NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

PROPOSED JOURNAL ARTICLE

OF THERMIONIC CONVERTER

by C. M. Goldstein N > XASA Lewis Research Center , Cleveland, Ohio N65-35255 FORM 602 (THRU) **GPO PRICE** CFSTI PRICE(S) \$ (CODE) 2 CATEGORY) Hard copy (HC) Microfiche (MF)_ ff 653 July 65 144488 Prepared for Journal of Applied Physics February 27, 1964 8 Mg 24 Submitted Publication 64-13

LIMITS ON COLLISIONLESS MODEL

OF THERMIONIC CONVERTER

by C. M. Goldstein

Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio

Current-voltage characteristics for gaseous thermionic diodes have been computed^{1,2} by using the Langmuir space charge theory modified to include both ions and electrons. The limiting potential distributions defining the model for electron-rich emission are shown in Fig. 1. The region between curves A and B is the space-charge-limited region of the current-voltage characteristic. The limiting monotonic potential distributions (and, hence, the model) exist only for a restricted range of the experimental parameters α and β , defined by

$$\alpha = \frac{N_{1}^{+}(o)}{N_{e}^{+}(o)}$$
(1)

$$\beta^{2} = 16 \left(\frac{\pi}{2kT}\right)^{3/2} m_{e}^{1/2} eJ_{eo} L^{2} (esu)$$

$$\beta^{2} = 8.43.10^{11} (T/^{0}K)^{-3/2} (J_{eo}/amp cm^{-2})(L/cm)^{2}$$
(2)

where $N_i^+(o)$ and $N_e^+(o)$ are the ion and electron emission charge densities, respectively, k is a constant, T is the emitter temperature, m_e is the electron mass, e is the electronic charge, J_{eo} is the electron emission current density, and L is the electrode separation distance. The ratio β/L is plotted in Fig. 2 against J_{eo} for three temperatures.

AT UNITED TO		

Hansen and Warner³ have discussed the limits on the range of α for which the potential distributions shown in Fig. 1 can be obtained. They presented the limiting values of α as a function of the dimensionless potential η_a , defined by

$$\eta_a = \frac{eV_a}{kT}$$

where V_a is the difference in surface potentials. The potential η_a , however, is not sufficient for a direct determination of experimental conditions. Hence, the range of α as a function of β was computed by the equation

$$\beta_{n} = \int_{0}^{\eta_{a}} \left[\mathbf{F}(\eta; \alpha) \right]^{-1/2} d\eta$$
 (3)

and plotted in Fig. 3 for the case of electron-rich emission $(\alpha \leq 1)$. The appropriate functions $F(\eta; \alpha)$ are to be found in ref. 1.

From Fig. 3, the range of the parameters $(\alpha,\beta)_A$ for which the potential distribution A, Fig. 1, may be obtained is given by

$$(\alpha,\beta)_{A} \leq (\alpha,\beta)_{A}^{*};$$
 (4)

likewise for potential distribution B, Fig. 1, we must have

$$(\alpha,\beta)_{B} \leq (\alpha,\beta)_{B}^{*}$$

Hence, the shaded area in Fig. 3, $\alpha \leq 1$, represents the range of the experimental parameters α and β for which the model defined by Fig. 1 is valid. It is to be noted that, for given collector temperature and electrode separation as $N_{1}^{+}(o)/N_{e}^{+}(o) \rightarrow 1$, the allowable electron current density becomes restricted to smaller values; e.g., for

$$\alpha = \frac{N_{1}^{+}(o)}{N_{e}^{+}(o)} = 0.7$$

3_

we see from Fig. 3 that we must have

 $\beta^{2} < 60$

From Eq. (1), or Fig. 2, with

$$T = 2000^{\circ} K$$

L = 10⁻³ cm² = 10µ

we have

 $J_{eo} < 64 \text{ amp cm}^{-2}$

The model for ion-rich emission² is shown in Fig. 4. The range, $(\hat{\alpha},\hat{\beta})$, of validity of this model can be obtained from the electron-rich results by defining

$$\hat{\alpha} = \alpha^{-1}$$

$$\hat{\beta}^2 = \frac{1}{\hat{\alpha}} \beta^2$$

$$(5)$$

These results follow from the symmetry of the equations (cf. ref. 4). The range of validity is shown in the cross hatched region of Fig. 3, $\alpha \ge 1$.

The regions of validity discussed in this note refer only to the models defined in Figs. 1 and 4. This does not preclude the possibility of spatially oscillatory potential distributions as predicted by McIntyre⁴ and others within or outside of these regions.

The author expresses his appreciation to Bruce Auer for performing the numerical calculations.

REFERENCES

- 1. C. M. Goldstein, J. Appl. Phys. to be published in Mar. 1964.
- C. M. Goldstein, Thermionic Conversion Conference Rept., Gatlinburg, Tennessee, Oct. 1963.
- 3. L. K. Hansen, and C. Warner, III, Atomics International Summary Report AI-7979, 1 Nov. 1961 to 31 Oct. 1962.
- 4. R. G. McIntyre, J. Appl. Phys., 33, 2485 (1962).

Fig. 1. - Limiting potential distributions for electron-rich emission.

٠

Fig. 4. - Limiting potential distributions for ion-rich emission.

NASA-CLEVELAND, OHIO E-2334

Fig. 1. - Limiting potential distributions for electron-rich emission.

¥.

Fig. 2. - Parameter 8.

10.00

Fig. 3. - Limiting values of α , β .

Fig. 4. - Limiting potential distributions for ion-rich emission.