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A METHOD FOR DETERMINING AN OPTIMUM SHAPE OF

A CLASS OF THIN SHELLS OF REVOLUTION

by
Morris Stern, Han-chung Wang, Will J. Worley

Department of Theoretical and Applied Mechanics
University of Illinois
Urbana, Illinois

SUMMARY
33503
This third report under the current grant is concerned with a method for
determining an:optimum shape of a convexlshell of revolution with respect to vol-
ume, weight and length. -
The technique used depends on replacing the class of functions, over which

the shape may range, by the parameters b/a, o and B in the equation

X
a

where a, b, @ and B are positive constants not necessarily integers, with «
and B equal to or greater than unity. The bodies of revolution are generated by
revolving the line, described by the above equation, about the x-axis.

The procedure is illustrated for a thin shell which will fit within the
space defined by a circular cylinder of radius b and length 2a. The shell is
optimized, in terms of @ and B, with respect to volume and weight. The FOR-

TRAN program used to achieve these results is presented in Appendix B.
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INTRODUCTION

1. Statement of the Problem.

The previocus reports under the current grant,[1,2] * stated a future objec-
tive of the project as being the optimum contour design of a class of shells. This
third report is directed toward achieving that objective in terms of enclosed vol-
ume and shell weight for thin shells of revolution,

Optimization can be treated in several ways. A general formulation of
the optimization of the design of thin shells of revolution might include the deter-
mination of the shell shape as well as the variation of the shell thickness along
meridional lines, A less general approach involves assigning the shape and vary-
ing the shell thickness [3, 4] . The current report treats an alternate approach.
Here a uniform thickness is maintained, but the meridionallines which define the

geometry are permitted to vary in accordance with the relation

=1 (3. 1)**

where a, b, o and B are positive constants, not necessarily integers.

The use of Eq. (3. 1) permits an optimization of shape which is limited
to the choice of the parameters o and B for a shell of length 2a and of radius
b. The body of this report is limited to the variation of « and B for fixed length
and fixed diameter, but Appendix A presents a mathematical formulation which
permits the length to vary as well as « and 8.

The achievement of the stated objective depends on a suitable failure
criterion. One criterion could involve a complete stress analysis of the shell
including varying thickness. Others could include thick walled shells or buckling.
However, in illustrating the method, the shells have been restricted to thin, con-
stant thickness walls with internal pressure loading. Further the failure is
assumed to occur either on the central plane circle normal to the x-axis at x =0
or along a meridian. Thus separate computer programs which involve the com-

plete stress analysis of the shell have not been used.

*Numbers in brackets refer to the References.
**The notation (3. 1) is adopted to aid in cross-referencing equations from the
first two reports under the grant [1, 2]




The techniques described can be applied in a manner which would permit
the direct inclusion of one of the existing computer programs on the stress analysis
of shells [S, 6, 7] . These auxilliary computer programs would provide the
thickness requirement or the variation in thickness of the shell when incorporated
into the proper location within the FORTRAN program presented in this report.

In this way the optimized shell would be based on a more realistic failure criterion

than is actually reported.



2. Symbols

a half length of the shell, [L]*
b radius of the shell in the equatorial plane, [L]
X horizontal coordinate of the first quadrant of Eq. (3.1), [L]
y vertical coordinate of the first quadrant of Eq. (3. 1), [L]
g acceleration due to gravity, [LT-z]
an volume of the shell, [Ls]
w weight of the shell, [MLT'2]
A surface area of the shell, [Lz]
A‘,=1 area enclosed by first quadrant of Eq. (3. 1), [_-LZJ
L arc length in the first quadrant of Eq. (3.1), [L]
t thickness of the shell, [L]
Vmin preassigned minimum allowable volume of the shell, [LB:]
Wmax preassigned maximum allowable weight of the shell, [MLT-Z:I
& ax preassigned maximum half length of the shell, [L]
chl volume of cylinder with radius b, length 2a, [L3]
chl weight of cylindrical shell with radius b, length 2a, [MLT-ZJ
v ratio of an/vmin’ [l]
W ratio of w/wmax’ [l]
ratio of a/amax’ [1]
h2 (g_g 2, [1]

*The dimensional notation (L] indicates a length while [M] indicates mass, 1]
indicates time and [1] indicates a dimensionless quantity.
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P, uniform internal pressure on shells, 'tML-l T-z:'
k) preselected limiting value for the ratio Aa/F, or AB/F 8
of iteration, [1]
a exponent of the absolute value of x/a, [1]
B exponent of the absolute value of y/b, [1]
o (as a subscript) indicates partial differentiation with respect to «, [1}
B (as a subscript) indicates partial differentiation with respect to B8, [l]
p mass density, [ML_SJ
A non-negative weighting function of v, [1]
u non-negative weighting function of w, [1]
v non-negative weighting function of £, [1]
A yield stress of the shell material, [ML™! T72]
11(2) preselected limiting value for the maximum change in (A v2 + AWZ)

to be allowed in one iteration step, [1]
]l through ]7 integrals as defined in Eqgs. (3. 33)

I(e), K(¢) improper integrals as defined in Egs. (3. 35) and (3. 36)
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DISCUSSION OF THE METHOD

Otpimization with respect to enclosed volume and shell weight, for a shell
of revolution defined by the meridian curve Eq. (3. 1) is achieved by considering
the exponents @ and B as parameters.

Then the volume and weight may be expressed as

Via = Vya@s B) (3.2)

W =pg A, B) ta, B) (3.3)

where p is the mass density of the material of the shell, g is the gravitational
acceleration, while A represents the area of the middle surface of the shell and
t is the thickness. The thickness is maintained constant over the entire shell and
is small compared to the radius b and to the length a.

Both the volume an and the surface area A depend only on the geomet-
rical shape of the shell, which is controlled by the parameters « and B for the
fixed cylindrical volume. The thickness t depends on the geometrical shape of
the shell, on the load condition and on the failure criteria. Therefore the mode of
the failure of the shell, under a specified load condition, must be defined for the
evaluation of the thickness t, before optimization can be achieved.

Let the primary design requirements, to be fulfilled for the shell, be

V. >V . W<W
Xa — min ? — max

where me and Wmax are preassigned limits. It is further assumed that at

least one set of values (@, B) will satisfy the primary requirements. Otherwise

the material of the shell, the assumed mode of failure, the load conditions, or the

dimensions a and b have to be modified in order to determine an optimum shape.
To facilitate the calculations, the ratios of the volume and weight are

introduced as

\'/
v W = g (3.4)
V. w
min max
The differential of a function is then defined as
dF = A dv - u dw (3.5)



where A and p are non-negative weighting functions of v and w, which define
the relative importance of increasing in volume and of decreasing in weight, These
weighting functions are defined in terms of current volume and weight. As long as
it is possible to select dv and dw, consistent with the constraints of the problem,
such that dF is positive, one has not achieved the optimum shape. Thus one seeks
the values of @ and B for which the differential dF is either zero or negative.

While superior shapes may exist, the above criteria will assure an opti-
mum shape within the limitations of Eq. (3. 1) and with the imposed constraints on
volume and weight.

To determine the values of @ and B for which F yields the extreme

value, one may write Eq. (3.5) in the form

dF =F, doz+FBd,3 (3.6)
with
E, =>»va-uwa (3.7)

F}6=7\vﬁ—1.tw)3

where the subscripts @ and B indicate the partial differentiation with respect to
o and B.

If Eq. (3.6) is an exact differential, then in principle one need only look

(3.8)

among the solutions of Fa =F 8 = Q for the optimum shape. Because of the complex

nature of the equations for v, Vv wa and w,, it is difficult to determine whether

B’ B
Eq. (3.6) is exact. Even if Eq. (3.6) were exact, the analytical solution of
F, =F 8 = 0 would be extremely difficult to obtain. The following iterative pro-

cedure is therefore used in the evaluation of Fa =F,=0.

A shape defined by a set of @ and B consistent with the primary
requirements is selected first. This defines the shape of the shell middle sur-
face. Therefore, the volume and the surface area of the shell can be calculated
and the required thickness computed consistent with the assumed mode failure of the
shell. Once the volume and weight are computed, values of A and u, which were
defined by the design criterion, are established. Hence the values of Fa and F 8
are determined by Eqs. (3.7) and (3. 8). The shape is then modified by incre-

menting @ and B in accordance with the path of the steepest ascent

de:dg = F :F 3.9

B




The iterative procedure is repeated until Foz and F 8 are both essentially zero.
To determine the incremental size Ao and Af for the steps in the iter-

ation, let a constant k be defined from Eq. (3.9) as

Aa"_A_B=k

JAY. S (3. 10)
Fa Fﬂ

Therefore
dv=va do +Vﬁ dﬁ=k(va Fa +V,3 Fﬁ) (3.11)
dw = W, da +Wﬂ dg = k(wa Fa +WB FB) (3.12)

In order to limit the size of the increments of Av and Aw, and of Ax and AB, the
constant k is selected in the following way
k1 if kl < kO
k = (3.13)
k ifk, >k
0 1 o)

The constant kl is determined from Eqgs. (3. 11) and (3. 12) consistent with the

assigned increments of Av and Aw , and is evaluated as follows

ng = AVZ + Aw? =kf [(va F, +v, FB)Z +(w, B, +w, FB)Z ]
from which
1/2
_ 2 9
ky=n,/ [(va F, +vy Fg)” +(w, F, *ws Fp) :| (3. 14)

where ni is a preselected limiting value for the maximum change of (Av2 + sz) to
be allowed in one iteration step, while ko is a preselected limiting value for the
ratio Aa /Fa or AB/F 8 for each step of iteration. The process is then repeated
with a new set of values of @ and B formed by adding the increments Ao and AB
to the previous values. The iteration process terminates when the value (FOZ[ + Fg)
is less than a preassigned accuracy parameter.

The mathematical formulation of the more general problem which permits

the length to vary as well as @ and B is presented in Appendix A,



MATHEMATICAL FORMULATION

In the process of iteration, as described in the previous sections, the values
of v, v, VB, w, W, and WB for a given set of values of @ and B must be calculated.

From Egs. (3.3) and (3. 4), W, and wﬂ may be written as

w =LE& (At +A 0 (3.15)

(3. 16)

The symbols used in the iteration procedure, described earlier in the re-
port, are defined by the following integrals. The notation in these integrals is con-

sistent with that used in the previous reports under the current research grant [l, 2] .

a
=21rb2 . 2E)oz 2/8 dx
v V. la
min |

1
2 2/
=2r2b (1-x% & (3.17)
min
(o]
_2mab® |2 ' 2 C BB,
v, =2 (F) (1 - x% X% log X dX (3.18)
min
(8]
2 mab® | 2 1 2/8
vg =T _2) (1-%X%  log (1 - X%) dX (3. 19)
min B o
a 1/8 2 2(-1) a-2(1-8)/B71/2
A=41rb/ [1(2)0[} {1+(§g (g) ” ’[1- (g’] } dx
O

1
1 2 1/2
=4Trai% (1 - X% /B\} + (Z_g) x2@ - 1) Q- Xa)z(l'ﬁ)/ﬁ] dX (3.20)
(o

10




2
Let F(X, a, B)=1+ g;g_y Xz(a’ - 1) (l _ XQ’)Z(l‘ﬁ)m
: 2
and h2 g%’

1

2

then A =47ab (%)f F(X, a, ) /2 x2@D (1 - x%)3-28)/B 4%
(o]

1
Bl'[ B(X, @, B) /2 x¥ (1 - x4 BY/B 100 x ax
o}

1
+h2[ F(X, @, B) Y2 x2@ D (| - x%)(3-28)/B 1o, x gx
(0] )

1
2 (%i)j FX, a, g) /2x(3°2) (- x)31-B)/B 10 x dX} (3.21)
[¢]

and

1
2

Ag=-4mab 1—1—)[ F(X, @, ) /2 x2@D (1 . x2)3-28)/8 4%
(o]

B

2

1
+_.1_I F(X, a, B) Y21 - x%)YB 10g (1 - X%) ax
B (o]

V]

1
+2(h_2 [ P, @) 8y Y2 X207 (- xB28)/B 100 (1 - x% axd (3.22)
(o]

@

The next step consists of the determination of the thickness t and the values
of toz and tB . These values should ideally be determined from a limit analysis, but
since this would constitute a major undertaking in itself [6, 7] , the following simple
failure criterion is adopted. It is assumed that under a uniform internal pressure,
Py the shell will fail by general yielding either along a longitudinal plane or around

11



the equatorial plane., If 00 is the yield stress for the shell material, failure along

a longitudinal plane requires a thickness given by

Py Aa
tl - '0“,— T (3. 23)
0
while failure around the equatorial plane requires a thickness given by
=1 Py
t,=3 Eo_ b (3.24)

where Aa is the area enclosed by the first quadrant of Eq. (3.1) and L is the
complete arc length in the first quadrant of Eq. (3.1). The design thickness t
should be either t, or tys whichever is larger. If th2 4 then t equals tys

1
a constant; therefore t, Sty = 0. For t,<t,, then by Eq. (3.23).

8 2 <t
- po P(Aa)a Aa LQ’
t, = s | — -2y (3.25)
oL L
Py F(Aa)ﬁ Aa LB:I
. =o ] (3. 26)
879 | 7L 2
where
a L, 1/B 1
Aa=b/ [1 %) } dx=abf (1 -x9YB ax (3.27)
[0} (o]
oA ab : a\(1-8)/B wa
A,), = 5 = -(—B-} 1 - x% X% log X dX (3.28)
(o]
B, [ @ 1/8 a
(Aa)ﬂ=—5ﬁ——=-;2—) (1 - x*P 10g (1 - X¥) ax (3.29)
(o]

12




2

1/
a 2 2a-1) o, HIPUB
— ba X X
L“[ {”(zfg“ 5] L-(3) ] dx
]
= a[ F(X, o, B)/% ax (3. 30)
(0]
' 1
L =a{ﬁ[ F(X, a, ‘3)-1/2 X2(a—l) (l-Xa’>2(l'ﬁ)/.B dx
(o]
1
+h2[ F(X, @, g) 12 x2@-D (1 - x4)2-38)/8 o0 x ax
(o]
w2 [ -1/23¢-2 (2-38)8
-5 F(X, a, g) 1/ %x3 (1 - X% log X dX (3.31)
(o]

: 1
Lg =a { - 1_1;_[ F(X, a, B) 1/2x2@"D (1 - x2)2(1-B)/B dX
9]

1

2

- lf F(X, @, B) Y/2x2@-1 (1 - x02(-A)/B o0 (1 - x%) dx} (3. 32)
(o]

w

All of the integrals which appear in the above equations may be collected
into seven groups, by defining the following convergent but sometimes improper

integrals in notations as

1 ~
I, ® @ =j (1 - au
’ O

1
I, (0 @ =f (1 - P og (1 - uPy du
(o}

13




with

1
J3(py 9 =[ (1- up)q-l uP log u du
0

1
1/2
J4 (P Q, 9) if, (1 - uPy® [} +n2 w2 (g - up)2(q-1)]
0O
1
sz.%s)jf[rn1uup”(1 medq
O

1
16 (p: q, 1, 8) "'/[l +h2 uz(p-l) (l-up)z(q'l)]
0

log (1 -up) du

-1/2

uz(p_l) (l

-1/2

-1/2

J; (P 4 s, M) [[1 + n% y¥P- 1)(1 p)2(q l):' 2 (1 -

n? - (2 2

ap

andp, r>1, q, 5, m>0 .

-uP)*™% qu

WD) () Pys2

(3.33)

-2

up) S

-3 logudu

~

Then the equations used in the calculation of v, w and their derivatives can be

expressed by Eqgs. (3.33) as

14
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_2mab 2
B/ ._Jl(a; E)

min

A e, b

min

2

_2mab
Vg = (— )J(. )
B Vm'm ,32 2 B




A=4mab ]G, Bl' %)

2
+h J7(a,; ;+1 20 - 2) - h (B-l) ]7(a,B 5 301-2)]
A,=-4wab EE]( L3l 1@ i1 l4g
B B 57 BB /32 67’'pg B
h\?2 13 ‘
+2(B_) Jé(a” B’: a, B‘):] (3-34)

A, =ab ] @, é-)

(8,), = ab-) Ty, 3

- 1 1
(Ap) = ab -BT) e b

L=a J,@ 3 0

2
L =a[h— I, g §>+h2 1@, % % 2a - 2)

[ (o4
2
h 1 2
- _B—_ J7(O!, Er E’ 3a - Z)jl
2 2
_ 12 12
Ly=a & e P e e 5] )

15



NUMERICAL INTEGRATION

The analytical expressions for the integrals in Egs.(3. 33) are not available
except for ] 1’ ]2 and ]3 which may be expressed in terms of gamma functions and the
derivatives of gamma functions, the psi functions. Since the above functions also in-
volve series expansions or numerical integration , all of the integrals in Egs.(3. 33)
are evaluated numerically using Simpson's Rule, In this process, special considera-

tion is given to improper integrals of the following two types.

€
I(¢) =j f(€) &5 dt 5> -1 (3. 35)
(o]

€
K(e)i/’ £ e2 log £ d € §> -1 (3. 36)
[¢)

with f(§) continuous in the interval 0< § <e. For € small enough, replace £(§)

with a parabola

f(§) =b_+b, (%) +b, (%}2 (3.37)
where

b = £(0)
(o]
b, =4 f(%) - f(€) - 3 £(0)

by =2 f(¢) - 4 f(-g—) +2 £(0)

Then the improper integrals I(¢) and K(e) can be approximated as
€ : 9
- 3 ] &
@ [ngroy ] on, 8] ¢
0

6+1
- € 5+ 1 65+ 1
S [ Pt EFE b T EES b, | (3.38)

16




€ 2
K(e) =f [bo +b, (2_) +b, [ :]&6 log £ d &
0

5+l ‘
- o Doy, 8, ] e [, #8028 )

Therefore the improper integrals J2 to J7 listed in Egs.(3. 33) can be expressed in (3.39)

terms of I(¢), K(¢) and a proper integral. They are derived as follows.
1-M 1

J2 P, @ = (1- up)q log (1 - up) du -lf (1- up)q log (1 - up) du
1-n

Let §=l-up

then  dus= --115 -0 PP e

1-1 1-(1-n)P
and  J, (p @) =f (1-tP¥ 10g (1 - P qu +%/ (1 - &I P/Pedope gt
0 0

Using Eq. (3. 39) along with the definitions of Eq. (3.37), ]2 is approximated as

1-n s
L o= -Pllog-P)au+iKe) | (3.40)
P €=1-(1-n)P
(o}
f(&) = (l_g)(l'p)/p
6=q

In a similar manner, by the approximations of I(¢) and K(¢), other integrals yield;

1-n
I3 (p> Q) =/ (1- up)q-l uP log u du A
€
1
+ = Ie) + K(¢)

p* € =1-(1-n)P c=¢
f(§) = (143)1/‘p log (1-£) £E) = (1-P)371
5=qg-1 6 = o)

*This notation indicates that the integral is evaluated at the indicated values of €, f(§)

and 6.
17



1-n
Jy(@: a4 9) =f (1-u® 1 +n2 2P (g - up)z(q"l)] 172 44
[¢]

+% I{(e)

1-n
JS (p’ q, S) =/ [l +h2 uz(p-l)(l _uP)Z(Q‘l)]
(o]

+% I(e)

I-n
J6 (P, q, I, S) =[ [l +h2 u2(p—l) (l-up)z(q-l) ]
(¢}

log (1-uP) du

)

P

18

e =1-(1-n)° .
f(§) = [_17 (1 - g)Z(l-p)/p 52(1'(1) + l]

h
b=q+s -1

-1/2

w2e-D P)S2gy |

(3.41)
e=1-(1-n)° o
f(&.) = ligz(l'Q) -I;hz(l-é)z(p—l)/p] (l - g)(p'l)/p
b=s5-q-1

-1/2
/ u2(r- l)(l_up)S‘Z

¢ = 1-(-n)P .
1) = [gz(l-q) +h° (l-ﬁ)z(p'l)/p] (1-8)2T P~ 1/P

6=s-q-l




g el 2(a-)7] % ps-3
I a5 my=|  [1+n? oZO DM D] pyses m
€

u logudu
+ K(¢e)
€ €
2(1-q) , . 2£2(p-1) "1/2 -q-2
#8) = [(-gPX D 220D 7T L gPys-a
& =m
1 .
+ = I(e)
P2 e=1-Q0-nP
£(€) = [52(1-q) +h2 (1-8y2P~D/P ] _1/2(1_5)(m+1—p)/p
éIOg(l-i)
§=s-q-1 )

The integrals ] 1 to ]7 therefore involve only proper integrals; thus numerical
integration by Simpson's rule can be applied. The FORTRAN programs for the evalu-

ation of | 1 through ]7 by means of a digital computer are written in subfunction form as
listed in Appendix B.
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NUMERICAL COMPUTATIONS

Several characteristics of the design problem have to be defined before the
numerical iterations can be performed. One is the magnitude of the required values

for V.
mi

n and Wmax’ the others include the weighting functions A and u.
1. The Ranges of the Volumes and Weights of Shells

Among the shells of revolution which may be generated by revolving the me-
ridian curve, Eq. (3. 1),about the x-axis, the range of shapes of interest lie between
the cylindrical shell for which the exponents @ and B are both large, and the coni-
cal shell for which the exponents « and B both equal unity. The volume of the
cylinder with radius b and length 2a is chl =2 ab2, and the volume of the double

cone, having apexes at -a and at +a, with corresponding base diameter, 2b, is

=2 ™ abz., If the required minimum volume V__ . is writtenas V_ . =C (21rab2),
cone 3 min min 1
then C, must lie between 1/3 and 1.

1
In order to determine the weight for the two limiting cases, the thickness

variation must be considered as well as the surface area. The surface areas for the
cylindrical and conical shells are

- 1,b

Acone ~ 43D [% (1+G) _J

Using Egs. (3.23) and (3. 24), the thicknesses required for the shell of cylin-

drical type, based on two different failure criteria, are expressed as

P
h = lb &_qb
1+Q)
_lpo
b =3l]P
(o]
therefore D
2l for(2)>l\
(o] a’ =
L 2lb for(§)<1
1"'(5) 0 )
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Similarly, the thicknesses required for the conical type shell are

o=l 1 %o
1 2 ‘{ b2 |o
1+(§) 0
P
1 0
t.==|—| b
2 2 oo

Since -—J‘——< 1 for any value of (9), it follows that
V 1+ (g)2 - a

Po

. b
(—7; b for any ratio (-5) .

ot
L}
B

Then the weights of the cylindrical and the conical shells become

1 1 b 2 [Po b
5 [l +—i (E)—J [4Trab 6'; pg] forzzl
W = (3.42)
v L [l +—l—(9)tl[4ﬂab2 EQ p for9<l
b 2 \a o | P8 a
1+() o
a
w =11 + )2 [4map? o
cone 4 a _ o, g

By writing the primary required limiting weight as

.e]

p

0

w =C

[4 T alb2
max 2

then C, has to be in the range

V1+(§)25025% [1+%(g)] for(g-)zl
\fl+(§)zgc e — [1+%(§)] for ) <1

- 1+(5)

2

| =

| -



2. Weighring Funcrions A and W

The functions A and B which define the relative importance of the variation
of the volume and the weight of the shells, are preassigned according to the design
criterion. Any functions in texms of V and W can be assigned in the problem. One

such set of functions is defined as

v_,-vF m
;\lz__cﬂ_____ , wo= W . (3.43)
v - Vmin)q (wmax -W)

The shapes of the functions in Eq. (3.43) appear in Fig. 1, forp=q =m =n = 1.
From the characteristics of the functions A and u, one can predict that when

the volume is close to V__. or when the weight is close to W , a small incre-

min max

ment of V or W will produce a large change of dF as defined in Eq. (3.6). If
dF is considered as the slope of a surface F, then the surface has a positive slope
along the edge where V is close to me and has a negative slope along the edge
where W is close to wmax' Thus it follows that there must exist a maximum

value of F, that is dF =0, in the assigned range V > Vmin and W < Wm

ax’
The functions A and u may also be defined as
A [z
AL = R S m =_ 1 (3. 44)
2 2,2 2 2.2
17H 17H
where A and M, are obtained from Eq. (3.43). If one divides ?\l and H by

2
>\.l 2
The ratios )\2/“2 and Kl/ul, remain the same. The characteristics of the

+ui , the magnitude of A, and Ho will be limited to the range of 0 to 1,

functions are as shown in Fig. 2; the values of A, and “2 outside the range of

2

me and Wmax are arbitrary set equal to 0 and to 1 respectively.

Another form of A and pu consists of straight lines, which define a

linear variation of V and W as

Vv -V
=_cyl = W
0% T A 3 = (3.45)
cyl min max

The above three definitions of A and u are applied in the numerical examples of
this report. Subroutine programs for the calculation of A and p are attached to
the main iteration program as listed in Appendix B.
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3. Numerical Examples
The functions of A and u for the first example are chosen as in Fig. 1, that is
NG pe W
V- Vm‘m Wmax W
Let the required minimum volume of the shell be 0.6 of the volume of cylindrical
shell, thus Vmin =0.6 2T abz), and let the required maximum weight be 0. 8 that
of the cylindrical shell under the same load condition. Since the thickness required
for the cylindrical shell is dependent on the ratio of b/a, the weights for the cylindri-

cal shells with different ratios b/a are given by Eq. (3.42) as

0.75 for b/a = 1.0
- 2 =
chl =41.00; (4Tmpg P, 2 b /00) for b/a = 2.0
0.90 for b/a = 0.25

therefore the values of Wmax are chosen as 0.6(4 T PEP, abz/co), 0.8(47mp gP, abz/O'O)
and 0.72 (4Tl’pgp0 abz/oo) for the ratios b/a = 1.0, 2.0, and 0.25 respectively.

With all the requirements set, the iterative calculations are performed with
the aid of digital computers. The FORTRAN programs for the iteration procedure
are listed in Appendix B.

Choosing the starting values @ = 1.5, g = 1.5 with the fineness ratio

a/b = 1.0, and the limiting value no =0.1, ko = 0. 3, results in the out-
put listed in Table I. From steps 1 to 7 in the Table, the results listed are pre-
sented for each iteration; from step 8 on, the results are presented for every other
iteration. From these results it is seen that the values of @ and B increase rapidly
in each of the first six iterations and then change slowly. The same pattern is appar-
ent for the slopes Fa and FB.

Table II shows the iteration results with the same parameters as in Table I,
but with the starting conditiona =2.0, B =3.0 .. The results in steps 1 to 8 are listed
for each iteration while after step 8, they are listed for every fourth iteration. The
iterated values of @ and B decrease rapidly in the first three steps and then change
slowly.

The results in Tables I and II, indicate that the shape defined by o = 1.5,
B = 1.5 lies on one side of the ridge, Fig. 3, while the shape defined by@ = 2.0, 8=3.0
lies on the other side of the ridge. During the iteration process, the successively im-
proving values of @ and B8 climb to the ridge rapidly according to the path of steepest
ascent, and then progress slowly along the ridge due to the small variation of slope along

the ridge.
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The phenomena observed in the above results may be verified or described
more clearly by the exact integration of the function dF of Eq. (3.6) using the
assigned functions A and u. Rewriting the weighting functions A and u in

dimensionless terms v and w, one obtains

_Cc-~-v - W
A v-1 oW
Vcl
where C=V—-Y—
min
Then dF =<~V gy - dw
v-1 1

which, after integration, yields
F=(c-1)log(v-1)+log(l -w)-(vtw)

The function F is in terms of v and w, which can be represented by the inte-
grals with parameters o and B. The relative variation of F with respect to «
and B is plotted as a three dimensional surface in Fig. 3. The surface has the
shape of a mountain range with the projection of the ridge shown in the a - g8 plane
in Fig. 3. The peak of the ridge is located near the point @ = 2,65, B = 1.55.

Changing the values of V W and the reciprocal of fineness ratio,

min’ ~ max
b/a, results in little change in the shape of the surface F, but does produce a
slight shift in the location of the ridge. The projections of the ridges
on the a - B plane,with different combinations of Vmin’ Wmax’ and b/,are plotted
in Fig. 4. The shift in the ridge is in the same sense as the change in me or in
W .
max

The results in Tables III and IV show the iterative calculations for the

- 2 _ 2 . . =
case V. = 0.6 (2 mab™), wmax =0.8(4mpg p, ab /00) with the ratio b/a =2,0
and k0 =(.3. While the initial values for ¢ and B are different in Tables III and
1V, it is noted that they converge to the same values of o and B after successive
iterations.
As a second example, A, and u, of Fig. 2 are chosen as the weighting

functions. The results of each iterated calculation with three different starting
values are listed in Table V. The preassigned values for computations are

Vo =062 7ab’), W . =0.6(4pgp ab’/g)andb/a =1.0. The values

mi a
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of @ and B reach the ridge rapidly after several iterations regardless of the start-
ing point.

Table VI gives the iterated results for the weighting functions )\3 and “3’
which vary linearly with V and W, as defined by Eq. (3.45). The other preassigned
values for computations are the same as for Table V. The results indicate that both

B

different starting values.

the slopes Fa and F, are within the limit 0. 005 after ten iterations for all of the

Since the iteration procedure is controlled by the slope of the function F,
the rate of convergence is mainly dependent on the weighting functions A and u.
For the currently assigned functions, the results in the above tables indicate that
the values @ and B converge rapidly to the region where the ordered pair (, B)
lies near the projection of the ridge and then change slowly along the ridge. Due to
the small variation of the slope along the ridge, any point located on the projection
of the ridge on the o - 8 plane constitutes a good shape with respect to volume and
weight.

As another example, the functions A and u may be considered as constants.
In this case, the problem becomes one of determining the relative maximum of the
function F =v - w. Since the variation of the thickness is very small due to the
change of values «, 8, a shape which is nearly optimum may be achieved by assign-
ing a specific value of volume in determining the values of @, B for minimum shell
surface or by assigning a specific value of surface area in determining the values
of o, B for maximum volume.

The shapes to fulfill the above requirement can be determined with the aid
of data from previous reports [l, 2], The surface in Fig. 5 represents the volume
variation with respect to @ and B. The heavy curve on this surface represents
the volumes of shells for which the surface area is equal to a preassigned value.
From the projection of this curve on a vertical plane, the values of @ and B for
the maximum volume for the defined surface area can be established. In a similar
manner, the surface in Fig. 6 represents the area variation with respect to a« and
B. The heavy curve on the surface represents the areas of shells for which the shell
volume is equal to a preassigned value. The projection of this curve on a vertical

plane indicates the area variation among shells having a constant volume.
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APPENDIXES

A. Iteration Procedures with Varying Shell Length
Similar to the Egs. (3.2) and (3. 3), the volume and weight of the shells of revo-

lution may be taken as the functions of three parameters «, $# and a,

an =an @, B, a)

W=pgAf, B8, a) t, 8, a)
Here the shape requirements to be fulfilled for the shell are

V>V W<wW

. a<a
Xa — min max — max

In this case the dimensionless forms are defined as

v
. Xa ",
v = v W =
min max max

and the differential of a function is formed as
dF=Adv -udw-vd/{

where A, u and v are the functions defining the relative importance of increases in

volume and decreases in weight and length. The differential dF also can be written as
dF =F_da+F,d8+F df
o B {

with

F£=7\v£-uw£—v
The iteration steps will then follow path of steepest ascent, as defined by

doz':dB:d£=FO!:F}B:Fﬂ

The iterative procedure is repeated until Fa, FB and F2 are essentially zero.
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B. FORTRAN Programs
1.  Programs for FUNCTIONS FJ1 through FJ7

Since the integrals Jl through ]7 listed in Egs. (3. 33) appear in the calcu-
lations of the main iteration program many times, they are computed in separate
FUNCTIONS attached to the main program. Simpson's rule is used to evaluate the
above integrals with the approximation techniques discussed in the section on Numer-
ical Integration.

Amoeng the input arguments for the FUNCTION programs, the values B, Q,
R, Sand T are the exporents in the integrals. They are dependent on the values of
o and B. The quantities ETAI and EPS are two small numbers assigned in the
calculation of the two improper 'mtegra%s I(¢) and K(€) of Egs. (3.35) and (3.36). The
value FK2 represents the term (-g—g) and the value ACC is the accuracy re-
quired for the relative difference between two successive approximations in the
Simpson's rule integration routine. In the previous numerical examples, the value
assigned to ETAI and to EPS is 0. 01 while the value assigned to ACC is 0.0001.

2,  Program for SUBROUTINE FMULAM

The SUBROUTINE FMULAM is written to compute either the values A e
Bis as Eq. (3.43) or the values }‘2’ Mo as Eq. (3.44), which is controlled by the
number NC. The outputs defined by FLAM and FMU represent Al and Hy for
NC =1 and >»2 and Ko for NC=2, The input arguments P, Q, FM and FN are
the same as the exponents p, @, m and n of Eq. (3.43).

3. The Main Iteration Program

The main purpose of the program is to compute the increments of A«
and AB aleng the path of the steepest ascent from the current assigned values «
and B. The computations are repeated for the new calculated ¢ and B until they
reach a point where the absolute values Fa and Fﬁ’ as in Egs. (3.7) and (3. 8),
are less than a preassigned small number QEPS.

The input data of FP, FQ, FM, FN and NC listed on the first data card
are supplied for the calculation of functions A and . The constants EPS, ETAI
and ACC on the second data card are the numbers assigned to the FUNCTIONS J,
through ]7 in order to compute the integrals. The values PO and SIGO represent
internal pressure P, and the yield stress o, and are used to calculate the thick-

ness t. Inputdata ETAO and FKV are assigned to limit the step size of « and
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B in each iteration, and represent U and ko in Eqs. (3. 14) and (3. 13). The two
integers NRVWP and NRAB are the number of the sets of me, Wmax and the
number of sets of the ratio BOA (b/a) to be calculated in the program.

The input values VMIN and WMAX are two dimensionless numbers which
represent the preassigned allowable minimum volume and maximum weight. The
true value of the minimum volume is VMIN - (2 w ab2) and the true value of maxi-
mum weight is WMAX (4T p g P, abz/oo).

For the output, the results of each iteration are printed using the symbols

DA, DB, ATIL and BTIL to represent Ax, ARB, Fa and F_, respectively.

B
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PROGRAM FOR EXAMPLES

FORTRAN IBM
PUNCH CBJECT
GO

READ INPUT TAPE 7, 1, FP, FQy FM, FNy NC, EPS,» ETAI, ACCs» NRVWP

1 FORMAT {4fF15.5, I10 / 3E20.8 / I11¢)

READ INPUT TAPE 7, 24 PUy SIGGC, QEPS, ETAQ, FKV

FORMAT (2E20.8/ 3F20.5)

00 69 INRVWP = 1, NRVWP

READ INPUT TAPE 7, 5, VMIN, WMAX, NRAB

FORMAT ( 2E20.8 /110)

DO 50 INRAB = 1, NRAB

REAC INPUT TAPE 7, 11, ALPHA, BETA, BO0A

FORMAT ( 3E20.8)

WRITE OUTPUT TAPE 6, 12, VMIN, WMAX, BOA

12 FORMAT (BHIVMIN = 4F7.3,2X, 7THWkMAX = ,F7.3,3X, 4HRQA=, F6.3,
NCONT =0

OOV HWN

-

TO LIMIT ALPHA AND BETA BOTH LARGER THAN ONE

14 IF (ALPHA = 1.0) 15, 17, 17
15 ALPHA = 1.0

17 IF (BETA - 1.0) 18y 19, 19
18 BETA = 1.C

19 FK2 = (BOA®ALPHA/BETA)#%2

CNCB = 1.0/BETA
TWCB = 2.0/BETA
THCB = 3.0/8ETA

NCGNT = NCONT +1
TO DETERMINE THE VALUE OF T= Tl OR T2

AR= FJ1(ALPHA,CONGB,ACC)

SL = FJ4(ALPHA,ONOUB,C.0,FK2,ETAL,ACC)
RR = AR/ SL

IF { RR-0.5 ) 20, 2U, 21

T2 LARGER THAN T1
20 T = 0.5 *#POU/SIGO

TA = C.
T8 = C.
GO TO 24

Tl LARGER TRAN T2

21 T = RR «PC /SIGC
ARA= ~(CNCR)®FJ3{ALPHA,ONCR,CPS,ETATL,ACC)
ARB= -{1.0/{BRCTA=#2))#FJ2(ALPRA,ONOB,ETAT,ALC)
TE = FUS(ALPHA,CNCB, TWOB,FK2,ETATLACC)

SLA = FK2#(FJTIALPHA,ONUB,TWOR,2.#(ALPHA-1.),FK2,EPS,ETAL,ALCC)

1 FJTUALPHA CNOR, THWOR y 3. #ALPHA-24,FK2,yEPS ETAL,ACC)/BITA +
2 TE/ALPKA)

SLB = ~(FK2/{BETA##2))#(FJ6({ALPHA,ONOR,ALPHA, TWOB,FKZ24ETALI,ACC)

i BETA*TE)

Ta = (PG/SICO) o  ARA- AR#SLA/SL ) / SL

TR = (PU/SICQO) » (ARB- AR ®» SLB/ SL) /SL
24 WRITE OUTPUT TAPE 6, 25, ALPHA, BETA, AR, SL, RR, T, TA, TR
2% FORMAT ( 1HC, S5X, 8712.6)

+

SHELLOOL
SHELLOO2
SHCZLL0O3
SHELLOO4
SHELLOOS
SHCLLGO6
SHELLOO7
SHELLOOB
SHCLLOOS
SHELLOLO
SHELLO11
SHELLO12
SHELLO13
SHELLOl4
SHELLOLS
SHELLO16
SHELLOL7
SHCLLO18
SHELLO19S
SHELL020
SHELLO21
SHELLO22
SHELLO023
SHELLD24
SHELLO25
SHELL026
SHELLO27
SHELLO2B
SHELLO29
SHELLO030
SHELLO31
SHELLO32
SHELLO33
SHELLO34
SHELLO35
SHILLO36
SHELLO37
SHELLO38
SHELLO39
SHELLG4O
SHELLO41
SHELLO42
SHELLO43
SHELLO44
SHILLO4S
SHELLD46
SHELLUGT
SHELLO48
SHELLG49
SHELLOS0
SHELLQS1
SHELLC52
SHELLOSY3




c
C
C

aon [n] [aXala

aonn

[N eX el

T0 CALCULATE v,

1
2
3

1

L1
Su=
TE =
SUA=

ETAI,ACC)

FK2,EPS,ETAI,ACC)
SUB= —(1./{BETA»22))*(FJ6{ALPHA,ONDB,1.,0ONOB+2.,FK2,ETAI,ACC) +

2.%FK2#FJ6 (ALPHA,UNOB,ALPHA,THCR,FK2,ETAT,ACC)

= FJL(ALPHA,TwOR

A
B
= SU «T

SUSTA + T=SUA
SU#TB + T=SUB

EFIrrag< <

A
B

»yACC)

AND THEIR DERIVATIVES

FJ4 (ALPHA,CNOB, ONCB,FK2,ETAT, ACC)
FK2*FJS(ALPHA,ONCB, THOB, FK2,ETAL,ACC)
TE/ALPHA — FJT7(ALPHA,CNUB,

/BETA + FK2#FJ7(ALPHA,ONOB,

TO FIND THE VALUES GF MU AND LAMDA

26 FORMAT

30 IF

CALL FMuLAM [ FP,
WRITE OUTPUT TAPE
(10X, 8F11
(FrMU) 50, 30, 3
(FLAM) 5C, 31,

IF

TO CALCULATE FALPHA

31 ATIL

PROGRAM TERMINATES WHEN QQ

TO DETERMINE STEP SiZt,

35

36

37
40

42 FORMAT

48 WRITE CUTPUT TAPE 6,

49
50
69

i

1

FLAM » VA/
BTIL FLAM = VB/
ATILS = ([ ATIL*VA
BTILS = ( ATIL*WA
vQ V/VMIN
w0 W/ hMAX

Wl

Q@ =

IF { CQ-QEPS ) 48,

FKAPS = ETAC / SQR

If {FXAPS - FKV)

FKAP = FKAPS

GO TG 4C

FKAP = FKV

CA = FKAP ® ATIL

DB = FKAP # RTIL

WRITE OUTPUT TAPE
BYIL, ATILS, BT

(6F9.5, SE1

ALPHA = ALPHA+ CA

BETA = BETA + DB

IF [ NCOCNT - 50 )

BTILS
FCRMAT |
CONTINUE
CONTINUE
CALL SYSTEM
CND

1H-,

36'

FQs FM,
6, 26,
o6 )

0

31

Vo

ANC FHBETA

VMIN - FM
VMIN - FM
+ BTIL=*VS
+ OBTIL=KkB

LE

48y 35

CONTR

T (ATILS»
36y 37

6y
s
2.5)

42, AL

14,
49,

5C,
AL

8F13.5 /1H2 )

FN,

VMIN,

VA, VBy W,

(THAT IS,

U e

ONDB+2.
THOB+1.0,

WMAX,

—(TWCB)#FJ3(ALPHA, TW0B, EPS,ETAI,ACC)
-{2.0/(BETA#=22) ) #FJ2(ALPRA,TWOB,ETAI,ACC)

Vs Wy TMU,

WA, W, FMU,

ATIL AND BTIL)

WA/ WMAX

U e WB/ WMAX

) /VMIN
1}/ wWMAX

SS

SQRT (ATIL#%2 + BT[L*#2)

oL ON FKAP

*2

PHA, RETA,

50

PHA, RETA,

THAN QEPS

+ BTILS#%2)

CA, D8,

VG,

VO, WCy ATIL,

NG'

FLAM,

FLAM

BTIL,

FKAP,

s ALPHA,FX2,EPS,ETAL,ACL)
2.#{ALPHA=1.),FK2,EPS,
- FK2#{ThOB~1.,)#FJT(ALPHA,ONCBTHOUy3.#ALPHA-2.,

+ BETA=TE)

NG )

ATILS,

ATIL,

SHCLLOS4
SHELLGSS
SHELLGS6
SHELLOS7
SHELLDSS
SHELLO59
SHELLO6O
SHELLOGL
SHELLO62
SHELLO63
SHELLOK4
SHELLO6S
SHELLCO6
SHELLO67
SHELLO6S
SHELLO®Y
SHELLODTO
SHELLOT71
SHELLOT2
SHELLOT3
SHELLOT4
SHELLQT5
SHELLOT6
SHELLO77
SHELLQTY
SHELLO79
SHELLGBO
SHELLOS1
SHELLOS82
SHELLO83
SHELLO84
SHELLO85
SHELLOB6
SHELLO87
SHELLOS8HY
SHELLO89
SHELLUSO
SHELLO91
SHELLO92
SHELLO93
SHELLC94
SHELLQ9S
SHELL(G96
SHELLO97
SHELLC98
SHELLO99
SHELL100
SHELL101
SHELL102
SHELLLC3
SHELL104
SHELL10S
SHELLLO6
SHELL1O7
SHELL1O0®
SHELL1O9
SHELL11D
SHELLLLL
SHELL1L2
SHELL113
SHELLL1lA4
SHELLILLS
SHELLLLG
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FORTRAN [BM
PUNCH OBJECT

SUBROUTINE FMULAM(P,QyFMyFNyVMIN, WMAX VoW FMU, FLAMsNC)

VV = V/VMIN
WW = R/WMAX

IF {vV

FORMAT(

FLAM =
RETURN
IF (v-1
IF (vv

Do~ NP WN -

g g
G N-O

FLAM =
IF {WW)
IF (WW)

Ll i ol
~ownd

FLAM =
FMY = 1
RETURN
FLAM =

NN -
N=OOV®

GO TO (
TEMP
FLAM
FMU
RETUR
END

NN
WS
Zhunn

N
o

IF (WW - 1.0)
WRITE OUTPUT TAPE 6,
vE12.6538H WMAX = 4E12.646H V
1€E14.8+// 5X, 43HTHE PRIMARY REQUIREMENTS CANNOT BE REACHED
FMU = -1.0
-1.0

- 1.0) ‘0'

TH VMIN =

«0) 11, 5,
- 1.0) 12,
FMU = 0.0

1.0
59 55 9
Sy S5y 16

IF (WW - 1.0) 20,

0.0
.0

(( 1./VMIN — VV)#epP)/ ((VV-1.
FMU = (WWoaFM)/((1.0 — WW)#eFN)
23426) 9 NC

SORT(FLAM®#®2 + FMU®##2)

FLAM/TEMP
FMU/TEMP

$ FORTRAN I8M

$PUNCH OBJECT

FUNCTION FJL(P,Q,ACC)

S0
<
#
—
L[]
o

H = 1.0
0b0 = E
X = H/2
10 EVEN =
11 DO 13 1|
12 EVEN =
13 X = X +
14 AREA =

16 IF (R)
17 IF (INT
18 FORMAT

EVEN +

1A}
VEN + QOO
G.0
= 1y INT

H

(ENDS + 4.0#EVEN + 2.0%00D)#H/6.0
15 R = ABSF(AREA1/AREA -
25y 25, 17

- 16384)

(23H J1(P,Q)
19 WRITE QUTPUT TAPF 6,

20 CALL SYSERR

21 AREALl =

AREA

22 INT = 2#INT
23 vV = 2.0V

24 GO TQ 7

25 FJ1 = AREA

26 RETURN
END

32

10,

({1.0 = X##P)n2Q)

1.0} - ACC

NOT CONVERGENT)

+E14.8,y06H

SUBFMLCL
SUBFMLO2
SUBFMLC3
SUBFMLO4
SURFMLGS
SUBFMLO6
SUBFMLO7
SUBFMLOS8
SUBFMLO9
SUBFML10
SUBFMLL1
SUBFMLL2
SUBFML13
SUBFML14
SUBFML15
SUBFML16
SUBFML17
SUBFML18
SUBFML19
SUBFML20
SUBFML21
SUBFML22
SUBFML23
SUBFML24
SUBFML2S
SUBFML26
SUBFML27
SUBFML28
SUBFML29

FJdl 01
FJ1 02
FJ1 03
FJ1 04
FJ1 05
FJ1 06
FJ1 07
FJ1 08
FJ1 09
FJ1 10
FJ1 11
FJ1 12
FJ1 13
FJ1l 14
FJ1 15
FJ1 16
FJ1 17
FJ1 18
FJ1 19
FJ1 20
FJl 21
FJ1 22
FJ1 23
FJ1l 24
FJl 25
FJ1 26
FJl 27
FJl 28
FJ1 29
FJ1 30
FJ1 31




$
$PUNCH

1

DO~ W

10
11
12
13
140
1

FORTRAN IBM

OBJECT

FUNCTION FJ2{P,Q,ETAIl, ACC)
pp = P

E=  1.-{1.0-ETAI)»+=P

OME = 1.0 -£TAl

DEL 1.0 - 1.0/DP

FO = 1.0

F1 = (1.0 — O.5#E)==(-DEL)
F2 = (1.0 - E)sa{-DEL)

0DQ = ¢

A = 4.08F1 - F2 - 3.0#F0

8 2.0%F2 - 4,0%F]1 + 2.0=FO

1 =0Q + 1.0

T2 = 0Q + 2.0

T3 = D@ + 3.0

EN = {ELOG (E)#(FO + T1=(A/T2 + B/T3)) = (FO + T1eT1#{A/(T2+T2)
+ B/{T3=T3)1))/T1)=(EeaT1)/(T15DP)

GD0 = 0.0

INT = 1

vV = 1.0

EVEN = 0.0

AREAl = 0.0

ENDS = ((1.0 — OME#=DP)##DQ)#ELOG (1.0 - UME##DP}
H = OME/V

0ODD = EVEN + 0ODD

DO 26 T = 1y INT

EVEN = EVEN + {((1.0 - X##DP)##DQ)«ELGG (1.0 — X==DP)
X=X+ H

AREA = {ENDS + 4.0#EVEN + 2.0#0DD)*H/6.0
R = ABSF(AREAL/AREA - 1.0) - ACC

IF (R} 38, 38, 30

IF (INT - 16384) 34, 31, 31

WRITE QUTPUT TAPE 6, 32

FORMAT (23H J2(P,Q) NOT CONVLRGENT}

CALL SYSERR

AREAl = AREA

INT = 2#INT

V = 2.0%v

GO0 1O 20

FJ2 = AREA + EN

RETURN

END

FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2

FJ2
FJ2

FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJ2
FJd2
FJ2
FJ2
FJ2
FJd2
FJ2
FJ2
FJ2
FJ2
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$ FORTRAN [BM
$PUNCH 0BJECT
FUNCTICN FJ3(P,G,EPS, ETAL, ACC)

oe P
ce € - 1.0
CP + 1.0

—
—
L TR (R | I T ||

T2 TL/{CP + 2.0)
TL/(CP + 3.0)

FO 1.¢C

E = EPS

VO NOW D WA~
-
W

F1 = (1.0 - (C.5%C)=%DP)#=DQ
F2 = (1.0 - E=«DP) %0
10 A 4.0%FL - F2 - 3.0%F¢

11 8 2.0%F2 - 4.0#F]1 + 2.0%FC

FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3

120EN = (ELOG (E)#(FQ + T2#A + T3s8) ~ (FO + T2a#T2*A + T3#T3#R)/T1)*(FJ3

1ExsTL)/T1

13 DEL = 1.0/0P
OME = 1.0-ETAl
= 1.0- OME«s=CP

15 Tl = CG + 1.0

16 T2 = T1/(CQ + 2.0)

17 13 = T1/(CQ + 3.0)

18 FO = C.0

19 F1 = ((1.0 - C.5#E)#»«DEL)*ELUG (1.0 — 0.5#E)

20 F2 = ((1.0 ~ E)##DEL)#ELOG (1.0 - E)

21 A = 4.0%F]1 - F2 - 3.0%F0

22 B = 2.0%F2 - 4,0%F1 + 2,0#F0

23 EN = EN + (FO + T2#A + T3#B)(ExsT1)/(T1xCPn0P)
E = EPS

240ENDS = ((1.C - E»=DP)#2DQ)#{E==(lP)#ELUG (E)
1 + ((1.0 — CME##DP)»eCQ)#(0OME##0P)aFLCG (UME)

25 GCD = 0.0
26 INT =1
27 V = 1.0

28 EVEN = C.C
29 AREAL = 0.0
30 H = (CME - E}/V
31 0DD = EVEN + CDC
32 X = £ + H/2.

33 EVEN = 0.C

34 DO 26 I = 1, INT

35 EVEN = EVIN + ((1.0 — X#=DP)=#DQ)#(X*20P)+ELOC

36 X = X ¢+ H
37 AREA = (ENDS + 4.Ce#CVEN + 2.0#00D)*#H/6.0
38 R = ABSF(AREAL/ZAREA - 1.0) - ACC
39 IF (R} 48, 48, 4C
40 IF (INT = 16384) 44, 42, 42
41 FORMAT (23H J3(P,Q) NCT CONVCRCENT)
42 WRITE OUTPUT TAPE 64 4l
43 CALL SYSCRR
44 AREAl = ARCA
45 INT = 2#INT
46 V = 2.0=V
47 6O YO 3¢
48 FJ3 = AREA + [N
49 RETURN
ENC

34
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FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
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FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
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FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3
FJ3




$

FORTRA

N IBM

$PUNCH OBJECT
FUNCTION FJ4(P,QsS,FK2y ETAIL, ACC)

WA

® O

10

11
12
13
14
15
16
17
18
19
20
21

22

D6 = S + G - 1.0
TL = CG + 1.0

T2 = T1/(06 + 2.0)
T3 = T1/(06 + 3.0)
OME = 1.0 - ETAIL

E = 1.0- OMEwsp

oP = P

DEL = -2.0#(1.0 -
DG = 2.0%(1.0 - Q)

IF (@ - 1.0) 11, 10,
QRT (1.0/FK2 + 1.0)

FO = S
GO0 1O
1
F

(e}
]
wononon

= 4

EE = 1

12
+C
K2

-C

IF (P - 1.0) 36, 22,

EE = SQRT (1.C + FK2)

230ENDS =

24
25
26
27
28

popP =
H = OM
€DD =
X = H/
EVEN =

1.0/0P)

36

SQRT (({1.0 — O.S*E)#«DEL)*({0.5%E)*2DQ)/FK2 + 1.0)
SQRT ({{1.0 - £)=#DEL)#(Ee2DQ)/FK2 + 1.C)

.0%F1 ~ F2 - 3.0«F0
2.0%F2 ~ 4.0#F)1 + 2.0%F0
= (FO + T2=A + T3=8)«(E*=T1)#SCRT (DF)/(TL»DP)

23

FJ4
FJa
FJ4
FJ4
FJ4
FJ&
FJa
FJa
FJ4
FJ4
FJ4
FJ&
FJ4
FJ4
FJ4
FJ4
FJ&a
FJé&
Fl4
FJ&
FJ4
FJ4
FJ4
Fl&
FJ4
FJa
FJ&
FJa

EE + {(1.0 - OME#»0P)#eDG)#SQRT {((1.0 - OME#=DP)#=DG + DF=FJ4

2.0#(CP - 1.0)
E/V

EVEN + CDD
2.0

0.0

29 0O 31 I = 1, INT
300EVEN =

1+DDP)}

X = X
AREA =

EVEN + ({1.0 ~ X##DP)#xDC)#SGRT ((1.C -

+ H

(ENDS + 4.0#EVEN + 2.0%00D)*H/6.0

L{OME=+(2.C20P - 2.0)))

R = ABSF{AREA1/AREA - 1.0} - ACC

IF (R)
IF (IN
WRITE

FORMAT (25H J4(P,Gy»S)

CALL S
AREA1L

INT =

vV = 2.
G0 YO

FJ4 =

RETURN
END

43, 43, 35
T - 16384) 39,
OUTPUT TAPE 6,

YSERR

= AREA
2¢INT

o=y

25

AREA + EN

364 36
37
NOT CCNVERGENT)

Fl4
FJ&
FJa
FJ4
FJ4
FJ4
FJ&

Xes(OP)2x0Q + DFs(XsFJ4

FJ4
FJ4
FJa
Fi4
FJ4
FJ4
Fd4
FJ4
FJ4
FJ4
FJ4
FJ4
FJ4
FJ4
Fd4
FJ4
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$

FORTRAN IBM

$PUNCH OBJECT

36

SN

290EVEN = EVEN + (X##PP)e({1.0 — X#uP)uuG)/SUYRT ((1.C = X#upP)ealQ +
I FK2e{X#2PP))

30

FUNCTION FJ5(P+QsS»FK2y CTAI, ACC)
OME = 1.0 - ETA{

6G=5S5S-Q-1.0

CQ = 2.C#(1.0 - 0)

DEL = 1.0 ~ 1.0/P

TOEL = 2.0+DEL

FK = FK2

1IF {Q - 1.0) 64 5+ 35

FK = 1.0 + FK

FO = 1.0/SQRT (FK}

EPS = 1.0 —-OME=sp

TPS = 0.5#EPS

FL = {((1.0 = TPS)»«[EL)/SQRT (TPS##QQ + FK2#((1.0 -~ TPS)#«TPEL))
F2 = ((1.0 = EPS)I##DEL)/SQRT (EPS#=QQ + FK2#((1.C - EPS)#«TDEL))
A = 4,0#F1 - F2 - 3.0=FD

B = 2.0%F2 ~ 4.G#F1 + 2.0¢F0

Tl = 6 + 1.0

T2 = T1/(G + 2.0)

T3 = T1/(G + 3.0}

EN = (FO + T2=A + T3«p)#(EPS#sT1)/(T1#P)

b8 = 0.0

INT = 1

vV =1.0

EVEN = C.C

AREAl = 0.0

EE = C.0

IF (P - 1.0} 35, 2C, 21

EE = 1.0/SQRT (1.0 + FK2)

ENDS = SQRT ((1.0 — CME==P)#e(Q + FK2#{CMLeu(2.0eP - 2,0)))
PP = 2.0#(P - 1.0)

ENDS = (OME#a2PP)e{ (1.0 ~ OMC*#P)#sG)/FNDS + CE

H = OME/V

0DD = EVEN + COU

X = H/2.0

EVEN = C.0

£O 30 I = 1y INT

X =X + H

AREA = (CNDS + 4.0%EVEN + 2.0#0CC)#H/6.0
R = ABSF(AREAL/AREA - 1.0) - ACC

[F (R) 42, 42, 34

IF LINT - 16384) 38, 35, 35

WRITE OULTPUT TAPE 64 36

FORMAT (25H J6(P,09S) NCT CCNVERGENT)
CALL SYSERR

AREALl = AREA

INT = 2#[NT

V = 2.0%V

GC TO 24

FJS5 = AREA + [N

RETURN

END
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$

FOR

TRAN 1IBM

$SPUNCH OBJECT

FUNCTION FJ6(P,QyRy»SyFK2, ETAI, ACC) FJ6

1 7Q = 2.0%(1.0 - Q) FJé
2 TP = 2.C#{P =~ 1.0) FJé6
3 TR = 2.0#(R - 1.0) FJ6
4 G =S - Q- 1.0 FJé6
5 TD = 2.0#(1.0 - 1.0/°P) FJ6
EPS = 1.0- (1.-ETAl)espP FJ6

6 TPS = 0.5%EPS FJ6
7 TT = 2.C#R/P - 1.C - l.0/P FJo6
8 71 = G + 1.0 FJ6
9 T2 = TL/(G + 2.Q) FJ6
T3 = TL/(G + 3.0) FJo

FK = FK2 FJl6

IF {¢ - 1.0) 11, 10, 39 FJ6

10 FX = 1.0 + FK FJ6
11 FO = 1.0/SQRT (FK} FJ6
12 OMW = 1.0 - TPS FJ6
13 F1 = (OMWsa¥T)/SQRT (TPSe=TQ + FK2#{OMW#2TD)) FJé
14 OMW = 1.0 - EPS FJ6
15 F2 = (OMW#«TT)/SQRT (EPS##TQ + FK2#(UMW#=TD)) FJ6
OME = 1.0 - ETAIL FJ6

17 A = 4.0%F1 - F2 - 3.0#F0 FJ6
18 8 = 2.0%F2 - 4.0#F1 + 2.0=%FO0 FJ6
190EN = (ELOG (EPS)#{FC + T2#A + T3sR) - (FO + T2#T2sA + T3#T73#B)/T1)FJ6
1+ (EPS#*#T1)/(T1=pP) FJé6
20 0bD = 0.0 FJ6
21 INT =1 FJ6
22 VvV = 1.0 FJé6
23 EVEN = C.0 FJl6
24 AREAYl = 0.0 FJ6
25 CMW = 1.0 — OME##P FJ6
260ENDS ={(OMEs#TR)#(OMW##(G)/SQRT (OMW==TQ + FK2#{UME==TP) ) )#ELOG (OMFJI6
1w) FJ6
27 H = OME/V FJé6
28 CDD = EVEN + CDOD FJ6
29 X = H/2.0 FJé
30 EVEN = 0.0 FJ6
31 DO 34 I = 1, INT FJé6
32 OMW = 1.0 ~ X=«p FJ6
330EVEN = EVEN +{{X##TR)#(UMW##C)/SQRT (OMW**TQ + FK2#{X##»TP)))#ELCG FJ6
1(0OMW) £J6
34 X = X +# H FJ6
35 AREA = (ENDS + 4.O0#EVEN + 2.0#0D0D)#H/6.0 FJé
36 RR = ABSF{AREAL/AREA -~ 1.0} - ACC Fl6
37 IF (RR) 46,4 46, 38 FJ6
38 IF (INT - 16384) 42, 39, 39 FJ6
39 WRITE QUTPUT TAPE 6, 40 FJé
40 FORMAT {27H J6LIP,QyRyS) NOT CCNVERGENT) Flé
41 CALL SYSCRR FJé
42 AREAL = AREA FJ6
43 INT = 2#INT FJé
44 v = 2,0%V FJl6
45 G0 TG 27 FJ6
46 FJ6 = AREA + EN FJ6
47 RETURN FJo
END EJ6
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$ FORTRAN IBM
$PUNCH OBJECT

FUNCTION FJT(P,QsSsT,FK2,EPS, ETAI, ACC) FJ7

1 TQ = 2.0#+{1.0 - Q) FJ7
2 TP = 2.0%{P - 1.0) FJ7
36=S-Q - 2.0 FJ7
4 T1 =T + 1.0 FJ7
5 T2 = TI/{T + 2.0) FJ7
T3 = TI/{T + 3.0) FJ7

IF (P - 1.0) 53, 6, 17 FJ7

6 FO = 1.G6/SQRT (1.0 + FK2) FJ7
GO TO 8 FJ7

7 FO = 1.0 FJ7
8 TPS = 0.5%EPS FJ7
9 OMW = 1.0 — TPSexp FJ7
10 F1 = (OMW2#G)/SQRT (OMW##TQ + FK2#(TPS#=TP)) FJ7
11 OMW = 1.0 ~ EPSw#xP FJ7
12 F2 = {OMW#=G)/SQRT (OMW=2#TQ + FK2#{EPS*«TP)) FJ7
13 A = 4.0#F1 - F2 - 3.0#F0 FJ7
14 B = 2.0#F2 - 4.0sF1 + 2.0%FQC FJ7
15 TT = FO + T2+A + T30 FJ7
16 TU = FO + T2#T2«A + T3x#T3x8 FJ7
17 EN = (ELOG (EPS)#TT - TU/TL)#(EPS##T1)/T1 FJ7
OME = 1.0 ~ ETAI FJ7

19 T4 = 2.0#(1.0 - 1.0/P) FJ7
20 15 = T/P - 1.0 + 1.0/P FJ7
21 T1 = G + 2.0 FJ7
22 T2 = T1/(G + 3.0) FJ7
T3 = T1/{(G + 4.0) FJ7

FK = FK2 FJ7

IF {(Q - 1.0) 24, 23, 53 FJ7

23 FK = 1.0 + FK FJ7
24 FO = -1.0/SQRT (FK)} FJ7
E = 1.0- CME#e«pP FJ7
TPS = 0.5 ® E FJ7
CMW = 1.- TPS FJ7

27 F1 = (COMw##T5)/SQRT (TPS##TQ + FK2+#(OMwe=T4)) » ELOG(COMW) /TPS FJ7
28 OMW = 1.0 - E FJ47
F2 = (CMW»2T5)/SQRT ( E ##TQ + FK2#(0OMW#=2T4)) ® ELOG(OMW) /E FJ7

30 A = 4,0%F1 -~ F2 - 3.0+F0 FJ47
31 B = 2.0%#F2 - 4.0%F)1 + 2.0#FC FJ7
32 EN = EN + (FO + T2#A + T3#B)#( E =#=T71)/(T1lspPsp) FJ7
33 00D = 0.0 FJ7
34 INT = 1 FJ7
35 V = 1.0 FJ7
36 EVEN = Q.0 FJ7
37 AREALl = 0.0 FJ7
OMW = 1,0 - EPSewp FJ7

38 ENDS = (EPS#aT)#((OMW##G)#ELOG (EPS)/SQRT (OMWe#TQ + FK2#(EPS#eTP)})FJT
39 0 = 1.0 - OME=xsp FJ7
40 ENDS=ENDS+(OMC##T)#(On#G)#ELOG (OME)/SCRT (O##TQ+FK2+ (OME#=TP)) FJ47
41 H = (OME - EPS)/V FJ7
42 0ODD = EVEN + CDD FJ47
43 X = EPS + H/2.0 FJT7
44 EVEN = C.O FJ7
45 DO 48 I = 1, INT FJ7
46 0 = 1.0 - Xewup FJ7
47 EVEN = EVEN + (X##T)e(0O#eG)#ELOG (X)/SQRT (U»eTu + FK2»(X#=TP)) FJ7
48 X = X + H FJ7
49 AREA = (ENDS + 4.0%tEVEN + 2.0%0CD)=H/6.0 FJ7
50 R = ABSF(AREAL/AREA - 1.0) - ACC FJ7
51 IF {R} 60, 60, 52 FJ7
52 IF {INT - 16384) 56, %3, 53 FJ7
53 WRITE OQUTPUT TAPE &6, 54 FJ7
54 FORMAT (27H JT7(P,Q,SyT) NOT CONVERGENT) FJ7
55 CALL SYSERR FJ7
56 AREAl = AREA FJ7
ST INT = 2#[NTY FJ47
58 V = 2.0%V FJ7
59 GO TO 41 FJ7
60 FJT = AREA + EN FJ7
61 RETURN FJ7
END FJ7
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TABLE I ITERATION RESULTS FOR ?\=)\l, u= b/a=1, ao=l. S, ﬁo=l. 5

0
)
Step @ B Vo —2 L2 F F e OB
2wab™ 4mwab”pg o @ B
11,5000 1.5000 .53743 .43810 .5000 .29499  .24269 .0885 .0728
2 1.5885 1.5728 .56271 .44979  .5000 .27202 .22630 .0816 .0679
3 1.6701 1.6407 .58448 .46001  .5000 .25255 .21206 .0758 .0636
4 1.7459 1.7043 .60343 .46903  .5000 .26893  .22758  .2228 .1885
5 1.9686 1.8928 .65276 .49306  .5000 .83353  .72064 .2501 .2162
6 2.2187 2.1090 .69862 .52328  .5069 -.28840 -.28654 -.0865 -.0860
7 2.1322 2.,0231 ,68274 .51165 .5035 -.05475 -.08112 -.0164 -.0243
8 2.1189 11,9915 .67861 .50850  .5025 .01648 -.01889  .0049 -.0057
9 2.1288 11,9802 .67860 .50846  .5024 .01672 -.01885 .0050 -.0057
10 2.1389 1.9689 .67859 ,50841  .5024 .01689 -.01889  .0051 -.0057
11 2.1490 1.9575 .67859 .50837 .5023 .01705 -.01896  .0051 -.0057
12 2.1593 11,9461 .67858 .50832  .5023 .01721 -.01899  .0052 -.0057
13 2.1696 11,9347 .67856 .50827  .5022 .01756 -.01886  .0053 -.0057
14 2.1801 1,9233 .67856 .50823  .S022 .01758 -.01905 .0053 ~-.0057
15 2.1998 1.9107 .67935 .50875 .5023 .00421 -.03187  .0021 -.0159
16 2.2151 1,8891 .67884 .50830 .5021 .01305 -.02400 .0065 -.0120
17 2.2323 1.8690 .67865 .50807 .5020 .01655 ~-.02106 .0083 -.0105
18 2,2505 1.8494 .67857 .50793 .5019 .01806 -.01998  .0090 -.0100
19 2.2692 1.8299 .67853 .50783  .5017 .01883 -.01960 .0094 -.0098
20 2.2883 1.8105 .67851 .50774 .5016 .01927 ~-.01957 .0096 -.0098
21 2.3078 1.7911 .67849 .50764 .5015 .01971 -.01951 .0099 -.0098
22 2.3277 1.7716 .67847 .50754  .5014 .02008 -.01952 .0100 -.0098
23 2.3478 1.7521 .67846 .50745 .5013 .02044 -.01955 .0102 -.0098
24 2.3684 1.7326 .67844 .50735 .5012 .02080 ~-.01959 .0104 -.0098
25 2.3893 1.7130 .67843 .50725 .5011 .02116 -.01963  .0106 -.0098
26 2.4105 1.6933 .67842 .50715 .5010 .02153 -.01966  .0108 -.0098
27 2.4321 1.6737 .67840 .50704 .5008 .02189 -.01968  .0110 -.0098
28 2.4541 1.6540 .67838 .50693 .5007 .02227 ~-.01970 .011ll -.0099
29 2.4765 1.6343 .67837 .50681  ,5005 .02276 -.01955 .0114 -.0098
30 2.4992 1.6146 .67836 .50670 .5004 .02310 -.01967 .0116 -.0098
31  2.5224 1.5948 .67834 .50659 .5003 .02345 -.01974 .0117 -.0099

.
(o]




TABLE II ITERATION RESULTS FOR A=A |, u=u |, b/a=l,a _=2.0, B,=3.0

Step

O 00 N O W W N e

W NN N NN NN NN DN R e e ke b e b e e
O O o N O Ut W = O O 0N YU RNy = O

S T o S S S e R S T e i i = T ]

o

. 0000
. 7013
. 6031
. 5967
. 6003
.6028
. 6055
. 6108
L6162
.6270
.6381
. 6493
. 6607
.6723
. 6840
. 6960
. 7081
. 7204
. 7330
. 7457
. 7587
L7719
. 7853
. 7989
. 8128
. 8269
. 8412
. 8558
. 8708
. 8860

NN DN DN NN N NN DN N NN DN DN DN N DN DN DN DNDNDN NN DN NDNW

. 0000
. 8065
. 7435
. 7337
. 7296
. 7248
. 7201
. 7107
.7013
. 6824
. 6634
. 6443
L6251
.6058
. 5864
. 5668
. 5472
. 5275
. 5077
. 4877
. 4677
. 4475
. 4273
.4071
. 3866
. 3660
. 3453
. 3247
. 3038
.2828

W
v (po )

2nab2 4wab2pg
.73915 .55381
.69653 ,52338
.68018 .31171
.67866 .51062
.67881 .51071
.67879 .51069
.67879 .51068
.67879 .51066
.67879 . 51064
.67879 .51060
.67876 .51055
.67877 .51051
.67877 .51047
.67876 .51042
.67876 .51038
.67876 .51033
.67875 .51028
.67875 ,51023
.67875 .51018
.67874 .51012
.67874 .51007
.67874 .51001
.67873 .50996
.67873 .50990
.67872 . 50984
.67872  .50978
.67870 .50972
.67870 .50966
.67870 .50958
.67871 .50952

t

o)

(=)
b po

.5151
. 5075
. 5042
. 5040
.5039
. 5039
. 5039
. 5039
.5039
.5039
.5039
. 5039
. 5039
. 5039
. 5038
.5038
. 5038
.5038
. 5038
. 5037
. 5037
. 5037
. 5036
. 5036
. 5036
. 5035
. 5035
. 5035
. 5034
. 5034

. 99584
32702
.02135
.01177
. 00845
. 00887
. 00886
.00893
. 00900
. 00914
. 00955
. 00943
. 00958
.00973
. 00989
.01005
.01022
.01039
. 01056
. 01074
. 01093
.01112
.01131
. 01147
.01171
. 01192
. 01205
. 01251
. 01277
. 01280

. 64496
. 21005
. 03251
. 01391
. 01582
. 01562
. 01566
. 01570
. 01574
. 01582
. 01574
. 01598
. 01606
. 01615
. 01623
. 01632
. 01640
. 01649
. 01658
. 01667
.01676
. 01685
. 01694
. 01704
.01711
. 01721
. 01717
. 01728
. 01734
. 01758

.2988
. 0981
. 0064
. 0035
. 0025
. 0027
. 0027
. 0027
. 0027
. 0027
. 0029
. 0028
. 0029
. 0029
. 0030
. 0030
. 0031
. 0031
. 0032
. 0032
. 0033
. 0033
. 0034
. 0034
. 0035
. 0036
. 0036
. 0038
. 0038
. 0038

AB

. 19335
. 0630
. 0098
. 0042
. 00438
. 0047
. 0047
. 0047
. 0047
. 0047
. 0047
. 0048
. 0048
. 0048
. 0049
. 0049
. 0049
. 0050
. 0050
. 0050
. 0050
. 0051
. 0051
. 0081
~. 0051
. 0052
-, 0052
. 0052
. 0052
. 0053
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Step

O 00 N1 O Yo W N e

W N NN N N NN NN N - e ke e e e e s e e
O O 00 1 O U bk W N = O O 0NN U W = O

w

—
1S
8o

TABLE [II ITERATION RESULTS FOR A=A |, u=u, b/a=2,@ =1.5, g =1.5

T T T T L e T o e e o Y I R SR N I N i i

. 5000
. 5885
. 6701
. 7459
L9771
. 1944
. 1303
. 0792
. 0317
. 9872
. 9455
. 9063
. 8696
. 8012
. 7494
. 6956
. 6475
.6043
. 5656
. 5305
. 5065
. 4770
. 4502
. 4256
. 4032
. 3826
. 3636
. 3463
. 3302
. 3154
. 3017

W W W W W W W W W W W W W NN NN NN DN NN N NN - e e

. 5000
. 5728
. 6407
. 7043
. 9006
. 1126
. 1692
. 2325
. 2945
. 3549
. 4137
. 4709
. 5264
.6200
L7211
. 8159
. 9049
. 9883
. 0666
. 1400
. 1920
. 2577
.3195
L3773
.4316
. 4827
.5306
. 5757
.6182
.6582
. 6957

W

v (po)
21rab2 4wab2pg
.53743 .62673
. 56271 .63813
. 58448 64838
.60343 .65763
.65449 .68397
.69661 70714
. 69507 .70564
.69515 .70509
.69528 .70462
.69540 .70419
.69553 .70380
.69566 .70343
.69579 .70310
.69601 .70259
.69626 .70210
.69650 .70169
.69673 .70135
.69695 .70107
.69716 .70084
.69736 .70065
.69751 ,70053
.69769 . 70040
.69789 .70030
.69803 .70020
.69816 .70013
.69835 .70007
. 69849 . 70002
.69862 69999
.69875 69997
.69887 .69996
.69898 . 69995

: (%9)
[0}
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
., 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000
. 5000

. 29499

.27202

. 25255
26.8590
. 72402
~. 06577
-. 04389
-. 04058
-.03797
-. 03561
-. 03342
-. 03135
-. 02940
-. 02680
-. 02346
-. 02089
-. 01870
-.01680
-. 01515
-. 01370
-. 01273
-. 01159
-. 01091
-. 00966
-.00884
-. 00817
-. 00747
-. 00688
~. 00641
~. 00590
~. 00544

. 24269
. 22630
. 21206
22.7980
. 70662
. 03817
. 05289
. 05212
. 05084
. 04950
. 04814
. 04680
. 04543
. 04309
. 04044
. 03796
. 03561
. 03339
.03132
. 02938
. 02801
. 02628
. 02453
. 02317
.02178
. 02043
. 01923
. 01809
. 01702
.01601
. 01509

A

. 0885
.0816
. 0758
. 2312
L2172
. 0197
. 0132
. 0122
.0114
. 0107
.0100
. 0094
. 0088
.0161
.0141
. 0125
. 0112
. 0101
. 0091
. 0082
. 0076
. 0070
. 0065
. 0058
. 0053
.0049
. 0045
. 0041
. 0038
. 0035
.0033

AB

°6728
. 0679
. 0636
. 1963
.2120
.0115
. 0159
. 0156
. 0153
. 0149
. 0144
. 0140
.0136
. 0259
. 0243
. 0228
. 0214
. 0200
. 0188
. 0176
.0168
. 0158
. 0147
.0139
. 0131
. 0123
. 0115
. 0109
. 0102
. 0096
. 0091




TABLE 1V ITERATION RESULTS FOR )\;)\l, WEHR b/a=2, a'Of-Z.O, BO=3. 0

(o
W)
Step  « 8 LA 2 %(59) F F A AB
2mab 4mab”pg )
1 2.0000 3.0000 .73915 .72761 .5000 -.46258 -,21858 -.1388 -.0656
2 1.8612 2,9344 ,72206 .71693 .5000 -.31011 -,12583 -.0930 -.0378
3 1.7682 2,8967 .70998 .70953 .5000 -.18587 -,05414 -.0558 -.0162
4 1.7124 2.8804 ,70272 .70513 .5000 -.10019 -,00669 -.0301 -.0020
5 1.6824 2.8784 .69912 .70294 ,5000 -.05330 .01847 -.0160 .0055
6 1.6664 2.8840 .69761 ,70199 .5000 -.03224 .02937 -.0097 .0088
7  1.6567 2.8928 .69704 .70160 .5000 -.02379 .03344 -.0071 .0100
8 1.6496 2.9028 .69685 .70143 .5000 -.02050 .03476 -.0062 .0104
9  1.6434 2.9132 .69680 .70135 .5000 -.01915 .03506 -.0058 .0105
10 1.6377 2.9238 .69680 .70130 .5000 -.01851  .03498 -.0056 .0105
11 1.6161 2,9653 .69689 .70115 .5000 -.01735 .03398 -.0052 .0102
12 1.5957 3.0056 .69700 .70102 .5000 -.01646  .03292 -.0049 .0099
13 1.5763 3.0446 .69711 .70090 .5000 -.01563  .03188 -.0047 .0096
14 1.5579 3.0825 .69721 ,70080 .5000 -.01485 ,03088 -.0045 .0093
15 1.5361 3.1281 ,69733 .70068 .5000 -.01392  .02969 -.0084 .0178
16 1.5039 3.1977 .69752 .70052 .5000 -,01263 .02786 -.0076 .0167
17 1.4746 3.2630 .69770 .70039 .5000 -.01148 .02615 -.0069 0157
18 1.4480 3.3243 .69790 .70028 .5000 -,01048  ,02435 -.0063 .0147
19 1.4237 3.3818 .69804 .70019 .5000 -.00958 .02306 -,0058 .0138
20 1.4014 3.4359 .69820 .70012 .5000 -.00878 .02167 -,0053 .0130
21 1.3809 3.4867 .69840 .70007 .5000 -.00811i  .02033 -.0049 .0122
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TABLE V ITERATION RESULTS FOR >\=>x2, K=o, b/a=1

o)
WD
Step a B v 5 pg Et(_g) F F ya%e AB
2wab 4mab”pg Py @ B
1 3.0000 3.0000 .80611 .60146  .5238 -,05923 -.05224 -.1777 ~-.1567
22,8223 2.8433 .78954 .58952  .5219 -.06529 -.05730 -.1959 ~-.1719
3  2,6265 2.6714 76878 .57453  .5192 -.07086 -,06187 -.2126 ~-.1856
4 2.4139 2,4858 74268 .55566  .5153 -.07227 -.06293 -.2168 ~-.1888
5 02,1971 2.2970 .71143 .53294  .5097 -.05642 -.04991 -,1693 -.1497
6 2.,0278 2,1473 .68281 .51206 .5039 -.00851 -.01119 -.0255 -.0336
7 2,0023 2,1137 .67719 .50794 .5026 .00605 .00053 .0182 .0016
8 2,0205 2.1153 .67928 .50944 ,5030 .00046 -.00402 .0014 ~-.0121
1 2.5000 2.5000 .75000 .56092 .5164 -.07211 ~-.06410 -.0721 -.0641
2 2,4279 2.4359 ,74052 .55404 .5149 -.07125 -.06341 -.0713 ~-.0634
3 2,3566 2.3725 .73062 .54684 ,5132 -,06854 -.06117 -,0685 -.0612
4 2,2881 2.3113 ,72056 .53951 .5114 -,06330 -.05683 -.0633 -.0568
5 02,2248 2.2545 ,71074 .53233 .5095 ~-.05507 -.05002 -.0551 ~-.0500
6 2,1697 2.2045 ,70172 52577 .5077 -.04418 -.04101 -.0442 -,0410
7 2,1256 2.1635 ,69414 .52022  .5062 -.03206 -.03100 -.0321 -.0310
8 2,0935 2.1325 .,68835 .51599  .5049 -.02082 -.02172 -.0208 ~-.0217
9 2.0727 2,1108 .68437 .51307 .5041 -.01202 -.01445 -.0120 -.0145
10 2.0607 2.0963 .68188 .51123  .5035 ~-.00605 -.00952 -.0061 -.0095
11 2.0546 2.0868 .68041 .51015 .5032 -.00239 -.00650 -.0024 -.0065
1 4.0000 2.0000 .80000 .59625 .5212 ~-,04804 -.07411 -.0480 -.0741
2 3.9520 1.9259 ,79348 .59140 .5203 -.04939 -.07776 -.0494 -.0778
3 3.9026 1.848%F .,78631 .58605 .5192 -,05070 -.08166 -.0507 -.0817
4 3.8519 1.7665 .77837 .58011 .5178 -,05189 -.08576 -.0519 -.0858
S 3.8000 1.6807 .76958 .57350 .5163 -,05282 -.08990 -.0528 -.0899
6 3.7472 1.5908 .75982 .56610 .5144 -,05324 -.09376 -.0532 -.0938
7 3.6939 1.4971 .74898 .55782  .5122 -,05273 -.09669 -.0527 -.0967
8 3.6412 11,4004 .73704 54864 .5096 -,05063 -.09744 -.0506 -.0974
9 3.5906 11,3029 .72414 .53862  .5065 -,04591 -.09385 -.0459 -.0939
10 3.5447 1.2091 .71082 .52814  .5030 -~,03744 -.08295 ~-.0374 ~-.0830
11 3.5072 1.1261 .69826 .51874  .4994 -~ 00550 ~-.00138 -.0055 -.0014
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Step

b= [
O O 00 N O Nk W = O N 00N NN W N

0 N O R W N

NN NN NN - = -

NN NN NN NN N DN

N NN NN DN DN W

a

. 5000
. 6838
. 8959
. 1064
. 1731
. 2242
. 3259
. 3868
.4274
. 4380

. 5000
. 4709
. 4434
.4177
. 3937
.3715
. 3150
. 2728
. 2428
.2284

. 0000
. 9896
. 9805
. 9726
. 9603
. 9521
. 9473
. 9460

TABLE VI ITERATION RESULTS FOR 7\=}\3, U=y, b/a=1

NN NN DN NN = e e

N NN NN NN W

[ e e e

.5000
.6512
. 8296
. 0104
. 0586
. 0944
. 1606
. 1937
.2100
.2131

. 0000
. 9758
. 9528
.9311
. 9105
. 8912
. 8403
. 7992
. 7663
. 7482

. 0000
. 9810
. 9633
. 9468
. 9172
. 8916
. 8694
. 8594

WO

\ (po)

ZTrab2 4ﬂab2pg
.53743 .43810
. 58787 .46162

.63745 .48553
.67902 .50889
.68997 .51692
.69793 . 52274
.71246 .53335
.72019 , 53898
. 72473 .54228
. 72584 54306
J77759  .58111
. 77447 ,57887
. 77145 . 57670
. 76856 .57463
. 76581 57265
. 76320 . 57077
. 75626 . 56578
.75070 .56178
. 74642 . 55869
.74419 .55708
.75000 .56001
. 74796 . 55847
. 74606 .55707
. 74430 .55576
. 74123 .55346
.73869 ,55154
.73660 54997
.73570 .54930

t, o
E(B;)

. 5000
. 5000
. 5000
. 5026
. 5050
. 5067
. 5100
. 5110
.5118
. 5120

. 5206
. 5202
.5198
. 5194
.5190
. 5187
. o177
. 5168
. 5162
. 9158

.5151
. 5148
. 5144

.0141
.5135

. 5130
.5126

.5124

. 29499
. 24949
. 10529
. 03332
. 02556
. 02035
.01173
. 00761
. 00532
. 00479

. 01458
. 01373
. 01286
.01199
.01112
. 01025
. 00778
. 00562
. 00385
. 00288

. 00521
. 00455
. 00393
. 00334
. 00229
.00140
. 00066
.00034

. 24269
.20988
. 09039
. 02410
.01793
. 01376
. 00680
. 00342
. 00153
. 00109

.01210
.01149
.01088
. 01027
. 00966
. 00906
. 00736
. 00590
. 00471
. 00406

. 00949
. 00885
. 00825
. 00767
. 00663
. 00575
. 00500
. 00468

Ao

. 1838
L2121
. 2106
. 0667
.0511
. 0407
. 0235
. 0152
. 0107
. 0096

. 0292
. 0275
. 0257
. 0240
. 0222
. 0205
. 0156
.0112
. 0077
. 0058

. 0104
.0091
. 0079
. 0067
. 0046
. 0028
.0013
. 0007

AB

<1512
. 1784
. 1808
. 0482
. 0359
. 0275
.0136
. 0069
. 0031
. 0022

. 0242
. 0230
.0218
. 0205
.0193
. 0181
. 0147
.0118
. 0094
. 0081

. 0190
. 0177
. 0165
. 0153
. 0133
. 0115
. 0100
. 0094
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Elliptic regions represent respective maxima
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No

263

264

265

266

267

268

269

270

271

272

273

274

275

276

Recent T. & A. M. Reports

Title

"Evaluation of Bonding Characteristics of Deformed Wire, "
by Russell S. Jensen and Clyde E. Kesler.

"Geometrical and Inertial Properties of a Class of Thin Shells
of a General Type, " by Will J. Worley and Han-chung Wang.

"The Fatigue Toughness of Metals: A Data Compilation, " by
Gary R. Halford.

"On a Theory for Axisymmetric Elastic Shells of Moderate
Thickness, " by R. J. Nikolai and A. P. Boresi.

"The Stress Distribution in a Notched Semi-infinite Plate, "
by D. Shadman,

"Yield Behavior of Niobium Single Crystals, " by D. C. Huffaker,

"Euler Buckling of a Ring-Reinforced Cylindrical Shell Subjected
to External Pressure, " by H. L. Langhaar, A. P. Boresi and
C. C. Fretwell.

"Photoelastic Study of the Stresses Near Openings in Pressure
Vessels, " by N. C. Lind and C. E. Taylor.

"Theoretical and Experimental Investigation of the Tensile
Moduli of Parallel Filament Composites, " by John W. Melvin.

"Third Conference on Fundamental Research in Plain Concrete, "
by Clyde E. Kesler.

"The Effect of Temperature on Cycle Dependent Deformation, "
by Brian R. Gain,

"An Investigation Into the Effect of Environmental Treatments on
the Strength of E Glass Fibers, " by N. M. Cameron.

"Crack Extension in Fiberglass Reinforced Plastics and a Critical
Examination of the General Fracture Criterion, " by E. M. Wu
and R. C. Reuter, ]Jr,

"Applications of Lasers to Photoelasticity, " by C. E. Taylor,
C. E. Bowman, W. P. North, and W. F. Swinson.

Date

May, 1964

June, 1964

June, 1964

July, 1964

August, 1964

September, 1964

September, 1964

October, 1964

November, 1964

November, 1964

December, 1964

January, 1965

January, 1965

February, 1965






