{k}=2: & 1=3 \sum_{\mathrm{j}_{1}=1}^{n} \mathrm{c}_{\mathrm{j}_{1}} \mathrm{a}_{\mathrm{j}_{1}}^{2} \\
& 1=6 \sum_{\mathrm{j}_{2}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{j}_{2}} \mathrm{a}_{\mathrm{j}_{2}}\left(\sum_{\mathrm{j}_{1}=1}^{\mathrm{j}_{2}-1} \mathrm{~b}_{\mathrm{j}_{2} \mathrm{j}_{1}} a_{\mathrm{j}_{1}}\right)
\end{aligned}
$$

In general, a simple induction establishes the facts that in each instance the indices for each $b_{i j}$ are distinct and the second index j is summed for $1,2, \ldots, i-1$, there are no other changes of indices, and each $b_{i j}$ is followed immediately by at least one a_{j}. Hence, without confusion, $b_{i j} a_{j}^{k}$ may be denoted by b^{k} and the summation signs and indices may be omitted, as for the first two values of k below.

$$
\begin{array}{lll}
\mathrm{k}=1: & 1=2 \mathrm{ca} & \\
\mathrm{k}=2: & 1=3 \mathrm{ca}^{2} & 1=6 \mathrm{cab}
\end{array}
$$

The equations (3) are completely determined when the $Q_{i t}^{k}$ are known. The rule for the inductive determination of the $Q_{i t}^{k}$ given in (2) is given below in the "summation convention" notation.

$$
\mathrm{Q}^{\mathrm{k}}=\mathrm{a}^{\mathrm{i}_{1}}\left(\begin{array}{cc}
\mathrm{i}_{2} & \tag{4}\\
\prod_{\mathrm{r}=1} & 2 \mathrm{abQ}
\end{array}\right) \ldots\left(\begin{array}{cc}
\mathrm{i}_{\mathrm{k}} & \\
\prod_{\mathrm{r}=1} & \mathrm{kabQ}
\end{array}\right)
$$

Let a be multiplied by 1, 2 ab be multiplied (and summed) by each term of Q^{1}, \ldots, kab be multiplied (and summed) by each term of Q^{k-1}. Then the rule (4) states that a term of Q^{k} is formed by forming a product consisting of i_{1} factors of the type mentioned first in the preceding sentence, i_{2} factors of the type mentioned second in the preceding sentence, ..., and i_{k} factors of the type mentioned last in the preceding sentence, where $\mathbf{i}_{1}+2 \mathbf{i}_{2}+\ldots+k \mathbf{i}_{k}=k$.

It is possible to state a rule so that the equations for a given k can be written without reference to the equations for smaller integers. Such a rule follows essentially from the following facts, which are easily proved: (1) Q^{k} is a product of factors, each factor of which consists of a sequence of an integer, $a^{\prime} s$, and $b^{\prime} s$, (2) in each factor of Q^{k}, at least one a precedes each b and at least one a follows each b, (3) in each factor of Q^{k}, the integer p immediately precedes $a^{k} b$ if and only if $p-1$ is the number of $a^{\prime} s$ that follow and are connected by summation to the given b, and (4) Q^{k} contains exactly the number k of a's. However, such a rule is not of much advantage, if any, since all equations for $k=1,2, \ldots, m-1$ are conditions to be satisfied to obtain a valid formula of order m .

To further simplify the notation, let

$$
\begin{equation*}
\sum_{i=j+1}^{n-k} c_{i}^{(k)} a_{i} b_{i j}=c_{j}^{(k+1)} \text { for } j=1,2, \ldots, n-k-1 \tag{5}
\end{equation*}
$$

where $k=0,1, \ldots, m-3$ and, when convenient, $c_{i}^{(0)}, c_{i}^{(1)}, c_{i}^{(2)}, \ldots$ will be denoted by $c_{i}, c_{i}^{\prime}, c_{i}^{\prime \prime}, \ldots$ respectively. Among the sufficient conditions determined later are

$$
\begin{equation*}
1=(j+1)(j+2) \ldots(j+k+1) \sum_{i=1}^{n-k} c_{i}^{(k)} a_{i}^{j} \tag{6}
\end{equation*}
$$

where $\mathrm{j}=1,2, \ldots, \mathrm{~m}-\mathrm{k}-1$ and $\mathrm{k}=0,1, \ldots, \mathrm{~m}-2$.
For $m=n+1$, it is seen that $c_{n-k}^{(k)} \neq 0$ from the definition and the fact that $1=(n+1)!c_{1}^{(n-1)} a_{1}$. Hence equations (5) determine the $b_{i j}$ in terms of the $c_{i}^{(k)}$ and the a_{k}. Moreover, equations (6) determine the $c_{i}^{(k)}$ in terms of the a_{i}. In this case, the algebraic system is reduced to the conditions not included in equations (6), given the n free parameters a_{i}. For example, when $\mathrm{m}=\mathrm{n}+1=4$, there is one such condition $1=8 \mathrm{ca}^{2} \mathrm{~b}$ and three free parameters $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$.

A listing is given below of the Q^{k} for $\mathrm{k}=1,2,3,4$. Formation of the list is made easier by separating the products of order $p+1$ of the type pabQ ${ }^{p-1}$ from the other products of order $p+1$ as is done below.

$$
\begin{aligned}
& \mathrm{k}=1: \quad \mathrm{a} \\
& \mathrm{k}=2: \quad \mathrm{a}^{2} \\
& \mathrm{k}=3: \quad \mathrm{a}^{3} \quad 2 \mathrm{a}^{2} \mathrm{~b} \\
& k=4: \quad a^{4} \quad 2 a^{3} b \quad 3 a^{2} b^{2} \\
& 6 \mathrm{a}^{2} \mathrm{bb} \quad 4 \mathrm{a}^{2}(\mathrm{~b})(\mathrm{b})
\end{aligned}
$$

The term $4 a^{2}(b)$ (b) is formed by the rule from (2ab) (2ab) and is written in summation notation

$$
4 a_{i_{2}}^{2}\left(\sum_{i_{1}=1}^{i_{2}-1} b_{i_{2} i_{1}} a{ }_{i_{1}}\right)\left(\begin{array}{lll}
i_{2}-1 & \\
\sum_{i_{1}=1} b_{i_{2} i_{1}} & \\
i_{1}
\end{array}\right)
$$

or simply

$$
4 a_{i_{2}}^{2}\left(\sum_{i_{1}=1}^{i_{2}-1} b_{i_{2} i_{1}} a_{i_{1}}\right)^{2}
$$

The term $6 \mathrm{a}^{2} \mathrm{bb}$ is written

$$
6 a_{i_{3}}^{2} \sum_{i_{2}=1}^{\mathbf{i}_{3}-1} b_{i_{3} i_{2}} a_{i_{2}}\left(\sum_{i_{1}=1}^{i_{2}-1} b_{i_{2} i_{1}} \quad a_{i_{1}}\right)
$$

in summation notation.

For $\mathrm{k}=4$, it can be shown directly by an inductive process that the two conditions $1=30$ cabb and $1=40 c^{\prime} a^{2} b$ can be replaced by the one condition $7=120\left(c a b b+c^{\prime} a^{2} b\right)$ and that the resulting fifteen conditions for $k=1,2,3,4$ are necessary and sufficient for obtaining a valid formula for order 5 . This was shown for $1 \leq k \leq 5$ (which includes the case $1 \leq k \leq 4$) in a paper by Huta [1]. The necessary and sufficient conditions for $1 \leq \mathrm{k} \leq 6$ have been derived by the author and will be given below, although the sufficiency of the other conditions are generally enough for our purposes.

$$
\begin{aligned}
& \mathrm{k}=1: \quad 1=2 \mathrm{ca} \\
& \mathrm{k}=2: \quad 1=3 \mathrm{ca}^{2} \quad 1=6 \mathrm{c}^{\prime} \mathrm{a} \\
& \mathrm{k}=3: \quad 1=4 \mathrm{ca}^{3} \quad 1=12 \mathrm{c}^{\prime} \mathrm{a}^{2} \quad 1=8 \mathrm{ca}^{2} \mathrm{~b} \quad 1=24 \mathrm{c}^{\prime \prime} \mathrm{a} \\
& \mathrm{k}=4: \quad 1=5 \mathrm{ca}^{4} \quad 1=20 \mathrm{c}^{\prime} \mathrm{a}^{3} \quad 1=15 \mathrm{ca}^{2} \mathrm{~b}^{2} \quad 1=60 \mathrm{c}^{\prime \prime} \mathrm{a}^{2} \\
& 1=10 c a^{3} b \quad 1=20 c a^{2}(b)(b) \quad 7=120\left(c a^{2} b b+c^{\prime} a^{2} b\right) \quad 1=120 c^{\prime \prime \prime} a \\
& \mathrm{k}=5: \quad 1=6 \mathrm{ca}^{5} \quad 1=30 \mathrm{c}^{\prime} \mathrm{a}^{4} \quad 1=24 \mathrm{ca}^{2} b^{3} \quad 1=120 \mathrm{c}^{\prime} \mathrm{a}^{3} \\
& 1=12 c a^{4} b \quad 1=24 c^{3}(b)(b) \quad 1=18 c a^{3} b^{2} \quad 1=48 c^{2} b^{2} b \\
& 13=720 \mathrm{ca}^{2}(\mathrm{~b})(\mathrm{bb})+360 \mathrm{c}^{\prime} \mathrm{a}^{2}(\mathrm{~b})(\mathrm{b}) \quad 2=45\left(\mathrm{ca}^{3} \mathrm{bb}+\mathrm{c}^{\prime} \mathrm{a}^{3} \mathrm{~b}\right) \\
& 1=360 \mathrm{c}^{\prime \prime \prime} \mathrm{a}^{2} \quad 1=36 \mathrm{ca}^{2}(\mathrm{~b})\left(\mathrm{b}^{2}\right) \quad 1=40\left(\mathrm{ca}^{2} \mathrm{bb}^{2}+\mathrm{c}^{\prime} \mathrm{a}^{2} \mathrm{~b}^{2}\right) \\
& 1=720 c^{\prime \prime \prime \prime} \mathrm{a} \quad 1=60\left(c a^{2} b b b+c^{\prime} a^{2} b b+c^{\prime \prime} a^{2} b\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{k}=6: \quad 1=7 \mathrm{ca}^{6} \quad 1=42 \mathrm{c}^{\prime} \mathrm{a}^{5} \quad 1=35 \mathrm{ca}^{2} \mathrm{~b}^{4} \quad 1=210 \mathrm{c}^{\prime \prime} \mathrm{a}^{4} \\
& 1=14 \mathrm{ca}^{5} \mathrm{~b} \quad 1=21 \mathrm{ca}^{4} \mathrm{~b}^{2} \quad 1=28\left(\mathrm{ca}^{4} \mathrm{bb}+\mathrm{c}^{\prime} \mathrm{a}^{4} \mathrm{~b}\right) \\
& 1=28 c a^{4}(b)(b) \quad 1=28 c a^{3} b^{3} \quad 9=280\left(c a^{3} b^{2} b+c a^{2} b^{3} b\right) \\
& 5=252\left(\mathrm{ca}^{3} \mathrm{bb}^{2}+\mathrm{c}^{\prime} \mathrm{a}^{3} \mathrm{~b}^{2}\right) \quad 1=42 \mathrm{ca}^{3}(\mathrm{~b})\left(\mathrm{b}^{2}\right) \quad 1=105 \mathrm{ca}^{2} \mathrm{~b}^{2} \mathrm{~b}^{2} \\
& 31=2520\left(c a^{3} b b b+c^{\prime} a^{3} b b+c^{\prime \prime} a^{3} b\right) \quad 5=336 c a^{3}(b)(b b)+168 c^{\prime} a^{3}(b)(b) \\
& 19=1680\left(c a^{2} b^{2} b b+c a^{2} b b^{2} b+c^{\prime} a^{2} b^{2} b\right) \quad 11=840\left(c a^{2} b b^{3}+c^{\prime} a^{2} b^{3}\right) \\
& 1=80 c a^{2}(b)\left(b^{2} b\right)+40 c a^{2} b^{2}(b)(b) \quad 1=56 c a^{3}(b)(b)(b) \\
& 1=168\left(c a^{2} b b b^{2}+c^{\prime} a^{2} b b^{2}+c^{\prime \prime} a^{2} b^{2}\right) \quad 1=63 c a^{2}\left(b^{2}\right)\left(b^{2}\right) \\
& 1=280\left(c a^{2} b b b b+c^{\prime} a^{2} b b b+c^{\prime \prime} a^{2} b b+c^{\prime \prime \prime} a^{2} b\right) \\
& 1=56\left[c a^{2}(b)\left(b b^{2}\right)+c a^{2}\left(b^{2}\right)(b b)+c^{\prime} a^{2}(b)\left(b^{2}\right)\right] \\
& 1=56 \mathrm{ca}^{2}(\mathrm{~b})\left(\mathrm{b}^{3}\right) \quad 1=840 c^{\prime \prime \prime} \mathrm{a}^{3} \quad 1=2520 c^{\prime \prime \prime \prime} a^{2} \quad 1=5040 c^{\prime \prime \prime \prime \prime} \mathrm{a} \\
& 19=1260\left[2 \mathrm{ca}^{2}(\mathrm{~b})(\mathrm{bbb})+\mathrm{ca}^{2}(\mathrm{bb})(\mathrm{bb})+2 \mathrm{c}^{\prime} \mathrm{a}^{2}(\mathrm{~b})(\mathrm{bb})+\mathrm{c}^{\prime \prime} \mathrm{a}^{2}(\mathrm{~b})(\mathrm{b})\right]
\end{aligned}
$$

This list could be extended, although the computation would be laborious. Instead, the extension of the list giving sufficient conditions is relatively easy. For $\mathrm{k}=5$, the two lists agree with the exception that certain formulas in the list just given should be replaced with other formulas as shown next.

$$
\begin{array}{ll}
13=720 \mathrm{ca}^{2}(\mathrm{~b})(\mathrm{bb})+360 \mathrm{c}^{\prime} \mathrm{a}^{2}(\mathrm{~b})(\mathrm{b}) & 1=72 \mathrm{ca}^{2}(\mathrm{~b})(\mathrm{bb}) \\
2=45\left(\mathrm{ca}^{3} \mathrm{bb}+\mathrm{c}^{\prime} \mathrm{a}^{3} \mathrm{~b}\right) & 1=120 \mathrm{c}^{\prime} \mathrm{a}^{2}(\mathrm{~b})(\mathrm{b}) \\
1=40\left(\mathrm{ca}^{2} \mathrm{bb} b^{2}+\mathrm{c}^{\prime} \mathrm{a}^{2} \mathrm{~b}^{2}\right) & 1=36 \mathrm{ca}^{3} \mathrm{bb} \\
1=60 \mathrm{c}^{\prime} \mathrm{a}^{3} \mathrm{~b} \\
1=60\left(\mathrm{ca}^{2} \mathrm{bbb}+\mathrm{c}^{\prime} \mathrm{a}^{2} \mathrm{bb}+\mathrm{c}^{\prime} \mathrm{a}^{2} \mathrm{~b}\right) & 1=72 \mathrm{ca}^{2} \mathrm{bb}^{2} \\
1=90 \mathrm{c}^{\prime} \mathrm{a}^{2} \mathrm{~b}^{2} \\
1 & 1=144 \mathrm{ca}^{2} \mathrm{bbb} \\
1 & 180 \mathrm{c}^{\prime} \mathrm{a}^{2} \mathrm{bb} \\
1=240 \mathrm{c}^{\prime} \mathrm{a}^{2} \mathrm{~b}
\end{array}
$$

The procedure is the same for $k=6$ and is clear from our previous rules.

$$
\begin{align*}
& \text { If } m=n+1 \text { and } a_{n}=1 \text {, then it follows, for each } i \text {, that } \\
& c_{i}-c_{i} a_{i}=c_{i}^{\prime} \tag{7}
\end{align*}
$$

where $c_{n}^{\prime}=0$ is taken. In general, even though m and $n+1$ are different integers, we may choose $a_{n}=1$ and assume the validity of equations (7) for each i. Since an obvious requirement is that $m \leq n+1$, this will never lead to a contradiction per se. Under these circumstances, a great simplification occurs in the conditions for $k=1,2, \ldots$, $m-1$. Most equations involving c_{i} can be omitted because of equivalent equations involving c_{i}^{1}. Some exceptions are equations like $1=c a$ and $1=20 c a^{2}(b)(b)$. Further important simplifications can be made by requiring some of the following conditions to be satisfied for appropriate \mathbf{i}.

$$
\begin{array}{ll}
2 \sum_{j=1}^{i-1} b_{i j} a_{j}=a_{i} & 3 \sum_{j=1}^{i-1} b_{i j} a_{j}^{2}=a_{i}^{2} \quad 6 \sum_{j=1}^{i-1} b_{i j} a_{j} \sum_{k=1}^{j-1} b_{j k} a_{k}=a_{i}^{2} \\
4 \sum_{j=1}^{i-1} b_{i j} a_{j}^{3}=a_{i}^{3} & \cdots \cdot
\end{array}
$$

However, this will be treated in detail in the discussion of formulas for a given order.

GENERAL FORMULAS FOR ORDERS BE LOW 4

The formulas in these cases are easy to derive and are simply listed below.

$$
\begin{array}{ll}
\mathrm{m}=0: & \mathrm{Y}=\mathrm{y}_{0} \\
\mathrm{~m}=1: & \mathrm{Y}=\mathrm{y}_{0}+\mathrm{hf}_{0} \\
\mathrm{~m}=2: & \mathrm{Y}=\mathrm{y}_{0}+\mathrm{h} \frac{1}{2 \mathrm{a}_{1}}\left[\left(2 \mathrm{a}_{1}-1\right) \mathrm{f}_{0}+\mathrm{f}_{1}\right]
\end{array}
$$

$$
\begin{aligned}
& \text { m }=3: \quad \mathrm{Y}=\mathrm{y}_{0}+\mathrm{h} \frac{1}{4}\left[f_{0}+(3-6 c) f_{1}+6 \mathrm{cf}_{2}\right] \\
& \mathrm{f}_{1}=\mathrm{f}\left(\mathrm{x}_{0}+\frac{2}{3} \mathrm{~h}, \mathrm{y}_{0}+\frac{2}{3} h f_{0}\right) \\
& \mathrm{f}_{2}=\mathrm{f}\left(\mathrm{x}_{0}+\frac{2}{3} \mathrm{~h}, \mathrm{y}_{0}+\mathrm{h} \frac{1}{6 c}\left[(4 \mathrm{c}-1) \mathrm{f}_{0}+\mathrm{f}_{1}\right]\right) \\
& \text { 2. } \quad a_{1} \quad a_{1} \\
& a_{2} \quad a_{2}\left(b_{20}+b_{21}\right) \\
& \left(c_{0}+c_{1}+c_{2}\right)
\end{aligned}
$$

where

$$
\begin{array}{ll}
b_{21}=\frac{a_{2}\left(a_{2}-a_{1}\right)}{a_{1}\left(2-3 a_{1}\right)} & b_{20}=1-b_{21} \\
c_{1}=\frac{2-3 a_{2}}{6 a_{1}\left(a_{1}-a_{2}\right)}, & c_{2}=\frac{2-3 a_{1}}{6 a_{2}\left(a_{2}-a_{1}\right)}, \quad c_{0}=1-c_{1}-c_{2}
\end{array}
$$

For the last formula, we have detached the coefficients as explained previously. This will be done for subsequent formulas.

GENERAL FORMULAS FOR ORDER 4

In this case, $n=3$ is taken which is its minimum value. Denote

$$
\begin{equation*}
\bar{b}_{i}=\sum_{j=1}^{i-1} b_{i j} a_{j}-\frac{1}{2} a_{i} \tag{8}
\end{equation*}
$$

for $i=1,2,3$, where $\bar{b}_{1}=-\frac{1}{2} a_{1}$. Then three of the seven conditions may be written

$$
c a \bar{b}=0, \quad c^{2} \bar{b}=0, \quad c^{\prime} a \bar{b}=0
$$

As vectors in three space, $c, c a$, and c^{\prime} are orthogonal to the non-zero vector $a \bar{b}$ and hence are linearly dependent. Thus, for $i=1,2,3$

$$
A c_{i}+B c_{i} a_{i}+C c_{i}^{\prime}=0
$$

for some non-zero vector (A, B, C). Multiplying and summing in turn by a_{i} and a_{i}^{2}, we get

$$
\begin{aligned}
& \frac{1}{2} A+\frac{1}{3} B+\frac{1}{6} C=0 \\
& \frac{1}{3} A+\frac{1}{4} B+\frac{1}{12} C=0
\end{aligned}
$$

These equations imply, for each i,

$$
c_{i}-c_{i} a_{i}=c_{i}^{\prime} \text { and } a_{3}=1 \text { since } c_{3} \neq 0
$$

With this information, it is not difficult to derive the complete solution for order 4.
First, $a_{2} \neq 1$. Otherwise, $c_{2}=0$ and $c_{1}^{\prime \prime}=c_{2}^{\prime} a_{2} b_{21}=0$, but this contradicts the requirement that $1=24 c_{1}^{\prime \prime} a_{1}$. Then there are three cases as discussed next.

1. $a_{1}=a_{2}$. Then $1=6\left(c_{1}^{\prime}+c_{2}^{\prime}\right) a_{2}$ and $1=12\left(c_{1}^{\prime}+c_{2}^{\prime}\right) a_{2}^{2}$. Hence $a_{1}=a_{2}=\frac{1}{2}$ and $c_{1}^{\prime}+c_{2}^{\prime}=\frac{1}{3}$. Let $c_{2}=2 c$. In this case, the formula is

$$
\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{12 c}[(6 c-1)+1] \\
1 & {[0+(1-6 c)+6 c]} \\
& \frac{1}{6}[1+(4-12 c)+12 c+1]
\end{array}
$$

The case $1=6 \mathrm{c}$ is the famous Runge-Kutta Fourth Order Formula.
2. $a_{1}=1$. Then $c_{1}^{\prime}=0,6 c_{2}^{\prime} a_{2}=1,12 c_{2}^{\prime} a_{2}^{2}=1$ and it follows that $a_{2}=\frac{1}{2}$ and $c_{2}^{\prime}=\frac{1}{3}$. Then $c_{2}=\frac{1}{1-a_{2}} c_{2}^{\prime}=\frac{2}{3}$, so that $c_{1}+c_{3}=\frac{1}{2}-c_{2} a_{2}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$. Let $f_{3}=c$. In this case, the formula is

$$
\begin{array}{ll}
1 & 1 \\
\frac{1}{2} & \frac{1}{8}(3+1) \\
1 & \frac{1}{12 c}[(12 c-3)+(-1)+4] \\
& \frac{1}{6}[1+(1-6 c)+4+6 c]
\end{array}
$$

3. $a_{1}, a_{2}, 1$ are distinct. In this case,

$$
c_{1}^{\prime}=\frac{1}{24 a_{1}}, \quad c_{1}^{\prime}=\frac{1-2 a_{2}}{12 a_{1}\left(a_{1}-a_{2}\right)}, \quad c_{2}^{\prime}=\frac{1-2 a_{1}}{12 a_{2}\left(a_{2}-a_{1}\right)}
$$

and the formula is

$$
\begin{array}{ll}
a_{1} & a_{1} \\
a_{2} & a_{2}\left(b_{20}+b_{21}\right) \\
1 & \left(b_{30}+b_{31}+b_{32}\right) \\
& \left(c_{0}+c_{1}+c_{2}+c_{3}\right)
\end{array}
$$

where

$$
\begin{aligned}
& b_{21}=\frac{a_{2}-a_{1}}{2 a_{1}\left(1-2 a_{1}\right)} \quad b_{20}=\frac{3 a_{1}-4 a_{1}^{2}-a_{2}}{2 a_{1}\left(1-2 a_{1}\right)} . \\
& b_{31}=\frac{\left(1-a_{1}\right)\left(2-a_{1}-5 a_{2}+4 a_{2}^{2}\right)}{2 a_{1}\left(a_{1}-a_{2}\right)\left(3-4 a_{1}-4 a_{2}+6 a_{1} a_{2}\right)} \\
& b_{32}=\frac{\left(1-a_{1}\right)\left(1-a_{2}\right)\left(1-2 a_{1}\right)}{a_{2}\left(a_{2}-a_{1}\right)\left(3-4 a_{1}-4 a_{2}+6 a_{1} a_{2}\right)}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{b}_{30}=1-\mathrm{b}_{31}-\mathrm{b}_{32} \\
\mathrm{c}_{1}=\frac{2 \mathrm{a}_{2}-1}{12 \mathrm{a}_{1}\left(\mathrm{a}_{1}-\mathrm{a}_{2}\right)\left(\mathrm{a}_{1}-1\right)} & \mathrm{c}_{2}=\frac{2 \mathrm{a}_{1}-1}{12 \mathrm{a}_{2}\left(\mathrm{a}_{2}-\mathrm{a}_{1}\right)\left(\mathrm{a}_{2}-1\right)} \\
\mathrm{c}_{3}=\frac{3-4 a_{1}-4 a_{2}+6 a_{1} a_{2}}{12\left(\mathrm{a}_{1}-1\right)\left(\mathrm{a}_{2}-1\right)} & c_{0}=1-c_{1}-c_{2}-c_{3}
\end{array}
$$

FORMULAS FOR ORDER 5

It will now be shown that the fifteen conditions for order 5 are inconsistent when $\mathrm{n}=4$, the minimum value.

Six of the conditions may be written

$$
c a \bar{b}=c a^{2} \bar{b}=c a^{3} \bar{b}=c^{\prime} a \bar{b}=c^{\prime} a \bar{b}=\left(c a^{2} b+c^{\prime} a^{2}\right) \bar{b}=0,
$$

where the notation (8) is used. In four space, the vectors $c_{j}, c_{i} a_{j}, c_{j} a_{j}^{2}, c_{j}^{1}, c^{\prime \prime}$ and $\sum_{i=j+1}^{n} c_{i} a_{i}^{2} b_{i j}+c_{j}^{\prime} a_{j}$ for $j=1,2,3,4$ are orthogonal to the non-zero vector $a \bar{b}$. Since $c_{4}^{\prime}=c_{4}^{\prime \prime}=c_{3}^{\prime \prime}=0$ by convention, $A c_{j}+B c_{j}^{\prime}+C c_{j}^{\prime \prime}=0$ implies $A=B=C=0$. Hence c_{j}, c_{j}^{\prime}, and $c_{j}^{\prime \prime}$ are independent vectors, spanning the three space orthogonal to the space spanned by the vector $a \bar{b}$.

By a straightforward calculation, we get

$$
\begin{aligned}
& c_{j} a_{j}=a_{4} c_{j}+\left(7-8 a_{4}\right) c_{j}^{\prime}-20\left(1-a_{4}\right) c_{j}^{\prime \prime} \\
& c_{j} a_{j}^{2}=a_{4}^{2} c_{j}+\left(6-8 a_{4}^{2}\right) c_{j}^{\prime}-2\left(9-10 a_{4}^{2}\right) c_{j}^{\prime \prime} \\
& \sum_{i=j+1}^{n} c_{i} a_{i}^{2} b_{i j}+c_{j}^{\prime} a_{j}=2 c_{j}^{\prime}-3 c_{j}^{\prime \prime}
\end{aligned}
$$

for $j=1,2,3,4$. From the last of these equations

$$
c_{4}{ }_{4}^{2} b_{43}+c_{3}^{\prime} a_{3}=2 c_{3}^{\prime}
$$

which, since $c_{4} a_{4} b_{43}=c_{3}^{\prime}$ and $c_{3}^{\prime} \neq 0$, is equivalent to the condition $a_{3}+a_{4}=2$. From the first two equations

$$
\begin{aligned}
& c_{3}\left(a_{3}-a_{4}\right)=\left(7-8 a_{4}\right) c_{3}^{\prime}, \\
& c_{3}\left(a_{3}^{2}-a_{4}^{2}\right)=\left(6-8 a_{4}^{2}\right) c_{3}^{\prime}
\end{aligned}
$$

from which it follows that

$$
\left(a_{3}+a_{4}\right)\left(7-8 a_{4}\right) c_{3}^{\prime}=\left(6-8 a_{4}^{2}\right) c_{3}^{\prime}
$$

Since $c_{3}^{\prime} \neq 0$ and $a_{3}+a_{4}=2$, it follows that $a_{4}=1$ and hence $a_{3}=1$ also. Since $c_{j}-c_{j} a_{j}=c_{j}^{\prime}$, we get $c_{3}^{\prime}=0$, a contradiction.

This contradiction establishes the assertion that all of the conditions cannot be satisfied when $m=n+1=5$.

One procedure at this point is to increase n from 4 to 5 , which introduces additional parameters. This was done by Kutta, whose formula of the fifth order with six evaluations of the function contained an arithmetic error, later corrected by Nystrom.

However, it is not necessary to increase n from 4 to 5 if we adopt a new viewpoint. Instead of requiring that the conditions be satisfied, let us require only that they be approximately satisfied. In other words, if the condition is written in the form $F=0$, then the new requirement is to be that $F=e$ for a sufficiently small e. In particular, for a given order m, the possibility will be examined that all conditions below order m are exactly satisfied, while some or all of order m are approximated.

For $\mathrm{m}=5$, let $\mathrm{a}_{4}=1, \mathrm{c}_{\mathbf{i}}-\mathrm{c}_{\mathbf{i}} \mathrm{a}_{\mathbf{i}}=\mathrm{c}_{\mathbf{i}}^{\prime}$ for $\mathrm{i}=1,2,3,4$, and $\vec{b}_{\mathbf{i}}=0$ for $\mathrm{i}=2,3,4$. Let the conditions below order 5 be satisfied. Then $1=6 c^{\prime} a=6 c a b=3 c a^{2}-3 c_{1} a_{1}^{2}$, so that $c_{1}=0$ since $1=3 \mathrm{ca}^{2}$. Hence $c_{1}^{\prime}=0$. The new requirements then reduce to the following.

$$
\begin{array}{lll}
1=6 c^{\prime} a & 1=12 c^{\prime} a^{2} & 1-e^{\prime}=20 c^{\prime} a^{3} \\
1=2 c a & 1=24 c^{\prime \prime} a & 1-e^{\prime \prime}=60 c^{\prime \prime} a^{2} \\
& 1-e^{\prime \prime \prime}=120 c^{\prime \prime \prime} a
\end{array}
$$

where $e^{\prime}, e^{\prime \prime}$, and $e^{\prime \prime \prime}$ are to be taken small. Since $c_{1}^{\prime}=0,3 e^{\prime}=3-5 a_{2}-5 a_{3}+10 a_{2} a_{3}$ and since $a_{2}=2 b_{21} a_{1}=2 \frac{c_{1}^{\prime \prime \prime} a_{1}}{c_{2}^{\prime \prime} a_{2}}$, we deduce $a_{1}\left(2-5 a_{2}\right)=2 a_{2} e^{\prime \prime}+2 e^{\prime \prime \prime}\left(a_{1}-a_{2}\right)$.

To recapitulate, there are six parameters $e^{\prime}, e^{\prime \prime}, e^{\prime \prime \prime}, a_{1}, a_{2}, a_{3}$ and five requirements, namely $e^{\prime}, e^{\prime \prime}, e^{\prime \prime \prime}$ are to be taken small and

$$
\begin{aligned}
& 3 e^{\prime}=3-5\left(a_{2}+a_{3}\right)+10 a_{2} a_{3} \\
& a_{1}\left(2-5 a_{2}\right)=2 a_{2} e^{\prime \prime}+2 e^{\prime \prime \prime}\left(a_{1}-a_{2}\right) .
\end{aligned}
$$

When these requirements are met, a valid formula may be obtained.
The formula just developed is given by the following schema.

$$
\begin{array}{cc}
a_{1} & a_{1} \\
a_{2} & a_{2}\left(b_{20}+b_{21}\right) \\
a_{3} & a_{3}\left(b_{30}+b_{31}+b_{32}\right) \\
\mathbf{1} & \left(b_{40}+b_{41}+b_{42}+b_{43}\right) \\
& \left(c_{0}+c_{1}+c_{2}+c_{3}+c_{4}\right)
\end{array}
$$

where

$$
\sum_{i=j+1}^{4} c_{i}^{(k)} a_{i} b_{i j}=c_{j}^{(k+1)}
$$

for $j=1,2, \ldots, 3-k$ and $k=0,1,2 ; b_{i 0}=1-b_{i 1}-\ldots-b_{i, i-1}$ for $i=2,3$, 4 ; and

$$
\begin{array}{ll}
c_{1}^{\prime \prime \prime}=\frac{1-e^{\prime \prime \prime}}{120 a_{1}} \\
c_{1}^{\prime \prime}=\frac{-2 e^{\prime}+2-5 a_{2}}{120 a_{1}\left(a_{1}-a_{2}\right)} & c_{2}^{\prime \prime}=\frac{-2 e^{\prime \prime}+2-5 a_{1}}{120 a_{2}\left(a_{2}-a_{1}\right)} \\
c_{1}^{\prime}=0 & c_{2}^{\prime}=\frac{1-2 a_{3}}{12 a_{2}\left(a_{2}-a_{3}\right)} \quad c_{3}^{\prime}=\frac{1-2 a_{2}}{12 a_{3}\left(a_{3}-a_{2}\right)} \\
c_{1}=0 & c_{2}=\frac{1-2 a_{3}}{12 a_{2}\left(1-a_{2}\right)\left(a_{2}-a_{3}\right)} \quad c_{3}=\frac{1-2 a_{2}}{12 a_{3}\left(1-a_{3}\right)\left(a_{3}-a_{2}\right)}
\end{array}
$$

$$
\begin{aligned}
& c_{0}=1-c_{1}-c_{2}-c_{3} \\
& 3 e^{\prime}=3-5\left(a_{2}+a_{3}\right)+10 a_{2} a_{3} \\
& a_{1}\left(2-5 a_{2}\right)=2 a_{2} e^{\prime \prime}+2 e^{\prime \prime \prime}\left(a_{1}-a_{2}\right) \\
& e^{\prime}, e^{\prime \prime}, e^{\prime \prime \prime} \text { sufficiently small. }
\end{aligned}
$$

It is clear that the requirements can be satisfied and that the schema defines a four parameter set of valid formulas of the fifth order with only five evaluations. Each such formula does not qualify in the traditional sense to be called a fifth order formula, but does qualify as a fifth order formula from the new viewpoint and from a practical standpoint. Specific formulas for this and other cases are given in a later section.

FORMULAS FOR ORDER 6

In this case, let $a_{5}=1, c_{i}-c_{i} a_{i}=c_{i}^{\prime}$ for $i=1,2,3,4,5$, and. $\bar{b}_{i}=0$ for $\mathbf{i}=2,3,4,5$. Let the conditions below order 6 be satisfied. Then $1=120 \mathrm{c}^{\prime \prime \prime} \mathrm{a}=$ $120 c^{\prime \prime} a b=60 c^{\prime \prime} a^{2}-60 c_{1}^{\prime \prime} a_{1}^{2}$, so that $c_{1}^{\prime \prime}=0$ since $1=60 c^{\prime \prime} a^{2}$. Similarly, $c_{1}^{\prime}=c_{1}=0$. The new requirements then reduce to the following.

$$
\begin{aligned}
& 1=6 c^{\prime} a \quad 1=12 c^{\prime} a^{2} \quad 1=20 c^{\prime} a^{3} \quad i-e^{\prime}=30 c^{\prime} a^{4} \\
& 1=24 c^{\prime \prime} a \quad 1=60 c^{\prime \prime} a^{2} \quad i-e^{\prime \prime}=120 c^{\prime \prime} a^{3} \\
& 1=120 c^{\prime \prime \prime} a \quad i-e^{\prime \prime \prime}=360 c^{\prime \prime \prime} a^{2} \\
& i-e^{\prime \prime \prime \prime}=720 c^{\prime \prime \prime} \mathrm{a} \\
& 1=2 c a \quad 1-e=180 c^{\prime} a^{2} b b \quad 1-d=90 c^{\prime} a^{2} b^{2},
\end{aligned}
$$

where $d, e, e^{\prime}, e^{\prime \prime}, e^{\prime \prime \prime}, e^{\prime \prime \prime \prime}$ are to be taken small.
Since $c_{1}^{\prime}=c_{1}^{\prime \prime}=0$, it follows that

$$
\begin{align*}
& 2 e^{\prime}=2-3\left(a_{2}+a_{3}+a_{4}\right)+5\left(a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}\right)-10 a_{2} a_{3} a_{4} \tag{9}\\
& e^{\prime \prime}=1-2\left(a_{2}+a_{3}\right)+5 a_{2} a_{3}
\end{align*}
$$

Since $a_{2}=2 b_{21} a_{1}=\frac{c_{1}^{\prime \prime \prime \prime} a_{1}}{c_{2}^{\prime \prime \prime} a_{2}}$, it follows that

$$
\begin{equation*}
a_{1}\left(1-3 a_{2}\right)=e^{\prime \prime \prime} a_{2}-e^{\prime \prime \prime \prime}\left(a_{2}-a_{1}\right) \tag{10}
\end{equation*}
$$

Laborious calculation leads to the following results.

$$
\begin{aligned}
& 1-180 c^{\prime} a^{2} b b=\frac{\left(1-a_{4}\right)\left(1-5 a_{2}\right)+e^{\prime \prime \prime \prime}\left(3-5 a_{2}-5 a_{4}+10 a_{2} a_{4}\right)}{2\left(2-5 a_{2}\right)} \\
& 1-90 c^{\prime} a^{2} b^{2}=\frac{\left(1-a_{4}\right)\left(2-10 a_{2}+15 a_{1} a_{2}\right)+2 e^{\prime \prime \prime}\left(3-5 a_{2}-5 a_{4}+10 a_{2} a_{4}\right)}{4\left(2-5 a_{2}\right)} .
\end{aligned}
$$

From the equations (9), we get

$$
1-a_{4}=\frac{2 e^{\prime}+e^{\prime \prime}}{3-5 a_{2}-5 a_{3}+10 a_{2} a_{3}}
$$

which implies $1-a_{4}, 1-180 c^{\prime} a^{2} b b$, and $1-90 c^{\prime} a^{2} b^{2}$ are small provided e^{\prime}, $e^{\prime \prime}, e^{\prime \prime \prime}$, $e^{\prime \prime \prime \prime}$ are small. Hence equations $1-e=180 c^{\prime} a^{2} b b$ and $1-d=90 c^{\prime} a^{2} b^{2}$ will be satisfied in the presence of the other requirements.

The formula just developed is given by the following schema.

$$
\begin{array}{ll}
a_{1} & a_{1} \\
a_{2} & a_{2}\left(b_{20}+b_{21}\right) \\
a_{3} & a_{3}\left(b_{30}+b_{31}+b_{32}\right) \\
a_{4} & a_{4}\left(b_{40}+b_{41}+b_{42}+b_{43}\right) \\
1 & \left(b_{50}+b_{51}+b_{52}+b_{53}+b_{54}\right) \\
& \left(c_{0}+c_{1}+c_{2}+c_{3}+c_{4}+c_{5}\right)
\end{array}
$$

where

$$
\sum_{i=j+1}^{5} c_{i}^{(k)} a_{i} b_{i j}=c_{j}^{(k+1)}
$$

for $j=1,2, \ldots, 4-k$ and $k=0,1,2,3 ; b_{i_{0}}=1-b_{i_{1}}-\ldots-b_{i, i-1}$ for $i=2,3$, 4, 5; and

$$
c_{1}^{c_{1}^{\prime \prime \prime}}=\frac{1-e^{I \prime \prime}}{720 a_{1}}
$$

$$
c_{1}^{\prime \prime \prime}=\frac{1-e^{\prime \prime \prime}-3 a_{2}}{360 a_{1}\left(a_{1}-a_{2}\right)} \quad c_{2}^{\prime \prime \prime}=\frac{1-e^{\prime \prime \prime}-3 a_{1}}{360 a_{2}\left(a_{2}-a_{1}\right)}
$$

$$
c_{1}^{\prime \prime}=0 \quad c_{2}^{\prime \prime}=\frac{2-5 a_{3}}{120 a_{2}\left(a_{2}-a_{3}\right)} \quad c_{3}^{\prime \prime}=\frac{2-5 a_{2}}{120 a_{3}\left(a_{3}-a_{2}\right)}
$$

$$
c_{1}^{\prime}=0 \quad c_{2}^{\prime}=\frac{3-5 a_{3}-5 a_{4}+10 a_{3} a_{4}}{60 a_{2}\left(a_{2}-a_{3}\right)\left(a_{2}-a_{4}\right)} \quad c_{3}^{\prime}=\frac{3-5 a_{2}-5 a_{4}+10 a_{2} a_{4}}{60 a_{3}\left(a_{3}-a_{2}\right)\left(a_{3}-a_{4}\right)} \quad c_{4}^{\prime}=\frac{3-5 a_{2}-5 a_{3}+10 a_{2} a_{3}}{60 a_{4}\left(a_{4}-a_{2}\right)\left(a_{4}-a_{3}\right)}
$$

$$
c_{1}=0 \quad c_{2}=\frac{3-5 a_{3}-5 a_{4}+10 a_{3} a_{4}}{60 a_{2}\left(1-a_{2}\right)\left(a_{2}-a_{3}\right)\left(a_{2}-a_{4}\right)} \quad c_{3}=\frac{3-5 a_{2}-5 a_{4}+10 a_{2} a_{4}}{60 a_{3}\left(1-a_{3}\right)\left(a_{3}-a_{2}\right)\left(a_{3}-a_{4}\right)}
$$

$$
c_{4}=\frac{3-5 a_{2}-5 a_{3}+10 a_{2} a_{3}}{60 a_{4}\left(1-a_{4}\right)\left(a_{4}-a_{2}\right)\left(a_{4}-a_{3}\right)}
$$

$$
c_{5}=\frac{1}{2}-c_{2} a_{2}-c_{3} a_{3}-c_{4} a_{4} \quad c_{0}=1-c_{2}-c_{3}-c_{4}-c_{5}
$$

$$
2 e^{\prime}=2-3\left(a_{2}+a_{3}+a_{4}\right)+5\left(a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}\right)-10 a_{2} a_{3} a_{4}
$$

$$
e^{\prime \prime}=1-2\left(a_{2}+a_{3}\right)+5 a_{2} a_{3}
$$

$$
a_{1}\left(1-3 a_{2}\right)=e^{\prime \prime \prime} a_{2}-e^{!\prime \prime \prime}\left(a_{2}-a_{1}\right)
$$

$$
e^{\prime}, e^{\prime \prime}, e^{\prime \prime \prime}, e^{t \prime \prime} \text { sufficiently small }
$$

It is clear that the requirements can be satisfied and that the schema defines a five parameter set of valid formulas of the sixth order with only six evaluations (in the sense of the new viewpoint).

EFFICIENT FORMULAS THROUGH ORDER 8

Using the principles already explained, we have derived other formulas. To avoid going into details and to conserve space, we will simply list a spectrum of such formulas, including formulas of the seventh and eighth orders.

$$
\begin{array}{cl}
& \text { Formula (4-4) } \\
-\frac{1}{100} & -\frac{1}{100} \\
\frac{3}{5} & \frac{1}{245}(-4278+4425) \\
1 & \frac{1}{8791}(524746-532125+16170) \tag{11}\\
& \frac{1}{70092}(-179124+200000+40425+8791)
\end{array}
$$

Formula (5-5)

$$
\begin{array}{ll}
\frac{1}{9000} & \frac{1}{9000} \\
\frac{3}{10} & \frac{1}{10}(-4047+4050) \\
\frac{3}{4} & \frac{1}{8}(20241-20250+15) \tag{12}\\
1 & \frac{1}{81}(-931041+931500-490+112) \\
& \frac{1}{1134}(105+0+500+448+81)
\end{array}
$$

$$
\begin{array}{ll}
\frac{1}{300} & \frac{1}{300} \\
\frac{1}{5} & \frac{1}{5}(-29+30) \\
\frac{3}{5} & \frac{1}{5}(323-330+10) \\
\frac{14}{15} & \frac{1}{810}(-510104+521640-12705+1925) \tag{13}\\
1 & \frac{1}{77}(-417923+427350-10605+1309-54) \\
& \frac{1}{3696}(198+0+1225+1540+810-77)
\end{array}
$$

$$
\begin{array}{ll}
\frac{1}{192} & \frac{1}{192} \\
\frac{1}{6} & \frac{1}{6}(-15+16) \\
\frac{1}{2} & \frac{1}{186}(4867-5072+298) \\
1 & \frac{1}{31}(-19995+20896-1025+155) \tag{14}\\
\frac{5}{6} & \frac{1}{5022}(-469805+490960-22736+5580+186) \\
1 & \frac{1}{2604}(914314-955136+47983-6510-558+2511) \\
& \frac{1}{300}(14+0+81+110+0+81+14)
\end{array}
$$

Formula (7-7)
$\frac{2}{9}$
$\frac{1}{3}$
$\frac{1}{2}$
$\frac{1}{6}$
$\frac{8}{9}$
$\frac{1}{9} \quad \frac{1}{151632}(105131+0+302016-107744-284256+1701)$
$\frac{5}{6}$

1

$$
\begin{gathered}
\frac{1}{251888}(23569+0-122304-20384+695520-99873-466560+241920) \\
\frac{1}{2140320}(110201+0+0+767936+635040-59049-59049+635040+110201)
\end{gathered}
$$

Formula (8-10)
$\frac{2}{9} \quad \frac{1}{18}(1+3)$
$\frac{1}{3} \quad \frac{1}{12}(1+0+3)$
$\frac{1}{2} \quad \frac{1}{8}(1+0+0+3)$
$\frac{2}{3} \quad \frac{1}{54}(13+0-27+42+8)$

$$
\begin{align*}
& \frac{1}{6} \\
& 1 \\
& \frac{5}{6} \tag{16}\\
& 1 \\
& \frac{1}{4320}(389+0-54+966-824+243) \\
& \frac{1}{20}(-231+0+81-1164+656-122+800) \\
& \frac{1}{288}(-127+0+18-678+456-9+576+4) \\
& \frac{1}{820}(1481+0-81+7104-3376+72-5040-60+720) \\
& \frac{1}{840}(41+0+0+27+272+27+216+0+216+41) \\
& \text { Formula (8-12) } \\
& \frac{1}{9} \\
& \frac{1}{9} \\
& \frac{1}{6} \\
& \frac{1}{24}(1+3) \\
& \frac{1}{4} \\
& \frac{1}{16}(1+0+3) \\
& \frac{1}{10} \quad \frac{1}{500}(29+0+33-12) \\
& \frac{1}{6} \quad \frac{1}{972}(33+0+0+4+125) \\
& \frac{1}{2} \quad \frac{1}{36}(-21+0+0+76+125-162) \\
& \frac{2}{3} \quad \frac{1}{243}(-30+0+0-32+125+0+99) \\
& \frac{1}{3} \quad \frac{1}{324}(1175+0+0-3456-6250+8424+242-27) \\
& \frac{5}{6} \\
& \frac{1}{324}(293+0+0-852-1375+1836-118+162+324)
\end{align*}
$$

$$
\begin{array}{cc}
\frac{5}{6} & \frac{1}{1620}(1303+0+0-4260-6875+9990+1030+0+0+162) \\
1 & \frac{1}{4428}(-8595+0+0+30720+48750-66096+378-729-1944-1296+3240) \\
\frac{1}{840}(41+0+0+0+0+216+272+27+27+36+180+41) & \text { (17) } \tag{17}\\
&
\end{array}
$$

Formulas (11), (15), and (17) have the orders indicated in the traditional sense while formulas (12), (13), (14), and (16) have the orders indicated from the new viewpoint and only for certain values of h.

REFERENCES

1. Huta, A., Une amelioration de la methode de Runge-Kutta-Nystrom, pour la resolution numerique des equations differentielles du premier ordre, Acta Facultatis Nerum Naturalium Universitatis Comeniarae, Mathematica, Bratislava, 1956. Tomus I, Fasc. IV-VI.

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowedge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
-National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:
SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

