
NOTES ON THE RESTRICTED THREE BODY PROBLEM:

APPROXIMATE BEHAVIOR OF SOLUTIONS NEAR THE COLLINEAR

LAGRANGIAN POINTS

C. C. Conley

Introduction

The purpose of these remarks is to .describe in some detail the

geometry of solutions of the restricted three body problem (as viewed

in the rotating coordinate system) near those equilibrium points which

are collinear with the two positive masses.

We deal only with the linearized equations, but make some quali-
tative observations which can be carried over without difficulty to the

nonlinear equations for suitable values of the Jacobi Constant.

This report is intended tO be the first in a series whose ultimate

aims include an existence proof for the "periodic" solutions discovered

numerically by M. Davidson [1]. Whether or not this can be accom-

plished remains to be seen, but it does seem clear that a thorough

understanding of the behavior of orbits near the equilibrium point will

be required. More will be said about this question in later reports.

From the work in this report we obtain the following qualitative pic-

ture of solutions of the linearized equations for values of the "Jacobi

Constant" slightly above that of the equilibrium point.

The projections of orbits into the configuration space are constrained

to lie in the region R between the two branches of a hyperbola symmetric

with respect to the line, f, joining the positive mass points, which line
is contained in R.

We will generally restrict our attention to the portion of the phase

space corresponding to a closed interval I of _ about the projection of

the equilibrium point. Recalling that the value of the integral is fixed,
we will see that this portion of the phase space is homeomorphic to
Sz X I (S z is the two-sphere) and so may be viewed as the space between

Z-concentric spheres together with the bounding spheres.
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If I is large enough we will see there there is exactly one closed

orbit in this portion of the phase space. This corresponds to one of the

family of periodic solutions which are known {by a theorem of Lyapounov)

to exist in a neighborhood of the equilibrium point even for the nonlinear

equations.

There are four "cylinders" in the phase space which abut on this

periodic orbit and which are invariant under the flow. Two of these run

to the outer bounding sphere and two to the inner. One of each of these

two pair of cylinders corresponds to a family of solutions which is asymp-

totic to the periodic solution as the time goes to +oo; the others to fami-

lies asymptotic as time goes to -0o. These cylinders act as separatrices.

They separate those solutions which go from the inner to the outer sphere

(or vice versa) from those that do not: in the language of the configura-

tion space, they separate those solutions which make a transit of the

region of the equilibrium from those which do not cross this region.

(The existence of such cylinders for the restricted problem is apparent.

From a theorem of J. Moser [2] it can be seen that they are described by

real analytic functions near the equilibrium point.)

The projection of these cylinders into the configuration space covers

the union of two infinite strips the boundaries of which are the envelop-

ing lines of the solutions asymptotic to the periodic solution (figure I).

These four enveloping lines (which are tangent to the hyperbolas bound-

ing R as well as to the periodic orbit) divide R into several regions

and we will be able to determine the nature of solutions in these differ-

ent regions. Further description will be easier to give later.

An amusing result is that exactly one solution from each of the four

cylinders of solutions asymptotic to the periodic solution has a cusp

(as viewed in the configuration space). A modification of this statement

holds as well for the restricted three body problem. These four cusp

points determine arcs on the hyperbolas bounding R, and any solution

which cusps on these arcs is making a transit of the equilibrium region.

A statement which is perhaps a little more useful is that there are

two unique solutions which are "best" for making a transit of the equili-

brium region in that they take the least time. One of the (possible) dif-

ficulties in using orbits which correspond to the solutions of M. David-

son is the amount of time it is possible to spend in the region of the

equilibrium. • It may be useful to have a simple criterion for decreasing

The values of the Jacobi Constant considered here are small relative

to the ones usually considered.
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this time. An approximate means to determine the "best" orbit is given

in statement eleven; a more accurate one could be derived using the

result of J. Moser [Z].

As stated above, these remarks have been collected primarily with

a view to later applications. However, it is hoped they are of some

value in themselves in gaining insight into the nature of solutions of

the restricted three body problem.

1. The Equations

Without going through the arguments, we can state that the linear-

ized equation near the equilibrium points in which we are presently

interested form a hamiltonian system with Hamiltonian function:

(i) 1 )z )2H{Xl,Xz,Yl,Yz) =_- {(Yl-C0xz + (Yz+¢_xl - axlz + bxzz}

(¢0, a, b are positive constants)

The equations are

(z)
x= Hy

= -Hx.

In these equations, _ is the frequency of rotation of the coordinate

system; we assume _ is positive.

The constants a, b will be arbitrary positive constants in our dis-

cussion. In the case of the equilibrium point between the two positive

masses of the restricted problem, a = Zb. _ If the mass ratio is that of

the Earth and Moon, then with ¢o = 1, a is slightly larger than 8.

We introduce the following notation:

(3)
8 = (x,,xz,y,,yz)

-a 0 0 1 (I 0
S : ( 0 b ); I= (-1 0 ) ; I:.0 1 );

This statement is also true of the other two equilibria considered,

however, the next is not.
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0 I
_= (-I 0 ) (3)(cont.)

¢o21 + S _I
z = (_I I)

Our equations are then written as

^ 1
H(_) = ; (_, _._I)

:Jfi-, = Jz_.
U

(4)

Now to make the computations easier we introduoe the non-canonical

transformation

_ = Au

A=t 0i )

(5)

The equations then transform to:

= Bu

- o IB = A IJZA = ( -2_]"

(6)

and the integral is given by

H(u) H(Ad') = 1= _(u, _u)

E = ATzA = (S 0
0 I)

(7)

If we now write u = (xi,xz,zi,zz), the equations above give _, = zz.

Thus ifwe consider projections of orbits in the x-plane, z = (zl,zz) cor-
responds to the tangent vector.

Inthis notation we have for the integral:

1 2 x# + bx_)H(u) = _(z, + zzz - a
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Z. The Phase Spa, ce

We will be primarily interested in those orbits for which

(8) H = h > 0,

and will describe the projections of these orbits in the x-plane.

Statement 1. a) For H = h, the projected orbits arc constrained to move

in the region R giv.en by

R: -a x_ + bx z < h.

b) If h >_ 0 R is a connected region, otherwise it has two components.

c) If h > O, the phase space is homeomorphic to Sz X E' (Sz is the

Z-sphere, E' the real line). We will be most interested in that part of the

phase space for which [xl I < c > O. This region can be considered as the

space between two concentric spheres including the boundaries.

Proof: Only part c) needs comment. To see this statement, consider the

line x i = c I. On this line we have

+ + b - Zh+

So the corresponding points in the phase space form a Z-sphere. The rest

follows.

3. Computations

Statement Z. a) The matrix B has one pair of real eigenvalues and one

pair of imaginary eigenvalues. These we denote by

+__, +_iv where _,v >0.

b) The corresponding eigenvectors can be chosen to be:

-_ iv -iv

Vl = v2 = Wl = iv WZ "Wl= -iv
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where

c)

where

d)

where

(Note:

and T are real, v >0; T < 0 (cf. e) ofthis Statement)

The general solution is of the form

u(t) _,e_tv, + _ze -_t m= vz + 2Re _,elVtw,)

_*,_z are real, 13 is complex.

The value of the integral on the solution is

1 (u(t),E u(t))= Otlocze I + [6 [Zez
Z

e)

e I - (v,, E vz)

ez = (w,, Ewz)

the inner product is the real one even when vectors are complex. )

The constants _, v, 6, T, el, ez satisfy:

I) a- Z_0v_- _z; in particular, _t> 0

Z) -l_r+ 2to_= z_

3) a + 2wTw--- vZ; in particular, T < 0

4) -bT + Z_V = --vZT

5) (V, Evi)=-a+ l_rz +Ixz +_z_z = 0

6) (w, Ewx)=-a- br z - v z + vZ'r z = 0

7) (v, E wl) = -a + ibro-+ i_v - _rv = 0

8) e, = (v, E Vz)=-a-by z -_z +_z_z

= _Z(b_Z + z) < 0

9) ez -(wlEwa)=- a+bT z +v z +VZT

= Z(bv z +v z) >0
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10) Zab(v z +Tz);ez(a+ by z)

llJ _Tv ; a ; bTv =- _v (from 7))

0 I
Proof of Statement Z: (Recall B = (_S -2¢0J )

To prove parts a) and b) and equations 1) - 4) of e), we first observe

that any eigenvector must have a non-zero first component which we can
take to be 1. The form of B then forces the eigenvector to be

u z {1, p, k, pk} where k is the eigenvalue. Now the last two equations

in the system Au = ku require that

a - 2¢okp : kz

-bp+ 2cok z k zp

Elimination of p gives

k4 + (b-a+ 4_ z)k z - abz 0

and parts a) and b) as well as the first two equations of part e) follow.

Part c) needs no comment.

Parts d) and e) follow from general considerations:

Lemma 1. Let v and w be eigenvectors of the matrix J_. where Z

is symmetric and J is skew symmetric and orthogonal, and let the cor-

responding eigenvalues be k and _ respectively.

Then either

or

Proof: Since _ is orthogonal,

(v,r.w) = (_fv,Y r.w) - _(:fv,w)

(Zv,w) = (Yzv, Jw) - x(v,.¢w).
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The result follows by the symmetry of _, and skew symmetry of J.

To apply this lemma to our problem we use the fact that, since
B --- A-1j 2: A, the vectors Av i and Awi are eigenvectors of _ Z. (The

notation is that of § 1. )

Part d} and equations 5) through 9) of e) now follow. The remaining

equations and statements in e) are proved with a little algebra. The

harder ones will be seen geometrically later so the computations are
omitted.

Statement 3. If u(t) is a solution such that u(O) = (xx,xz, z,, Zz ),

then the constants a, _ (Statement Z, c) are given by.:

ela, =- ax, - b_xz - _zl + _Zz = (u, Evz)

elaz =- axl + b_xz + _zl + _zz = (u, E vl}

ez_ -- - axI - ibTXz - ivz, -VTZz x (U, EWz)

Proof: This follows on dotting the equation

u(O) = a,v, + azVz + _w, + _wz
with

Evz, Ev,, Ewz respectively, and using 5)- 9_of Statement I).

where

Statement 4. (Recall that

H(u) = 1 {z_ + zzz -ax# + bxza }

= alazel + ll31'-e,_

e, < 0; ez > 0).

Consider the projection in the x-plane of solutions in the integral
surface

H(u) = h> 0

The solutions in the integral surface divide into classes as follows:
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I) The (unique) periodic solution: _, = _z - 0

Z) Solutions which are asymptotic to the periodic solution as t--0o

(t_ -co):

_, = 0 (_z - O)

3) Solutions whose x, component tends to + 0o (- oo) as t -_ +_0o:

ax,_z > 0 (_,,_z < 0).

These are solutions whose projected orbits in the x-space lie
in ahalf space xl > c or x, <c. They do not make a"transit" of the

equilibrium region.

4) Solutions whose x, component goes from -oo to + oo (+ oo to

-co) as t goes from -oo to +oo:

=, > O, _z < 0 (_, < O; =z > 0).

These are the solutions which do cross the equilibrium region.

Proof: By inspection of the corresponding general solution.

We are particularly interested in the solutions of class 4) which, in

the case of the equilibrium between the two positive mass points, can

be interpreted as solutions going from the earth side of the equilibrium

to the moon side (or vice versa). Clearly the most "efficient" {least time

expenditure) such orbit is that for which _ = 0 since the "_-portion" of

a solution contributes only useless oscillation -- we will come back to this

point later.

Interpretation for restricted Problem:

Solution i) corresponds of course to the periodic solution about the

equilibrium point of the restricted problem whose existence is guaranteed

by a theorem of Lyapounov.

The solutions of Z) correspond to the four families which are asymp-

totic to the periodic solution as described in the introduction. Since the

argument of _ is free and can vary on a "circle, " these four families
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are easily seen to be "cylinders" which abut on the periodic solution•

One can now check that two of these cylinders "go to +co" and two

"to -o0" (as t -> +oo), i.e., the region of the earth (say) or the moon {resp. )

Again, one easily checks that one of each of these pairs is asymptotic to

the periodic solution as t goes to +0% the other as t goes to -oo.

The solutions of 3) are those which enter the region of the equilibrium

only to return whence they came while those of 4) make the transit.

While we have considered only the linearized equations, simple con-

siderations ensure the same qualitative picture for the equations of the

restricted problem.

Statement5 If x z > 2h(a- Mz) c z
• a_Z =

then a) xiz, >_0 _ six * > 0

b) xiz z < 0 ==> azX, > 0

Interpretation: If a solution crosses the line xl = c, going away from the

origin, then if c, > c, the xl component of this solution must tend to

+oo. If a solution crosses the line coming toward the origin, it's x, com-

ponent goes to +oo as t-> -0o. Corresponding statements hold if

X! = C! <-C.

J-LIn particular, a solution of class 2% nr 4) (_i_z _-n) can cross uLe
-- --m --- ._ v

line xl = c, only once and must do so with z I # O. We will make use of
this remark later.

Also, we can see that a solution crosses both of the lines x 1 = +_ cl

if and only if _,_z < 0. This comment allows us to give a precise geometric

meaning to the statement that "a solution makes a transit of the equilibrium

region. " A similar definition works for the restricted problem for the same
reason.

Proof of Statement _.

a) We have (Statement 3 )

el_ 1 = _ ax I - b_x z - _z I + _Zz_

where e, < 0 (Statement 2), e), 9)
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Thus

sgn x,=z = sgn(ax_ + bvxixz + _z,x, - _XiZz)

Since xzz, >__O, we need only show that

ax z > Ib_x, xz - _X, Zz I

We estimate (Schwarz)
1 1

Ib_x, Xz - _vXiZz I <__Ixil(bv z + _z_z)_(bx z + zzZ)x

Using Statement Z, e) I) and the energy integral we have

a- _z = bvZ+ _zvz

bx# + z#< Zh+ a x#

so that

1 1

Ib_xmXz - _x, xzl < Ixil(a- _z)_( h+ axe) _

I

- Ixil(aZxf + 2ha- 2h_ z - a_Zx_) x

This last quantity is less than ax_ provided Zha - Zh_ z - a_Zx_ < 0

which is the hypothesis. A similar proof holds for part b).

O

A statement stronger than the above can be proved if we place a

restriction on the constants a and _: Namely

Statement 6.

If

Recall the equations are given by

_, =z, ; _, = - Z_zz+ ax,

xz = Zz _z = Z_oz, - bxz,

8_h
x, = c, ># (az _ 4_a)
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Then z, >__0 implies the corresponding solution never returns to the

line xl = c,. (Also xl(t)-_oo) Furthermore if z I = 0, c, is an ab-
solute minimum for x,. A similar statement holds if

xz = c, <- az _ 4_

Proof: The proof consist of showing that &, > 0 under the above circum-
stances. We have:

[Zz ] <_/Zh + ax,z

so that

_< <a2x 

The last inequality being the hypothesis. The result now follews.

This statement has no force unless

az - 4_a >0

which situation does however hold for the equilibrium point of the

restricted problem between the two positive masses. (a > 8; _ = 1).

Geometrically, we see from Statement 6 that the points where the
x, component of _ _.olution can have a maximum must lie to the left of

the line x, = _.-_aZ-_a" Such a restriction is valid only when

a z - 4_a >0 as can easily be seen. This remark will be useful in a later

report.

Statement 7

The projection of the periodic solution in the x-plane is an ellipse

with minor axis of length in the direction of the x,-axis and

major axis of length - 2T [_-k-- in the direction of the xz-axis.

Proof: {Assume 15 is real. ) The projection is given by

xi(t) -- Z Re(_e ivt) = Z_cos vt

xz(t) = - ZT Im{_e ivt) = - ZT [5sinvt
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Also the energy integral gives

_Ze z =h

That ITI > 1 follows from Statement 2, e}, 6):

vz +a

0<Tz - v z - b > i.

The result follows.

Statement 8. (Recall the solutions with _,_z = 0 are those asymptotic

to the periodic solution. )

a) The envelopes of projections in x-space of orbits with

are the straight lines

x z =-_x, + (a-_ zb)Jz_b

/± '-= - _x, + 2 .(_z + Tz)z.
-- _4e z

_l =0

The corresponding envelopes for

xz = _x, +__(a -CZb) Zh

ez = 0 are-

b) All four of these lines are tangent to the boundaries of R (i. e.,

of the region of x-space wherein solutions must move -- see Statement 1. )

c) The points of tangency lie on the lines

x, = _+_J2bh(ag b_ z) =__IQZh(a_b_Z)T

(See figure I)

Proof of Statement 8

a) If _, = 0 we have (Statement Z)
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lm

-tzt ivt)xi = eze + 2 Re(#e

= -FLtx, - _aze - 2T Im(#e lvt)

= -¢xi + ZvRe (_e ivt) - ZT Irn(pe-ivt)

The extreme values of Xz for fixed xl are obtained by varing arg #.
These are computed to be

l

x, = - +__z [# 1 + 2 )3,

Finally, we have 1_ ! = "_/h from the energy integral which gives one
ez

of the alternate expressions in a). Observe that the extreme values are
achieved.

b) We could prove b) by computation; however, the following

geometric argument carries over to the corresponding statement (that

"envelopes of solutions asymptotic to the periodic solution touch the
boundaries of R") for the restricted problem:

We first observe that we can obtain a space homeomorphic to the

phase space as follows: First deform R to an infinite strip (i. e.,
squeeze the boundaries down to straight lines). Noting that at each

point of R (except the boundaries) there is a "circle" of possible vel-

ocities (i. e., z_ + Zzz ; const > O) we cross the infinite strip with

a circle to obtain a "pipe_i. e., the space between two coaxial cylinders.

The length along the cylinder corresponds to the xi coordinate.

For each fixed xz there corresponds an annulus of points; the radial

variable in this annulus corresponds to xz, while the angular variable

corresponds to the direction of the velocity vector z = (zi, Zz). The
inner and outer boundaries of the annulus correspond to boundary points

of R. These boundaries should be identified to (different) points since

z_ + zzz is zero on the boundary of R; however, we neglect this point
for the moment.

Now consider the "cylinder" of solutions with a 1 = 0 say. For

fixed xl, the corresponding points on the cylinder make a closed

loop in the pipe.

Now if x, > c (Statement 5), and a, = 0, then zZ < 0. Thus the
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corresponding "circle" does no___!tgo around the hole in the pipe. On the

other hand, the periodic orbit does encircle the hole since the velocity
vector on this orbit goes through all angles. Since the cylinder abuts

on this periodic orbit, some section of it must enclose the hole. It fol-
lows that this cylinder must cross one of the bounding cylinders of the

pipe.

This implies that some orbit with _l = 0 must touch the boundary

of R and so the envelopes of these orbits must cut this boundary.

However, they cannot go out of the region R, and therefore are tangent
to the boundary.

Part__.____cc)(and alternate expression in Dart a))

From parts a) and b} it follows that, for example, the equations

ax_ - bxz z + 2h=0

I

xz =-_xx +Z4 --h (_z +Tz)_
ez

have a unique solution for x I.

This means the following quadratic equation has double roots:

1

(a- b_)x{ + 4b¢4 --h-h(vz + TZ)3 _ 4b--h-h{_z + Tz) + Zh = 0.
ez ez

The condition for a double root is:

4bZ_Z _hh (o.Z + TZ} = (a- b_ z) {2h - 4b____hh{o.z + TZ}}
ez ez

which'reduces to the equation:

e_ {a - by z )
Zab

This equation (which is Statement 2, e), 10}) could of course be

verified algebraically from the other equations of e); the algebra is left

out since the geometric proof suffices.

The remaining computations are now easily completed and similar

arguments complete the proof of Statement 8.

iI
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The following statement enables us to give a fairly clear picture of

the approximate location of those orbits which make a transit of the region
near the equilibrium point {_i_z < 0}. This picture carries over to the

restricted problem with little difficulty and suggests a "possible" means

of giving an existence proof for the periodic orbits of M. Davidson.

(However, the present author has not been able to carry out any proof as
yet. )

Before giving this statement, we state a lemma. In the lemma,
cos-l{y) denotes that angle between 0 and _r whose cosine is y.

{provided < I)

Lem m a:

where

-1
cos8 + _ sinS>y _ IX - 81 _< cos

cosX-a; sinX-

the equality signs hold simultaneously. If yz >_z ÷ _z the inequality
never holds.

Statement 9

Let z, = pcosO ; zz = 9 sin8.

If

Let x = (Xl,Xz)

YZ = - axl + b_ x_
_P

denote any point in R.

9 Yz =
ax, - by xz

_P

cos X, - 1 cos Xz " 1

sin Xi - - _ sin Xz ~ v

a) Then for [yz[ < I, wehav_..

1 Yi
-> 0 le-xil _<cos- 0-Z} 1(I+

i

1

b) Itfollows (Statement 8)that IYi[ < (i+ ¢z )_

between the lines enveloping the orbits with =i = 0

on the boundary of these strips.

only in the strip 1
and that [¥i[ = (l+_Z) x
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Proof of Statement 9

and

From Statement 2, we have

Jells, = a x, + bcxz + Mzl - M_zz

[e,I_2 = ax, - bcx2 - _z, - _z2

Replacing z, by p cos8 and z z by p sin8 we set

_i >0 <m_m cos8 +¢ sin8 > - (ax_ + bcxz)

_z >0 _ cos8 + csin8 > (axl - bcxz)
-- _p

An application of the lemma completes the proof.

Statementl0 (consequence of 9)

From 9, it follows that orbits with _z = 0 cut the line Yz - 0

in a direction orthogonal to the enveloping lines of these orbits (i = i,2).

Thus the lines _z = 0 must pass through the points of tangency of the

enveloping lines with the boundary of R."

We further observe that to the "right" of the line Yi = 0, Xi is

acute, while to the left of the line ¥i = 0, Xi is obtuse. The results

implied by figure 1 are easy consequences. In particular_ we see for

example that any orbits in the regions I, 11, I"; If, If', If" have

_,_z > 0 while those in the regions III, III* have _,_z < 0. The sit-

uation in the strips is not as simple_ but is fairly clear.

Figure i.

1) The (two) solid dark lines through the points A and D are the

enveloping lines of solutions with _, = O. The corresponding lines

through B and C are the enveloping lines of solutions with _z = 0.

Any solution with _, = 0 or _z = 0 must lie in the corresponding strip

bounded by these lines.
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2) At P, the shaded wedge indicates the directions at P for which

the corresponding solution has _, < 0. At pz the shaded wedge indi-

cates a, k 0. Similarly at Q__ the wedge indicates az < 0, at QI

az > 0. On the dotted line AD the wedge has angle _ corresponding

to ¥z = 0. CB has a similar meaning with regard to the strip for o z.

3) The solid lines parallel to the strips indicate the regions where

the corresponding _i > 0 for all possible angles. The dotted lines

similarly indicate where ai < 0.

4) Thus we can see that in regions I, 1I, I", both of a,, a z are

positive, while in the regions II, II*, If", _, and a z are negative.

Finally in regions Ill, _, > 0; _z < 0 while in IIP, _, < 0; _z > 0.

5) In the strips we must determine the sign of a from the direc-

tion of the velocity vector: e.g., at P, any solution whose velocity

vector lies in the shaded wedge has _z > 0, _I < O, etc.

Thus we have a geometric criterion for determining whether or not a

solution will make a transit of the equilibrium region. Note in particu-

lar that such a solution must stay inside one or the other of the strips

away from the equilibrium, and that as it crosses the equilibrium region

it changes strips. Solutions going from right to left are "on the bottom";

those from left to right on top.

We conclude with a remark which may have some "engineering"
value:

Statement 11. The (two) solutions for which t_ I = 0 are hyperbolas;

these solutions correspond to those orbits which cross the region of the

equilibrium point the fastest.

(Corresponding solutions for the restricted problem exist and are

well approximated by these -- in the equilibrium region -- for energies

slightly larger than that of the equilibrium. )

The equation for these orbits are

-a X I ---VT Z z

-bTX z = VZ I
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or

z 2hv z {l:rrz + v z)-lb-1

2hv z

ez b

Proof: 'Statement 8 plus some algebra.

(Note that the left hand side is determined from geometrical con-

siderations alone, while the right hand side follows by letting xl " 0
and using the energy equation. )

This completes the present collection of statements.

le

2.
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