

T.&A.M. REPORT NO. 281

A METHOD FOR DETERMINING AN OPTIMUM SHAPE OF A CLASS OF THIN SHELLS OF REVOLUTION

GPO PRICE \$	
CSFTI PRICE(S) \$	by
Hard copy (HC) 3.00	Morris Stern Han-chung Wang Will J. Worley
ff 653 July 65	
NATIONAL AERON	Under Grant No. (NGR-14-005-010) AUTICS AND SPACE ADMINISTRATION WASHINGTON. D.C. 15-33503 ACCEDS JIN RUMBER! (CUBE) 1- (PACCE) 1- (P

DEPARTMENT OF THEORETICAL AND APPLIED MECHANICS
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

A METHOD FOR DETERMINING AN OPTIMUM SHAPE OF A CLASS OF THIN SHELLS OF REVOLUTION

by

Morris Stern Han-chung Wang Will J. Worley

Prepared under Grant No. NGR 14-005-010

by the

Department of Theoretical and Applied Mechanics UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C.
July, 1965

TABLE OF CONTENTS

CLINANAA DAY		Page
		1
INTRODUCT	ΓΙΟΝ	2
1.	Statement of the Problem	2
2.	Symbols	4
3.	Acknowledgment	6
DISCUSSION	OF THE METHOD	7
MATHEMAT	ΓICAL FORMULATION	10
NUMERICA	L INTEGRATION	16
NUMERICA	L COMPUTATIONS	20
1.	The Ranges of the Volumes and Weights of Shells	20
2.	Weighting Functions λ and μ	22
3.	Numerical Examples	23
APPENDIXE	S	27
Α.	Iteration Procedure with Varying Shell Length	27
В.	FORTRAN Programs	28
REFERENC	ES	39
TABLES -		40
I.	Iteration Results for $\lambda = \lambda_1$, $\mu = \mu_1$, $b/a = 1$, $\alpha_0 = 1.5$, $\beta_0 = 1.5$	40
II.	Iteration Results for $\lambda = \lambda_1$, $\mu = \mu_1$, $b/a = 1$, $\alpha_0 = 2.0$, $\beta_0 = 3.0$	41
III.	Iteration Results for $\lambda = \lambda_1$, $\mu = \mu_1$, $b/a = 2$, $\alpha_0 = 1.5$, $\beta_0 = 1.5$	42
IV.	Iteration Results for $\lambda = \lambda_1$, $\mu = \mu_1$, $b/a = 2$, $\alpha_0 = 2.0$, $\beta_0 = 3.0$	43
٧.	Iteration Results for $\lambda = \lambda_2$, $\mu = \mu_2$ b/a = 1	44
VI.	Iteration Results for $\lambda = \lambda_3$, $\mu = \mu_3$, $b/a = 1$	45
FIGURES -		46
1.	Weighting Functions λ_1 and μ_1	46
2.	Weighting Functions λ_2 and μ_2	46
3.	Variation of the Function F with α and β	47
4.	Variation in Projections of Ridges on α - β Plane	48
5.	Variation in V_{xa}/ab^2 with α and β	49
6	Variation in A/a^2 with α and β for $h/a = 1.0$	50

A METHOD FOR DETERMINING AN OPTIMUM SHAPE OF A CLASS OF THIN SHELLS OF REVOLUTION

by

Morris Stern, Han-chung Wang, Will J. Worley

Department of Theoretical and Applied Mechanics University of Illinois Urbana, Illinois

SUMMARY

B3503

This third report under the current grant is concerned with a method for determining an optimum shape of a convex shell of revolution with respect to volume, weight and length.

The technique used depends on replacing the class of functions, over which the shape may range, by the parameters b/a, α and β in the equation

$$\left|\frac{x}{a}\right|^{\alpha} + \left|\frac{y}{b}\right|^{\beta} = 1$$

where a, b, α and β are positive constants not necessarily integers, with α and β equal to or greater than unity. The bodies of revolution are generated by revolving the line, described by the above equation, about the x-axis.

The procedure is illustrated for a thin shell which will fit within the space defined by a circular cylinder of radius b and length 2a. The shell is optimized, in terms of α and β , with respect to volume and weight. The FORTRAN program used to achieve these results is presented in Appendix B.

INTRODUCTION

1. Statement of the Problem.

The previous reports under the current grant, [1,2] * stated a future objective of the project as being the optimum contour design of a class of shells. This third report is directed toward achieving that objective in terms of enclosed volume and shell weight for thin shells of revolution.

Optimization can be treated in several ways. A general formulation of the optimization of the design of thin shells of revolution might include the determination of the shell shape as well as the variation of the shell thickness along meridional lines. A less general approach involves assigning the shape and varying the shell thickness [3, 4]. The current report treats an alternate approach. Here a uniform thickness is maintained, but the meridional lines which define the geometry are permitted to vary in accordance with the relation

$$\left|\frac{x}{a}\right|^{\alpha} + \left|\frac{y}{b}\right|^{\beta} = 1 \tag{3.1}$$

where a, b, α and β are positive constants, not necessarily integers.

The use of Eq. (3.1) permits an optimization of shape which is limited to the choice of the parameters α and β for a shell of length 2a and of radius b. The body of this report is limited to the variation of α and β for fixed length and fixed diameter, but Appendix A presents a mathematical formulation which permits the length to vary as well as α and β .

The achievement of the stated objective depends on a suitable failure criterion. One criterion could involve a complete stress analysis of the shell including varying thickness. Others could include thick walled shells or buckling. However, in illustrating the method, the shells have been restricted to thin, constant thickness walls with internal pressure loading. Further the failure is assumed to occur either on the central plane circle normal to the x-axis at x = 0 or along a meridian. Thus separate computer programs which involve the complete stress analysis of the shell have not been used.

^{*}Numbers in brackets refer to the References.

^{**}The notation (3.1) is adopted to aid in cross-referencing equations from the first two reports under the grant [1, 2].

The techniques described can be applied in a manner which would permit the direct inclusion of one of the existing computer programs on the stress analysis of shells [5, 6, 7]. These auxilliary computer programs would provide the thickness requirement or the variation in thickness of the shell when incorporated into the proper location within the FORTRAN program presented in this report. In this way the optimized shell would be based on a more realistic failure criterion than is actually reported.

```
2. Symbols
```

```
half length of the shell, [L]*
а
             radius of the shell in the equatorial plane. [L]
b
             horizontal coordinate of the first quadrant of Eq. (3.1), [L]
X
             vertical coordinate of the first quadrant of Eq. (3.1), [L]
У
             acceleration due to gravity, \left\lceil LT^{-2}\right\rceil
g
             volume of the shell, \lceil L^3 \rceil
             weight of the shell, MLT<sup>-2</sup>
W
             surface area of the shell, \lceil L^2 \rceil
Α
             area enclosed by first quadrant of Eq. (3.1), \begin{bmatrix} L^2 \end{bmatrix}
             arc length in the first quadrant of Eq. (3.1), [L]
L
             thickness of the shell, \lceil L \rceil
t
             preassigned minimum allowable volume of the shell, \lceil L^3 \rceil
\mathbf{v}_{\min}
             preassigned maximum allowable weight of the shell, MLT<sup>-2</sup>
\mathbf{w}_{\max}
             preassigned maximum half length of the shell, [L]
a
max
             volume of cylinder with radius b, length 2a, L
v_{cyl}
             weight of cylindrical shell with radius b, length 2a, \lceil MLT^{-2} \rceil
\mathbf{w}_{\mathrm{cyl}}
             ratio of V_{xa}/V_{min}, [1]
             ratio of W/W_{max}, [1]
             ratio of a/a<sub>max</sub>, [1]
l
             \left(\frac{b\alpha}{aR}\right)^2, [1]
```

^{*}The dimensional notation [L] indicates a length while [M] indicates mass, [T] indicates time and [1] indicates a dimensionless quantity.

```
uniform internal pressure on shells, ML 1 T-2
p_{o}
             preselected limiting value for the ratio \triangle \alpha/F_{\alpha} or \triangle \beta/F_{\beta}
ko
             of iteration, \lceil 1 \rceil
             exponent of the absolute value of x/a, [1]
α
             exponent of the absolute value of y/b, [1]
β
             (as a subscript) indicates partial differentiation with respect to \alpha, \begin{bmatrix}1\end{bmatrix}
\alpha
             (as a subscript) indicates partial differentiation with respect to \beta, [1]
β
             mass density, \lceil ML^{-3} \rceil
ρ
λ
             non-negative weighting function of v, \begin{bmatrix} 1 \end{bmatrix}
             non-negative weighting function of w, 1
μ
             non-negative weighting function of \ell, \lceil 1 \rceil
             yield stress of the shell material, \lceil ML^{-1} T^{-2} \rceil
             preselected limiting value for the maximum change in (\Delta v^2 + \Delta w^2)
             to be allowed in one iteration step, |1|
J<sub>1</sub> through J<sub>7</sub>
                      integrals as defined in Eqs. (3.33)
I(\epsilon), K(\epsilon) improper integrals as defined in Eqs. (3.35) and (3.36)
```

3. Acknowledgment

This project was sponsored by the National Aeronautics and Space Administration, Office of Advanced Research and Technology, Applied Mathematics Branch, of which Dr. Raymond H. Wilson is Chief.

The investigation was part of the work of the Engineering Experiment Station of which Professor Ross J. Martin is Director and was conducted in the Department of Theoretical and Applied Mechanics of which Professor Thomas J. Dolan is Head, with Will J. Worley as Principal Investigator.

The authors wish to acknowledge the assistance of Charles Cecil Fretwell, formerly Instructor in Theoretical and Applied Mechanics, University of Illinois, in the early stages of the numerical programming and the assistance of undergraduate students: Messrs. Tom E. Breuer and Edward H. Stredde with various phases of the project.

The suggestion that the length variation be included as a parameter in the optimization procedure was made by Melvin G. Rosche, Space Vehicle Structures Program, NASA, Washington, D. C.

Both the ILLIAC II and the IBM 7094 computer facilities were used. The ILLIAC II was constructed in the Digital Computer Laboratory, now known as the Department of Computer Science, University of Illinois with support from the Atomic Energy Commission, grant USAEC AT(11-1)-415, and from the Office of Naval Research, grant NONOR-1832 (15). The IBM 7094 computer facility is partially supported by the National Science Foundation under grant NSF GP700.

DISCUSSION OF THE METHOD

Otpimization with respect to enclosed volume and shell weight, for a shell of revolution defined by the meridian curve Eq. (3.1) is achieved by considering the exponents α and β as parameters.

Then the volume and weight may be expressed as

$$V_{xa} = V_{xa}(\alpha, \beta) \tag{3.2}$$

$$W = \rho g A(\alpha, \beta) t(\alpha, \beta)$$
 (3.3)

where ρ is the mass density of the material of the shell, g is the gravitational acceleration, while A represents the area of the middle surface of the shell and t is the thickness. The thickness is maintained constant over the entire shell and is small compared to the radius b and to the length a.

Both the volume V_{xa} and the surface area A depend only on the geometrical shape of the shell, which is controlled by the parameters α and β for the fixed cylindrical volume. The thickness t depends on the geometrical shape of the shell, on the load condition and on the failure criteria. Therefore the mode of the failure of the shell, under a specified load condition, must be defined for the evaluation of the thickness t, before optimization can be achieved.

Let the primary design requirements, to be fulfilled for the shell, be

$$V_{xa} \ge V_{min}$$
 , $W \le W_{max}$

where V_{\min} and W_{\max} are preassigned limits. It is further assumed that at least one set of values (α, β) will satisfy the primary requirements. Otherwise the material of the shell, the assumed mode of failure, the load conditions, or the dimensions a and b have to be modified in order to determine an optimum shape.

To facilitate the calculations, the ratios of the volume and weight are introduced as

$$v = \frac{V_{xa}}{V_{min}}, \qquad w = \frac{W}{W_{max}}$$
 (3.4)

The differential of a function is then defined as

$$dF = \lambda \, dv - \mu \, dw \tag{3.5}$$

where λ and μ are non-negative weighting functions of v and w, which define the relative importance of increasing in volume and of decreasing in weight. These weighting functions are defined in terms of current volume and weight. As long as it is possible to select dv and dw, consistent with the constraints of the problem, such that dF is positive, one has not achieved the optimum shape. Thus one seeks the values of α and β for which the differential dF is either zero or negative.

While superior shapes may exist, the above criteria will assure an optimum shape within the limitations of Eq. (3.1) and with the imposed constraints on volume and weight.

To determine the values of α and β for which F yields the extreme value, one may write Eq. (3.5) in the form

$$dF = F_{\alpha} d\alpha + F_{\beta} d\beta \tag{3.6}$$

with

$$F_{\alpha} = \lambda v_{\alpha} - \mu w_{\alpha} \tag{3.7}$$

$$F_{\beta} = \lambda v_{\beta} - \mu w_{\beta}$$
 (3.8)

where the subscripts α and β indicate the partial differentiation with respect to α and β .

If Eq. (3.6) is an exact differential, then in principle one need only look among the solutions of $F_{\alpha} = F_{\beta} = 0$ for the optimum shape. Because of the complex nature of the equations for v_{α} , v_{β} , w_{α} and w_{β} , it is difficult to determine whether Eq. (3.6) is exact. Even if Eq. (3.6) were exact, the analytical solution of $F_{\alpha} = F_{\beta} = 0$ would be extremely difficult to obtain. The following iterative procedure is therefore used in the evaluation of $F_{\alpha} = F_{\beta} = 0$.

A shape defined by a set of α and β consistent with the primary requirements is selected first. This defines the shape of the shell middle surface. Therefore, the volume and the surface area of the shell can be calculated and the required thickness computed consistent with the assumed mode failure of the shell. Once the volume and weight are computed, values of λ and μ , which were defined by the design criterion, are established. Hence the values of F_{α} and F_{β} are determined by Eqs. (3.7) and (3.8). The shape is then modified by incrementing α and β in accordance with the path of the steepest ascent

$$d\alpha: d\beta = F_{\alpha}: F_{\beta}$$
 (3.9)

The iterative procedure is repeated until F_{α} and F_{β} are both essentially zero.

To determine the incremental size $\Delta \alpha$ and $\Delta \beta$ for the steps in the iteration, let a constant k be defined from Eq. (3.9) as

$$\frac{\Delta \alpha}{F_{\alpha}} = \frac{\Delta \beta}{F_{\beta}} = k \tag{3.10}$$

Therefore

$$dv = v_{\alpha} d\alpha + v_{\beta} d\beta = k(v_{\alpha} F_{\alpha} + v_{\beta} F_{\beta})$$
 (3.11)

$$dw = w_{\alpha} d\alpha + w_{\beta} d\beta = k(w_{\alpha} F_{\alpha} + w_{\beta} F_{\beta})$$
 (3.12)

In order to limit the size of the increments of $\triangle v$ and $\triangle w$, and of $\triangle \alpha$ and $\triangle \beta$, the constant k is selected in the following way

$$k = \begin{cases} k_1 & \text{if } k_1 < k_0 \\ k_0 & \text{if } k_1 > k_0 \end{cases}$$
 (3.13)

The constant k_1 is determined from Eqs. (3.11) and (3.12) consistent with the assigned increments of Δv and Δw , and is evaluated as follows

$$\eta_0^2 = \Delta v^2 + \Delta w^2 = k_1^2 \left[(v_{\alpha} F_{\alpha} + v_{\beta} F_{\beta})^2 + (w_{\alpha} F_{\alpha} + w_{\beta} F_{\beta})^2 \right]$$

from which

$$k_1 = \eta_0 / \left[(v_{\alpha} F_{\alpha} + v_{\beta} F_{\beta})^2 + (w_{\alpha} F_{\alpha} + w_{\beta} F_{\beta})^2 \right]^{1/2}$$
 (3.14)

where η_0^2 is a preselected limiting value for the maximum change of $(\Delta v^2 + \Delta w^2)$ to be allowed in one iteration step, while k_0 is a preselected limiting value for the ratio $\Delta \alpha/F_{\alpha}$ or $\Delta \beta/F_{\beta}$ for each step of iteration. The process is then repeated with a new set of values of α and β formed by adding the increments $\Delta \alpha$ and $\Delta \beta$ to the previous values. The iteration process terminates when the value $(F_{\alpha}^2 + F_{\beta}^2)$ is less than a preassigned accuracy parameter.

The mathematical formulation of the more general problem which permits the length to vary as well as α and β is presented in Appendix A.

MATHEMATICAL FORMULATION

In the process of iteration, as described in the previous sections, the values of v, v_{α} , v_{β} , w, w_{α} and w_{β} for a given set of values of α and β must be calculated. From Eqs. (3.3) and (3.4), w_{α} and w_{β} may be written as

$$w_{\alpha} = \frac{\rho g}{W_{max}} (A t_{\alpha} + A_{\alpha} t)$$
 (3.15)

$$w_{\beta} = \frac{\rho g}{W_{\text{max}}} (A t_{\beta} + A_{\beta} t)$$
 (3.16)

The symbols used in the iteration procedure, described earlier in the report, are defined by the following integrals. The notation in these integrals is consistent with that used in the previous reports under the current research grant $\begin{bmatrix} 1, & 2 \end{bmatrix}$.

$$v = \frac{2 \pi b^2}{V_{\min}} \int_0^a \left[1 - \left(\frac{x}{a} \right)^{\alpha} \right]^{2/\beta} dx$$

$$= \frac{2 \pi ab^2}{V_{\min}} \int_0^1 (1 - X^{\alpha})^{2/\beta} dX$$
 (3.17)

$$v_{\alpha} = \frac{-2 \pi ab^2}{V_{\min}} \left(\frac{2}{\beta}\right) \int_0^1 (1 - X^{\alpha})^{(2-\beta)/\beta} X^{\alpha} \log X dX$$
 (3.18)

$$v_{\beta} = \frac{-2 \pi ab^2}{V_{\min}} \left(\frac{2}{\beta^2}\right) \int_0^1 (1 - X^{\alpha})^{2/\beta} \log(1 - X^{\alpha}) dX$$
 (3.19)

$$A = 4 \pi b \int_{0}^{a} \left[1 - \left(\frac{x}{a} \right)^{\alpha} \right]^{1/\beta} \left\{ 1 + \left(\frac{b\alpha}{a\beta} \right)^{2} - \left(\frac{x}{a} \right)^{2(\alpha - 1)} - \left[1 - \left(\frac{x}{a} \right)^{\alpha} \right]^{2(1 - \beta)/\beta} \right\}^{1/2} dx$$

$$= 4 \pi ab \int_{0}^{1} (1 - X^{\alpha})^{1/\beta} \left[1 + \left(\frac{b\alpha}{a\beta} \right)^{2} X^{2(\alpha - 1)} (1 - X^{\alpha})^{2(1-\beta)/\beta} \right]^{1/2} dX \quad (3.20)$$

Let
$$F(X, \alpha, \beta) = 1 + \left(\frac{b\alpha}{a\beta}\right)^2 X^{2(\alpha - 1)} (1 - X^{\alpha})^{2(1-\beta)/\beta}$$

and $h^2 = \left(\frac{b\alpha}{a\beta}\right)^2$
then $A_{\alpha} = 4 \pi ab \left\{ \left(\frac{h^2}{\alpha}\right) \int_0^1 F(X, \alpha, \beta)^{-1/2} X^{2(\alpha - 1)} (1 - X^{\alpha})^{(3-2\beta)/\beta} dX - \frac{1}{\beta} \int_0^1 F(X, \alpha, \beta)^{-1/2} X^{\alpha} (1 - X^{\alpha})^{(1-\beta)/\beta} \log X dX + h^2 \int_0^1 F(X, \alpha, \beta)^{-1/2} X^{2(\alpha - 1)} (1 - X^{\alpha})^{(3-2\beta)/\beta} \log X dX - h^2 \left(\frac{2-\beta}{\beta}\right) \int_0^1 F(X, \alpha, \beta)^{-1/2} X^{2(\alpha - 1)} (1 - X^{\alpha})^{3(1-\beta)/\beta} \log X dX \right\} (3.21)$

and

$$A_{\beta} = -4 \pi \text{ ab} \left\{ \left(\frac{h^{2}}{\beta} \right) \int_{0}^{1} F(X, \alpha, \beta)^{-1/2} X^{2(\alpha-1)} (1 - X^{\alpha})^{(3-2\beta)/\beta} dX \right.$$

$$+ \frac{1}{\beta^{2}} \int_{0}^{1} F(X, \alpha, \beta)^{-1/2} (1 - X^{\alpha})^{1/\beta} \log (1 - X^{\alpha}) dX$$

$$+ 2 \left(\frac{h^{2}}{\beta^{2}} \right) \int_{0}^{1} F(X, \alpha, \beta)^{-1/2} X^{2(\alpha-1)} (1 - X^{\alpha})^{(3-2\beta)/\beta} \log (1 - X^{\alpha}) dX \right\} (3.22)$$

The next step consists of the determination of the thickness t and the values of t_{α} and t_{β} . These values should ideally be determined from a limit analysis, but since this would constitute a major undertaking in itself [6, 7], the following simple failure criterion is adopted. It is assumed that under a uniform internal pressure, p_{0} , the shell will fail by general yielding either along a longitudinal plane or around

the equatorial plane. If σ_0 is the yield stress for the shell material, failure along a longitudinal plane requires a thickness given by

$$t_1 = \left(\frac{P_0}{\sigma_0}\right) \frac{A_a}{L} \tag{3.23}$$

while failure around the equatorial plane requires a thickness given by

$$t_2 = \frac{1}{2} \left(\frac{P_0}{\sigma_0} \right) b \tag{3.24}$$

where A_a is the area enclosed by the first quadrant of Eq. (3.1) and L is the complete arc length in the first quadrant of Eq. (3.1). The design thickness t should be either t_1 or t_2 , whichever is larger. If $t_2 \ge t_1$ then t equals t_2 , a constant; therefore $t_{\alpha} = t_{\beta} = 0$. For $t_2 < t_1$, then by Eq. (3.23).

$$t_{\alpha} = \frac{p_{o}}{\sigma_{o}} \left[\frac{(A_{a})_{\alpha}}{L} - \frac{A_{a} L_{\alpha}}{L^{2}} \right]$$
 (3.25)

$$t_{\beta} = \frac{p_{O}}{\sigma_{O}} \left[\frac{(A_{a})_{\beta}}{L} - \frac{A_{a}L_{\beta}}{L^{2}} \right]$$
 (3.26)

where

$$A_{a} = b \int_{0}^{a} \left[1 - \left(\frac{x}{a} \right)^{\alpha} \right]^{1/\beta} dx = ab \int_{0}^{1} (1 - X^{\alpha})^{1/\beta} dX$$
 (3.27)

$$(A_a)_{\alpha} = \frac{\partial A_a}{\partial \alpha} = -\left(\frac{ab}{\beta}\right) \int_0^1 (1 - X^{\alpha})^{(1-\beta)/\beta} X^{\alpha} \log X dX$$
 (3.28)

$$(A_a)_{\beta} = \frac{\partial A_a}{\partial \beta} = -\left(\frac{ab}{\beta^2}\right) \int_0^1 (1 - X^{\alpha})^{1/\beta} \log(1 - X^{\alpha}) dX$$
 (3.29)

$$L = \int_{0}^{a} \left\{ 1 + \left| \frac{b\alpha}{a\beta} \right|^{2} \left(\frac{x}{a} \right)^{2} (\alpha - 1) \left[1 - \left| \frac{x}{a} \right|^{\alpha} \right]^{2} \right]^{2(1-\beta)/\beta} \right\}^{1/2} dX$$

$$= a \int_{0}^{1} F(X, \alpha, \beta)^{1/2} dX \qquad (3.30)$$

$$L_{\alpha} = a \left\{ \frac{h^{2}}{\alpha} \int_{0}^{1} F(X, \alpha, \beta)^{-1/2} X^{2(\alpha - 1)} (1 - X^{\alpha})^{2(1-\beta)/\beta} dX \right\}$$

$$+ h^{2} \int_{0}^{1} F(X, \alpha, \beta)^{-1/2} X^{2(\alpha - 1)} (1 - X^{\alpha})^{(2-3\beta)/\beta} \log X dX$$

$$- \frac{h^{2}}{\beta} \int_{0}^{1} F(X, \alpha, \beta)^{-1/2} X^{3\alpha - 2} (1 - X^{\alpha})^{(2-3\beta)/\beta} \log X dX$$

$$L_{\beta} = a \left\{ - \frac{h^{2}}{\beta} \int_{0}^{1} F(X, \alpha, \beta)^{-1/2} X^{2(\alpha - 1)} (1 - X^{\alpha})^{2(1-\beta)/\beta} dX \right\} \qquad (3.31)$$

$$L_{\beta} = a \left\{ - \frac{h^{2}}{\beta} \int_{0}^{1} F(X, \alpha, \beta)^{-1/2} X^{2(\alpha - 1)} (1 - X^{\alpha})^{2(1-\beta)/\beta} \log (1 - X^{\alpha}) dX \right\} \qquad (3.32)$$

All of the integrals which appear in the above equations may be collected into seven groups, by defining the following convergent but sometimes improper integrals in notations as

$$J_{1}(p, q) = \int_{0}^{1} (1 - u^{p})^{q} du$$

$$J_{2}(p, q) = \int_{0}^{1} (1 - u^{p})^{q} \log(1 - u^{p}) du$$

$$J_{3}(p, q) = \int_{0}^{1} (1 - u^{p})^{q-1} u^{p} \log u \, du$$

$$J_{4}(p, q, s) = \int_{0}^{1} (1 - u^{p})^{s} \left[1 + h^{2} u^{2(p-1)} (1 - u^{p})^{2(q-1)} \right]^{1/2} du$$

$$J_{5}(p, q, s) = \int_{0}^{1} \left[1 + h^{2} u^{2(p-1)} (1 - u^{p})^{2(q-1)} \right]^{-1/2} u^{2(p-1)} (1 - u^{p})^{s-2} du$$

$$J_{6}(p, q, r, s) = \int_{0}^{1} \left[1 + h^{2} u^{2(p-1)} (1 - u^{p})^{2(q-1)} \right]^{-1/2} u^{2(r-1)} (1 - u^{p})^{s-2}$$

$$\log (1 - u^{p}) du$$

$$J_{7}(p, q, s, m) = \int_{0}^{1} \left[1 + h^{2} u^{2(p-1)} (1 - u^{p})^{2(q-1)} \right]^{-1/2} u^{m} (1 - u^{p})^{s-3} \log u \, du$$

with $h^2 = \left(\frac{b\alpha}{a\beta}\right)^2$ and p, $r \ge 1$, q, s, $m \ge 0$.

Then the equations used in the calculation of v, w and their derivatives can be expressed by Eqs. (3.33) as

$$v = \frac{2 \pi ab^2}{V_{\min}} J_1(\alpha, \frac{2}{\beta})$$

$$v_{\alpha} = -\frac{2 \pi ab^2}{V_{\min}} (\frac{2}{\beta}) J_3(\alpha, \frac{2}{\beta})$$

$$v_{\beta} = -\frac{2 \pi ab^2}{V_{\min}} (\frac{2}{\beta^2}) J_2(\alpha, \frac{2}{\beta})$$

NUMERICAL INTEGRATION

The analytical expressions for the integrals in Eqs.(3.33) are not available except for J_1 , J_2 and J_3 which may be expressed in terms of gamma functions and the derivatives of gamma functions, the psi functions. Since the above functions also involve series expansions or numerical integration , all of the integrals in Eqs.(3.33) are evaluated numerically using Simpson's Rule. In this process, special consideration is given to improper integrals of the following two types.

$$I(\epsilon) = \int_{0}^{\epsilon} f(\xi) \, \xi^{\delta} \, d\xi \qquad \qquad \delta > -1$$
 (3.35)

$$K(\epsilon) = \int_{0}^{\epsilon} f(\xi) \, \xi^{\delta} \log \xi \, d \, \xi \qquad \delta > -1$$
 (3.36)

with $f(\xi)$ continuous in the interval $0 \le \xi \le \epsilon$. For ϵ small enough, replace $f(\xi)$ with a parabola

$$f(\xi) = b_0 + b_1 \left(\frac{\xi}{\epsilon}\right) + b_2 \left(\frac{\xi}{\epsilon}\right)^2 \tag{3.37}$$

where

$$b_0 = f(0)$$

$$b_1 = 4 f(\frac{\epsilon}{2}) - f(\epsilon) - 3 f(0)$$

$$b_2 = 2 f(\epsilon) - 4 f(\frac{\epsilon}{2}) + 2 f(0)$$

Then the improper integrals $I(\epsilon)$ and $K(\epsilon)$ can be approximated as

$$I(\epsilon) = \int_{0}^{\epsilon} \left[b_{o} + b_{1} \left(\frac{\xi}{\epsilon} \right) + b_{2} \left(\frac{\xi}{\epsilon} \right)^{2} \right] \xi^{\delta} d\xi$$

$$= \frac{\epsilon^{\delta+1}}{\delta+1} \left[b_{o} + \frac{\delta+1}{\delta+2} b_{1} + \frac{\delta+1}{\delta+3} b_{2} \right]$$
(3.38)

$$K(\epsilon) = \int_{0}^{\epsilon} \left[b_{0} + b_{1} \left(\frac{\xi}{\epsilon} \right) + b_{2} \left(\frac{\xi}{\epsilon} \right)^{2} \right] \xi^{\delta} \log \xi \, d\xi$$

$$= \frac{\epsilon^{\delta+1}}{\delta+1} \left\{ \log \epsilon \left[b_{0} + \frac{\delta+1}{\delta+2} b_{1} + \frac{\delta+1}{\delta+3} b_{2} \right] - \frac{1}{\delta+1} \left[b_{0} + \left(\frac{\delta+1}{\delta+2} \right)^{2} b_{1} + \left(\frac{\delta+1}{\delta+3} \right)^{2} b_{2} \right] \right\}$$
(3.39)

Therefore the improper integrals J_2 to J_7 listed in Eqs.(3.33) can be expressed in terms of $I(\epsilon)$, $K(\epsilon)$ and a proper integral. They are derived as follows.

$$J_2(p, q) = \int_0^{1-\eta} (1 - u^p)^q \log (1 - u^p) du + \int_{1-\eta}^1 (1 - u^p)^q \log (1 - u^p) du$$

Let $\xi = 1 - u^p$

then
$$du = -\frac{1}{p} (1 - \xi)^{(1-p)/p} d \xi$$

and
$$J_2(p, q) = \int_0^{1-\eta} (1-u^p)^q \log(1-u^p) du + \frac{1}{p} \int_0^{1-(1-\eta)^p} (1-\xi)^{(1-p)/p} \xi^q \log\xi d\xi$$

Using Eq. (3.39) along with the definitions of Eq. (3.37), J_2 is approximated as

$$J_{2}(p, q) = \int_{0}^{1-\eta} (1 - u^{p})^{q} \log (1 - u^{p}) du + \frac{1}{p} K(\epsilon) \Big|_{\epsilon = 1 - (1-\eta)^{p}}^{\epsilon = 1 - (1-\eta)^{p}} f(\xi) = (1-\xi)^{(1-p)/p} \delta = q$$

In a similar manner, by the approximations of $I(\epsilon)$ and $K(\epsilon)$, other integrals yield;

$$J_{3}(p, q) = \int_{\epsilon}^{1-\eta} (1 - u^{p})^{q-1} u^{p} \log u \, du$$

$$+ \frac{1}{p^{2}} I(\epsilon) \begin{vmatrix} \epsilon = 1 - (1-\eta)^{p} \\ f(\xi) = (1-\xi)^{1/p} \log (1-\xi) \\ \delta = q-1 \end{vmatrix}$$

$$\epsilon = \epsilon \int_{\epsilon}^{1-\eta} f(\xi) = (1-\xi^{p})^{q-1} \int_{\epsilon}^{q-1} f(\xi) = (1-\xi)^{q-1} \int_{\epsilon}^{q-1} f($$

^{*}This notation indicates that the integral is evaluated at the indicated values of ϵ , $f(\xi)$ and δ .

$$\begin{split} J_4\left(p,\ q,\ s\right) = & \int_0^{1-\eta} (1-u^p)^s \left[1+h^2\ u^{2(p-1)}\left(1-u^p\right)^{2(q-1)}\right]^{1/2} \, du \\ & + \frac{h}{p}\ I(\epsilon) \, \left| \begin{array}{c} \epsilon = 1 \cdot (1-\eta)^p \\ f(\xi) = \left[\frac{1}{h^2}\left(1-\xi\right)^{2(1-p)/p} \, \xi^{2(1-q)} + 1\right]^{1/2} \\ \delta = q+s-1 \\ \\ J_5\left(p,\ q,\ s\right) = & \int_0^{1-\eta} \left[1+h^2\ u^{2(p-1)}\left(1-u^p\right)^{2(q-1)}\right]^{-1/2} u^{2(p-1)}\left(1-u^p\right)^{s-2} \, du \\ & + \frac{1}{p}\ I(\epsilon) \, \left| \begin{array}{c} \epsilon = 1 \cdot (1-\eta)^p \\ f(\xi) = \left[\xi^{2(1-q)} + h^2\left(1-\xi\right)^{2(p-1)/p}\right]^{-1/2} \left(1-\xi\right)^{(p-1)/p} \\ \delta = s-q-1 \\ \\ J_6\left(p,\ q,\ r,\ s\right) = & \int_0^{1-\eta} \left[1+h^2\ u^{2(p-1)}\left(1-u^p\right)^{2(q-1)}\right]^{-1/2} u^{2(r-1)}\left(1-u^p\right)^{s-2} \\ \log\left(1-u^p\right) \, du \\ & + \frac{1}{p}\ K(\epsilon) \, \left| \begin{array}{c} \epsilon = 1 \cdot (1-\eta)^p \\ f(\xi) = \left[\xi^{2(1-q)} + h^2\left(1-\xi\right)^{2(p-1)/p}\right]^{-1/2} \left(1-\xi\right)^{(2r-p-1)/p} \\ \delta = s-q-1 \\ \end{array} \right. \end{split}$$

$$J_{7}(p, q, s, m) = \int_{\epsilon}^{1-\eta} \left[1 + h^{2} u^{2(p-1)}(1-u^{p})^{2(q-1)}\right]^{-1/2} (1-u^{p})^{s-3} u^{m} \log u \, du$$

$$+ K(\epsilon) \begin{vmatrix} \epsilon = \epsilon \\ f(\xi) = \left[(1-\xi^{p})^{2(1-q)} + h^{2} \xi^{2(p-1)} \right]^{-1/2} (1-\xi^{p})^{s-q-2} \\ \delta = m \end{vmatrix}$$

$$+ \frac{1}{p^{2}} I(\epsilon) \begin{vmatrix} \epsilon = 1 - (1-\eta)^{p} \\ f(\xi) = \left[\xi^{2(1-q)} + h^{2} (1-\xi)^{2(p-1)/p} \right]^{-1/2} (1-\xi)^{(m+1-p)/p} \\ \frac{1}{\xi} \log (1-\xi) \\ \delta = s - q - 1 \end{vmatrix}$$

The integrals J_1 to J_7 therefore involve only proper integrals; thus numerical integration by Simpson's rule can be applied. The FORTRAN programs for the evaluation of J_1 through J_7 by means of a digital computer are written in subfunction form as listed in Appendix B.

NUMERICAL COMPUTATIONS

Several characteristics of the design problem have to be defined before the numerical iterations can be performed. One is the magnitude of the required values for V_{min} and W_{max} , the others include the weighting functions λ and μ .

1. The Ranges of the Volumes and Weights of Shells

Among the shells of revolution which may be generated by revolving the meridian curve, Eq. (3.1), about the x-axis, the range of shapes of interest lie between the cylindrical shell for which the exponents α and β are both large, and the conical shell for which the exponents α and β both equal unity. The volume of the cylinder with radius b and length 2a is $V_{cyl} = 2 \pi ab^2$, and the volume of the double cone, having apexes at -a and at +a, with corresponding base diameter, 2b, is $V_{cone} = \frac{2}{3} \pi ab^2$. If the required minimum volume V_{min} is written as $V_{min} = C_1(2\pi ab^2)$, then C_1 must lie between 1/3 and 1.

In order to determine the weight for the two limiting cases, the thickness variation must be considered as well as the surface area. The surface areas for the cylindrical and conical shells are

$$A_{\text{cyl}} = 4 \pi \text{ ab } \left[1 + \frac{1}{2} \left(\frac{b}{a} \right) \right]$$

$$A_{\text{cone}} = 4 \pi \text{ ab } \left[\frac{1}{2} \sqrt{1 + \left(\frac{b}{a} \right)^2} \right]$$

Using Eqs. (3.23) and (3.24), the thicknesses required for the shell of cylindrical type, based on two different failure criteria, are expressed as

$$t_1 = \frac{1}{1 + (\frac{b}{a})} \quad \left(\frac{P_o}{\sigma_o}\right) b$$

$$t_2 = \frac{1}{2} \left(\frac{P_o}{\sigma_o}\right) b$$

therefore

$$t = \begin{cases} \frac{1}{2} \left(\frac{p_o}{\sigma_o} \right) b & \text{for } (\frac{b}{a}) \ge 1 \\ \\ \frac{1}{1 + (\frac{b}{a})} \left(\frac{p_o}{\sigma_o} \right) b & \text{for } (\frac{b}{a}) < 1 \end{cases}$$

Similarly, the thicknesses required for the conical type shell are

$$t_1 = \frac{1}{2} \frac{1}{\sqrt{1 + (\frac{b}{a})^2}} \left(\frac{p_o}{\sigma_o}\right) b$$

$$t_2 = \frac{1}{2} \left(\frac{p_0}{\sigma_0} \right) b$$

Since $\frac{1}{\sqrt{1+(\frac{b}{a})^2}} \le 1$ for any value of $(\frac{b}{a})$, it follows that

$$t = \frac{1}{2} \left(\frac{p_0}{\sigma_0} \right)$$
 b for any ratio $(\frac{b}{a})$.

Then the weights of the cylindrical and the conical shells become

$$W_{\text{cyl}} = \begin{cases} \frac{1}{2} \left[1 + \frac{1}{2} \left(\frac{b}{a} \right) \right] \left[4 \pi \text{ ab}^2 \left(\frac{p_o}{\sigma_o} \right) \rho \text{ g} \right] & \text{for } \frac{b}{a} \ge 1 \\ \frac{1}{1 + \left(\frac{b}{a} \right)} \left[1 + \frac{1}{2} \left(\frac{b}{a} \right) \right] \left[4 \pi \text{ ab}^2 \left(\frac{p_o}{\sigma_o} \right) \rho \text{ g} \right] & \text{for } \frac{b}{a} < 1 \end{cases}$$
(3.42)

$$W_{cone} = \frac{1}{4} \sqrt{1 + \left(\frac{b}{a}\right)^2} \left[4 \pi ab^2 \left(\frac{p_o}{\sigma_o}\right) \rho g \right]$$

By writing the primary required limiting weight as

$$W_{\text{max}} = C_2 \left[4 \pi ab^2 \left(\frac{p_0}{\sigma_0} \right) \rho g \right]$$

then C_2 has to be in the range

$$\frac{1}{4} \sqrt{1 + (\frac{b}{a})^2} \le C_2 \le \frac{1}{2} \left[1 + \frac{1}{2} (\frac{b}{a}) \right] \text{ for } (\frac{b}{a}) \ge 1$$

$$\frac{1}{4} \sqrt{1 + (\frac{b}{a})^2} \le C_2 \le \frac{1}{1 + (\frac{b}{a})} \left[1 + \frac{1}{2} (\frac{b}{a}) \right] \text{ for } (\frac{b}{a}) < 1$$

2. Weighting Functions λ and μ

The functions λ and μ which define the relative importance of the variation of the volume and the weight of the shells, are preassigned according to the design criterion. Any functions in terms of V and W can be assigned in the problem. One such set of functions is defined as

$$\lambda_1 = \frac{(V_{\text{cyl}} - V)^p}{(V - V_{\text{min}})^q}, \qquad \mu_1 = \frac{W^m}{(W_{\text{max}} - W)^n}$$
 (3.43)

The shapes of the functions in Eq. (3.43) appear in Fig. 1, for p=q=m=n=1. From the characteristics of the functions λ and μ , one can predict that when the volume is close to V_{min} or when the weight is close to W_{max} , a small increment of V or W will produce a large change of dF as defined in Eq. (3.6). If dF is considered as the slope of a surface F, then the surface has a positive slope along the edge where V is close to V_{min} and has a negative slope along the edge where W is close to W_{max} . Thus it follows that there must exist a maximum value of F, that is dF=0, in the assigned range $V > V_{min}$ and $W < W_{max}$.

The functions λ and μ may also be defined as

$$\lambda_2 = \frac{\lambda_1}{\sqrt{\lambda_1^2 + \mu_1^2}} \qquad \mu_2 = \frac{\mu_1}{\sqrt{\lambda_1^2 + \mu_1^2}}$$
 (3.44)

where λ_1 and μ_1 are obtained from Eq. (3.43). If one divides λ_1 and μ_1 by $\sqrt{\lambda_1^2 + \mu_1^2}$, the magnitude of λ_2 and μ_2 will be limited to the range of 0 to 1. The ratios λ_2/μ_2 and λ_1/μ_1 , remain the same. The characteristics of the functions are as shown in Fig. 2; the values of λ_2 and μ_2 outside the range of V_{\min} and V_{\max} are arbitrary set equal to 0 and to 1 respectively.

Another form of λ and μ consists of straight lines, which define a linear variation of V and W as

$$\lambda_3 = \frac{V_{\text{cyl}} - V}{V_{\text{cyl}} - V_{\text{min}}} \qquad \mu_3 = \frac{W}{W_{\text{max}}}$$
(3.45)

The above three definitions of λ and μ are applied in the numerical examples of this report. Subroutine programs for the calculation of λ and μ are attached to the main iteration program as listed in Appendix B.

3. Numerical Examples

The functions of λ and μ for the first example are chosen as in Fig. 1, that is

$$\lambda = \frac{V_{\text{cyl}} - V}{V - V_{\text{min}}}, \qquad \mu = \frac{W}{W_{\text{max}} - W}$$

Let the required minimum volume of the shell be 0.6 of the volume of cylindrical shell, thus $V_{min} = 0.6$ (2 π ab²), and let the required maximum weight be 0.8 that of the cylindrical shell under the same load condition. Since the thickness required for the cylindrical shell is dependent on the ratio of b/a, the weights for the cylindrical shells with different ratios b/a are given by Eq. (3.42) as

$$W_{cyl} = \begin{cases} 0.75 \\ 1.00 \\ 0.90 \end{cases}$$
 (4 $\pi \rho g p_o a b^2 / \sigma_o$) for b/a = 1.0 for b/a = 2.0 for b/a = 0.25

 $W_{cyl} = \begin{cases} 0.75 \\ 1.00 \\ 0.90 \end{cases}$ (4 $\pi \rho g p_o a b^2/\sigma_o$) for b/a = 2.0 for b/a = 0.25 therefore the values of W_{max} are chosen as $0.6(4\pi \rho g p_o a b^2/\sigma_o)$, $0.8(4\pi \rho g p_o a b^2/\sigma_o)$ and $0.72(4\pi \rho g p_o a b^2/\sigma_o)$ for the ratios b/a = 1.0, 2.0, and 0.25 respectively.

With all the requirements set, the iterative calculations are performed with the aid of digital computers. The FORTRAN programs for the iteration procedure are listed in Appendix B.

Choosing the starting values $\alpha = 1.5$, $\beta = 1.5$ with the fineness ratio a/b = 1.0, and the limiting value $\eta_0 = 0.1$, $k_0 = 0.3$, results in the output listed in Table I. From steps 1 to 7 in the Table, the results listed are presented for each iteration; from step 8 on, the results are presented for every other iteration. From these results it is seen that the values of α and β increase rapidly in each of the first six iterations and then change slowly. The same pattern is apparent for the slopes F_{α} and F_{β} .

Table II shows the iteration results with the same parameters as in Table I, but with the starting condition $\alpha = 2.0$, $\beta = 3.0$. The results in steps 1 to 8 are listed for each iteration while after step 8, they are listed for every fourth iteration. The iterated values of α and β decrease rapidly in the first three steps and then change slowly.

The results in Tables I and II, indicate that the shape defined by $\alpha = 1.5$, $\beta = 1.5$ lies on one side of the ridge, Fig. 3, while the shape defined by $\alpha = 2.0$, $\beta = 3.0$ lies on the other side of the ridge. During the iteration process, the successively improving values of α and β climb to the ridge rapidly according to the path of steepest ascent, and then progress slowly along the ridge due to the small variation of slope along the ridge. 23

The phenomena observed in the above results may be verified or described more clearly by the exact integration of the function dF of Eq. (3.6) using the assigned functions λ and μ . Rewriting the weighting functions λ and μ in dimensionless terms ν and ν , one obtains

$$\lambda = \frac{c - v}{v - 1} \qquad \mu = \frac{w}{1 - w}$$

where

$$c = \frac{v_{cyl}}{v_{min}}$$

$$dF = \frac{c - v}{v - 1} dv - \frac{w}{1 - w} dw$$

which, after integration, yields

$$F = (c - 1) \log (v - 1) + \log (1 - w) - (v + w)$$

The function F is in terms of v and w, which can be represented by the integrals with parameters α and β . The relative variation of F with respect to α and β is plotted as a three dimensional surface in Fig. 3. The surface has the shape of a mountain range with the projection of the ridge shown in the α - β plane in Fig. 3. The peak of the ridge is located near the point α = 2.65, β = 1.55.

Changing the values of V_{\min} , W_{\max} and the reciprocal of fineness ratio, b/a, results in little change in the shape of the surface F, but does produce a slight shift in the location of the ridge. The projections of the ridges on the α - β plane, with different combinations of V_{\min} , W_{\max} , and b/a, are plotted in Fig. 4. The shift in the ridge is in the same sense as the change in V_{\min} or in W_{\max} .

The results in Tables III and IV show the iterative calculations for the case $V_{min} = 0.6$ (2 π ab²), $W_{max} = 0.8$ (4 π p g p_o ab²/o_o) with the ratio b/a = 2.0 and k_o = 0.3. While the initial values for α and β are different in Tables III and IV, it is noted that they converge to the same values of α and β after successive iterations.

As a second example, λ_2 and μ_2 of Fig. 2 are chosen as the weighting functions. The results of each iterated calculation with three different starting values are listed in Table V. The preassigned values for computations are $V_{min} = 0.6 \ (2 \ mab^2)$, $W_{max} = 0.6 \ (4 \ max) p_0 \ ab^2/\sigma_0$ and b/a = 1.0. The values

of α and β reach the ridge rapidly after several iterations regardless of the starting point.

Table VI gives the iterated results for the weighting functions λ_3 and μ_3 , which vary linearly with V and W, as defined by Eq. (3.45). The other preassigned values for computations are the same as for Table V. The results indicate that both the slopes F_{α} and F_{β} are within the limit 0.005 after ten iterations for all of the different starting values.

Since the iteration procedure is controlled by the slope of the function F, the rate of convergence is mainly dependent on the weighting functions λ and μ . For the currently assigned functions, the results in the above tables indicate that the values α and β converge rapidly to the region where the ordered pair (α, β) lies near the projection of the ridge and then change slowly along the ridge. Due to the small variation of the slope along the ridge, any point located on the projection of the ridge on the α - β plane constitutes a good shape with respect to volume and weight.

As another example, the functions λ and μ may be considered as constants. In this case, the problem becomes one of determining the relative maximum of the function F = v - w. Since the variation of the thickness is very small due to the change of values α , β , a shape which is nearly optimum may be achieved by assigning a specific value of volume in determining the values of α , β for minimum shell surface or by assigning a specific value of surface area in determining the values of α , β for maximum volume.

The shapes to fulfill the above requirement can be determined with the aid of data from previous reports [1, 2]. The surface in Fig. 5 represents the volume variation with respect to α and β . The heavy curve on this surface represents the volumes of shells for which the surface area is equal to a preassigned value. From the projection of this curve on a vertical plane, the values of α and β for the maximum volume for the defined surface area can be established. In a similar manner, the surface in Fig. 6 represents the area variation with respect to α and β . The heavy curve on the surface represents the areas of shells for which the shell volume is equal to a preassigned value. The projection of this curve on a vertical plane indicates the area variation among shells having a constant volume.

APPENDIXES

A. Iteration Procedures with Varying Shell Length

Similar to the Eqs. (3.2) and (3.3), the volume and weight of the shells of revolution may be taken as the functions of three parameters α , β and α ,

$$V_{xa} = V_{xa} (\alpha, \beta, a)$$

$$W = \rho g A (\alpha, \beta, a) t (\alpha, \beta, a)$$

Here the shape requirements to be fulfilled for the shell are

$$V_{xa} \ge V_{min}$$
 $W \le W_{max}$ $a \le a_{max}$

In this case the dimensionless forms are defined as

$$v = \frac{V_{xa}}{V_{min}}$$
 $w = \frac{W}{W_{max}}$ $\ell = \frac{a}{a_{max}}$

and the differential of a function is formed as

$$dF = \lambda dv - u dw - v d\ell$$

where λ , μ and ν are the functions defining the relative importance of increases in volume and decreases in weight and length. The differential dF also can be written as

$$dF = F_{\alpha} d\alpha + F_{\beta} d\beta + F_{\ell} d\ell$$

with

$$F_{\alpha} = \lambda v_{\alpha} - \mu w_{\alpha}$$

$$F_{\beta} = \lambda v_{\beta} - \mu w_{\beta}$$

$$F_{0} = \lambda v_{0} - \mu w_{0} - \nu$$

The iteration steps will then follow path of steepest ascent, as defined by

$$d\alpha : d\beta : d\ell = F_{\alpha} : F_{\beta} : F_{\ell}$$

The iterative procedure is repeated until \mathbf{F}_{α} , \mathbf{F}_{β} and \mathbf{F}_{ℓ} are essentially zero.

B. FORTRAN Programs

1. Programs for FUNCTIONS FJ1 through FJ7

Since the integrals J_1 through J_7 listed in Eqs. (3.33) appear in the calculations of the main iteration program many times, they are computed in separate FUNCTIONS attached to the main program. Simpson's rule is used to evaluate the above integrals with the approximation techniques discussed in the section on Numerical Integration.

Among the input arguments for the FUNCTION programs, the values P, Q, R, S and T are the exponents in the integrals. They are dependent on the values of α and β . The quantities ETAI and EPS are two small numbers assigned in the calculation of the two improper integrals I(ϵ) and K(ϵ) of Eqs. (3.35) and (3.36). The value FK2 represents the term $\left(\frac{b\alpha}{a\beta}\right)^2$ and the value ACC is the accuracy required for the relative difference between two successive approximations in the Simpson's rule integration routine. In the previous numerical examples, the value assigned to ETAI and to EPS is 0.01 while the value assigned to ACC is 0.0001.

2. Program for SUBROUTINE FMULAM

The SUBROUTINE FMULAM is written to compute either the values λ_1 , μ_1 , as Eq. (3.43) or the values λ_2 , μ_2 as Eq. (3.44), which is controlled by the number NC. The outputs defined by FLAM and FMU represent λ_1 and μ_1 for NC = 1 and λ_2 and μ_2 for NC=2. The input arguments P, Q, FM and FN are the same as the exponents p, q, m and n of Eq. (3.43).

3. The Main Iteration Program

The main purpose of the program is to compute the increments of $\Delta \alpha$ and $\Delta \beta$ along the path of the steepest ascent from the current assigned values α and β . The computations are repeated for the new calculated α and β until they reach a point where the absolute values F_{α} and F_{β} , as in Eqs. (3.7) and (3.8), are less than a preassigned small number QEPS.

The input data of FP, FQ, FM, FN and NC listed on the first data card are supplied for the calculation of functions λ and μ . The constants EPS, ETAI and ACC on the second data card are the numbers assigned to the FUNCTIONS J_1 through J_7 in order to compute the integrals. The values PO and SIGO represent internal pressure p_0 and the yield stress σ_0 and are used to calculate the thickness t. Input data ETAO and FKV are assigned to limit the step size of α and

 β in each iteration, and represent η_0 and k_0 in Eqs. (3.14) and (3.13). The two integers NRVWP and NRAB are the number of the sets of V_{min} , W_{max} and the number of sets of the ratio BOA (b/a) to be calculated in the program.

The input values VMIN and WMAX are two dimensionless numbers which represent the preassigned allowable minimum volume and maximum weight. The true value of the minimum volume is VMIN · (2 π ab²) and the true value of maximum weight is WMAX · (4 π ρ g p₀ ab²/ σ ₀).

For the output, the results of each iteration are printed using the symbols DA, DB, ATIL and BTIL to represent $\Delta\alpha$, $\Delta\beta$, F_{α} and F_{β} respectively.

PROGRAM FOR EXAMPLES

```
FORTRAN IBM
       PUNCH OBJECT
       GO
   READ INPUT TAPE 7, 1, FP, FQ, FM, FN, NC, EPS, ETAI, ACC, NRVWP 1 FORMAT (4F15.5, I10 / 3E20.8 / I10)
READ INPUT TAPE 7, 2, PU, SIGG, QEPS, ETAO, FKV
                                                                             SHELL002
                                                                             SHELL 003
    2 FORMAT (2E20.8/ 3F20.5)
                                                                             SHELL004
                                                                             SHELL005
    3 DO 69 INRVWP = 1, NRVWP
    4 READ INPUT TAPE 7, 5, VMIN, WMAX, NRAB
                                                                             SHELLOO6
                                                                             SHELL007
    5 FORMAT ( 2E20.8 /110)
    9 DO 50 INRAB = 1. NRAB
                                                                             SHELL008
   10 READ INPUT TAPE 7, 11, ALPHA, BETA, BOA
                                                                             SHELL009
                                                                             SHELL010
   11 FORMAT ( 3E20.8)
      WRITE OUTPUT TAPE 6, 12, VMIN, WMAX, BOA
                                                                             SHELL011
   12 FORMAT (8H1VMIN = ,F7.3,2X,7HWMAX = ,F7.3,3X, 4HROA=, F6.3, //)
                                                                             SHELL012
                                                                             SHELL013
       NCONT =0
                                                                             SHELL014
    TO LIMIT ALPHA AND BETA BOTH LARGER THAN ONE
                                                                             SHELL015
                                                                              SHELL016
                                                                              SHELLO17
   14 IF (ALPHA - 1.0) 15, 17, 17
                                                                             SHELL 018
   15 ALPHA = 1.0
   17 IF (BETA - 1.0) 18, 19, 19
                                                                              SHELL019
                                                                              SHELL020
   18 BETA = 1.0
   19 FK2 = (BOA*ALPHA/BETA)**2
                                                                              SHELL021
                                                                              SHELL022
       CNOB = 1.0/BETA
       TWCB = 2.0/BETA
                                                                             SHELL023
       THOS = 3.0/8ETA
                                                                              SHELL024
       NCONT = NCONT +1
                                                                              SHELL025
                                                                              SHELL026
    TO DETERMINE THE VALUE OF T= T1 OR T2
                                                                              SHELL027
                                                                              SHELL028
      AR= FJ1(ALPHA, ONGB, ACC)
                                                                              SHELL029
      SL = FJ4(ALPHA, ONOB, C.O, FK2, ETA1, ACC)
                                                                              SHELL030
                                                                              SHELL031
      RR = AR/ SI
                                                                              SHELL032
      IF ( RR-0.5 ) 20, 20, 21
                                                                              SHELL033
    T2 LARGER THAN T1
                                                                              SHELL034
                                                                              SHELL035
   20 T = 0.5 *PO/SIGO
      TA = G.
                                                                              SHELL036
                                                                              SHELL037
      TB = C.
      GO TO 24
                                                                              SHELL038
                                                                              SHFLL039
C
                                                                              SHELL040
    T1 LARGER THAN T2
                                                                              SHELL041
   21 T = RR *PC /SIGO
      ARA= -(CNCR)*FJ3(ALPHA, ONOB, CPS, ETAI, ACC)
                                                                              SHELL042
      ARB= -(1.0/(BCTA**2))*FJ2(ALPHA, ONOB, ETAI, ACC)
                                                                              SHELL043
      TE = FJ5(ALPHA, CNC8, TWOB, FK2, ETAI, ACC)
                                                                              SHELL044
      SLA = FK2*(FJ7(ALPHA,ONUB,TWOB,2.*(ALPHA-1.),FK2,EPS,ETAI,ACC) +
                                                                              SHCLL045
     1 FJ7(ALPHA, CNOR, TWO0, 3. *ALPHA-2., FK2, EPS, ETAI, ACC)/BETA + TE/ALPHA)
                                                                              SHELL046
                                                                              SHELL047
      SLB = -(FK2/(BETA**2))*(FJ6(ALPHA,ONOR,ALPHA,TWOB,FK2,ETAI,ACC) + SHELLO48
                                                                              SHELL049
        8ETA+TE)
      SHELL050
      TB = (PU/SICO) . (ARB- AR . SLB/ SL) /SL
                                                                              SHELL051
   24 WRITE OUTPUT TAPE 6, 25, ALPHA, BETA, AR, SL, RR, T, TA, TB
                                                                              SHELL052
                                                                              SHELL053
   25 FORMAT ( 1HC, 5X, 8F12.6)
```

```
SHELL 054
    TO CALCULATE V. W. AND THEIR DERIVATIVES
                                                                               SHELL055
                                                                               SHELL056
      SU# FJ4(ALPHA.ONOB.ONOB.FK2.ETAI.ACC)
                                                                               SHELL 057
      TE = FK2*FJ5(ALPHA, ONGB, THOB, FK2, ETAI, ACC)
                                                                               SHELL 058
     SUA= TE/ALPHA - FJ7(ALPHA, CNUB, ONOB+2. ,ALPHA, FK2, EPS, ETA1, ACC) SHELLO59

1 /BETA + FK2*FJ7(ALPHA, ONOB, THOB+1.0, 2.*(ALPHA-1.), FK2, EPS, SHELLO60
        ETAI, ACC) - FK2*(TKOB-1.)*FJ7(ALPHA, ONOB, THOU, 3.*ALPHA-2.,
                                                                               SHELL061
         FK2, EPS, ETAI, ACC)
                                                                               SHELL062
      SUB= -(1./(BETA**2))*(FJ6(ALPHA,ONOB,1.,ONOB+2.,FK2,ETAI,ACC) +
                                                                               SHELL 063
     1 2.*FK2*FJ6(ALPHA,ONOB,ALPHA,THOB,FK2,ETAI,ACC) + BETA*TE)
                                                                               SHELL064
      V = FJ1(\Lambda LPHA, TWO8, ACC)
                                                                               SHELL065
      VA = -(TWCB)*FJ3(ALPHA,TWOB,EPS,ETAI,ACC)
                                                                               SHELLC66
      VB = -(2.0/(BETA**2))*FJ2(ALPHA, TWOB, ETAI, ACC)
                                                                               SHELL067
      W = SU *T
                                                                               SHELL 068
      WA = SU*TA + T*SUA
                                                                               SHELL069
      WB = SU*TB + T*SUB
                                                                               SHELLO70
                                                                               SHELL071
    TO FIND THE VALUES OF MU AND LAMDA
                                                                               SHELL 072
C
                                                                               SHELL073
      CALL FMULAM ( FP, FQ, FM, FN, VMIN, WMAX, V, k, FMU, FLAM, NC )
                                                                               SHELL074
C
                                                                               SHELL075
      WRITE OUTPUT TAPE 6, 26, V, VA, VB, W, WA, WB, FMU, FLAM
                                                                               SHELL076
   26 FORMAT (10X, 8F11.6)
IF (FMU) 50, 30, 30
                                                                               SHELL 077
                                                                               SHELL078
   30 IF (FLAM) 50, 31, 31
                                                                               SHELL079
                                                                               SHELL080
    TO CALCULATE FALPHA AND FBETA (THAT IS, ATIL AND BTIL)
                                                                               SHELL081
                                                                               SHELL082
   31 ATIL = FLAM * VA/ VMIN - FMU * WA/ WMAX
                                                                               SHELL 083
      BTIL = FLAM * VB/ VMIN - FMU • WB/ WMAX
                                                                               SHELL084
      ATILS = ( ATIL*VA + BTIL*VB ) /VMIN
                                                                               SHELL085
      BTILS = { ATIL*WA + BTIL*WB } / WMAX
                                                                               SHELL086
      VO = V/VMIN
                                                                               SHELL087
      HO = W/HMAX
                                                                               SHELLORN
C
                                                                               SHELL089
    PROGRAM TERMINATES WHEN QQ LESS THAN QEPS
                                                                               SHELLU90
C
                                                                               SHELL091
      QQ = SQRT (AFIL**2 + BTIL**2)
                                                                               SHELL092
      IF ( CO-QEPS ) 48, 48, 35
                                                                               SHELL093
                                                                               SHELL094
    TO DETERMINE STEP SIZE, CONTROL ON FKAP
                                                                               SHELL095
                                                                               SHELL096
   35 FKAPS = ETAC / SQRT (ATILS**2 + BTILS**2)
                                                                               SHELL097
      IF (FKAPS - FKV) 36, 36, 37
                                                                               SHELL098
   36 FKAP = FKAPS
                                                                               SHELL099
      GO TO 40
                                                                               SHELL100
   37 FKAP = FKV
                                                                               SHELL101
   40 DA = FKAP . ATIL
                                                                               SHELL102
      DB = FKAP * BTIL
                                                                               SHELL 103
      WRITE OUTPUT TAPE 6, 42, ALPHA, BETA, DA, DS, VG, WG, FKAP, ATIL, SHELL104
     1 BTIL, ATILS, BTILS
                                                                               SHELL105
   42 FORMAT (6F9.5, 5E12.5)
                                                                               SHELL106
      ALPHA = ALPHA+ DA
                                                                               SHELL107
      BETA = BETA + DB
IF ( NCCNT - 50
                                                                               SHELL 108
                        ) 14, 50, 50
                                                                               SHELL109
   48 WRITE OUTPUT TAPE 6, 49, ALPHA, BETA, VO, WO, ATIL, BTIL, ATILS,
                                                                               SHELL110
        BTILS
                                                                               SHELLIII
   49 FORMAT ( 1H-, 8F13.5 /1H2 )
                                                                               SHELL112
   50 CONTINUE
                                                                               SHELLIII
   69 CONTINUE
                                                                               SHELL114
      CALL SYSTEM
                                                                               SHELL115
      END
                                                                               SHELL116
```

```
FORTRAN IBM
    PUNCH OBJECT
   SUBROUTINE FMULAM(P,Q,FM,FN,VMIN,WMAX,V,W,FMU,FLAM,NC)
                                                                                  SUBFML01
                                                                                  SUBEMI 02
 1 VV = V/VMIN
                                                                                  SUBFML03
 2 WW = W/WMAX
 3 IF (VV - 1.0) 4, 4, 10
4 IF (WW - 1.0) 10, 5, 5
5 WRITE OUTPUT TAPE 6, 6, VMIN, WMAX, VV, WW
                                                                                  SUBFML04
                                                                                  SUBFML05
                                                                                  SUBFML06
 6 FORMAT(7H VMIN = ,E12.6,8H WMAX = ,E12.6,6H V = ,E14.8,6H W = ,
                                                                                  SUBFML07
  1E14.8.// 5X, 43HTHE PRIMARY REQUIREMENTS CANNOT BE REACHED )
                                                                                  SUBFML08
                                                                                  SUBFML09
 7 \text{ FMU} = -1.0
 8 FLAM = -1.0
                                                                                  SUBFML10
                                                                                  SUBFML11
 9 RETURN
10 IF (V-1.0) 11, 5, 5
11 IF (VV - 1.0) 12, 12, 15
                                                                                  SUBFML12
                                                                                  SUBFML13
                                                                                  SUBFML14
12 FMU = 0.0
                                                                                  SUBFML15
13 \text{ FLAM} = 1.0
                                                                                  SUBFML16
14 IF (WW) 5, 5, 9
15 IF (WW) 5, 5, 16
16 IF (WW - 1.0) 20, 17, 17
                                                                                  SUBEML17
                                                                                  SUBFML18
17 FLAM = 0.0
                                                                                  SUBFML19
                                                                                  SUBFML20
18 FMU = 1.0
                                                                                  SUBEMI 21
19 RETURN
20 FLAM = ((1./VMIN - VV)**P)/((VV-1.)**Q)
                                                                                  SUBFML22
21 \text{ FMU} = (WW##FM)/((1.0 - WW)##FN)
                                                                                  SUBFML23
22 GO TO (23,26), NC
                                                                                  SUBFML24
23 TEMP = SORT(FLAM**2 + FMU**2)
                                                                                  SUBFML25
24 FLAM = FLAM/TEMP
                                                                                  SUBFML26
                                                                                  SURFMI 27
25 FMU = FMU/TEMP
26 RETURN
                                                                                  SUBFML28
                                                                                   SUBFML29
   END
```

```
FORTRAN IBM
$PUNCH OBJECT
      FUNCTION FJI(P,Q,ACC)
                                                                            FJ1 01
                                                                            FJ1 02
    1 \text{ ODD} = 0.0
    2 INT = 1
                                                                            FJ1 03
    3 V = 1.0
                                                                            FJ1 04
    4 EVEN = 0.0
                                                                            FJ1 05
                                                                            FJ1 06
      AREA1 = 0.0
      IF (Q) 19, 5, 6
                                                                            FJ1 07
    5 ENDS = 2.0
                                                                            FJ1 08
      GO TO 7
                                                                            FJ1 09
                                                                            FJ1 10
    6 ENDS = 1.0
                                                                            FJ1 11
    7 H = 1.0/V
    8 ODD = EVEN + ODD
                                                                            FJ1 12
                                                                            FJ1 13
    9 X = H/2.
   10 EVEN = 0.0
                                                                            FJ1 14
   11 DO 13 I = 1, INT
                                                                            FJ1 15
   12 EVEN = EVEN + ((1.0 - X**P)**Q)
                                                                            FJ1 16
   13 X = X + H
                                                                            FJ1 17
   14 AREA = (ENDS + 4.0*EVEN + 2.0*ODD)*H/6.0
                                                                            FJ1 18
   15 R = ABSF(AREA1/AREA + 1.0) - ACC
                                                                            FJ1 19
   16 IF (R) 25, 25, 17
                                                                            FJ1 20
   17 IF (INT - 16384) 21, 19, 19
                                                                            FJ1 21
   18 FORMAT (23H J1(P,Q) NOT CONVERGENT)
                                                                            FJ1 22
   19 WRITE OUTPUT TAPE 6, 18
                                                                            FJ1 23
   20 CALL SYSERR
                                                                            FJ1 24
   21 AREAL = AREA
                                                                            FJ1 25
   22 INT = 2 - INT
                                                                            FJ1 26
   23 V = 2.0*V
                                                                            F.11 27
   24 GO TO 7
                                                                            FJ1 28
   25 FJ1 = AREA
                                                                            FJ1 29
   26 RETURN
                                                                            FJ1 30
      END
                                                                            F.11 31
```

```
FORTRAN IBM
$PUNCH OBJECT
      FUNCTION FJ2(P.O.ETAI, ACC)
                                                                                 FJ2 01
    1 DP = P
E= 1.-(1.0-ETAI)**P
                                                                                 FJ2 02
                                                                                 FJ2 03
                                                                                 FJ2 04
      OME = 1.0 -ETAI
    3 DEL = 1.0 - 1.0/DP
                                                                                 FJ2 05
    5 F0 = 1.0
                                                                                 FJ2 06
    6 F1 = (1.0 - 0.5*E)**(-DEL)
                                                                                 FJ2 07
    7 F2 = (1.0 - E)**(-DEL)
                                                                                 FJ2 08
    P = PG = 0
                                                                                 FJ2 09
   9 A = 4.0*F1 - F2 - 3.0*F0
10 B = 2.0*F2 - 4.0*F1 + 2.0*F0
                                                                                 FJ2 10
                                                                                 FJ2 11
   11 \ T1 = 00 + 1.0
                                                                                 FJ2 12
   12 T2 = 0Q + 2.0
13 T3 = 0Q + 3.0
                                                                                 FJ2 13
                                                                                 FJ2 14
   140EN = \{ELOG (E)*(FO + T1*(A/T2 + B/T3)) - (FO + T1*T1*(A/(T2*T2))\}
                                                                                 FJ2 15
     1 + B/(T3*T3)))/T1)*(E**T1)/(T1*DP)
                                                                                 FJ2 16
   15 \text{ ODD} = 0.0
                                                                                 FJ2 17
   16 INT = 1
17 V = 1.0
                                                                                 FJ2 18
                                                                                 FJ2 19
   18 EVEN = 0.0
                                                                                 FJ2 20
     AREA1 = 0.0
                                                                                 FJ2 21
   19 ENDS = ((1.0 - OME**DP)**DQ)*ELOG (1.0 - OME**DP)
                                                                                 FJ2 22
   20 H = OME/V
                                                                                 FJ2 23
   21 ODD = EVEN + ODD
                                                                                 FJ2 24
   22 X = H/2.0
                                                                                 FJ2 25
   23 EVEN = 0.0
                                                                                 FJ2 26
   24 \ DO \ 26 \ I = 1, INT
                                                                                 F.12 27
   25 EVEN = EVEN + ((1.0 - X**DP)**DQ)*ELOG (1.0 - X**DP)
                                                                                 FJ2 28
   26 X = X + H
                                                                                 FJ2 29
   27 AREA = (ENDS + 4.0*EVEN + 2.0*ODD)*H/6.0
                                                                                 FJ2 30
   28 R = ABSF(AREA1/AREA - 1.0) - ACC
                                                                                 FJ2 31
   29 IF (R) 38, 38, 30
30 IF (INT - 16384) 34, 31, 31
31 WRITE OUTPUT TAPE 6, 32
                                                                                 FJ2 32
                                                                                 FJ2 33
                                                                                 FJ2 34
   32 FORMAT (23H J2(P,Q) NOT CONVERGENT)
                                                                                 FJ2 35
   33 CALL SYSERR
                                                                                 FJ2 36
   34 AREA1 = AREA
                                                                                 FJ2 37
   35 INT = 2*INT
                                                                                 FJ2 38
   36 V = 2.0*V
                                                                                 FJ2 39
   37 GO TO 20
                                                                                 FJ2 40
   38 FJ2 = AREA + EN
                                                                                 FJ2 41
   39 RETURN
                                                                                 FJ2 42
      END
                                                                                 FJ2 43
```

```
FORTRAN IBM
$PUNCH OBJECT
      FUNCTION FJ3(P,Q,EPS, ETAI, ACC)
                                                                               FJ3 01
                                                                               FJ3 02
    1 DP = P
                                                                               F.13 03
    2 D0 = C - 1.0
    3 T1 = DP + 1.0
                                                                               FJ3 04
    4 T2 = T1/(DP + 2.0)
                                                                               FJ3 05
    5 T3 = T1/(DP + 3.6)
                                                                               FJ3 06
                                                                               FJ3 07
    6 F0 = 1.0
                                                                               FJ3 08
    7 E = EPS
    8 F1 = (1.0 - (0.5*E)**DP)**DQ
                                                                               FJ3 09
                                                                               FJ3 10
    9 F2 = (1.0 - E**DP)**DQ
   10 A = 4.0*F1 - F2 - 3.0*F0
11 B = 2.0*F2 - 4.0*F1 + 2.0*F0
                                                                               FJ3 11
                                                                               FJ3 12
   120EN = (ELOG (E)*(FO + T2*A + T3*B) - (FO + T2*T2*A + T3*T3*B)/T1)*(FJ3 13
                                                                               FJ3 14
     1E**T1)/T1
   13 DEL = 1.0/DP

OME = 1.0-ETAI
                                                                               FJ3 15
                                                                               FJ3 16
                                                                               FJ3 17
      E= 1.0- OME ** CP
                                                                               F.13 18
   15 T1 = DQ + 1.0
   16 T2 = T1/(CQ + 2.0)
                                                                               FJ3 19
                                                                               FJ3 20
   17 T3 = T1/(CQ + 3.0)
                                                                               FJ3 21
   18 F0 = 0.0
   19 F1 = ((1.0 - 0.5*E)**DEL)*ELOG (1.0 - 0.5*E)
                                                                               FJ3 22
                                                                               FJ3 23
   20 F2 = ((1.0 - E)**DEL)*ELOG (1.0 - E)
   21 A = 4.0*F1 - F2 - 3.0*F0
22 B = 2.0*F2 - 4.0*F1 + 2.0*F0
                                                                               FJ3 24
                                                                               FJ3 25
   23 EN = EN + (FO + T2*A + T3*B)*(E**T1)/(T1*DP*DP)
                                                                               FJ3 26
                                                                               FJ3 27
      E = EPS
   240ENDS = ((1.0 - E**DP)**DQ)*(E**DP)*ELGG (E)
                                                                               FJ3 28
                                                                               FJ3 29
     1 + ((1.0 - CME**DP)**DQ)*(OME**DP)*FLCG (UME)
   25 GDD = 0.0
                                                                               FJ3 30
                                                                               FJ3 31
   26 INT = 1
                                                                               FJ3 32
   27 V = 1.0
                                                                               FJ3 33
   28 EVEN = 0.0
   29 AREAL = 0.0
                                                                               FJ3 34
   30 H = (OME - E)/V
                                                                               FJ3 35
                                                                               FJ3 36
   31 ODD = EVEN + CDD
                                                                               FJ3 37
   32 X = E + H/2.
                                                                               FJ3 38
   33 EVEN = 0.C
   34 DO 36 I = 1, INT
                                                                               FJ3 39
   35 EVEN = EVEN + ((1.0 - X**DP)**DQ)*(X**DP)*ELOG (X)
                                                                               FJ3 40
                                                                               FJ3 41
   36 X = X + H
                                                                               FJ3 42
   37 AREA = (ENDS + 4.0*EVEN + 2.0*000)*H/6.0
                                                                               FJ3 43
   38 R = ABSF(AREAI/AREA - 1.0) - ACC
                                                                               FJ3 44
   39 IF (R) 48, 48, 40
   40 IF (INT - 16384) 44, 42, 42
41 FORMAT (23H J3(P,Q) NOT CONVERCENT)
                                                                               FJ3 45
                                                                                FJ3 46
                                                                                FJ3 47
   42 WRITE OUTPUT TAPE 6, 41
                                                                                F.J.3 48
   43 CALL SYSERR
                                                                               FJ3 49
   44 AREAL = AREA
   45 INT = 2*1NT
                                                                                FJ3 50
   46 V = 2.0 ± V
                                                                                FJ3 51
                                                                                FJ3 52
   47 GO TO 30
                                                                                F.13 53
   48 FJ3 = AREA + EN
                                                                                FJ3 54
   49 RETURN
       END
                                                                                FJ3 55
```

```
FORTRAN IBM
SPUNCH OBJECT
      FUNCTION FJ4(P,Q,S,FK2, ETAI, ACC)
                                                                               FJ4 01
    1 DG = S + Q - 1.0
                                                                               FJ4 02
    2 T1 = DG + 1.0
                                                                                FJ4 03
    3 T2 = T1/(DG + 2.0)
                                                                                FJ4 04
    4 T3 = T1/(DG + 3.0)
                                                                               FJ4 05
      OME = 1.0 - ETAI
                                                                               FJ4 06
      E = 1.0- OME ++ P
                                                                                FJ4 07
    6 DP = P
                                                                                FJ4 08
    8 DEL = -2.0*(1.0 - 1.0/DP)
                                                                                FJ4 09
      DQ = 2.0*(1.0 - Q)
IF (Q - 1.0) 11, 10, 36
                                                                                FJ4 10
                                                                                FJ4 11
   10 FO = SQRT (1.0/FK2 + 1.0)
                                                                                FJ4 12
      GO TO 12
                                                                                FJ4 13
   11 F0 = 1.0
                                                                               FJ4 14
   12 DF = FK2
                                                                                FJ4 15
   13 F1 = SQRT (((1.0 - 0.5*E)**DEL)*((0.5*E)**DQ)/FK2 + 1.0)
                                                                               FJ4 16
  14 F2 = SQRT (((1.0 - E)**DEL)*(E**DQ)/FK2 + 1.0)

15 A = 4.0*F1 - F2 - 3.0*F0

16 B = 2.0*F2 - 4.0*F1 + 2.0*F0
                                                                               FJ4 17
                                                                               FJ4 18
                                                                               FJ4 19
   17 EN = (FO + T2*A + T3*B)*(E**T1)*SQRT (DF)/(T1*DP)
                                                                               FJ4 20
   18 ODD = 0.0
                                                                               FJ4 21
   19 INT = 1
                                                                               FJ4 22
   20 V = 1.0
                                                                               FJ4 23
   21 EVEN = 0.0
                                                                               FJ4 24
      AREA1 = 0.0
                                                                               FJ4 25
      EE = 1.0
                                                                               FJ4 26
  IF (P - 1.0) 36, 22, 23
22 EE = SQRT (1.0 + FK2)
                                                                               FJ4 27
                                                                               FJ4 28
   230ENDS = EE + {(1.0 - DME**DP)**DG}*SQRT {(1.0 - DME**DP)**DQ + DF*FJ4 29
     1(OME**(2.C*DP - 2.0)))
                                                                               FJ4 30
   24 DDP = 2.0*(DP - 1.0)
                                                                               FJ4 31
   25 H = DME/V
                                                                               FJ4 32
   26 ODD = EVEN + ODD
                                                                               FJ4 33
   27 X = H/2.0
                                                                               FJ4 34
   28 EVEN = 0.0
                                                                               FJ4 35
   29 DO 31 I = 1, INT
                                                                               FJ4 36
   300EVEN = EVEN + ((1.0 - X**DP)**DC)*SGRT ((1.0 - X**DP)**DQ + DF*(X*FJ4 37
    1*DDP))
                                                                               FJ4 38
   31 X = X + H
                                                                               FJ4 39
   32 AREA = (ENDS + 4.0*EVEN + 2.0*0DD)*H/6.0
                                                                               FJ4 40
   33 R = ABSF(AREA1/AREA - 1.0) - ACC
                                                                               FJ4 41
   34 IF (R) 43, 43, 35
35 IF (INT - 16384) 39, 36, 36
                                                                               FJ4 42
                                                                               FJ4 43
   36 WRITE OUTPUT TAPE 6, 37
                                                                               FJ4 44
   37 FORMAT (25H J4(P,Q,S) NOT CONVERGENT)
                                                                               FJ4 45
   38 CALL SYSERR
                                                                               FJ4 46
   39 AREAL = AREA
                                                                               FJ4 47
   40 INT = 2*INT
                                                                               FJ4 48
   41 V = 2.0*V
                                                                               FJ4 49
   42 GO TO 25
                                                                               FJ4 50
   43 FJ4 = AREA + EN
                                                                               FJ4 51
   44 RETURN
                                                                               FJ4 52
      FNO
                                                                               FJ4 53
```

```
FORTRAN IBM
SPUNCH OBJECT
      FUNCTION FJ5(P,Q,S,FK2, ETAI, ACC)
                                                                                  FJ5 01
      OME = 1.0 - ETAI
                                                                                  FJ5 02
    2 G = S - Q - 1.0
                                                                                  FJ5 03
    3 \text{ QQ} = 2.0*(1.0 - 0)
                                                                                  FJ5 04
    4 DEL = 1.0 - 1.0/P
                                                                                  FJ5 05
      TOEL = 2.0+DEL
                                                                                  FJ5 06
      FK = FK2
                                                                                  FJ5 07
      IF (Q - 1.0) 6, 5, 35
                                                                                  FJ5 08
    5 FK = 1.0 + FK
                                                                                  £.15 09
    6 F0 = 1.0/SQRT (FK)
                                                                                  FJ5 10
       EPS = 1.0 - OME **P
                                                                                  FJ5 11
    7 TPS = 0.5*EPS
                                                                                  FJ5 12
    8 F1 = ((1.0 - TPS)**DEL)/SQRT (TPS**QQ + FK2*((1.0 - TPS)**TDEL))
9 F2 = ((1.0 - EPS)**DEL)/SQRT (EPS**QQ + FK2*((1.0 - EPS)**TDEL))
                                                                                  FJ5 13
                                                                                  F.15 14
   10 A = 4.0*F1 - F2 - 3.0*F0
                                                                                  FJ5 15
   11 B = 2.0*F2 - 4.0*F1 + 2.0*F0
                                                                                  FJ5 16
   12 T1 = G + 1.0
   13 T2 = T1/(G + 2.0)
14 T3 = T1/(G + 3.0)
                                                                                  FJ5 18
                                                                                  FJ5 19
   15 EN = (FO + T2*A + T3*B)*(EPS**T1)/(T1*P)
                                                                                  FJ5 20
   16 \ 000 = 0.0
                                                                                  FJ5 21
   17 INT = 1
                                                                                  FJ5 22
   18 \ V = 1.0
                                                                                  FJ5 23
   19 EVEN = 0.C
                                                                                  FJ5 24
      AREA1 = 0.0
                                                                                  FJ5 25
      EE = 0.0
                                                                                  FJ5 26
   IF (P - 1.0) 35, 20, 21
20 EE = 1.0/SQRT (1.0 + FK2)
                                                                                  FJ5 27
                                                                                  FJ5 28
   21 ENDS = SQRT ((1.0 - CME**P)**QQ + FK2*(CME**(2.0*P - 2.0)))
                                                                                  F.15 29
   22 PP = 2.0*(P - 1.0)
                                                                                  FJ5 30
   23 ENDS = (OME**PP)*((1.0 - OME**P)**G)/FNDS + EE
                                                                                  FJ5 31
   24 H = OME/V
                                                                                  FJ5 32
   25 000 = EVEN + CDU
                                                                                  FJ5 33
   26 X = H/2.0
                                                                                  FJ5 34
   27 EVEN = 0.0
                                                                                  FJ5 35
   28 DO 30 I = 1, INT
                                                                                  FJ5 36
   290EVEN = EVEN + (X**PP)*((1.0 - X**P)**G)/SQRT ((1.0 - X**P)**QQ +
                                                                                  FJ5 37
     1 FK2*(X**PP))
                                                                                  FJ5 38
   30 X = X + H
                                                                                  FJ5 39
   31 AREA = (ENDS + 4.0*EVEN + 2.0*000)*H/6.0
                                                                                  FJ5 40
   32 R = ABSF(AREA1/AREA - 1.0) - ACC
                                                                                  FJ5 41
   33 IF (R) 42, 42, 34
34 IF (INT - 16384) 38, 35, 35
                                                                                  FJ5 42
                                                                                  FJ5 43
   35 WRITE OUTPUT TAPE 6, 36
                                                                                  FJ5 44
   36 FORMAT (25H J5(P,Q,S) NOT CONVERGENT)
                                                                                  FJ5 45
   37 CALL SYSERR
                                                                                  EJ5 46
   38 AREA1 = AREA
                                                                                  FJ5 47
   39 INT = 2*INT
                                                                                  FJ5 48
   40 V = 2.0*V
                                                                                  FJ5 49
   41 GC TO 24
                                                                                  FJ5 50
   42 FJ5 = AREA + EN
                                                                                  FJ5 51
   43 RETURN
                                                                                  FJ5 52
FJ5 53
      END
```

```
FORTRAN IBM
$PUNCH OBJECT
                                                                              FJ6 01
      FUNCTION FJ6(P,Q,R,S,FK2, ETAI, ACC)
                                                                              FJ6 02
    1 TQ = 2.0*(1.0 - 0)
                                                                              FJ6 03
    2 TP = 2.0*(P - 1.0)
                                                                              FJ6 04
    3 TR = 2.0*(R - 1.0)
                                                                              FJ6 05
    4 G = S - Q - 1.0
                                                                              F.16 06
    5 TD = 2.0*(1.0 - 1.0/P)
                                                                              FJ6 07
      EPS = 1.0- (1.-ETAI) **P
                                                                              FJ6 08
    6 TPS = 0.5*EPS
                                                                              FJ6 09
    7 \text{ TT} = 2.0*R/P - 1.0 - 1.0/P
                                                                              FJ6 10
    8 T1 = G + 1.0
                                                                              FJ6 11
    9 T2 = T1/(G + 2.0)
                                                                              FJ6 12
      T3 = T1/(G + 3.0)
                                                                              FJ6 13
      FK = FK2
                                                                               FJ6 14
       IF (Q - 1.0) 11, 10, 39
                                                                              FJ6 15
   10 FK = 1.0 + FK
                                                                              FJ6 16
   11 F0 = 1.0/SQRT (FK)
                                                                              FJ6 17
   12 \text{ OMW} = 1.0 - \text{TPS}
   13 F1 = \{OMW**TT\}/SQRT \{TPS**TQ + FK2*\{OMW**TD\}\}
                                                                              FJ6 18
                                                                               FJ6 19
   14 DMW = 1.0 - EPS
                                                                              FJ6 20
   15 F2 = \{OMW**TT\}/SQRT \{EPS**TQ + FK2*(UMW**TD)\}
                                                                               FJ6 21
      OME = 1.0 - ETAI
   17 A = 4.0*F1 - F2 - 3.0*F0
18 B = 2.0*F2 - 4.0*F1 + 2.0*F0
                                                                               FJ6 22
                                                                              FJ6 23
    190EN = (ELOG (EPS)*(FO + T2*A + T3*B) - (FO + T2*T2*A + T3*T3*B)/T1)FJ6 24
                                                                               FJ6 25
     1*(EPS**T1)/(T1*P)
                                                                               FJ6 26
    20 ODD = 0.0
                                                                               FJ6 27
    21 INT = 1
                                                                               FJ6 28
    22 V = 1.0
                                                                               FJ6 29
    23 EVEN = 0.0
                                                                               FJ6 30
    24 AREA1 = 0.0
                                                                               FJ6 31
    25 CMW = 1.0 - OME**P
    260ENDS =((OME**TR)*(OMW**G)/SQRT (OMW**TQ + FK2*(OME**TP)))*ELOG (OMFJ6 32
                                                                               FJ6 33
     1 W )
                                                                               FJ6 34
    27 H = OME/V
                                                                               FJ6 35
    28 ODD = EVEN + ODD
                                                                               FJ6 36
    29 X = H/2.0
                                                                               FJ6 37
    30 EVEN = 0.0
                                                                               FJ6 38
    31 00 34 I = 1. INT
32 0MW = 1.0 - X**P
                                                                               FJ6 39
    330EVEN = EVEN + ( (X**TR) * ( OMW**G) / SQRT ( OMW**TQ + FK2*( X**TP) ) ) *ELOG FJ6 40
                                                                               FJ6 41
      1 (OMW)
                                                                               FJ6 42
    34 X = X + H
                                                                               FJ6 43
    35 AREA = (ENDS + 4.0*EVEN + 2.0*00D)*H/6.0
                                                                               FJ6 44
    36 RR = ABSF(AREA1/AREA - 1.0) - ACC
                                                                               FJ6 45
    37 IF (RR) 46, 46, 38
                                                                               FJ6 46
    38 IF (INT - 16384) 42, 39, 39
                                                                               FJ6 47
    39 WRITE OUTPUT TAPE 6, 40
    40 FORMAT (27H J6(P.Q.R.S) NOT CONVERGENT)
                                                                               FJ6 48
                                                                               FJ6 49
    41 CALL SYSERR
                                                                               FJ6 50
    42 AREAL = AREA
                                                                               FJ6 51
    43 INT = 2*INT
                                                                               FJ6 52
    44 V = 2.0*V
                                                                               FJ6 53
    45 GO TO 27
                                                                               FJ6 54
    46 FJ6 = AREA + EN
                                                                               FJ6 55
    47 RETURN
                                                                               FJ6 56
       END
```

```
FORTRAN IBM
$PUNCH OBJECT
      FUNCTION FJ7(P,Q,S,T,FK2,EPS, ETAI, ACC)
                                                                              FJ7 01
    1 TQ = 2.0*(1.0 - Q)
                                                                              FJ7 02
    2 TP = 2.0*(P - 1.0)
                                                                              FJ7 03
    3 G = S - Q - 2.0
                                                                              FJ7 04
    4 T1 = T + 1.0
                                                                              FJ7 05
    5 T2 = T1/(T + 2.0)
                                                                              FJ7 06
      T3 = T1/(T + 3.0)
IF (P - 1.0) 53, 6, 7
                                                                              FJ7 07
                                                                              FJ7 08
    6 F0 = 1.0/SQRT (1.0 + FK2)
                                                                              FJ7 09
                                                                              FJ7 10
      GO TO 8
    7 F0 = 1.0
                                                                              FJ7 11
                                                                              FJ7 12
    8 TPS = 0.5*EPS
    9 \text{ OMW} = 1.0 - \text{TPS**P}
                                                                              FJ7 13
   10 F1 = (OMW**G)/SQRT (OMW**TQ + FK2*(TPS**TP))
                                                                              FJ7 14
   11 OMW = 1.0 - EPS**P
                                                                              FJ7 15
   12 F2 = \{OMW**G\}/SQRT \{OMW**TQ + FK2*{EPS**TP}\}
                                                                              FJ7 16
   13 A = 4.0*F1 - F2 - 3.0*F0
14 B = 2.0*F2 - 4.0*F1 + 2.0*F0
                                                                              FJ7 17
                                                                              FJ7 18
   15 TT = FO + T2*A + T3*B
                                                                              FJ7 19
   16 TU = F0 + T2+T2+A + T3+T3+B
                                                                              FJ7 20
   17 EN = (ELOG (EPS)*TT - TU/T1)*(EPS**T1)/T1
                                                                              FJ7 21
      OME = 1.0 - ETAI
                                                                              FJ7 22
                                                                              FJ7 23
   19 T4 = 2.0*(1.0 - 1.0/P)
   20 T5 = T/P - 1.0 + 1.0/P
                                                                              FJ7 24
   21 T1 = G + 2.0
                                                                               FJ7 25
   22 T2 = T1/(G + 3.0)
                                                                              FJ7 26
      T3 = T1/(G + 4.0)
                                                                              F.17 27
      FK = FK2
                                                                              FJ7 28
      IF (Q - 1.0) 24, 23, 53
                                                                              FJ7 29
   23 FK = 1.0 + FK
                                                                               FJ7 30
   24 FO = -1.0/SQRT (FK)
                                                                               FJ7 31
      E = 1.0 - OME **P
                                                                              FJ7 32
      TPS = 0.5 \bullet E
                                                                               F.17 33
      OMW = 1.- TPS
                                                                               FJ7 34
   27 F1 = (GMW**T5)/SQRT (TPS**TQ + FK2*(GMW**T4)) * ELGG(GMW) /TPS
                                                                               FJ7 35
   28 OMW = 1.0 - E
                                                                               FJ7 36
      F2 = (OMW**T5)/SORT (E **T0 + FK2*(OMW**T4)) * ELOG(OMW) /E
                                                                               FJ7 37
   30 A = 4.0*F1 - F2 - 3.0*F0
31 B = 2.0*F2 - 4.0*F1 + 2.0*F0
                                                                               FJ7 38
                                                                               FJ7 39
   32 EN = EN + (F0 + T2*A + T3*B)*( E **T1)/(T1*P*P)
                                                                               FJ7 40
   33 ODD = 0.0
                                                                               FJ7 41
   34 INT = 1
                                                                               FJ7 42
                                                                               FJ7 43
   35 V = 1.0
   36 EVEN = 0.0
                                                                               FJ7 44
                                                                               FJ7 45
   37 AREA1 = 0.0
      OMW = 1.0 - EPS**P
                                                                               FJ7 46
   38 ENDS = (EPS**T)*(OMW**G)*ELOG (EPS)/SQRT (OMW**TQ + FK2*(EPS**TP))FJ7 47
                                                                               FJ7 48
   39 0 = 1.0 - OME**P
   40 ENDS=ENDS+(OME**T)*(O**G)*ELOG (OME)/SGRT (O**TQ+FK2*(OME**TP))
                                                                               FJ7 49
   41 H = (OME - EPS)/V
                                                                               FJ7 50
   42 ODD = EVEN + CDD
                                                                               FJ7 51
   43 X = EPS + H/2.0
                                                                               FJ7
                                                                               FJ7 53
   44 EVEN = 0.0
                                                                               F.17 54
   45 DO 48 I = 1, INT
   46 \ 0 = 1.0 - X**P
                                                                               FJ7 55
   47 EVEN = EVEN + (X**T)*(0**G)*ELOG (X)/SQRT (0**TQ + FK2*(X**TP))
                                                                               FJ7 56
                                                                               FJ7 57
   48 X = X + H
                                                                               FJ7 58
   49 AREA = (ENDS + 4.0*EVEN + 2.0*ODD)*H/6.0
   50 R = ABSF(AREA1/AREA - 1.0) - ACC
51 IF (R) 60, 60, 52
                                                                               F.17 59
                                                                               EJ7 60
   52 IF (INT - 16384) 56, 53, 53
                                                                               FJ7 61
   53 WRITE OUTPUT TAPE 6, 54
                                                                               FJ7 62
   54 FORMAT (27H J7(P,Q,S,T) NOT CONVERGENT)
                                                                               FJ7 63
   55 CALL SYSERR
                                                                               FJ7 64
   56 AREAL = AREA
                                                                               FJ7 65
   57 INT = 2*INT
                                                                               FJ7 66
   58 V = 2.0*V
                                                                               FJ7 67
   59 GO TO 41
                                                                               FJ7 68
   60 FJ7 = AREA + EN
                                                                               FJ7 69
                                                                               FJ7 70
   61 RETURN
      END
                                                                               FJ7 71
```

REFERENCES

- "Geometrical and Inertial Properties of a Class of Thin Shells of Revolution", by Will J. Worley and Han-chung Wang National Aeronautics and Space Administration, Grant No. NsG-434, N.A.S.A. Contractor Report CR-89, September, 1964, 208 pages.
- 2. "Geometrical and Inertial Properties of a Class of Thin Shells of a General Type" by Will J. Worley and Han-chung Wang National Aeronautics and Space Administration, Grant No. NsG-434, Supplement No. 1, NASA Contractor Report CR-271, Aug. 1965, 67 pages.
- 3. "Minimum Weight Design of Cylindrical Shells" by Walter Freiberger <u>Journal of Applied Mechanics</u>, Vol. 23, No. 4., Trans. ASME, Dec. 1956, pp. 576-580.
- 4. "On the Optimum Design of Shells" by
 - R. T. Shield

 Journal of Applied Mechanics, Vol. 27, No. 2, Trans. ASME,

 June 1960, pp. 316-322.
- 5. "Numerical Analysis of Unsymmetrical Bending of Shells of Revolution" by
 B. Budiansky and P. P. Radkowski
 AIAA Journal, Vol. 1, No. 8, Aug. 1963, pp. 1833-1842.
- "Numerical Analysis of Equations of Thin Shell of Revolution" by
 P. P. Radkowski, R. M. Davis and M. R. Bolduc,
 American Rocket Society Journal, Vol. 32, No. 1, Jan. 1962, pp. 36-41.
- 7. "Analysis of Shells of Revolution Subjected to Symmetrical and Nonsymmetrical Loads" by
 - A. Kalnins

Journal of Applied Mechanics, Vol. 31, No. 3, Trans. ASME Sept. 1964, pp. 467-476.

TABLE I ITERATION RESULTS FOR $\lambda = \lambda_1$, $\mu = \mu_1$, b/a=1, $\alpha_0 = 1.5$, $\beta_0 = 1.5$

Step	α	β	$\frac{V}{2\pi ab^2}$	$\frac{W(\frac{\sigma_0}{p_0})}{4\pi ab^2 \rho g}$	$\frac{t}{b}(\frac{\sigma_{o}}{p_{o}})$	${ t F}_{lpha}$	$\mathtt{F}_{\pmb{\beta}}$	Δα	$\triangle oldsymbol{eta}$
1	1.5000	1.5000	.53743	.43810	.5000	. 29499	. 24269	. 0885	.0728
2	1.5885	1,5728	.56271	. 44979	.5000	.27202	. 22630	. 0816	.0679
3	1.6701	1.6407	.58448	.46001	. 5000	. 25255	.21206	. 0758	. 0636
4	1.7459	1.7043	.60343	. 46903	.5000	. 26893	.22758	. 2228	. 1885
5	1.9686	1.8928	,65276	. 49306	.5000	. 83353	.72064	. 2501	.2162
6	2.2187	2.1090	.69862	.52328	.5069	28840	28654	0865	0860
7	2.1322	2.0231	.68274	.51165	.5035	05475	08112	0164	0243
8	2.1189	1.9915	.67861	.50850	.5025	.01648	01889	.0049	0057
9	2.1288	1.9802	.67860	,50846	.5024	.01672	01885	.0050	0057
10	2.1389	1.9689	.67859	.50841	.5024	.01689	01889	.0051	0057
11	2.1490	1.9575	.67859	.50837	.5023	.01705	01896	.0051	0057
12	2.1593	1.9461	.67858	.50832	.5023	.01721	01899	.0052	0057
13	2.1696	1.9347	.67856	.50827	.5022	.01756	01886	. 0053	0057
14	2.1801	1.9233	.67856	.50823	.5022	.01758	01905	.0053	0057
15	2.1998	1.9107	.67935	.50875	.5023	.00421	03187	.0021	0159
16	2.2151	1.8891	.67884	.50830	.5021	.01305	02400	.0065	0120
17	2.2323	1.8690	.67865	.50807	.5020	.01655	02106	.0083	0105
18	2.2505	1.8494	.67857	.50793	.5019	.01806	01998	.0090	0100
19	2.2692	1.8299	.67853	.50783	.5017	.01883	01960	.0094	0098
20	2.2883	1.8105	.67851	.50774	.5016	.01927	01957	. 0096	0098
21	2.3078	1.7911	.67849	.50764	.5015	.01971	01951	. 0099	0098
22	2.3277	1.7716	.67847	.50754	.5014	.02008	01952	.0100	0098
23	2.3478	1.7521	.67846	.50745	.5013	.02044	01955	.0102	0098
24	2.3684	1.7326	.67844	.50735	.5012	.02080	01959	.0104	0098
25	2.3893	1.7130	.67843	.50725	.5011	.02116	01963	.0106	0098
26	2.4105	1.6933	.67842	.50715	.5010	.02153	01966	.0108	0098
27	2.4321	1.6737	.67840	.50704	.5008	.02189	01968	.0110	0098
28	2.4541	1.6540	.67838	. 50693	.5007	.02227	01970	.0111	0099
29	2.4765	1.6343	.67837	.50681	. 5005	.02276	-, 01955	.0114	0098
30	2.4992	1.6146	.67836	.50670	.5004	.02310	-,01967	.0116	0098
31	2.5224	1.5948	.67834	.50659	.5003	. 02345	01974	.0117	-,0099

TABLE II ITERATION RESULTS FOR $\lambda=\lambda_1$, $\mu=\mu_1$, b/a=1, $\alpha_0=2.0$, $\beta_0=3.0$

				σ,	1	1	0	0	
Step	α	β	$\frac{V}{2\pi ab^2}$	$\frac{W(\frac{\sigma_{O}}{p_{O}})}{4\pi ab^{2}\rho g}$	$\frac{t}{b}(\frac{\sigma_{o}}{p_{o}})$	$^{ extsf{F}}_{lpha}$	${\rm F}_{\pmb{\beta}}$	riangle lpha	Δeta
1	2.0000	3.0000	. 73915	.55381	.5151	99584	64496	2988	-, 1935
2	1,7013	2.8065	.69653	.52338	. 5075	32702	21005	0981	-,0630
3	1,6031	2.7435	.68018	.51171	.5042	02135	03251	0064	0098
4	1.5967	2.7337	.67866	.51062	.5040	.01177	01391	.0035	-, 0042
5	1.6003	2.7296	.67881	.51071	.5039	.00845	01582	. 0025	0048
6	1.6028	2.7248	.67879	.51069	. 5039	.00887	01562	. 0027	0047
7	1.6055	2.7201	.67879	.51068	. 5039	.00886	01566	.0027	0047
8	1,6108	2.7107	.67879	.51066	.5039	.00893	01570	.0027	0047
9	1.6162	2.7013	.67879	.51064	.5039	.00900	01574	. 0027	0047
10	1.6270	2.6824	.67879	.51060	.5039	.00914	01582	.0027	0047
11	1,6381	2.6634	.67876	.51055	.5039	.00955	01574	.0029	0047
12	1.6493	2.6443	.67877	.51051	.5039	.00943	01598	.0028	0048
13	1.6607	2.6251	.67877	.51047	.5039	.00958	01606	.0029	0048
14	1.6723	2.6058	. 6 7876	.51042	. 5039	. 00973	01615	.0029	0048
15	1,6840	2.5864	.67876	.51038	. 5038	. 00989	01623	.0030	0049
16	1.6960	2.5668	.67876	.51033	.5038	.01005	01632	.0030	0049
17	1.7081	2.5472	.67875	.51028	.5038	.01022	01640	.0031	0049
18	1,7204	2.5275	.67875	,51023	. 5038	.01039	01649	.0031	-, 0050
19	1,7330	2.5077	.67875	.51018	.5038	.01056	- .0 1658	.0032	0050
20	1,7457	2.4877	.67874	.51012	. 5037	.01074	01667	. 0032	0050
21	1,7587	2.4677	.67874	.51007	.5037	.01093	01676	.0033	0050
22	1.7719	2.4475	.67874	.51001	. 5037	.01112	01685	.0033	0051
23	1.7853	2.4273	.67873	. 50996	.5036	.01131	01694	.0034	0051
24	1.7989	2.4071	. 67873	.50990	. 5036	.01147	01704	. 0034	0051
25	1.8128	2.3866	.67872	. 50984	. 5036	.01171	01711	. 0035	0051
26	1.8269	2.3660	. 67 872	.50978	. 5035	. 01192	01721	, 0036	-,0052
27	1.8412	2.3453	.67870	. 50972	. 5035	. 01205	01717	. 0036	0052
28	1.8558	2,3247	.67870	. 50966	. 5035	.01251	0172 8	. 0038	0052
29	1.8708	2.3038	.67870	. 50958	.5034	.01277	01734	.0038	0052
30	1.8860	2,2828	.67871	.50952	.5034	.01280	01758	.0038	0053

TABLE III ITERATION RESULTS FOR $\lambda = \lambda_1$, $\mu = \mu_1$, b/a = 2, $\alpha_0 = 1.5$, $\beta_0 = 1.5$

			V	$W(\frac{\sigma_0}{p_0})$, σ ₀				
Step	α	β	$\frac{1}{2\pi ab^2}$	$\frac{\sigma}{4\pi ab^2 \rho g}$	$\frac{t}{b} \left(\frac{o}{p_0} \right)$	${ t F}_{lpha}$	$^{ ext{F}}_{oldsymbol{eta}}$	$\Delta \alpha$	Δβ
1	1.5000	1.5000	.53743	.62673	.5000	. 29499	. 24269	. 0885	.0728
2	1.5885	1.5728	. 56271	.63813	.5000	.27202	.22630	.0816	.0679
3	1.6701	1.6407	. 58448	.64838	.5000	.25255	.21206	.0758	.0636
4	1.7459	1.7043	. 60343	.65763	.5000	26.8590	22.7980	. 2312	. 1963
5	1.9771	1.9006	.65449	.68397	.5000	.72402	.70662	.2172	.2120
6	2.1944	2.1126	.69661	.70714	.5000	06577	.03817	0197	.0115
7	2.1303	2.1692	.69507	.70564	.5000	04389	. 05289	0132	.0159
8	2.0792	2.2325	.69515	. 70509	.5000	04058	.05212	0122	.0156
9	2.0317	2.2945	.69528	.70462	.5000	03797	.05084	0114	.0153
10	1.9872	2.3549	.69540	.70419	.5000	03561	.04950	0107	.0149
11	1.9455	2.4137	.69553	.70380	.5000	03342	.04814	0100	.0144
12	1.9063	2.4709	.69566	.70343	.5000	-,03135	.04680	0094	.0140
13	1.8696	2.5264	.69579	.70310	.5000	-,02940	. 04543	0088	.0136
14	1.8012	2.6200	.69601	.70259	.5000	02680	. 04309	0161	. 0259
15	1.7494	2.7211	.69626	.70210	.5000	02346	.04044	0141	.0243
16	1.6956	2.8159	.69650	.70169	.5000	02089	. 03796	0125	.0228
17	1.6475	2.9049	.69673	.70135	.5000	01870	. 03561	0112	.0214
18	1.6043	2.9883	.69695	.70107	.5000	01680	. 03339	0101	.0200
19	1.5656	3.0666	.69716	.70084	.5000	01515	.03132	0091	.0188
20	1.5305	3.1400	.69736	.70065	.5000	01370	.02938	0082	.0176
21	1.5065	3.1920	.69751	.70053	.5000	01273	.02801	0076	.0168
22	1.4770	3, 2577	.69769	.70040	.5000	01159	.02628	0070	.0158
23	1.4502	3.3195	.69789	.70030	.5000	01091	. 02453	0065	.0147
24	1.4256	3.3773	.69803	.70020	. 5000	00966	. 02317	0058	.0139
25	1.4032	3.4316	.69816	.70013	.5000	00884	. 02178	0053	.0131
26	1.3826	3.4827	.69835	.70007	.5000	00817	.02043	0049	.0123
27	1.3636	3.5306	. 69849	.70002	. 5000	00747	.01923	0045	.0115
28	1.3463	3,5757	.69862	.69999	.5000	00688	.01809	0041	.0109
29	1.3302	3.6182	.69875	.69997	.5000	00641	.01702	0038	.0102
30	1.3154	3.6582	.69887	.69996	.5000	00590	.01601	0035	. 0096
31	1.3017	3.6957	.69898	.69995	.5000	00544	.01509	0033	.0091
42									

TABLE IV ITERATION RESULTS FOR $\lambda = \lambda_1$, $\mu = \mu_1$, b/a = 2, $\alpha_0 = 2.0$, $\beta_0 = 3.0$

				σ_{0}		_	•	J	
Step	α	β	$\frac{V}{2\pi ab^2}$	$\frac{W(\frac{\sigma_{0}}{p_{0}})}{4\pi ab^{2}\rho g}$	$\frac{t}{b}(\frac{\sigma_0}{p_0})$	${\tt F}_{\!lpha}$	${\tt F}_{\pmb{\beta}}$	$\Delta \alpha$	$\triangle \beta$
1	2.0000	3,0000	.73915	.72761	.5000	46258	-,21858	1388	0656
2	1.8612	2.9344	.72206	.71693	.5000	31011	12583	0930	0378
3	1.7682	2.8967	. 70998	. 70953	.5000	18587	05414	0558	0162
4	1.7124	2.8804	.70272	.70513	.5000	10019	00669	0301	0020
5	1,6824	2.8784	.69912	.70294	.5000	0 5 330	.01847	0160	. 0055
6	1.6664	2.8840	.69761	. 70199	.5000	03224	.02937	0097	.0088
7	1.6567	2.8928	.69704	.70160	.5000	02379	.03344	0071	. 0100
8	1.6496	2.9028	.69685	. 70143	.5000	02050	. 03476	0062	. 0104
9	1.6434	2.9132	.69680	.70135	.5000	01915	. 03506	0058	.0105
10	1.6377	2.9238	.69680	.70130	.5000	01851	. 03498	0056	.0105
11	1.6161	2,9653	.69689	.70115	.5000	01735	. 03398	0052	.0102
12	1.5957	3,0056	.69700	.70102	.5000	01646	. 03292	0049	. 0099
13	1.5763	3.0446	.69711	.70090	.5000	01563	.03188	0047	. 0096
14	1.5579	3,0825	.69721	.70080	. 5000	01485	. 03088	0045	. 0093
15	1.5361	3.1281	.69733	. 70068	.5000	01392	. 02969	0084	. 0178
16	1.5039	3.1977	.69752	.70052	.5000	01263	. 02786	0076	.0167
17	1.4746	3.2630	.69770	. 70039	.5000	01148	. 02615	0069	.0157
18	1.4480	3.3243	.69790	. 70028	.5000	01048	. 02455	-,0063	.0147
19	1.4237	3.3818	.69804	.70019	.5000	00958	. 02306	0058	, 0138
20	1.4014	3.4359	.69820	.70012	.5000	00878	. 02167	0053	, 0130
21	1.3809	3.4867	.69840	. 70007	.5000	00811	.02033	0049	. 0122

TABLE V ITERATION RESULTS FOR $\lambda=\lambda_2$, $\mu=\mu_2$, b/a=1 σ_0

Step	α	β	$\frac{V}{2\pi ab^2}$	$\frac{W(\frac{\sigma_0}{p_0})}{4\pi a b^2 \rho g}$	$\frac{t}{b}(\frac{\sigma_0}{p_0})$	${ t F}_{lpha}$	$\mathtt{F}_{\pmb{\beta}}$	Δα	\Deltaoldsymbol{eta}
1	3.0000	3.0000	.80611	.60146	.5238	05923	05224	1777	1567
2	2.8223	2.8433	. 78954	.58952	.5219	06529	05730	1959	1719
3	2.6265	2,6714	.76878	. 57453	.5192	07086	06187	2126	1856
4	2.4139	2.4858	. 74268	.55566	.5153	07227	06293	2168	1888
5	2.1971	2.2970	,71143	.53294	.5097	05642	04991	-, 1693	1497
6	2.0278	2.1473	.68281	.51206	.5039	00851	01119	0255	0336
7	2.0023	2.1137	.67719	.50794	. 5026	.00605	.00053	.0182	.0016
8	2.0205	2.1153	.67928	.50944	.5030	.00046	00402	.0014	0121
1	2.5000	2.5000	. 75000	.56092	.5164	07211	06410	0721	0641
2	2,4279	2.4359	.74052	.55404	.5149	-,07125	06341	0713	0634
3	2.3566	2.3725	.73062	.54684	.5132	06854	06117	0685	0612
4	2.2881	2.3113	.72056	.53951	.5114	-,06330	05683	0633	0568
5	2.2248	2.2545	.71074	. 53233	. 5095	05507	-, 05002	0551	-, 0500
6	2.1697	2,2045	.70172	. 52577	.5077	04418	04101	0442	0410
7	2.1256	2.1635	.69414	. 52022	.5062	-,03206	03100	0321	0310
8	2.0935	2, 1325	.68835	. 51599	. 5049	02082	02172	0208	0217
9	2.0727	2.1108	.68437	.51307	.5041	01202	01445	0120	0145
10	2.0607	2.0963	.68188	.51123	.5035	00605	00952	0061	0095
11	2.0546	2.0868	.68041	.51015	.5032	00239	00650	0024	0065
1	4.0000	2.0000	. 80000	. 59625	. 5212	04804	07411	0480	0741
2	3,9520	1,9259	.79348	.59140	. 5203	04939	07776	-,0494	0778
3	3.9026	1.8481	.78631	.58605	.5192	05070	08166	0507	0817
4	3.8519	1.7665	.77837	.58011	.5178	05189	08576	0519	0858
5	3.8000	1.6807	.76958	.57350	.5163	05282	08990	0528	0899
6	3.7472	1.5908	.75982	.56610	.5144	05324	09376	0532	0938
7	3.6939	1.4971	.74898	.55782	.5122	-,05273	09669	0527	0967
8	3.6412	1.4004	. 73704	. 54864	. 5096	05063	09744	0506	0974
9	3.5906	1.3029	.72414	.53862	.5065	04591	09385	0459	0939
10	3.5447	1.2091	.71082	.52814	.5030	03744	08295	0374	0830
11	3.5072	1.1261	.69826	.51874	. 4994	00550	-,00138	0055	0014

TABLE VI ITERATION RESULTS FOR $\lambda=\lambda_3$, $\mu=\mu_3$, b/a=1 σ_{γ}

C1		0	v	$W(\frac{\sigma_{o}}{p_{o}})$	t , σ		_		
Step	α	β	$\frac{1}{2\pi ab^2}$	4πab ² ρg	$\frac{t}{b}(\frac{\sigma_{0}}{p_{0}})$	$^{ extsf{F}}_{lpha}$	$^{\mathrm{F}}_{oldsymbol{eta}}$	$\Delta \alpha$	$\triangle oldsymbol{eta}$
1	1.5000	1.5000	.53743	. 43810	.5000	. 29499	. 24269	. 1838	. 1512
2	1.6838	1.6512	. 58787	. 46162	.5000	. 24949	. 20988	.2121	. 1784
3	1.8959	1.8296	.63745	. 48553	.5000	. 10529	. 09039	. 2106	. 1808
4	2.1064	2.0104	.67902	.50889	. 5026	, 03332	. 02410	. 0667	. 0482
5	2.1731	2.0586	.68997	. 51692	.5050	. 02556	. 01793	. 0511	, 0359
6	2.2242	2.0944	.69793	. 52274	.5067	. 02035	. 01376	. 0407	. 0275
7	2.3259	2.1606	.71246	.53335	.5100	.01173	. 00680	. 0235	.0136
8	2.3868	2.1937	.72019	.53898	.5110	.00761	.00342	.0152	. 0069
9	2.4274	2.2100	.72473	. 54228	.5118	.00532	.00153	. 0107	,0031
10	2.4380	2.2131	.72584	. 54306	.5120	.00479	. 00109	. 0096	. 0022
1	2.5000	3.0000	.77759	.58111	.5206	01458	01210	0292	0242
2	2.4709	2,9758	.77447	.57887	. 5202	01373	01149	0275	-, 0230
3	2.4434	2.9528	.77145	.57670	.5198	01286	01088	0257	0218
4	2.4177	2.9311	.76856	.57463	.5194	01199	01027	0240	0205
5	2.3937	2.9105	.76581	.57265	.5190	01112	00966	0222	0193
6	2.3715	2.8912	. 76320	. 57077	.5187	01025	00906	0205	0181
7	2.3150	2.8403	. 75626	. 56578	. 5177	00778	00736	0156	0147
8	2.2728	2.7992	.75070	.56178	.5168	-, 00562	00590	0112	-, 0118
9	2.2428	2.7663	.74642	. 55869	.5162	00385	00471	0077	0094
10	2.2284	2.7482	.74419	.55708	.5158	00288	00406	0058	0081
1	3.0000	2.0000	. 75000	. 56001	.5151	00521	00949	0104	0190
2	2.9896	1.9810	. 74796	. 55847	.5148	00455	00885	0091	0177
3	2.9805	1.9633	.74606	.55707	.5144	00393	00825	0079	-,0165
4	2.9726	1.9468	.74430	.55576	.5141	00334	00767	0067	-,0153
5	2.9603	1.9172	.74123	. 55346	.5135	00229	00663	0046	0133
6	2.9521	1.8916	.73869	.55154	. 5130	00140	00575	 0028	0115
7	2.9473	1.8694	.73660	. 54997	.5126	-,00066	-,00500	0013	0100
8	2.9460	1.8594	,73570	.54930	.5124	00034	00468	0007	0094

Fig. 1 Weighting Functions λ_{l} and μ_{l}

Fig. 2 Weighting Functions λ_2 and μ_2

Fig. 3 Variation of the Function F with α and β

Fig. 4 Variation in Projections of Ridges on α - β Plane

Fig.5 Variation in V_{xa}/ah^2 with \propto and β

Fig.6 Variation in A/a^2 with α and β for b/a = 1.0

Recent T. & A. M. Reports

No.	<u>Title</u>	Date
263	"Evaluation of Bonding Characteristics of Deformed Wire," by Russell S. Jensen and Clyde E. Kesler.	May, 1964
264	"Geometrical and Inertial Properties of a Class of Thin Shells of a General Type," by Will J. Worley and Han-chung Wang.	June, 1964
265	"The Fatigue Toughness of Metals: A Data Compilation," by Gary R. Halford.	June, 1964
266	"On a Theory for Axisymmetric Elastic Shells of Moderate Thickness," by R. J. Nikolai and A. P. Boresi.	July, 1964
267	"The Stress Distribution in a Notched Semi-infinite Plate," by D. Shadman.	August, 1964
268	"Yield Behavior of Niobium Single Crystals," by D. C. Huffaker.	September, 1964
269	"Euler Buckling of a Ring-Reinforced Cylindrical Shell Subjected to External Pressure," by H. L. Langhaar, A. P. Boresi and C. C. Fretwell.	September, 1964
270	"Photoelastic Study of the Stresses Near Openings in Pressure Vessels," by N. C. Lind and C. E. Taylor.	October, 1964
271	"Theoretical and Experimental Investigation of the Tensile Moduli of Parallel Filament Composites," by John W. Melvin.	November, 1964
272	"Third Conference on Fundamental Research in Plain Concrete," by Clyde E. Kesler.	November, 1964
273	"The Effect of Temperature on Cycle Dependent Deformation," by Brian R. Gain.	December, 1964
274	"An Investigation Into the Effect of Environmental Treatments on the Strength of E Glass Fibers," by N. M. Cameron.	January, 1965
275	"Crack Extension in Fiberglass Reinforced Plastics and a Critical Examination of the General Fracture Criterion," by E. M. Wu and R. C. Reuter, Jr. $$	January, 1965
276	"Applications of Lasers to Photoelasticity," by C. E. Taylor, C. E. Bowman, W. P. North, and W. F. Swinson.	February, 1965

