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ABSTRACT 22250

Existence of solutions of two-dimensional boundary-value

problems of the type

Vo = 0 in R,
u(P) = 0 on Iy,
du
- = P,u on I
3 7(Pyu) 29

is discussed under conditions subsequently strengthened for
uniqueness. In general, solutions are shown to lie between a
maximum possible and a minimum possible, which extremes are
obtaingble as limits of sequences of solutions of certain lin-
ear problems. Under convexity assumptions on vy, the unique
solution is shown to be obtainable as a maximum over solutions
of an entire class of linear problems, and is also obtainable
by Newton's method.

Finite difference approximations are shown by a
Gerschgoerin-type analysis to converge to solutions of the above,
at essentially the rate O(hl/s) as h - 0, where h is the
maximum mesh width. The order of convergence is tied to the

smoothness of v, Iy, and Ty, and more general results are

actually obtained. /&L%\}

1i




The two-dimensional Laplace equation was used for simplic-
ity and for conciseness of treatment. Generalizations are in-
dicated in the direction of higher dimensions, more general
elliptic operators, non-homogeneous, non-linesr differential

equations and conditions other than Dirichlet on Ty.
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CHAPTER I

INTRODUCTION

1.1 Object

Mixed boundary problems of the type

Véu =0 in R, (1.1.1)
u=0 on Ty, (1.1.2)

du

— = y(u) on Ty, (1.1.3)

dn

in two dimensions are investigated. R is a bounded two-
dimensional region with boundary fi Lle. Existence of solu-
tions 1s obtained under the mild assumption

lim sup v(u)
faf+ =

<0, (1,1. 4)

which, in effect, permits the replacement of 1y ‘by a bounded
function TO’ having the same values as y within the a-priori
estimates on u made possible by (1.1.4). Uniqueness is €S~
tablished under the additional, more restrictive hypothesis
Ty S O (1.1.5)
The problems of existence, uniqueness, and numerical ap-
proximations of solutions of Dirichlet problems for elliptic

equations with solution-dependent source terms, e.g.




Veu = f(u) (1.1.6)
have received a great deal of attention recently and a number of
results have been obtained, for example, in [1, 4, 9, 12, 13,
14, 18, 20].

Problems like (1.1.1 - 1.,1.3) have received some attention,
for example, in [24] where they are treated from the point of
view of the variational calculus and (1.1.3) is “weakly" satis-
fied, but I have not seen any work on the numerical approxima-
tion to their solutions with estimates of the error in the
approximation.

Techniques similar to those applied to Dirichlet problems
with a non-linear source term and to linear problems with mixed
conditions can be applied to yield the desired results for
problem (1.1.1 - 1.1.3). Thus the existence proof has a pro-
cedure somewhat parallel to that of [18] with results of [14]
and [17] being called upon. Uniqueness is:demonstrated in a
manner snalogous to thet in [9] for (1.1.8). The proof that
the solutions of (1.1.1 - 1.1.3) can be approximated arbi-
trarily closely by solutions of corresponding sets of differe
ence equations is a Gerschgorin-type of analysis. The solu-
tions being permitted discontinuities where Ty intersects
Tos the error estimates must follow lines similar to those set
down by [22] and [21] for Dirichlet problems with non-smooth

2
boundaries. The result here is O[h'CL /(2+qﬂ convergence where




o 1is the HOlder coefficient in the smoothness hypotheses on
Ys Ty and Tp.

CHAPTER II contains the above-mentioned results on exist-
ence and uniqueness of solutions u of (1.1.1 - 1.1,3) and,
under suitable further restrictions on y, & proof of a maxi-
mum operation for u similar to that established in [13] for
(1.1.6). CHAPTER III contains the method of finite differ-
ence approximations and results for them anslogous to those
of CHAPTER II. The error analyses are presented in CHAPTER IV,
and some possible extensions of this paper in CHAPTER V. The
results of CHAPTERS II through IV are then summarized in
CHAPTER VI. Some numerical results are given in CHAPTER VII.

The remaining portion of this chapter is devoted to two
problems from the transfer of heat which can be treated by
proper modifications of the methods given in this paper. A
speclal case of the first is used as a numerical example
illustrating the results.

1.2 Motivation

The first example of a problem which can be put into a
form suitable for analysis by the methods of this paper arises
from requirements of rejection of waste heat into space by
radiation. The heat transfer here is governed by the Stephan-
Boltzmann law and the mathematical model yields

ver = 0 in R, (1.2.1)

T = T, on T71, (1.2.2)




-g-rT-]=_€—; r* on Ty, (1.2.3)

where T(P) is the temperature at points P of R, ¢ is
emissivity, K 1s conductivity, o i1s the Stefan-Boltzmann con-
stant and OT/dn is the derivative in the direction of the
outer normal.

The second example arises from an attempt to keep the walls
of g combustion chamber from melting. In many heat transfer
problems arising in combustion, cryogenlics or in those arising
in combining btoth technologies, large temperature gradlents are
frequently encountered. The solution of the equations arising
from the mathematical model assuming constant materliel prop-
erties no longer represents the temperature at points in the
heat-carrying body.

Assume that part of the boundary is kept at a constant
temperature while the transfer of heat at the remaining portion
is governed by Newton's law. Let the conductivity K >0 be

a function of temperature. Then the equations for the tempera-

ture are
aiv[K(T)erad T| = 0 in R, (1.2.4)
T =T, on Ty (1.2.5)
K(T) T _ h(T T) on T (1.2.6)
an bt g - 2’ . .

where h > 0 is the heat transfer coefficient and, typically,

T

oy the temperature of the gas, is such that Tg > T,..




Under the transformation

T
u=f K(T) aT (1.2.7)
TC

which is 1 - 1, the boundary value problem becomes

Vau = 0 in R, (1.2.8)
du _
S = h[Tg - T(u)] on Ty (1.2.10)

Thus (1.2.4 - 1.2.6) can alsc be placed (by (1.2.7)) into a form
suitable for treatment by the methods of this paper.

The advantage of having a problem of this type in this
latter form becomes apparent upon examining the system of finite
difference equations. The system corresponding to (1.2.4 -
1.2.6) has most of its equations non-linear while that corre-

sponding to (1.2.8 - 1.2.10) has most of them linear.



CHAPTER II

SOLUTIONS OF THE BOUNDARY VALUE PROBLEMS

FOR THE PARTTAL DIFFERENTIAL EQUATIONS

2.1 Existence

Consider
Vey = 0 in R, (2.1.1)
W(P) = 0 on Ty, (2.1.2)
ou
P r(P,u) on Ty, (2.1.3)

where R 1s a bounded, two-dimensional region with boundary
fllJ Pz, consisting of a finite number of smooth arcs. Here
T& denotes the closure of Iy+ As was done for Dirichlet
problems with non-linear source terms by Ievinson [14] and
Parter [18], v(P,u) is to be replaceable by a bounded function
To by requiring that

lim sup y(P,u) <o (2.1.4)
o +o w50 '

Before proceeding to smoothness requirements on y and on
the boundary of R, it is necessary to make some definitions.
A point P of the boundary fIlJ fg is said to have a

barrier function there, if there exists a superharmonic function

wp, continuous and single valued in R, such that

(a) wp(P) = 0,
(b) wp(Q) * 0, for QeR - {Pl.



Fl is said to be smooth if it can be covered by a finite
number of circles in each of which, one of the co-ordinates can
be expressed as a function of the other, the "arc parameter".
These functions are required to have Holder continuous second
derivatives.

Scme smoothness in the form of Holder conditions on deriva-
tives of ¥ with respect to arc parameters and with respect to
the dependent variable is also required. Namely, let there be
a number o« such that 0 < a < 1, and five positive functions

K(M),KO(M),Kl(M),Kz(M), and K3(M) such that for all P,P;, and

Pzel‘z and all u, U, and u, whose absolute value is bounded
above by M,

|Tp(PLsu) - vp(Py,u)| < K(M)|P) - P2|°‘, (2.1.5)

[Y(Bouy) - v(Bup)| < Ko(M)|uy - up|, (2.1.6)

|Yu(Pl,u) - ru(Pz,u)l < Kl(M)IPl-- Pz|“, (2.1.7)

1rg(Boug) - v (Buy) < Ky(M)|uy - ugf, (2.1.8)

IYP(P,ul) - YP(P,u2)| < KS(M)Iul - Us|, (2.1.9)

where Yp denotes the partial derivative with respect to arc
parameter.

Some additional restrictions of OR are necessary to in-
sure existence, uniqueness, and some degree of smoothness of
solutions of some auxiliary problems of this section. Namely,

(1) A barrier function must exist at each point of filJ Do

(ii) The tangents to I'y and T, at the points of Pl(W fé

must not meet at either of the two angles O or .




(iii) I, must be smooth.
(iv) Iy is smooth.

Although used in this section and in section 4.1, this last
hypothesis can be dispensed with, under modifications to be in-
dicated.

It will now be shown that the search for a solution of
(2.1.1 - 2.1.3) may be carried out in a bounded portion of the
(P,u) - space.

Condition (2.1.4) implies the existence of a positive func-

tion n(u) which is decreasing for large u, such that,

lim n(u) = 0O,

o (2.1.10)
which satisfies, for large wu,
Y(u)ls n(u). (2.1.11)

u

Furthermore, ILevinson showed that n could be modified, with-
out destroying these properties, so that un(u) + 4% is in-
creasing for large u (see [14] lemma 3.1).

To derive the a priori estimates, ¢ is postulated as a
solution of (2.1.3). The proof, that ¢ has a bound depending
only on R and vy, depends on the existence of a positive func-
tion ¢ for which upper and lower estimates are svailable, and
the definition of a new function V¥ = w/ﬁ which is shown to be
bounded, in two steps: The first is the proof that any positive

maximum or negative minimum must occur on the boundary FZ' The




second step is to show that these extremes have a bound depend-
{
ing on (.

By Miranda [17], there is a function ¢ continuous in R

"~ which satisfies

Vit = .1 in B, (2.1.12)
t =1 on Ty, (2.1.13)
$

=1 on Ty (2.1.14)

Greenspan [11] and Batschelet [3] use this function to prove
convergence of finite difference spproximations to solutions of
linear mixed problems under enough conditions that ¢ will have
four continuous derivatives. Here, we are only guaranteed that
the first and second derivatives satisfy Holder conditions in
compact subsets of R - Flﬂ -1:‘-2.

Let ¢ %be a solution of (2.1.1 - 2.1.3) and define ¢ by

o= ty. (2.1.15)
Assume that ¢ has a positive maximum at an interior

point P of R. Since at P

VZCP:—'O’
i.e.
SARE A1 R R
we have
vy = -1
=¥
<

>0 (2.1.186)




10

at this point. Thus V¥ must take on any positive maximum on

the boundary. Since ¥ 1is zero on fi, this positive maximum
is possible only on I's. A contradiction is also reached for

a postulated interior negative minimum.

Let M; >0 be such that for u > My, n(u) is decreasing

and
n(u) mai 7 (2.1.18)
Ty
and
Iigfgl < q(u). (2.1.19)

Now suppose Mé, the positive maximum of ¢ at Per is such

that
M, > M. (2.1.20)
Then at P, by (2.1.3), (2.1.14), and (2.1.15),
o r(P,p) 10
§§=[ P 'E&ﬂ*
= EIE%QQ-- %‘Mz (2.1.21)
1 1
Slmxt |
fé
< 0, | (2.1.22)

vhich contradicts the maximality of ¢ at P. Thus (2.1.20) is

false, i.e.

M, <M. (2.1.23)
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Similarly a negative minimum for ¥ on Ts has smaller magni-
tude than M.

So, by (2.1.15), any solution ¢ of (2.1.1 - 2.1.3) has
the a-priori bound

|cp| <Mz = mﬁx £ - M (2.1.24)

which depends only on R and 1. This establishes the fol-
lowing theorem:

Theorem 2.1.1. - If ¢ is a solution of (2.1.1 - 2.1.3),

then ¢ has the a priori estimate

o <™ ¢ M

where ¢ is the solution of (2.1.12 - 2.1.14) and Ml is so
large that n(u) is decreasing for u >M; and (2.1.18) is
satisfied.

This paves the way for the replacement of 7y by a bounded
function 7ygo. In fact, lét M, >Mz +1 and
(v(P, ) Ju] <My (2.1.25)
T(P;M4) if T(P)Mé) <0
To(Bou) = ﬂmax[ 0, 7(P,Mg) - u + My] otherwise}u > M, (2.1.26)

(P, -My) if v(P,-Mg) >0

Smx[O,r(P,-M4) -'u-M4]otherwisé}u-<-M4 (2.1.27)
The hypotheses satisfied by ¥ are also satisfied by To The
easiest to verify are (2.1.5), (2.1.6). A little more work is

required to verify (2.1.11), and this is now carried out.
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For large u but where |u| <My, (2.1.11) is immediate

for y. from (2.1.25). Iet u >My. Then since un(u) + u is

0
increasing,
Man(My) + M, < un(u) + us (2.1.28)
so0 that
YO(P’u) Y(P;Mg) My
= - + —
u u u
My (M M
< .iT]_(__4)_ -1+ 2
2 ” =

by (2.1.19). Therefore by (2.1.28) it follows that

Yo(Ps u)

— < n(w)

Can
[\V]
*
=t
-
[a%)
O

S

The argument is similar for u < -M,. Thus 1o satisfies

(2.1.11). By examining the several cases which arise it can be

seen that the transitions at

u = 7(P,-My) - My, (it v(P,-My) < 0),
u = -M4,
u = My,
u = r(P,M,) + My (it r(p,M,) > 0),

can be made smooth enough so that, besides (2.1.5) and (2.1.86),
Yb satisfies the inequalities (2.1.7 - 2.1.9) without violat-
ing (2.1.11). Since T, does mot differ from y for u <Mz <
My, ® is a solution of (2.1.1 - 2.1.3) if and only if it is a

solution of this set of equations with 7y replaced by Yb.



13

The point of this latter result is that we may proceed to
investigating existence of the solution of (2.1.1 - 2.1.3) with
Y having one more (crucial) property: There is an N }ho such
that for all Pelp and |u| <o,

|v(P,u)| <N (2.1.30)

Let the distance between two sets be defined as usual:

da(A,B) = inf |P - Q

Pe
Q e€B

In what follows, the verious functions =z, say, defined by
solving certain boundary value problems, exist by the results

of Miranda [17]. Here, if the conditions on Iy are written as

2 _ o(p), (2.1.32)

then the first derivative of @& with respect to the arc param-
eter needs to satisfy a Holder condition on compact subsets.

T, of T, vhere d(?z, f%_n ;2) >0, and & to be bounded on
such sets. The results for z in R +then are that z is con-
tinuous in R and its first and second partials satisfy Holder
conditions in compact subsets of R - fi r\fE.

Let wuy be defined for N' >N by

Veug = 0 in R, (2.1.33)
ug = O on Ty, (2.1.34)
dug

—— = N' on Pz. (2.1-55)
on




and

Then

14

Ugy = max uO(P)
PEFZ
k = KO(U‘OM) .

Y(w) - v(w) - k(u - W) >0,

for

“ugy S u W < ygye

Let u ,,(P) be defined in R by

QuUpey

—5 t KWy = T(uy) + kuy

Ve,

Wpyq = 0 on

Examine the case m = 0

Therefore,

Also, on Ty

duy

m+l =

on I‘z:

on T'p,mg 0.

= + kuy = Y(uo) + ku,

Il

v

=

1l

< N? + kuy

—8_1.1.9+ku .

on 0
ulSuO.

-1«:(ul - uy) + v(ug)

Y(uo)
Nt

dug

- — g

on

(2.1.36)

(2.1.37)

(2.1.38)

(2.1.39)

(2. 1. 40)

(2.1.41)

(2.1.42)

(2.1.43)

(2. 1. 44)

(2.1, 45)
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which implies
U = - U
Having proved for m = 1 that
“Ug S Uy S U] S Y0

proceed inductively to the case m + 1: On Ts

(2.1.46)

(2.1.47)

gﬁ (upty = up) + k(g - up)= vlug - vy q) + k(uy - wyq)

<0
so that

Uyt < Up

and

a“‘g;l = k(e - wy) + v(up)

= -N

o)
on

implying (2.1.47) for all m.

(2.1.48)

(2.1.49)

(2.1.50)

Thus, [um] 1s a uniformly bounded, monotonic sequence of

functions. They are, in addition, harmonic, so that by Harnack's

second theorem (Petrovsky [19] p. 178) convergence is uniform in

every compact subset of R and the limit is harmonic.

Since

T& V) Pz is assumed to have a barrier function at each point,

the limit

u= lim w,

m—co

(2.1.51)
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is continuous in R Llfi and takes the value O on .
(Petrovsky [19) p. 184). Using the results of Miranda, it is
possible to sgy more.

Iet >0 and Ry be the compact subset of R - Flrwfz
such that d(§5, flrﬁ FZ) = &

Es = {Pe§|d(P,fln Tz) > 8}, (2.1.52)
Recalling (2.1.42), let
¢ +1(P) = v[Pw, (P)] + kuy,(P) (2:1.53)

for m >0. Then by (2.1.5), (2.1.7 - 2.1.9), the sequence of
first derivatives of the 1 with respect to arc parameter
satisfies a HSlder condition uniformly in ﬁatﬁ To. By
Theorem 6,1 of Miranda [17] the second partial derivatives
satisfy uniform Hdlder conditions in ﬁs and, therefore, the
sequence of second partial derivatives of w, form an equi-
continuous set. There is, then, a subsequence of second deriva-
tives which converges uniformly, so that the boundary conditions
on Fz are satisfied by the limit wu. Furthermore, the first
and second derivatives of u are Holder continuous on compact
subsets of R - 'I:l N FZ'

These last results can be summarized as:

Theorem 2.1.2. - If R is a bounded region of the xy-plane

with boundary fllj Ty satisfying the smoothness conditions (i)
through (iv) on page 7, and Y(P,u) is a function defined for

all Pel"2 and 3ll finite u, satisfying the smoothness condi-
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tions (2.1.5) through (2.1.9) on page 7 and the fundamental
condition (2.1.4) on page 6, then there exist solutions of
(2.1.1 - 2.1.3) continuous in R and having Holder continuous
first and second derivatives in compact subsets of R - T,NT,.

The bases of the existence theorem 6,I of Miranda are
some Schauder-like estimates on spaces of functions which,
with some of its derivatives, are permitted various orders of
discontinuities as points approach flfW fz. If it is desired
to relax the smoothness of Iy (to dispense with (iv) on page 8),
Miranda has other estimates which become more nearly like the
usual Schauder estimates (see Courant and Hilbert [9] p.331 ff.).
The above arguments are modified, chiefly in the definition of
§8’ namely,

Ry = {PeR|d(P,T;) > 8}. (2.1.54)
This gives rise to a modification of Theorem 2.1.2 where the
compact subsets in the conclusion are those of R - T,.

The proof of this theorem could also call upon results of
Agmon, Douglis, and Nirenberg [2], especially on Theorem 12.2,
but more care would have been necessary in defining §6 and
Py since the boundary operators need to be smooth on the
entire boundary.

The solution wu will be seen in what follows to be a

maximum possible solution to (2.1.1 - 2.1.3). In a similar

fashion a minimum possible solution v can also be obtained.
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Briefly, (omitting the details as they are parallel to those

for u) define vy by

vzvo =0 in R,
Vo=0 on fﬂ.:

AV

-0 -I¢ on 1"2.

dn

(2.1.55)

(2.1.56)

(2.1.57)

Define k analogously to (2.1.37) and {(vp} by (2.1.40--2.1.42).

Theh

v=limvm.
00

Let Z be any solution of (2.1.1 - 2.1.3). On T

2

dZ _
3n r(Z)

sw
Letting w = u, - 2, by (2.1.60), since BuO/Bn = N',
¥ > g
on ~

on T so that

29

Z < ug in R.

(2.1.58)

(2.1.59)

(2.1.60)

(2.1.61)

(2.1.62)

To show that Z is bounded above by all iterates U, another

inequality implied by (2.1.6), (2.1.37), and (2.1.39) is needed,

namely, if -upy < u<w < Ugy ‘then
Y(w) - v(u) - k(- w) >0.
Let w=1u, - Z By (2.1.43), on T,

Bul
dn

|

Y(uo) + k(vuo - ul)

1l

T(uy) +k(ug - 2) + k(2 - uy)

Y(ug) + k(ug - 2) - kw.

(2.1.63)

(2.1.64)
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Subtract (2.1.59) from (2.1.64) and obtain

g—;’ +xw = v(5g) - 7(8) - k(Z - wy)

20 (2.1.65)
by (2.1.62) and (2.1.63). Therefore
Z <u. (2.1.686)
Replacing U, by uy and u; by Wil completes the induc-
tion. That is, m >0 implies
Z < uy (2.1.67)
for any .solution Z of (2.1.1 - 2.1.3). The result is
7 < u. (2.1.68)
Carrying out a similar argument with v obtain finally that
v<Z<u, (2.1.69)
for any Z solving (2.1.1 - 2.1.3).
These final results may be summarized as

Theorem 2.1.3. = Under the hypotheses of Theorem 2.1.2, if

the solution u is defined as in its proof, namely, by
(2.1.51), and the solution v by (2.1.58), then v<u and
if =z 1is any solution of (2.1.1 - 2.1.3), then
vS<z<u
This result is like that obtained in Courant and
Hilvert [9], pp. 369-372, for Dirichlet problems for
Véu = f£(P,u) in R,

and later by Parter [18] under more general conditions on f
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and the boundary of R, still however, for Dirichlet problems
for the non-linear Poisson equation directly above.

2.2 Uniqueness.

In addition to conditions (2.1.4 - 2.1.9), imposed to
guarantee the existence of solutions to problem (2.1.1 -
2.1.3), further restrictions must be placed on Y to guarantee
the unigueness of a solution. For an example of a boundary
value problem satisfying all conditions of section 2.1 but
possessing infinitely many solutions, consider the two-point

boundary-value problem,

_d121=o, 0<x<1, (2.2.1)
ax
u =0, x =0, (2.2.2)
= r(u), x =1, (2.2.3)
where
-1, u< -1
Y(u) =(u, -1<u<l (2.2.4)

Here one may take K(M) =1, any a, 0 < o < 1, KO(M) =1 and

n(u) = 1/u. The solution ¢ of (2.1.12), (2.1.13), (2.1.14),

where fl is {0} is

t(x) =1+ 2x - %xz,v (2.2.5)

so that

max g = 2.5, (292.6)
R
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and so
M = 2.5
and the a priori bound (2.1.24) for solutions of (2.2.1), (2.2.2),
(2.2.3) reads
[¢] <Mz = 6.25. (2.2.7)
But there are many solutions of this problem, some of which are
given by
u = ax (2.2.8)
for any |a| < 1. The constant N of (2.1.30) may be taken to
be N = 1. The function uy of (2.1.33), (2.1.34), (2.1.35) is
uy(x) = x, (2.2.9)

so that ugy = 1, k = 1, and therefore for all m >0,

uy(x) = x. (2.2.10)
Therefore, the limit is

u(x) = x, (2.2.11)
and similarly

v(x) = -x. (2.2.12)

So if =z 1is any solution of (2.2.1), (2.2.2.), (2.2.3),
-x < z(x) < x, 0<x<1L (2.2.13)
In order to obtain uniqueness it is further required that
Y satisfies
T,(Pu) < 0. (2.2.14)
Other similar conditions also can be used to deduce uniqueness.

For example, see the papers of Ablow and Perry [1], Kalaba [13],

and Pohozaev [20].
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First, consider the linear problem

Vew = 0 in R, (2. 2.15)
w=0 on Tq, (2. 2.16)
ow
Tl -c(P)w on Ty, (2.2.17)

where c¢ > 0. That any postulated positive maximum or negative
minimum for w must be assumed on ' follows from (2.2.15)
and (2.2.16). If c >0, then either of these postulates con-
tradicts (2.2.17) at the point P* & I» where the postulated
maximum (minimum) occurs. If at P*, ¢ = 0, then consider
defined by

w = Cy (2.2.18)
where { is defined by (2.1.12 - 2.1.14) so that as before,
(sec. 2.1) if ¢ has a positive maximum (negative minimum) it

occurs on T',. But by (2.2.18), (2.1.14), (2.2.17),

%% = -‘lé. at P¥ (2.2.19)

%=—Czl\h P 4 P*. (2. 2. 20)

For either postulate, &y /On will have the wrong sign.

Therefore, the following lemma is obtained:

Lemma 2.2.1. - The linear problem (2.2.15 - 2.2.17) with
c¢(P) > 0, has only the one solution w = O.

Next, suppose the non-linear problem (2.1.1 - 2.1.3) has
two solutions u and v and define

W= u - V, (2.2.21)
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which satisfies

Véw = 0 in R, (2.2.22)
w(P) =0 on Fl, (2.2.23)
gln’ = v(u) - v(v) on TI.. (2.2.24)

By the mean-value theorem, (2.2.24) becomes

%’ = -c(P)w on T, (2. 2. 25)
where
c(p) = 'Yu(P: 9) >0, (2.2.26)

and ¢ is some number between u(P) and v(P). By Lemma 2.2.1,
problem (2.2.22), (2.2.23), (2.2.25) has only the solution
w=0, i.e.
u = v, (2.2.27)
It is possible to get uniqueness even if y is not dif-
ferentiable, by replacing (2.2.14) by
if u<v then 7v(v) < 7v(v). (2. 2.28)
With this and (2.1.6), if u(P) # v(P), the boundary condition
(2.2.25) still holds with
c(P) = 6Ko(M) >0 (2.2.29)
for some 7y such that O <6< 1L
These results can be stated as

Theorem 2.2.1. ~ Under the conditions of Theorem 2.1.2, if

v(P,u) is non-increasing as a function of wu, in particular if

Yﬁ.S 0, then there is only one solution of (2.1.1 - 2.1.3).
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The proof is similar in spirit to that of Courant and
Hilbert [9], pp. 320 - 324.

2.3 Newton's Method and the Maximum Operation.

By strengthening the hypotheses on Y, results may be ob-
tained which parallel those of Kalaba [13] where solutions of
Dirdchlet problems for quasi-linear differential equations, for
example

Py = £(P,u) in R, (2.3.1)
were obtained by Newton's method as & maximum of solutions of a
class of linear equations.

For problem (2.1.1 - 2.1.3), the conditions of Theorem

(2.1.2) are to be supplemented by T, <0 eand

v(u) = maxly(v) + (u - v)y'(v)], (2.3.2)
v

where the prime indicates the partial derivative with respect to
u, i.e., v 1is convex in u. That 7 satisfies the usual in-
equality for convexity can be seen by adding the following two
inequalities resulting from (2.3.2): Let w = (1/2)(u + v).
Then

T(u) ZT[% (u + V)] + (u - wr'(w),

and
r zr[f ] s - aro.

A sufficient conditions for convexity is that Y Dbe twice

continuously differentiable in u and T > 0.
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The property of u being a maximum is-altered to that of

being a minimum if ¥y is concave, i.e., if

r(u) = min[y(v) + (u - V)Y’(v)] . (2.3.3)

v

For the concave case, however, it is mot necessary to
separately require (2.1.4) since it is then a consequence of
(2.1.14) and (2.3.3).

Newton's method applied to the problem of (2.1.1 - 2.1.3)
is carried out as follows. ILet wug be any initial approxima-
tion, good or poor, to u, the unique solution of (2.1.1 -
2.1.3) guaranteed by sections 2.1 and 2.2. Consider the
sequence of approximations [um} defined by the linear problems,
m>1
U, = 0 in R, (2.3.4)

uy = 0 on fl, (2.3.5)

a_ai: = Y(um-l) + Y'(Um-l) (um - um-l) on Tbo. (2.3.6)

To compare u with w, let w=u- u, and note on Ty, that

o pw) - [ * 1 i) (i - )

Syp(ud) + yr(u, ) (- uy ) - [r(um_l) + Y'(%_l)(um-um_lﬂ
by (2.3.2). That is
Vew = 0 in R, (2.3.7)

w=20 on T&, (2.3.8)
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ow

S Y'(qm_l)w >0 on Ty. (2.3.9)

Therefore, because of (2.2.14), w > 0, i.e., for all m > 1

U, <u in R (2.3.10)

independently of the choice of ug;.

To compare Wi with wu,, m > 1 note that on Ty

Ouy
5o = Ylugoy) + (ug - vy )y (uyg)
< vlu,) (2.3.11)
by (2.3.2) and
Ju
—BEL = vlwy) + (ageg - o) T (o). (2.5.12)

Subtracting (2.3.11) from (2.3.12) obtain for w = Wi - Uy
that

%% - v (u v >0 on T,

whereas in R, (2.3.7) holds and on Pl’ (2.3.8) holds, so that
again w > O. That is

Upe1 > Up in R. (2.3.13)

With this and (2.3.10), ™ is a uniformly bounded, monotonic
sequence of harmonic functions and, as in section 2.1, its limit
solves (2.1.1 - 2.1.3). By Theorem 2.2.1 this is the same func-

tion defined by the limit of the sequence defined in section Z.1.
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Since this problem is equivalent to (2.3.4 - 2.3.6) with

Ug = u (so that wuj = u), (2.3.10) implies that

u = max{xll(z.?).él - 2.3.6) with m = 1}. (2.3.14)

If y were instead concave, a similar result with "max" re-
placed by "min" in (2.3.14) would hold for u. Here, of
course, [um} is a non-increasing sequence.

Summarizing,

Theorem 2.3.1. - Under the conditions of Theorem 2.2.1,

namely smoothness and
YuSO’
if v is convex, then the solution of (2.1.1 - 2.1.3) may be

obtained by Newton's method and the maximum operation (2.3.14)

is wvalid.



CHAPTER IIT

APPROXIMATE SOLUTIONS

3.1 Derivation of the Difference Equations.

In this section, difference approximations are made which
lead to systems of algebraic equations whose solution is shown
in Chapter IV, to differ from the solution of the original
boundary value problem by an amount tending to zero with h at
the rate hl/3. Higher order approximations are discussed in
Chapter V.

In what follows it will be convenient to consult figure 1
where ﬁh is displayed. Here Ph has its points circled,

P; has its points with asterisks superimposed, and Ry, has
its points merely emphasized. Dashed lines on this figure in-
dicate sections which are singled out for further treatment in
figures 2 and 3.

To derive the difference equations, a square net of mesh
width h is superimposed on the bounded region R and a sys-
tem of equations is obtained, one equation at each node of the

net. These equations differ, depending upon the relative posi-

tion in the net and three types must be distinguished according

28
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Exhibited points:

O r

h

* *
Ty

. Rh

Figure 1. - Ry
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as the node lies in R, near fl or on PB.

All intersections of flLJ PZ with grid lines will be
considered along with intersections, interior to R, of hori-
zontal grid lines with vertical grid lines, as nodes of the
net.

The totality of all nodes is denoted by ﬁh. Each point
of ﬁh will have its corresponding difference equations (de-
generating on Fl to a mere statement of the functional wvalue

at that point). The notation used here is like that of various

papers of Bramble and Hubbard (see, e.g., [7]). Let (P=TyUTy)

n,=TNEK, (3.1.1)
* = ]P| PR but P h
Ph = (P|PeRy - Ty, but as

a neighbor QelY, (3.1.2)
R, = Ry - (TyV 1‘;). (3.1.3)

The sets Ph and Pﬁ are further decomposed into
Fhl = Ph n-]':‘.l’ (3. 1. 4)

and

Tyo =N Ty (3.1.5)

le and Fﬁz are defined analogously except here the repre-
sentation

* * *

would not necessarily be a disjoint union unless it is re-

quired that those points P which have neighbors in both
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Figure 2. - Points used in interior
approximations.

Figure 3. - Points used in boundary
approximations.
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. * .
Fhl and th be placed in Phl’ thus making
* *
Tpy NThe = @ (3.1.7)

Figure 2, with h; < h, exhibits 5 points singled out by dashed
lines in figure 1, and labelled 0, 1, 2, 3, and 4 in this new
figure. Here, for example, O corresponds to the point Py =
(xo,yo), 1 to the point P, = (xg + hy,yg) etc. Let

Py € Ry U F;. Then either through Taylor's series (see
Forsythe and Wasow [10] pp. 179 ff.) or through an integration
method (Varga [26] pp. 181 ff.) one obtains at the point Pg

the equation

2 2 2111 2112
T+ —=—] ug - -
2113 21.14
h.(h; + hz) T hylhy + hy)

0, (3.1.8)

corresponding to (2.1.1). For PO € le, one or more values

(say wu,) are known to be zero and (3.1.8) reads

2 . 2 N Zul 2u2 i 2u3 o
hyhg ° hohy 0 " hy(hy + nS) ho(hy + hy) hz(hz + hy)
(3.1.9)
For Py e I'yp the equation is merely
ug = O (3.1.10)
For Py € Ry, the equation is the usual
4un = Uy = Uo = Uz ~ Uy)
(4u - m - Uz - w5 - M) _ (3.1.11)
ne

leaving only points in Ty, to consider.
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Following Greenspan [11], either the boundary normal ex-
tended inwardly from PO meets a grid line obliquely at
another node labelled Pl’ or between two nodes. In the first
case, the outwardly directed normal derivative is replaced

simply by

uo- ul
d 2

where d = 0(h) as % » 0 is the distance between PO and Pj.
In the second case, consider figure 3. The normal derivative

at PO is replaced by

up a4y dz

— - U, - uq.
d " a(d +dp) 2 afa; +4ay) L
The equations at these points are thus in one of two forms,

-u
uo_d_l = ¥(Po,ug) (3.1.12)

or

a
29 ) lu2 ) dBul  (Peu)
a d(d, +dp) d(gy + d,) 0270

(3.1.13)

3.2. Solution of the Difference Equations.

The system of equations obtained by combining equations of
type (3.1.8 - 3.1.13) written at all points of Eh where they
apply may be considered in the form

Au = d(u) (3.2.1)

where the matrix A is such that det A# O and in fact, A is

an M-matrix so that
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i1 >o. (3.2.2)
This follows from a lemma due to Varga (see Roudebush [22]
lemma 2, p. 11) since aj5 <O for i # 3, ajy >0, and A is
reducible but has normal reduced form (Varga [26], p. 48) with
irreducibly diagonally dominant submatrices along its diagonal.

Let N %be defined by (2.1.30) and consider ug defined
by
Auy = b (3.2.3)

where b; 1s the same as the ith  component of d(u) in (3.2.1)

unless Pithz. At these points, (3.1.12) (analogously

(3.1.13)) is replaced by

< =N+ 1. (3.2.4)
Then uy >0. Let
k = Ko(llwol)» (3.2.5)
where fuoll denotes
max|ug, ;|
Then
y(u) - v(w) - k(u-w) >0 (3.2.6)
for
- lluoll s v < w < uoll- (3.2.6a)

Define ey m>0 by

A g = blup) (3.2.7)
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th

where the i component of E(Em) i1s the same as that of

d(u) of (3.2.1) unless P;eT}y 5. Here

]

blun) 4 = dluy) , + kluy 5 - upa, )

v(upy) * k(w3 - ey 4)- (3.2.8)
This system of equations can also be written as
22m+1 = d(w,) + «(uy) (3.2.9)
where
K; = 0,P; ¢ Tyo
Ki = ku .,P; € Ty, (3.2.10)
and Z differs from A only in the corresponding rows by

having k added to the (already positive) diagonal element in

those rows, so that
o< il <al, (3.2.11)

Let Py e IYyjp. Then for m = 0, (3.2.9) reads

1,0 - W,1
2 2 —
— g *t kw0 = vy o)+ kuy o

_<_N+ k'uoyo‘f'l

= 90,0 - Yo,1
= ——F—*+ Xy  (3.2.12)

A like inequality holds if the equation at PO were of the

form (3.1.13). At other points of Ry

= .. . = 0. 3.2.13
Zaijumﬂ,j ZalJum,J 0 (3.2.13)

If (3.2.12) and (3.2.13) are combined, one obtains
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~El < Aﬂo:
from which follows

Y < Yo

(3.2.14)

(3.2.15)

If (3.2.9) is again examined in the light of (3.2.15), one ob-

tains

u -
1,0 = u1,1
3 = v(up, o) + k(ug 0 - u1,0)

2 Y(uo, o)

> =N -1

U0,0 - up,1
et

by (2.1.30). Therefore,
Auy 2 -Aug,

so that

-Up S Y.

(3.2.16)

(3.2.17)

(3.2.18)

If (3.2.15) and (3.2.18) is applied to (3.2.6) one obtains

“A(Ez -u) <0
or
L=
This and (2.1.30) implies (as (3.2.17) followed) that
Aup 2 - Mg
or

~4p < Yo

(3.2.19)

(3. 2. 20)

(3.2.21)

(3.2.22)

Repeating the steps leading from (3.2.15) and (3.2.18) to
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(3. 2.20) and (3.2.22) with the subscripts 1 and 2 replaced by m
and m + 1, m > 1, completes the induction, i.e.
“Up S Upyy S¥y S - - S ¥p S U < Yo (3. 2. 23)
Therefore, the components of {}}m} form a bounded monotonic
sequence of real numbers and so have limits. Since only a
finite number of arithmetic operations are involved in each equa-

tion of (3.2.7), the limit vector

u=lim u, (3. 2.24)
M—co

satisfies (3.2.1) by virtue of (3.2.8).

Similarly defining v, by

0
Avy = b (3. 2. 25)

where instead of (3.2.4)

d

is satisfied, and v by (3.2.7) for m >1, obtain a monotoni-

= -N-1 (3.2.28)

cally increasing sequence whose limit

v = lim v, (3.2.27)
M>o0

also satisfies (3.2.1).

It is now shown that any solution of (3.2.1) is bounded from
above by u and from below by v. To this end, let z be any
solution of (3.2.1). Again comparisons of difference expressions
are carried out only on Ty, the only place they might differ.

Subtracting the latter of



from (3.2.4) obtain for w

Therefore
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Z - 27
-SLE-—— Y(Zo)

]

<N+1

zZ s Yy

(3.2.28)

(3. 2.29)

(3.2.30)

(3.2.31)

One more inequality beside (3.2.6) is implied by (3.2.5),

(3.2.6a) and (2.1.6), namely, if - |lugll < u < v < |lugll, then

T

Now let =1 -

U0 = Y11
a4

il

Subtracting (3

Wo— Wl

(w) - v(0) - k(u - w) >0.

By (3.2.8)

Ze

T(ugo) + k(ugg - uy)
T(uge) *+ kl(ugg - 20) + k(Zg - upp)
T(uoo) + k(ugg - zo) - kw,.

.2.28) from this one obtains

T + kwg = T(upo) - v(zg) - k(zg - upo)

by (3.2.31) and (3.

>0
2.32). But this implies
I >0,
zsip

(3.2.32)

(3. 2.33)

(3. 2.34)

(3. 2.35)

(3.2.38)

Induction is completed in the same way as before for (3.2.23)

and the conclusion

is that



z<u (3.2.37)
Similarly,
v <z (3.2.38)

That is, any solution of (3.2.1) is in the "interval" [v,u].
Therefore, the following theorem is established:

Theorem 3.2.1. - Under the conditions of Theorem 2.1.3,

the system of non-linear difference equations, obtained by the
classical five-point scheme at interior grid points and the

elementary approximations (3.1.12) or (3.1.13) to the boundary

equation, possesses solutions. Moreover, there exists a maximal

and a minimal solution, u, v, respectively, such that any solu-
tion z of (3.2.1) satisfies
y<zsuw

3.3 Uniqueness of the Solution of the Difference Equations.

Add the additional hypothesis that 7y 1is non-increasing
in the dependent variable, i.e., if
w <z then 1(z) < v(w), (3.3.1)
(2.2.14) being a special case. Suppose that u and v are
two different solutions of (3.2.1) defined by (3.2.24) and

(3.2.27) respectively. Define w by

]

¥=1u- V. (3.3.2)

Then at all points of Ry

v

w>0 (3.3.3)

where, for at least one point, w; >0 by assumption. In addi-
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tion if this were not true for some point of T}, a contra-
diction is immediate since in that case,
Aw = 0. (3.3.4)

Thus it may be assumed that striet inequality holds for at

least one point on th. For such points Pg

WO—;E = 7(ug) - v(vp)
<0 (3.3.5)
by (3.3.1). So that
AW <O (3.3.6)
This with (3.3.3) implies w = 0. That is,

i

=Y
and since any solution z of (3.2.1) must lie between them,
uniqueness is proven.

Thus there is the result analogous to that of the con-
tinuous case:

Theorem 3.3.1. - If the conditions for the existence of

solutions of (3.2.1)" are supplemented by

Ty £ 05
then there is only one solution of the non-linear difference
equations.

3.4 The Practical Solution of the Difference Equations.

Although section 3.2 covers existence by a proof which is
constructive, if h is very small as compared with the diameter

of R, the algorithm calls for the repeated direct solution of
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large systems of linesr equations. For one-dimensional prob-
lems and, if h is not too small, for two-dimensional problems
as well, the method is practical for use on large computers to
obtain the solution of (3.2.1).

Another possibility also requiring repeated direct solu-
tions of linear systems is Newton's method set up for (3.2.1)
analogously to the way it was done in section 2.3 for the con-
tinuous problem, again under the assumption that Ty = 0. The
advantage of this method is its convergence properties, namely

u - wqll < Kllu - ull? (3.4.1)
whereas the first method's convergence is only linear. A dis-
advantage of this latter method is the fact that the matrix of
coefficients of the linear system of equations is different for
each iteration. Therefore recourse cannot be made to "factor-
ing methods"™ (see Varga [25]) to reduce the number of arith-
metic operations per iteration as can be where the matrix is
independent of m.

A third possibility is suggested by the "simplified
Newton's method" of Collatz [8]. Here (examining the continu-
ous problem, the discrete case being entirely analogous) the
factor 7v'(w, 1) appearing in (2.3.6) is replaced by v'(uo)
and not changed from iteration to iteration as it is in the
ordinary Newton's method. This third method appears "inter-

mediate" to the other two in that the advantages of the first
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in the invariance of the iteration matrix are retained and,
while the convergence properties are not those of the ordinary
Newton's method, they are surely better than those of the first
method if Yy is already a reasonable approximation to u.

Requiring solutions with a fair amount of detail to two-
dimensional problems and with a moderate amount of detail to
three-dimensional problems is becoming increasingly common in
technological applications. In view of this the previously
mentioned methods of cobtaining such solutions for (3.2.1) no
longer become practical. Instead it is necessary to make use of !
some sort of "relaxation technique" for these large order non-
linear systems.

There are some results available on the convergence of

various relaxation methods for systems of non-linear algebraic

(or transcendental, depending on 7Y) equations. See, for ex-
ample, Lieberstein [15], and Bers [5] (where here the systems
arise from a difference method for Dirichlet's problem for
Poisson's equation with non-linear source term) and

Schechter [23].

It is shown here with the aid of Schechter's results, how
(3.2.1) may be solved by a (non-linear) "Gauss-Seidel" type re-
laxation and that even "over-relaxation" is possible. In fact,
the numerical results of section 7.1 were obtained by using the

one-line successive over-relaxation iterative method where only
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one equation per mesh line, corresponding to the mesh point on
the boundary Pz, was non-linear. Thus the tri-diagonal matrix,
which couples unknowns along the line, is partially factored
into a product of upper and lower triangular matrices. The
factoring per iteration can then be completed by solving exactly
this single non-linear equation in a sihgle variable.

To apply the results of Schechter's paper directly, it be-
comes necessary to take advantage of the smoothness of TI's to
transform R into another region RV whose corrésponding

boundary Ft

> is a subset of the xj-axis, x5 = 0. Upon making

the transformation, the discretization is carried out by means
of a square grid whose elements are parallel to the axes, so
that the difference equations on T'py are all of the form
(3.1.12). Having done this, it is possible, after rejecting
the identity difference equations on Tyy, to make A a sym-
metric matrix, which is the point of the above transformation
and a requirement for the application of Schechter's work.

It will be discussed in Chapter V, section 5.4 how sym-
metry of A (truncated) may be obtained without insisting upon
such a transformation.

However symmetry is obtained, i.e., whether by the above
transformation, or by the use of other boundary approximations,

let
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G(u) = %ﬁ(A)y_-% g fui Y(Pi,v)av , (3.4.2)

where here it has been assumed that r'y is a mesh line and has
been divided exactly into subintervals of length h. If the
points of flrﬂ fz turn out not to be nodes of the grid, the
above summation is modified accordingly (being a trapezoidal
approximation of a boundary integral).

A 1is positive definite. If B 1is defined by

_ ¥4 83 5k
P1y % S IaT T Mg T hJ T (Bov)| (3.4.3)
V=uk’

since Yy <0, B is positive definite along with A. Define
r(u) = grad G(u), (3.4, 4)
Then (3.2.1) is equivalent to
(w) =0, (3.4.5)
It can be seen that for u e Ry, the real n-dimensional vector
space,

G(u) Z'hl"z' MN x 1(Ty) (3.4.6)

and R, is a "solvent set". That is, [23], having chosen
arbitrarily u e Rn, u; may be altered, determining a new

u' € R, such that r;(u') = 0. Here A(A) denotes eigenvalue
of A and 1(I'y), the length of T',. M, was defined prior
to (2.1.25) and N by (2.1.30).

The iterative procedure, analogous to the Gauss-Seidel
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process for systems of linear equations, proven convergent in
Schechter [23],is given as follows:

Let E(m) € fyp- Define E(m+l) by

(o o A = o

u£m+l) = uém), k # i, (3.4.7)

That is, the 1th equation of (3.4.6) is regarded as a function
of the i variable and is solved for u; with guessed values
(previous iterate) for all other uj(j # 1) in that equation.
Schechter actually proves that any "free steering” method of
changing i converges, but as a special case, the non-linear
Gauss-Seidel method, consisting of taking each equation of
(3.4.6) in turn, does converge.

Schechter also proves a theorem on convergence of a type
of over-relaxation, but the satisfaction of the conditions of
his $heorem depends very strongly upon the Yy at hand and in-
volves some greater restrictions.

The results of this section may be summarized in,

Theorem 3.4.1. - If the matrix A of coefficients of the

system of finite difference equations (3.2.1) is symmetric and
if Ty is non-positive and satisfies the conditions of the
existence theorem 2.1.2, then the solution of the non-linear
system of equations may be determined by a non-linear Gauss-

Seidel iterative method.




CHAPTER IV

CONVERGENCE OF SOLUTIONS OF THE DISCRETE PROBLEMS

TO THE CONTINUOUS

That the solutions of the boundary value prcblems (2.1.1 -
2.1.3) may be approximated arbitrarily closely by the solutions
of the non-linear system of equations (3.2.1) is proven first
under the restriction Tu S 0. It is then shown that the ele-
ments u, of the sequence generated by (2.1.33 - 2.1.35),
(2.1.40 - 2.1.42) can be approximated as closely as desired by
the corresponding elements u, of the sequence generated by ¢
(3.2.3), (3.2.7). Finally convergence of u of (3.2.24) to u
of (2.1.51) as h - 0 is shown under assumption of uniqueness
of the solution.

Actually, to show convergence as h goes to zero, the
approximating system is modified by rejecting equations written
at points in a circular neighborhood of the corners where the
"Dirichlet boundary" and the "Neumann boundary" intersect. The
radius, k, is taken larger than h but goes to zero with h.
This approach is similar to the one used by Roudebush [22] and

Rosenbloom [21] where equations were rejected near all of a
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non-smooth boundary (assumed merely to have strong barrier
function) to show (see [22], p. 115) that the discrete approxi=-
mation approaches the solution, assumed Hdlder continuous with
exponent a, of a Dirichlet problem for a uniformly elliptic
differential equation, at the rate ho?/2(1+®) yhich is hni/4
if u satisfies a ILipshitz condition.

This modification imposes no hardship on the results of
the other chapters.

4.1 Convergence When vy <O.

It is now assumed that Yu~5 0, that all the smoothness
hypotheses (2.14 - 2.1.9) on Y are satisfied and that ry
and T, are both smooth, the condition on T'; being later
relaxed to get slightly weaker results.
We choose h and k so that
0 <h <k, (4.1.1)
both tending to zero in what follows. A modified grid is now

defined where some of the grid points near the corners Flfﬂ Iy

are dropped from consideration, by setting

— - - N
R = {P e By|a(p,Ty N T,) 2k}
IO = (P e Ry, - RO|there is a Q ¢ R
k € %h " Tk e By > (4.1.2)
such that |@ - P| <h
= _ 20, 10
Rh,k = Rk Ur‘k. .)

For these definitions it is helpful to examine figure 4 which
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is an illustration relative to figure 1 of ﬁh k where k has
)

been taken equal to 2h as an example. The sets Rh, ks Fh,k’

Fz,k’ Fh,k,l’ etc. have the same relation to §ﬁ,k that Rh,

* -

Ph, Ty Fh,l’ etc. respectively, have to Ry, adding the points
0

of Pk to the set Fh,k,l'

A new finite difference boundary problem is defined, in

Rh,k by setting

0

U (P) =0 if Pely (4.1.3)

retaining the original equations at all other points of ﬁh,k'
Its solution Ek is guaranteed unique by Theorem 3.3.1.

The difference function Z is now formed at points Pi of

B,k

Z=0 -u (4.1.4)
where u; = u(Pi) and u 1is the unique solution of (2.1.1 -
2.1.3) guaranteed by the results of CHAPTER II. To estimate the
error in Uy, the part of the matrix operator A of (3.2.1)
which still remains will be applied to Z. For later purposes
call the "truncated" matrix 4. Thus from (3.2.1)

B = AUk~ An

3T - A (4.1.5)

1l

Iet D2 v(Pi) denote any second partial derivative of v
taken at the point Pi' Then results of Miranda [17] show that

there is a constant M2 such that

M2

|D2u(Py) - D2u(Py)]| < = 11 - pa|%. (4.1.86)
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Exhibited points

Th,x,1
Ty, x, 2

Figure 4. - -ﬁh,k
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. . *
To examine the error Z at a point PO € Rh,kLJ Ph,k by

considering the "formal error" AyZ, figure 2 should be con-

sulted. A Taylor's series procedure similar to that of

Roudebush [22] is used:

3 1.2~
u = Uy +hjuy Zhy U (4.1.7)
- l.2=
Uy, = ug + hzuyo + 3 h2 - (4.1.8)
- 1 ~
uz = Uy - hzlyg + 5 hg Uy = (4.1.9)
2
= - + = 4,1.

where, for example, Yo is au/Bx evaluated at the point PO
and Exxl is azu/éxz at some point between P, and Pq.
Subtracting ugy from both sides of (4.1.7) and (4.1.9), divid-

ing (4.1.7) by h; and (4.1.9) by hz, and adding one obtains

Uy - uz - u h h
1-Y _uz-u By 3~
hy * hy 2 Uxl ¥ 3 Uxx3 - (4.1.11)
Multiplying by 2/(hl + hz) and subtracting u o One obtains
2 Y1 - Yo u3 - Yo B (o un)
b, + by Ty hg - Uxxo T W F b o oxxl xx0
hz ~
f T (s T Woo) (4.1.12)

Analogously, operating on (4.1.8) and (4.1.10) one obtains




51

2 (uz - uO Ug - u hy
+
h2

0 ~
5 )"’wo=iz+_h;(uw2‘“wo)

h ~
N = +4h4 (Byys - Yyyo) (4.1.13)

Adding (4.1.12) and (4.1.13) one obtains by (4.1.8)

M h ~
> 2 1 a 3 1% @
| () (Bo) + V2u(Ry)| S [———hl el L Po|® + ¥ by h31P3 - By
h ~ h ~
h, + hy hy, + hy
M
5?2?- h<, (4.1.14)

To examine the formal error at points of Fh,k,z’ figure 3
should be consulted.
let ux 7De the value of u where the normal intersects

the grid line between the points labelled 1 and 2. Then

du a2 3%u
U~ = Uy + 4 ==| + Z_ & =
0 an]o 27 02 (ng) (4.1.15)
as before. Also
2 .2
du dz d%u
u =U.*—d ._] +——.——-(1]) (4.1-16)
2 2 Sy N 2 ayZ 2
2
d 2
up =y + dg _g_;]* + _21 _gyu (ny) (4.1.17)

Eliminating (dux/dy) between these equations yields
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dqup + dauy | _ ddo o |2% ()] + a d%u (1)
d, + 4, =2(d; +q,) |2 32 2 1 3y 2 1
d,ds o
<Lzl (4.1.18)
=22
K
so that
‘u* djug + douy | dqdp o
a7 a4y 24 x2
do M
S'7§ 2, (4.1.19)
k
By (4.1.15),
u
Ux O_Bu + d
% anJ o<k2>, (4.1. 20)

where d < «/2 h. Combining (4.1.19) and (4.1.20) one obtains

for PO € Ph,k,Z’

(8,1) (Bg) = v(ug) + o(§%>. (4.1.21)
Therefore
h
(ALLZ)(PO) = Y[Ek(PO)] - T(uo) * O(’}'{E)
= v (0) [U (Py) - upl + o(i%), (4.1.23)
i.e
|(Zkz)(Poﬂ = O(i%), (4.1.24)

where Ek here has a slightly different meaning than it has in

section 3.2 in that the diagonal elemernts affected have positive
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numbers added which are not constant. Nevertheless, the in-
equality (3.2.11) still holds, and this is the key to the error
estimate in the non-linear case where Yy, < 0 A similar re-
sult holds for the simpler boundary equation (3.1.12) wherever
it may be applied. Here (4.1.17), with the subscript "*" re-
placed by "O" leads to a result like (4.1.24).
For P; e Fg it is already true that
| U (Py) - u(P;)| = O(k%). (4.1.25)
For Pj e Iy y 7 - If
gk(Pi) = u(p;) = 0. (4.1.26)

Compiling (4.1.14), (4.1.24), and (4.1.25) yields
~ o h<
Ak§=o(k) +o—2 (4.1.27)

as h-»0. ILetting k = P and maximizing the order of con-
vergence in (4.1.27) yields finally B = o/(2 + a) and thus

there is a constant M > 0 such that

| A2 < Mh‘lz/(z’“@)g (4.1.28)

where e 1is a vector, all of whose components are 1,

1
e=|: (4.1.29)
1
and |x| is defined by
Ifli = |x5]- (4.1.30)

Since both Ai; and E&} are positive matrices, (4.1.28) and
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(3.2.11) imply

< Mna?/(2+a) ple (4.1.31)

To complete the proof of convergence, it must be shown that the
components of A&}g are bounded independently of h.

Let ¢ %De the unique solution of (2.1.8 - 2.1.10), guar-
anteed to have the same smoothness as u as a special case of
Miranda's theorem.

The vector { 1s defined by

¢ = ¢(P;). (4.1.32)
For PO € Rh,k’ applying (2.1.12), one obtains, in the manner

that (4.1.14) was found, that

(L) (Pg) =1 + o[haz/(zm):' , (4.1.33)
so that, for all sufficiently small h, one has
(4.0) (Pp) 2%. (4.1.34)
Also, for Py € Fh,k,Z’ applying (2.1.14), one obtains, in the
manner that (4.1.24) was found, that
(&) (Po) =1 + o{h“/(zmﬂ (4.1.35)
so that for all sufficiently small h, one again has
(AcL) (Po) 2—%- (4.1.36)
This is surely true for Py € Ih,x,1 since here, A 1is the

identity. Therefore,
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Kle < 2t, (4.1.37)

and by (4.1.31),

1z < P/ (2t (4.1.38)
Now, since € 1s a bounded function, we have thus proved:

Theorem 4.1.1. - Under the hypotheses of the uniqueness

theorem, Theorem 2.2.1, if k = h“/(2+d), Uy converges to the

solution u of (2.1.1 - 2.1.3) at the rate

'Ek.‘ ul - O[;a /(a*Zﬂ .
In particular, if Tu and the second derivative with respect to
arc parameter of the representations of Fl and Lo satisfy
Lipschitz conditions (a = 1) with respect to arc parameter,
then
|, - | = o(nl/3).

4.2 Convergence of the Discrete Iterate to the Corresponding

Continuous Iterate.

Let wuy and v, be respectively defined by (2.1.33 -
2.1.35) and (2.1.55 - 2.1.57) with N' = N + 1. The sequences
{u,} and {v,} are then defined by (2.1.40 - 2.1.42), starting
with ug and Vo respectively. ILet U, and V5 be the
solutions of (3.2.3) and (3.2.25) with E, replaced by Rpk
which implies the replacement of A, b and E by Ak, bk
and Ek’ respectively. The sequences ({U,} and {Vh} are then

defined by (3.2.7), again with A, b(U,), and b(V,) replaced
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by Axs b (Up)s and Dy (Vy), respectively.
The results of section (4.1) already show that U, and
Vo may be approximated arbitrarily closely by I_JO and .YO'

It remains to show that this is also true for u, and W for

n
any n.
Assume that wu, , and v,_; may be approximated by

U

U,.1» and

V.1, respectively, as closely as desired. Tt will
by Up, the argument for v, being completely analogous. Thus,
by hypothesis, for arbitrary € > 0 there is an hy < O such that
for all h satisfying O <h < hO

|01 = vpe1] <e (4.2.1)

where the subscript, k, appearing in the previous section, has
been dropped for simplicity and will not appear modifying func-
tions or sets. Let _Vi’n be defined by

AW, .= E(un-l"’_qn) (4.2.3)

where the ith component of b 1s zero unless P; ¢ Fh2‘ Here

E(un_l,yn)] 1 = Y(Ppup_g) + k[En(Pi) - un_l(Pi)], (4.2.4)

be proven that wu, can then be approximated arbitrarily closely
But by the results of section 4.1, there is an h; >0 such
that for all h satisfying O<h<h

I_V_In - unl < e. (4.2.5) ‘
Tet |

Q=U,-W

U, - W, (4.2.6)
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Then
ARQ= AU - Ay
b(Un) - b(u,,Wy,)

= By Uy W) - (4.2.7)

where %i = 0 unless Pi € Tpo- Here

g(un’gn’ﬂn) = v(P;,Up.1) + k[Un(Py) - Hﬁ-l(rﬁ)] - T(Pi’un-l)

- k[Eh(Pi) - un-l(ra)]‘ (4.2.8)
Thus at these points,

I(AkS_?)(Pi) - k| < IY(Pi,_l_In_l) - Y(Pi,un_l)l
* Uy 1 (Py) - wy (P
< 2k|Up,_1(Py) - uy 1 (By) . (4.2.9)
Therefore if h is such that O < h < min(hg,hy), then
[AQ] <2k e e (4.2.10)
so that, as in section 4.1,
|9;] < 4k € t(p;). (4.2.11)
Recalling that ¢ is a bounded function, the following theorem

holds:

Theorem 4.2.1. - Without the assumption 7y, < O, the iter-

ates u, for the continuous problem (2.1.1 - 2.1.3) and the

n
iterates Hk,n for the discrete problem AUy = d,(U,) are
considered. If k = h“/(2+“), then
2/(
_ a 2+c)]
lgk)n -y o= O[; / ’
for n >0. Similarly, this is true for the iterates Vyx n and

Vn.
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4.3 Convergence of the Discrete ILimit Function to the Continuous

Limit PFunction

Under the assumption that the solution to (2.1.1 - 2.1.3)
is unique (but not necessarily assuming that Yu S 0) it is now
shown that, if Uy 1is defined by AUy = & (Uy) where k =
hg/(2+a) and u by (2.1.51), u can be approximated as closely
as desired by Uj; by letting h go to zero.

If v 1is defined by (2.1.58), then uniqueness of u
implies that

u=v “(4.3.1)

Although not done in the previous sections (e.g., 4.2, 3.2)
it now becomes necessary to subscript U and U, with k.
That is, in CHAPTER ITII, where they were first discussed, U,
and U were defined for a particular h. Let e > 0. Then

from the results of CHAPTER II prior to Theorem 2.1.2, there is

an N; such that for all P e ﬁh,k and n > N,

ugun<u+-€é. (4.3.2)

By section 4.2 there is an hy > 0 such that for all h with

O0<h< hl and all P; € Rh,k

Un,x - u,| < 3 (4.3.3)
Therefore, for these n and h
€
U SUpx Sy tzsute (4.3.4)
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Similarly there are No, h2 such that n >Ny, 0 <h < hp
implies

V-es v -

ojm

< _Yn’k < V- (4.3.5)

Equation (4.3.4) implies

U - uge (4.3.86)

Equations (4.3.5) and (4.3.1) imply
U-Uy=v-T <v-V <e (4.3.7)
But (4.3.6) and (4.3.7) are the results desired. That ig, if h

is such that O0<nh < min(hl,hz), then

[V - u| <e (4.3.8)
at all points of ﬁh,k'
The result is
Theorem 4.3.1. - If there is only one solution, u, of

(2.1.1 - 2.1.3) then Uy, converges to u as h - 0 if
k = ha/(2+“), i.e., for points of ﬁh,k’

U, - | = o[hﬂz/(z*"a)].



CHAPTER V

GENERALIZATIONS

The results in this thesis thus far are stated for the
Laplace equation in two dimensions for mixed boundary condi-
tions which are in part Dirichlet. Extensions to more general
elliptic equations, with non-linear source terms, extensions
to higher dimensions, and extensions to more general assumptions
on the boundaries and boundary conditions can be carried out in
some spots very simply in others with some difficulty.

Although the numerical analysis was carried out on the basis
of the classical five-point difference approximation to the
partial differential equation on square networks, it can be
extended in the wvarious directions taken in recent years by
workers (for example Bramble and Hubbard [7] and Roudebush [22])
in this field. The purpose of this chapter is to indicate the
directions of generalization.

5.1 Higher Dimensions.

Although the discussion in this thesis was carried out
assuming everywhere that the equations were in two independent

variables, almost all arguments could have been carried out for

60



61

differential equations in n-dimensional space. One reason for
not writing it all for n varilables is the gréater length of
the expressions which would result in the numerical treatment
starting in CHAPTER III, as, for example, for (3.1.9) and the
correspondingly larger increase in detail in the arguments for
the error estimates, as, for example, the arguments leading
from (4.1.7) to (4.1.14). Most of the references are either
already in n-dimensions, have statements indicating the exten-
sion of their results to n-dimensions, or can be extended to
n-dimensions.

As an example, consider Miranda's work [17] which is basic
to this paper. The results here are stated in m-dimensional
space and carried out in great detail under the assumption
m > 3, with statements about where arguments have toc be modified
for the case m = 2. Two reasons for this are the difference
in form of Green's functions appearing in them, and the neces-
sity of considering the hypergeometric function for m > 3,
the case m = 2 Dbeing much simpler.

Probably the greatest difficulty would arise in the deriva-
tion and treatment in the error estimates of the difference

equations on I where the non-linear boundary conditions

2
apply, if they are to be set up analogously with the two-
dimensional treatment here.

5.2 Partial Differential Equations.

Although ILaplace's equation was treated throughout this
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paper, immediate extensions can be made to more general homo-
geneous equations and to their non-homogeneous counterparts.
In fact the paper upon which this thesis rests most heavily,

Miranda [17], treats partial differential equations of the form

m m
d%y Ju _
aik(x) 5§;_§§; + bi(x) 3;; + c(x)u = f(x) (5.2.1)
k=1 =1

where (a;,) is positive definite in all of R and satisfies
conditions similar to those of uniform ellipticity. The coef-
ficients in addition satisfy certain Holder conditions in do-
mains not containing fi F)f% permitting certain orders of
approach to infinity as the distance of these domains from
flf\ fé approach zero.

Again, the greatest difficulty appears to be in the numeri-
cal analysis and will require scme relaxing of the class of
difference approximations. This aspect is treated in section
5.4.

5.3 Boundary Conditions.

Miranda indicates some ways to weaken the smoothness re-
quired of ¢ (and thus for the @ = of section 2.1) in the

boundary conditions (corresponding to (5.2.1))

B e %) %i“ + B(x)u = 9(x) (5.3.1)
k=1 .
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on TIy. Pursuing this would lead to convergence (in the sense
of CHAPTER IV) of a lower order.

Stampacchia [24] discusses variocus weak ways of satisfying
the boundary conditions and discusses non-linearitieg in both
partial differential equation and boundary conditions from the
point of view of calculus of variations.

With regard to ry there are also some directions of
generalization:

(i) The type of boundary condition may be other than
Dirichlet. For example

—2—% = a(uo -u), a >0, (5.3.2)

is a possibility and does not lead to too much difficulty in
the numerical analysis as monotone properties are still present
and boundedness of the inverse independently of h still holds.
This is an especially useful generalization in applications to
heat transfer.

(i1) rp = #. In other words, the non-linear Neumann
type of conditions is permitted all around. Here some addi-
tional restrictions need to be made on Yy for existence as
well as uniqueness.

(iii) Relaxation of smoothness of e Here the results
of this paper need to be combined with those of Roudebush [22]
and results obtained are the essentially O(hl/4) convergence

obtained there.
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5.4 Difference Equations.

Here, a generalization can quickly be made since it will
be recalled that (3.1.11) was not even analyzed in CHAPTER IV.
That 1s, the mesh might as well have been assumed not neces-
sarily square, but rectangular, to begin with, gaining the
advantage of possibly "fitting" the domain R a little better
by Ry. Convergence 1s then analyzed on the basis of

h = max hj. (5.4.1)

Other mesh patterns have been considered in the past
with varying degrees of success. It might be advantageous
to consider them here since an arbitrary triangulation of R
could possibly "fit" it better and is amenable to differencing
based upon the integration technique. (See Varga [26], p. 184).

It would certainly be advantageous to consider the inte-
gration technique since it takes boundary conditions with
normal derivatives without difficulty and produces automatically
a symmetric matrix. This is the ideal situation for the appli-
cation of Schechter's iterative method's. Some error analysis
needs to be carried out yet for this type of boundary condi-

tion treatment.



CHAPTER VI

SUMMARY AND CONCIUSIONS

This thesis is concerned with solving Laplace's equation
with mixed boundary conditions, part Dirichlet and part Neumann,
in bounded two-dimensional regions. On that part of the
boundary where the normal derivative enters, it is a non-linear
funetion 71 of the solution itself. Such boundary value
problems have solutions under some, not too restrictive hypoth-

eses on the smoothness of 7Y, including the condition

1lim sup y(P,u) <0 (6.1.1)
o v w0 +

and on the smoothness of the boundary.

A constructive existence proof is carried out giving two
solutions, (possibly equal) the largest possible and the
smallest possible, as limits of two sequences of functions
satisfying two sequences of linear boundary value problems
related to the original. When

Ty < 0, (6.1.2)
there is only one solution and thus the two limits are equal.

The intention of this research was to prove that the
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application of finite differences could be made to elliptic
equations with non-linear boundary conditions, with a background
of mathematical certainty that the functions so obtained are
near those which are the solutions of these boundary value
problems. This is carried out rigorously in the fourth chapter,
using the most elementary differencing method based upon the
classical five point scheme, as modified in the third chapter

to fit problems of this type. Although the exponent is not
large, suggesting the need for large numbers of points to get
moderate detail in the solutions, numerical results suggest

that with more care, better convergence of the solutions of the
difference equations to that of the original problem is obtained

in practice.



CHAPTER VII

NUMERICAL EXPERIMENTS

7.1 Radiation of Heat to Space.

The following example arises from the necessity of reject-
ing waste heat into space. It represents a section of a rec-
tangular radiating fin.

It is required to find approximations to the temperature
field, considered essentially to be two-dimensional and satis-

fying the following equations

V2T = 0 in R: 0<x, y<1, (7.1.1)
oT _ x=0, 0<y<1,
-0 o Tof y oo o<x<1, (7.1.2)
T=1 on Ij: x=1,0<y<1, (7.1.3)

4
T T > 0
g—n={0 ’TT<‘O}On piy=10<x<1, (7.1.4)
M

in what is really only the first quadrant portion of a square
two units on a side, but considered as above because of the
symmetry of the original problem.

Define

1
Cl(xﬁy) =2 - x4+ 7 y2, (7.1.5)

&7
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which satisfies

gg— 0O on Tos

y2 on I,

ue
1l
}_l
..|.
N

1
1 on Pz.

(7.1.8)

(7.1.7)

(7.1.8)

(7.1.9)

Therefore, if € 1is to be defined by (2.1.12 - 2.1.14) on the

entire 4-quadrant configuration, (7.1.6 - 7.1.9) implies that

€<X;Y) < Cl(x)y)

for (x,y)eR.

(7.1.10)

To place this in a form where the a priori estimate of

section 2.1 may be obtained, it is necessary to define

T=T +1,

and

Problem (7.1.1 - 7.1.4) is then rewritten as

VPr, = 0 in R,

oT,
on

O on Iy,

Tl = 0 on INE

Tl by

(7.1.11)

(7.1.12)

(7.1.13)

(7.1.14)

(7.1.15)
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oT
Sﬁi = Y(Tl) on TIsp. (7.1.18)
Then for -1<T; <O,
r(T,)
1 4 1
T, 1 T,
ST
1]
Therefore, if we take
1
R
n(u) = L (7.1.17)
OE |u] > 1,

where m > 1 1is free to be chosen, all conditions of section
2.1 are met.
Since

max {. = 2.5, (7.1.18)
= 1
Iy

it is possible to take N& any number such that
Mi > 1, (7.1.19)
simply by meking m large enough in (7.1.17). Thus

M: = 2.5, (7.1.20)

|7y < 2.5, (7.1.21)

so that

|T|] < 3.5. (7.1.22)
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This is a coarse estimate in this case, which is subject
to some improvement, perhaps, if { were used instead of gl.
However, applying the strong maximum principles (see Bers,
John, Schechter [5], p. 151) shows that

|| <1 in R. (7.1.23)

The boundary value problem was replaced by a system of
finite difference equations following the methods of section
3.1. A square mesh of mesh width h was used and was so
situated in the square that the edges were parallel to the
grid lines and of distance h from the resulting f;.

Equations near the corners were not rejected as required
for the convergence proof of CHAPTER IV but left in for ease
of programming. The numerical results presented show that, at

least in this case, convergence as h - O 1is still possible.

h Error | Apparent
order

1/4 |0.01211| =----
1/8 .00797 | 1.52
1/16 | .00468| 1.70
1/32 | .00264| 1.77

The third column of this table is obtained by replacing (by
assumption) the inequality implied in (4.1.39) by equality
and the exponent by an unknown, o, the "apparent order",

namely we assume

a
lerror|| = € = Mn a

and solve for o s based on the second column.
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As already announced in section 3.4 this example was
solved by a line-by-line successive over-relaxation scheme
(8.0.R.). A series of experiments on some rectangular problems
indicate that, as in the linear case where optimum values are
obtainable rigorously, there is a value for w, the S.0.R.
parameter, which is optimum. This is taken in the sense that
any other value leads to more iterations before the error in
an aribtrary initial approximation 1s reduced to an acceptable
level.

In conclusion, this numerical example has strengthened
this thesis in indicating, that the predicted convergence of
approximate solutions to the solution of the continuous, does
indeed take place in practice. However, it serves to point
up its weaknesses and thus indicate further directions for
research. First, it should be possible to prove that one need
not reject equations near the corners and an approach using
"smoothing" operators might apply here as it did in Parter [18].
Secondly, scomething should be possible in analytically pre-

dicting a value which is optimum for the relaxation parameter.
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