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FOREWORD

The Voyager Design Study final report is divided into six volumes, for

convenience in handling. A brief description of the contents of each volume
is listed below.

Volume I-- Summary

A completely self-contained synopsis of the entire study.

Volume II -- Scientific Mission Analysis

Mission analysis, evolution of the Voyager program, and science payload.

Volume III-- Systems Analysis

Mission and system tradeoff studies; trajectory analysis; orbit and

landing site selection; reliability; sterilization

Volume IV -- Orbiter-Bus System Design

Engineering and design details of the orbiter-bus

Volume V -- L_nder System Design

Engineering and design details of the lander.

Volume VI -- Development Plan

Proposed development plan, schedules, costs, problem areas.

-iii-
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SUMMARY

This report presents the results of a 6-month conceptual design study

conducted by Avco Research and Advanced Development Division for the

National Aeronautics and Space Administration. The objectives of the study

were the synthesis of a conceptual design of an unmanned spacecraft to perform

scientific orbiter-lander missions to Mars and Venus during planetary

opportunities from 1969 to 1975, and the formulation of a plan delineating the

development program leading to first launch during the Mars 1969 opportunity.

The basic approach makes use of a 6000- to 7000-pound orbiter-lander;

tradeoff studies were conducted to determine the payload and mission capabilities

with smaller and larger spacecraft. The orbiter-lander was selected as yield-

ing the maximum in scientific value short of manned exploration. The lander

separates from the orbiter-bus and descends to the planet surface by parachute,

where it makes atmospheric and surface measurements and conducts a variety

of scientific experiments. The information obtained is relayed to Earth via

the orbiter-bus which meanwhile is placed in a planetocentric orbit. The

orbiter-bus collects scientific data in transit and maps the planet while in orbit.

The lifetime of both orbiter-bus and lander is 6 months for the Mars missions.

For Venus, the orbiter life is also 6 months, but the lander life is only l0 to

20 hours because of the hostile environment. A small capsule was designed

for Venus, in addition to the lander, to conduct atmospheric measurements

after entering from orbit; the capsule does not survive landing. Landers and

capsules would be sterilized to avoid contamination of the planets, but the

orbiter-bus would be placed on a trajectory which would ensure that it would

remain above the sensible atmosphere for at least 50 years; thus, no

sterilization would be required. The development plan shows that to obtain

the scientific value desired, two spacecraft should be scheduled for each launch

opportunity and hardware development should begin in 1964 to meet the 1969

launch date for Mars.
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1. DESIGN STUDY

1.1 Mission Goals

The orbiter-bus has been designed to achieve two primary mission goals:

(I) to gather scientific data about the surface and atmospheric characteristics

of Mars and Venus while in a bound orbit about these planets; and (2) to serve

as a bus to guide the lander to the neighborhood of the plenet and then as a

stable platform from which to release the lander towards the planet. The sec-

ondary mission goal of the orbiter-bus is to perform scientific measurements

in the interplanetary environment. A detailed discussion of the type of scienti-

fic data to be collected and the lander orientation accuracy requirements are

presented in volumes II, Scientific MissionAnalysis, and III, Systems Analysis.

1. Z Design Goals

The orbiter-bus design has been channeled so that the reference configur-

ation (the Mars orbiter-bus) can, with small modification_ accommodate the

following: (1) missions to Venus, for which the total radiation energy flux is

considerably greater due to both the closer proximity to the Sun and higher

albedo of this planets and to satisfy significantly different look-angle require-

ments than for a Mars mission; {Z) to satisfy the varying look-angle require-

ments for four launch opportunities towards Mars and four launch opportunities

towards Venus; (3) alterations in scientific instruments for two planets, and

although not considered for this conceptual study, changes in scientific instru-

ments from launch opportunity to launch opportunity: (4) to serve as both an

orbiter and a bus allowing maximum utilization of systems so that a proven ve-

hicle can be used over a broader spectrum of space missions; (5) two landers so

that a greater probability of achievement of lander mission goals dan be antici-

pated. In 1971, when the transfer trajectory energy requirements and planetary

approach energy are at their minimum for Mars, sufficient weight will be avail-

able to launch two landers and inject a vehicle into orbit about Mars. Also,

by 1975 the scientific measurement goals of the orbiter could be expected to be

satisfied and it would no longer be necessary to include an orbiter. In this case,

the orbiter-bus would serve only as a bus for the two landers.
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I. 3 Design Constraints

Achievement of the mission goals and design goals are limited by the mul-
tiple constraints placed on design. The constraints include allowable orbiter-bus
weight, allowable shroud envelope, booster launch environment, DSIF perfor-
mance, and the requirements of maintaining the planets in a sterile condition
relative to Earth contaminents.

The allowable orbiter-bus weight is dependentupon the results of a tradeoff
which considers: (1) the weight that the booster canplaceonaninterplanetary
trajectory; (2) the propulsion requirements for interplanetary trajectory cor-
rections andfor orbital injection; and (3) the weight allocated to the lander.

The shroud envelope sets the characteristic dimension of the spacecraft.
Orbiter-bus utilization of this envelopemust be satisfied in conjunction with the
requirements to mate the spacecraft to the booster transition section, and at-
tachment of the lander, which must be located so that it canbe released from
the orbiter-bus. The large dimension (approximately 20 feet) of the transition
section of the S-VI stagepermitted the use of fixed or nondeployable solar cell
panels with the attendant benefit of a structure which is removed from the central
structural elements of the spacecraft sothat it can serve as an external mount
for the gimballed, high-gain Earth antennas, and gimballed, planetary scientific
instrumentation package.

The static and dynamic loads experienced during launch determine the struc-
ture that the spacecraft must have so that the large systems, that is, the lander
the propulsion system, and solar panels will be supported. The launch loads
and the subsequentstress levels also influence the design and/or selection of
components.

DSIFperformance effects the design of the orbiter-bus in two ways; guidance
and communications. The tracking accuracies of the DSIFprescribe the pre-
cision to which the trajectory can be determined. With this information the mag-
nitude and direction of midcourse and terminal velocity corrections can be
established. It has beenfound that to achieve the required orbital injection ac-
curacies and lander impact accuracies, an on-board guidance system is required
to improve DSIF tracking capability near the target planet. The secondinfluence
of the DSIF is its performance as the ground communications link to receive data

transmitted from the orbiter-bus. The DSIF also provides for ground control of

the orbiter-bus through an on-board omni-antenna system in the event of failure

of the stabilization and control system to maintain the proper orientation.

Finally, the requirements of sterilization have been approached from the

viewpoint of using the guidance system to bias the trajectory so that the proba-

bility of not contaminating the planets is satisfied. The other course of action
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that could have been selected would have been to sterilize the orbiter-bus ac-

cording to the procedures that have been established for the lander and discussed

in volume III, Systems Analysis. It was felt _hat the attendant problems of de-

velopment of components to withstand heat sterilization and the expense of

sterile assembly should be avoided if the trajectory bias necessary, based on

the anticipated performance of guidance systems, would not restrict the mission

goals. This work is also reported upon in volume III, Systems Analysis. It

appears a guidance bias to satisfy sterilization requirements is a practical ap-
proach. This guidance restriction is reflected in selection of a 1, 700-kin

{_eriapsis, which incorporates Z00-km, 3-o guidance accuracy. Some of the
system calculations pro sented are based on 1500 km, the lower allowable limit of

the periapsis.

I. 4 Orbiter-Bus Design Configuration

The reference design - the Mars orbiter-bus with a single lander - and

modification to a Venus orbiter-bus are shown in figures 1 and Z. From these

figures it should be noted that:

1. The lander is located on top of the orbiter-bus so that the design will

accommodate two landers. It is not possible to mount two landers (of larger

dimension than the present 7-foot diameter) on the bottom due to interference

with the shroud envelope.

Z. The lander is located opposite the solar cells so as to allow for a more

uniform temperature distribution and to facilitate the use of a passive thermal-

control system. The only energy source for the temperature control of the

orbiter-bus is the sun, whereas the energy source for the lander could be the

energy dissipated from the radioisotope thermoelectric generator plus solar

energy, if the lander were on the same side as the solar cells, then the lander

would have both an internal energy source and an external energy source, and

so complicate the thermal control of the orbiter-bus.

3. A common structural junction of orbiter-bus, lander, and spacecraft

adapter is employed so that the lander loads do not pass through the orbiter-bus.

This design feature, plus mounting the lander on the top with respect to the

launch loads so that the orbiter-bus will experience tension loads during launch,

allows for a minimum-weight structural design of the orbiter-bus. This weight

saving in the orbiter-bus structure is magnified by the saving in propulsion for
orbital injection.

4. Solar panels are rigid, which removes the requirement of deployment

of solar cell panels, serves as a mounting structure for the scientific gimbal

and communication antennas, and allows full 360-degree choice of clock-angle

location to satisfy the varying look-angle requirements.
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i. 5 Characteristics of Orbiter-Bus Systems

A summary of the characteristics and performance of the orbiter-bus sys-

tems for the Mars and Venus designs are presented in table I.

1.6 Orbiter-Bus Weight Table

A summary (table 2) of the weight breakdowns of both the Mars and Venus

orbiter -bus follows :

1.7 Introductory Remarks

The sections that follow describe in detail the systems which, under the

design constraints, will satisfy the mission goals and the design goals. The

reference systems are presented and/or other systems that were discarded or

that could be considered if their continued development bears out the anticipated

performance claims.

Section Z, Scientific Payload, section 3, Communications, section 4,

Power Supply, can be considered a description of the payload of the orbiter-bus.

The object of the orbiter-bus in the narrower sense is to carry scientific instru-

ments to the planets and to perform measurements. In the larger sense, the

objectives are to return to Earth information about the planets.

Section 5, Guidance, describes the techniques for directing the orbiter-bus

along its interplanetary trajectory and guiding the orbiter-bus into a bound

orbit about Mars and Venus. Stabilization and Control, section 6, de-

scribes the system that will establish the spacecraft orientation and maintain

the vehicle's orientation to satisfy the communications, propulsion, power sup-

ply, and scientific payload systems. Section 7, Propulsion System, presents

the method of obtaining velocity increments to alter the trajectory and satisfy

the guidance systems and also the velocity decrement to inject the orbiter-bus

into a bound orbit. The preceding sections, plus section 8, Materials, section

9, Thermal Control, and section i0, Structure, are integrated into a vehicle

design in section 11, Design. In the design section are described the evolution

of the configuration and also the modifications that are necessary for the refer-

ence design (the single-lander Mars orbiter-bus) to achieve the many de-

sign goals.
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TABLE 1

CHARACTERISTICS AND PERFORMANCE OF ORBITER-BUS SYSTEM

System

Scientific Ins truments

Communication

Power Supply

Guidance

Stabilization and

Control

Mars Orbiter-Bus Venus Orbiter- Bus

Particle flux detector, ion chamber, cosmis dust de-

tector, micrometeoroid detector, hi-static, radar,

magnetometer, infrared radiometer, infrared spectro-
meter.

Optical mapping; two sets

of optics, 85-inch and

33-inch focal length.
Resolution: Z50 meters

continuous mapping and

40 meters discrete pic-
tures.

X-band, 8-foot parabolic

antenna, range resolution-

150 meters, surface reso-

lution - 1,500 meters.

X-band radiometer, 8-foot

parabolic antenna; K u -

band radiometer, Z-foot par-
abolic antenna; extended mi-

! crow_ve spectrometer.

In transit, 35-w, S-band,

4-foot parabolic antenna;

in orbit, 120-w, S-band,

8-foot parabolic antenna;

VHF command receive r,

helix antenna; S-band com-

mand receive r, omniantenna

Same except for 70-w
transmitter in orbit

system.

Solar cells, 18Z square

feet effective area;

nickel cadmium bat-

teries.

Solar cells, 68 square

feet effective area;

nickel cadmium bat-

teries.

DSIF plus optical-inertial using accelerometers,

planet tracker, horizon scanner, computer.

Sun-Canopus reference, nitrogen cold gas, limit

cycle +_0. 1 degrees, using Sun sensor, star tracker,

and gas bearing gyros.
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System

Propulsion

Thermal Control

Structure

TABLE 1 (Concl'd)

Mars Orbiter- Bus Venus Orbiter,- Bus

Hyperbolic propellant: mixed oxides of nitrogen-

oxidizer and mixture of monomethyhydrazene plus

hydrazene-fuel; 327 Isp; helium pressurant expulsion;

Z, 500 to i, 500-pound main thrust chamber; four 60 to

36-pound thrust chambers for vector control.

Passive system

Aluminum monocoque

TABLE Z

RIARS-VENUS WEIGHT BREAKDOWN

Mars Orbiter-Bus

Scientific Payload-

Particle flux detector

Ion chamber

Cosmic dust detector

Micrometeoroid detector

Bi-static radar

Magnetometer

Infrared radiometer

Infrared spectrometer
Extended microwave

spectrometer
Microwave radiometer

Radar electronics

X-band radar and radi-

ometric mapping antenna

Ku-band radiometric

Mapping antenna

Optical mapping

Total

Z. 5 pounds

1.3

Z. 5

8.0

8.0

5.0

3.0

Z9.0

76.0

135. 3 pounds

Communications

Multiplexing and encoding

Transmission and reception

Antennas

Cabling and plumbing

Total

76 pounds

133

54

Z0

Z83 pounds

Power Supply

Solar panel

Batteries

Power conditioning

Total

Z43 pounds

176

4Z

461 pounds
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Venus Orbiter-Bus

2.5 ponds

1.3

Z. 5

8.0

8.0

5.0

3.0

Z9.0

35.0

Z4. 0

3Z.0

30.0

180. 3 pounds

54 pounds

IZ7

51

Z0

Z5Z pounds

81 pounds

88'

Z5

194 pounds



TABLE Z {Concl'd)

Guidance

Auxiliary star tracker

Planet tracker

Planet horizon scanner

Accelerometer and

electronics

Digital computer,

Input/output and power

supply

Total

Stabilization and Control

Sensors

Electronics

Reaction system_

Total

Propulsion

Burnout weight_#

Structures@@_

Grand Total

Mars Orbiter- Bus

9 pounds

35

IZ

49

111 pounds

9 pounds

13

53

75 pounds

460 pounds

3Z4 pounds

1,849 pounds

Venus Orbiter-Bus

9 pounds

35

IZ

6

49

Iii pounds

9 pounds

13

53

75 pounds

460 pounds

3Z4 pounds

1,596 pounds

The cold-gas requirement for Venus will in gen.eral be lower than for

Mars because of the shorter flight times.

Tankage can contain up to 3,400 pounds of propellant.

The structural weight is increased by 50 percent to allow for fittings,

bracketry, and so forth.
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2. SCIENTIFIC PAYLOAD

2. 1 Interplanetary Measurements

The Mars and Venus orbiter-bus has been designed to incorporate scientific

instruments that would allow for the measurements of phenomena in interplane-

tary space. The objectives of these measurements are to obtain fundamental

scientific data, and also to monitor the external influences acting on the space-

craft so that its performance can be evaluated. The instruments to accomplish

these goals are representative of the minimum measurements that would be

required. These include:

Instrument _-" Weight (pounds)

Particle flux detector 2.5

Ion chamber 1.3

Cosmic dust detector 2.5

Micrometeoroid detector 8.0

Bistatic radar 8.0

Magnetomete r 5.0

from_the prescribed list of instruments furnished by NASA.

The particle flux detector and ion chamber will monitor the high-energy
particles in interplanetary space. Both the cosmic dust and micrometeoroid

detectors will measure the distribution of particles in space. The bistatic

radar experiment is designed to measure the electron density in interplanetary

space by the technique of measuring the attenuation of an electromagnetic sig-

nal sent from Earth. Investigation of interplanetary magnetic fields will be

performed by the magnetometer.

2. 2 Planetary Measurements

Scientific instruments that are used in planetary orbit that are common to
both the Mars and Venus orbiter-bus include some of the same instruments

used during the interplanetary transit; these are the micrometeoroid detector,

magnetometer, and bistatic radar, which in this application is used to measure

the attenuation characteristics of the planetary atmosphere. An infrared radiom-

eter (3 pounds) will be used to map the surface of Mars and map the clouds of

Venus. The infrared spectrometer (29 pounds) will be used to determine the
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constituents in the atmospheres of Mars and Venus.

The optical mapping system (76pounds)will be used exclusively for the
Mars orbiter-bus; the microwave mapping, active radar mapping, and an ex-
tendedmicrowave spectrometer will be used exclusively for the Venus orbiter-
bus. The Venus mapping system weighs 86pounds, of which 24pounds is the
microwave radiometer, 32 pounds is the radar electronics, and 30 pounds is
the antennasystem. Both of these systems dominate the design and selection
of the data-handling, communications, and power-supply subsystems, and will
be expandeduponin the following sections. All of the scientific instruments
for planetary measurements except the radar electronics, mapping antennas,
and optical mapping system have been drawn from the prescribed list of instru-
ments furnished by NASA.

2.3 Mass Orbiter Optical Mapping System

1. Technical approach.

a. General system considerations.

1) Orbit selection. During the system-analysis phase of the

study, considerable attention was paid to the task of orbit selection. The weight

penalties associated with achieving near circular orbits made it desirable to

select a quite eccentric orbit for the mapping task. Originally, it was decided

to map only in the region near periapsis and consequently demands were placed

on the orbit geometry. This problem is discussed in some detail in the system

analysis volume. In essence, there exists an adverse interaction between the

length of time in sun light and the orbit inclination. It is extremely desirable

to obtain a near polar orbit to maximize the probability of mapping at all planet

latitudes. Orbit precession for near 90 degrees inclination is very rapid mak-

ing the time that periapsis is in a sunlit region quite small. Rather than accept

an orbit, the inclination of which precluded the possibility of polar mapping, it

was decided to design a mapping system with reasonable capability at all alti-

tudes. The orbit selected for mapping system synthesis has an inclination of

90 degrees, a periapsis of 1500 km, and apoapsis of 10,000 kin.

2) Limitations of orbital mapping. "Mapping" is a very broad

term, with many meanings, from the crudest charting by dimensional vectors

to sophisticated projections with contour lines fully descriptive of variations in

height or depth. The considerable altitudes of our orbit, the power limitations

upon communications, and the absence of any ground control from the planet

itself, combine to limit us to the production of what is called an uncontrolled

mosaic. Because of the considerable altitudes, vertical sighting yields sub-
stantially true planimetric projection.
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An optical system can form a plane image, on board the orbiter, of any

portion of the planet surface toward which it is directed. It can be made to

bring to a common focus all the luminous radiations, visible and invisible,

which leave the planet and are not absorbed, or otherwise modified, by the

planet's atmosphere, or such atmospheric effects as clouds, dusts, and par-

ticles. But a plane image on board the orbiter is in itself useful to us only as a

potential source of information upon which we may hope to draw. The image,

as far as it goes, represents a sort of perfection. But we cannot by any means

whatever preserve for our use on Earth the full content of the optical observa-

tion. If it were possible to make photographic records and recover them, we

could do very well; and the limitations on data gathering imposed, for example,

by the size of the silver grains, or the imperfect panchromatism of the emul-

sion, or the differential wavelength absorption by the gelatine, would be easy

to put up with. If we could process photographs on board and transmit their

content by the highly developed techniques of facsimile communication, we

could do very well with the results, especially if the scale of our photographs

were large. But considerations of weight and power exclude any such approach,

and we are forced to limit the size of our optical image to little more than a

square inch and to dissect it, for transmission, into a very limited number of

rather coarse elementary units about any one of which we can say no more

than that it is on the whole most fairly represented by some one of a limited

number of grays.

2) Selected mode of operation. Ability to record views of the

planet from any point in the orbit has been considered a basic requirement, and

it is considered desirable for eventual compilation to make all views cover the

same field area, with constant resolution and as nearly as possible uniform

quality. Since the altitude varies from 1500 km to 10,000 km, the most con-

venient way to maintain an equal field of view with a constant raster would be

to have an optical system of continuously variable focal length covering a range

from minimum to maximum in the ratio of 1500/10,000 = 3/20, and maintain-

ing the size of the image of a constant area unchanged with changing altitude.

This could be achieved with a "Zoom" lens system; but the necessary mechan-

ical motions would be troublesome to maintain reliably in space, and the prob-

lem of achromatization over the whole wavelength range of the S-20 photocathode

is so severe that Avco RAD considers it unwise to use any refractive system.

The degree of "Zoom" required is too great to be achieved electronically by

operations upon the electron-optics of any standard image tube.

Therefore, instead of a single camera system with continuous variation of

focal length and a constant-raster, Avco RAD proposes to provide two complete

camera systems, with two different fixed focal lengths: one to be used for

mapping at the lower altitudes and the other for mapping at the higher altitudes.

Each system is to have a raster which is variable with altitude over a range of

_I0, 2_ 20 _ 2. 5820; and the focal lengths of the two systems are to

000

i, 500 =

differ in this same ratio.
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Between the two points at which the altitude has the value of the geometric

mean between periapsis and apoapsis, there are on one side a region of lower

altitudes, with a minimum at periapsis and, on the other side, a region of

higher altitudes with a maximum at apoapsis. These regions are dealt with,

for mapping purposes, by the shorter and longer focus systems respectively.

The geometric mean altitude, hM , is reached a short distance beyond the latus

rectum of the orbital ellipse, in the direction of the apoapsis.

The use of two independent cameras has the advantage that if for any reason

one of them should fail, the other can at once take over and operate throughout

the orbit, instead of only through its normal part. This is a useful measure of
insurance.

4) System weights. The weights of the two camera systems will

be, as now envisaged, substantially equal. The quartz elements for each will

weigh about 12. 3 pounds. The image orthicon, deflection, focus, and alignment
coils will weigh about 10.5 pounds (with aluminum-wound focus coil): and the

electronics are estimated at 15 pounds per camera. The two systems together

will weigh 2 (12.3 + 10.5 + 15) = 75.6 pounds.

b. Resolution and determination of focal length.

1) Strip mapping. The degree of resolution which can be achieved

is by no means an independent variable. Compilation or bridging of the final

mosaic is strongly dependent from the swath width. The problem is not pri-

marily optical. The basic limitation is the image tube. A picture of good qual-

ity can be made up of 233 x 233 elements regardless of the size of the planet

area to which each element corresponds. If this unit area is 37.5 meters on

each side, the view will cover a field 8.74 km, or 5.4 miles square. This would
warrant mapping at a scale of 1/750,000, which is quite good; but at that scale,

one such view would occupy only 0.21 inch z. With minimum side lap, at least

3600 passes (perfectly arranged) would be needed to fill in an equatorial zone,

and they would take over 42 months of orbiting, at the lowest estimate. In the

absence of any ground control, very serious difficulty would be expected in

matching up such small areas into a mosaic except when well-marked features
are present.

It is clear that resolution for mapping purposes cannot be pushed too far.

A reasonably large area must be covered by each view, and the resolution is

then fixed by the properties of the image tube. In six months of orbiting, we

expect to make about 520 passes. If we take 21,000 km as the circumference

of Mars, add one-third for side lap, and divide by 520, we get 53 km as a width

of swath which would be appropriate. If we consider 233 lines (at any line

density) as the limit of image-tube performance, we arrive at a resolution unit

of about 53/233 or 0.23 kin. For safety and convenience, we fix on 0. Z5 km as

a good working value for our resolution.
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The reason for choosing 233 lines to make up the image is perhaps not

immediately clear, since 233 lines per target inch is by no means the limit of

the usefulness of a good image orthicon. As will be made plain below, we have

to increase the number of lines per target inch, the line density, over a range

of 2. 582 to 1. If our lowest line density is 233, the one-inch square target

image will be 233 lines high. If our highest line density is 2. 582 x 233 _- 600

233

lines per target inch our image is only _ = 0. 388 inch high and we are, in

fact, nearing the limit of what can be asked of an image orthicon operating under

automatic controls.

It remains to determine what the focal lengths shall be. The constant field

to be 233 by 0.25 km square. At h M = 1500 x _ km = 3873 km,
of view is

9 1

the image at the photocathode should be _ x 233 x 6-_ inches square. (The

9
image at the photocathode of an image orthicon is 7 larger each way than the

target image. )

-_ 9 233 1F 1 = 1500 x- x _ × = 33.20
7 600 233 x 0.25

F 2 = F 1 = 85.71

9 x 233

7x 600

1 PHOTOCATHODE I

1500x'_

233

4

63-9321

Determination of Focal Length

-15-



In general terms, F 1 =

X

photocathode dia.
_/_A hp x

target dia.

lines per scan
X

max. line

lines per scan x width of resolution unit

photocathode dia
_/'hA " hp x x

target dia. max. line density

x width of

resolution unit

photocathode dia. 1
and F 2 = hA x x

target dia. max. line density x width of
resolution unit

2) High-Resolution Operation. The term "edge" is used to identify

a change in luminance of one resolution unit relative to the resolution unit last

observed. In digitalizing the output from the scanning operation, a 6-bit word

is recorded to describe the relative lightness or darkness of each of 2332 units,

and whenever there is a change in the descriptive word, it implies the presence of

what is called an "edge. " Advantage is taken of these easily counted changes

to distinguish scenes with a high expectancy of significance from scenes with

a high expectancy of monotony.

Whenever the orbiter is in the region of lower altitudes, and the mapping

views are being taken by the shorter-focus camera system, an edge detector

counts the number of edges in each frame. Whenever this number exceeds by

any considerable amount the normal expectancy, it is to be taken as an indication

that the view then in sight contains an amount of detail which may justify making

a high-resolution record of it with the longer-focus camera. This operation

"-will normally be limited to moderately low altitudes {never greater than hM), and

will, of course, be predicated on the availability of bits for the extra communica-

tion involved, as shown by a continuous calculation. If views with exceptionally

high edge counts are not numerous enough to use up all the bits available, in

any orbit, for these discrete high-resolution views, shots will be made at

random in the neighborhood of the lowest altitude from which an illuminated

area on the planet is visible. It is clear that when the planet-surface is visible

only from altitude greater than hM = 3873 km, the longer-focus camera will be

in use for mapping, and no separate views of higher resolution can be obtained.

The change-over at mean altitude to or from the long-focus system will be

so arranged that the shorter-focus system is never used at altitudes higher

than hM. As the altitude increases and passes the value of hM, the longer-focus

system takes over. As the altitude decreases and reaches hM, the shorter-

focus system takes over.
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In the event of an F malflmction in either system whicl_ makes it output

unreliable, that system will be completely deactivated and the other system
will begin continuous operation.

When the 85. 71 inch system is used foI single shots, a 600-line raster
fills the target and the resolution is 9, the ratio of photocathode diameter to

target diameter, times h/F (lines pe_ target height), or 9h/7 x 85. 71 x 600 =

2. 5 x i0 -5. At bp this amounts to 37. 5 meter resolution over a 22. 5 km-square/

and at hM to 96. 8 - meter resolution over a 58 kin-square field. These values

represent useful additions to the 250-meter resolution, 58 km-square field, which

is standard for mapping. The 600-line raster at hM gives a higher resolution

than the 233 line mapping raster but probably somewhat inferior picture quality.

Each discrete view, with 600 x 600 elements, requires about 6.6 times as

many bits for transmission as a 233 x 233-element mapping picture. It is

expected that 4. 5 kilobits per second will be available for 75 percent of each

orbiting period, or about 89. 1 megabits in all. Mapping pictures are to be

taken at approximately 4/5 x 233 / 1/4= 46.6 km intervals, to provide about

20 percent forward lap, so in the 10,500 km half-circumference of Mars we

may take as many as 225 mapping pictures. These will require 225 x 2332 x

6 = 73. 32 megabits, leaving a balance of about 15.68 megabits. Since one high-
resolution view requires 6 x 6002 bits, or 2. 16 megabits, there will always be

enough bits to transmit at least seven of these discrete views in addition to

routine mapping.

The bit balance may be somewhat greater than this. The cameras are con-

tinuously exposing and scanning, at fixed time intervals. Views may be read

into the tape recorder from an exposure made at the beginning of any of these

time intervals. The length of the interval is to be 2. 2 seconds, sufficient to

make an exposure and then to read out the 233 x 233 = 54, 289 picture elements

at a rate of 25,000 elements per second.

One discrete, high-resolution picture is valuable, and it may be felt that a

series of abutting or overlappin_ high-resolution pictures from the lowest

possible altitude would probably be more valuable still. At 1500 km altitude,

the 85.7I-inch focal length system covers a field 22.5 km-square. For an abutting

field, the travel should be 22.5 km, which, at 2. 5 km per second, would take

only 9.0 seconds. To clear the target of 6002 picture elements in 9.0 seconds,

we should have to read out at the rate of 40,000 picture elements per second

instead of 25, 000 as planned. This means an increase from 6 x 25,000 = 150,000

bits per second to 6 x 40,000 = 240,000 bits per second into the recorder, and

to obtain any overlap this increase would have to be greater still. This may

prove to be feasible. If provision were made for reading out 50,000 picture

elements instead of 25,000, the exposure cycle interval could be reduced from

2. 2 to 1. 1 seconds, with some advantage in the way of more uniform forward
lap.
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During the intervals between recorded exposures, the cyclic operation of

the cameras allows continuous monitoring of the control voltages and up-dating

of exposure-duration. When it is found that the exposure must be so long that

that blurring of the image will become serious, the series of exposures will be

discontinued until a region of sufficient illumination again comes into view.

The criterion for tolerable blurring may be defined as some distance in terms

of the resolution unit, (perhaps ten percent) and the maximum permissible

exposure duration may be taken as the time during which the system will move

through the tolerable distance. This time will, of course, be an elliptic func-

tion of the altitude, but may be computed with sufficient exactness on the basis

of the data available.

The moment at which an exposure should ideally be recorded is determined

as that at which the time integral of the suborbital velocity since the last re-

corded exposure reaches a preset value corresponding to suborbital travel of

46.6 krn. The moment at which the exposure will in fact be recorded is the

first beginning of a 2. 2-second interval which occurs after the preset value of

the integral is reached. This could result in a retardation of any exposure by

any amount up to 2. 2 seconds. This can never correspond to more than 5.5

km of travel, or to a reduction of forward lap to i0.6 percent, which is toler-

able. This reduction in overlap, often repeated, may very well increase

appreciably the number of bits available for extra high-resolution views. A

running account of the balance between bits used and reserved bits which can

be called for will prevent the waste of any potentially useful bits except when

the sunlit portion of the planet lies entirely on the apoapsis side of the geo-

metric mean altitudes.

3) Performance Characteristics.

a) The area on the planet represented by the scanned image

from either camera is constant and consists of 233 x 233 resolution units, each

1/4 x 1/4 kin. The area per view is therefore 58. 25 x 58.25 kin-square = 3393

kin-square=54, 289 x (1/16 kin-square).

b) The resolution unit of 1/4 x 1/4= 1/16 km 2 is "resolved"

in the sense that it corresponds to one of 54, 289 areas on the image-tube target

the charge upon which is assessed individually during read-out.

c) Calculations are based on the assumption of a 1500 x

10,000 km orbit, but can quite readily be scaled to any other.

d) Forward lap of one recorded view over the preceding will

lie between 20 and 10 percent; i.e., the travel between successive recorded

views will be between 46.6 and 52.4 km as measured on the suborbital track.
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e) The raster of the shorter-focus camera is to vary from

a line density of 233 to one of 600 lines per target inch between hp _!504 and

hM= 3873 kin, according to D I= 0. 155 (h) (strictly 0. 15492 (h)) l{nes per target

inch. After h = 3873 km, the longer-focus camera takes over, and the line

density of the shorter-focus system remains at 600 lines per target inch until

h begins to decrease.

f) The raster of the longer-focus camera is to vary from a

line density of 233 to one of 600 lines per target inch between hM_-3883 and

h A= 10,000 km according to D2= 0.060 (h) lines per target inch. Whenever

the shorter-focus camera is in use (i. e. , whenever the altitude is less than

3883 krn), the line density of the longer-focus camera is to remain constant at

600 lines per target inch in readiness for single, high-resolution exposures.

g) In normal mapping use, the image to be scanned and re-

corded will always consist of a square 233 lines high. But since the line den-

sity varies with altitude the image on the target will vary in height inversely

with altitude.

h) The image formed at the target by the shorter-focus (F1)

system at hM = 3873 will be 233/D l = 233/3873 x I. 5492 = 0. 3883 inch square.

The image formed by the longer-focus (F2) system at h = 3883 will be 233/D 2 =

233/3883 x 0. 06 = I. 000 inch square.

i) Since these two images represent the same area, d2 ,

d = 3873 x 0. 3883/ F 1 = 3883/F 2. Therefore, F2/F l = 3883/3873 x 0. 3883 =

hM hA 2_
2.582= hp - _M -

j) The image at the photocathode, as formed by the optical

system, is 9/7 larger (measured diagonally) than the target image, so

9 3873

33.20 inches ; F2 = F1_4 = 85.71F1 = "7 × 600×0.25
inches.

k) The luminance of the Martian surface, assuming a mean

distance from the sun of 1. 524 AU and an albedo of 0. 15, is estimated at

B_ = 872 cos_ millilamberts, or 810 cos _ foot lamberts, for values of 0 < _ < 90%

where _ is the phase angle, i. e., the sun-planet orbiter angle.

1) The maximum photocathode illumination using an F/5

system with reflection losses of 19 percent is expected to be about 6 foot

candles.
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m) With maximum exposure times of I0 milliseconds

(corresponding to a movement during exposure of 25 meters at maximum velo-

city; that is, ten percent of a resolution unit), it is expected that useful data

can be gathered even when cos 0 is of the order of i0-6 This should make it

possible to make mapping pictures over very nearly half the planet circumfer-

ence at each pass.

n) The selection of viewing positions, to provide I0 to Z0

percent overlapping of each picture by the next, is controlled by a computation

of suborbital velocity. Exposure-duration is continuously computed in the

intervals between recorded views.

o) View data are recorded on tape for transmission at any

desired rate or time. (All data recorded will be transmitted within one orbital

period from the moment of recording.) Each of 2332 picture elements is repre-

sented in the record by a six-bit word, but by the use of Roberts' modulation,

using pseudo-random noise, quality equivalent to eight bit-per-element PCM

is achieved.

p) On the low-altitude side of the geometric-mean altitude,

h M, the 33. Z0-inch system does the mapping and the 85.71-inch system remains

in readiness with a 600 line raster of 600 lines per target inch. An edge-count

comparator observes the edge content of the field at 2. Z-second intervals, or

less. Any abnormally high count raises the presumption that the region in

sight is worth examining closely, so the 85.71-inch system operatesinthehigh-

resolution mode to produce a picture of an area 0.015 h square with a resolu-

tion of g. 5h x 10 -5. At periapsis, when hp = 1500 km, this means an area

22.5 km square and resolution of 37.5 meters. At h M= 3873 km, the area is

58 km-square and the resolution about 97 meters.

q) Pointing accuracy (3-_) of the camera-mount axis will be

0.5 degree, total excursion. In general, attitude control will limit the rates

of rotation (pitch and roll) to l0 microradians per second, and the limit-cycle

magnitude to 6 minutes of arc in all.

No provision is made for the control of "yaw, " the rotation of the orbiter

about any axis approaching a radius vector from Mars. It is not expected that

this motion will be of any great amplitude, but in any case its effect upon

vertical viewing will be limited to a displacement of the image relative to the

orbital plane. Since the amount of the rotation will always be known, and

communicated at the time of each live exposure, any displacement of the frame

outlines with respect to the suborbital track will be calculable by the compilers

of the mapping data.

r) The scale used for maps based on these views can properly

be fixed by representing the linear resolution unit by a measure comparable
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with the smallest lineardimension readily appreciated, at reading distance, by

the normal eye. If this is taken to be 50 microns, the map scale becomes 50

microns/0. 25 kin, or I/5,000,000. A Martian globe to this scale would meas-

ure about 52-I/2 inches in diameter. A terrestrial globe to this scale would

measure about 101 inches in diameter.

c. Photogrammetric Considerations.

I) Stereometric measurements. Vertical viewing from high altitudes

is almost perfectly equivalent to planimetric projection. It makes the distance

to the object the shortest possible and gives maximum magnification, and therefore

provides for the best possible resolution of planimetric features. It reduces

displacement effects due to relief to a minimum; but unfortunately it also yields

a very minimum of information about relief.

2) Oblique viewing is almost universally employed for mapping large areas

of Earth by aerial photography: but the case is entirely different:

Earth Mars

a. The images are formed on photo-

graphic film with high resolution.

b. The altitude from which the photo-

graphs are made is maintained quite

constant.

c. The altitudes used for mapping

flights on Earth are generally 40,000

feet or less.

a. For the mapping of Mars we have

to use TV techniques, with no more

than a few hundred lines of resolution.

A 9-inch square photographic film

capable of resolving 40-50 lines per

mm can yield easily 108 picture ele-

ments, whereas 106 is considerably

more than can be realized by automatic

TV in space as the art stands today.

b. The altitudes from Mars in the

elliptical orbit under consideration

vary by a factor of 20/3.

c. The loWest altitude from Mars is

expected to be 1500 km or about 5

million feet: more than a hundred

times the usual altitudes for mapping

Earth. And the maximum altitude is

more than six times as great as the

lowest.
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The total disparity of the Mars-mapping problem from aerial mapping of

Earth is emphasized here because it is dangerously tempting to think that

techniques useful above Earth can necessarily be adapted for use above Mars.

In particular the techniques used above Earth for stereometric measurements

are so highly developed, so brilliantly successful, and so extremely desirable

that it is with the greatest reluctance that one faces the conclusion that they are

almost universally inapplicable on Mars.

For example "Trimetrogon" camera, largely used for large-scale terres-

trial mapping, has a field of 74 °, or 1. 292 radians. From apoapsis, the entire

disk of Mars subtends an angle of 0. 666 radians, and so would fill only a small

part of the Trimetrogon field of view.

It is of some interest to consider under what conditions useful topography

might be achieved. If the base, the distance between the positions of the orbiter

from which the paired views are to be taken, is equal to the altitude of the

, ." r . (_q__ B (0+A0) B
orbiter (1. e., B/H -- 1) then tan \_/ = -_ = 0. 5000 tan 2 - 2(H - Ah) '

and for minimum discernible Ah, A0 -- 0. 00014 radian.

(02AO) 0.,0007 Htan _ = 0.999963 = 2(H-Ah)

0.000175

Ahmin = 1.0001------_" " H

If H = 1500 kin, Ahmi n = 262 meters.

Figure 3 gives the base/height ratio required for significant stereo effect.

el2

Figure 3 BASE/HEIGHT RATIO REQUIRED FOR SIGNIFICANT STEREO EFFECT
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It should be possible, by the above calculation, to distinguish the increment,

Ah = 262 meters#of relief or object height, even from an altitude of 1500 km,

provided the base is equal to the altitude. The angle 2(0--_is about 53 degrees
0.262 /8\ \L/

in this
case; and if Ah= 150----_" HA_-_-) _- 14.4 seconds, so A8-_30 seconds,

the usually accepted minimum discernible value of stereo angular parallax.

I
(C. M. Aschenbrenner's formula for Ahmin = 2.5OMR where R is the resolving

power in lines per millimeter, @ B/H, and M F/H 85 in. 1

12 in. 5xl06ft

I.4x106. Substituting AH= Z62 meters = 860 feet and B/H = I, we obtain R = 33.

This value of R, the required resolving power, would not be much too high for a

600-1ine raster with a one-inch target. ) But so long a base as 1500 km is

difficult to obtain reliably, and to maintain B = H symmetrically about apoapsis,

at 10, 000 krn, is not a practical possibility.

If we could point our long-focus camera about 26-I/2 degrees ahead and

take a picture, and then point the camera 26-1/2 degrees astern; and then after

10 minutes, or longer, take another picture when the same planet area came

in view, we should probably be able to distinguish planes separated by about a

quarter of a kilometer: or if not a quarter, then a half. It is not every 10- or

Z0-mile square of territory that exhibits a change of altitude of even 250 meters,

820 feet; but we might find some such in the right places to have their

pictures taken. But the difficulty of calculating the exact timing of the second

shot of a stereo pair (and it must be very exact, or there will be no overlap)

with the added difficulties caused by inevitable small changes in attitude and

pointing, means paying a prodigious price for a highly improbable advantage.

The conclusion that stereo techniques cannot be employed usefully from the
very high altitudes of an appreciably eccentTic orbit has not been reahhed with-

out earnest effort to find means to adapt them. Eminent authorities in this

field have been consulted and have concurred. It may be possible, at some

considerable cost, to achieve the evidence necessary to draw on the map of
Mars contour lines to indicate changes in relief of the order of 3000 feet. Radar

mapping could probably produce results of comparable (or better) resolution

with even higher reliability.
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" 2) Overlap. In mapping from relatively low altitudes above

Earth, it is possible to obtain stereo relief from vertical views provided that

the successive views overlap sufficiently. (The least contour-interval which can

be plotted accurately is generally taken as not less than 0. 083 percent of the

flight altitude. ) The overlapping of views in the direction of the flight path (the

"forward lap") must never be less than 50 percent for full stereo coverage. The

limits usually adopted are 55 to 65 percent. Between 10 and 40 percent of side

lap is considered best in mapping Earth from the air.

The main significance of these overlaps is stereometric. It is true that

with high values of overlap, no object is ever imaged very far from the center of

one view or another, and planimetrically that is an advantage at the relatively

low altitudes used for Earth mapping, but not of great importance for our pur-

poses. It is true also that generous overlapping increases the probability that

clearly recognizable features will be common to successive views, which greatly

facilities compilation.

This consideration is important because of the complete lack of ground con-

trol, and the risk of jeopardizing our orientation. But the orbiter attitude angles

will be known for each exposure, and the intersection of the orbital plane with

the field of view can be calculated with some precision, and errors due to faulty

bridging should not be a serious problem.

The very high degree of redundancy whichis usefulfor mapping Earth is not

worth its cost in communications capacity in the Martian application, lnstead of

overlaps of 50 percent, our purposes will be adequately served by 20 percent or

less, and the number of bits needed for transmission with equal modulation is

reduced by 37. 5 percent, and this allows the use of agrayscale with 64 instead

of 16 steps.

3) Platform stability and sighting. The two camera systems are

to be mounted together on a two-gimbal mount by means of which their common

axis may be pointed along a radius vector from the planet center, by controls

relative to the inertially-stabilized orbiter platform, one axis of which is con-

tinuously directed toward the Sun. The accuracy of pointing will have a 3-o

maximum value of 0.5 degree, or 8.73 milliradians, total excursion. (The field

angles of the cameras vary between 38.83 milliradians at periapsis to 5.83

milliradians at apoapsis. )

What matters in compiling the mapping data is not so much having an angular

error as knowing what the error is. Provisions will therefore be made for record-

ing with each exposure the magnitudes of the angles of the camera axis relative

to the orbiter platform.

What matters in making the pictures for mapping is not the amount of angular

deviation of the camera axis but the rate. If the angles are all known at the

moment of exposure, it makes very little difference, photogrammetrically, where
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the axis lies, within the bounds of its six-minute-of-arc limit cycle, provided

its attitude is reasonably constant. By reasonably constant we mean that it is

changing only slowly, and is not so far different from what its attitude was when

the previous exposure was made that the compiler risks losing the continuity

between exposures, provided by the planned overlap, on which his bridging de-

pends. The maximum angular velocity of the camera axis about any axis will

be 10 microradians per second. The most unfavorable case occurs at apoapsis

when the time between exposures may be as long as 35 kin/0.33 km sec -1 = 106

seconds. In so long a time, the "hitch" or "roll" angles might change as much
as I.06 milliradians; less than four minutes of arc, and less than one fifth of

the angular field of the corresponding camera. This is not of an order to cause

any difficulty in data reduction.

4) Framin_ control. A computer function equivalent to a sort of

suborbital odometer will be provided. This will begin integration of suborbital

distance at the instant of each exposure which is to be recorded, and when the

integrated distance reaches the value of (100-20)/100 x 233/4 = 46.6 km, a pic-

ture may be recorded, provided the scene is bright enough to make a useful

picture without exceeding the present maximum exposure. This question is

asked and answered in every "dry" exposure between recorded shots. If the

light is adequate and the minimum distance has been traveled, the next exposure

will be "live, " and the scan output will be recorded for transmission.

5) Field-size control. To minimize the difficulties of compila-

tion, scale, resolution, and coverage of the mapping views are maintained uni-

form from one end of the orbit to the other, with the one very minor exception

that the ratio of the focal lengths of the two optical systems may very well differ

by a very small amount from its intended value. This would require only a

small constant adjustment of scale.

With a constant focal length, the primary image of an area of constant size

becomes smaller as the altitude increases. But the output from the image tube

depends not on the size of the optical image but on the size of the scanning

raster. If the line density of the raster varies, like the height of the optical

image, inversely as the altitude, the 233 lines on the target which determine

the portion of the electron-optical image to be scanned, will always correspond

to 233 x 1/4 krn on the planet.

When the focal length is changed, as it is every time the orbiter passes

through the mean altitude, the relation between the raster size and the electron-

optical image size is maintained unchanged, so there is no change of scale. It

is to be expected that the picture quality will be best when the line density is

least, as it is in the regions of periapsis and just above the mean altitude.

6) Color capability. It is well known that for most of the time

the atmosphere of Mars is largely impenetrable by light of wavelengths below
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about 4500A, and photographs by blue or violet light generally show little or

no surface detail. But from time to time this phenomenon ceases, and the

planet surface is seen clearly in short-wavelength light. There is no general

agreement among astrophysicists on the reasons for the veiling effect or for its

occasional suspension. Whether some sort of Rayleigh scattering begins abruptly

at about 4500A, or some form of molecular absorption is responsible, it is

probable that picture quality might often be improved by filtering. The universal

use of a minus-blue filter, however, would block off a very sensitive region of

the image-orthicon photocathode and render the instrument incapable of dis-

tinguishing between the presence and absence of the veiling effect in the Martian

atmosphere.

Any single color filter could readily be embodied in the optical systems

under consideration. If necessary, one filter could be so mounted as to be in-

troduced or withdrawn at will; but changing filters is hardly compatible with

economy of space or the maintenance of perfect collimation. It is only outside

the system, in the full aperture of the incoming beam, that alternate filters

could be introduced, if the most reliable spacing of the optical components is

to be preserved. Moving parts in the optical systems should be avoided; and

if the very desirable goal of color-separation pictures were to be pursued, a

three-camera system at least, would be required, each camera having its own

fixed response {or pair of responses, if negative branches in the sensitivity
curves have to be taken into account}.

The S-20 ("tri-alkali") photocathode is highly sensitive throughout the visual

range, and well below and above it. From about 3200 to about 7800A it is the

most sensitive detector known; and it is more than probable that the Martian

surface will reflect radiation below 4000A and above 6850A, that is, in wave-

length regions to which the human eye is not responsive.

For true visual color, if it were desired to know how the planet would look

to a human observer, the observing system must follow the pattern of the human

eye. Quite grave distortions of visual truth might well result from adding to

the "blue" image the effect of radiation of wavelengths below, say, 4100A, to

which the eye is blind, or from adding to the "red" image the effect of radiation

above 6850A, which forms no part of the visual record. It would be necessary

to make the "blue" system cut off signal from the ultraviolet end of the Martian

spectrum, and to throw out from the "red" system any signal strength due to the

near infrared. Since we should not wish to waste this potentially valuable in-

formation, two more cameras would be needed; making five in all. Though this

would be most valuable, it is not compatible with the limitations upon the present
orbiter.

Experience in high-altitude aerial photography of Earth indicates that color

information is of marginal value. This is due both to the color-selective scat-

tering properties of the atmosphere as well as to the lack of pronounced coloration
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on a large enoughscale to give interesting detail when viewed from far away.
For this reason, full color transmission is not planned, although it could be
included. If the bit rate permitted, and additional optics could be added, the
red and blue records imagedby separate lenses on the same single target
with the "white" light record. Whencolor is wanted, the whole tripartite
image would be scanned, to be reconstructed on Earth by optical superposition,
first obtaining the green record by white-minus-red-minus-blue. Whenmono-
chrome is wanted, only the "white" image would be scanned.

It is felt that considerations of weight and power make it unwise to attempt
in the present design to obtain full color separation pictures; and by way of
consolation it is argued that the coarseness of the achievable resolution and the
very large amount of intervening atmospherewould very likely cause each view
to be not very far from monochromatic. Since, however, it can be predicted
confidently that there will be variations in the dominant tonality of different
views as the result of variations in atmospheric conditions and in the constitu-
tion of the surface area viewed, it is considered that steps should be taken to
obtain some indication of the wavelength-energy relations prevailing at each
observation.

To accomplish this, a very narrow line made up of five (or more) filters
is to be embodied in the image orthicon face plate within the area occupied by
the highest-altitude view. As long as the face-plate illumination is strong
enoughto cause any signal to be obtainedfrom any of the filtered regions, some
indication of the color of the field will beobtained. This device is in effect a
five- (or more)-color spectrometer of very narrow angle, with a rather coarse
read-out.
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Five filters are shown in the sketch (figure 4). It is intended that one

should cut off wavelengths above about 4250A and another, wavelengths below

about 6500A. The other three filters cover the visible spectrum in such steps

as 4000 to 4900, 4800 to 6000, and 5800 to 6850A. The filters should be inlaid

in the image orthicon face plate so as to be as near as possible to the photo-

cathode layer, and the face plate surfaces worked optically flat after the inlay
medium is hard.

d. Communications considerations.

1) Bit rate versus resolution. For planimetric mapping without

reference to color, using a square format 233 lines high and a gray scale of

26 = 64 steps, the basic bit requirement is 2332 x 6 = 325,734/bits per expo-

sure. To these must be added a word for each of three angles, one for time,

and one for altitude, but the total bits needed per exposure will not exceed

325,850.

The content of each exposure must be read out in something less than the

minimum time between exposures, and at appropriate moments the read-out is

recorded for later transmission to Earth. Recording at the rate of 150 kilobits

per second, or 25,000 six-bit words, each representing one picture element,

gives a 2. 2 second interval between exposures.

The number of mapping exposures per orbit to be recorded for transmission

_/(I00-20) 233 x 0.25 =
will not exceed 3332, the radius of Mars in kin, times 100

225; so the total number of bits required for mapping will not exceed 225 x

325, 850 = 73.32 megabits out of the 89 megabits for transmission available in

each orbital period, leaving a bit balance sufficient for the transmission of

seven high-resolution shots with 360,000 six-bit picture elements apiece. We

get 1/4km resolution for all our mapping pictures, and 2.5 h x i0-'_ km resolu-

tion for our discrete views. This is the use which it is proposed to make of the

expected supply of bits for transmission. But what elements of compromise

does it contain? Could we get better resolution if we could have more bits?

More bits alone would not help out. We cannot safely push the line density

of the automatically controlled image orthicons beyond 233 _= 600 lines

per target inch. And we should be most reluctant to make our mapping swath

much narrower. But certainly, if we could command unlimited bits, and also

unlimited storage capacity and recording speed, we could use the long-focus

camera continuously from h M through periapsis to hM on the other side, to pro-
duce a narrow high-resolution strip picture made up of overlapping views.

Without any overlapping, this would require about 304 views and resolution
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The remaining requirements are the following:

i. Nominal resolvable ground resolution O. 25 km

2. Equivalent focal lengths

a. Short-focal length 33. 20 inches

b. Long focal length 85.71 inches

3. Relative apertures

a. Shorter focal length FIS. 0

b. Longer focal length F/12.9

4. Spectral range S-20 phosphor

5. Wavelength range 3000 to 8000A

The S-20 phosphor exhibits a peak response at about 4200A and has an op-

tically useful spectral range from 3000 to 8000A. Since it is believed that a

very appreciable part of the radiation from Mars lies outside the visual range,

it is considered wise to eliminate chromatic aberration as a problem by using

reflection optics; but a possible refractive system has been worked out, and is
des cribed below.

The resolution requirement for the optical system is dictated by the re-

quirement of 600 TV lines per target height or approximately 20 TV lines per

millimeter. To be conservative, this number of optical lines may be taken as

the required resolution for the optical system. The half-angular field of view

for the 33.20-inch system will be 0. 027 radian. The 85.71-inch system is to

have a half-angular field of 0. 0105 radian.

With this information, then, the optical system requirements are completely

determined. The short focal length system, operating at a relative aperture

of F/5.0, must cover a full 3. 11-degree angular field over a spectral range of

3000 to 8000. The long focal length system must cover a full angular field
of 1.20 degrees operating at a relative aperture of F/12.9, or faster. The

image performance level is taken as 20 lines/ram for both systems; about twice

the minimum requirements.

Based on these values, the simplest refractor configuration capable of

satisfying all the requirements for the 33. Z0-inch focal length system seems to

be a conventional triplet design (see figure 5), composed of all spherical refract-
ing interfaces. (A two-lens doublet construction would have too much field

curvature. ) Since all surfaces are spherical there are no complicated produc-

tion problems and full quality control is guaranteed. But a refractor is unde-
sirable.
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would vary from 97 meters to 37.5 meters and back again. But it would take

656 megabits; roughly seven times the number at our disposal.

The uncompensated change of picture size with resulting changes in both

scale and coverage with altitude would make interpretation very inconvenient,

and the timing of the exposures would present some difficulty. However, we

should certainly wish to use the maximum line density throughout. So either

optical or electron-optical "zoom" would have to be introduced to keep the field

area constant by increasing the magnification with altitude. System complexity

would be much increased, but the region over which higher resolution could be

obtained would be somewhat extended at an enormous increase in bits used.

Or again, if unlimited bits were available, we could use a very long-focus

camera - say 9 or i0 meters, giving a field approximately 5 km square, with

resolution of perhaps 8 meters. A picture of so small an area would be almost

meaningless unless it formed part of a cluster of adjacent views, and coverage

equal to that of the mapping system proposed and require not less than 144 times

as many pictures and 6.6 times as many bits per picture; an increase of 890

times in all.

These extreme cases are mentioned only to emphasize that, although along

with minimum picture width and maximum focal length, the supply of bits does

contribute to the limitation of the resolution which can be achieved, the crux of

the matter is the image tube; its ability to go on delivering signals of adequate

amplitude as the target is scanned with closer and closer-spaced rasters. The

information is all there, at least as far as the photocathode; but to get it out,

and to Earth, needs more than just additional bits: it needs at least an entirely

new type of image tube.

2. Subsystem description

a. Optical system. This program demands reliability from the optical

system under extended operational life and adverse environmental conditions.

Components and assemblies must be insensitive even to radical temperature

changes. The simplest type of optical system consistent with the image quality

required must be selected. No extraordinary demands should be made as re-

gards materials or manufacture.

1) System configurations. The system requirements are quite

specific. The optics package must perform mapping functions at altitudes

ranging from a minimum of 1500 km to a maximum of 10,000 km from the Mar-

tian surface. Therefore, it is obvious that either a variable-power optical sys-

tem, or two or more separate systems must be used. The latter choice is

preferable because of the mechanical difficulties implicit in changing optical

components in order to effect a change in optical power. Also, two separate

optical units provide extra assurance in case one instrument should give out.
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Alternate solutions were explored. A Cassegrain telescope is unsuitable

because it cannot cover the large field angle required. Coma, field curvature,

and astigmatism degrade the image badly from about 0.80 degrees off-axis.

The conventional Maksutov system, consisting of a spherical primary mirror

and a meniscus correcting lens, was unsuitable for the 85.71-inch system be-
cause of its length, and for the 33.20-inch because of its inherent field curva-

ture and the large field angles required.

To reduce the length of the long-focus system and to minimize the weight

of supporting members, it is necessary to use a high telephoto ratio. This can

be achieved neatly with systems of the Cassegrainian type, and the 1. Z-degree

field angle is not too large. The relatively low speed of F/12.9 permits straight-

forward optical production, and if, in the final design, a little extra weight can

be tolerated, this speed can be increased, perhaps to F/8, without risk.

2) Short-focal-length system.

a) Triplet. Glasses were selected for high-ultraviolet trans-

mission characteristics as well as their optical dispersions. Advanced auto-

matic design procedures and electronic computer equipment were used to develop

a preliminary system shown in figure 5. The performance characteristics of

this lens are shown in the attached plots of energy concentration as a function

of blur circle radius (figures 6 and 7), The system resolution requirement

of 20 lines per mm means 20 dark lines of width of (0.5/20)mm, and 20 spaces
of width of {0.5/20) mm. Therefore W = 0. 5/20 = 0. 0250 mm, or 2W = blur circle

diameter = 0. 050 mm (. 0020 inch). Now, for low-contrast ground resolution

it is necessary that a minimum of 50 percent of the energy be used to determine

limiting resolution values. On this basis the resolution obtained from the graphs
is as follows:

Wave length

Total Field Angle = 3. 30 Degrees

Blur circle diameter Re solution (lens)

4359 0. 0008 inch 50 lines/ram

5461 0. 0008 inch 50 lines/ram

This refractive system is capable of putting substantially 100 percent of

the available energy within the required blur circle diameter in a fully optimized

version. It is seen that its resolution exceeds the minimal requirement by a

factor of 2.5 over the full range of field angles called for. Nevertheless, be-

cause of the wide range of wavelengths over which the S-20 phosphor is sensi-

tive, and the unknown factors in the reflectivity of Mars, it seems prudent to

provide for operation over the widest range possible, and the simple triplet

system performance is found inadequate at the extremes of the wavelength
range.

-32-



I00

9O

80

70

Z
0

t-
::)

" 60
m
n..
I-
03
B

>- 50

e,,.

tel
z
14J

i,-
z 40
LU
U

W

30

2O

IO

O0 0.001 0.002 0.003 0.004

BLUR CIRCLE RADIUS

62-9282

Figure6 ENERGY DISTRIBUTION VERSUS BLUR CIRCLE RADIUS FOR

ULTRAVIOLET TRIPLET AT x = 5qTIA

-33-



I00

9O

8O

2O

I0

62-9283

0.001 0.002 0.003 0.004
BLUR CIRCLE RADIUS

Figure7 ENERGY DISTRIBUTION VERSUS BLUR CIRCLE RADIUS FOR
ULTRAVIOLET TRIPLET AT x = 4359A

- 34-



b) Schmidt-Casse_rain: Flat-field anastigmat. A computa-
tion program was carried out for this system, and the results establish the

basic feasibility of this system configuration for the short-focal length system

over the complete spectral range of sensitivity for the S-20 phosphor. The de-

sign specifications of an F/4 system are contained in figure 8. Design for F/4

was carried out to insure that the final system will yield at least F/5 perform-

ance. This was done with no significant penalty in overall system design param-

eters. The energy distribution diagram, figure 9, shows that resolution will

be acceptable.

3) Lon_ focal length system - Casse_rain type.

Cassegrain, the primary mirror is an exact paraboloid and the secondary mirror

is an exact convex hyperboloid. However, making the secondary hyperbolic is

difficult, and its mounting is very exacting. If this secondary can be made pre-

cisely spherical, and so readily controlled, then the system is straight-

forward. This is done in the so-called "Dall-Kirkham" system by "un-

dercorrection" of the basic sphere of the primary mirror in terms of para-

bolization. This undercorrection balances out the spherical aberration contributed

by the spherical-surface secondary. This undercorrection causes the primary

mirror surface to assume a figure, intermediate between sphere and paraboloid,

which is very nearly a true ellipsoid. This means that during manufacture the

primary mirror can be tested as an ellipsoid with loci at specified points, and

so the quality can be controlled. The resulting mirror system presents no

manufacturing problem and can readily be made to yield diffraction-limited per-

formance. A long-focus Dall-Kirkham of aperture F/10 is shown in figure 10.

Such a system was designed, consisting of an ellipsoidal primary mirror
of 7.0-inch diameter and a secondary mirror of 2. 1 inches diameter. As the

primary mirror is only F/4.4 it is very easily figured and possesses no strong

zonal characteristics. The system is compact, measuring approximately "25

inches overall. Spot diagram and energy distribution plots (figure 11) indicate

the high-performance capability of this system.

4) Construction and testing. Because of the extreme variation in
thermal environment it is very desirable to use low-expansion materials for

both the optical elements and the mount-support structure. Therefore, quartz

will be used for the mirror elements and quartz tubing, honed to match the

mirror diameter, will be used as the basic mount structure. Also, the second-

ary mirror will actually be evaporated directly upon a low-power, full-diameter

meniscus shell. This procedure will assure precision centering of both com-

ponents as well as air-space control.

The Schmidt-Cassegrain type of system, when designed on the lines of

J. G. Baker's flat-field anastigmats (ref. 1), is capable of performing at an

extremely high level of image quality over a very broad spectral range. The

two focal lengths of the mirrors are made precisely equal in order to provide

a zero Petzval sum and, therefore, an inherently flat field condition. The three
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residual aberrations of spherical aberration, coma, and astigmatism may then

be removed by very weak figuring in the primary and secondary mirrors, and

a mild aspheric in the correcting plate.

The image quality, as shown by spot diagrams, remaiDs essentially

uniform across the entire image. During the final figuring of the correcting

plate, the skilled optician will produce a diffraction-limited system on axis,

which means that the fabricated system is capable of an even higher perform-

ance level than indicated by the geometrical ray plots.

Another slight variation of this design, and one which permits direct qual-

ity control of the individual components, is the use of a precisely spherical

secondary. In this case, no optical figuring of its surface profile is required.

Then, the concave primary assumes a more oblate figure and may be independently

tested as shown below.

In this testing procedure the primary mirror is given a null testing tech-

nique which insures that the figuring is precisely accurate to a given value of

asphericity withrespect to a sphere (fig, 12). Then the complete system, primary

mirror, secondary mirror, and correcting plate may be mounted and tested as

a unit. Since the primary and secondary surfaces are already correct, this

allows the optician to figure the aspheric on the correcting plate to an exact

profile by null-testing the entire optical system as a complete unit. Since the

theoretical design indicates that diffraction-limited quality on axis is to be ex-

pected from this physical configuration, the optician will be able to secure

image quality perfection using this absolute null-testing method.

The ellipsoidal primary figure on the 85.71-inch modified Cassegrain may

also be figured by a similar absolute null-testing technique.

b. Image tube. The reasons for preferring image orthicons to any

other image tube are numerous and compelling, the most important being that

short exposure s are indispensable for good resolution, unless some system for

compensating image motion is introduced, and in any noncircular orbit that is

a serious complication. The extremely high light-sensitivity of the image or-

thicon is important because it allows the use of exposure times so short as to

minimize blurring of the image by movement of the camera axis during ex-

posure as a result of forward movement in orbit and rotations about control

axes. It is also important because it requires exposure of only moderate length

under conditions of minimum illumination.

The extremely short exposure times required under conditions of maximum

illumination exclude the use of any mechanical shutter (which would in any case

be undesirable) and the image orthicon is readily shuttered electronically by a

negative-going pulse applied to the photocathode. The duration of the pulse is

very easily varied, substantially without limit, and its rise time can be made

incomparably shorter than the mechanical equivalent.
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Although a good image orthicon is capable of resolving Z000 lines, or more,

the amplitude response becomes insufficient for our purposes at some much

lower density. The maximum line density which it is proposed to use is 600

lines per target inch, and 600/M = 232.4 or approximately 233. Betweenhp,

the altitude at periapsis andhM, the geometric-mean altitude of 1500M =

10, 000/M = 3873 km, the raster of the shorter-focus system is to change in

density, proportionally to altitude, from 233 lines per target inch to 600 lines

per target inch; but it is to consist always of 233 lines for data purposes. In

exactly the same way, the raster of the longer focus system is to change in

density, proportionally to altitude, between hM and h A, the altitude at apoapsis,
from 233 lines per target inch to 600 lines per target inch, and is also to con-

sist always of 233 lines for data purposes.

c. Electronic subsystem summary.

1) System block diagram. The basic block diagram of the TV
mapping system is shown in figure 13. There are two independent image orthi-

con cameras, each comprising a clock pulse generator, timing generator,

raster generator, camera tube and optical assembly, and video amplifier.

Scanning is at a rate of one frame in 2.2 seconds. Both video signals go to the

camera-select control, where the signal from the appropriate camera is chosen

according to altitude. The altitude also controls the raster size so that the map

scale remains constant at all altitudes. Automatic controls are provided to

insure correct image orthicon operation under various conditions of temperature
and scene illumination.

The picture recording control selects individual frames for recording when

the brightness is adequate and when a suitable ground distance has been covered

since the previous recording to obtain about 20 percent overlap. The control

operates by enabling the video gate and turning on the tape recorder for one

frame period. At periapsis about one frame in 10 is recorded, and at apoapsis,
about 1 in 70.

Note that the analog video information is added to pseudo-random noise

before digital conversion to prevent contouring. A 34-db signal-to-noise ratio

picture results. Tape recording is digital, so that on playback, direct trans-

mission from the tape to the transmitter is possible.

The command system may be used to make fine adjustments in I.O. opera-

tion or to override the normal picture recording sequence in various ways.

Provision is made in certain cases to record automatically extra pictures with

the long focal length lens at those lower altitudes at which the shorter lens is

normally used. This is accomplished by means of the complex scene detector,

which counts edges, or sharp transition points. When the number of such edges
in any frame recorded with the short lens exceeds a threshold, an extra picture

is recorded from the long focal length lens.
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The modulation method is six-bits-per-element PCM, employing pseudo-

random noise to obtain a continuous tone scale. The signal-to-noise ratio is

about 48:1 amplitude of 34 db and the performance in the presence of channel

noise is very good. The digital technique permits multiplexing of telemetry

data on the same transmitter and also permits an emergency mode of very slow

transmission with no adjustments to the TV system other than change of clock

frequency. It also allows a change in the TV system parameters during the

development period without circuit design changes.

The picture-taking operation is entirely automatic. As long as the illum-

ination is adequate, pictures will be taken with about 20-percent overlap, under

control of the on-board altimeter and speedometer. Raster dimensions are set

and a camera is selected to produce constant-quality, constant-scale images

at all altitudes. No commands are needed unless it is desired to override some

of the automatic controls or if a different camera or image scale is desired

than originally planned.

A very small portion of each exposure is viewed through five overlapping

wavelength filters, as shown in figure i4.

2) Scannin_ the image orthicon. The swath may be taken as 180

degrees in length, or 10,500 krn. Resolution is to be 0. 25 km per picture ele-

ment; but with 20 percent overlap between pictures, this becomes effectively

0.2 kin, so the swath has an effective length of 52, 500 picture elements. If

each view is 233 elements wide, there will be 12, 232, 500 picture elements in

the swath. _At a data rate of 4500 bits per second with an assumed duty cycle

of 75 percent, 88.8 megabits could be transmitted per orbit, sufficient to des-

cribe 14, 800,000 picture elements, _ 2,567,500 x 6 = 15,405,000 bits to use

in other applications. If higher data rates were available, then a wider swath

might be covered, and the mission duration reduced; but, this would call either

for a higher-resolution camera tube, or for a more complicated camera-pointing

routine so that pictures could be taken side-by-side.

The choice of 233 scanning lines, while somewhat arbitrary, is based on

the desire that the quality of the final maps be determined by the data rate and

not by the camera-tube performance. While image orthicons have been reported

to have resolved some thousands of lines, the response of even the very high

quality 4-1/2-inch studio types such as the General Electric image orthicon

no. 7389a is only some 56 percent of its peak value at 400 lines in the 4 x 3

format (465 lines in square format) under carefully controlled conditions. In

space applications it would be unreasonable to expect better performance than

that. It is well known that image quality is largely a function of the amplitude

response at the middle line frequencies, rather than simply the resolution, or

cutoff line frequency. Indeed, this is one of the principal reasons for the super-

ior quality of image orthicon pictures compared to vidicon pictures, since the

two have comparable resolution limits.
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The amplitude response can be improved somewhat by equalization, but

this is done easily only in the horizontal direction, and then only at some sac-

rifice in signal-to-noise ratio. So, it seems best to limit the line density to

a value at which the response is not too small at the upper end of the video band.

We have chosen not to exceed 600 lines in square format. If, during the devel-
opment of the camera system, experience under conditions of extended periods

of "hands-off" operation indicates that this number should be changed, it will

be reconsidered. No design changes will be needed, as a simple change in

logic will change the raster.

3) Time secLuence considerations. Once the decision to use tape

buffering of the video data has been made, considerable flexibility is available

in the choice of the scanning rate. At one extreme we might scan at the slowest

possible rate, so that recording on the tape would be essentially continuous.

For an assumed data rate of 3000 bits/sec, this would be 500 picture elements

per second. On the other hand, very high speed scanning is also possible. We

have chosen 25,000 picture elements/sec, a rate which is low enough so that

low-power sweeps suffice, but high enough so that at periapsis, only about one

in ten pictures will be recorded. At apoapsis, where the suborbital velocity

is much lower, about one frame in 70 will be used. The reason for this pro-

cedure is so that automatic correction of exposure and focus can be achieved

with time constants several frames in length, thus keeping these adjustments

essentially constant during each frame that is recorded, but permitting smooth

control, especially during transit of the terminator.

The procedure for selecting frames to be recorded is to integrate a

smoothed analog voltage proportional to suborbital velocity. The next frame

following the time when a preset level is exceeded will be recorded, and the in-

tegrator discharged. This will result, at worst, in variation of the overlap

between 20 and 10 percent.

4) Circuit desi[_n philosophy. As far as possible, circuit tech-

niques will be digital. Even where this results in a moderate increase in the

transistor count, reliability is increased because such circuits are individually

more reliable than analog circuits. In addition, lower power operation is feas-

ible and certain conveniences, both in design and operation, result. One such

convenience is the ability to operate on direct coupled, element-by-element

basis. Thus, for an emergency mode of operation in which direct transmission

is attempted at very low bandwidths, only the clock rate need be changed, and

no other adjustments are called for. In addition, changes in raster size and

line density , both automatically and by command, are very simple, as in the
achievement of highly linear sweeps.

5) Description of the block diagram. Figure 15 shows the pro-
posed design in functional block diagram form.
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The scanning generator , a multivibrator clock generator, normally operat-

ing at 100 kc, times the entire system. On command, a much lower rate is

available for the emergency mode. The clock frequency (B) is divided by 4 for

word frequency (W), by N for horizontal frequency (H), and by N again for

vertical (V). All dividers are binary, and the last two are adjustable, on com-

mand, from the normal 235 to 1024 in order to obtain a very high density raster.

Since gates are also provided to detect the second step after reset, which is

used to generate the horizontal and vertical blanking waveforms, which are

OR'd for application to the target of the image orthicon, by the blanking amp-

lifier. Note that element blanking, as well as line and frame blanking, is used.

This permits a change in clock rate with no other adjustments since the beam-

time-on per element is constant. Figure 16 shows details of the timing genera-

tors, using the horizontal divider as an example.

While analog integrator circuits could be used to generate sawtooth wave-

forms from the H and V pulse trains, recent experience with digital circuits

has been so satisfactory that they are planned for this application. The method

is to regard the state of the divider chain as a ten-digit binary number and to

convert this to analog form in a resistance ladder, as shown in figure 17. The

switches are saturated transistors controlled by the divider stages. The refer-

ence voltage for the ladder gives proportional control of sweep size, and is in-

versely proportional to the altitudes. This is accomplished by a nonlinear cir-

cuit using biased diodes in the usual manner. Note that the altitude at the be-

ginning of the vertical sweep (at the time the exposure is made) must be held

in a sample-hold circuit triggered by V. Ground command will permit selec-

tion of the largest or smallest raster, or a size appropriate for 1024 lines,

rather than the automatically selected size.

The sweep amplifiers will be of the complementary type, as shown in

figure 18. A bridge circuit as in (a) will be used if only one power supply is

available, and a push-pull circuit, as in (b), if both negative and positive sup-

plies can be used. In either case, a resistor R in series with the deflection

coil is used to sense the current to supply a feedback signal.

6) Camera controls. Image orthicons require power supplies of

-400 to -650 volts for the photocathode and 1200 to 1800 volts for the anode,

with all intermediate voltages derived from these by means of a divider. Al-

though tube-to-tube differences require adjustments in a large number of the

electrode voltages and coil currents, it appears that satisfactory unattended

operation may be achieved by presetting almost all of these to fixed values. In

this category fall the photocathode voltage (during exposure) the electron mul-

tiplier voltages, G2, 3, and 5, the alignment coil current, and probably the

target voltage as well. The beam current is controlled to a preset value by

sensing the cathode current and adjusting G1 as needed. If more elaborate

controls prove desirable, they can be developed along known lines.
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Since the focus depends on the tube temperature, and this cannot be pre-

cisely predicted or controlled in space {as in a studio camera it can be by ad-
justing the flow of cooling air), it will be necessary to adjust G4, G6, and the

current in the focus coil. It is planned to do this by means of a hunting-type

servo system in which all three are perturbed by a small ac signal, the result-

ing change in the energy of the high-frequency portion of the video signal is

determined by a phase detector, and appropriate adjustment can be a fraction
of a frame.

7) Video controls. The exposure time will be controlled by

turning the photocathode on for an appropriate interval by starting and

stopping the oscillator in the converter power supply. The control signal
is derived by measuring the peak-to-peak video voltage over several frames.

Since, in the image orthicon, modulation is by means of depleting the return

beam, the blanking signal is applied to the target, causing the entire beam to

be returned to the multiplier. Thus, black corresponds to maximum anode

current, and it is the difference between this and the current corresponding to

peak white which controls the exposure. For general purposes this is a com-

pletely satisfactory technique. However, there may be certain types of terrain

in which the interesting details are of low contrast in some particular portion

of the grey scale. For such scenes it may be desirable to "stretch" a portion

of the grey scale to fill the input range of the analog-digital converter. A

ground-controllable process amplifier having eight choices of "set-up" and eight

of incremental gain will be supplied for this purpose. The process amplifier

will also include aperture correction, which, of course, must he a function of

the picture element spacing.

The video preamplifier presents no especially difficult problems. The image

orthicon current may be expected to be about 0. 1 microamp which is smaller

than the value attained at normal scanning rates by the ratio of normal bandwidth

to Voyager bandwidth. Thus, an input impedance of 250 kilohms which gives

an input voltage of 1/40 v, will result in a value of Johnson noise just equal to

the shot noise already in the signal. However, most of the total noise is amp-

lified image orthicon beam noise, and can be expected to be much higher.

Therefore, an input impedance even lower than 250 K can be used without

penalty.

Note that at the highest altitude used with each lens, only about 15 percent

of the image-tube target area is scanned. Thus, for equal photocathode illum-

ination, only 15 percent of the lowest-altitude signal would be obtained. The

automatic exposure control is expected to handle this variation very easily.

8) Pseudo-noise _enerator. In the Roberts technique, random

noise is added to the analog video signal before quantizing and subtracted at the

receiver after decoding. Since both noise waveforms must be identical, the

"noise" must be a long deterministic sequence which seems to be random.
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Suchsequencesare easily generated by shift registers in which the input is a

logical function of the previous state. Since an N-bit register has 2N states,

rather short registers can generate long sequences. In this case the sequence

should be somewhat longer than one frame. Since 216 > 233 x 233, 16 stages
will do.

A subsidiary advantage of the availability of the pseudo-noise generator is

the opportunity to use it to generate "uniquely decipherable" synchronization

signals. It is planned to transmit the pseudo-noise during the vertical blanking

interval. On earth, synchronous detection using majority logic will be used to
detect the start of each frame even if a few bits are in error. Since random

sequences are essentially never found in natural video, it is highly unlikely that

video will ever be mistaken for synch. In the case of horizontal synch, in

which the transmitted pseudo-noise is only 6 bits in length, there is substantial

opportunity for this to happen. In that case, a flywheel type of synchronization,

similar to that used in TV receivers, is appropriate.

9) Picture-sec_uence control. Pictures are to be taken whenever

the light is adequate and when sufficient distance has elapsed since the previous

recording. The first is accomplished by means of a level detector, the input

to which is the amplitude of the video signal. When this amplitude falls some

preset amount below full scale, which implies that the maximum exposure time

is being used, the output of the level detector inhibits the AND gate which con-

trols the tape recorder start signal. The second requirement is met by means

of a similar level control acting on the output of an analog integrator which

operates on suborbital velocity information. The AND gate is inhibited until

the required distance is exceeded, at which time, the next following V pulse sets

a control flip-flop and also discharges the integrator. This gated pulse also

starts the tape recorder. The next V pulse stops the tape. The FF output level

also opens the gate which passes the analog-plus-pseudo_noise video to the

Voyager A/D converter. Note that if some time is needed to start the tape re-

corder, a pulse train in advance of the V pulses can be derived.

Camera selection is accomplished by means of a level detector operating

on the altitude signal, but changeable only coincident with a synch pulse. Since

both cameras operate all the time, the only operation called for is to switch

one signal or the other to the transmitter. A command is provided to select

any one camera regardless of the altitude.

10) Command system. In addition to the previously mentioned
commands, it is desirable to have incremental control of beam current and tar-

get voltage, since these are the principal controls used in studio cameras.

Such incremental controls can be accomplished either with a solenoid-operated
potentiometer or an up-down counter plus D/A converter. The latter has been

used in the weight-power estimate, but a final decision will be made during the

development period. Note that the estimates include the command registers

and circuits necessary to carry out the controls, but not the command decoders
thems elves.
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11) Automatic focal length selection for detailed pictures. It is
desirable to take some high-resolution pictures in addition to the regular rela-

tively low-resolution mapping pictures. To accomplish this automatically we

can use the system of figure 19.

In this procedure, the analog video signal passes to an edge detector.

This is a circuit which produces a pulse at each picture element where the

instantaneous amplitude of the high-frequency portion of the video signal ex-

ceeds a threshold. These edge pulses are counted on a per-frame basis only

when the short focal length lens is being used. When the number of such pulses

exceeds a preset number in any one frame, the vertical synchronization pulse

next following produces a signal which lasts just one frame. This signal is fed

to the camera-select control, overriding itand causing a high-resolution pic-

ture to be recorded. The TV system then goes back to its normal operation.

Associated with the incorporation of this feature into the system are 6

analog transistors, 180 row, and 36 digital transitors 360 row/540 mw total

additional power.

2.4 Venus Orbiter Microwave Mapping System

1. Objectives. The objectives of the mapping system are to determine

topographical features, reflection characteristics of the surface, and radiation

maps of surface emissions. This section treats only the radar mapping portion

of the radar-radiometric mapping system. However, antenna considerations

of the mapping system do include both the radiometric and radar. The micro-
wave radiometer was selected from the list of scientific instruments furnished

by NASA. Other possible mapping objectives are the determination of the de-

polarization characteristics of the surface to provide information for evaluating

surface roughness, and near limb Brewster angle measurements.

The basic design of the radar is influenced by a number of factors in addi-

tion to the obvious restrictions imposed by power, weight, and reliability con-

siderations. Combination radar and radiometer mapping should provide for

simultaneous operation to allow for correlation of radar and radiometer meas-
urements. Another factor is the maximum data rate allowed for transmission

of radar and radiometer data. It should be noted that although radar mapping

may be accomplished only on the order of 50 percent of the orbital period due

to ellipticity of the orbit, data can be transmitted during the entire orbital

period (excluding occultation time). However, a large increase in overall data

capacity can be achieved only at the expense of providing extremely high data-

storage capacity in the system.

2. System description. The radar system proposed here is an X-band

pulsed radar capable of operating simultaneously with a fixed frequency
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radiometer operating at X- and Ku bands through a single 8-foot diameter an-

tenna. The radar operates at a nominal 9500 mc; the X-band radiometer operates
at a nominal 8500 inc. X-band was selected for the radar on the basis of avail-

able information on the atmospheric transmission characteristics of the planet

Venus (Section B3a). The antenna is scanned in a two-way raster-type pattern

(i. e., no flyback)with raster lines normal to the ground track. The radar

beamwidth is slightly less than 1 degree.

For purposes of this study, a number of parameters were selected some-

what arbitrarily; further study is required to determine the final values. A

one-microsecond pulse width was selected to provide a range resolution capa-

bility of approximately 0. 15 km (500 feet). A pulse repetition frequency (prf)

of 3000 pulses per second was selected to provide a high duty cycle and a cot-

respondingly low ratio of peak-to-average power. A 15-kw peak (45 watts aver-

age) output power was used in the performance calculations. A nominal prf of

3000 provides an unambiguous range of 50 km or more than five times the height

of Mt. Everest. (For comparison, a prf of 30 pulses per second or less must

be used to provide unambiguous range at the maximum mapping altitude of

4000 km. ) The prf may be varied to prevent blind spots and to resolve range

ambiguities.

The proposed radar provides the following measurements. At small scan

angles (up to several beamwidths off vertical), data will be obtained on the mini-

mum and maximum ranges, corresponding to the highest and lowest surfaces

detectable by the radar; this is termed contour mapping. Data will also be col-

lected on the signal level of the received pulse integrated over parts of the

range interval between the minimum and maximum ranges detected. At angles

exceeding several beamwidths of vertical {depending on altitude), the range dif-

ference between the near and far edges (3-db points) of the beam exceeds the

range resolution of 0. 15 km, and accurate contour mapping is no longer realiz-

able. Under these conditions the signal level of the received pulse is integrated

over a range gated increment of the received pulse. This is termed area map-

ping. Signal level measurements are quantized in terms of 8 "grey levels" or

amplitude levels. Video integration is used at all times to achieve adequate

signal-to-noise values with the assumed transmitter power of 15 kw peak, 45

watts average.

Depolarization measurements can be readily provided by using parallel

receiver channels and gating and integrating circuits, or by switching the out-

puts of the direct and cross-polarized channels to a single receiver. Further

study is required to determine if the cross polarization measurements should
be made.

Two scan patterns are planned for radar mapping (figure 20). The wide

angle (area mapping) scan provides area mapping over the scan coverage des-

cribed below. The contour mapping scan provides contour mapping, combined
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with a signal level measurement capability, at scan angles near 0 degree, to-

gether with a capability for improved surface resolution due to the slower scan

rate. Details of the scan patterns and the scanning system are given below.

The area mapping scan would provide an "area" map of a belt varying from

3000 km wide at 4000 km altitude to 540 km wide at 1000 km altitude, if the

scan limits were held constant. In practice, scan limits will be reduced with

increasing altitude to achieve a more uniform scan coverage or constant belt

width.

The contour mapping scan limits are varied from approximately ± 1.5 degrees

at 4000 km altitude to ± 9 degrees at 1000 kin; the resulting scan pattern on the

surface is shown in figure 20. In the contour mapping mode, the antenna motion

represents a compromise between maximum data rate, surface resolution,

minimum detectable area, and other factors.

The proposed mapping routine consists of alternately mapping with the wide

angle scan for a single orbit, followed by three or four orbits mapping with the

contour mapping scan. This process is then repeated, until Brewster angle

measurements are desired. These measurements can be made by extending

the wide angle scan limit until the beam approaches the limb or the desired

angle. The mapping routine described here {excluding the Brewster angle

measurement) provides a high resolution contour map, together with a series

of wide angle "area-reflectivity" maps.

3. Performance characteristics. Radar performance is considered in

terms of the two general cases: 1) contour mapping at scan angles near zero

degrees, and 2) area mapping {or signal-level measurements} at larger scan

angles. For the first case, figure 21 shows minimum detectable area versus

transmitter power for various values of altitude, telemetry bit rate, and data

fineness {or number of bits per data point).

The curves are based on integration to achieve a signal-to-noise ratio of

13.5 db and therefore the results apply principally to the contour mapping mode.

Note that for a fixed bit rate {corresponding to a fixed integration time}, the

minimum detectable area decreases with increasing transmitter power, as

might be expected. Also, the figure shows that for a fixed minimum detectable

area, lower bit rates result in decreased power requirements due to the longer

integration times. The graphs of figure 21 are based on the assumption that

the signal-to-noise ratio varies directly as x/-Kwhere n is the number of pulses

integrated; this is a conservative assumption. Emphasis is placed on minimum

detectable area so that the contour map will indicate as accurately as possible

the highest and lowest points within each resolution area. The effects on map-

ping accuracy of varying pulse width, prf, range gate width, etc., are still

under investigation. A more detailed discussion of the effects of integration on
signal-to-noise ratio area resotution, etc. i are given below.
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Radar performance in the area mapping mode is best described somewhat

differently, because the emphasis is not on detection of a minimum detectable

area. The performance (minimum detectable area) shown in figure 21 is based

on an "integrated" signal-to-noise ratio of 13.5 db, which corresponds to a

probability of detection of 90 percent and a false alarm time of I00 seconds.

An integrated signal-to-noise ratio of 21.3 db is required to provide the 8 grey

levels for area mapping. Figure 22 shows area mapping performance in terms

of transmitter average power versus scan angle for various values of range

gate width, pulses integrated and telemetry bit rate. In this case the radar

area is based on pulse width, beamwidth, and scan angle. Note that the data

rates are relatively low; for the area mapping case, radar performance may

be considered as power-limited. Current investigations are directed toward

optimizing radar parameters, including pulse width, prf, range gate width and

integration period, and angular scan limits.

Proceeding from the relationships indicated in figures 21 and 22, a basic

approach to the design of the range-gated integrators and the tracker/program-

mer can be described. Assuming that contour mapping is the primary goal,

values for transmitter power and minimum detectable area can be selected

after the maximum telemetry rate is established. Using this value for trans-

mitter power and considering the area mapping mode, the 21.3 db signal-to-

noise ratio required for 8 grey levels can be achieved by various combinations

of range gate widths and integration times. In this case, both range gate width

and integration time influence the surface resolution obtained at moderate and

larger scan angles off vertical. A proper choice of values leads to good sur-

face resolution capability. If further study shows that the integration times for

the contour mapping and area mapping modes are significantly different, vari-

able integrators may be used as indicated in the radar block diagram. The in-

tegration constant required for best performance may also vary with the scan

angle and altitude. The feasibility of providing such features requires further
study.

_. Selection of wavelength. In one respect, the radar frequency
should be as high as possible. For a given antenna size, a high frequency means

a small beamwidth and, consequently, more detail in the radar map. Of course,

the frequency selected must be such that radar components are readily avail-

able and that atmospheric attenuation is not too great. Of particular concern

may be the recently reported possibility of a band of hydrocarbon surrounding

the planet. Published works have been consulted to establish the current knowl-

edge of the total atmosphere. The prime reference has been Edward Glaser

(ref. 2) reporting the work of Chandra and Srivastava (ref. 3). The former

states that an X-band signal would be attenuated by only 0. 037 db in the atmos-

phere of Venus. Thus the current evidence, the necessity for good resolutions,

and the knowledge that signals from Venus or its shell have been received at

2388 mc led to the choice of X-band (10 gc) for the radar frequency. Additional

experiments and expansion of the atmospheric knowledge may indicate that the

radar frequency should be modified.
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b. Radar resolution. At scan angles near zero, the surface resolu-

tion is determined primarily by the spacecraft altitude and antenna beamwidth.

Other factors are pulse width, scan angle, scan rate, range gate width, and in-

tegration time.

The 8-foot antenna considered here provides a basic resolution (beamwidth)

of slightly less than one degree. Corresponding resolution on the planet sur-

face is approximately 15 km and 60 km at altitudes of 1000 and 4000 km respec-

tively (for vertical incidence). The use of video integration tends to degrade

surface resolution due to motion of the antenna during the integration process.

For example, using a typical area mapping scan where the antenna moves one

beamwidth on the surface (corresponding to 830 pulses transmitted) and an in-

tegration time of 27 milliseconds (corresponding to an antenna motion of ap-

proximately 1/10 beamwidth, the beam is "smeared" to 1. 1 degrees. However,

this degradation is more than offset by the sampling of the video integrator out-

put at 27 millisecond intervals. This provides data points at intervals of 1/10

beamwidth (or approximately 6 km at 4000 krn altitude) on the surface. Thus

locations of unusual features might be determined to within i/10 beamwidth.

Therefore, at scan angles near zero, surface resolutions (normal to the sur-

face track vector) of the order of 1.5 km and 6 krn at altitudes of i000 km and

4000 km respectively might be achieved. Resolution parallel to the surface vec-

tor would be one beamwidth, providing a rectangular resolution area. Increas-

ing the scan speed to provide more scans per unit time could provide more uni-

form (approaching a square) resolution areas of approximately 5 km 2 and 19

km 2 at i000 km and 4000 km altitudes respectively. This surface resolution

would be improved by using a longer range gate, a slower scan speed, a shorter

integration time, or a longer pulse width; however, the choice of these param-

eters is, of course, influenced by other performance considerations.

At larger scan angles, the use of range gating provides a control on

"lateral" resolution (normal to the surface track vector}. The beamwidth and

altitude still govern the azimuth resolution ( in the direction of spacecraft travel),

except as noted above. The lateral resolution at a given altitude and scan angle

is controlled primarily by the range gate width and the integration time, assum-

ing transmitter power is fixed. The effect of range gating is to divide the ellip-

tical shape of the beam (at the surface at larger scan angles} into near-rectangu-

lar sections whose lateral dimension (corresponding to range} is cdntrolled by

the range gate width. The effect of integration time is as indicated above, to

blur or lengthen the beam shape in the range dimension.

Since both range gate width and integration time are used to improve the

signal-to-noise ratio, either or both may be changed to improve the resolution.

In general, the best resolution is achieved when the range gate width (projected

on the surface} and the "blur distance" due to antenna motion during the inte-

gration time are approximately equal. These values are a function of scan

angle and of the required signal-to-noise ratio. The graph of figure 22 shows
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performance in terms of range gates of 15 and 30 _ seconds, and various values

of integration time. The use of a range gate of 30# seconds and an integration

time corresponding to integration of 83 pulses results in a lateral surface reso-

lution of approximately 0.2 beamwidth. Using the proposed transmitter power

{45 watts) allows scanning only to about ± 17 degrees for this case. Achieving

good resolution at greater scan angles requires a wider range gate and a longer

integration time. In general, resolution capabilities should not degrade far

beyond this value for a maximum scan angle of 20 degrees.

c. Performance versus scan an_le. The principal effect of scanning

at larger angles off the vertical is the change in the type of mapping informa-

tion available. As noted above, accurate contour mapping is possible only at

small scan angles. Figure Z3 shows the effect of changing scan angle on AR,
the range between the near and far edges (3-db points) of the beam, at an alti-

tude of 4000 km. Figures 24 and 25 show additional detail. The radar has no

means for determining surface contour variations with the range interval AR.

On this basis, the two mapping modes {contour mapping and area mapping) des-
cribed above are used.

A second effect of varying the scan angle is to increase range; however,

this effect is small compared to the increase in range to variation of altitude

due to orbit ellipticity. For a fixed orbital altitude, the effect of increasing

range (due to increased scan angle) is to require a wider range gate or longer

integration time in order to provide adequate signal-to-noise ratio for 8 grey

level mapping. As noted above, the surface resolution should not exceed 0.3

to 0.4 degree if integration time and range gate width are carefully selected.

d. Performance versus system weight. The usual method of improv-

ing the overall performance of a well designed radar is to increase transmitter

power, assuming antenna size is fixed. In this application performance can be

defined in terms of achieving the desired signal-to-noise ratio (13.5 db for

contour mapping and 21.3 db for area mapping) for a given value of target area

a, or a given resolution capability. In figure 21 the change in transmitter

power with changing target area is shown explicitly. In figure 22 area mapping

performance is indicated in terms of transmitter power required (at any given

scan anglel to achieve a desired resolution capability, defined in terms of range
gate width and integration time. (See section b, above, for a discussion of sur-

face resolution versus range gate width and integration time. ) Note that in the

case of figure 22 "effective" target area can be related to range gate width and
indirectly to integration time.

In either the contour mapping mode or the area mapping mode, increased

performance requires increased transmitter power, and this is the principal

factor in increased system weight. It is assumed here that additional range

gated integrators will not be required. The exact effect of increasing trans-

mitter power cannot be readily determined; however, a rule-of-thumb which is
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used is that modulation weight varies directly as peak power in kw, and output

stage weight varies directly as the square root of peak power in kw.

e. Alternative systems. An alternative system configuration that
was studied is FM/CW radar. Its possibilities are still under investigation.

Sidelooking radar mapping techniques were also investigated. The results in-

dicated that the latter correlation technique might be used to provide improved

surface resolution along the direction of the surface track vector, if provision

were made to eliminate the merging of the doppler-broadened spectral lines in

the received waveform. Further study is required to determine the advantages

of these correlation techniques over other methods of obtaining improved sur-
face resolution.

Sidelooking radar as a mapping techniques provides two resolution param-

eters, namely doppler filter bandwidth (along the velocity vector) and pulse

width (in the direction normal to the velocity vector). Varying the pulse width

allows one to change the resolution in one dimension without physically altering

the antenna. Under specified conditions the other resolution dimension can be

altered without physically altering the antenna by varying the doppler filter

bandwidth. The necessary and sufficient condition required to perform this is

that 2f d < fr where fd is the doppler frequency, and fr is the radar prf. Thus

the returns can be plotted in a three-dimensional space of power, time, and

doppler frequency.

The high prf required by the inequality given in the preceding paragraph is

necessary to prevent merging of doppler components of adjacent spectral lines.

This requirement for high prf is incompatible with the low prf required to avoid

range ambiguities. One approach to this problem is to use a wide open receiver

(no doppler filters); the performance characteristics of such a system were in-

vestigated and found to be generally similar to those of a scanning type radar.

One notable exception to the above is the relatively poor lateral resolution

capability (resolution normal to the velocity vector) of the sidelooking technique

when looking vertically downward. Lateral resolution varies directly as the

pulse width and may be extremely poor at Vertical incidence when using long

pulses. Another disadvantage associated with the sidelooking technique is the
inability to distinguish between mountains at larger scan angles {off vertical)

and sea-level returns at smaller scan angles when both arrive in the same range

interval. For example, a 30,000-ft mountain at seven degrees off vertical may

appear at approximately the same range as sea-level return from directly below
the spacecraft.

Considering the foregoing, conventional sidelooking radar mapping tech-

niques appear to be unsuited for planetary mapping missions; the deficiencies
are inherent in some cases.
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4. Subsystem descriptions. A block diagram of the mapping radar is

shown in figure 26. Pulses formed in the pulse-forming network are triggered

by the prf selector at a nominal rate of 3000 pps. The tracker programmer

provides inputs to the prf selector to prevent eclipsing or to allow range am-

biguity resolution. The pfn generates one-microsecond pulses which are amp-

lified to provide drive for the modulator. The output of the magnetron at a

frequency of 9500 mc is fed to the antenna through the microwave circuits shown

in figure 27. The nominal output power is 15 kw peak, 45 watts average. The

radar antenna is a mechanically scanned 8-ft paraboloidal dish; details of an-

tenna construction and the scanning technique are discussed below. Primary

power is estimated at 175W; weight and volume (exclusive of antenna systems)

are 32 ib and 4.5 ft3; antenna and drive mechanism is estimated at 30 lb.

The received signal passes through a preselector filter to the tunnel diode

autodyne converter. A receiver noise figure of 6 db was used in the perform-

ance calculations. A reference signal may be fed into the preselector to per-

mit system calibration using a known noise or signal level. The bandwidth of

the IF circuits is a nominal 1 mc; the IF amplifier gain is linear over a range

of 40 db. The output of the video amplifier is fed to the range-gated video in-

tegrators, where the noncoherent integration is used to provide acceptable signal-

to-noise ratios.

a. The range-gated video intesrators. The range-gated video inte-

grators and associated circuits are key units in the mapping operation and will

be discussed in more detail. The range-gated video integrating circuits are

required to achieve adequate signal-to-noise levels for the contour mapping and

for the radar area measurements. The integrators are connected in parallel

to the output of the video amplifier. The range gates are controlled by the

tracker programmer to provide leading-edge and trailing-edge tracking of the

received pulse for minimum and maximum range measurement (contour map-

ping), and also to allow integration over any desired part of the received pulse

for signal level measurements.

In the contour mapping mode, a stack of five range-gated filters is used

to bracket or track the leading edge of the received pulse, and a similar stack

is used to track the trailing edge, in a manner similar to conventional leading-

edge tracking. Each of these range gates is one microsecond wide. Range is

measured to an accuracy of approximately 0. 15 km, corresponding to one micro-

second, by the conventional measurement of time from the last "main bang. "

The tracker/programmer provides a number of functions, including the fol-

lowing: (1) it acts as a tracking loop to control the location of the range gates

for leading and trailing edge tracking; (2) it controls the locations and widths of

gates in radar area measuring; (3) it controls the integration time by controlling

the sampler switch; (4) it controls the time constant of the integrator if a vari-

able time constant integrator is used; (5) it controls insertion of the receiver

calibration signal; and (6) it also controls the prf to prevent blind spots and
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resolve range ambiguities. When a part of a received pulse is gated to an in-

tegrator channel, the signal is fed to the box-car detector whose output is ap-

plied to the integrator. After the integrator has received the proper number

of range-gated pulses (corresponding to the integration time), the sampler ob-

tains an analog output from the integrator, and successively from all other in-

tegrators in operation. If leading edge tracking is being performed, the output

may or may not exceed the threshold. The tracker programmer compares the

outputs of the five tracking channels and adjusts the locations of the range gates

so that the middle channel occupies the range position where the target was

detected on the previous sampling cycle. When radar area measurements are

being made, the sampler outputs are directed to the tracker for ranging pur-

poses, and to an analog-to-digital converter or quantizer prior to transmission

to the storage or the telemetry unit.

The interval between the leading and trailing edges of the received pulse

(the length of the pulse) is determined by the range between the nearest and

most distant areas detected. Ten additional range-gated integrators are used

to provide radar area (combined area-reflectivity) measurements over this

range interval between the leading and trailing edges. The number to be used

represents a compromise between considerations of equipment weight and maxi-

mum telemetry and the desire for providing good range resolution through a

large number of range gated units. Each of these ten units operates on a 10

microsecond or 1.5 km range gate in the contour mapping mode. This provides

a capability for ten measurements of signal level over an altitude range of ap-

proximately 15 km.

In the area mapping mode, all twenty range-gated integrators are used for

radar area measurements in a manner similar to that indicated in the previous

paragraph, except that each unit may be gated 'Worthy for up to approximately 16

microsecond or 2.4 kin. The twenty range gates then 'tcover'T the interpulse

period (a nominal 333 microseconds) between main bangs. As the antenna ap-

proaches the wide-angle scan limit, the returned pulse is 't stretched 't due to

the extended area within the beam (for a scan angle of 20 degrees at 4000 km

altitude, the returned pulse is 290 microseconds long). It should be noted that

this pulse stretching characteristic sets an upper limit on scan angle for a given

prf, since overlapping of the received pulses is undesirable.

The time constant of the integrators is based on the number of pulses to be

integrated. This value can in turn be related to the prf and the angular scan

rate to determine the amount of antenna motion {or beam smearing) during in-

tegration. The disadvantage of lower surface resolution due to beam smearing

(or integration) must be weighed against the improved range performance (in

terms of minimum detectable area) resulting from integration. A third factor

influencing integration time is the maximum allowable telemetry rate. Reducing

the integration time reduces the beam smearing but increases the number of

measurements per unit time; the maximum allowable telemetry rate tends to
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set an upper limit on the measurements per unit time, and a lower limit on in-

tegration time. Integration time, in turn, strongly influences map fidelity;

good map fidelity requires that the minimum detectable area be as small as

practicable (indicating a longer integration time).

b. Antenna configuration and scanning characteristics. The antenna

configuration proposed for the mapping system has two parabolic dishes, each

independently gimballed to scan across the planet normal to the ground track

(see figure 28). A 2-ft diameter dish is used for radiometric mapping at 4 and

8 mm. An 8-ft diameter dish is used for radiometric mapping at 1.5 and 3 cm

and for radar mapping at 3 cm. The 8-ft antenna is capable of receiving two

orthogonal polarizations; coax-fed log-periodic feeds are used for broadband

operation. The smaller antenna may use a log periodic feed or a modified horn.

The microwave signal separation circuits associated with the antennas is shown

in figure 27.

The antennas are girnballed and driven independently on the scan axes to

allow the smaller antenna to scan to the limit of the planet while the larger an-

tenna is scanning over a smaller angle, mapping the surface. If feasible, the

scans will be in opposite directions and synchronized so that the reaction torques

about the scan axes will tend to cancel.

The antenna scan patterns are shown pictorially in figure 29. This scan

pattern is achieved by moving the dish as shown in figure 30. This represents

a desirable scan pattern for wide angle mapping. The scan angle for the larger

antenna will be adjusted periodically to allow scanning to the horizon for Brewster

angle measurements; also the scan angle during radar mapping may be adjusted

for altitude and received data variations in order to maximize radar map-

ping information. The feasibility of counterscanning {in opposite directions)

the two antennas under these conditions requires further investigation.

The weight of the entire antenna assembly, including drive mechanisms is

estimated at 30 pounds. This does not include provision for special fixtures

for protection against the stress environment during launch or for reaction con-

trol devices. The final antenna design will represent a compromise between a

heavier antenna capable of withstanding the launch environment without special

fixtures, and an extremely light antenna which tends to minimize drive power

requirements and guidance and attitude control problems after launch,

Other types of antenna configurations investigated for this application in-

cluded various electronic and low-inertia scanning systems, and also systems

which are sometimes referred to as "signal-processing" antennas. Most of the

electronic scan and low inertia scanning systems were rejected because of the

difficulties imposed by the combined requirements for dual polarization and

broad-band operation. It should be noted that some of these scanning techniques

would receive serious consideration if the requirement for broadband operation

were dropped. The investigation of other antennas (Mills Cross, synthetic
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aperture antennas, etc.) indicated that increased performance (better surface

resolution) was usually obtained at the expense of decreased sensitivity and a

significant increase in on-board data processing equipment. In general, the

comments above regarding dual polarization and broadband operation also apply

to this class of antenna systems.
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3. COMMUNICATIONS

PART I -- MARS ORBITER

3. I Communication System Requirements

The Mars orbiter-bus communications system monitors and transmits to

Earth scientific and engineering data acquired during the transit and orbital

phases of the mission. It also receives commands from Earth at any time,

aids the DSIF in obtaining range measurements, and acts as a relay station

for the Mars lander.

The operational life of the Mars orbiter-bus is approximately 15 months,

I0 of which are spent in transit, the remainder in mapping the planet surface.

During the in-transitphase, the orbiter -bus and lander (the spacecraft) are

attached to each other. After injection into orbit, several maneuvers will be

made to place the spacecraft on a near-miss trajectory with Mars. During

these maneuvers, the guidance and control system performance and the re-

sponse of the orbiter-bus is transmitted to DSIF. Throughout the in-transit

phase, the engineering status of the spacecraft must be determined.

At a distance of approximately one million kilometers from Mars, the

lander will be separated from the orbiter. After separation the orbiter-bus

must be capable of receiving data transmitted from the lander. As the orbiter-

bus nears the planet, final maneuvers will occur to place the orbiter-bus in

an ellipticalorbit around Mars. This orbit will have a 1700-km periapsis and

a I0, 000-km apoapsis. While in orbit, the orbiter-bus must map the planet

surface and be capable of receiving data from the lander.

Communication System General Description

I. General Description. The Mars orbiter-bus communications system

will transmit all data required during the orbital phase through either of two

highly directional S-band communication links. The main communication link con-

sists of a steerable 8-foot parabolic antenna and a i20-watt transmitter. This

system is used primarily to transmit the mapping data acquired during the

orbital phase. At a transmitted bit rate of approximately 4600 bits/sec, a

worst case data performance margin of +2. 19 db can be expected at a worst

case range of 3.6 x 108 km.

The secondary communication link consists of a steerable 4-foot parabolic

antenna and a 35-watt transmitter. This system is used primarily to transmit
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the guidanceand control and engineering status data acquired in transit. At

a transmitted bit rate of 300 bits/sec a worst case data performance margin

of +4.58 db can be expected at a range of 3.6 x 108 kin.

These two links serve as redundant backups to each other, however,

with the 4-foot parabola, a reduced amount of mapping data will be transmitted.

Each of these links will contain coherent transponders to aid the DSIF in

making range measurements. They will also include command receivers to

receive commands from Earth.

Commands normally will be received through a separate command system.

This system consists of an antenna subsystem providing isotropic coverage and

doubly redundant command receivers. While in the orbital phase when the

orbiter-bus is at or near periapsis, commands cannot be received due to the

high rate of change of doppler. During a large part of the orbital period, how-

ever, the rate of change of doppler is low enough for the command receiver

to operate properly.

While in transit, maneuver exercises will be transmitted in real time.

During the long intervals between maneuvers, engineering data will be stored

periodically for transmission to the DSIF on command.

The data transmitted by the lander after separation and again after landing

will be received through a VHF pulsed linear chirped receiving system. This

system will include a 65-degree helix antenna and a pulsed linear chirped re-

ceiver having a pulse compression gain in signal to noise ratio of +20db.

An S-band radar altimeter will be used by the orbiter to control the focus-

ing, picture-size and picture-sampling rate of the mapping equipment. At

orbit altitudes less than 1800 kin, this altimeter will transmit bursts of 5 pulses

which, if received by the lander, will signal the lander to begin transmitting

its stored scientific data.

Three tape recorders will be used to store the data acquired by the orbiter,

two for mapping data and one for recording the received data from the lander

and the scientific and engineering status data from the orbiter. The two map-

ping recorders alternately will store and play out data on each orbit. The

total mapping data acquired during one orbit will be stored in one tape recorder.

During the next orbit, this stored data will be transmitted to Earth while the

second recorder is storing mapping data.

The multiplexing equipment on board the orbiter will be similar to, but

less complex than, the equipment used in the lander.

The main source of power for the orbiter equipment will be a solar panel

array having an area of 182 square feet. The power available from this array

-77-



is approximately 728 watts. While in orbit, the orbiter may pass through the

Mars-sun umbra region. To provide power in this region, storage batteries

will be used and subsequently recharged when the orbiter is again in the sun-

lit region.

To satisfy the high reliability figure required of the orbiter, the communica-

tion system will be 100 percent redundant. All redundancies in the communica-

tion system will be passive, except for the command systems associated with

the 0toni-directional antenna..

The total weight, volume, and power consumption of orbiter-bus communi-
cation system components are listed in tables 3 and 4. Parameters for the data

transmission equipment is broken out of table 3 and presented in table 4.

A simplified block diagram of an orbiter communication system which will

meet all of the requirements stated in section 1 is shown in figure 31. Two

direct link communication systems were selected for the orbiter; one to be
used in transit, the other to be used while in orbit.

3. 3 Detailed Description of In-Transit Communication Link

The communication link parameters associated with this phase are listed

in table 5. The range indicated in this table is the maximum range that can

be expected as determined for the launch opportunities listed in table 6.

The data monitored in transit is primarily engineering status measurements

which can be sampled at relatively slow rates and stored for periodic playout.

Using a multiplexing scheme similar to, but less complex than the lander multi-

plexing system, a transmitted bit rate of 300 bits/sec was determined as ade-

quate for playing out stored in-transit data. The accuracy of these measure-

ments will be 5 percent for most data and 1 percent for selected measurements.

A 9-bit analog-to-digital converter will be used; the 5 most significant bits

used for data channels requiring 5-percent accuracy, and Z adjacent channels

used for the 5 most significant bits and 4 least significant bits, respectively,

for data requiring 1 percent accuracy. The details of sampling and recording

are discussed in the lander entry and descent section. At 300 bits/sec, a worst

case performance margin of +4.58 db can be expected using a 35 watt S-band

transmitter. The carrier and synchronization power required by this system, as

in the lander direct link system, are negligible. In the following sections, several

importantparameters of the in-transit system are evaluated. First, the diameter of

the antenna which yields minimum communications system weight is found. Use
of a 4-foot antenna instead of the calculated 5. 8 feet is shown to lead to a

negligible weight penalty. In the section on the transponder, the first factor

of interest is the noise figure. Next follows the determination of the internal

frequencies. Of primary interest is the specification of the carrier-phase,
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TABLE 3

MARS ORBITER (COMMUNICATIONS)

SUBSYSTEM--WEIGHTS, VOLUMES, AND POWER CONSUMPTIONS

Major Redundancy Volume

Subsystem (cubic inches)

I Eight-foot antenna (with drive)

Fob-foot antenna (with drive)

Antenna driver amplifier

120-watt S-band power amplifinr

(with special power lupply)

35-wa_ S-band power amplifier

(with special power 0upply)

8 -band transponder

S-band command receiver

Command decoder

0

0

1

0

0

Double redundant each

parabola ( 2 parabolas)

Double redLmdlmt each

2w ateradi_ns (4 "r

eteradians )

1 (active)

Weight

(pounds)

-- 29.6

-- 14.8

288 10.0

275 16. o

180 10.0

1200 40.0

800 28. 0

Mu/tiplexer - encoder

Subcarrler modLdator + P, N.

generators

VHF receiver

S-band altimeter

Command generator

Mars mapping recorder No. I

Mars mapping recorder No. 2

Mars relay recorder

S-hand omnl-antenna system

S-band altimeter integrated

antenr_

_JHF helix antenna

Cablin_ and Plumbin_

Totals

1 300

l 80

1 300

1 160

1 20

0 1300

0 1300

0 1150

0 --

0 --

0 --

0 --

• 7375

Power

Consumed

(watts)

240

2.0 12

18.0 3

4.0 3

13.0 3

12,0 80

2.0 2

19.0 6

19.0 6

16.0 6

4.0 --

3.0 --

2.5 --

20.0 -;

282. 6 507

TABLE 4

DATA TRANSMISSION EQUIPMENT

WEIGHT, VOLUMES, AND POWER CONSUMPTIONS

120-watt S-band power amplifier

(with special power suppy)

35-watt S-band power amplifier

(with special power supply)

S-band transponder

Multiplexer- encoder

Subcarrier modulator

plus P, N. generators

VHF receiver

Mars mapping recorder No. 1

Mars mapping recorder No. 2

Power

Volume Weight Consumed

Major Subsystem (cubic inches) (pounds) (watts)

275 16.0

180

1200

300

80

300

1300

1150

I0.0

40.0

18.0

4.0

13.0

19.0

16.0

136.04785Total

240

70

20

3

3

3

6

6

351

-80-



TABLE 5

IN-TRANSIT TELECOMMUNICATIONS DESIGN CONTROL CHART

PROJECT: VOYAGER

CHANNEL: MARS ORBITER TO PSIF

MODE: IN-TRANSIT (4-FOOT PARABOLA)

i

iNo.

I.

2

Nominal I Worst

Parameter Value i Tolerance Value

I

Total transmitter power 35 watts +45. 44 dbm +44. 94 dbm

Transmitting circuit loss with

diplexer

Transmitting antenna gain 4-foot

diameter

-I.0 db

+26. 65 db

' +0.0 db

I -0. 5 db

+0. 0 db

-0. 5 db

±0. 46

db

-1.5 db

+Z6. 19 db

-0.4 dbTransmitting antenna pointing loss -0. 2 db ±0. 2 db

Space loss = 32.46 +20 log F + 20 log R -270. 83 db .... 270. 83 db

P 2300 mc, R 3. 6 x 108 km

Polarization loss -0. 0 db -0. 08 db

7 Receiving antenna gain

8 Receiving antenna pointing loss

9 Receiving circuit loss

10 Net circuit loss

1 1 Total received power

+ 0.0 db

-0. 08 db

+61. 0 db +0. 0 db +60. 5 db

-0. 5 db

-0. 1 db maximum -0. 1 db

-184.48 db ÷0. 66db -186. ZZ db

-l. 74db

-139.04 dbm -141. Z8 dbm+0. 66 dh

-2. 24db

12 Receiver noise spectral density (N/B) -181.43 dbm +0. 7db -180. 73 dbm

T system 50°K NF

Carrier Performance

13

14

15 -

16

17

18

Carrier modulation loss

Received carrier power negligible

Carrier APC noise BW (2BLO)

Carrier track (l-way)

Threshold SNR in 2BLO

Threshold carrier power

Performance margin
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TABLE 5 (Concl'd)

No.

19

2O

21

22

23

Parameter

Carrier - Track (2-way)

Threshold SNR in 2BLO

Threshold carrier power

Performance margin

Carrier - telemetry

Threshold SNR in 2BLo

Threshold carrier power

Nominal

Value Tolerance

negligible

24 Performance margin corresponds to subcarrier SNR

degradation of 1.5 db

Subcarrier Performance

Data channel

25 Bit rate (l/t)

26 Required ST/N/B

27

28

29

30

31

32

33

34

35

36

300 bps

1 x 10 -3

Threshold subcarrier power

Modulation loss

Received data subcarrier power

Performance margin

Synchronization Channel

Sync APC noise BW (2BLo)

Threshold SNR in 2BLO

Threshold s ubcarrier power

Modulation loss

Received sync subcarrier power

Performance margin

+ 24. 77 "db

(6.8+ 1.5) db

-147.76

-139.04 dbm

+ 8.72 db

+I. 8 db

-0. 10db

± i. 9db

+0. 66 db

-2. 24 db

+2. 56 db

-4. 14db

negligible

i Worst
Value

+ 3db

+ 24. 77 db

+ 10.1 db

-145. 86 db

-141. 28 dbm

+4. 58 db
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TABLE 6

EARTH-TO-PLANET RANGES AS A FUNCTION

OF MARS AND VENUS OPPORTUNITIES

MARS

14 Oct.

28 Nov.

4 Feb.

VENUS

Arrival

Date

Period

-2Dec. (69)

-31 Dec. * (71)

27 Mar. (73)

7 Dec. -23 Dec. (70)

18 Sept. -3 Oct. (72)

7 Apr. -20 Apr. (73)

11 Oct. -31 Oct. (7 5)

*Worst Launch Date

Worst Case

Enc ounte r

Range

AU

1. 38

1.19

1.97

KM

207xi06

179xi06

296xi06

70.5x106!

145x106

6
260x10

94. 5xlO 6!

Worst Case

Encounter

plus

30 -Day

Range

Worst Case

Enc ounte r

plus

150=Day

Range

0.47

0.97

1.73

0.63

AU KM AU KM

1.58 237xi06

1.47 220xi06

1.73 260xi06

2.37 356xi06

2.40 360xi06

0.88 132xi06

1.49 224xi06

1.68 252xi06

1.19 179xi06

1.53 230xi06
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locked-loop characteristics, particular emphasis being given to capture and

tracking ranges in the presence of doppler and doppler rate of change. Analy-

ses are performed not only for the transit case but also for the far more

stringent requirements encountered in orbit. Particular emphasis was given

to determining carrier threshold required during receipt of commands via the

omnidirectional antenna system. It is clearly established that a problem of

data reception from either the 4- or 8-foot dishes at the DSIF presents no

difficulty.

The next objective is to obtain the threshold requirements of the PN

synchronous loop. First, a bandwidth and command-word rate are obtained

which are compatible with the length requirements, and in addition do not lead

to unduly long code-acquisition times. It is established that a PN sync thres-

hold can be obtained which will yield the required high probability of maintain-

ing lock in this loop during a command. Lastly, various command-error-de-

tection techniques were examined. The method using a parity check bit for

each information bit was found to satisfy all probability requirements. The

threshold for the command data for the resultant bit-error probability was

evaluated. All of the above threshold requirements were used to complete

the values in the command link design control chart.

The ranging subsystem, and its associated problems, are discussed. The

system characteristics of the command demodulator and detector, and the

command decoder are detailed. A comparative analysis of the synchronous

loop lock characteristics for the Mariner R and proposed Voyager schemes

is performed. The spectrum of the received command is examined.

It was decided to use the amplitron for all S-band power amplifiers be-

cause of its high efficiency at the powers required. Other factors influencing

this decision are availability and reliability performance. The specific techni-

cal characteristics of the S-band power amplifiers are discussed in detail.

I. Determination of optimum antenna diameter. Scientific data will be

gathered for approximately four days and then played out in approximately

two hours.

Constant Power Loading

Command transponder

Command decoder

Guidance and control complex

Scientific ins truments

Recorder

Multiplexing

20 watts

I 1 watts

12 watts

5 watts

6 watts

3 watts

Total 57 watts
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Transmission ower Requirements

Transmitter (eft.= 0. 50) 2 PT

Drivers 20 watts

Total 20 + 2 PT watts

Figure 3Z gives the in-transit power profile.

Based on figure 32,

[77+2PT S]
Battery WH = P 2

0.85

181 + 4.71 PT - 2.0 PS '
(1)

lO
Discharge rate = _ -- 5;capacity factor = 0.785

2

WH WH
Battery Weight = =

6.4 x 0.785 5.03

-- 36 + 0.94 PT - 0.4 PS (2)

Also with a battery recharge efficiency of 0. 8

( 57)0.85 PS -
0.85

x 96 =

181 + 4.71 PT - 2.0 PS

0.8

Thus, 5.9 PT = 84.0 PS - 5696

PT = 14.25 PS - 965

PS = 0.07 PT + 62.8

weight of solar cells = 0.3 Ps

weight of antenna = 3.7D •

(3)

(5)

(6)
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Total variable weight

-- 36 + 0.94 PT - 0.4 PS + 0.3 PS + 3.7D

--- 0.933 PT + 29.7 + 3.7D

From general control chart included in the discussion of the Mars lander

antenna optimization,

PT =

BR 2

1.19 × 105 × D1"875

Total variable weight

0.933 BR 2

1.19 x 105 × D 1"875

+ 29.7 + 3.7D

For minimum weight

1.875 x 0.933 × BR 2

1.19 x 105 x Do2t'875

= 3.7

Do2_ 875 -- 3.98 BR 2 x 10 -6

Minimum weight obtained from Dopt i$

0.933 BR 2 Dopt

1.19 x 105 x 3.98 x 10 -6 BR 2

= 5.67 Dop t + 29.7 ,

+ 29.7 + 3.7 Dop t

(7)

(8)
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The weight penalty incurred in using a nonoptimum D is

0.933 BR 2

1.19 x 105 x D 1"875
+ 29.7 + 3.7D - 5.67 Dop t - 29.7

(__._._/2.875 _1
+ 3.7 - 5.67

Considering

B = 300 bits/sec

and R = 360 x 106 km .

Do_875 = 3.98 BR 2 x

Dop t = 5.78 feet .

10-6

Weight penalty for 4-foot antenna

4 .97 -- + 3.7 - 5.67

= 4.7 pounds .

2. Transponder Subsystem

a. General requirements. One of the primary functions of the tele-

communications system on board the Mars orbiter is to provide a coherent trans-

ponder capability in order that position and motion can be accurately determined.

Simultaneous measurements are made at the DSIF of doppler frequency shift,

phase shift of both carrier and range code, and apparent angle of arrival. The

receiving portion of the transponder is also used to receive commands from the

DSIF.

The associated subsystems must operate reliably for extremely long periods,

exceeding 450 days in the case of the Mars orbiter. Reliable carrier lock in

orbit must be achieved in the presence of high values of doppler and doppler

rates, the values of which are not known initially.
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b. General description. The transponder (figure 33) regenerates the

input carrier signal by means of phase lock techniques, shifts its frequency

and retransmits it, after stripping off the incoming modulation and replacing

it with the telemetry or ranging sidebands. The extremely narrow noise band-

width permits the loop to track the carrier and none of the modulation. (Acquisi-

tion problems resulting from the high doppler frequencies involved and the

small noise bandwidths are avoided by frequency adjustments at the Earth

transmitter. ) Use of multiples of the voltage-control oscillator (VCO) frequency

at the mixer local oscillators keeps the signal centered in the pass-band of the

IF amplifiers. If the quadrature detector indicates that the loop is not in lock,

the transmitting channel switches from the noisy VCO signal to the more stable

source.

The preselector has two functions: (1) it protects the receiver from strong

off frequency signals when the spacecraft is near the Earth, and (2) it, along

with the diplexer, offers protection against the transponder's own transmitted

signal. For the tunnel diode RF amplifier, a noise figure of 4.25 db and gain

of 18 db were selected. The first IF is 47-13/16 me. The mixer-preamplifier

has a noise figure of 8 db and a gain of 20 db which includes the mixer loss.

Excluding the preamplifiers the first IF amplifier has a gain which is varied by

the AGC over a range of 105 db with the maximum gain being 62 db. The band-

width of this amplifier is 3. 5 mc to accommodate the ranging signal which is

amplified at 47-13/16 mc before being routed to the ranging channel. Doing all

of the automatic gain control in the first IF amplifier removes the need of gain

tracking in both the second IF amplifier and the ranging channel amplifier.

The second IF amplifier, which operates at 4-25/32 me, has a bandwidth of 3 kc

(crystal filter) and a fixed gain of 50 db. The AGC holds the output of this

amplifier to -6 dbm (+ 1 db). The transponder noise figure (including the pre-

selector but not the diplexer) is 4.4 db.

In the transmitter channel, the phase modulation occurs at 71-23/32 inc.

To provide a maximum deviation of ±4 radians at the antenna the maximum

deviation at the modulator will be ± I/8 radian. To obtain greater efficiency,

power amplification will take place at 573-3/4 inc. The efficiency of the output

multiplier will be about 25 percent so the amplifier output will have to be 5 watts

to give the required 1. 2-watt S-band output.

Certain transponders use the same antenna for transmission and reception,

so biplexers will be required. They will introduce about 1. 5 db of attenuation

and provide 60-db isolation to the receiver. The preselector should provide an

additional 80-db isolation.

For a 1 20-watt transmitter, the leakage power level at the receiver input

is 50. 8 - 140 --89. 2 dbm which can be eliminated by the RF and IF amplifier

tuning since it is 180 mc away from the receiver frequency.
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Integrated circuitry is planned where possible for the transponder. The

anticipated weight and volume are 10 db in 300 in. 3 For a 1. 20-watt output,

20-watt input will be required.

c. Determination of transponder internal frec_uencies. It was given that
DSIF requires the received signal to transmitted signal frequency ratio to be

221/240. The pair 2295 mc and 2113-5/16 were used in designing the S-band

transponder. It is not a simple matter to select a set of IF's and multipliers

which will give the desired transponder input and output frequencies. The loop

of figure 34 was used for establishing the various frequency restrictions. The

blocks A, B, C and D are multipliers.

The VCO frequency, f , will be assumed less than 10 mc, and to get started

some general assumptions have to be made. Upper bounds of 10 mc for the VCO

frequency and 80 mc for the modulator input will be taken. This means that

A and D must be quite large. To prevent distortion, it was felt that D should

be a power of 2. An obvious first guess for D would therefore be 32. Three

equations now can be written.

IFIL - B( = f (9)

(Notice that if this equation does not lead to a satisfactory solution, it can be re-

written as Bf - IF I = f.)

CDF -- 2295 me and (10)

2115-5/16 - Af = (IF)i . (II)

Combining equations (9), (I0), and (II) gives

A+B+ 1 = 9 c (_2)

from which it can be seen that C must be a multiple of 15, since A, B. and C

can only be integers.

i choice for C that will reasonable VCO frequency.This is the only give a

For the value of D, which was assumed, is C=15. This fixes f at4-Z5/32 me.

From equation (12)

A + B = 441

To keep the first IF frequency (IF), in the vicinity of 50 to 60 mc, B must
be under 15. Different values of B were tried in an effort to find one that was

a factor of A. This led to B = 9 andA =432 = 48 x 9. These are the numbers

that were used in the transponder of figure 31.

d. Transponder noise figure. Noise figure of a 2.2-kmc germanium
tunnel-diode (TD) amplifier is 4.25 db. This includes the (necessary) circulator,
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but does not include degradation due to following IF amplifier. The gain of the

TD amplifier can be as high as 18 db for a one-stage amplifier. The degrada-

tion due to a mixer and IF amplifier with 8-db combined noise figure now can

be computed:

F 2 - l 6.3 - 1

F12 = F1 + G 2.67 + 63 = 2.75 = 4.4 db .

Thus a germanium TD amplifier can be expected to provide a system noise

figure of 4. 5 db (of course, neglecting elements ahead of the amplifier, such

as antenna and lines). Noise figure variations over the bandwidth would not
exceed ± 0. 5 db.

The germanium TD amplifier will have this noise figure over an ambient range

of -10°C to + 65°C. (Lower limit caused by the circulator,) Weight of TD

amplifier, including circulator, is 8 ounces.

Phase distortion is much better than I0 degrees. The noise figure referred

to holds over many megacycles of bandwidth.

Better results can be achieved with a galium antimonide diode. However,

it is temperature sensitive and would require control within 5 to 10 degrees.

It is well to note that tunnel-diode amplifiers work by majority carrier

conduction and are, therefore, not very susceptible to radiation damage.

e. The carrier phase locked loop. The criteria which determine the

performance required of the carrier-phase locked-loop are a function, not only

of the phase of the mission, but also of what is being received. During transit,

neither doppler nor doppler rate of change is considered a problem since they

are both highly predictable. In addition, the DSIF will have no difficulty in

compensating for them. However, the doppler and rate of change of doppler in

orbit are of a high magnitude and go through cyclic variations. Under these

conditions, it will be shown that it is necessary to sweep the DSIF carrier fre-

quency in order to achieve lock in the orbiter loop. It is the objective of this

section to determine the required thresholds for the loop for the various modes
of transmission.

i) Selection of orbiter loop noise bandwidth. During one orbit of Mars, the

• doppler frequency will change by approximately ± 17 kc. The greatest rate of

change of doppler will be about 36 cps/sec. The greatest doppler change dur-

ing any 2000-second period (time for one round trip between Earth and vehicle)
will be about 20 kc.

Assume that there is no a priori information regarding doppler, yet carrier
lock must be achieved in the vehicle while it is in orbit. Then the carrier loop
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must be at least a second order type to get the largest capture range for a

given noise bandwidth. Jafees and Rechtin (ref. 4) show that the optimum

damping ratio is

C = 0.71 (13)

We chose the loop natural frequency W n (all values referred to here are

threshold values) from an empirical formula given by Frazier and Page {ref. 5):

R - 0.22 W2 (14)

R in equation (14) is the maximum rate of change of signal frequency if the

loop is to acquire the signal 9 times out of I0. Certain constants which are

negligible in this case have been deleted from the original expression. This is

justifiable. The output signal-to-noise ratio (S/N) is above 6 db. Equation

(13) is based on experiment and is said to hold with good accuracy for _> 0.5.

It will appear shortly that the signal cannot be acquired without sweeping

the Earth oscillator; hence the sweep rate must be added to the doppler rate

to get R. When the damping ratio has a value given by equation (13) the loop

noise threshold bandwidth (2BL)th is given by

3vT
-- -- Wn (in cps) (15)(2BL)th 4

We might choose R only slightly larger than the maximum doppler rate,

but the permitted sweep rate then is so slow that an inordinate time is required

for acquisition. A reasonable compromise appears to be to sweep at a rate

equal to the maximum doppler rate, so that R is double the maximum doppler
r ate:

R = 72 cps/sec
(16)

The required 34-kc doppler range then is swept in 940 seconds.

(14), (15) and (16) result in

Equations

Wn = 18 rad/sec ; (17)
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and

(2BL)th = 19 cps •

In the system calculations (2BL)th is taken as (2BL)t h = 20 cps .
(18)

2) Derivation of capture and tracking ranges. At this point, the fact will

be demonstrated that the capture range is very limited, and the Earth oscillator

must be swept. When the signal and local oscillator are stationary in frequency,

and when Wn/K << 1 as will certainly be the case here, Viterbi (ref. 6) gives as an upper

limit for the frequency difference permitting capture in the absence of noise

n = 2 _nK ,,ds/sec (19)

The loop gain is given by

K = 2rt KD KVM rad/sec (20)

where

KD = phase detector constant

K V = VCO constant

and

M = multiplying factor •

For the transponder

M ---

received frequency

VCO frequency
2113 - 5/16

=

14-11/32

= 147-1/3 •

For K D and Kvwe take the following Mariner values

K D = 1.072 x 10 -2 volts/deg

(Zl)

(22)
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and

KV = 120 cps/volt (23)

whe nce

K 2 rr (3 deg

60 cycle ]\
429,000 rads/sec.

(1.072 x 10 -2) (120) (147-1/3)

(24)

The best possible capture range is

fl = 2 x/(0.71)(18) (429,000)

4670 rads/sec

743 cps .
(25)

For such a situation, the Earth oscillator must be swept in order to cause

capture in the orbiter phase loop.

Once the orbit has been computed, it is possible to program the transmitted

frequency so it will cancel most of the doppler shift when it arrives at the vehicle.

However, accurate doppler data are needed in order to establish the orbit. In

this critical period, if tracking must be performed via the omnidirectional

antenna for some reason, the foregoing assumptions are all justified. The

Earth transmitter must be swept over the furl doppler range. This may be done

once per roundtrip interval, following which the frequency is held fixed. The

Earth station then waits for the return signal, which carries with it a telemetered

indication of lockandfrequency offset, among other things. With this informa-
tion, the offset may be reduced.

The approximate hold in range is

429,000
- 68.3 kc/s (26)

2

3) Derivation of loop time constants. Using the optimum filter for a sec_

ond order loop as derived by Jaffee and Rechtin(ref. 7) the transfer function for

the loop of figure 35 becomes,
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H(s)

3
l+--s

4 B L
=

3 9 S2I+ _ s+

4BL 32B 2

(Z7)

where the noise bandwidth, 2 B L , is defined by

1 f+ioo2B L IH(s)l 2 ds
2hi

(Z8)

Forapracticalfilter transfer functionsuch as

l+T2s

F (s) =
l+TlS

(Z9)

the loop transfer function would be

I +T2 s
(30)

I+ +T s +

Using equation(30)in equation(Z8)and evaluating the integral from the table

on page 369 of ref. {8} the noise bandwidth is found to be

(T I )

T22+-T-
2B L = • (31)

(T 1 )

2 k (1/k + T2)

Comparison of equations (27) and (30) shows that, for large k (RADS)

T2 = _ (32)
4B L

For the transponder 2 B L = 20 cps so T 2 = 0.075 second and T 1 = 1210 seconds.

(33)

-98-



4) Variation of transponder noise bandwidth as a function of input S/N ratio.

The presence of the limiter at the phase-detector input causes the loop gain to

vary with the input signal=to=noise ratio. This variation of loop gain causes

the noise bandwidth to vary, becoming wider for a large (S/N) in or large loop

gain. The relationship between noise bandwidth (2BL), and loop gain k , will

be derived first. For T 2 > > 1/k equation (31) can be written approximately as

kT2 1
2B L = -- + (34)

2T 1 2T 2

and

1 T2

2B L - --
2 T 2 (2 T 1 )k

(35)

We can then write

1
2 B. -

2 T 2 k
= -- (36)

kth

where the subscript th identifies the threshold values.

From equation (32)

T 2
4 BLt h

(37)

or

1
m

2T 2

2 BLt h
(38)

Then from equation (36),

= k [2 2BLth t + --2 BL k th BLth 3

(2B L) = (2BLt h ) 1/3 + 2 k th

2 BLt h
(39)

(40)

The phase detector gain, K d , is proportional to signal amplitude. The signal

amplitude is kept constant at the limiter input so the limiter output equals the
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limiter supression factor,a , times

Kd_ a
Sa Sa 1

a2=

Pa Sa + Na N/ _
1+ W)

the constant input signal. Therefore,

(41)

(See figure 36) [(S/N) b] = 0.00 db. In the transponder the loop bandwidth= Z0 cps

while the bandwidth at the loop input is

3kc • So(S/N) b 20 S i
a 150

or -21. 76 db. Since the limiter output always is within 3db of its input, the input signal

to noise ratio for the threshold condition is such that the following approximation

is valid.

a

So from equation (41)

Then

in (ref. 9).

[ath = 4 N
1 + --

in th

For (S/N)inless than -10 db this equation will hold.

1

a = 4 N
1 +

rt in

Kd a

Kdth ath f 4Ntn in th

1 +

rr in

1/2

(43)

(44)

(45)

(46) i

The only factor of loop gain, k , that varies with (S/N)iniS K d so

k Kd

k th Kdth

and the above equation

can be used to compute the change in 2B L as (S/N)in varies.
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The loop is considered to be operating at its threshold when the signal-to-

noise ratio in the bandwidth 2 B L is one. Since the predetection bandwidth is

3Kc, the threshold at the limiter input is _--_n ] (1) = 150 from which

E1 + -- (150) . / (47)k
-- [1 + 4/n (150)J 1/2 13.8

4 N
kth 1 + --

in

and from equation (405 2B L = (2BL)th

noise ratio.

(9. 25)= 190.4 cps for large input signal-to-

5) Derivation of carrier loop thresholds. In order for the communica-

tion link to be useful, the carrier loop must not only lock, but it must also stay

in lock long enough to permit accomplishment of the function for which the link

is being used. These functions are: (i5 transmission of commands from the

DSIF to spacecraft, (2) transmission of data from spacecraft to DSIF, (3) two-

way coherent measurement of doppler, and (4) coherent ranging.

The accomplishment of cases (2), (3), and (4) in orbit will be shown pos-

sible only by use of the high-gain antenna. In this circumstance, there is little

problem in meeting the carrier threshold requirements. In transit, the high-

gain antenna will be used in any case, since it will be so frequently required

for the transmission of data.

Case (15 is of interest both in transit and orbital conditions.

a5 Orbiter carrier loop threshold during receipt of commands. If we as-

surne that about 60 seconds are required for I_N code locking (63 PN bits per

PN word, and 1 -cps synchronizing loop bandwidth) and 40 seconds more are al-

located to command reception, lock must then be maintained with reasonable

probability for 100 seconds.

Loss of lock must be defined, and it is difficult to do so. Our definition

will be that lock is lost when the instantaneous phaseerror becomes equal to or

greater than 90 degrees; this is satisfying not only because at this point the gain

of the phase detector {hence, the restoring force in the loop) goes to zero, but

because even if the loop returns to the locked condition some of the command

data willhave been lost. When the carrier phase error is 90 degrees, the

s ubcarriers vanish.

Viterbi (ref. 105 gives an expression for the mean time to reach an ar-

bitrary phase error, starting from zero, for a first-order loop, and indicates

that for large SNR the same expression holds roughly true for a second-order

loop. Solving this expression for 90-degree phase error results in the graph

of figure 37. Defining threshold SNR as that which will result in a 90-degree
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phase error once in 100 seconds, we find that for 2BL = 20 cps, the loop SNR
must be 7. 8 db.

Some experimental results given by Weaver (ref. 11) and figure 38 indicate

that second order effects in practical circuits may cause the theoretical figure

to be degraded. He has measured the SNR required in order for the probability

to be 10 percent that phase error will exceed 90 degrees. Since number of

independent samples, or time, is not a parameter in his results, they only can

have meaning for each independent sample of the loop output. These occur at

a rate of approximately 2BL per second.

If the average phase error is zero, as is the case when the loop filter

contains an ideal integrator, and if a limiter is incorporated, Weaver's results

indicate that when the loop SNR is about 5 db, the probability is 10 percent

that any one independent sample of the output will have a phase error of 90

degrees or more.

We wish to find the SNR required for a cumulative probability of 50 percent

that 90 degrees willbe exceeded over aperiod of 100 seconds, that is, over a

total of 2 x 100 x B L independent samples. The cumulative probability Pcum is

given by

Pcum = 1 - (1 - p)200 BL (48)

where p is the probability for one sample hence

1/20O BL
p = 1 - (1 - Pcum)

In the case Pcum is O. 5, n is ZOO0,

p = 2.5 x 10-4 ,

and

(49)

Now, the approximation that the probability density function of phase is normal

must be made. Then, in the phase error distribution for 5 db SNR, the prob-

ability is 10 percent that a 90-degree error is exceeded; hence, the rms value

of the distribution must be 55 degrees. In order to narrow the distribution so

that the probability is 2. 5 x 10 -4 that 90 degrees is exceeded, the new rms

vahe must be Z5 degrees. The noise power must therefore be reduced about

4 times, or 6 db, below the value given by Weaver. The required SNR at

threshold is therefore approximately 11 db.

There is a 3.3-db spread between these two definitions of threshold, and

in the absence of better information the more pessimistic should be chosen.
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If the loop does not contain a high gain integrator, there will be mean phase

error due to the doppler offset. The steady-state phase error is

0 sin-1 D 17,000 × 2n= -- = sin -1 = sin -1 (0.25) = 14.5 degrees (50)
K 429,000

where

D = doppler shift (rad/sec) and K = loop gain.

Weaver's results indicate that the threshold is thereby raised 2. 5 db above the

value it has when the offset is zero. The incorporation of a high-gain integrator

eliminates this steady-state offset and the required increase in threshold SNR.

It seems essential therefore that a high-gain integrator be incorporated in the

carrier tracking loop. Even so, an offset will arise due to the doppler rate

encountered in the orbit. The worst value of this rate is 225 rad/sec, leading

to a steady-state phase error of

I_ 225
0 = sin -1 _ = sin -1 sin -1 (0.69) = 44 degrees (51)

W2 ( 18 )2

@

where D = doppler rate and W N = natural loop frequency.

Lock may not be sufficiently sustained in the high-rate part of the orbit to

permit command reception, because of the 8. 5 db degeneration. However, in

the low-rate sections of the orbit, the effect of the integrator will be felt, lower-

ing the threshold and permitting commands to be received with reasonably high

probability.

3. The PN synchronization loop.

a. Evaluation of average PN code acquisition time . After the space-

craft PN generator is in phase with the PN component of the received signal,

the synchronizing loop can be treated as a normal loop except that pull-in must

be fast; no slippage is allowable. As can be seen from the loop error function,

if one-half cycle of slippage occurs from the lock point, the PN codes will no

longer be in phase and lock will be impossible. The frequency to which the

loop locks is always the same, Af away from the VCO idling frequency. The

offset is provided between the received frequency and the VCO idling frequency

so that the spacecraft PN generator, which is driven by the VCO, will run at a

different rate than the transmitter PN generator; and the two codes will slip

past each other until they come into phase, at which time lock should occur.

It is desirable to have the offset frequency, Af , as large as possible so that the

codes will come into phase quickly. The average acquisition time is the time

required for the local PN code to slip half its length with respect to the received
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PN code, since all starting phase discrepancies are equally probable. (The

actual pull-in time once the PN codes get in phase will be a negligible part of

the acquisition time. )

Richmond has stated that for no-slip pull-in

Aco < T2
(52)

where T 1

F (s)

T 2 =
4B L

so equation (52) can be rewritten as

As shown elsewhere the loop transfer function is

1 + s

l+T2s
H(s) = =

T1 s22 1 + +
1 + T2s + "-_

and T 2 are defined by the filter transfer function.

1+ T2s

= and 2B L is the noise bandwidth. This gives
1 +TlS

3 T1 9
and

G 32 B 2

= 0.425 B L •

s 2

(53)

(54)

(55)

Figure 39 shows a plot of average acquisition time versus noise bandwidth.

It was obtained from the following considerations. The frequency of the local

clock is fL = fr +Af where fr is the frequency of the received clock. The period,

PL, of the local PN code in terms of Pr, the period of the received PN code is

PL = Pr

The number of times the local PN code must cycle to gain one bit with

respect to the received code is

N
Pr/ni 1 fL

Pr - PL n i A f

(56)

where ni is the number of PN bits per cycle.
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The average acquisition time is

nl 1 Pr fr

Aav e = _ Np L =
2 2 hf

(57)

If hf is taken as 0.4 B L the average acquisition time becomes

5 Pr fr

Aav e - o

4B L

(58)

Pr = 0.75 sec and fr = 20-2/3 cps will be shown to be suitable values.

5 (3/4) (20-2/3) 19.375

Aav e = _- B L = BL

Therefore,

(59)

BL = 0. 5 will be used. Hence, Aave = 38. 75 seconds which is longer than the

30 seconds required to receive a twenty information bit command word.

From equation (53)

3 9
T 2 = -- seconds, T 1 = -- G seconds (60)

2 8 °

The loop gain can be found from the allowable steady-state phase error.

a one degree phase error,

_'_or

Ao 2.(0.2) (61)G = - 72
¢ 2 n (1/360)

which sets

T 1 = 81 seconds (62)

b. Threshold. It was given that the probability of losing lock in the

synchronizing loop during a command could not exceed 10-3

30 x 2B L
Hence (I - PL) = 0.999

where the length of the command frame is 30 seconds. For 2B L = 1 cps

(1- PL)30 = 0.999
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whe nce

0.001
PL =

30

3.3 x 10 -5

Using the same technique as that in the design of the carrier loop, we find the

RMS angle is 22. 2 degrees. This requires an increase in threshold by

= ""(55_ 2 = 6.1 .

\22.2/

i.e., by 7. 85 db.

Thus, the synchronizing threshold (with the additional degradation of 3 db due to

PN correlation) is 5 + 7. 25 + 3 = 15.85 db.

4. Command data threshold. Using parity for every information bit, a

bit error probability of 2.6 x 10-3 is required.

Due to the noisiness of the Bynchronizing loop,the differentially coherent

curve is used.

Threshold = 7. 22 + 1. 5 = 8.72 db

Data Rate = 2/3 information bit/sec.

a. Selection of required command error detection technique. It is shown

that for the required probability of losing lock in the synchronizing loop andfor

the lowest value of probability of receiving without error, a conlmand word

consistent with the required minimum word acceptance probability, that the

command decoder needs an error detection capability. Three error detection

techniques were considered: (1) a simple parity check on the information bits,

(2) a parity check bit for each information bit, and (3) a combination of the
first two. Number (1) was inadequate, number (2) was satisfactory, and number

(3) was appreciably better than required.

Let

P1 be the probability of a data bit error.

PB be the probability of an information bit error.

Qw be the probability of a word being received correctly.
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Let

Pw be the probability of a word being received incorrectly.

QB be the probability of no error in an information bit.

QA be the joint probability of not losing synchronization and not detecting

an error.

Po be the probability of losing synchronizing lock during a command word.

It is required that the probability of not losing lock in the synchronizing loop

during a command word be 0. 999. It is also required that QA shall be 0.9.

Finally, the word error rate for a system using an error detection scheme

shall be the same as for a system without such a scheme in which the bit error

rate is 10 -5 .

For a non=error correcting system with 20 bits per word we have a word

error rate

Pw _ 1 - Qw

1 - (1- PB )20

= 1 - (1 - 10-5)20

20 x 10-5

1) Simple parity check on total number of information bits.

21 information bits are received.

Qw = (1 - P1 )21

Als o

QA -- (1- Po ) (Qw + Pw) -- 0.9.

In this case

Approximately

(I - Po) (Qw) -- 0.9 .
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Hence,
0.9

Qw =
0.999

0.9009009

whence

P1 = 4.95 x 10 -3

For this format

12 -Pw 1/2 (k) (k + 1)P (1 Pl)k-1

where

k = 20

Pw = I/2 (20) (21) p2

-- 4.68 × 10 -3

(1 -- Pl )19

This word error probability is too high.

Z) Parity check for each information bit. In this case, 40 data bits are

received. A parity check bit is sent with each information bit. That is, a 0

is sent as 10 and a 1 as 01. This means that an information bit will be incor-

rectly interpreted if and only if both the information bit and its parity check

bit are incorrectly detected. Such a scheme always will detect an odd number

of errors and it will detect most combinations of an even number of errors.

Then the probability of an error in an information bit is Ph = p2 . The prob-

ability of a k bit word being received correctly is Qw = Qb_ = [ (1 - P1)2] k

(1 - 2k P1), while the probability of receiving it incorrectly is Pw = [P12 + (1 -

Pl)2]k _ (I - P1 )2k

whe nc e,

Pw kp2 [I - (2k - 2) P1 ]

Qw -- (I - Pl )40 = 0.90090

P1 = 2.6 × lO-3

Pw = 20 Pl 2 [1 - 38PI ]

= 1.22 × 10 -4
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This is very close to the required value.

3) Combination of the first two methods. The value of Pw can be reduced
even more at low cost b 7 transmitting a parity check bit for all the information

bits. (This bit would be transferred as an information bit and therefore would

have its own parity check bit). This code then would detect odd numbers of

errors in the reconstructed information bits. The result of combining these

two error-detecting schemes is a triple error-detecting code that also will
detect any other errors.

In this case,

Pb - p2 , Qw = Qb k + 1 = [(I-Pl )2] k + 1

or

Qw 1 -2 (k + 1) P1

k + 1
Pw _ ( 2 ) (p2)2 [(I- Vl)2] (k- I) +

k 1) ...+ ( _- (p2)6 [(1-Pl)2]( k-5)+

1/2 (k) (k + 1) P14 [1-(2k -2) Pl ] "

k+l
( 4 ) (P12)4 [(1- Pl)2](k-3)

Notice that the probability of incorrectly receiving a command word has been
greatly decreased by the addition of two more redundant bits.

Qw = 1-2 (k + 1) P1

= 1 - 42 P1

Pl = 2.5 x 10 -3

Pw = I/2 (20) (21) p4

= 7.46 x 10-9

= 0.90O9009

[1 - 38 Pl]

which is considerably less than the required value of 20 x 10 -5 .

b. Coding Voyager communications. The ranges over which the Voyager

communications will work are large. Naturally, the question of coding com-
mand or information data arises. And if this feature were shown to be
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necessary, the selection of a method of coding poses a problem. The require-

ments for the command link are examined first. One of the primary functions

of the command link would be to rectify failures that could occur in many of the

equipments on the lander. In the case of the Martian lander, which has and

requires a self-righting capability, a hemi-omni antenna will be used.

At the greatest ranges (of the order of 360-millionkilometers), it can be

shown that the power required for carrier lock exceeds that required for data

and synchronization by some 8 to i0 db. This fact, coupled with the desire to

maintain a high degree of reliability and simplicity in the command receiver,

indicates that any complex coding of the command data is not merited.

A very similar argument applies to the transmission of low-rate engineer-

ing status data through the lander's low-gain antenna directly to the DSIF. In

addition, the slow rate of change of these data and the fact that communication

times exceeding four hours are possible, suggest that alternative mehtods of

data reduction at the DSIF would be possible.

Coding could be applied with advantage to the high-gain lander data link

with only slight additional complexity. The extra equipment required at the

DSIF is not considered to be a problem.

I) Coding methods. Coding methods can be divided into two broad cate-

gories depending on whether coherent detection is an integral part of the de-

coding process: (1) incoherent error detecting and correcting codes are de-

coded subsequent to coherent detection of individual bits, and (2) coherent

biorthogonal codes are decoded coherently by maximum likelihood detectors.

The coherent codes are really extensions of the ordinary PCM-PSK transmis-

sions, having a more complex envelope.

As an example of the latter, the digilock coding system consists of an

alphabet of 32 different pulse trains. Each group of 5 information bits, taken

together, determines which of the 32 biorthogonalwave forms will be trans-

mitted. The selected pulse train modulates the phase of the transmitter. At

the receiver, the incoming IF waveform is passed through 32 matched filters,

each matched to one of the permissible transmitted.waveforms. It is hypo-

thesized that the signal which was transmitted is the one matched to the filter

having the greatest output. This decision results in the emission of a particular

5-bit pulse train from the receiver, corresponding to the original group of 5

information bits in the transmitter.

The incoherent codes are efficient as long as the SNR does not fall below

the design value. If it does, the probability of more errors occurringperword

than the code was designed to handle becomes large and the error rate rapidly

increases. The coherent coding methods do not show the same kind of improve-
ment threshold.
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The digilock coding system requires only a small investment in extra

equipment and power at the transmitter. The receiving equipment is relatively

complex. It appears well suited to the task of transmitting data from vehicle

to DSIF where the heavier decoding equipment is located in Earth. When the

data rate is high and almost all the power in the transmitted signal resides in

the data, and when the received bit-error rate is in the order of l0 -3, use of

a 5-bit digilock system will reduce the transmitted power requirement by 3 db

or increase the system margin by the same amount. (See refs. 12 and 13).

According to the results of this study, error-correcting codes with equal

improvement possibilities have not been instrumented for space vehicles.

In the case of transmission from vehicle to Earth via the omnidirectional

antenna, where most of the transmitted power resides in the carrier and re-

latively little are the data, improvement due to coding is hardly worth the effort;

because it improves only the SNR in the data channel, whereas improvement is

really needed in the carrier channel.

5. The ranging subsystem. Basically, the ranging system can be de-

cribed as follows. A pseudonoise waveform l09 bits long is transmitted from

Earth to the spacecraft at a rate of l06 bit/sec. A code generator in the space-

craft is synchronized with the received code, thereby permitting a clean repro-

duction of the received signal to be retransmitted by the spacecraft. By means

of phase lock techniques, a second code generator on the ground is locked to

the received code. The two ground-based code generators then are compared

in phase to determine total transit time or range. The code acquisition both in

the spacecraft and on the ground is accomplished in a manner very similar to

the acquisition of the PN code in the command demodulator and detector. The

acquisition procedure is complicated by the need to acquire rapidly and to keep

the equipment in the spacecraft as simple as possible. Reference (14) claims

a range measure to a resolution of 1. 25 meters by considering the phase shift

in the carrier as well as in the codes.

Figure 39A shows a block diagram for the ranging channel subsystem.

The wideband ranging signal is taken from the transponder at the output of

the first IF amplifier, passed through an isolation amplifier, and run into a

mixer. To accommodate this signal, a bandwidth of 3. 5 mc was picked for the

first transponder IF amplifier. The signal can be written as

IF -- A sin [ wit + m [cos Wct] RC (t)l (63)

where mis the modulation index, RC(t) is the binary ranging code and cos Wct isa

shorthand notation for the square wave clock. The other input to the mixer

comes from the phase switch which can be thought of as a balanced modulator,
and can be written as

Ref = B RC (t + r) cos wit • (64)
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The mixer output is the product of equations(63) and (64).

AB

P -- _ RC (t + r) sin m RC (t) _os Wct ] . (65)2

Since sin (-x) --- sin x equation (65) can be rewritten as

tr fP = -- RC (t + r) RC (t) sin m [cos Wct 3 • (66)

]__..-AB mlClearly if r--0, P = [_2 sin [cOS Wct ] •

The possible values of RC (t + r) RC (0 are shown below in (a). The probability of

these values are shown in (b) below.

RC (t +r) RC(t+r)

1 -I 1/2 i/2

1 I 11 -1 1/2 111/4 1/4

RC (t) Re (t)

-1 - 1 1/2 ll/4 1/4

Value Chart Probability Chart

(a) (b)

Evaluation of RC (t) RC (t + r) Product

Therefore the expected value of the coefficient of cos Wct in equation (66) is,

E1AB sin m 1)- + (-1) = 0
2 2

for the case where r is not zero.

The phase-lock loop, which has a noise bandwidth of one cycle, acquires the

clock, cos w c t, whenever the locally generated ranging code is in phase with the

received ranging code. As in the command synchronizing channel, the code

generator is driven by the loop VCO. The correlation detector indicates lock.

The receiver-code combiner, code-component generator, and transmitter-

code combiner are rather complex, due to the requirement of a short acquisition

time for the very long ranging code.
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After acquisition, I the ranging system operation can be described as follows.

There are three ranging code generators, two on the ground and one in the

spacecraft. The signal from the transmitter coder (XC) is received by the

spacecraft where the carrier is regenerated by the spacecraft coder (SC). The

carrier is then modulated by the (SC) signal and retransmitted. On the ground

the received signal is again regenerated by the receiver coder (RC). The

phase difference between the outputs of (XC) and (RC) is a measure of the

transit time to and from the spacecraft. If the ranging code is transmitted at

106 bits/sec a phase difference of one bit between the outputs of (XC) and (RC)

corresponds to a range of 150 meters.

P_eference (14) states that relative displacement can be measured to within

one-half a digit period. This corresponds to a range resolution of 75 meters.

It also states that a vernier, based on the KF phase displacement, will permit

a range resolution of 1.25 meters.

In their experimental program, JPLhas used a ranging code containing 109

bits and requiring 103 seconds to transmit. This extreme length and the very

narrow noise bandwidth in the ranging channel's clock loop would lead to a

fantastically long acquisition time if the scheme used in acquiring the synchro-

nous code in the command receiver were used here. To avoid this, the ranging

code is constructed from a set of shorter codes which are acquired sequentially.

This implies a need for operating in several different modes, each characterized

by a different code, during acquisition. A further requirement on the ranging

system is that the (SC) and the associated logic circuitry dictated by the multi-

mode operation be as simple as possible. To accommodate this requirement,

the (RC) was given a great deal of flexibility.

In the JPL system, the (SC) operates in only three modes (ref. 15, page 76).

In mode I, the transmitter code combiner output consists of the clock alone.

In mode II, it consists of an acquirable code (reference 16, page 36) which is

a function of all ranging code components, and in mode III, the code combiner

output is the ranging code itself. While the (SC) is in mode II, the (RC) passes

through eight different modes, one for each of the component codes, one for the

clock, and one for their combination. The amount of correlation between the

(SC) acquirable code and the (RC) signal determines the proper time for (RC)

mode switching.

6. The command system

a. General characteristics. Commands will generally be received

by a separate command system using a doubly redundant, crossed bi-cone,

omnidirectional antenna system. The receiver for this system is similar to

the receiver used in the transponder discussed in the previous subsection.

The telecommunications design control chart for this system is shown in table 7.

At a command bit rate of 2/3 bit/sec, a worst case carrier performance margin

of -1. 28 db can be expected at the worst case range of 3. 6 x 108 km. The

details of command demodulation and detection are now discussed.
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PROJECT:

CHANNEL:

MODE:

TABLE 7

COMMAND TELECOMMUNICATIONS DESIGN CONTROL CHART

VOYAGER

MARS ORBITER, COMM.AND LINK

S-BAND OMNI-ANTENNA

Nominal Tolerance Wor st

No. Parameter Value (decibels) Value

1. Total transmitter power +80.0 dbm + 0. 1 + 79.9 dbm

Z. Transmitting circuit loss -0.6 db _:0.2 - 0.8 db

3. Transmitting antenna gain +51.0 _-0. 5 +50. 5 db

4.

5,

6.

7,

8,

9.

10.

Transmitting antenna pointing loss

Space loss = 3Z. 46 +Z0 log F+Z0 log R
F ZIZ0 mc, R 3.6x108km

Polarization loss

Receiving antenna gain

Receiving antenna pointing loss

.__ ..-

-270.18 db .... 270. 18 db

-I. 5 db ±I. 5 -3.0 db

+3.0 db +0.0 +Z. 0 db

-I.0

-I. 5 db 4-1. 5 -3. 0 db

Receiving circuit loss -0. 1 db maximum -0. 1 db

-Z19.88 db -Z44. 58 dbNet circuit loss

11. Total received power

lZ. Receiver noise spectral density (N/B)

T system NF 4db

- 139.88 dbm

Carrier APC noise (ZBLo = 1.0 cps)

- 169.8 dbm

+3.7

-4.7

+3.8

-4.8

4-1.0

-144.68 dbm

-168.8 dbm

Carrier Performance

13. Carrier modulation loss -Z. 0 db .... Z. 0 db

_3, 8 -146. 68 dbm
14. Received carrier power -141.88 dbm ,4.8

+I0.0 db in IZ + I0. 0 db

Carrier track (1-way)

Threshold SNR in ZBLo

15.

¢

16.

"i 1'7. i Threshold carrier power18. Performance margin
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TABLE 7 {Concl'd)

No.

J.

19.

20.

21.

22.

23.

24.

Parameter

Carrier - Track {2-way)

Threshold SNR in 2BLo

Threshold carrier power

Performance margin

Carrier - command

Threshold SNR in 2BLo

Threshold carrier power

Performance margin

Subcarrier Performance

Command Channel

25. Bit rate (l/t) 2/3 bps

26. Required ST/N/B Pe = 2.6xi0 -3

27. Threshold subcarrier power

28.

29.

Nominal

Value

Received data subcarrier power

+12.4 db

- 147.4 dbm

+ 5.72 db

Tolerance

{decibels}

±1.0

_-2.0

+5.8

-6.8

Worst

Value

+ 13.4 db

- 145.4 dbm

- 1.28 db

-I. 76 db .... I. 76 db

+7.22 db +I. 5 + 8.72 db

-0.0

-160.82 dbm - 159. 32 dbm+1.5

-I.0

Modulation loss -3.0 db .... 3.0 db

-142.88 dbm -147.68 dbm

30. Performance margin

Synchronization channel

+3.8

-4.8

31.

32.

33.

34.

35.

+17.94 db +4.8 + 11.64 db

-6.3

+0.0 db e-O. 2 + O.Z dbSync APC noise BW (2BLo = I cps)

Threshold SNR in 2BLo +14.85 db • I. 0 + 15.85 db

Threshold subcarrier power -154. 95 dbm ±2.2 - 152.75 dbm

Modulation loss -3. 0 db ' .... 3.0 dh

-142.88 dbm - 147.68 dbmReceived Sync subcarrier power

36. Performance margin

+3.8
-4.8

L
+12.07 db ' +6.0

[ -7.0
+ 5.07 db
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b. Command demodulation and detection

I) General system characteristics. A block diagram of the command

demodulator and detector (CDD) is shown in figure 40. The signal removed

from the transponder phase-detector output can be represented as the product

of D, the command data, PN a pseudo-noise code and (2 fs) the clock, multiplied

by two in frequency. All three of these are binary waveforms taking on only

the values plus one or minus one. A PN generator driven by the loop VCO is

included in the CDD. If it is assumed that the locally generated PN signal is in

phase with the PN component of the incoming signal, then their product will be

plus one and the PN factors throughout can be disregarded. The input signal

is run through parallel channels, one of which is shifted in frequency by fs •

The two channels are then filtered leaving D times the fundamental of the fs •

(The period of D is much longer than that of fs • ) Multiplication of these paral-

leled signals cancels D, since D 2 = 1, and leaves only fs which is acquired by

the phase lock loop. The PN generator has associated with it a word detector

which produces a synchronization pulse, once each cycle of the PN code. This

code period is also the bit period of D.

The synchronization pulse is used in the command bit detector to discharge

the integrate-and-dump filter and for sampling. The quadrature detector pro-

duces an output whenever the synchronous phase-lock loop loses lock. This

output is used to prevent the acceptance of a command word. If the locally

generated PN code is not in phase with the received PN code, the loop input will

be noise-like, preventing lock. In this case, the VCO will generate a frequency

slightly higher than twice the clock frequency. This will cause the PN generator

to speed up until its output is in phase with the received PN code. The CDD,

therefore, has three outputs which are fed to the command decoder: the se-

quence of command bits, the synchronization pulse and the out-of-lock signals.

The primary difference between this subsystem and that used in the Mariner is

that here one input signal contains both the synchronous and data information.

This is discussed in more detail in a later subsection.

The transmission rate for the information bits is 2/3 bits/sec. The noise

bandwidth in the synchronizing loop was setat 1. 0 cps, which leads to an acquisi-

tion time in the synchronizing a loop of 38.8 seconds, which is longer by 8.8 seconds

than the transmission time for a 20-bit command word.

The detection scheme illustrated in figure 40 is that proposed in ref. (14).

It has the advantage that less power is required than for the arrangement used

for Mariner R. A comparative analysis of the synchronization properties of

the two systems is now performed.

c. Comparative analysis of the synchronizing logp lock characteristics

for Mariner and Voy_.ger. i The objective of this section is to show that the

locking characteristics for the loop proposed in ref. (14) is identical to that

previously used for Mariner R.
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Synchronization pulses are provided in the spacecraft by the circuit of
figure 41. The code generator has associated with it a word detector which

produces one synchronization pulse for each code cycle. When the code gen-

erator in the spacecraft is running in synchronism withthe code generator in

the transmitter, the synchronization pulses will occur at the end of each com-

mand bit. The code generator is driven into synchronism with the transmitter

code generator by the VCO which follows the transmitted clock signal. The

double-loop configuration of figure 41 was used in the Mariner because it is

very difficult to build a wideband multiplier with a dc output when the input S/N

is low. The operation of the double loop now will be considered in detail.

If the loop is not in lock there will be a time difference, r , between the

incoming code and the locally generated code. The output of the first mixer
will then be

code (t)clock (t) code (t + r)

This signal is mixed with a locally generated clock (t) which has been shifted a

quarter of its period, P . The error signal driving the VCO is the integral of

this second product. {The integration is due to the filter• )

f pE(r) = code(t) clock (t) code (t + r ) clock (t + + r) dt (67)
4

period = Pl

The period, P1 ' is a multiple of the period of the code, clock product. (This
integration period is necessary to get the error function which JPL derived and

experimentally verified.) The integral of equation (67) can be approximately
factored as

Is J• p (68)
E (rA) = code (t) code(t +r) d clock(t) clock (t + 4 + r) d •

P1

The two factors of equation (68)can be recognized as the correlation functions

of the code and the clock, respectively. The correlation of a square-wave clock

with itself shifted P/4 is shown in figure 42.
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As an example the code will be taken to be anm-sequence of length 7. The
code and its correlation function are shownin figure 43.

If the clock period equals two code bit periods the composite error function

will be as shown in figure 44. (Pl = 14 code bit periods. )

When E (r) is approximated by the product of the two correlation functions

P1 (PI + I)

b = =105 while a = P1 = 14 . When E { r) is evaluated exactly from2

equation {67) the shape of E(r) is the same as for the approximation. However,
b = 12 and a-4.

P1 +1
For the approximate correlation function, b/a -- _ which gets large for

2

Pl , so that the low level ripple becomes less significant. Therefore, in the

practical {long code) case the correlation function can be approximated by
figure 45.

The vertical axis of figure 45 can be thought of as the VCO frequency axis

since this coordinate is proportional to the VCO control voltage. The frequency

fo is the VCO offset. Consider the effect of operating at certain r. For r = r1 ,

if the LO {the code generator) starts to gain {decreasing r) the VCO will speed
up decreasing r even more. If initially the J_X) started to fall behind (increas-

ing r ) the VCO would slow down causing a greater increase in r. Therefore,

r1 is an unstable point. For r =r 2 _ if the lAD starts to gain it will continue

undisturbed. If it starts to fall behind, the VCO will speed up forcing r back

toward r2 . For r= r3, if the I.K) gains, the VCO will speed up causing it to

gain more. If the LAD is falling behind, it will continue undisturbed. For r = r4,

if the IX) starts to gain, the VCO slows down while if the LO starts to fall be-

hind the VCO speeds up so r4 is a stable lock point.

For r5 =r, if the IX) starts to gain, it will continue undisturbed while if it

starts to fall behind, the VCO will slow down causing it to fall farther behind.

For r = rS, if the IX) starts to gain the VCO will slow down forcing r back to r6 .
If the LO had started to fall behind it would have been undisturbed. It can now

be seen that r4 is a stable point, r2 is quasi-stable for the case where the VCO

offset frequency is less than the lock frequency while r6 is a quasi-stable point

for the case where the VCO offset frequency is greater then the lock frequency.

The existence of the quasi-stable points is a serious problem since JPL

has shown experimentally that the loop will often lock at these points. It can

be seen from figure 45 that if the waveform between r3 and r5 was repeated

every Po sec, the number of stable points would be doubled and the quasi-stable
points would be eliminated. As it is, the alternate waveforms are inverted.

Considering this waveform {from r3 to r5 in figure 45) in more detail it is seen

to be the product of the two waveform segments shown in figure s 46 {a) and (b).
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The ratio of code bit period to the clock period is an important parameter

and it seems that the selected ratio (two code bit periods equal to one clock

period) was a good one since an increase in the clock frequency by a factor of

two would require the multiplication of waveforms (a) and (c) in figure 46. This

would introduce a quasi-stable point in the immediate vicinity of the stable lock

point. If the clock frequency had been decreased, the composite correlation

functions would be the product of waveforms like (a) and (d) in figure 46.

Since the peaks of the two factors are widely separated, the slope (Af/r) is

less than it need be. (Notice how the factorization of equation (1) facilitates the

analysis of this waveforrr_ ) Having the clock period equal to two code bit periods

means that a code period will not be an integral number of clock periods since

the PN code has an odd number of bits. It is this fact that causes the segment

of triangular waveform of figure 45 to alternate in sign. Recalling that the

waveform of figure 45 is the product of the waveforms of figures 42 and 43 and

noting that the clock has no parameters that can be varied it appears that what is

needed is a code with an autocorrelation like that of figure 47.

JPL found that the term-by-term product of an m-sequence with the clock

gives such a code. If the m-sequence, apseudo-noise code, is represented by

the letters PN and the clock is represented by fs , the modified code can be

written as PN* -- PN x fs "

Equation (67) can now be written as

E (r) = _Pl PN* (t) x fs(t) x PN* (t +r) x fs < 90percent (t + r)dr. (69)

Consideration of the factored form of equation (69)has indicated that E(r) will

look like figure 48.

This is verified by the following calculation.

When A* B is the convolution of A and B, (PN x fs )* (PN x fs <90 degrees)gives

• .. , 0, +12,0, +4,0,-4,0, +4,0, -4, 0, +4,0, + 12,

0, - 12,0,-4,0, +4,0,-4,0, + 4, 0,-4,0,- 12,

0, +12,0, +4,...

where

(PN Xfs) is _-_--++++ ........ ++ .... ++++++
and

(PN x fs < 90degrees) is-++--+-++-+-+-+--++--++-+--+-+-+ •
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These were found from

and

PN: ...... ++++--++

fs: "'++''++''++''++

fsL90degrees: +--++--++--++--+

(PN* x fs)* (PN* x fs < 90 degrees) gives

.... 0, +16, 0,0,0, 0,0, 0, 0,0,0,0,0,- 16 ,

0, + 16, 0, 0 ....

where PN* = PN x f ,
S

This VCO control voltage, which has a stable lock point every PN code

period and no quasi-stable lock points, is the one used by JPL in the Mariner

spacecraft. Figure 49 shows the implementation used by JPL. Although the

ninety degree phase shift is now associated with the received wave, equation (69)

still applies, the factors are just rearranged.

Z) Anal)rs, is of proposed Voyager loop. For the Voyager, it is

proposed that D(t) modulate the synchronizing code. This scheme shown in

figure 50 requires less power but does introduce complications in the

synchronizing loop since D(t)must be removed from the incoming signal before

the loop can lock.

Operation of the loop depends on the filters A and B. To determine the

amplitude of the output of filter A, the multiplier output will be multiplied

by fs, the filter's center frequency, and then integrated.

R 1 (r) = f [D(t) PN* (t) fs (t +P/4) PN*(t + r)] fs (t + P/4) dt (70)

where PN* is the synchronizing code

fs is the square wave clock

P is the clock period.
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(P equals twice the bit period of the PN* code)

Since D(t)

leaving,

is a low frequency modulation it can be taken outside the integral

R 1 (r) _ D f PN* (t) PN* (t + r)7 (71)

which is just the correlation function of the synchronizing code.

sketched in figure 51.

It is

A similar analysis of the output of filter B which has its center frequency

at 2 fs gives

R 2(r) = f [D(t) PN*(t) fs (t + P/4) PN* (t + r) fs(t +r)] 2fs(t ) dt (72}

whet e

2fs(t) -- fs(t) fs (t +p/4)

R 2 (r) _ DfPN*(t) PN* (t + r) fs (t) fs (t +r) dt

(73)

(74)

which is just the auto-correlation of PN.

R 2 (r) _ D f PN (t) PN(t + r) dt
(75)

since PN* --(PN) (fs) . This function is shown in figure 52.

The two filter outputs are mixed producing

[R1(r) fs (t +P/4)] [R2(r) 2fs(t)] = R I"R_ fs(t)
(76)
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where R(r)-- D(t) R " . Notice that the D% drop out. This signal then enters

the loop where it is mixed with fs (t + P/4 +r). The error function or VGO con-

trol voltage is the integral of this product.

E(r) = f R_ (r) R_ (r) fs (t) fs (t +P/4 +r) dt
(77)

= R1R2 f fs(t) fs (t + P/4 + r) dt (78)

The integral is sketched in figure 53a,and E(r) is shown in figure 53b.

Therefore, the error functions of the two systems shown in figures 49 and

50 have the same form.

d. Command decoder. The last component to be discussed is the command

decoder. Command words are assumed to be made up of 20 information bits.

Each of these information bits is transmitted as a pair of bits which will be

called data bits for purposes of differentiation. The decoder has two bit re-
constructors which convert the received data bits to information bits. Two bit

reconstructors are necessary since it is not known initially which pairing of the

data bits should be made. The decoder programer prevents the use of a com-
mand word either if an error is detected in reconstructing the information bits,

or if the synchronizing loop loses lock. The reconstructed command word

moves into a shift register which is just long enough to store the command add-

tess (7 bits for the orbiter and 6 bits for the lander). This shift register is

connected to an address recognition matrix which, when the shift register is

filled, opens a gate to route the remainder of the command word. Since the

only transmitted pairs are (1, -1) and (-1, 1), the system has an error detection

capability. The primary purpose of sending an information bit as two short

bits is to reduce the acquisition time of synchronizing phase - lock drop by a fac -

tot of 2. The lander command decoder should weigh one pound, occupy 11

cubic inches and take 5.5 watts. The orbiter requires twice as much power;

however, weight and volume are only about 20 percent greater.

The period of an information bit has been set at 1.5 seconds. Each infor-

mation bit will be sent as a pair of data bits each of which has a period of 0.75

seconds. Only the pairs (1, -1) and (-1,1) will be used to represent informa-

tion bits. The PN generator will go through a complete cycle in 0.75 seconds.

If n1 is the number of PN bits per cycle, the clock frequency, fs , will be

nl/1.5 cps with 2xPN bits per clock cycle. For convenience in building the

narrow band filters in the paralleled branches at the CDD input, n i should prob-

ably be greater than 15. The code length n1 must satisfy the relation n1 -- 2n-1

where n is some integer. As has been showrb the average acquisition time in
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the synchronizing loop is directly proportional to the clock frequency and hence

to nl. For these reasons nI will be picked to he 31 making fs = 20-Z/3 cps.

The primary advantage in sending each information bit as a pair of bits is that

it halves the period of the PN cycle and, therefore, the synchronizing loop

acquisition time. There is also a small power savings due to the error detection

inherent in this scheme. The spacecraft decoder is shown in figure 54.

It is the function of the bit reconstructor to interpret the pair (1, -1) as

a-l, the pair (-1, 1) as a+ 1 and the pairs (1, 1) and (-1, -1) as errors. Notice

of a detected error would then be sent to the programer which clears the shift

register, SR, associated with the matrix and gates off its input until the com-

mand word is begun again. Notice that the bit reconstructor must know which

pair of data bits corresponds to a given information bit. This information

could be provided in more than one way. First, the command word could be

preceded by a short code word which would, upon recognition, activate the

decoder and provide the bit reconstructor with its needed information. A pos-

sible prefix, suggested by JPLis (-1, -1, -1, 1, 1, 1,). When no command is

being sent, the decoder continually receives plus ones. The above prefix

never could be misinterpreted as a set of data bits but use of this word would

effectively lengthen the command word by 3 bits and decrease its probability of

acceptance. Second, two bit reconstructors could be used in such a way that

they would examine different pairings of the data bits. In this case an error

would not be indicated until both bit reconstructors had found an error. If no

command word was permitted to begin with 2 plus ones or 2 minus ones (as

information bits), one of the bit reconstructors would find an error within 3

data bits and it could stop reconstructing bits, thereby reducing memory re-

quirements.

It seems that the mechanization of the second method would be simpler

than that of the first and, as mentioned before, it requires two less informa-

tion bits in the command word. For these reasons the second method is sug-

gested, in which case the work synchronization recognition block in figure 54

would be identical to the bit reconstructor and error detector.

e. Spectrum of the received command. A noise-like pulse train is trans-

mitted from the Earth to the spacecraft which, upon being decoded, provides

synchronization pulses and a coherent reference for the command detector.

This pulse train is a modified maximal-length shift-register sequence, or m-

_equence. M-sequences are often referred to as pseudo-noise and will there-

fore be represented by the letters PN. The PN is modified by multiplication

with a square wave which has a period equal to the period of one PN bit. The

effect of this is to replace each plus one in the PN by the pair (-1, + 1) and

each minus one by the pair ( + 1, -1). Also, the period of the _roduct is twice

that of the PN since the PN contains an odd number of bits (2 a-l) . Perhaps

it should be emphasized that the synchronous waveform is periodic.
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Consider the waveform shown in figure 55. The rect function has been

defined as

1
i, for Itl < --

2

rect t =

1
o, for Itl >

2

fl--(t) -- rect . - rect -

(79)

The voltage spectrum of fl (t) is given by

-nlf3r]F 1 (w) = (r sinc f r) [e-rtifr-e (80)

where

sinc fr
sinlrf r

Trfr

Equation (80) can also be written as

-2nifr + i n/2 (81)
F 1 (w) = 2/rrf sin 2 rrfr) e

The synchronizing waveformconsists of a trainofpulse pairs like those of

figure 55 with polarity determined by PN so it can be written as

2n-i

{[ ] [E t - (4k -3) r/2 t - (4k-l) r/2f(t) = a k rect . • -rect ,
r 1"

k--1

2n-1

where _ a k is the PN waveform and a k is either plus one or minus one.

k=l

By analogy with equations (80) and (81) the voltage spectrunu of f(t)

written as

2n--I
-rrif (4k-2) r + i r/2

F(w) = (2/.f) (sin 2 n fr) ) e

k= 1

can be

(83)
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The envelope of the power spectrum is now proportional to.

G(f) =
sin 4 n fr

(n f r) 2

(84)

The synchronizing waveform f(t) which i s defined in equation (8_-) phase modulate s

the carrier wo with a modulation index, m, giving as the transmitted signal,

s(t) = sin [wot + mf(t)] or
(85)

s(t) -- sin Wot cosmf + cos Wot sin mf

Notice that f(t) takes on only two values, +1 and -1.
m while sin mf = f sin m

Therefore, cos mf zcos

s(t) = (cos,,) sin Wot + f (sinm) cos wot. (86)

r/

When m =
2 the first term which is the carrier is suppressed and

s (t) = f(t) cos Wot (87)

The transponder loop locks onto the carrier and suppresses it at the out-

I °i<s) I
figure 100 on page lZ8 of ref.17) Therefore, the portion of the spectrum that

is taken from the transponder phase detector output is just the second term of

equation (86) shifted down in frequency by %

s (t) = f(t) (sinm) _,f(t). (88)

This signal is then processed by the command detector.

In the Voyager, the command word will modulate the function f(t) . The

command word is made up of a sequence of plus ones and minus ones which

change polarity only once during each period of f(t) . This does not alter the

previous results except that f(t) should be replaced by D(t) f(t) in equations

(85), (86), and (88) where D(t) is the command word.

f. S-band power amplifiers

1) General discussion. The requirements for telecommunications

of the Voyager mission include higher power than has been previously re-

quired for space missions and extreme.reliability and long operating life. When

operating at increased transmitter powers, the transmitter electrical efficiency

becomes a dominant consideration due to its influence on the size and weight

of the primary spacecraft electrical system.
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An amplitron power amplifier was selected for the S-band transmitters.

This device has an overall efficiency of 50 percent including filament power.

Two cascaded amplitrons will be operated from an individual, conserva-

tively designed power supply. The two halves of the amplifier essentially will

be identical, consisting of an amplitron and its power supply. Due to the

unique feedthrough feature of the amplitron, when either of the amplitrons is

not operated, the power output from the amplifier will be one-half (3 db down)

the maximum output power.

Three levels of power output are required, namely, 35, 70, and lZ0 watts.

The 70-watt level is required by the lander, the other two by the orbiter. The

basic configuration for all amplifiers is indicated in figure 56. The two cas-

caded amplitrons will be operated from an individual, conservatively designed

power supply. The two halves of the amplifier essentially will be identical,

consisting of an amplitron and its power supply. By exercising separate con-

trol over the two halves of the amplifier, the power output can be stepped in

three increments either automatically or by remote control through DSIF com-

mand, as a function of the communications range. The three levels of trans-

mitter power available would be the high-power levels previously mentioned

which differ by 3 db, and the driver power level attenuated by the insertion loss

of the amplifier (approximately 1. 3 db), or about 1. 5 watts.

Since each amplifier contains two amplitrons and two power supplies, it i8

useful to extend the redundancy consideration inherent in the design by consider-

ing the possibility of cross:connecting power supply 1 and tube 2, and tube 1

and power supply 2. This extends the redundancy inherent in the amplifier by

allowing for the possibility of operation (with only a 3-db reduction in power)

after a single failure of both an amplitron and a power supply. The switching

requirement for this feature is illustrated in figure 57. In the worst case it is

necessary to switch at 2. 5 kv in an argon atmosphere.

In addition to the availability of the switch, the decision would have to be

made whether to control the state of the switch internally within the amplifier

through a logic network which wQuld monitor power output and voltages internal

to the power supplies, or whether to command the state of the switch externally

to the amplifier, such as through remote command.

However, the reliability improvement with the feature of cross-connecting

is illustrated in the two equations below: equation (89) represents the situation

without cross-connecting;equation (90) represents the situation with the switch

present. In both equations Ra is the reliability of the amplitron and R is the
reliability of the power supply. Rs is the reliability of the switch wherPe relia-

bility is equal to 1, the probability of failure.
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R = I - (1 -R aRp) 2
{89}

R = [I-(1-Ra)2] [1-{I-R_) 21 R s • {90)

Preliminary analysis, based on conservative parts reliability estimates,

indicated that the amplifier, less amplitrons, will have a MTBF of 30,000

hours.

Amplitron MTBF is estimated at 33,000 hours. With proper design, the

switching mechanism to be used could approach 100-percent reliability, al-

though detailed analysis during the program will be made to substantiate this

assumption. Based upon these MTBF's and a 150-day mission, the reliability

of the configuration shown in figure 56 is, by equation {89), equal to 0.958. For

the configuration of figure 57 the reliability is by, equation {90), increased to

0. 9766. These values, though based upon conservative estimates for elec-

tronics and amplitron MTBF, already approach the desired reliability require-

rnent of 0. 995. With effective reliability and part application controls, and

moderate part improvement programs, there is confidence that this goal of

0. 995 will be met.

While the requirements indicate four different amplifier designs, namely,

35, 70, and 1Z0 watts for both the Mars and Venus orbiters and Mars lander

environments, only three designs will be developed and all designs will be

essentially qualified for both environments. The requirements imposed by both

environments will not severely influence the individual designs.

2) Detailed discussion

a} 35-watt amplitron amplifier. The 35-watt power amplifier

will use the QKS 1051 amplitron which is expected to be fully qualified in ad-

vance of the amplifier development. The basic power supply for the amplitron

has already been developed by Raytheon under a company-sponsored program.

The block diagram of the amplifier is indicated in figure 58. No circulator

is required between the two amplitron stages for isolation because the second

amplitron stage provides only 3 db of gain. The typical voltage versus current

characteristics of the amplitron and the power supply are plotted in figure 59.

In the presence of an RF drive signal, a sharp gauss line appears in the amplit-

ron characteristics at a voltage corresponding to the frequency of the drive

signal. As shown in the figure, presence of the gauss line allows considerably

more current to be drawn accompanied by increased RF-power output or

amplification of the drive signal. The amount of current drawn and the power
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output are determined by the power supply characteristic and its intersection

with the tube characteristic. Current regulation is therefore employed to

stabilize the operating current, and therefore the power output.

The amplitron power supply is an all solid-state dc-to-dc converter. The

basic power supply design has been evolved which has an electrical efficiency

of 80 percent. Considerable electrical testing has been performedtoensure

that this design approach is compatible with the amplitron. The characteristics

of the power supply with anode current set at 20 milliamps is shown in figure 59.

This basic design has been used in a system of similar requirements and

has passed environmental qualification test program.

A block diagram of the present amplitron power-supply design is shown in

figure 60. The power supply operates from a nominal 10-kc square wave and

regulation is achieved by a switching technique which pulse width modulates

the basic 10-kc signal. Power amplification and conversion to the appropriate

impedance level is achieved in the push-pull switched transistor amplifiers.

Regulation is performed at the input to these amplifiers at low power level by

a magnetic amplifier. In addition to line and load regulation of 1 percent, this

technique has features of extremely high efficiency, and in addition the transis-

tors are used in the switched mode resulting in a low power dissipation and high

r e liability.

The current ripple is less than 0. 1 percent. The phase modulation caused

by this ripple is less than 1 degree peak at a 20-kc rate. These characteris-

tics appear satisfactory for the Voyager system.

In addition to the current regulation, the power-supply design incorporates

several features developed especially for the arnplitron. These include pro-

gramedheater warmup at increased power, and an automatic feature to ensure

proper mode acquisition.

When the dc power is applied to the power supply, the heater circuit is

energized and operated at a 7. 8-watt level for 40 seconds. During this period

the anode supply is not energized. After the warmup interval, heater power

is reduced to a nominal 3. 5 watts and the anode supply is energized. The anode

output voltage increases until the amplitron and power-supply characteristics in-

tersect. If this does not occur, for example, because of the absence of an rf-drive

signal, the voltage will continue to rise above the voltage range corresponding

to the frequency of operation. The high-voltage condition is used to control

an electronic switch, which turns off the entire power supply. {This is indica-

ted as 2100 volts in figure 59. Recycling can be obtained by automatic pro-

graming (by interrupting in input dc line).

A hermetically sealed reed relay manufactured by Computer Company,

Inc. , meets the nominal requirements for cross-connecting of amplitrons and

power supplies mentioned above. The relay is rated for 5 kv at 50 watts, is
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2. 34 in. 3 in volume and is operated electrically by a solenoid. The switching

required here would be a one-shot operation, needed only for the case of a

failure of both an amplitron and a power supply which were not connected in

the original state of the switch.

The power supply to be developed for use in the 35-watt Voyager amplitron

amplifier will be basically similar in design to the power supply described

above. The design task will draw on the considerable experience already gain-

ed with this type of power supply and especially with the critical magnetic com-

ponent designs. The task will be to refine the present design for ultimate ef-
ficiency and performance while minimizing the number of electrical parts for

highest reliability and ease of manufacture.

b) 120-watt arnplitron amplifier. The 120-watt amplitron amplifier
for Voyager will use similar techniques to those described above, and its

block diagram is shown in figure 61. The amplitron tube to be employed is

the QKS 1119 having a nominal power output rating of 70 watts. Each amplitron

stage will be operated at an approximately 60-watt power-output level. Here

again the circulator and loads are available. All redundancy and reliability

features in the 35-watt amplifier will be present in the lZ0-watt amplifier

design.

The power supply to be developed essentially will have the same block dia-

gram as that for the 35-watt amplifier. The anode circuit will require approxi-

mately 100 watts of dc power which is within present capabilities of silicon

high-frequency transistors. At the initiation of the development, if it proves

that a qualified transistor of the required ratings is not available, the power-

output capability can be extended by paralleling power amplifiers having a

high-voltage output connected in series. It is expected that magnetic-amplifier

timing and control, preregulator, and oscillator circuits can be developed for

common use in the 35-watt and 120-watt amplifier. This fact is another inherent

advantage in the amplitron-amplifier power supply which has been designed

by Raytheon.

An adequate switch for performing the high-voltage switchin_ function

needed for cross-connecting as described above is not available due to the higher

current level required. However, requirements are within the state of the

art; any switch could be qualified if it were felt desirable from an operational

or systems point of view to include this feature.

3) Development pla n for amplitron amplifiers. While 35-, 70-, and
120-watt amplifiers are needed for operation in both the lander and orbiter en-

vironments, it is planned to develop but a single design for each amplifier.

An initial task will be to develop an environmental model incorporating the
most severe conditions of both lander and orbiter environments. This environ-

mental model will be used in early engineering development testing.
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While the electrical requirements of the two power supplies required are

very different, the design approach which has been established allows for com-

mon components within the power supply. It is therefore planned to develop

both amplifiers within a single engineering group.

Initial design activity will be directed toward ensuring that the assumption

that preregu/ator oscillator, timing and control, and magnetic-amplifier cir-

cuits can be used in a common design for both power supplies. When this is

assured, design activity will concentrate on developing the circuits for early

engineering environmental testing. This early testing will reveal design mar-

gins and give confidence in the basic procedures. One of the design goals will

be to achieve a design of minimum parts. It is primarily in the aforementioned

circuits that the majority of parts are found. The early testing of these cir-

cuits will permit extensive concentration on their simplification.

It will be the goal of the development plan to test as early as possible the
complete amplifier design for the environmental model established. This test

will assure timely completion of the final amplifier qualification test program.

Throughout development, extensive use will be made of Raytheon's ex-

perience with this type of power supply design. Production facilities of the

Raytheon Waltham operation currently engaged in manufacture of such a power

supply will be used for the manufacturing program. These personnel will

become involved in the design and test procedures early in the program to as-
sure the timely release to production.
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B. 4 Detailed Description of In-Orbit Communication Link

The data monitored in this phase is primarily mapping data acquired through

a television camera system. There is additional scientific and engineering status
information acquired through a sampled data system similar to, but less complex

than, the system used in the lander. As discussed in the lander section, the

orbiter must also be capable of receiving data from the lander, for subsequent
retransmission to Earth.

Since the orbiter will be placed in an elliptical orbit an altimeter will be

used to set the focusing of the mapping optics system. The data from the image

orthicon television camera will be stored in a tape recorder in a manner similar

to the operation of the lander vidicon sampled data system. Since the amount of

data handled by the orbiter mapping is much greater than in the lander, dynamic

braking will be used in the orbiter tape recorder to minimize tape wastage. The

input bit rate to the recorder, from a 5-bit gray scale analog to digital converter,

is approximately 160,000 bits per second. The orbiter recorder will record at

a speed approximately three times faster than the lander recorder. However,

the playout speed is also about three times faster, keeping the ratio of record to

playback speeds about the same as in the lander recorder.

The mapping data acquired during a single pass of the orbiter will be stored

in one of two tape recorders used in mapping. When the orbiter begins the next

pass, as indicated by the altimeter, the mapping data will be recorded in the

second recorder. The first recorder will begin playing out its stored data

through the directive link used in this phase, namely, the 8-foot parabola and

120-watt S-band transmitter. The communication link parameters associated

with this phase are listed in table 8. At a transmitted bit rate of 4590 bits per

second, a worst case data performance margin of +2.19 db can be expected at

a worst case range of 3.6 x 108 kin.

The 8-foot parabolic antenna selected for this system is not the optimum

antenna required to minimize the in-orbit link system weight. The optimum

antenna diameter is 13 feet as determined in the following section. The 8-foot

antenna was selected to minimize solar pressures. The transponder, ranging,
transmitter and command functions associated with this link were discussed in

the in-transit section. Most of the design figures for this link were taken

directly from the analysis performed for the in-transit case. However, a

second antenna optimization was carried out for the load profile which will

occur in orbit. Although this yielded value of 13 feet the weight penalty

incurred through using an 8-foot dish is slight.

1. Optimum antenna diameter. Those weights which are a function of

antenna diameter are
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TABLE 8

IN-ORBIT TELECOMMUNICATIONS DESIGN CONTROL CHART

PROJECT:

CHANNEL:

MODE :

VOYAGER

MARS ORBITER TO DSIF

8-FOOT PARABOLA

No. Parameter

1. Total transmitter power 120w

Z. Transmitting circuit loss with

diplexe r

3.

4.

5.

Transmitting antenna gain

Transmitting antenna pointing loss

Space loss = 3Z. 46 + Z0 log F+Z01ogR

F Z300 mc, R 3.6x108 km

6. Polarization loss

7.

8.

9.

I0.

II.

12.

Receiving antenna gain

Receiving antenna pointing loss

Receiving circuit loss

Net circuit loss

Total received power

Receiver noise spectral density (N/B)

T system 50°K NF

Carrier Performance

13, Carrier modulation loss

14. Received carrier power

15. Carrier APC noise BW (ZBLo)
L ......

Carrier track (1-way)

Nominal

Value

+50.79 dbm

+I. 0 db

+3Z. 7 db

-0. 3 db

-270.83 db

-0. 0 db

+61.0 db

-0. 1 db

-178. 53 db

-127.74 dbm

-181.43 dbm

Tolerance

(decibels)

+0.0

-0.79

+0.0

-0.5

+0.91

+0.3

-0. Z

+0.0

-0.08

+0.0

-0.5

maximum

+1.21

-2. 19

+1. Zl

-Z. 98

±0.7

negligible

Worst

Value

+ 50. 0 dbm

-I. 5 db

+ 31.79 db

- 0.5db

- Z70.83 db

- O. 08 db

+60.5 db

-0.1db

- 180.72 db

- 130.72 dbm

- 180.73 dbm

16.

17.

18.

J

Threshold SNR in ZB LO

Threshold carrier power

Performance margin

-145-



TABLE 8 (Concl'd)

No°

19.

20.

21.

22.

Z3.

24.

Parameter

Carrier - track (?--way)

Threshold SNR in 2BLO

Threshold carrier power

Nominal

Value

Tolerance

(decibels)

Worst

Value

Performance margin

Carrier - telemetry

Threshold SNR in 2BLo

Threshold carrier power

Performance margin Corresponds to Subcarrier SNR + 3 db

Degradation of 1. 5 db
!

Performance | ISubcarrier

Data channel |

25. Bit rate (l/t) 4600 bits/sec +36. 6Z db

-IZ7.74 dbm

+6.87 db

±1.0

+1.7

+I.21

-Z. 98

+ ll.Z db

- 132.91 dbm

......... !

- 130.72 dbm I
i

+Z. 91 + 2. 19 db

-4.68

Z6.

27.

Z8.

29.

30.

J

31.

32.

Required ST/N/B Pe = 5x10 -4 (8.7+1. 5) db

Threshold subcarrier power -134. 61 dbm

Modulation loss
...............................

Received data subcarrier power

Performance margin

Synchronization channel

Sync APC noise BW (2BLo

Threshold SNR in 2BLo

33. Thresho_Id subcarrier powe____r _4 ....n eg!igible

I 34"M°d ati°n'°ss . 1
! 35. Received Sync subcarrier power i [

! 36. Performance margin i [
I _ / - .
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1) Weight of storage battery

2) Weight of the solar cell array

3) Weight of the antenna.

The reference orbit, 1700 x 10, 000 krn, has a period of 7.33 hours with

an Earth umbra of approximately 1.42 hours. Periapsis mapping would take

place for approximately 1.56 hours.
of the orbit are tabulated below.

a. Constant power loadin_

Command transponder

Command decoder

G&C Complex

Altimeter

Scientific instruments

1 recorder

Total

b. Mapping requirements

Kecorder {1 }

Cameras

Multiplexing equipment

Total

c. Transmission requirements

Transmitter {eft = 0. 5)

Drivers

Recorder {1)

Total

The power loadings for the various phases

20 w

llw

162 w

80 w

28w

6w

307 w

6w

44 w

3w

53w

2PTw

20w

6w

2P T + 26 w
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During an orbit, a duty cycle pattern, as shown in figure 62, results.

Initially it is assumed that there is negligible sun umbra.

T
380+ 2P T

i T ;
I

I i
I i
I I
I I

_I1_- I. 5 6 H0 U R S .--1_,,4'--

I MAPPING

I

63-9702

T
327+2P T

T2

2.18HOURS

T
307

½

7.33 HOURS

Figure 62 IN-ORBIT LOAD PROFILE

Let amplitron efficiency = O. 50

Let PS = solar cell raw output power

2P T = transmitter input power

Let 0.85 = power converter efficiency (typical)

For 0.85Ps > 327 + 2PT, i.e., PS > 385 + 2. 35 PT

[380t _2eT1
Battery WH = [_ 0". 85 J - PS

= (443 + 2. 35 PT - PS) 1.56

= 691 + 3.66 PT - 1.56 PS

For a battery discharge rate = _I0 = 6.41:
1.56

1.56

Capacity factor = 0. 708
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Battery Weight =
WH WH

6.4 x 0. 708 4. 52

691 + 3.66 PT - 1.56 P_
4.52

(91)

= 153 +0.81P T -0.35P S (92)

Also, with a battery recharge efficiency of 0.8,

327 + 2P T 2. 18 x 2 +0,85 S 0.85]0.85 S 0.85

691 + 3.66PT - 1.56 PS
0.8

1.4Z

0.85 PS - 1680 - 8.72 PT + 0.85 PS - 436

= 863 + 4.58PT - 1.95 PS

Thus :

3.65 PS = Z979 + 13.30 PT

PS = 3.64PT + 819

PT =0.27P S -224

Weight of solar cells at 4 w/ft 2 and 1.2 lb/ft 2

= 0.3 PS lb.

Weight of antenna = 3.7 D

Total Variable Weight

= 153.0+0.81P T

= 153.0+0.81P T

= 153 - 41 + (0.81 - 0. 18Z) PT

= 0. 628 PT + llZ + 3.7D

- 0.35Ps+0.3Ps + 3.7D

- 0.05 (3. 64 P + 819) + 3.7D
T

+ 3.7D

(93)

(94)

(95)

(96)

(97)
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from general control chart shown in optimization of lander direct link,

BR 2

PT - 1. 19 x 105 x D 1.875 (98)

Total variable wt

0. 628 BR 2

i. 19 x 105 x D 1"875

+ I12+ 3.7D

For rain. wt., we have

I.875 x 0. 628 x BR 2

I. 19 x 105 x D 2.875
opt

±3.7

2. 875
whence D

opt
= 2.68 BR 2 x 10 -6

Minimum weight obtained from D is
opt

0. 628 BR 2 D
opt

1.19 x 105 x 2.68 x BR 2 x 10 -6
+ I12+3.7D

opt

= 1.975D + i12+ 3.7 D
opt opt

= 5.67 D +llZ
opt

The weight penalty incurred in using a nonoptimum diameter D is:

0. 628 BR 2
= + liP + 3.7D - 5. 675 D - liP.

I. 19 x 105 x D I' 875 opt

P..875
0. 628 D D

opt

I.19 x 105 x P..68 x 10 -6 x DP." 875

2. 875I.975 + 3.7D - 5. 674D

t /D \2.sv5D .975 k_--_ {D) - 5. 675 +3.71

{99)

(lOO)
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for 4590 BPS

and 360 x 108 FdV[

D Z. 875 (360)2= Z. 68 x 4590 x x 10 -6
opt

2. 875
D = 1600
opt

D = 13 ft
opt

Whence weight penalty for an 8-foot dish

= 35.36 ibs.

Z. Reception of lander data. To provide for receiving data from the lander,
a linear pulsed chirp receiver is included on board the orbiter. This receiving

system will not interfere with the normal mapping function since the received

lander data will be stored in a separate tape recorder. The details of chirp

modulation were discussed in the lander section. The details of the integrated

S-band altimeter/orbiter-lander command system and the chirp receiver will
now be discussed.

a. Orbiter altimeter with command capability.

1) General discussion. In this conceptual design for an S-band

integrated orbiter altimeter/orbiter-to-lander command system, reliability,

minimum weight, size, and power consumption have been emphasized. Solid-

state and microminiaturization techniques will be employed where feasible.

The proposed noncoherent pulse system serves as a combination altimeter/

command link. A magnetron transmitter operates at Z. 19 gc with a peak output

power of Z00 kw. The transmitted waveform is a coded 5-bit word with five

1-microsecond pulses spaced Z microseconds apart. The waveform for the

altimeter mode employs 5 "ones" or 5 pulses for the altitude measurement from

10, 000 to 1500 km. When used as an interrogation command from 1800 to 1500

kin to the lander receiver, the waveform consists of less than 5 pulses with the

middle pulse shorted out in the modulator. A solid-state modulator generates

the five Z0-kv, Z0-amperes 1-microsecond pulses. The modulation is triggered

by a 33 cycle/sec synchronizer.
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Selection of the operating frequency in the specified Z to Z. 3 gc will

necessitate a component development program for the magnetron and the T1%

tube with associated test equipment. The development programs will not be

major ones since tubes can be scaled and modified to perform in the desired

range. Another area of component development will be the solid-state modu-

lator to provide the coded waveform for both altitude and interrogation functions
with minimum weight and power requirements.

Detection of any of the multiple pulses will provide a 1 percent range

measurement, thus increasing the altimeter system reliability.

Duplexing is performed with a branch duplexer using a T1% gas tube mounted

on aluminum waveguide. Coaxial cable is used from the magnetron but a

transition to waveguide is needed for obtaining the necessary 60 db of receiver

isolation. No ATP_ is required. Insertion loss of the duplexer is 0.3 db each

way and cable loss is an additional 0. Z db each way.

The output from the duplexer is fed to the altimeter receiver. A preselector

could be included or a time sharing program could be applied to either blank the

altimeter receiver or signal the computer to disregard altitude measurements

during communication intervals.

Local oscillator for the system is a solid-state chain with a 30-mc crystal

oscillator and four stages of multiplication providing 1 milliwatt minimum at

Z. 16 gc. Signals are heterodyned in a crystal mixer using a silicon diode. A

30-mc, 4-stage subminiaturized IF amplifier provides 100+rib gain with 2 stages

of AGC for 60-db dynamic range. The bandwidth of the IF is 3 mc and the noise

figure is less than 4 db.

The output of the IF amplifier is fed to a crystal detector and 1 stage of

video amplification. The video output is used to stop an eight-stage binary

counter and also to stop a range transmission gate.

l_nge measurement is made by counting the number of pulses fed to the

master computer. Each pulse fed to the computer is equal to 7.1 kin. The

train of pulses is generated by a Z1.5-kc crystal oscillator which feeds both

the eight-stage counter and the transmission gate. Pulses enter the counter

and the gate simultaneously upon receipt of the altimeter synchronizer pulse.

The eight-stage counter is employed with additional logic circuitry to indicate
to the altimeter that the range is less than 1818 km and that the lander can be

interrogated if it is so desired. Presence of the interrogation command

voltage and the altimeter command will actuate the pulse cancellation circuitry.

Basic system operation is shown in figure 63 with pertinent system param-
eters tabulated in table 9 •
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TABLE 9

ORBITER ALTIMETER DESIGN PARAMETERS

I. Average Power Output

2. Peak Pulse Power Output

3. Frequency

4. RF Power Source

5. l_%nge

6. Power Consumption

7. Modulation Waveform

8. Kange Accuracy

9. Weight

10. Volume

II. Surface Reflectivity (0 ° )

33 watts

200 kw

2.19 gc

Magnetron

1500 km (rain.)

10, 000 kn_ (max.)

71 watts

5 coded pulses

1 percent

16.6 pound s

199.0 in. 3

0.1

2) Detailed system description

a) Orbiter altimeter/lander command. The orbiter altimeter/

lander command is an S-Band pulse system performing a dual service as (1) a

command transmitter to the lander for interrogation, and (2) an altimeter

functioning from 10,000 to 1500 km for camera focusing. Interrogation of the

lander will range from 1800 to 1500 km. Altitude readout to assist in mapping

will be available in a digital pulse train. The number of pulses will be directly

proportional to range at 7.1 km/bit. Figure 64 describes the transmitted

waveforms. Sensitivity calculations for the orbiter altimeter are shown in
table 10.
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TABLE 10

ORBITER ALTIMETER SENSITIVITY CALCULATIONS

(4. H) 2 KTB (NF) (S/N) L
Pt

G t X 2 a ° n

where Pt = peak power

H =

K =

T =

B =

NF =

=200kw.

altitude (I0, 000 kin)

Boltzmann's constant I. 38 (I0-23) joules/degree Kelvin

temperature 300 ° K

receiver bandwidth (3 mc)

system noise figure, 10.3 db

S/N= signal-to-noise ratio (14.9 db)

L ___ System losses 5 db
Transmission loss = 0.4 db

duplexer 0. 6 db

Integration losses 1.0 db
2.0db

G = antenna gain 17 db

k = wavelength 1.3 (10 -4) km

a = reflectivity O. 1

n = pulses per burst waveform 5

Pfd = false alarm probability 10 -10

Pd = probability of detection 0.90

b) Transmitter. A fixed frequency S-Band magnetron

serves as the transmitter operating at 2.19 gc. A magnetron is not currently

available in the desired frequency band but will be scaled from current 3-gc

magnetrons. An AFC loop will not be required since inherent stability and

cavity design will satisfy system stability and bandwith requirements. The

magnetron with integral magnet will weigh 3.5 pounds and will occupy a volume
of 73.2 in. 3 Transmitter/modulator design parameters are listed in table 11.
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TABLE 11

DESIGN PARAMETERS FOR

TRANSMITTER/MODULATOR FOR ORBITER ALTIMETER

Frequency transmit

Peak Power Output
Pulse Width

Waveform--5-1 microsecond, pulses spaced

2 _ sec apart

4-1 microsecond, pulses

PRF

Magnetron Weight

Magnetron Volume

Frequency Drift (60 kc/? C)

Modulator/Transmitter Efficiency

Peak Pulse Voltage

Peak Pulse Current

Filament Power (at 6.3 volts)

Magnetron MTBF(Constant failure rate and

90 percent confidence)

Modulator Weight
Modulator Volume

Modulator Component Count
Modulator MTBF

Modulator Power Input

2.19 gc

200 kw (min.)

1 Microsecond

Altimeter mode

Command mode

33 pps.

3.5 pounds
73.2 cubic inches

300 kc (max)

50 percent
20 kilovolts

20 amperes
9 watts

5000 hours

9 pounds
76 cubic inches

105 parts

10,000 hours
66 watts

c) Modulator/encoder. An all solid-st_te modulator will

drive the magnetron. Input waveform to the magnetron will be controlled by

the encoder/synchronizer unit. A 5-bit message consisting of two "ones, " a

"zero," and two "ones" will be used to interrogate the lander. Altitude

measurements will use a 13 microsecond word of five 1 microsecond pulses

with 2 microseconds between pulses. Interrogation will use a 13 microsecond

word with two 1 microsecond pulses spaced 5 microseconds from a second

.group of two 1 microsecond pulses. Spacing between the pulses is 2 micro-

seconds. Delaying the pulses after the IF can be used to provide post-detection

integration and additional reliability and accuracy, but is not planned since

reliability is provided by multiple pulses and adequate S/N allowances. The

four-pulse-coded waveform will only be transmitted to the lander when the

encoder is commanded to interrogate and the altitude is compatible. Satisfying

the two requirements will result in modulation of the transmitter with the

preset code. A solid-state pulse generator will provide inhibit pulses to the

modulator to prevent transmission of undesired pulses. The inhibit pulse will

only occur when the altitude and interrogate commands are present. Figure

65 is a simplified schematic of the modulator.
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d) Local oscillator. Close frequency control of the magnetron

will permit the elimination of the AFC loop and allow a solid-state oscillator/

multiplier chain to be used in lieu of a klystron or planar triode local oscillator.

Major frequency drift of the magnetron will be due to temperature variation. A

rated drift of 60 kc/° C in a controlled temperature environment of 5 ° C will

provide 300 kc maximum drift. The solid-state local oscillator weighs 1Z ounces

and provides a minimum of 1 milliwatt of output power, No crystal oven will be
required with 5(10 "5) crystal stability giving a frequency drift of approximately

100 kc. This configuration will provide the simplest and lightest package

commensurate with system weight and power requirements, The multiplier

chain consists of Z triplets, 1 quadrupler, and 1 doubler multiplying the

fundamental frequency 30 mc by a factor of 7Z.

e) Mixer/IF amplifier. A branch duplexer with a TK gas
protector tube mounted on an aluminum waveguide will control the signal flow

to and from the antenna. Insertion loss is 0.3 db one way. The TK tube will

require a development program and test equipment development. The return

signal will be heterodyned in a crystal mixer capable of operating in a 150 ° C

environment with a 5.5 db conversion loss and a 10-erg burnout rating. The

receiver overall noise figure is 10.3 db.

Fdb = L c + I0 log (Fif +t-l)

Fdb = overall receiver noise figure

L c = crystal conversion loss (5.5 db)

Fir = IF amplifier noise figure (Z. 5)

t = crystal noise/temperature ratio 1.5

Center frequency of the IF is 30 mc and the bandwidth is 3 inc. The IF is

a four-stage microminaturized unit with a noise figure less than 4 db, 100 +db

gain, and 60 db AGC. Total weight of the IF is 3 ounces. Output pulses from

the IF feed a solid-state detector and video amplifier to generate a stop pulse

for the range counter and facilitate range measurement.

f) RanKe processor. Range will be determined by counting

a Zl. 5-kc crystal-controlled clock. An eight-stage binary counter will start

with an input signal from the synchronizer and will stop upon receipt of the

video pulse_ 21.5 kc will provide an accuracy of 0.5 percent of range for the

specified 1500-kin minimum altitude. The NT cut crystal is stable to ± 0.0. Z

percent from -40 to ?0 °C. Overall system accuracy will be 1 percent. Output

from the range processor will be supplied in a ZI. 5-kc pulse train whose

number is directly proportional to the range at a value of 7. I km per pulse.

The synchronizer pulse will occur at a 33 pulse -per-second repetition frequency.

A trigger signal will be supplied from the range counter to permit the lander to
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be interrogated at ranges between 1500 and 1800 kin. The range computer plus

minor logic circuitry could be used to turn off the modulator during the portion

of the orbiter trajectory when altimeter measurements are not required.

Transmit "cease" and "start" signals are provided by the central computer

during non-measurement periods. Filaments of the magnetron will be kept on

during the inoperative phase of the trajectory and oscillators will continue to

function for reliability purposes. At a predetermined time the modulator will

be actuated by the central computer. Figure 66 is a preliminary schematic of _

the range computer and control logic. This modulator will permit selection of

any code of pulses. Table 12 is a summary of the size, weight, and power

requirement.

b. Relay telemetry receiver. A simplified block diagram of the
receiver is shown in figure 67.

1) lIF preamplifier. The 300-mc 1%F preamplifier will consist
of two cascade stages in cascade each having a bandwidth of 30 mc and power

gain of 15 db. The resultant overall bandwidth and power gain will be approxi-

mately 20 rnc and 30 db, respectively. With this large bandwidth, the amplifier

will exhibit excellent phase linearity over a 1-mc band about the center frequency.

A germanium transistor amplifier will be chosen for this application be-

cause it is the simplest method of obtaining an overall noise figure of 4 db at

this frequency and over the expected environmental temperature range of the

package.

This preamplifier will have a power consumption of approximately 0.75

watt. The size and weight will be about 4. 5 in. 3 and 0.3 lb., respectively.

The parts count is as follows:

Transistors 4

Resistors 16

Capacitor s 5

Transformers 3.

2) 300-mc Mixer. A single ended coaxial mixer will be used to

heterodyne to the IF frequency of 27.27 inc.

The mixer noise figure of 7.0 db offers negligible contribution to the over-

all receiver noise figure because of the 30 db of gain supplied by the lIF

pr eamplifier.

The mixer will consist of 1 mixer diode and 1 mixer holder, will consume

no power, will have a volume of about 0.75 in. 3, and will have an approximate

weight of 1 oz.
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TABLE 12

ORBITER ALTIMETER/LANDER COMMAND LINK (S-BAND)

Encoder/synchronizer

Solid-state mod

Magnetron transmitter

Duplexer

!Range counter

(8- stage counter)

Crystal L.O. (30 Mc)

Frequency multiplexer

[Detection and video

amplifier 30 Mc IF

amplifier (4 STG's) mixer

Size

(cubic inches)

7.1

76

7Z. 0

Z6

(Zx4xZ)

4.5

20.0

(2 x 5 x 2)

3.3

198. 9

Weight

i0 ounces

9. 0 pounds

3.5 pounds

2 pounds

7.5 ounces

IZ. 0 ounces

5. 0 ounces

16.6 pounds

Power

0. 70 watts

{MTBF:500,000 hours)

66 watts

(MTBF: I0, 000 hours)

(MTBF: 5, 000 hours)

0. I0 watt

I. 5 watts

(MTBF:500, 000 hours

I. 0 watt

(MTBF:I0,000 hours)

I. 5 watts

70. 8 watts
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3) Local oscillator. The local oscillator unit will provide local

oscillator power for three separate mixers. A block diagram of this unit is

given in figure 68. The unit consists of a 6.06-mc crystal-controlled transistor

oscillator contained in an oven. The primary oscillator output is power-amplified

and used to drive two transistorized multipliers via a buffer amplifier. A four-

times multiplier stage provides local oscillator power at 24.24 mc to the process-

ing mixer. A five-times multiplier provides local oscillator power at 30.3 mc

through a buffer amplifier to another processing mixer and to a power amplifier.

The output of the power amplifier drives two cascade varact0r tripler stages

whose output is the local oscillator for the receiver mixer. This last frequency

is 272.7 inc.

The entire unit will consume approximately 5.7 watts; and the size and

weight will be about 15 in. 3 and I. 2 lb., respectively.

The parts will consist of:

17 Transistor s

2 Varactors

1 Crystal

1 Oven

58 Resistors

72 Capacitor s

22 Chokes

2 Potentiometer s

4 Transformers.

4) IF amplifier. The 27.27-mc IF amplifier will consist of

three staggered tuned cascade stages with an overall transitionally flat band-

width of 4 mc. An AGC with a dynamic range of 10 db is employed. The

overall power gain of the amplifier is 70 db.

The staggered tuned 4-mc bandwidth is chosen to provide good phase

linearity and constant amplitude over a 1-mc band about the center frequency.

Because of the relaxed noise considerations at this lower frequency,

silicon transistors could be used.

The IF amplifier will have a power consumption of about 2.1 watts, size

and weight being approximately 4.0 in. 3 and O. 15 lb., respectively.
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The parts will consist of:

9 Transistor s

40 Resistors

28 Capacitors

3 Transformers

3 Diodes

1 Choke.

5) Receiver matched-filter decoder. The matched-filter portion

of the receiver is shown diagramatically in figure 69. As can be seen, this

system is very similar to the transmitter encoder shown in figure 58. In fact,

most all the components requiring detailed description are also employed in
the transmitter and have been described in the transmitter section. The

operation of this system is best described by following the signal flow through
the block diagram.

The received signal, at a 300-mc center frequency is applied to the RF

mixer, where it is heterodyned with a local-oscillator signal at 272.7 inc.

This signal, as well as the other local-oscillator signals employed in the re-

ceiver, is derived from a frequency-synthesizer identical with that employed

in the transmitter. The IF waveform, at a center frequency of 27.27 mc, is

split between the "0" and the "1" decoding channels. In each channel it is

mixed with a local oscillator which translates it to 3.03 mc. In the "1" channel,

the L.O. is above the signal frequency. Since a "1", on transmission, is

chirped downward, the output of this mixer will chirp upward for a received "1".

The chirp filter, which is of the same type as that used in the transmitter,

delays low frequencies more than the high frequencies. Since the low frequencies

of the "1" signal occur first in the waveform, the filter will attempt to delay

them into coincidence with the high frequencies which occur at the end of the

waveform, thereby compressing the pulse. A "0" signal in this channel will be

elongated by the dispersive action of the filter, giving rise to an output level
far below that of the "1".

In the "0" channel, the local oscillator is below the signal frequency. The

received "0" is chirped upward and it will still be chirped upward following the

mixer. Since the chirp filter is identical to that used in the "1" channel, it

will compress an upward-chirped signal and disperse one chirped downward.

The "0" signal in this channel will, therefore, be compressed and the "1"
dispersed.
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Following the filters, diode detectors are employed to recover the envelopes

of the waveforms. These envelopes are then presented to the decision circuits

which will determine whether a "1" or a "0" is to be registered at the receiver
output.

The Mars orbiter receiver circuitry is identical with that employed in the

Mars lander transmitter encoder except for the elimination of many of the

digital control components. The power, weight, and volume estimates used for

the Mars lander transmitter encoder may be considered as conservative

estimates for the Mars orbiter receiver decoder.

6) R.eceiver decision circuits. The decision circuits process

the 1 microsecond compressed output pulses so as to produce a noise-free

PCM stream in which multipath signals arriving greater than 1 microsecond

after the direct signal have been eliminated. A basic block diagram of the

decision circuits is shown in figure 70.

The first digits in the PCM transmission should be a stream of five zeroes

followed by a one. The threshold and detector circuitry monitors the zero

channel with a threshold set so that a signal-to=noise ratio of 16 db will produce

an error probability of 5 x 10=4. When this threshold is exceeded, the time

gate sampler is energized which examines the output of the "0" channel 100

microseconds after the threshold is exceeded with a 1-microsecond sampling

gate. If a message has begun) a zero will be present. If not, it is unlikely

that noise will be present at the zero channel output exactly 100 microsecond

after a false alarm. This check is repeated for the two identifying zeroes which

follow the initial triggering zero. If these two zeroes are received, the decision

system assumes that a message follows. If not, sampling is terminated. Five

zeroes are used to guarantee that if the sampler should be triggered by noise

immediately preceding an actual message, the sampler will reject the false

alarm before all five zeroes have entered the receiver. Under the worst case,

the system will begin sampling on the third zero and will still have two remain=

ing zeroes to recognize message start.

The sixth digit in the starting stream, a "I", isused to indicate that the

actual message is beginning and is necessary since sampling may begin in the
middle of the 5-zero stream due to noise.

Once it has been accepted by the decision circuits that message transmission

is in process, time gate sampling proceeds at a 10, 000=pulse per second rate

(the signalling rate) with time gates 1 microsecond wide (the compressed pulse

width). Since the process has been triggered by the leading edge of the first

pulse received, this process is in basic synchronism with the direct path signal

and rejects signals later than the 1 microsecond width of the time gate. The

sampling process is controlled by a 104 pps digital clock which is synchronized

to start by the threshold and detector circuitry. Since timing errors will be

present in the system, this clock is synchronized by the threshold and detector
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circuit on the arrival of each new data bit. The allowable frequency control,

however, is very small and equal to the anticipated timing drifts in the system.

This is so as to prevent major resetting of the clock from spurious signals.

Resetting is done in synchronism with time gating so that only those signals
present when the time gate is open (1 microsecond) can correct clock error.

Since this is accomplished for each bit, no major corrections are necessary
and a low gain loop may be employed.

The output of the time gate sampler consists of 1-microsecond pulses of

positive or negative polarity corresponding to zeroes and ones. These gated

pulses are applied to a bistable multivibrator which is clocked by the sampling
pulse and produces a noise-free 10 kilobit/sec PCM stream.

The digital logic portions of the decision circuits will utilize micrologic

components to increase reliability and lower prime power requirements. The

anticipated total power will be 1.1 watts, volume of 4.4 in. 3, and weight of

220 grams for the complete decision circuitry.

3. Science and en_ineerin_ data. All additional science and engineering

status measurements will be multiplexed and encoded in a manner similar to

the system used in the lander. The monitored data will be stored in the tape

recorder used to store the relayed lander data. Upon command from the

DSIF, the normal mapping function of the orbiter will be interrupted and the

science and engineering plus lander data will be transmitted to ]Earth. The

recorded data will not be erased until commanded from the DSIF. Throughout

the report, reference is made to the use of tape recorders as the bulk storage

device. The reasons for choosing a tape recorder rather than a solid-state

storage complex are now discussed.
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3. 5 Data Storage

1. General requirements. As is discussed in various parts of the text of
this report, there are several instances where bulk storage of accumulated data

is required. This requirement occurs when (a) the data are acquired at too high

a rate for transmission, or (b) the data must be acquired at an inconvenient

time for transmission. In both cases, when the data are finally transmitted, it

must be in synchronism with an external clock. In many cases the data are not

acquired smoothly but rather are acquired in short, high-rate bursts. The stor-

age medium should be chosen to provide a maximum of smoothing of the data
before transmission. The storage devices must all be designed to have the re-

quired environmental, operational, and reliability characteristics for the par-
ticular system in which they will operate. Of particular interest are the require-

ments for sterilization of all components which will be landed on a planet surface

and for long reliable operating life. These requirements are the most severe

to be placed on the equipment.

2. Specific requirements.

a. Lander. A storage device is required on Mars lander vehicles

with an input bit rate capability of up to 40,000 bits/sec. The nominal input rate

is 12,500 B-bit words per second. These data consist of TV pictures and will

be acquired in bursts rather than continuously. The data must be played out for
transmission at a lower rate than it was acquired. The play-in to play-out rate

ratio may be required to be as high as 10:1 or as low as 1.2:1 depending on the

types of transmission used. This high rate storage system must have a total

capacity of approximately 108 bits to satisfy the mission requirements. A low

rate data storage system will also be required for the Mars lander vehicle.

This will be used to store the scientific and status data which is acquired at a

low rate and must be speeded up for playback. The input bit rate will be approxi-

mately 200 bits/second. This will consist of 5-bitwords sampled at 40 words/

second. The data must be read out either Z00 or 30 times faster depending on

the type of transmission utilized. The total capacity required will be approxi-

mately 108 bits. Still another storage system is required for a Venus lander

vehicle. In this case, the input and output bit rates will be about the same as

the Mars low rate system, but the capacity required will be about 1.5 x 106 bits.

All of the storage systems used in lander vehicles must be able to survive

and perform as specified after undergoing the standard sterilization procedure
for Voyager lander components. The reliability of the storage systems in terms

of the mission requirements must be as follows. After a transit shelf life of

300 days, followed by 150 days of which 50 days are actual working, the relia-

bility shall be 0. 9966with a confidence factor of 75 percent.

b. Orbiter. The data storage systems on the Voyager orbiter vehicles

will be used for storage of mapping data and for intermediate storage of data
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relayed from lander vehicles, as well as storage of scientific and status data

taken by the orbiter itself.

The mapping data input rate can vary over a rather wide range, depending

on the orbit used, the picture overlap, and the type of scanning. It seems that

an absolute maximum input bit rate of about 200, 000 bits/second will be a safe

upper limit. These mapping data would be transmitted at approximately 4600

bits/second. The mapping data storage system capacity will have to be about

2.5 x 108 bits.

The data relayed from the lander will be at a rate of approximately 10, 000

bits/sec. This data will also be retransmitted from the orbiter at 4500 bits/

second. The capacity will be 1.5 x l08 bits/sec or equal to the capacity of both

types of lander storage systems. This storage system will also be used to

store the scientific data acquired by the orbiter.

The orbiter components will not have to be sterilized. The reliability re-

quirements in terms of the mission requirements are as follows: for a total of

450 days of which 125 days are actual working, the reliability shall be 0. 998 with

a confidence factor of 75 percent.

c. Design tradeoffs. Two types of bulk storage systems have been

considered for application to the Voyager programs. These are tape recorders,

types of which have been used successfully on many satellite and space probe

programs, and a new type of plated wire memory system which appears to be

the most compact and rugged of the "solid" magnetic memory systems avail-

able. Although other types of memories could be considered for this applica-

tion, these two have been chosen for comparison because they are felt to repre-

sent the most optimum techniques which do not involve greatly expanded tech-

nology.

In order to evaluate the relative merits of the two alternative techniques,

it will be necessary to compare the size, weight, power consumption and reli-

ability of systems using these techniques which are capable of performing the

same data storage task.

d. Tape Recorders Description (Raymond Engineering Co. ). The re-

quirements listed above which are quite typical of all storage systems in deep

space probes are for bulk storage and time expansion playback of stored data.

The proposed recorder utilizing a single motor, a belt drive system with a

true differential tensioning means, is about as simple a mechanical system as

could be conceived. The use of a single motor results in the same accelerating

torque in either mode of operation and eliminates the requirement for any

clutching mechanisms.

The principles of operation of the proposed tape transport can be easily

explained while observing figure 71. It shows the principal components of the
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system. The recorder consists of two tape reels, a motor, idler pulleys, and

a differential drive system consisting of pulleys A and B. The diameters of

pulleys i and B are adjusted so that the surface velocity of capstan B slightly

exceeds that of capstan A. The drive belt partially encircles both reels, two

fixed idlers, and idler on the belt length compensator and pulleys A and B.

The difference in speeds of pulleys i and B is such that when tape motion is

from left to right on the drawing, the section of tape between pulley A and

pulley B encompassing reel A is relaxed. The section of tape between pulley

A and pulley B surrounding reel B is under tension and is trying to go faster

than the section of belt on the left of the drawing. It can do this because it

stretches slightly. The linear tape velocity on the reel B tends toward a higher

speed than does reel A and the tape itself is tensioned thusly. For reverse

operation, the thinking is reversed, and pulley B always rotates at a higher

surface speed than pulley A. As the tape travels from one reel to the other,

the circumferential length of tape on both reels in contact with the belt varies.

In order to compensate for this change, a belt length compensator is included.

This consists of a pulley on a spring-loaded lever arm. The amount of tape

tension is governed by the spring force in the belt length compensator and the

ratio in the speeds of pulleys A and B. The tape tension resulting is high

enough so that the tape will support itself, even through severe environments,

without flanges on the reels. Therefore, the incorporation of flangeless reels

allows a further reduction in size of the tape recorder by overlapping the space

occupied by the tape. It is easily seen that the design is very simple and is

readily adapted to the modular construction which is so necessary to the suc-

cessful operation of spacecraft tape recorders.

Duplex-paired ball bearings are used exchsively in the construction of all

the rotating components in our tape recorders. This provides high radial and

axial stiffness which results in a high resistance to vibration force. Duplexing

removes the need for any tailoring in the assembly of capstans, idlers, etc.

Instead this job is clone at the bearing manufacturers plant under extremely

rigid controls. Incidentally, all ball bearings purchased by this company in

the future will be fabricated to more rigid quality control procedures than are

generally practiced in the fabrication of a standard line of ball bearings. An

elaborate quality assurance program has been worked out with two suppliers
to date.

Because of the extremely high stiffness resulting from the duplexing, prob-

lems could result in operation over wide temperature ranges if close attention

were not paid to the temperature coefficients of expansion of the materials

which comprise the subassembly. The materials from which all our rotating

components are fabricated have almost identical temperature coefficients of

expansion. This results in a slight weight increase; however, the added reli-

ability is definitely worth the weight penalty.

The combination of the mass of the rotating components and the compliance

of the balls can result in a resonant condition usually at high frequencies.
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Part of the proposed program would include an attempt to remove the resonant

frequency above any forcing function frequency to which the tape recorder would

be subjected in vibration. This may not be convenient in some of the more mas-

sive components, in which case a vibration isolation system may be necessary.

Such vibration isolation systems have been incorporated on recorders for many

flight programs and have been considered highly desirable and acceptable. The
resonant condition which does exist when subjected to a slowly varying sinusoidal

vibratory sweep is so violent that the ball bearings are almost always destroyed;

hence considerable care is necessary in this regard.

A single hysteresis synchronous motor is proposed to power the transport.

The motor design originates from Herbert C. Roters, consultant, in Kew Gardens,

New York. Raymond Engineering Laboratory is presently engaged in a program

to manufacture motors designed by Mr. Roters. The main advantages of the in-

house fabrication of these motors are that the rigid quality control procedures

already in practice in other areas will be applied to this very critical component,

in a manner which we believe is satisfactory to the fabrication of reliable flight

hardware.

In order to provide the required speed ratio between the record and playback

modes without clutches and other mechanical linkages, it is proposed that the

motor operate at two speeds. This will be accomplished by adjusting the motor

drive voltage and frequency. There are a number of means by which this can be

accomplished. A very practical one is to provide an accurate time base and a

series of binary dividers.

It is proposed that a six-pole motor operating at lZ, 000 rpm be supplied

with a two-phase power source at 600 cps. This same motor operating at 375

rpm would be driven at 18.75 cps. tt is easily seen that there is a limitation

in the single-motor approach to the maximum ratio which can be realized. At

lower speeds, cogging results and very low frequency drive signals have to be

handled. At higher speeds, bearing life and drag become problems and the

voltages required to drive the motor can exceed the capabilities of present day

transistors. It is estimated that the motor drive power at the high speed mode

of operation will require an average of 4 watts from the DC supply and a peak

power up to 15 watts. At the low speed, it is estimated that not more than Z

watts will be required.

In order to describe the signal electronics system, reference is made to

figure 72, which is a signal flow diagram for a generalized version of the re-

corder under discussion. This recorder can be adapted to meet any of the re-

quirements outlined in section 3.5.

Parallel input data are coupled into the N + 1 stage shift register in the upper

left corner of the drawing. The shift register, after accumulating N data bits,

transfers the signal to the heads. This is accomplished by dividing the bit

synchronizing signal by N or by using a word rate clock. A signal is recorded
directly on the tape by the action of the record heads.
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In the playback, parallel to serial conversion shown in the upper right hand

corner of the diagram, the output from the playback head is amplified and stored

in an N bit skew register. The outputs of the skew register are coupled into the

set inputs of the N-stage shift register. The skew register is composed of N

level detectors and N and invert gates. The output of the skew register is only

presented to the N-stage shift register during the presence of a transfer pulse

from the timing logic section which is shown further below on the drawing. The

timing logic section provides the proper transfer and shift pulses from the refer-

ence clock signals. The shift register is so connected that the stored bits, in

the presence of a bit synchronizing pulse, will read out the stored information

serially to a one-stage clocking shift register. This shift register operates in

synchronism with the N-stage shift register, but delayed part of a bit cell.

The output from the one-stage shift register is a replica of the input data,

converted to NRZ serial form, and with a new time base (either expanded or

compressed as desired).

This output is synchronous and without jitter, and allows the use of matched-

filter detection techniques on the other end of the communications link. The out-

put from the synchronizing channel is amplified, goes through a similar level

detector, and into the phase comparator. A reference pulse from the timing

logic section also couples into the phase comparator. The output of the phase

comparator is coupled into the gated integrator which ope rates as a nonlinear

filter. The output of the gated integrator controls the frequency of a voltage

controlled oscillator which, after the required amplification and signal condi-

tioning, drives the playback motor. The capability of multiple playback data

rates is available, if desired. This phase-locked servo-loop is the means by

which synchronous readout is accomplished.

3. Magnetic plated wire memory (UNIVAC Div. of Sperry Rand Company),

The UNIVAC Division of the Sperry Rand Corporation is developing a magnetic,

thin-film, plated-wire memory element which appear s at present to be the

optimum type of "solid" memory system for this application.

a. Basic operation of memory element. The magnetic wire memory

element is a 5-rail-diameter beryllium copper wire and has a 81 nickel-19 iron

alloy electroplated surface of 10,000 A thickness. The magnetic surface is

plated such that it has an anisotropy (easy) axis circumferentiaUy around the

wire and a hard axis along the length of the wire. Since the circumferential

path is closed, the built-in anisotropy is enhanced by shape anisotropy.

Information is stored in the plating in the form of clockwise or counter-

clockwise magnetization for 1 and 0 bits respectively. Figure "/3 shows a

plated wire in which the bits are stored under word lines, one of which is in-

dicated. During the write operation, a word current is applied to the word line

and a bit current to the plated wire itself. Coincidence of the two currents stores
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a bit under the word line, the senseof the magnetization vector depending upon

the polarity of the bit current. A multiplicity of 20-rail wide word lines wrap

around each plated wire and are on 40 rail centers, leading to 25 bits per lineal

inch of plated wire.

Readout is accomplished by applying a current pulse to only the work line

which established a magnetic field along the hard axis. The circumferential

magnetization vector stretches to an ellipse as indicated, tending to rotate

towards the hard axis. This produces a decrease in clockwise flux linking the

plated wire for a 1 {or decrease in counterclockwise flux for a 0), and a plated

wire serves the triple purpose of write line, sense line, and structure vector

rotates back to its original clockwise or counterclockwise sense, so the readout

is a nondestructive operation. Details of the write and read operation are shown

in figure 74. The word and bit pulses can be as short as i00 nanoseconds and

are 800 and 25 milliamperes, respectively. Since the energy required to switch

the magnetic material is very low (i/I00 of that required to switch a typical

50-30 ferrite core) and because the frequency of operation is very low for space-

craft operation (to match telemetry equipment), the overall power requirement

for a memory unit is quite small.

Each word line encompasses many plated wires which are spaced at 30 wires

per inch. Using this figure and the previously mentioned 25 bits per inch of

plated wire, a surface packing density of 750 bits per square inch results. In

practice, a grooved ground plane is used to contain the plated wires and the word

lines are etched copper strips on a 1-nail epoxy fiberglass sheet. The ground

plane serves as the current return for both the word and bit lines and acts as the

principal mechanical support for the structure.

b. Circuit and system consideration. In order to discuss the electronic

requirements of a plated wire memory system, it is helpful to assume the memory

size and configuration. The size chosen for discussion is 8.4 x 106 bits.

It can be shown that if memory planes are built as square arrays a minimal

number of drivers and amplifiers for that size memory results. For example,

a 16-bit memory arranged in a 4 by 4 array requires 4 + 4 = 8 drivers, while an

8 by 2 arrayneeds I0 drivers. Also, as the total amount of storage increases

and squareness is maintained, the number of circuits per bit decreases. An

8 by 8 array giving 64-bit capacity requires 16 drivers, contrasted with 8 required

for the 16-bit array. Thus, if a memory unit of given capacity can be constructed

as a single square array, the least number of circuits can be employed, yielding

minimal power, volume, weight, and cost.

Practical limitations modify the above considerations. A memory plane can-

not be made indefinitely large, with extremely long lines over which currents

must be driven and signals sensed. The number of lines which can be switched

into one circuit is limited. A word organized memory, which has a higher

signal-to-noise ratio than an ordinary coincident-current memory, usually can-

not be built as a square array.
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As indicated earlier, after reading from the wire memory element, the

magnetization vector returns to the same sense that it had before readout.

This means that the element has a nondestructive readout property which can

be used to combine the advantages of word-organization and squareness. One

word line encompasses the plated wires associated with very many words.

When the word line is pulsed, the large number of words are interrogated and

the desired one is switched into the sense amplifiers, one such amplifier for

each bit. However, the undesired words are not erased from the memory be-

cause of the nondestructive readout property.

According to present calculations, an 8.4 x 106 bit wire memory module

can be built as a single electrical array (physically it is to be divided into a

number of planes). The module is to be arranged such that there are 4096

word lines and 32 words of 64 bits each on every word line, implying that the

array is 4096 by 2048. A practical consideration, the number of lines which

can be switched into one sense amplifier, limits the size of the second dimen-
sion.

To construct the array, 17 grooved ground planes will be stacked. Plated

wires will be mounted in the grooves on both sides of each ground plane (except

for the two outermost planes; here the wires will be on the inboard side only).

Word lines will thread between two ground planes each, serving two sets of
mounted wire s.

To drive the 4096 word lines, 64 switches and 64 current drivers will be

used in a matrix fashion (figure 75). Sixty-four bit drivers will be switched
into one of the 32 words associated with each of the word lines. Because of

more critical nature of low level switching, 128 sense amplifiers will be used.

The drivers and switches are in turn to be operated by ring counters which

will select the memory locations and will be sequentially stepped. A study has

indicated that the ring counter approach uses few total components and less

power than a binary counter-decoder arrangement. The sense-bit drive matrix

will also be operated by a ring counter.

A 64-bit input-output register is to be used to break up incoming serial

information into words and to restore the outgoing information into serial form.

To accomplish this, a clock counted down modulo 64 is required.

These circuits and power supply converters (it is assumed that a single

voltage, poorly regulated source will be available) will occupy between 400

and 500 in. 3. The total volume for the entire system will then be between
2000 and 2100 in. 3

While the memory is operating, the power demand will be a maximum of

Z05 milliwatts, assuming that the peak driver currents are drawn from capac-

itive storage. In a standby condition, the bit and word line drivers will not be

operating, but sense amplifiers and logic circuits will still consume power,

so the demand will fall off to about 190 milliwatts.
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4. Comparison, Both of the techniques discussed have been shown to be

capable of being used to satisfy the bulk data storage requirements of Voyager.

The choice of which technique will be used throughout the program must be

made on the basis of the costs to the program in terms of size, weight under-

standing of all failure modes and their causes. With such a program, relia-

bility could be assured for either the compact matrix of fine wires required

for a "solid" memory system or the belt driven transport required for the

tape recorder.

In comparing the reliability of electronics in the two types of system it

must be assumed that the circuitry will be similar in design and construction

for both cases. If this is the case, the relative reliability of the two systems

will be grossly a function of the relative number of circuit elements in the two

alternative systems. In actually computing reliability, however, the fact that

failure of one given element does not necessarily cause failure of the entire

system must be taken account of and so the relation between the number of

circuit elements and the reliability is not simple or even fixed.

In this case, the "solid" memory will contain a great many more circuit

modules than the tape recording system; however, each circuit in the "solid"

memory will directly affect proportionately less of the data. About the only

conclusion that can he reached is that a failure causing some error in the data

is more likely to occur in the "solid" memory system, but if a failure does

occur in the tape recorder, it would be more likely to debilitate the whole

system.

a. System size, weight, and power consumption. The major dif-

ference between the two storage techniques discussed is in the size and weight

required for a given storage capacity. Figure 76 is a plot of data extrapolated

from manufacturer's data. It shows the large penalties which would be incurred

by using the plated wire techniques for a high-capacity storage system. This

is particularly acute in the region of 108 bits which is typical of the Voyager

requirements. The volumes required in both cases are found to be approxi-

mately proportional to the weights. A tape recorder with 108-bit capacity

would occupy approximately lZ00 in. 3, while a "solid!' memory of similar

capacity would occupy about 20, 000 in, 3. It can also be seen from figure 76

that for very low capacity systems (less than 106 bits) the two techmques

begin to be competitive. However, there does not seem to be any requirement

for a low capacity storage unit in the present Voyager concept. The power

consumption required does not differ significantly between types of systems.

Power consumption in both cases will be a function of input and output data

rates rather than capacity and, in no practical case, will exceed about 12 watts.

b. Conclusions and other considerations. It is apparent that the

weight penalty incurred by using a "solid" memory system could not be tolerated

and that tape recorders must be considered the reference storage systems for

Voyage r.
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Although tape recorders appear to be the only acceptable way of handling

the Voyager bulk storage requirements, they are not without problems at

this time. The major difficulty, aside from obtaining demonstratable relia-

bility, is the requirement for sterilization of components to be landed on planet

surfaces. There are critical materials used in the construction of the types

of recorders being considered which would deteriorate under the heat of steril-

ization. Kaymond Engineering Company, however, is at this time involved in

a program aimed at locating and solving the design problems associated with

the requirement for sterilization.
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3.6 Antennas

Four antenna systems are used by the Mars orbiter: (a) a command an-

tenna system, (b) an altimeter antenna system, (c) a VHF telemetry antenna

system, and (d) the S-band directive antenna system. Discussion of each of

these systems follows.
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1. Command antenna system. Redundant omnidirectional S-band com-

mand antenna systems will be included on the orbiter-bus. These antenna sys-

tems will be truely redundant in that each system will operate independent of

the other and each will provide electromagnetic coverage about the spherical

region of space surrounding the spacecraft.

In the command frequency range, the dimensions of the spacecraft are

many times the wavelength, and reflections by the spacecraft will result in

major distortions of the primary pattern of most broad-beam radiation ele-

ments. The chosen radiating element design must, therefore, offer the means

for minimizing the reflection effects due to the airframe and still provide a

broad pattern.

The success of the mission may depend primarily on the command system.

A system consisting of linearly polarized antennas feeding a cornrnon receiver

will exhibit a polarization which varies from linear to elliptical to circular

(either left-or right-hand sense) should the spacecraft assume a random motion.

Since the Earth-bound command transmitting antenna is circularly polarized,

signal fading with aspect angle to the spacecraft will be eliminated by using a

polarization diversity receiving system consisting of two orthogonal, linearly

polarized antennas, two receivers, and a summing network. Figure 77 shows

a block diagram of the redundant system. With this system, either or both

components of radiation from the ground transmitting antenna will be received

regardless of the spacecraft orientation.

The recommended command receiver system allows omnidirectional cov-

erage with two antennas since the antenna system can be considered as one

composite antenna whose far field has both EO and E¢ components. Figure 78

shows the radiation patterns of orth0gonal, 60-degree flare-angle, biconical

dipoles for ka = 1.5, where k = 2 v/h and a = half length of the dipole. 1 These

patterns closely approximate those given by

E0 -- E m sin ¢ and E¢ -- E m cos

assuming equal field intensities at each antenna. Because each antenna feeds

its own receiver, the relative pattern of the total electric field is

E T = E m Csin2 qb +cos2 ¢ = E_ + E¢ -- 1

which is a circle. The antenna system coverage, then, will be the solid of re-

volution enclosed by the patterns shown in figure 78, thereby forming an ellip-

soid and ensuring omnidirectional coverage.

1papas, C. H. and R. King: Radiation from Wide-angle Conical Antennas Fed by a Coaxial Line. Proc. IRE, vol. 39,
p. 1269, November 1949.
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The individual radiating elements for this antenna system will consist of

biconical dipoles placed on the ends of short booms which will be deployed upon
removal of the ascent shroud. Biconical antennas are recommended since the

radiation patterns of these antennas can be shaped to reduce the constructive
and destructive interference effects of the orbiter-bus airframe. Chokes on

the support booms will further minimize pattern degradation by attenuating

current flow on the support structure.

Static charges induced on the biconical antennas by solar winds will be

shunted to ground potential by stub supports in the transmission lines.

The fundamental characteristics of the command antenna systems are
tabulated in table 13 and apply to either a Mars or a Venus mission.

TABLE 13

COMMAND ANTENNA SYSTEM CHARACTERISTICS

Par amete r Char acteri stic

Ope rating Frequency

Operating Power

Polarization

Gain

Bandwidth

VSWR

Weight

Z300 mc

Nil

Orthogonal Linear

0 db

± 1%

< i. Z5:1

Z pounds per system

Z. Altimeter antenna system. The Z190-mc altimeter performs two
functions: (a) to continuously measure the altitude of the orbiter above the

planet surface, and (b) to command the lander to play out its stored data to the

orbiter. The two functions suggest different transmitter antenna beamwidth

requirements: (a) a narrow beamwidth to obtain high gain for the altimeter

function; and (b) an 84-degree beamwidth to illuminate the whole planet disk

(from the periapsis altitude) for the command function. A transmitting antenna

with an 84-degree beamwidth will serve both functions, if a high-gain antenna

is provided for the altimeter at the receiving end of the system.
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The transmitting antenna must be circularly polarized to enable it to send

commands to a linearly polarized, randomly oriented command receiving

antenna in the lander vehicle on the surface of the planet. The altimeter re-

ceiving antenna will be linearly polarized because of uncertainties regarding

the handedness of the generally elliptical polarization of the energy reflected

from the planet surface.

A transmitting helix and a receiving paraboloid with dipole feed are com-

bined into a single, symmetrical unit by mounting the helix on the disk reflector

of the dipole feed as illustrated in figure 79. The disk serves as a ground plane
for the helix.

The coaxial feed lines for the helix and dipole are concentric. The center

conductor for the dipole feedline in a hollow tube which also serves as the outer

conductor of the coaxial feedline for the helix. The two feedlines are readily

separated just behind the vertex of the parabola by means of a Tee connection
in the outer coaxial line (dipole feedline). One arm of the coaxial Tee is ter-

minated with a short circuited, quarter wavelength stub. The inner coaxial

line (helix feedli_e) passes out through the short-circuited end of the Tee. The

inner line carries the high peak power from the transmitter.

No critical breakdown problems are anticipated in the design of the feed-

lines. The feedlines will have a vacuum dielectric while operating in orbit.

Insulating materials must be selected for very low outgassing characteristics

for use in high RF fields in the high vacuum of space. The low average power

(35 watts) and low feedline loss (less than 0.07 db) indicates that no problem
in thermal dissipation should be encountered.

A balanced dipole feed is proposed for the altimeter receiving system in

order to effect a greater isolation between helix and dipole. With suitable

choking and feed through nulling, the isolation between transmitter and receiver

can be in excess of 40 db to prevent receiver crystal burnout. With separate

antennas for receiving and transmitting, duplexer losses have been eliminated

from the system.

Table 14 summarizes the essential characteristics of the orbiter antenna

system. The helix is designed for 'tin-phase" radiation from the individual

turns, rather than for the conventional "increased directivity" phasing, in

order to obtain the 84-degree beamwidth required. The "in-phase" condition

also results in a higher illumination of the limbs of the planet disk in spite of

lower on-axis gain. Side lobe and back lobe energy are reduced. A calculated

radiation pattern for E 0 polarization is shown in figure 80.

Circularity of polarization is essential over the planet disk so that the

linearly polarized, lander antenna will receive approximately the same signal
amplitude for any orientation.
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TABLE 14

ALTIMETER ANTENNA CHARACTERISTICS (WEIGHT 3 POUNDS)

T r a n s mitting Re c e lying

Antenna type

Frequency

Polarization

Beamwidth (3 db)

Gain (linear polarization)

Bandwidth

VSWR

Circularity (axial ratio)

Power-handling capability

Isolation between transmitter

and receiver

Helix

1.7-inch diameter x

3.5 inches long

2190 mc

Circular

84 degrees

5 db

40 mc

l. ZO

i db on axis

3 db at I/2 power pts

35 watts average

200 kw (peak)

40 db

Z0-inch-diameter

paraboloid

2190 mc

Linear

18 degrees

19 db

40 mc

I. 20

*The gain of the circularly polarized helix is referenced to a linear isotropic

source because the receiving antenna on the lander and the altimeter re-

ceiving disk employ linear polarization.
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The beamwidth (18 dgreees) and the diameter (Z0 inches) of the receiving

parabola are determined principally by the gain requirements and the space

available on the gimballed platform already loaded with TV cameras, IR sen-

sors, etc., which are required to be direct toward the center of the planet.

The RF circuits for the S-band transmitter and receiver should be mounted

on the back of the paraboloid, or close by on the gimballed platform, so that

coaxial rotary joints and feedline losses at Z190 mc can be eliminated. Slip-

ring assemblies for DC power, control signals, and modulation�demodulation

signals must be provided. These provisions can be made with greater reliability

and less noise and signal loss than for S-band transmission lines.

3. Relay antenna system. A telemetry receiver antenna will be mounted

on the orbiter to monitor both the VHF omnidirectional array on the lander and

the VHF antenna that will be placed on the surface of the planet. Since these

systems will be linearly polarized and since the latter will be randomly oriented

with respect to the orbiting vehicle, a circularly polarized receiving antenna

is required. Also, in order to illuminate the extremities of the planet with

sufficient gain, a beamwidth of 84 degrees is required. A helix, radiating in

the axial mode will be suitable. To obtain the beamwidth required, it will be

designed for '_in phase" radiation from individual turns, not the more normal

'_increased directivity 'f radiation mode.

In general, the helical beam antenna (a helix radiating in the axial mode)

provides a well defined end-fire beam which is circularly polarized. Minor

lobes are relatively small. Its mode of radiation is readily produced by a con-

ductor formed as a helix of 12.5-degree pitch angle on a cylinder about one

wavelength in circumference. The axial mode has the unique property that it

may persist over a considerable frequency range with desirable pattern and

impedance characteristics.

The axial or end-fire mode of radiation of the helix is most simply generated

by connecting the inner conductor to the helical winding and mounting the outer

conductor of the coaxial line to the ground plane.

A very simple approximation for the power gain of a helical beam antenna,

with respect to an isotropic circularly polarized source can be expressed by
the formula

Gain = 15 (C/A) 2 nS/k

or as a decibel ratio

= 11.8 + 10 lOgl0 C/)_ 2 nS/X db.
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It can then be referenced to a linear transmitter by subtracting 3 db for

polarization loss. This formula neglects the effect of minor lobes and may be

somewhat optimistic but usually not by more than 1 or 2. db. The gain can be

precisely determined by comparing the antenna with a calibrated gain standard.

In designing the helix to radiate in the "in-phase field" radiation mode, the

axial ratio will approach unity since this "in-phase field condition" is also the

condition for circular polarization.

However, the axial ratio may be disturbed because the helix is mounted

over the lens and telescoping equipment. Techniques such as trimming the

tip of the helical winding, tapering the winding of the coil, moving the antenna

on the lensing equipment will be employed to compensate for excessive pertuba-

tions in the axial ratio. An axial ratio of 1.0 db on axis is a reasonable objec-
tive.

A helix of three turns or more with a pitch angle of 12. 5 degrees has a

terminal impedance which is nearly a pure resistance. This can be estimated

to within ± 20 percent accuracy by the expression,

R = 140C/_..

In the case where C = _, the terminal impedance will equal 140 ohms.

Since the antenna will be used in a receive application, a design objective

of I. 5:1.00 is reasonable.

The antenna is capable of operating over a I. 75:1 band with no serious

deterioration of its impedance or radiation pattern coverage. Table 15 lists

the more important characteristics of the antenna.

A pictorial description of the antenna is shown in figures 81 and 82.

Basically, it consists of 0.050-inch wire wound on three 0. 500-inch supporting

fiberglass rods. It will be mounted over the cylindrical tube protruding from

the television camera, which is 16 inches long and 7.0 inches in diameter. The

VHF transmitters and receivers will be mounted on the gimballed platform

directly behind the antenna. Slip rings will be attached to the low frequency

demodulated output of the receiver which will permit the gimballed arm to spin

in a 360-degree arc.

-191-



120 DEGREE

TYP

20 INCH t

DIAMETER

7INCH
DIAMETER

18 DEGREE TYP

13 INCH

RI°G2_'_'____!_ °=METERI
2 REQUIRED

I,J T
26 INCHES

0.5 INCH

FIBERGLAS _ /
ROD.3 REQUIRED

0,06 COPPER _ /

0.05 AL
GROUND'_"_

PLANE '_

/

_f

63-9721

Figure 81 VHF HELICAL ANTENNA
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TABLE 15

VHF CIRCULARLY POLARIZED HELICAL ANTENNA

Antenna Type 3 turn helix

Input VSWR

Gain of the Antenna

i. 50:1. 00 over the operating band

7.0 db referenced to a linear

transmitting source

Polarization

B eamwidth

Operating Mode

Weight

Axial Ratio

Circular

Approximately 84 degrees at the

half-power points

Receiving antenna

3 pounds

1 db on axis

4. Hi_h-_ain antenna system. This section of the report presents the

results of the orbiter-bus telemetry antenna design and development studies.

The studies considered only radiating elements which exhibit high gain char-

acteristics, since the antennas will service the two major communications

systems on board the orbiter-bus portion of the spacecraft.

At UHF frequencies and above, where directive beams become practical,

a choice is available between end-fire or broad-side arrays, a corner-reflector

antenna, or a reflector using a curved surface for focusing incident energy.

While the end-fire antenna exhibits an impedance bandwidth which is broad

enough for this application, its gain limitation (only about 15 db) precludes its

use here. Broad-side arrays can be used to produce high gains (greater than

30 db); however, they are limited by the number of elements required to ap-

proximate the reflector antenna. At least four array elements must be placed

in each square wavelength of the aperture, so the feed system becomes pro-

hibitively complex. The corner-reflector antenna has the same basic gain

limitation as the end-fire array. The curved surface reflector antenna, on the

other hand, has the basic advantage over the other elements considered in that

high gains can be achieved with relative ease. Since reflectors utilizing the

properties of a parabola have been found to be satisfactory in many different

applications, including current space programs such as Ranger and Mariner

iI, the studies were directed toward examining antenna configurations which

utilize parabolic reflectors.
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A paraboloidal reflecting surface, which is formed by rotating the arc of a
parabola about the line joining the vertex and the focal point, has been found to

be the most useful high-gain reflector antenna. Typically, the reflector size is

chosen to be as large as practical, and then the feed is designed for efficient

illumination based on obtaining either maximum gain or a reduction in side lobes

at the expense of a slight decrease in gain. Because of the large spacecraft to

Earth communications distances involved with this program, it is desirable to

maximize the antenna gain for a given reflector size. To satisfy this criterion,

it has been found that the radiated energy from the primary feed should be dis-

tributed so that the field at the reflector edges is approximately 12 db below

that of the center. This edge illumination value is general, however, and will

change with the ratio of focal length to reflector aperture diameter (f/D ratio).

For small f/D ratios, large space-attenuation factors are introduced in the

edge illumination with corresponding reductions in maximum gains. As an

example, with an f/D ratio of 0. 25 the primary feed pattern will be down only

6 db for an edge illumination of 12 db; 1 therefore, the energy below the 6 db

point is spilled over the reflector edge and is lost.

The physical constraints of the Voyager spacecraft limit the f/D ratio to

0. 38; therefore, an optimum-gain figure of 55 percent of the gain from a uni-

formly illuminated aperture is reasonable. The orbital communications sys-

tem will utilize an 8-foot-diameter parabola, while the in-transit system will

use a 4-foot-diameter unit. The fundamental characteristics of the antennas

are tabulated in table 16 and apply to either a Mars or a Venus mission.

Each parabolic antenna will utilize a vertex feed consisting of a rigid

coaxial section extending through the vertex of the reflector and terminated at

the focus by a radiating element which directs the radiation back onto the re-

flector. A balanced dipole-disk feed will be used as the primary illurnir_ator

since the resulting system is free from the squint phenomenon associated with

an assymetric termination, thereby yielding a higher optimum-gain figure.

Figure 83 shows the details of a typical dipole-disk feed; 2 however, to obtain

maximum gain an empirical approach will be used to determine final feed

dimensions and position.

The structural aspects of the orbiter-bus telemetry antennas was investi-

gated by Ryan Aeronautical Company and the results of this work are given in

detail in the appendix.

The design and fabrication techniques recommended are extensions of

proven technology available today. This approach was chosen in order to

ensure the timely availability of highly reliable hardware with a minimal expendi

ture of development effort.

1Kelleher, K.S.: Antenna Engineering Handbook. p 126, McGraw-Hill Book Company, Inc., 1st edition, 1961.

2Silver, S. Microwave Antenna Theory and Design. p 254, McGraw-Hill Book Company, Inc., N.Y., 1949.
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TABLE 16

HIGH-GAIN ANTENNA CHARACTERISTICS

Parameter 8-Foot Parabola 4-Foot Parabola

Operating Frequency

Operating Power

Polarization

Gain

Efficiency

2120 & Z300 mc

1Z0 watts

Linear

32. 8 db

> 55olo

Half-Power Beam Width

Side Lobe Level

VSWR for ± 1% Bandwidth*

f/D Ratio

Feed Type

3. 75 degree

> -20 db

i. 25:1

0. 38

Balanced Dipole -Disk

Vertex Feed

Same

35 watts

Same

26.8 db

Same

7. 5 degree

Same

Same

Same

Same

*Centered at each operating frequency.
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PART II-VENUS OR_BITER

3. 1 Communication System Requirements

The communication system requirements for the Venus Orbiter are similar

to those previously described for the Mars orbiter in that, in-transit, in-orbit,

and relay data from a lander will be transmitted to Earth along with range and

range rate information. This system will have the same command reception

capability as the Mars orbiter, but with an increased performance margin due
to the shorter range.

Since the surface of Venus is completely shrouded by clouds, mapping data
cannot be acquired by the TV camera system used in the Mars orbiter. In an

effort to obtain emission and reflection characteristics of the Venusian surface,

a radiometer and radar mapping system will be incorporated in the Venus

orbiter. The communication system used to monitor and store the acquired

mapping data will be similar to the system used in the Mars orbiter.

3. _ General System Description

The orbiter communication system will transmit all data acquired by the

orbiter during its operational life through either of two highly directional
S-band communication links. The main communication link consists of a

steerable 8-foot parabola antenna and a 70-watt transmitter. This system is

used primarily to transmit the radar mapping data acquired during the orbital

phase. With a transmitted bit rate of approximately 3600 bits per second, a

worst case performance margin of +3. 93 db can be expected, at a worst case
range of 2.6 x 108 kin.

The secondary communication link consists of a steerable 4-foot parabola

antenna and a 35-watt transmitter. This system is used primarily to transmit

the guidance and control and engineering status data acquired in transit. At

a transmitted bit rate of 400 bits per second, a worst case performance margin
of +4. 96 db can be expected at a range of 2.6 x 108 kin.

These two links serve as redundant backups to each other. However, with

the 4-foot parabola, a reduced amount of mapping data will be transmitted.

Each of these links will contain coherent transponders to aid the DSIF in making
range measurements. They will also use command receivers to receive com-

mands from Earth. Commands will normally be received by a separate system
identical to the one in the Mars orbiter.

Data transmitted to the orbiter from either the capsule or lander will be

received by a system identical to the system used in the Mars orbiter; with

the exception that the integrated S-band radar altimeter/command system will
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TABLE 17

SUBSYSTEM WEIGHTS, VOLUMES, AND POWER CONSUMPTIONS

Major Redundancy Volume Weight Power

Subsystem (cubic inches) (pounds) Consumed
(watts)

Eight-foot antenna (with drive)

Four-foot antenna (with drive)

Antenna driver amplifier

70-watt S-band power amplifier

(with special power supply)

35-watt S-band power amplifier

(with special power supply)

S-band transponder

S-band command receiver

0

Double redundant

each parabola

Double redundant

Z88

275

180

IZO0

Command decoder

Multiplexer - encoder

Subcarrier modulator

VHF receiver

Venus VHF transmitter

S-band omni-antenna system

VHF helix antenna

Venus recorder No. 1

Venus recorder No. Z

Cabling and plumbing

each Z= steradians

1 (active

1

1

1

1

0

0

0

0

800

ZZ

300

80

300

140

1150

1150

5885

Z9.6

14.8

I0.0

16.0

lO

40

z8 ,

Z

18

4

13

8

4

Z. 5

16

16

20

Z51.9

140

70

Z0

56

IZ

3

3

3

I0

6

6

3Z9
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TABLE 18

IN-TRANSIT TELECOMMUNICATIONS DESIGN CONTROL CHART

PROJECT: voyager

CHANNEL: Orbiter To DSIF

MODE: 4- foot parabola

8

9

l0

Parameter

i Total transmitter power /35 watts

2 ITransmitting circuit loss / with

diplexer

Tr ansmitting antenna gain /4- inch

diameter

Transmitting antenna pointing loss

Space loss = 32.46+20 log F+20 log R

F:2300 MC, R:2.6xI08KM

'6 Polarization loss

7 Receiving Antenna gain

Receiving Antenna pointing loss

Receiving circuit loss

Net circuit loss

11 Total received power

12 Receiver noise spectral density

(N/B) T system 50°K

carrier performance

Nominal

Value

+45.44 dbm

-I.0 db

+26.65 db

-0. Z db

-268.0 db

-0.0 db

+61.0 db

-0.1 db

-181.65 db

-136.21 dbm

Tolerance

(decibels)

+0.0

-0.5

+0.0

-0.5

±0.46

+0.2

+0.0

-0.08

+0.0

-0.5

maximum

-181.43 dbm ±0.7

Worst

Value

+44.94 dbm

-1.5 db

+26. 19 db

-0.4 db

-268.0 db

-0.08 db

+60.5 db

-0.1 db

-183.39 db

-138.45 dbm

-180.73 dbm

13 Carrier modulation loss

14 Received carrier power

15 Carrier APC noise BW (2BLo)

Carrier track (1-way)

16 Threshold SNR in 2BLO

17 Threshold carrier power

I

18 Performance margin

-_ negligible _,-
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TABLE 18 (Concl'd)

No.

19

20

Z1

22

23

24

Parameter

Carrier - track (2-way)

Threshold SNR in 2BLO

Threshold carrier power

Performance margin

Carrier - Telemetry

Threshold SNR in 2BLo

Threshold carrier power

Performance mar gin

Subcarrier Performance

Nominal

Value

Tolerance

(decibel s}

Corresponds to subcar-

rier SNR degradation of

1.5 db

Worst

Value

3 db

25

26

27

28

29

3O

31

32

33

34

35

36

Data channel

Bit rate (l/t) 400 bits/sec

Required ST/N/B Pe = 5x104

Threshold subcarrier power

Modulation los s

Received data subcarrier power

Performance margin

SYNC channel

SYNC APC noise BW (2BLO)

Threshold SNR in 2BLO

Threshold subcarrier power

Modulation los s

ReceivedSYNC subcarrier power

Performance margin

+26.02 db

(8. 8+I. 5)db

-145. II dbm

-136. 21 dbm

+8.90 db

±I.0

±1.7

negligible

+26.02 db

+II. 3 db

-143.41 dbm

-138.45 dbn3

+4.96 db
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TABLE 19

EARTH- TO- PLANE T RANGES

Arrival

Date

Period

MARS

14 Oct.-Z Dec. * (69)

28 Nov.-31 Dec.* (71)

4 Feb.* 27 Mar. (73}

VENUS

7 Dec.-23 Dec. *(70)

18 Sept.-30ct.*(7Z)

7 Apr.*=Z0 Apr. (73)

1 1 Oct. - 31 Oct. *(75)

Worst Case

Enc ounte r

Range

AU KM

1.38 Z07xlO 6

1.19 179xi06

1.97 296xi06

0.47 70.5xi06

0.97 145xi06

1.73 260xi06

0.63 94.5xi06

Worst Case

Encounter

+

30 Day

Range

AU KM

Worst Case
Encounter

+

150 Day

Range

AU KM

2.37 356xi06

Z.40 360xi06

0.88 13ZxlO 6

1.58 237xi06

1.47 Z20xl06

1.73 Z60xl06

1.49 224xi06

1.68 252xi06

1.19 179xi06

1.53 230xi06

* Worst Lattnch Date
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TABLE ZO

IN-ORBIT TELECOMMUNICATIONS DESIGN CONTROL CHART

PROJECT: Voyager

CHANNEL: Orbiter to DSIF

MODE: 8-Foot Parabola

No.

1

Z

3

4

5

8

9

10

11

1Z

Nominal

Value

Tolerance

I(decibels}

Worst

ValueParameter

Total transmitter power / 70 watt_ +48.45dbm +0.0 +47.95dbm
-0.5

Transmitting circuit loss / with -1.0 db +0.0 -1.5db

diplexer -0.5

Transmitting antenna gain / +32.7db +0.91 +31.79db

8-inch diameter

Transmitting antenna pointing loss -0.3db +0.3 -0.5db

-0. Z

Space loss = 3Z. 46+Z0 log F+Z0 -Z68. 0db -- -Z68.0db

log R F:Z300 MC, R:Z. 6xl08 KM

Polarization loss -0.0db +0.0 -0.08db

-0.08

Receiving antenna gain +61.0db +0.0 +60.5db

-0.5

Receiving antenna pointing loss ......

Receiving circuit loss -0. idb maximum -0. idb

Net circuit loss -175. 7db +i. Z1 -177.89dh

-Z. 19

Total received power -IZ7. Z5dbm +I. ZI -129.94dbm

-2.69

Receiver noise spectral density

(N/B) T System 50oK -181.43dbm +__0.7 -180.73dbm
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TABLE ZO (Cont'd.)

No,

Carrier

13

14

15

Nominal Tolerance

Parameter Value (decibels)

Performance -

Carrier modulation loss

Received carrier power

Carrier APC noise BS (2BLo)

Carrier track (l-way)

16 Threshold SNR in ZBLo

17 Threshold carrier power

18 Performance margin

Carrier track (Z-way)

19 Threshold SNR in ZBLo

Z0 Threshold carrier power

Zl Performance margin

Carrier - Telemetry

ZZ

23

Z4

Threshold SNR in ZBLo

Threshold carrier power

Performance margin

Subcarrier Performance

Z5

Z6

Data channel

Bit rate (i/t) 3600 bps

Required ST/N/B Pe = 5xi0-4

negligible

corresponds to subcarrier

!SNR degradation of I. 5db

+35. 5db

Worst

Value

3db

-- +35.56db

(8.8+I. 5)db +I.0 +ii. 3db
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No.

Z7

Z8

Z9

3O

31

3Z

33

34

35

Parameter

TABLE ZO (Concl'd)

Threshold subcarrier power

Performance margin

Nominal

Value

-135.57dbm

Modulation loss --

Received data subcarrier power -127. Z5dbm

+8.3Zdb

Tolerance

{decibels)

+I.7

Worst

Value

-133.87dbm

+i. 71 -129.94dbm

-Z. 69

+3.93db

SYNC channel

SYNC APC noise BW (2BLO)

Threshold SNR in ZBLo

Threshold subcarrier power

Modulation los s

Received SYNC subcarrier power _------Negligible •

Performance margin
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not be used. Altitude information for the Venus orbiter is available from the

radar mapping system. A separate command transmitter will be used to signal

the lander to begin transmitting its stored data.

Since the total data acquired by either the capsule or lander is approximately

two orders of magnitude less than that acquired by the Mars lander, a separate
recorder for the lander data will not be used; the data will be stored in one of

the two mapping recorders. The operation of the two mapping recorders will
be identical to those used in the Mars orbiter.

The main source of power for the orbiter equipment will be a solar panel

array as in the Mars orbiter. However, the panel area required for the Venus

orbiter is approximately one third the area required for the Mars orbiter.

While in orbit, the orbiter may pass through the Venus sun-umbra region. To

provide power in this region, rechargeable storage batteries will be used.

To meet the reliability figure required of the orbiter, the communication

will be i00 percent redundant. All redundancies in the communication system

will be passive, except for the command systems, which obviously require

active redundancy.

The total weights, volumes, and power consumptions of the orbiter com-

munication system components are listed in table 17.

3. 3 Detail System Description

A simplified block diagram of the orbiter communication system, which

will meet all of the orbiter requirements is shown in figure 83A. Two direct-

link communication systems were selected for the orbiter; one to be used in
transit the other to be used in orbit.

1. Detailed in-transit communication link description. The communica-
tion link parameters associated with this phase are listed in table 18. The

range indicated in this table is the maximum range that can be expected as

determined for the launch opportunities listed in table i9. Except for the higher

transmitted bit rate, the operation of this system is essentially identical to the

operation of the Mars orbiter. The operational details of the transponder,

ranging, command, transmitter, and antenna systems used during this phase are
described in the Mars orbiter.

2. Detailed in-orbit communication link description. The data monitored

in this phase is primarily mapping data acquired through a radar mapping system.

In addition, scientific and engineering status information will be acquired and,
also, data will be received from the lander.

a. Mapping. Mapping data will be monitored and stored in a method

similar to the Mars orbiter. The communication link parameters associated
with this phase are listed in table 20.
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Since the resolution of the radar mapping equipment is less than that of the

TV camera system used in the Mars orbiter, the total acquired mapping data

will be less than that acquired by the Mars orbiter. For this reason, a trans-

mitted bit rate of 3600 bits per second was selected for the Venus orbiter. At

this bit rate, a worst case performance margin of +3.93 db can be expected

using a 70-watt transmitter. The Mars orbiter required a 120-watt transmitter
in the corresponding phase.

b. Reception of lander data. Reception of the capsule or heavy descent

lander data during entry and descent into the Venusian atmosphere will be ac-

complished with a system identical to the one used in the Mars orbiter. These

data will be stored in one of the two mapping recorders.

Reception of the heavy lander data acquired after landing will be accom-

plished with the same system. Since the total acquired data by either the capsule

or the lander is approximately two orders of magnitude less than the Mars lander,

a separate recorder to store the lander relayed data will not be used. The total

time required to receive all heavy lander data is approximately 10 minutes.

Since this is a small fraction of an orbiter period, the percentage of mapping

data lost as a result of interrupting the mapping function to acquire the lander
data is negligible.

3. 4 Antennas

The command and high-gain antennas used in the Venus orbiter are identi-

cal to the ones used in the Mars orbiter. The command antenna used to inter-

rogate the lander will be a VHF helix antenna similar to the S-band helix used

in the integrated altimeter/command system in the Mars lander.
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4. POWER SUPPLY

PART I -- MARS ORBITER

4. 1 Power Source Selection

A number of space power systems could be suggested for the Mars orbiter,

viz., solar cell array, RTG, solar collector with static or dynamic conversion,

primary fuel cell, and nuclear reactor. With the exception of the first two, the

remainder are not sufficiently advanced to consider. Little or no operational ex-

perience has been acquired, and little or no reliability information is available and

it is acknowledged that the objective of Voyager is not to advance the state of the

art in space power systems. Furthermore, the fuel cell and the nuclear reactor

are simply too heavy for this application. The solar collector may be a reason-

able power source for a later Venus orbiter.

The radio isotope thermoelectric generator (RTG) has been used a few

times in space (Transit satellites) and several other generators are planned

(Surveyor, Imp, Nimbus, OAO, OGO). An RTG offers several advantages, such

as long life, insensitivity to vehicle orientation and incident solar flux, compact-

ness, elimination of look angle problems and, at times, as in this case, weight

savings (200 vs. 419 lbs. for solar arrayandbatteries). The disadvantages associa-

ted with an RTG are: scarcity of suitable fuel, shielding requirement, handling

problems, thermal control requirements, and less well-established reliability.

In the Mars orbiter case one objection is fundamental: inadequate supply

of a suitable isotope. Approximately 800 watts are needed for the orbiter; as-

suming three complete RTG's will be required in early 1968 for the January,

1969, launch, 2. 4 KW e of isotope material must actually be supplied. This is

much more than will be available in 1968 for either curium 244 or plutonium

238, even if allowances are made for a reasonable increase in conversion ef-

ficiency (from 5% to 7%) and for an increase in production capability (50%). in

addition, it should be realized that the availability figures given in figure 84

represent maximum production capabilities and will not be met unless the de-

mand exists. Lead time for production is 2 to 3 years. A complete discussion

of isotope availability is presented in Section C of the lander design, volume V.

Other isotopes, with acceptable half lives (Cesium 137, Strontium 90) are

similarly scarce for the 1969 launch and both of these would be handicapped by

shielding requirements.

Apart from fuel selection problems, other considerations disfavor the RTG:

1) The cost of Curium-Z44is estimated between $9,000. and $12,000. per

electrical watt; this definitely places the RTG at a higher cost than a solar panel
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by a factor of about 512). The solar array configuration selected does not handi-

cap the look angle of any instrument or antennas and no pressing need exists

for a compact supply.

Consequently, since the vehicle configuration selected shall be essentially

unchanged for Mars and Venus through at least the first two opportunities for

each, serious consideration of the RTG at this higher power level is not anti-

cipated before the 1973 opportunity.

4. 2 Constraints and Configuration

The design of the solar array for the Mars orbiter is partially established

by the fact that the average cell temperature at Mars perihelion will not be

less than 35°C, while that at aphelion will not be less than 13°C. These condi-

tions were established so that the waste heat rejected from the panel be suf-

ficient to maintain reasonable vehicle temperatures. Were it not for this limi-

tation, lower cell temperatures could be achieved which, from the point of

view of the power source designer, are more desirable, since cell conversion

efficiency increases with decreasing temperature at the rate of 0.5% per de-

gree centigrade (28°C taken as 100%) as shown in figure 85.

The perihelion conditions prevail for the 1969 opportunity since the space-

craft will encounter the planet 7 days after Mars reaches perihelion, and the

available power is ample to accommodate the loadprofile. For the 1971 and

1973 opportunity, however, the latter portion of the mission shall occur during

the aphelion condition and, as will be shown in a later section, sufficient power

may not be available from the solar array to permit continuous mapping on
successive orbits for the presently available solar cell area.

Fixed solar panels have been selected by the spacecraft designers. This

technique was chosen because it improves reliability (one of the most likely

failure modes is failure to deploy) and simplifies the look angle problems which

occur if both large antennas and large solar arrays were articulated. The pre-

sent arrangement permits the 8-foot and 4-foot diameter communication anten-

nas to be mounted on the array structure.

The concept for the Mars Orbiter solar cell array consists of two con-

centric discs which are fixed to the structure. The large disc has an outer

diameter of 17.4 feet and inner diameter of 11. Z5 feet providing an overall area

of 138 sq. feet. The small disc has an outer diameter of 9.28 feet and an inner

diameter of 2.71 feet providing an overall area of 63 sq. feet. The total area

of the combined structure is 201 sq. feet; however, the effective solar panel

area is less than that number by 18 sq. feet. The reduction in panel areas is

largely due to the packing factor for mounting flat 1 x 2-cm cells; a second

order reduction is caused by mounting the four vernier rockets on the cell side
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of the large disc.

Structurally, both discs will be comprised of twelve radial segments. While

the small disc is divided into twelve equal segments that differ only in provi-

sions for mounting to the bus structure, the large disc has twelve segments,

equal in size but different in supplemental structure, to provide windows for

experiments, and provide mounting pads for attitude control jets, vernier rock-

ets, sensors and other equipment. The segmented arrangement was chosen to

facilitate fabrication, testing, shipment and replacement in the event of an

inadvertent local failure.

4.3 Solar Cell Design

I. Solar cell cover. The design of the Voyager solar cells will be simi-

lar to that used on the other satellites and probes. The principal differences

is the likely elimination of microsheet glass covers for the individual cells.

The reasons for their tentative eliminations are given below; however, the re-

suits of the Mariner observations will bear very pertinently on the cell cover

question and will serve as the most important influence on the final hardware

decision.

The function of the covering, if used, would be to enhance the emissivity

in the infrared as it is an effective means of reradiating heat into space and

thereby reduce the cell operating temperature during exposure to direct sun-

light. Elimination of the glass cover in the Mars case does not result in a

high panel temperature because the alternative means of using a highly emis-

sive rear surface is capable of maintaining as low a cell temperature as is

tolerable. Of the two methods, the highly emissive back surface is far less

expensive. In addition, this technique offers the advantage of lower weight

(about 7 percent and a reduction of fabrication loss by 2 to 3 percent). Since

the number of steps and components used in the fabrication and assembly pro-

cess would be reduced, the resulting panel would be more reliable, less test-

ing would be necessary, and there would be less breakage and fewer rejects.

An important byproduct of the elimination of the cell cover is the elimination

of the adhesive which is used between the glass and the bare cell. The adhe-

sive is known to degrade under ultraviolet radiation.

a. Radiation effects. A second purpose of glass covers is to shield

against energetic particle radiation of the type found in the Van Allen belts.

No degradation in the performance of the solar cells is anticipated during the

spacecraft's short duration transit through the Earth's radiation belts. As to

whether radiation belts exist at Mars, no positive answer can be given. How-

ever, reasoning suggests there is, at worst, a very weak field. Mars is a

smaller, lighter planet than earth and consequently could be expected to have

a weaker field. More significant, however, is the existence of the two low
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altitude moons, which would tend to sweep up any magnetically trapped charged

particles. This fact is important because the density of a charged radiation

belt is an equilibrium condition determined by the rate of particle capture

(from galactic sources, solar flares etc. ) and the rate of sweeping out. On

this basis, the probability of the existence of a radiation belt at Mars dense

enough to effect damage of a solar cell is low. In any case, N-on-P type sili-

con cells will be selected which are inherently more tolerant to radiation than

are the P-on-N type.

b. Micrometeorite effects. It may be argued that the elimination of

the cover glasses will expose the bare cell to direct damage by micrometeorite

bombardment. A narrow range of particle energies probably exists which, on

the high energy side, are unable to knockout a covered solar cell but which,

on the low energy side will knockout a bare cell. The width of this spectrum,

in effective hits per day, may be very narrow indeed. In any case, micro-

meteorites travel in concentric circles about the sun. Since the solar panel is

oriented normal to the sun, the path of the micrometeorites is parallel to the

solar array. The panel areas thus exposed to the particle flux is vastly reduced

and the entire panel may be protected from damage by providing particle inter-

ception barrier along the edges of the structure. These observations should be

similarly applicable to the asteroid belts.

2. Solar cell interconnection. Originally, solar cells to be used in space

were connected electrically in series in modules of about five cells, and the

solar panels were made up of the required number of such modules. The rea-

sons for the series modules are as follows:

i. Early satellites, such as Vanguard, did not require parallel connec-

tions since a single solar cell provided the required current, and the required

voltage could be obtained only by series connections.

Z. The series connection permits use of the overlapping shingle whereby

up to seven cells can be sweated together in series without wiring. The shingle

also provided a higher packing factor since only the active areas of all cells

(but one) were exposed.

The present trend, is to use modules of up to nine cells connected in paral-

lel, because:

1) The most likely mode of solar cell failure is an open circuit.

Failures due to solar cell short are rare by comparison. In this context, a

parallel connection of solar cells is far more reliabile than a series connection.

2) Flat mounting of solar cells required by the parallel connection

permits a stress relief type electrical connection to the upper terminal strip,

which is not possible with shingled cells. Broken terminals are less likely.
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In addition, flat mounting of solar cells as used in parallel connected modules

avoid the 3-degree shingle angle, the shadowing of one solar cell by another in

the shingle, and the weight of the excess adhesive fill under the mounted shingles

and,

3) There is no mechanical limit to the size or shape of a para-

llel module.

As to the maximum size of the parallel module, it is limited by the maxi-

mum usable area of sunlight provided by the solar simulator used in testing.

Seven-cell modules are the present practical limit. The dimensions of a seven-

cell module of 1 x 2 cm cells are nominally 2x 7 cm. Withthe basic 5 or 7

cell parallel module, the required panel voltage and current are obtained by

any suitable interconnection. To determine the required number of series

modules, simply divide the output voltage (normally 36 volts) by the output

voltage of a single average cell at the selected operating point. For cells with

ten percent conversion efficiency operating at Mars aphelion with a surface

temperature of about 13°C, avoltageof 0.350 volt will be obtained at maximum

power (figure 86). Thus, for a 36 volts system, 103 parallel modules would

be required.

The current output of a solar cell can be computed from the Power and the

voltage. Near Earth, a single Icm x 2 cm solar cell in space sunlight will de-

liver a maximum power current of about 55 ma. At Mars this will drop to about

27 ma. (fig_zre 87). Thus, a 7-cell module will produce about 0. 189 ampere in

space. It is a simple matter to connect the required number of series strings

of modules in parallel to obtain the necessary output current. If failures due

to wiring shorts and opens are avoided by careful design, the use of redundant

connections or protective devices such as fuses and diodes are not necessary.

A need for diodes does arise when, as in the present case, the panel is used to

charge a storage battery. During the dark period, diodes between battery and

panel (one diode for the whole panel or separate diodes for each series string)

prevent the battery from discharging into the panel.

With the foregoing discussion in mind, it appears advisable to follow the

common practice of isolating series strings from each other and from the

battery by a single diode placed in each series string. Thus, for the seven-

cell module example given above, the diode is rated at only 0. 189 amperes and

36 volts, a modest requirement. Cross connecting the series strings at inter-

mediate intervals would, by redundance, reduce losses if a particular series

string should open up.
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4.4 Available Power

Assuming flat mounted icm x 2cm cells with a packing density of 420 per

square foot, the raw electrical power available per square foot of solar array

is given by:

420(_21 Aq (1-.005 AT) (l-fabrication loss)

wher e

S is the solar constant at 1 A.U. outside the Earths atmosphere.
0. 140 watts/cm 2

R is the Mars distance from the sun in A. U. , i. 38 AU at perihelion and

I. 68 at aphelion

A is the area of the 1 x 2 cm cell, less contact and grid area,
I. 9 cm 2.

is the efficiency of the solar cell at 28°C and air mass zero, I0%

AT is the excursion in cell temperature from 28°C, the cell temperature

is 13=G at aphelion and 32=C at perihelion

Fabrication loss includes assembly, mismatch, and transmission losses,

approximately 8 percent for coverless cells.

Using the above relationship, it is found that the solar cell array will de-

liver a maximum power of 5. 3 watts per square foot at Mars perihelion and 4. 05

watts per square foot at aphelion. The variation in output power as a function

of date for a solar panel at Mars is given in figure 88.

Power Requirements. The worse case power condition is defined by the

aphelion condition at which 732 watts of raw electrical power is available.

To maximize power utilization, the consumer list was prepared on the assump-

tion that a nominal efficiency of . 85 will be realized from the power condition-

ing equipment. Power conditioning, as used here, is defined to mean all

auxiliary equipments between the primary power source and the load; it includes

battery charges, converters, inverters and regulators. An 85 percent overall

efficiency for the conditioning system in the Voyager Spacecraft is considerably

higher than the 54 percent which was achieved by Mariner B. This increase

in system efficiency can be achieved primarily because of the elimination of

the transformer rectifier units shown in figure 89, which is a block diagram of

the Mariner power system. The figure was reproduced from 5PL technical

report 32-424. As illustrated, the majority of the power is distributed on the
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2400 cps ac bus to the users transformer-rectifier units. This technique,

although well suited to situations in which the various load power requirements

(voltage, frequency ripple, regulation) are in a state of flux, is necessarily

inefficient since it must accommodate these variations. Other sources of

power loss are the diode in series with the booster regulator and the 2400 cps

inverter transistor.

A more efficient method of power utilization is the phase control voltage

regulation converter which is used on some of the later satellites like OAO.

A brief description of the system is included in a later section, however, it

should be noted here that by handling all the power in one transformer, there

is a weight and efficiency saving over the use of individual TR units. All

outputs can be regulated to a ± 2 percent for load and line changes, with con-

verger efficiency of 85 percent.

This method permits elimination of the separate regulator converter for

the communications transponder. Table 21 gives the Mars orbiter-bus re-

quirements.

Mapping from apoapsis was established as the worst case from the

point of view of maximum power system weight. The corresponding profile

for this situation is shown in figure 90. This loading condition will result

independently of the Mars position in its orbit; however, the greatest penalty

occurs at aphelion because insufficient energy is available during the sunlit

portions to recharge the batteries. The result of this loss in energy is that

some mapping information will be sacrificed on the succeeding orbit in order

to permit recharge. Figure 91 indicates that the aphelion condition will not

be encountered during the 150 day lifetime of any of the Voyager missions.

From table Z1 itwill be seen that the power requirements during the sunlit

portion of the orbit are 619W. (Note that some items are used in active re-

dundancy. ) This level refers to the load power; it does not include the con-

verter regulator efficiency which, when considered, establishes an input re-

quirement of 728 watts which is just 5 watts less than the 73Z watts available

from the solar panel. This marginal situation takes place during the last two

months of the 1971 mission and throughout nearly the entire 1973 mission.

By these times, however, more efficient cells may be used or the load re-

quirement may have diminished. For the 1.5 x 10 km near polar orbit selec-

ted, 1.56 hours of each period shall be in shadow. Since 307 watts are re-

quired during this period, it is obvious (in the case of the late 1971 and 1973

missions) that the batteries must be charged on the previous orbit during

which the load has been sufficiently reduced to accommodate recharge. The

weight of the nickel cadmium battery corresponding to this energy require-

ment is:
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TABLE Z1

MARS ORBITER-BUS POWER REQUIREMENTS

Power

(watts) Use

1g0-watt S-band power amplifier

Driver amplifier

35-watt S-band power amplifier

S-band transponder
Command decoder

Multiplexer encoder

Subcarrier modulator and PN generator

Z40

Z0

70

Z0

6

3

3

Sun

Sun

Transit

Sun and Umbra

Sun and Umbra

Sun

Sun and Umbra

VHF receiver

S-band altimeter

Command generator

Digital computer unit
Guidance

Central programer and sequencer
Attitude control

Mapping recorder 1

Mapping recorder Z

Relay recorder

Power conditioning equipment
TV cameras

Science

3

80

Z

Sun

Sun and Umbra

Sun

16Z Sun and Umbra

6

6

6

iii

Zl

Z8

Sun and Umbra

Sun and Umbra

Sun

Sun and Umbra

Sun

Sun and Umbra
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(307)
(1.56 hr) -_

0.85

(7 wh)
_(0.715)

lb.

= 112 lbs.

A 50 percent depth of discharge is assumed. The .715 factor appears in

order to compensate for adischarge time of less than the nominal 10 hour rate

(figure 92).

4. 5 Battery Selection

During the expected 150 day life of the mission, the battery will experience

about 500 charge-discharge cycles. The storage battery most suited to this

requirement is nickel-cadmium. Since silver-cadmium will easily tolerate this

cycling and has a higher theoretical energy density, it would appear from a

cursory examination that the silver cadmium is preferable, but in point of fact,

(1) the energy density of the finished package is no greater, (2) the silver cor-

rodes the separator, thereby materially reducing life; and, most significant

from a reliability aspect, and (3) silver-cadmium battery cannot tolerate con-

tinuous overcharge beyond the second oxide level. Overcharge at this level will

produce oxygen and hydrogen gas and, if the pressure exceeds the permissible

limit, a catastrophic failure may occur. Therefore, venting is required with the

consequent liberation of gas and corrosive vapor.

In the sealed nickel-cadmium battery, however, the gasing condition is

prevented because an excess of negative over positive active material is present.

Sealed cells are so manufactured that the positive electrode reaches the charged

state first. The further passage of current causes the positive electrode to give

off oxygen before the negative can reach the fully charged state. If proper ac-

cess of the oxygen gas to the negative plate is provided, such as by use of a

porous separator, a reaction between oxygen and metallic cadmium will occur

to give cadmium oxide. Thus, the negative electrode will never reach full charge

if the rate of oxygen recombination is sufficient to consume oxygen at the rate

liberated. An equilibrium state is thereby reached which prevents the buildup

of any approciable gas in the cell.

For reasons of reliability and power performance, nickel cadmium batteries

have been selected for the reference design.
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4.6 System Description

From the simplified power system block diagram shown in fig. 93, it will

be seen that the main functional elements are the solar array, two identical seal-

ed nickel-cadmium battery charge control, a converter regulator to develop the

required output voltages, and the necessary control and selector circuitry for

reliability through redundancy. The main battery provides power during orbit

in the dark and during orbit in the sunlight if the peak system load exceeds the

solar array capacity. For system loads below the solar array capacity, pulse

width regulators 1 and 2 provide charge and trickle charge currents to the main

and standby batteries. Since these regulators draw pulses of current, an averag-

ing filter is used at the output of the solar array to smooth the current demand.

A diode is placed at the output of the array to isolate it from the battery during

orbit in the dark. Under all conditions, the converter regulator is directly

connected to the solar array.

i. Charse control. Since the two batteries and charge control circuits are

identical, only one will be described. When the orbiter comes out of the dark,

the main battery will attempt to regain its stored energy as fast as possible.

The pulse width regulator will be controlled by the current sense to limit the

charge current, by the charge control to limit the charge voltage, and by the

temperature sense to prevent thermal runaway. The charge current wiU be limi-

ted at the beginning of charge to prevent the battery from absorbing the total

solar capacity to the detriment of the system load. The charge voltage will be

limited at the nq_iddle and end of charge to prevent gassing of the electrolyte for

increased internal resistance and generated heat.

The temperature sense reduces the charge voltage during and at the end

of charge to minimize energy waste and build up of battery temperature. When

the main battery has been fully charged, it will remain on trickle charge and

be isolated from the main bus by a diode until the main bus voltage dips during

peak loads or during the next dark period. Pulse width regulator Number 2 will

provide a trickle charge to the standby battery throughout the sunlit period.

The charge control will maintain the two modes of charging as long as the

input voltage of the converter regulator remains above a satisfactory limit.

When the voltage decreases below a preset limit, the selector operates a relay

which switches the standby battery on the main bus and reverses the charge con-

trol connections to the pulse width regulators. The selector may be actuated by

a ground control command to select either battery and override an automatic

change-over. Power for the selector is obtained from the solar array or the

batteries through a diode logic, thus maintaining operation as long as main bus

voltage is available.
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a. Pulse width regulation. The pulse width technique of voltage re-

gulation involves somewhat more weight than do the less efficient means of volt-

age regulation. Generally a light weight system is more desirable than a highly

efficient one when ample excess power is available. However, in the present

case, where large amounts of power are involved and the mission is approach-

ing the power limited point, it is more desirable to pay the weight penalty and

achieve the attendant efficiency gain. As was inferred, this method of voltage

regulation is not in widespread use and therefore a brief description of its

operation is warranted.

The pulse-width regulator is a switching type regulator offering efficiencies

of 90 to 95 percent. Its operation is shown in fig. 94. Six functional elements

are illustrated. Regulation is accomplished in a manner similar to a servo

amplifier in that an error or difference voltage is used to control the output

and thereby minimize the error. The voltage difference between a reference

and a sample of the regulated output is detected and amplified by the comparison

element. The driver element senses the magnitude of the amplitude of the

error signal and varies the duty cycle of the switching transistor (on time to

off time) in a direction to correct any deviation from the preset voltage. The

comparison element takes a true sample of the output voltage to compare with

the constant reference voltage. A resistance divider across the regulated out-

put is used as the comparator. Effects due to temperature are minimized by

the use of wirewound resistors with low temperature coefficients.

Silicon breakdown diodes are used as a voltage reference. A series com-

bination of low voltage silicon diodes with extremely low temperature coeffic-

ient is utilized to provide a near constant voltage reference.

The gate winding of the magnetic amplifier is excited by a high-frequency

signal from the multivibrator. High frequencies are used to increase the re-

sponse time of the system for faster correction of output voltage changes and to

reduce the size of the magnetic components. The error signal is applied to the

control winding of the magnetic amplifer and varies the delay or firing angle

{time required to saturate the core of the magnetic amplifier), which in turn

varies the timing of the magnetic amplifier output to the switching transistor.

The magnetic amplifier circuit approach is highly reliable.

By varying the timing of pulses to the base of transistor, the transistor

can be switched on and off with a varying duty cycle. This is illustrated in

fig. 95. When the switch is on, the losses are a function of the transistor

saturation resistance which is extremely low. During the transistor off period

no losses are sustained. Efficiency is very high and power handling capability

is also very high.

A filter circuit follows the switching transistor to average the pulsed out-

put. A typical sequence of events can be followed to demonstrate circuit per-

formance. For example, if the output regulated voltage tends to rise, the

-229-



o.

0

n-
h,

J
m
LJ_

a.

.-j

0

0c

Z

P-
_1

T
hi

W
Z

-.I

0

1.
N

¢J
f-I

C_
W
_--

hJ
0

• n-
w

u.

n-
O
I-
v) -r

q ,

z
0

:g
0

bJ
(.J

,_ Z

0 _-

.._.

o
<

v

.,..I

,..I

o

'1-

,.-I

-Z30-



:!

o
i-

÷C

II

|_,_

÷

o_

k_
0_
,(

Z

•4k------- $ J.10 ^

r---

t II
I

/I
/I

I

Q.

(n
,(

a_
0

(/1
o
z

o

.J
,(
)
E
t_
I..-
z

±

T

?
IAI

I-

U.I

W
I

Z

U

0
F-
.<
J
.._
0
LU

T
I--

--I

Q.

LO

0

ol

U_

Q
!

-Z31 -



comparison element will sense this increase. This increase in output voltage

will be compared to the stable reference voltage, and result in an error signal.

The error signal is fed back to the control winding on the magnetic amplifier,

which reduces the time duration of the gate winding pulse output. Base drive

to the switching transistor is shorter in time duration, giving a shorter on time.

The filtered output of pulses from the switching transistor will result in a lower

average regulated and corrected output voltage.

Current protection can be easily accommodated by adding a current sense

circuit in series with the output. A second comparison element will compare

the sensed current, which is translated into a proportional voltage, with the

reference voltage. This difference voltage or error signal is fed into a second

control winding on the magnetic amplifier, which will control the time duration

of the high frequency pulse output from the magnetic amplifier as previously

described.

The pulse width or switching type regulator provides good regulation and

temperature stability. Power dissipation is low and the regulator exhibits better

reliability and high power capacity than conventional series type regulator cir-

cuits. Low losses eliminate the need for large heat sinks and the full current

capability of the switching transistor can be utilized.

2. Converter regulator. The converter regulator is a phase control de-

vice which converts dc to dc with maximum efficiency. The input power drives

a master oscillator and, through a variable phase shift network, a slave oscil-

lator. The two oscillators generate square waves which are summed up to

produce a quasi-square wave. The average value is inversely proportional to

the phase delay. By sampling the average output voltage and comparing it to

a fixed reference, an error signal is generated to control the phase delay. If

the output tends to rise, the error signal increases and causes the phase delay

to increase and cancel the rise. Since the output is a quasi-square wave in the

primary of the output transformer, the secondary may contain as many windings

as required output voltages in unlimited values. Each output is rectified and

filtered for dc or ac.

a. Phase control voltase resulation. Phase control voltage regulation,

a form of nondissipative pulse width regulation, is a highly efficient method used

for regulating the outputs of dc-dc converters and dc-ac static inverters.

The basic elements of a typical phase control voltage regulator circuit in-

clude two static inverters ( a master oscillator and a slave oscillator), a phase

shift network {magnetic amplifier), a voltage sense circuit, and a voltage re-

ference circuit. Short circuit protection may be added by adding a current

sense circuit and a current reference circuit. Figure 96 is a block diagram of

a basic phase control voltage regulator circuit with short circuit protection

added.
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The phase control method of voltage regulation operates on the principle

of output regulation by control of the phase relationship between equal outputs

of two static inverters. This is done by controlling the delay of a synchronizing

signal from inverter i (master oscillator) to inverter 2 (slave oscillator). The

delay, or firing angle of magnetic amplifier, is controlled by the time required

to resaturate the magnetic amplifier and varies according to control winding

current (figure 97). Control winding current is determined by variations in

output voltage and varies accordingly.

For example, when the input voltage rises, the output voltage also rises.

The increase in output voltage is sensed by the voltage sense circuit and com-

pared with a stable zener reference circuit. The difference is then fed back to

the voltage regulation control winding of the magnetic amplifier, which in turn

causes an increase in control winding current. The increase in control winding

current causes a corresponding increase in the magnetic amplifier firing angle

and increases the delay of the sync signal from inverter 1 to inverter 2. The

phase relationship between the outputs of inverter 1 and inverter 2 increases

and causes a corresponding decrease in total output to correct for the rise in

input voltage. Figure 98 illustrates the effect on total output by varying the

phase relationship between the outputs of inverter 1 and inverter 2. Note that

the output voltage is a quasi-square wave.

Short circuit protection, like voltage regulation, is accomplished by control-

ling the phase relationship between the outputs of inverter 1 and inverter 2.

When a short appears across the output, the load current increases beyond a

predetermined limit. This increase is sensed by a current sense transformer

and induces a voltage in its secondary also beyond a predetermined limit. This

voltage is compared with an established reference and the difference is fed back

to a second control winding in the magnetic amplifier. The increase in control

winding current caused by the difference voltage is such that it results in a

maximum delay between the sync signal from inverter 1 to inverter 2. This

maximum delay results in maximum phase shift between the outputs of inverter

I and inverter 2 and the total output drops to zero (figure 98).

4.7 System Weight

As established in section 4.4, 112 pounds of nickel cadmium batteries are

needed to accommodate the energy requirements of the spacecraft. To achieve

the necessary power system reliability, a minimum of 55 percent redundancy

shall be required which corresponds to 176 pounds of batteries. The 200 square

foot solar panel weighs 243 pounds and the power conditioning equipment weight

amounts to 42 pounds.

Therefore, the power system weights is
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Batteries

Solar Panel

Power Conditioning

176 pounds

243 pounds

42 pounds

461 pounds

4.8 Power Supply Improvements

Certain advances in technology are to be anticipated and, while the concepts

previously discussed are not based on incorporating anticipated improvements,

it is pertinent to mention such possible improvements and to evaluate the possible

gains. Avco would make use of the latest state of the art at the time the hard-

ware design is undertaken, if at that time there is sufficient data to justify the

incorporation. Among the improvements which can reasonably be expected are

the following.

I. Lightweight solar cells. It seems reasonable to anticipate cells of lighter

weight, and the cell plus installation and wiring weights will be on the order of

0.4 pound per square foot, as compared with 0.5 pound per square foot used for

this study. For 200 square feet of solar panel area, this would amount to a

saving of Z0 pounds in cell weight. This reduction in weight would also be re-

flected in the panel structural weight; and for the configuration under study, it

might be expected to reduce the panel substrate by 20 to ?5 pounds. Considering

cells plus structure, the total weight reduction could be in the range of 40 to

45 pounds.

2. Larger cells. Progress is being made in the manufacture of 2 x 2 cm

cells and these larger cells represent certain cost advantages over the 1 x 2 cells

considered in this study. Installation costs may be reduced in proportion to the

number of cells used and in view of the many steps required to install cells,

such as inspection, testing, grading, matching, soldering and bonding, the sav-

ings may be appreciable.

3. Concentrator type panel. The use of concentrators in combination with

solar cells has been under study forsometime. While the basic study presented

in this report has been concerned with a nonconcentrating system, (because such

a system does not require an advance inthe state of the art), the use of concentra-

tors may be expected in the near future and appears to offer a means of reducing

overall solar panel costs. The schematic for two such concentrating systems is

shown in figure 99.

5. Energy storage. Although nickel cadmium batteries were selected for

the energy storage device, this gives by no means a light weight system. Nickel

cadmium was selected almost wholly on the grounds that it has accummulated a
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great number of operating hours in the space environment.

Development of the higher energy density silver cadmium is proceeding at

a rapid pace and the present limitations of the system, due largly to gassing and

insufficient operating data, might be removed in the near future.

Regenerative hydrogen-oxygen fuel cells appear to offer the ultimate in

light-weight energy storage but acceptable flight models are unlikely to be avail-

able before the second Mars shot. The weight advantage when available would

amount to between 72 and 84 pounds. This is based on an anticipated usable

energy density of 20 watt-hours per pound.
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•_AK[ _II -- VENUS ORBITER

4. I Power Source Selection

The power system for the Venus orbit-bus case shall be almost identical to

that discussed for Mars. The following sections shall be confined to a discussion

of significant differences. If all objections made against the RTG for the Mars

case (Section 4. 1 ) could be removed, a further objection becomes prominent

when the RTG is considered for Venus, namely the RTG weighs somewhat more,

200 pounds versus 156 for the solar array - battery combination.

4. 2 Constraints and configuration

The basic limitation to solar cell performance at Venus is the high cell

temperature of ZZ0°F. Since,as will be shown in the following paragraphs, Ii. 5

watts per square foot may be obtained, a solar panel area of approximately 70

square feet is needed. The configuration will be similar to the Mars orbiter

with the exception that the smaller disc will be eliminated and the 138 square

foot area available on the larger disc will not be fully utilized. The structure,

however, will be present for mounting various equipment and it represents a

capability for mounting additional solar cells if required. Flat mounted cells

will be used and the array configuration is of the conventional flat type.

I. Cell design. Every effort shall be made to reduce cell temperature.

Microsheet glass covers therefore are definitely required N on P, 1 x Z cm

silicon cells will be selected although N on P is no longer a great advantage

because measurements indicate the lack of radiation belts about Venus.

4. 3 Emissivity considerations

At thermal equilibrium, the ideal solar cell would be designed so as to

absorb energy at (0.4 u - 1. 1 u) and emit energy at all others. The emissivity

of the front surface of a solar cell may be enhanced greatly by means of a

coating which is transparent in the active region of the spectral response of

the cell and opaque with a high emittance in the infra-red. A number of tech-

niques are available for accomplishing this, such as thin film of silicon mon-

oxide, various types of glass covers and organic coatings. None of these

methods offer 100 percent transmittance and therefore all reduce cell effi-

ciency. Hence, some tradeoff must be made between emissivity and power

output. The results of this trade off can be seen in table 22 which provides a

comparison of the relative performance of each of the several coverings. The

last covering in the table ,6 rail glass covering together with a . 415 u blue

filter, a 1. 15 u red filter and a reflection band filter result in the highest

percent power gain (11. 2 percent) over the bare uncovered cell.
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TABLE 22

COMPARISON OF RELATIVE EFFECTIVENESS

OF CELL COVERINGS

Cell & Modifications a _ a/_ T°C %Power of

Power at

28°C

Ideal Cell 0.70 1.00 0.70 28 I00

Bare Cell 0.935 0.368 2.54 85 77

Cell with i. Ii Sio

Coating 0.874 0.642 1.36 63 86

Cell with 0. 006"

glass and A-R

Coating 0.813 0.835 0.974 46 92

Cell with 0. 006"

glass, 415 m blue

& A-R Coatings 0.81 0.835 0.97 46 92

Cell with 0. 006"

glass, 415 mblue,

I. 15 red and A-R

Coatings 0.70 0.835 0.84 35 96

%Power Gain

from bare

cell

4.3

15.8

8.5

11.2
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The 0,415 uv interference film serves to prevent degradation due to ultra-

violet damage of the epoxy adhesive used to cement the glass in place. The

film has a sharp cutoff between 0.40 and 0.45 uwith an optimum near 0. 415

for blue shifted cells. With 6 mil glass and the A-R coatings (anti-reflective)

this filter will produce an increase in efficiency of 8.5 percent over that of the

bare cell but a reduction in efficiency of 7. 3 percent over that obtained with

the glass and A-R coatings. However, this loss must be tolerated in order to

improve the long term reliability. The I. 15 u red filter rejects about 50 per-

cent of all solar energy at wavelengths longer than I. 15 u thus maintaining

lower temperature by reflecting a great portion of the non-useful part of the

spectrum .

It is this combination of a 6 rail glass, A-R coatings, UV and I.R. film

filters which will be used on the solar cells for the Venus orbiter.

Available Power. - At . 732 A. U. both increasing temperature and in-

creasing solar radiation play important roles in the performance of a solar cell.

The incident energy varies inversely as the square of the distance from the sun

and is :

1400
watts per square meter

R 2

where R is the distance to the sun in astronomical units.

The absolute temperature of a solar panel will vary inversely as the square

root of the distance from the sun, i.e.,

T l

v-f

where T is the temperature of the panel at R astronomical units and T 1 is

the temperature at one astronomical unit. The value of T I is not to be taken as

that for an Earth satellite panel; in the latter case the temperature is somewhat

higher due to Earth radiation and albedo and depends on orbit parameters.

The power output of a solar panel as a function of temperature can be ap-

proximated by the linear relation.

P = P28 { 1 - [0.005 (T - 301)] }

where P28 is the power output at Z8°C, and T is the absolute temperature

in degrees Kelvin. The above relation certainly is not valid above 228°C

(501°K) since then the power output would be negative but is usable up to about

150°G.
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When the foregoing relations are combined, an expression is obtained for

the power output of a solar panel as a function of distance from the sun as fol-

lows:

Pl[0005TI1P = -- 2.515
R2 V-K

watts

where

Pl is the power output of the panel at one A. U

T 1 is the panel temperature in degrees Kelvin at one A. U.

R is the distance to the sun in A. U.

At one A. U. from the sun (but away from the Earth), a well designed solar

panel will produce about 9 watts per square foot at a temperature of 34 to 40°C.

Using the latter value in the above equation,

9 1.565
P = -- .515

R2 _
watts per square foot

At the distance of Venus from the sun, 0. 723 A. U. , the expected power

output is ii. 7 watts per square foot with a panel temperature of about 94"C.

In the vicinity of Venus, due to albedo and heat radiation, the power output

would be less because of the slightly higher temperature, calculated to be al-

most ll0°C. Consequently the corrected power output per square foot shall

be ii. 5 watts/ft 2. This method corroborates the result obtained if the relation-

ship in section 4.4 of the Mars orbiter is used.

4.4 System Description

The load profile shown in figure 100 was prepared from the list of power

consuming equipment shown in table 23 and from knowledge of their operating

periods during orbit.
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Major Subsystem

70W S-Band P. A.

(with special P. S.)

35W S-Band P.A.

(with special P. S. )

S-Band Transponder

S-Band Command Receiver

Command Decoder

Multiplexer -Enc ode r

Subcarrier Modulator

P.N. Generators

VHF Receiver

VHF Transmitter

Guidance & Control

Venus Radar

Antenna System

Venus Recorder No. 1

Venus Recorder No. 2

Science

TABLE 23

VENUS ORBITER/BUS POWER REQUIREMENTS

Power (W)
Cons umed Us e

140 Sun

7O Transit

2O

14

6

3

3

S

S&Umbra

S&U

S

S&U

3 S

I0 S

162 S&U

150 S

6 S

6 . S&U

28 S&u

The spacecraft shall be in sun shadow for 1 hour, during which 220 watts

must be provided by the battery. For the same reason as discussed in the

Mars case, nickel cadmium was selected as the energy storage material.

The battery size needed to provide this requirement is :

220
a. Load Watt Hours 260 wh

.85
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where . 85 is the convertor regulator efficiency

260 wh
b. Battery Weight = = 58.5 lbs.

where . 5 is the depth of discharge

•635 is the capacity factor

The solar panel size needed to supply the load during sunlight and to ac-

comodate battery recharge is:

260 wh
(.85 Ps - 551) 2.5

.8

where . 8 is the battery storage efficiency

. 85 is the converter regulator efficiency

551 is the load requirement in watts

2. 5 hours is the time that the solar panels are charging the batteries

662

Ps 780 watts
.85

700 watts
Area = 68 ft 2

11.5 watts/ft 2

fibs ,_ =

Panel Weight = (68 ft 2) 1.2 \--_-t2 _ 81.5 lbs.

Power system weight. Total power system weight is established by

providing a 50% redundancy for the batteries.

Batteries 88 ibs {includes 50% redundancy)

Solar Panel 81 ibs

Power Conditioning 25 ibs

194 ibs.
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5. GUIDANCE

5.1 Introduction

Studies performed on those aspects of the Voyager mission which would

affect the guidance system characteristics required for the orbiter-bus vehicle

are reported in this section. The limited duration of the studies permitted se-

lection of feasible, though not necessarily optimal system configurations. The

on board guidance system selected will perform the terminal guidance functions

only. The assumptions have been made that the boost guidance will be handled

by a system in the booster and that midcourse guidance will be handled by DSIF

in the manner of the Mariner missions. The only exception to this ground rule

is that the digital computer of the guidance system will be used occasionally

during some control modes and for sequencing when no guidance operations are

going on. The functions performed by the guidance systems can best be de-

scribed in terms of the following mission phases.

1. Sun-Canopus acquisition and vehicle orientation. Following completion

of earth launch and injection into a heliocentric transfer orbit for Mars, the

Voyager vehicle will be separated from the booster. At this time the SCS is

required to orient the vehicle from a random position to a Sun-Canopus reference

frame. A signal will activate the guidance computer which will command pitch

and yaw maneuver via the gyros till the SCS Sun sensors have acquired the Sun.

The computer will then command roll maneuvers until Canopus is acquired. The

SCS then holds this attitude and the guidance computer is turned off during the
cruise period.

2. Midcourse trajectory correction. Start of the midcourse correction

to the vehicle orbit will be by a command signal from the DSIF. The computer

will then command a sequence of events. First, the gyro and accelerometer

heaters will be turned on. After stabilization of the inertial components has

been effected, the gyros wiil be put into a pulse rebalance mode. Then the SCS

maintains attitude control of the vehicle while the computer accumulates gyro

pulse outputs to determine the gyro drift rates. At completion of drift trim,

the gyros will be put into the control mode and the attitude control of the vehicle

transferred to them. The computer will command gyro torque rates which will

both minimize drift and orient the vehicle to the proper attitude for thrusting.
At a time predetermined by DSIF, the computer will command thrust on and

will monitor the accumulating AV from the accelerometer aligned along the thrust

axis. When the DSIF prescribed AV has been acquired, the computer will send

a thrust cutoff signal. At this point the computer will signal the SCS to reacquire

the Sun and Canopus. At completion, the computer will turn off and the SCS will

hold the cruise mode attitude. This procedure will be repeated for all midcourse

trajectory corrections.
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3. Orientation for lander separation. The functions required here are

similar to those during midcourse correction. The sequence of events will be:

activation, gyro drift trim, orientation for lander separation, attitude hold for

the separation perturbation, and reorientation to the Sun Canopus reference
attitude.

4. Orbiter slowdown. The sequence of events for this operation will be:

orientation for the slowdown attitude prescribed by DSIF, command, monitor
and terminate the thrust required for the slowdown maneuver, and reorient for

Sun and Canopus acquisition.

5. Approach navigation and trajectory correction. During approach navi-

gation, the vehicle will remain oriented with respect to the Sun and Canopus.

The auxiliary star tracker and planet tracker are turned on and pointed to ac-

quire the desired star and Mars. Using two star-planet angles and the planet

range, the computer will update the approach trajectory information. In addi-

tion the spacecraft will telemeter the optical readings to Earth to supplement

DSIF data for ground-based computations of the trajectory. If an orbit correc-
tion is required the procedure described under the midcourse correction phase will be

initiated. After completion, the cruise attitude will be resumed until orientation

for orbit injection.

6. Injection into orbit about Mars. The sequence of orbit injection guid-

ance begins with reorientation of the vehicle for retro-thrusting. This will be

a programmed maneuver_ at a predetermined time, the computer will com-
mand thrust-on and send the SCS, the pitch and yaw attitudes to be effected

during the thrust period. At completion of the maneuver, the SCS will return

the vehicle to the Sun-Canopus reference attitude and the computer will start
the in-orbit navigation phase.

7. In-orbit navigation about Mar s. The in-orbit navigation operations

are similar to those for the approach navigation. The auxiliary star tracker

and horizon scanner are turned on and pointed for acquisition by computer com-

mand. Two star-to-planet angles are then measured during a couple of orbits

to permit updating the navigation information. If an orbit correction is required

it will be made as the approach and]or midcourse corrections. The vehicle is

then turned back to the SCS for Sun-Canopus orientation during cruise till another

navigation operation and orbit modification is required.

5.2 Guidance System

1. System recluirements. The Voyager missionto Mars or Venus can be

considered as having three major guidance phases: (1) escape from Earth;
(2) heliocentric transfer; and (3) terminal maneuvers in the vicinity of the desti-

nation planet. Guidance during the first two phases will probably be similar to
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that of Mariner II (i. e., DSIF). Maneuvers, however, in the vicinity of the planet

may impose accuracy and response requirements upon DSIF which can not be

satisfied. It remains then to evaluate the functions and performance required

of the guidance system during the terminal part of the flight and to determine

the additional instrumentation necessary or desirable to perform these functions.

To determine these requirements, the terminal guidance phases required to

achieve the objectives of the Voyager mission must be considered. For a typi-

cal mission to Mars, the spacecraft will consist of a lander which impacts Mars

and an Orbiter which enteres a bound orbit about Mars. A possible sequence of

guidance phases and guidance functions associated with the orbiter-bus space-
craft will be:

a. Approach Navigation Measurements and computations to de-
termine the state of the orbiter.bus

relative to Mars at a range of approxi-

mately l, 000,000 to 2,000,000 kilometers

from the planet

b. Approach Steering Computations to determine the direction

and magnitude of the velocity correction

which would put the lander, after sepa-

ration, on its impact trajectory to Mars.

Computations of the direction and magni-

tude of the velocity required to slow down
the orbiter.

c. Approach Maneuver After orientation of the orbiter to its

thrusting attitude for the slowdown ma-

neuver, the sensing of the correction

velocity increment to command cutoff

is required.

d, Terminal Navigation Measurements and calculations to update

knowledge of the state of the orbiter.

e. Terminal Steering

Computation s

Computations to modify the trajectory of
orbiter if it is not headed toward the de-

sired periapsis condition.

f. Terminal Maneuver Sensing of the correction velocity incre-
ment after orientation of orbiter to de-

sired thrusting attitude.

g. Orbit Injection

Navigation

Orbiter state determination prior to orbit

injection maneuver.
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h. Orbit Injection

Steering
Computations to provide the proper thrust

vector program for orbit injection.

i. Orbit Injection
Maneuver

Thrust vector commands, and execution

of cutoff when proper injection velocity
is reached.

j. In- Orbit Navigation Measurements and computations to de-

termine planetary orbit of orbiter vehicle.

k. In-Orbit Steering
Calculations

Computation of velocity increment re-

quired to modify orbit if it is not within

satisfactory bounds.

lo In-Orbit Maneuver Orientation to thrusting attitude and sens-

ing of the velocity increment for in-orbit
maneuver.

The guidance equipment required for these operations can have two extremely

different configurations. The satisfactory performance of DSIF for Mariner II

and the predicted tracking accuracies of DSIF make it desirable to consider a

system as close as possible to DSIF for one extreme. The possibility of DSIF

limitations coupled with the desirability of onboard measurements for primary,

supplementary, or backup navigation, make it necessary to consider an essen-

tially self-contained optical-inertial guidance system as the other extreme.

The following sections describe and discuss the analysis performed and systems
selected to satisfy the aforementioned requirements.

2. System performance and analysis.

a. Approach guidance. The initial approach guidance maneuver will
be made at a distance between 500,000 and 2,000,000 kilometers from Mars.

At these ranges, the predicted DSIF navigation accuracy is probably better

than can be obtained using optical instruments. It is assumed, therefore, that

the DSIF will be used for navigation and steering operations for the first ap-
proach guidance maneuver.

This maneuver consists of: (1) separating the lander from the orbiter-bus;

(2) altering the lander trajectory to impact Mars; and {3} slowing down the orbi-

ter to achieve the desired time of arrival separation with the lander, and arrive

at a periapsis of 1700 kin. The lander maneuver will be so precalculated and

programmed that no guidance equipment will be required. When the proper
range from Mars is reached, DSIF will send a command to the orbiter-bus to

orient to the proper attitude for lander thrusting. The lander will then be sepa-
rated from the orbiter-bus and spun up for stabilization. The orbiter slowdown

maneuver will occur subsequent to lander separation. The proper vehicle atti-
tude for retrothrust, and the magnitude of the AV to be obtained (a conventional
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approach trajectory correction can also be included in this maneuver ) will be

sent to the computer by DSIF. Since thrust direction will be essentially along

the flight path of the vehicle, it was anticipated that the errors in its application

might seriously affect the accuracy near periapsis passage of orbiter which in

turn seriously affect the injection accuracy and fuel requirements of the Mars

orbit injection maneuver. Consequently, an error analysis was performed to

determine the effect of the retrothrust maneuver errors and effect of the inac-

curacies in initial position and velocity as determined by the DSIF.

The description of the analysis is given in appendix B. The result of this

analysis indicates that the effect of the DSIF approach navigation inaccuracy

of 150 kilometers (la) in position was the dominant factor and the presumed

errors introduced by the retrothrust maneuver were negligible. (This factor

was one of several which influenced the selection of the "Orbiter slow-down"

technique for the attainment, of the desired spatial-time-relationship between

lander and orbiter. )

b. Terminal guidance. Subsequent to the slowdown maneuver, ter-

minal guidance is "initiated" and continues to orbit injection. The range which

this guidance function covers will be from 500,000 km to approximately 10,000

km from the planet. Appendix C presents an analysis of the capability of DSIF

(doppler configuration) for providing the terminal guidance trajectory determi-

nation necessary for orbit injection. Detailed analysis was necessarily restric-

ted to a 1969 Mars Type II trajectory. It was found that the employment of only

DSIF information for terminal navigation and a minimum equipment system

which controls thrust using 3 gyros and l accelerometer would permit attain-

ment of an orbit around the planet with a lo uncertainty in periapsis altitude of

about 400 krn and la uncertainty in semi-major axis of about l, 700 kin. The

other orbital parameter errors were so small as to be unimportant. Use of

3 gyros and 3 accelerometer control improves these uncertainties to approxi-

mately 200 and 1000 kin, respectively. This performance was considered mar-

ginal and augmentation with on board optical instruments was felt desirable.

Table I of appendix C tabulates the relative effectiveness of DSIF doppler,

planet diameter measurements, and planet-star angle measurements in per-

forming trajectory measurements. Qualitative evaluation of the improvement

in performance that can be achieved indicates that either a planet angular dia-

meter measurement of a planet-star angle measurement using a star well out of

of the ecliptic will enhance DSIF performance. In parallel with the DSIF analy-

sis of appendix C, an analysis of a completely self contained system for termin-

al guidance was undertaken; results are reported in appendix D. Sufficient

results were obtained to permit intelligent assessment of the potential perform-

ance, problem areas, and hardware requirements.

c. Orbit injection. A variational program more fully described in

appendix E was developed to analyze orbit injection. A range of thrust levels

(constant) from 1,000 to 8,000 pounds was investigated for spacecraft weights

-251-



at orbit injection in the region 3,000 to 6,000 pounds. The optimum thrust ori-

entation histories to minimize fuel requirements were determined for various

planetary approach conditions. Two particularly interesting results were ob-

tained with this program. It was determined that the gravity loss associated

with finite burn times is effectively nil;i, e. ,the attainable orbital payload is

essentially independent of thrust level for the conditions evaluated. It was also

determined that the thrust orientation time history for optimum injection is a

reasonably linear function of time. This latter fact suggested the possibility of

programmed orbit injection as described in appendix F. As presently envisioned

a pitch attitude time history program of the form:

_= Oo +kt

where

= inertial orientation

k = constant

t = time

would be stored on the spacecraft. Values of 0o, k , and t would be computed on

Earth and telemetered to the spacecraft or computed on the spacecraft. Upon

command from DSIF the injection process would be initiated. Spacecraft oper-

ation from thrust initiation to thrust termination would be independent of DSIF.

An error analysis of the technique (appendix F) indicates that its performance

is excellent and that the major errors in the resultant planetary orbit stem not

from the orbit injection process but from state uncertainties at initiation of or-

bit injection.

Consideration was also given to the possibility of incorporating the terminal

guidance maneuvers into the orbit injection phase. The primary purpose for

this would be the elimination of at least one, and possibly more, engine restarts.

Intuitively this approach should enhance reliability at the expense of decreased

payload or increased orbital altitude. It was determined that the cost is mod-

erate; approximately one foot per second will offset a one kilometer initial peri-

apsis error when injecting into a 1500 x 10,000 km orbit.

The major difference in guidance requirements between orbiter slow down

and orbit injection will be the necessity for the spacecraft to store a simple

equation, and to command and monitor a continually changing vehicle attitude

during thrust. The necessary instrumentation is in all other respects identical

to that of orbiter slow down. A more complicated technique to perform orbit

injection is presented in appendix K however, the simplicity of this open loop

scheme coupled with its performance suggest its use as the reference method.
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TABLE 24

GUIDANCE SYSTEM COMPONENT CHARACTERISTICS

i. Auxiliary star tracker

2. Planet tracker

3. Planet horizon-scanner

4. Three GGI77 accelerorneters and

electronics

5. Digital computer, input/output and power

supply

Weight

(pounds)

Volume

(in. 3)

9

35

IZ

6

49

111

450

3700

600 (est.)

180

1620

6550

Power

(w_ts)

10.8

50

9

I0_;

II0

$ Accelerometer heater power is a maximum of 60 watts for a period not

exceeding Z0 minutes. Nominally it is approximately l Z watt s.

a. Computer

1) Logical organization. The Honeywell Subminiature Computer

has been designed for advanced aerospace applications. It is compact, light-

weight, and has a memory capacity of 8,192 twenty-four-bit data words, or a

maximum of lZ, 288 sixteen-bit instructions. Its solid-state biax memory pro-

vides random access in neither of 4, 096 twenty-four-bit word banks, and features

non-destructive readout. The 8,192 memory words are divided into two categ-

ories: 1,024 twenty-four-bit words capable of being altered under program con-

trol, ("hot" data) or scratch pad, and 7,163 twenty-four-bit words capable of

being altered only by AGE and external control ("cold" data). Prominent features

of the computer are:

a) High computational rate with a minimum component count

and power requirement

b) Ability to store 8,192 twenty-four-bit words

c) Biax ferrite memory elements for repeated addressing
without loss or destruction of the stored information

d) Logic and memory circuitry reliable over a temperature

range of -55°C to lZ5°C

e)
Z4Z microseconds

Basic programming in microseconds; multiply time
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d. Orbit determination. Subsequent to orbit injection it is necessary

to determine the planetocentric orbit attained by the spacecraft. If injection

performance has been nominal, the spacecraft orbit will be known to first order

as suggested earlier. JPL analysis (refs. 21 and 22), indicates that the DSIF

capability to perform precise orbit determination probably transcends that of a

self-contained system both in terms of accuracy and reliability. Spacecraft

orbital positional information to tenths of a kilometer within a day or two after

orbit attainment is the reported performance of DSIF in the aforementioned

references. Therefore, strong justification for a self-contained orbit determin-

ation capability does not seem to exist. In spite of this, an analysis of the per-

formance of an onboard optical system was performed - (appendix G).

Performance is approximately comparable to that of DSIF.

The technique presented should be considered a typical possibility and is

not suggested as optimum. Other possibilities are under consideration but con-

tractual time limitations do not permit their presentation.

e. Summary. From the results of these preliminary studies, a

reference guidance system consisting of DSIF augmented with optical sightings

seems the preferred scheme to ensure modest accuracy with high reliability.

A complete self-contained optical-inertial system, however, is recommended.

In early flights, its role, although subordinate to DSIF, would provide an element

of system redundancy. As experience with automated systems of this nature

accumulates, it is anticipated that performance will grow correspondingly

permitting such systems to be applied with confidence in applications for which

DSIF may not be suited or available.

3. System description. The guidance system consists of a computer, aux-

iliary star tracker, planet tracker, planet horizon scanner, and an accelero-

meter package. A tabulation of the weight, volume, and power requirements

of the components is given in table 24. Figure 101 is a simplified block diagram

showing the interface between the guidance system components and the interfaces

with the Canopus tracker and the rest of the stability and control system.
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The computer is designed to produce a high computational rate with mini-

mum power. This is done by incorporating several design features:

a) A nondestructive readout magnetic core memory (biax

core) is used for commands and data words

b) Random access addressing is used for maximum program-

ming efficiency

c) Arithmetic operations are performed in a parallel-serial

type system to obtain optimum efficiency

d) Noise injected into the logic circuits is clamped to ground

during nonclock time and is integrated during clock time. This feature greatly

reduces the possibility of noise erroneously triggering the memory flip-flops

e) A moderate clock rate (500 kc) lowers the power require-

ment for the logic circuitry

f) All components operate at very low stress levels and all

circuits have been engineered to ensure ample operating margins under com-

bined "wor st-case" conditions.

The computer uses a random address mode of operation with a nondestruc-

tive core memory. Arithmetic operations are performed six bits in parallel

with four groups of six in serial. This combination produces a Z4-bit binary

word. Negative members are represented and stored in two's complement. In

addition to its central memory, the computer contains two data registers (a

24-bit accumulator and a 6-bit multiplier-quotient register), memory selection

registers, input-output buffer registers, an instruction register and a bit-time

register.

Z) Input and output processing.

a) Main buffers. The input-output buffers have addresses
which cause the contents of the accumulator to be transferred to or from the

buffers. Detection and transfer of address, and transfer of the accumulator to

or from the buffers, occur in one instruction.

b) Telemetry. If it is desired to transfer information out of

the computer serially at a slow rate, such as to a telemetry unit, one bit at a

time may be transferred to the telemetry flip-flop. This bit comes from the

MSB of the accumulator and at the same time, the telemetry existence flip-flop

is set. When the external device has accepted the information, it sends back a

signal to reset the existence flip-flop, and the computer will send another bit
to the telemetry flip-flop.
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c) Gyro torquing. Three channels of gyro torquing are

available. A gyro torque output instruction sets the gyro torque logic to the

positive or negative state and selects the gyro to be torqued.

An addressable discrete indicates that the gyro torque logic is reset and

another pulse can be commanded.

d) Independent discrete output. Thirty-one independent dis-

crete outputs are provided. A discrete output is a signal having two logical

levels, a zero and a one. It can be used to control any two state devices, such

as a display light. The contents of the sign flip-flop is transferred to one of the

31 discrete flip-flops and the output of this flip-flop is the discrete ouput.

e) Incremental outputs. Twelve incremental stepping motor

driven outputs are provided. When an incremental output is addressed, a Z-wire

code determined by the states of bits 6 and 7 of the accumulator is provided to

the designated decode logic. The decode logic provides a four-wire driver output

to the stepping motor.

f) Inputs. The computer will accept the following inputs:

Precounters. There are four precounters in the

computer; three of these are bidirectional and the other unidirectional. Each

bidirectional counter has two input lines associated with it, one of which indi-

cates a count in the positive direction, the other a count in the negative direc-

tion. These are used to partially accumulate the pulses received from the

accelerometer electronics, which are proportional to changes in velocity. The

total accumulation of these pulses is therefore proportional to total velocity.

The incoming pulses must be a minimum of 4. 3 microseconds, and a maximum

of 8 microseconds wide. Also the positive and negative pulses cannot be present

at the same time. The maximum repetition rate of these pulses is 120 kc. The

unidirectional pulse has only one input associated with it and the incoming pulses

must be a maximum of 4 microseconds and a minimum of Z. 3 microseconds in

width. The maximum rate of these pulses is Z40 kc. A11 four of the precounters

are six bits long.

3) Packaging. The computer is housed in a modular assembly

of rugged construction to ensure reliable operation in stringent thermal and

vibration environments. The design is simple to eliminate thermal interfaces,

yet each major functional system is easily accessible and provisions are made

for growth potential. See figure 102.

Connectors and cabling are given particular attention to prevent adverse

connector movement and stress concentration at wiring terminations.

The packaging techniques used in this design have been used successfully on

numerous other contracts requiring similar environmental capability.
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The memory is designed as a completely removable assembly. The

memory/memory electronics and logic section attach to the base tray. All

housings are machined magnesium castings with a wall within them for com-

portent mounting.

a) M.emory - The memory housing contains the various core

memory arrays. The main memory with its cold data is located in the upper

section of the memory while the scratch pad, or hot data, is located in the

lower housing. The scratch pad arrays are enclosed in an "oven" area and

surrounded by insulation with heater wire laminated within the core boards to

ensure immediate warm-up and to obtain even heat distribution throughout the

scratch pad memory boards. The heater will be a "proportional" heater to

eliminate affecting surrounding circuits.

Mounting of the ferrite biax elements throughout the memory is accom-

plished so that vibration and shock inputs are held to a minimum. All wires

have welded terminations and multipin redundant contact strip connectors are

used for interconnections. The memory is designed so that the scratch pad

data section may be removed from the main memory allowing access to either

section. While these sections are joined the unit is sealed against moisture
and contamination.

b) Memor 7 electronics - This section contains the electri-

cal components for the memory and supports the various connectors which

mate with the memory.

c) Logic section - Each logic board will hold two multi-

layer printed circuit boards back-to-back and each circuit board will have

approximately 300 integrated circuits mounted on it. The integrated circuits

will be mounted within modified TO-5 transistor cans. For additional strength

the two multilayer circuit boards are separated by an "egg-crate" design of

laminated epoxy. The multilayer boards and the epoxy egg-crate will have

0. 006-inch of copper laminated to it for a positive thermal path. There will

be two logic trays; each will hinge outward to allow access to their respective

components. Each logic board will have within it connectors similar to those

described for the logic in the standard unit.

b. GG177 accelerometer. Hinged-pendulum miniature accelerometer

GG177 is a damped-pendulum type; it combines high accuracy with compact
size.

The design concept applies pulse rebalance to a flexure-supported pen-

dulous mass, Displacement of the pendulous mass, resulting from sensed

accelerations, induces a signal in the moving coil of a differential trans-

former-type pickoff. This signal is fed into a servo amplifier and is then re-

turned as pulses (plus and minus) to the torque coils. This establishes torque

balance in the presence of input accelerations so that an algebraic summation

of the pulses becomes a linear measure of acceleration.
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The hinged pivots are two flexure joints spacedapart, but contained within
a commonplane, so that the pivot axis is orthogonal with the sensitive axis of

the accelerometer. This arrangement offers greater rigidity along the trans-

verse axis of the accelerometer than could be accomplished with a single pivot

and thereby reduces cross-coupling acceleration errors to a minimum. Ac-

celerometer GG177 engineering development program has been completed and

production units are presently being delivered on a high-volume basis. A

cutaway view of accelerometer GG177 is shown in figure 103. The typical

characteristics of the accelerometer are given in table 25.

c. Accelerometer and electronics package. The accelerometer

electronics package will include all electronics required to rebalance three

GG177 accelerometers and to provide incremental velocity pulses to the corn=

puter, along with precision timing for the orbiter system.

Construction of the unit will be compatible with its intended use and expect-

ed environment. All known successful weight saving techniques will be con-

sidered. Maximum use of miniaturization techniques, including the use of

integrated circuitry, will be employed where practical. The weight of the

accelerometer electronics orbiter package will not exceed six pounds and the
solid state volume will not exceed 180 cubic inches.

A tentative inner package configuration of the unit is shown in figure 104.

TABLE 25

TYPICAL CHARACTERISTICS OF THE GG177

HINGED PENDULUM LINEAR ACCELEROMETER

PARAMETER

Accelerometer Characteristics

Pendulosity

Hinge Axis Damping Coefficient

Pendulum Moment of Inertia, Hinge Axis
Pendulum Characteristic Time

Pendulum Freedom

Operating Temperature
Accelerometer Current Scale Factor

Pickoff

Sensitivity

MAGNITUDE

2. 86 gm-cm

47,000 dyne-cm-sec
7. 06 gm-cm 2
150 x 10 -6 sec

0. 23 deg
170°F

6.0 ma/g

50 volts/tad
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PARAME TE R

To rque r

Sensitivity

Maximum "g" Input
Characteristic Time

Heater

Voltage, RMS or dc
Power

Accuracy

Bias Uncertainty
Scale Factor

Null Shift

Vibropendulosity

T.4.B._ E 25 (Concl'd)

MAGNITUDE

470 dyne- cm- sec

15g
15 x 10 -6 sec

28 volts

75 watts

5 x 10 -5 g

0. 005%

3 arc sec

0.3 x I0 -5 g/g2

d. Orbiter power supply. The power supply used for the orbiter will

use switching and pulse width regulator circuits developed by Honeywell. This

design has been used successfully on many programs, including DynaSoar. The

circuits and techniques developed are easily adapted to a wide range of power

and voltage requirements. The proposed power supplies yield what is considered

the best combination of weight, volume and efficiency.

The orbiter power supply furnishes all the regulated voltages and power

necessary to independently operate the computer.

All the dc voltages are provided from one pulse-width modulated regulator.

The regulator is made up of a square-wave oscillator and a switching type power

amplifier. The output of the power amplifier is transformer coupled to the de-

sired voltage level, rectified and filtered. Supplementary secondary windings

provide ac voltages which are rectified and filtered to provide the necessary

dc voltages. A feedback and comparator circuit completes the regulator loop

to maintain the required accuracy for variation in line, load and temperatures.

e. Planet tracker. A planet tracker is required by the guidance and

navigation system to provide planet direction and range to the planet during ap-

proach navigation. The most difficult requirement is achieving sufficient ac-

curacy in range determination at the long ranges associated with approach.
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Figure 103 GG177 MINIATURE HINGED PENDULUM ACCELEROMETER 
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Optical determination of range to the planet is accomplished by measuring

the diameter of an image of the ,_!._net and computing the range, knowing optics

focal length and actual planet diameter. Accuracy of measurement is limited

by either resolution of the optical system or resolution of the detector utilized.

Generally, optics resolution is or can be made better than any known detector

resolution so that detector resolution is the limiting parameter. For a given

focal length, f, ; detector resolution, a ;planet radius, R; uncertainty in planet

radius, AR ; and desired range accuracy, Ap ; the maximum range at which Ap

can be obtained is given by

E< ;21 2fAR 4 R2-Ap2----a2 - 1

Pmax = _ + f2 A R 4

(76)

Analysis of equation (76) indicates that Pmax increases, as is desired, with in-

creasing focal length, decreasing detector resolution, and decreasing uncer-

tainty in planet radius. The items under control of the planet tracker designer

are focal length, f, and detector resolution, a.

Mechanizations available fall into several categories:

1) Utilizing a large area detector such as a photomultiplier with

a scanning slit reticle at the optics focal point. Size determination would be

made on the basis of pulse width.

2) A mechanically scanned telescope, that is by means of rotating

mirror or prism the field of view of a point detector (small area PbS), is moved

through object space and the length of time taken to scan across the planet is a

measure of the apparent diameter.

3) A servo-driven gimbaled edge tracker in which the edge of the

planet is tracked at three or more points around the horizon which yields suffi-

cient data to determine apparent diameter.

4) Electronic scanning by means of either a multielement detector

mosaic or an image tube in which the planet image is electronically scanned to

measure image size which is a measure of apparent diameter.

Since the required accuracy on measuring the apparent diameter is of the

order of hundredths of a percent, the only mechanization suitable would be elec-

tronic scanning by image tubes.

Ruggedized image tubes have been tested to 2100 lines per inch resolution

resulting in a resolution element size of 0. 000475 inch per side.
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Given a minimum achievable resolution element size the remaining param-
eter for a given Apis focal length, f. For a resolution element size of 0. 000475,

Praax is plotted as a function of the focal length,f , for various values of AR and

Apin figure 105. Note that for AR = i0 km, a conservative value, the maximum

distance for I000 km range accuracy is 325,000 km while for _R = 0, maximum

range approaches infinity with increasing focal length. For a value of AR = 3 km

maximum range is 106 km but requiring a focal length of 300 inches, to say the

least. Thus the maximum range which satisfies a Ap of 1000 km is dependent on

the acceptable value of AR and the optics focal length which determines weight

and volume of the instrument.

Arbitrarily choosing, as a practical compromise, an 80-inch focal length

which can be folded into a shorter tube length, a reasonable approximation to

maximum range is 500,000 km. With 80-inch focal length the size of a resolu-

tion element is 3.4 x 10 -4 degrees. Tube size is 1.08 inches by 1.44 inches,

resulting in a maximum of 3000 resolution elements in the long dimension. Thus,

total angular field of view is only about one degree, inadequate to cover any sig-

nificantly lower altitudes. To increase the dynamic range either or both of two

techniques can be employed; scan conversion by fiber optics and variable focal

length optics.

In using fiber optics, the complete image plane is not scanned. One end of

the fiber optics scan converter is positioned in the focal plane with fiber bundles

placed only at specified image plane coordinates. The fibers then funnel down to

the image tube photocathode, completely covering the sensitive surface. Then

as the image tube continuously scans the fibers, it effectively is scanning only

those image plane coordinates at which fibers were placed. The increase in field

coverage available by this technique is limited by the useable field of the objective

optics and/or packaging limitations.

As an example, if the fibers were arranged in "n" radial lines in the image
6.3x 106

plane, then each radius would contain resolution elements. Each

resolution element is 3.4 x 10 -4 degrees, n Thus, total coverage per radius

would be 6.3 x 3.4 x I02 2 x 103
degrees = degrees. If therewere 100 radii,

n n

each radius would then cover Z0 degrees. With an 80-inch focal length, this

would require an image plane diameter of 60 inches resulting in very large in-

strument size. Using 103 radii results in a required image plane diameter of

only six inches, a much more practical size. However, in a 6-inch diameter

image plane, the useful field would only be about ±2 degrees, which results in

a greater dynamic range but still not sufficient.

If variable-focal-length optics were employed the dynamic range could be

increased by another factor of ten within the limitation of practical image plane

diameters. The total field coverage is inversely proportional to focal length so

that by shortening the focal length as range to the planet decreases, total angular
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coverage increases. Also, as focal length decreases, resolution element angu-

lar size increases, causing aworsening of range accuracy. However, since

range accuracy is proportional to range squared and inversely proportional to

focal length for a given resolution element linear dimension, and since focal

length would vary linearly with range in a variable focal length system, range

accuracy would improve with decreasing range. To minimize errors resulting

from varying focal length, discrete steps would be used.

To simplify the scan electronics, two scan lines on the tube will be trans-
formed into one radius. Thus each radius contains 6000 resolution elements

and at the maximum focal length covers two degrees. The total number of radii

is 1050, resulting in an angular separation between radii of 0.35 degree. To

work at an altitude of Z2,000 kin, the useful field of view must be about ± 10 de-

grees, so that the focal length must vary from 80 to 16 inches.

Zoomar, Inc. currently stocks a lens with focal length variation from 12 to

72 inches in a tube length of 25 inches and with remote control on focal length.

Extending this design to a focal length of from 16 to 80 inches within a tube length

of 25 inches shouldbe possible. Allowing an additional four inches for the fiber

optics assembly and 15- I/2 inches for the image orthicon tube, the minimum

package length, exclusive of any electronics, would be 49-1/2 inches. However,

the optical path could be folded.

Figure 106 presents the mechanical configuration showing subsystem part

allocation. Optical axis pointing is achieved by a gimbaled mirror rather than

gimbaling the complete tracker to reduce size, weight, and power.

Outputs of the planet tracker subsystem are binary numbers proportional to

the polar coordinates, r, 0, of either the planet limb or terminator. The guid-

ance computer will apply suitable equations to determine whether the set of

points generated during a given frame describes a circle which would be the

limb, or a noncircular conic section, which would be the terminator. In the

process, the position of the center and the diameter of the image would be de-

termined. The guidance computer will then generate gimbal drive signals to

center the image in the orthicon field of view and signals to control the variable

focal length optics. Once centered, more precise determination of planet diam-

eter can be measured from which the required range accuracy will result.

f. Auxiliary star tracker (AST). The auxiliary star tracker is basi-
cally a gimbal-mounted image-dissector photomultiplier (PA4) tube and associ-

ated electronics designed to track first magnitude stars and reject less bright

stars. The instantaneous field of view is • 1.5 degrees in each of two orthogonal

axes and the gimbaled field of view is _-40 degrees in one axis, by e60 degrees

in an orthogonal axis of rotation. See figures 107 and 108 for mechanical config-

uration. Accuracy is _20 arc sec over the gimbal field of view and is obtained

using high-resolution digital-gimbal loop and digital signal processing electron-

ics oh the PM tube output.
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The detector utilized is an image-dissector PM which electronically scans

the sensitive tube surface along two orthogonal scan paths crossing at the center

of the sensitive area. If the star image is centered, the pulse train out of the

PM tube will be symmetric, and all pulses will be of identical width. If the star

is not centered, the pulse train will be asymmetric and pulses will be of unequal

width. By splitting the PM pulses into azimuth and elevation (or X and Y) com-

ponents sufficient information is available to determine the position of the star

image.

To obtain the digital error signals the PM output pulses, after being split

into azimuth and elevation components, are used together with scan reference

signals to control an up-down binary counter. During the first half of the scan

cycle, the counter counts up only while the PM output is above an established

threshold. During the second half of the scan cycle the counter counts down only

while the PM output is above the established threshold. The counter output atthe

end of a scan cycle is proportional to the difference in pulse width from the two

halves of the scan cycle. If the star is centered, all pulse widths are the same

and the up count equals the down count. If the star is decentered the difference
in pulse widths, which is proportional to star position, will be in the counter and

available to the digital control unit (DCU).

To reduce the amount of gimbal motion required during tracking, whenever

the error signals exceed a certain preset level, the stepper motor is energized

to reposition the gimbaled mirror.

The digital output required by the DCU prompted the used of a digital, rather

than analog, gimbal loop. A completely digital mechanization does away with the

need for any complicated analog-to-digital or digital-to-analog conversion; fur-

ther benefits are also obtained. A pulsed gimbal readout can be used and is

achieved by use of a coded wheel (Optisyn) claimed by the manufacturer, and

others, to have an MTBF of 24 years. The digital mechanization can be used

as a bang-bang servo system with the stepper motor being energized only peri-

odically to make corrections, and then making the corrections by a fixed number

of steps without the usual hunting in analog servo systems. And finally, the elec-

tronics available for use in digital mechanizations are more reliable than those

available for analog mechanizations.

The gimbal readout system is a serial, rather than parallel, readout re-

quiring knowledge of some reference or starting point from which to start count-

ing. A special loop has been provided to enable the gimbal to acquire the refer-

ence position on command from the DCU. The loop is not shown in the block di-

agram but was included in reliability, weight, and power determination.

This tracker is a modification of the Canopus star tracker, using practically

identical electronics and detector, with only slight differences in mechanical con-

figuration. Consequently, considerable savings in cost would result from parallel

development efforts.
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g. Planet horizon sensor. Since the Jet Propulsion Lab (JPL) has

funded a planet horizon sensor development program for a device capable of

satisfying Voyager requirements, no design study on alternate design was per-

formed.

Published information on the device indicates that the concept utilizes a

multielement thermopile detector array in the focal plane of the objective optics

with each detector being sequentially sampled to determine planet horizon posi-

tion. The resolution and null accuracy of the device is 0.5 degree within the ex-

pected orbit altitudes. Altitude output is also available with accuracies ranging
between 850 km and 50 km over the Mars orbit altitudes.

Previous concepts proposed by Honeywell to perform similar functions were

based on similar detector arrays with the exception that the Honeywell concept

utilized modulated flux density achieved by means of a solid state germanium

modulator and the JPL-funded concept utilizes unchopped flux density. Charac-

teristics and capabilities of the two devices would be very similar except that

development of the JPL-funded sensor will have been completed and paid for by

the time of Voyager procurement.

4. Reliability estimate. The following is an analysis of the potential capa-
bility of the orbiter system to meet the requirement of 0.96 probability of suc-

cess for the Voyager mission. The design goal MTBF's of tables 27 through 30,

and an arbitrary "on-off" switching cycle success probability of 0. 9999, have

been used. Operational hours and number of switching cycles are assumed to
be as shown in table 26.

TABLE Z6

OPERATIONAL HOURS AND SWITCHING CYCLES

Black Box

Accelerometer Block and

Associated Electronics

Failure

Rate (D in

%/1000 Hours

6.4364

Compute r

Planet Tracks r

Horizon Scanner

Auxiliary Star Tracker

19.69

9.880

6.25

2.853

Hours (t)

in "on"

State

28

93

24

l0

34

;_t x 105

180.2192

1831.1700

237.120

62.5000

II.41Z

Number

of Starts

35

1

1

Z
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The formula used for probability of success for each black box is:

P = (Po) (Ps)n

where

P

Po

= probability of success of a black box

= probability of no failures during the time it is inthe "on" state, e-Ai t

Ps = probability of success of one switching cycle

n = number of switching cycles

The individual calculations are:

Accel: P 1 ; (e-A 1 t) (Ps)n = [ e- (0.00180) ] [ 0.9999 ]5

Computer:

Planet Tracker:

= 0.9977

P2 = (e-A2t)(Ps)n = [e-(0"01831)][0"9999135 = 0.9787

P3 = (e-]'3t)(Ps)n = [e-(0"00237)][0"9999] -- 0.9975

Horizon Scanner: P4 = (e-A4t)(Ps)n = [e-(0'00063)][0"999] = 0.9993

Aux. Star Tracker: P5 = (e-A5t)(Ps )n = [e -(0"000114)] [0.999912 = 0.9997

The system probability of success is:

Psystem = nPi

= (0.9977) (0.9787) (0.9975) (0.9993) (0.9997)

= 0.9730

The above assumes a zero failure rate for components while in the "off"

state. While such is clearly not the case, there are many unknown factors,

such as the tendency of transistors to recover from radiation effects during

their off state, which enter a reasonable estimate of a failure rate in the off

state. Hence, as environmental effect studies are made after award of the con-

tract, appropriate adjustments to the estimates will be made.
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The advantages of using certified high-reliability parts are shown by tables
27 through 30.

TABLE 27

COMPUTER RELIABILITY GOAL ESTIMATES

Component

Transistors

Diodes

Capacitors

Transformers

Resistors

Cores

Integrated networks

Number (N)

550

I, 050

300

9O

Z, 000

194,300

Z, 100

High Reliability
Failure Rate

in percent/1000

Hours (A)

0. 002

0. 001

0. 001

0. 005

0. 002

i0 -6

0. 006

NA

I. I0

1.05

0.30

0.45

4.00

0.19

12. 60

19.69
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TABLE 28

AUXILIARY STAR TRACKER RELIABILITY GOAL ESTIMATES

Part

Transistors

C onventi onal

High reliability

Diodes

C onve ntional

High reliability

Solid circuits

Resistors

C onventi onal

High reliability

Capacitors

Tantalum conven-

tional

T antalum high

reliability

Paper conventional

Paper high relia-

bility

Coils

ID tube

Motor

Shutter

Coded wheel readout

HVPS

C onve ntional

No.

n x 105

4O 0. 020

39 0. 010

353 0.010

146 0. 020

24 0. 035

28 0. O05

6 0. 030

1 0. I00

2 O. 020

l 0. I00

2 0. 250

1 0. 930

nX

x 105

O. 800

0. 390

3. 530

2. 920

0. 840

O. 140

0. 180

0. I00

0. 040

0. I00

0. 500

0. 930

10. 970

High

No,

n

11

29

39

353

146

2

22

28

6

i

2

1

2

1

Reliability
l nA

x 105 x 105

0. 020 0. Z20

0. 002 0. 058

0.001 0. 039

0. 001 0. 353

0.001 0. 146

0. 035 0. 070

0. OO4 0. 088

0.001 0.0Z8

0. 030 0. 180

0. 100 0. 100

0. 020 0. 040

0. 100 0. 100

0. 250 0.5OO

0. 930 0. 930

2. 853
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TABLE Z9

PLANET TRACKER RELIABILITY GOAL ESTIMATES

Conventional

X

No.

n x 105

Image orthicon 1 4. 000

Transistors

Conventional 35 0. 020

High reliability

Diodes

Conventional Z0 0. 010

High reliability - _

Resistors

Conventional 130 0.0Z0

High reliability - .

Capacitors

Tantalum conventional 46 0. 035

Tantalum high reliability - -

Paper or mica conventional 34 0. 005

Paper or mica high re-

liability

Integrated circuits 96 0. 010

Crystal Z 0.0Z0

Coils 3 O. 030

Transformers, high voltage 10 0. 100

Power pack 2 0. 930

Potentiometers 6 0. 100

Coded wheel readout Z 0. Z50

Design

An

x 105

4. 000

0. 700

O. 200

2.600

High Reliability

A
No.

n x 105

1 4. 000

IZ O. 020

Z3 O. 00Z

Z0 O. O01

130 0. 001

I. 610

0. 140

0.960

0.040

0.090

1.000

1.860

0.6OO

O. 50O

46 0.004

34 0.001

96 0.001

Z 0.0Z0

3 0.030

I0 0. I00

Z 0.930

6 0.100

Z 0.250

-ZY6-

Design

An

x 105

4.000

O. Z40

0. 046

O. 020

O. 130

0. 184

O. 034

0.096

0.040

0.090

1.000

1.860

0.600

0.500



TABLE Z9 (Cont'd.)

Step motor

Zoomar lens

Totals

Conventional

l A

No.

n x 105

Z 0.0Z0

1 Z. 000

Desisn

An

x 105

0. 040

Z. 000

16. 340

High Reliability

A

No.

n x 10 5

Z O. 020

est 1 Z. 000

Design

An

x I05

0. 040

Z. 000

9. 880

TABLE 30

PLANET HORIZON SENSOR

RELIABILITY GOAL ESTIM_ATE

MTBF: 16,000 hours
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5. Problem areas. There are problem areas in both the guidance equip-

ment and guidance technique development areas. With respect to equipment:

a. The planet-tracker scanner presently proposed is only a concept

and the development time might be greater than the schedule for a 1969 Mars

flight permits. This type of sensor has not been subjected to a great deal of

development work to date and the concept suggested for this Voyager mission is

a new and novel approach although it employs techniques and equipment thathave

been used in other optical instrument developments. Thiscomponentorits equiv-

alent should have a lead time preceding the assumed system contract go-ahead

date.

b. The reliability estimates are based on insufficient data. That is,

the present reliability analysis considers only the operating time of the equip-

ment, which is a small percentage of the mission time, and the effects of on-off

switching. The extensive periods of nonoperating time in the space environment

have not been considered because of lack of quantitative data. To ensure achieve-

ment of the desired reliability goals, parts and components will have to be built

and tested in the proper environment to provide these data. This may require

more lead time than presently anticipated.

With respect to the guidance techniques much can be done in the region of

optimizing the navigation techniques for the terminal phases of the mission. The

form of these techniques controls, in effect, the type of optical sensors required

and has a considerable effect on the onboard computer design. These analyses

can easily precede the assumed contract go-ahead date and should be supported

with sufficient funding to permit significant effort.
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6. STABILIZATION AND CONTROL

6.1 Introduction

This section describes the stabilization and control system (SCS) used to

hold the vehicle at the desired attitude and to perform all orientation required

for special maneuvers. A cold gas reaction control system is selected for its

simplicity and proven high reliability. Configuration tradeoff studies show that

the analog SCS is best in terms of reliability, weight, size, and power require-

ments. ASun-Canopus reference frame was selected for the Sun-oriented

vehicle. Gas-bearing gyros are used, because they have the greater life

expectancy required for this mission.

The position control systems required to point the communication antennas

at the Earth and the scientific payload at the planet are also described.

6. Z System Requirements

1. Mission requirements. The Voyager vehicle will operate for a maxi-
mum time of 300 days in a heliocentric orbit plus a maximum time of 180 days

in a Martian orbit. The general tasks that the SCS will perform during this

mission are as follows:

Z. Vehicle orientation. Following completion of Earth launch and injection

into a heliocentric orbit towards Mars, the Voyager vehicle will be separated

from the Saturn booster. At this time, the SCS is required to orient the vehicle

from a random position to a Sun-Canopus reference frame. The roll axis then

points towards the Sun, and a preselected plane of the vehicle, containing the

Canopus tracker and the vehicle roll axis, lies in the plane formed by the sun,

Canopus, and the vehicle. This is the normal attitude-hold position for the

vehicle during transit and Mars orbit cruise.

3. Velocity correction. During the cruise phase between Earth and Mars,

it is possible to correct the vehicle's orbit by adding a velocity increment in a

fixed direction. The SCS must then orient the vehicle to point the main engine

in the proper direction, hold the vehicle in this orientation during the velocity

correction, and reorient the vehicle to reacquire the Sun and Canopus references.

4. Lander Separation. Between one and four days from Mars, the lander

will be separated from the orbiter. The SCS must then orient the vehicle to the

correct position for pointing the lander thrusters, hold the orbiter at this posi-

tion while the lander is separated and spun up, and reorient the orbiter to

reacquire the Sun and Canopus references.

-Z79-



5. Oribiter deceleration. Following the separation of the lander, a

velocity correction will be applied to decelerate the orbiter. The SCS must

orient the orbiter to the correct position, hold the vehicle during the velocity

correction, and reorient the orbiter to reacquire the Sun and Canopus references.

6. Orbiter retrograde firing. Upon approaching Mars, the orbiter must

be decelerated to permit it to orbit around Mars. Prior to deceleration, the

SCS will position the vehicle in response to orientation commands to obtain the

desired initial thrust direction. During the period of thrust application,

the SCS must direct the vehicle in accordance to DCU steering commands.

Following thrust cutoff, the SCS must again reorient the vehicle to reacquire the

Sun and Canopus references.

7. Orbitin_ of Mars. During the Mars orbit period, the SCS must main-

tain vehicle attitude with respect to the Sun and Canopus references when either

the Sun or Canopus is occulted by Mars.

8. Required SCS tasks. The general tasks that the orbiter-bus SCS

will be required to perform to accomplish these system requirements are out-

lined below:

a. Initial acquisition--after orbit injection and Saturn booster separa-

tion, and after any major disturbance, null initial body rates (up to 3 degrees/

sec.), acquire the Sun and Canopus references, and orient to a desired attitude.

b. Reference attitude hold--after acquisition is completed, maintain

a desired attitude during interplanetary cruise and during Martian orbit (to

within± 0.5 degree), except for the discrete maneuvers described below.

c. Vehicle reorientations, as required, for the following purposes:

1) midcour se corrections

Z) lander separation

3) orbiter slow-down thrust

4) navigation sighting (planet tracking, star tracking)

5) orbit injection (into Martian orbit)

6) orbit trim maneuvers
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d. Constant attitude durin_ thrust periods, such as for:

1) midcour se corrections

2) orbiter slow-down maneuver

3) Martian orbit trim maneuver

e. Response to steering rate commands from the digital computer

(in pitch and yaw) during the relatively long thrust period required for Martian

orbit injection.

9. Vehicle Reference Frame Selection. The orbiter-bus (using solar

power) will be designed so as to always keep one orientation with respect to the

Sun, except while thrusting, separating the lander, or taking navigation sight-

lugs. The solar panels will be fixed to the spacecraft structure, and the orbiter-

bus will be controlled with a body-mounted sun sensor so as to keep these panels

normal to the sun llne. Orientation about the sun line will be provided by a

Canopus tracker which can be gimballed about one axis normal to the roll axis.

This reference attitude will apply for both the interplanetary phase and the

Martian orbit phase. Since the directions of Earth add Mars will be continuously

changing, all antennas and other instrumentation which are not omnidirectional

will be girnballed to point in the proper direction. The analysis of the antenna

and payload position control systems is described in appendix H.

6.3 Design Description

I. SCS performance

a. SCS modes and operation. Examination of the tasks outlined in

section 6. Z (System Requirements) indicates that there are a number of

recurring operations which lead to the definition of specific system modes.

Mode selection is made by the digital computer unit (DCU), except for the

two occult modes. The twelve modes selected for the SCS are the following:

1 ) Sun- acquire

Z) Canopus- search

3) Canopus- acquire

4) Transit cruise (gyros on)

5) Cruise (gyros on)
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6) Gyro evaluation

7) Gyro attitude hold (cold gas control)

8) Gyro attitude hold (thrusting)

9) Orientation command

i0) Steering command

I I) Sun-occulted

12) Canopus- occulted

The operation of each of these modes, along with its logic and switching (as

defined in the diagram of figure 109 )is discussed below.

b. Sun-acquire mode. The objective of the Sun=acquire mode is

twofold: (i) to null the sun sensor inputs in pitch and yaw, thereby orienting

the roll axis towards the Sun, and (2) to reduce angular rates about the roll

axis to less than 0.01 degree/second. The Sun-acquire mode uses the 360-degree

field of view coarse acquisition sun sensor as the attitude reference for the pitch

and yaw axes. The pitch and yaw gyros are electronically caged and used as

rate sensors for stability. The roll axis is not attitude referenced during this

mode but uses the roll gyro as a rate sensor to reduce any angular rate about

the roll axis to less than 0.01 degree/second. The cold gas reaction system

is used to provide the control torques.

The normal occasion for using this mode is after initial separation from

the booster or following any disturbance which would cause the spacecraft to

move outside the ±0. Z5-degree linear field of view of the limit cycle sun

sensor. In this mode, the SCS operates as follows: In the pitch and yaw axes,

the sun sensor attitude output is summed with the gyro rate information and

fed to the on-off level switch. The ratio of rate to attitude gain is 10:1.

When the sum of the signals exceeds the ± 0.1 degree (or ± 0.01 degree/second)

deadband of the switch, the proper jets are energized, driving the vehicle back

towards a null on the sun sensor. The mode command logic commands the

switchover from the coarse acquisition sun sensor to the limit cycle sun sensor

the attitude reference when the sun is within the latter's field of view.

The roll axis operates in a like manner, except that no attitude signal is

summed with the rate signal.

c. Canopus-search mode. With the roll axis oriented toward the sun

by means of the limit cycle sun sensor, this mode locates the Canopus reference

by establishing a roll rate of 0. I degree/second and maintaining it until Canopus
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enters the field of view of the star tracker. This roll rate is achieved by

summing a bias signal with the roll rate signal. The on-off level switch

energizes the jets until the sum of the roll rate gyro signal and the command

bias signal drops below 0.01 degree/second. This results in a steady roll

angular rate between 0.09 degree/second and 0.11 degree/second. While

the vehicle is rolling, the Canopus tracker gimbal is commanded to slowly

scan back and forth so that the Canopus tracker scans in helical patterns, as

viewed from the spacecraft.

d. Canopus-accluire mode. The roll axis is oriented to the sun by

means of the limit cycle sun sensor. Control in the roll axis differs from that

used in either the Sun-acquire or Canopus-search mode. Immediately following

the Canopus tracker's acquisition of Canopus, the DCU commands a switchover

to the Canopus-acquire mode. The attitude signal from the Canopus tracker

is summed with the rate sensor (roll gyro) output. (The roll rate search

command is not used. ) The error signal input from the Canopus tracker

commands the roll jets so that their error is driven to a null, thereby orienting

the preselected spacecraft plane with the sun- Canopus- spacecraft plane.

e. Transit cruise mode (_/ros off). By far, the largest part of the

heliocentric phase of the mission is spent in this mode. Its objective is to hold

the spacecraft roll axis along the sun line and maintain a preselected vehicle

plane (passing through the Canopus tracker and the vehicle roll axis) in the

plane formed by the Sun, Canopus, and the spacecraft. To conserve fuel, the

vehicle is held to limit cycle rates of 0.5 x 10 -4 degree/second or less while

operating in a dead-band amplitude of ± 0.1 degree. The gyros are denergized,

and rate damping for stability is provided in all three axes by the use of pseudo-

rate feedback around the reaction jet on-off level switching. The cold gas

reaction jet system provides the necessary control torques. This mode also

compensates for any steady-state disturbance torques about the pitch and yaw

axes by means of periodic cold gas reaction torque. Such torques could arise

from solar radiation pressure and/or meteorite impacts. The use of solar

sails to reduce total impulse requirements was found to be undesirable. The

cold gas possible savings are relatively small and the solar sails add some

weight and complexity to the vehicle.

f. Cruise mode (gyros on). This is the primary mode during the

Martian orbit and is nearly identical to the transit cruise mode except for one

difference. The gyros are energized, electronically caged in the rate mode,

and ready for use but are not utilized in the control loop. This allows their

immediate use for attitude reference by simply uncaging and switching their

output into the loop in the event of Sun or Canopus occultation. This mode is

also used prior to any thrusting periods.

g. Gyro evaluation mode. This mode provides an accurate drift

calibration of the gyros and is used prior to any maneuver using the gyros.
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The SCS maintains the vehicle attitude with respect to the Sun and Canopus

references identically as in the cruise mode. The difference between this

mode and the cruise mode is in the caging of the gyros. They are caged by a

precision pulse rebalance loop which provides angular information in the form

of increments readily usable by the DCU, The SCS itself performs no cali-

bration but provides the DCU with a measure of vehicle motion as sensed by

the gyros. Since the vehicle is slaved to the Sun and Canopus, any net gyro

motion will be indicative of gyro drift. The DCU stores this information and

uses it to drift-compensate commands to the SCS during subsequent orientation

maneuvers using the gyros.

h. Gyro attitude hold (cold _as control) mode. This mode provides

an attitude hold capability at any arbitrary orientation and uses a single-degree-

of-freedom integrating gyro for attitude reference in each vehicle axis. No

maneuvering capability is provided. As shown in figure 109, these gyros are

uncaged and their outputs are fed through a lead-lag network to provide control

loop stability. The output from the network is in turn fed to the on-off level

switch. From this point on, this mode operates as described in the cruise

modes, maintaining limit-cycle amplitude of • O. 1 degree. This mode is used

during lander separation, navigation sightings, and during the nonthrusting

periods when pointed for the AV corrections.

i. Oyro attitude hold (thrusting) mode. This mode is identical to
the previous gyro attitude hold mode except that the control torques are pro-

vided by the hypergolic reaction jet system rather than by the cold gas jets

for control. This mode is used during all velocity corrections with the excep-

tion of the Martian orbital ejection.

j. Orientation command mode. This mode is identical to the gyro

attitude hold (cold gas) mode with the exception that DCU torquing commands

to the gyros can be accepted as shown in figure 109. This mode is used for

all orientations directed by the DCU during nonthrusting periods, such as for

rnidcourse correction, lander separation, retrothrust, navigation sightings,

and Martian orbit injection.

k. Steerin 5 command mode. This mode is identical to the gyro
attitude hold (thrusting) mode with the exception that DCU torquing commands

to the gyros can be accepted as shown in figure 109. This mode is used during

retrograde thrusting for injection into Martian orbit.

1. Sun-occulted mode. This mode provides an attitude reference for

the pitch and yaw axes when the sun is occulted. The pitch and yaw gyros are

uncaged and replace the sun sensor as the attitude reference. Stability is

achieved by using a lead-lag network on the gyro signals as in the gyro attitude

hold modes described above. The roll axis continues to use the Canopus
tracker as its reference and thus is identical with roll control in the cruise

modes.
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m. Canopus-occulted mode. This mode provides an alternate roll

attitude reference while Canopus is occulated. This is done by uncaging the

roll gyro and using it in place of the Canopus tracker as a roll reference.

Stability is provided by the use of a lead-lag network on the gyro signal as

in the gyro attitude hold modes. The pitch and yaw axes continue to use the

sun sensor for their references and operate as described in the cruise modes.

n. Performance table. Table3ZA describes the various phases of the

Voyager Mars mission in terms of the variations in operating characteristics

of the SCS. These charts serve to define the requirements tobe met by the

SCS, such as attitude errors, attitude changes, vehicle rates, etc. They also

outline the SCS design in terms of how it will perform to meet these require-

ments (reference source, torque source, acceleration level, etc.).

1) Attitude hold and maneuverin_ accuracy performance. Table

32B summarizes the expected accuracies of the various elements comprising the

stabilization and control subsystem. Taking the root sum square of these

errors gives the following estimates of attitude accuracy: attitude hold only,

±0.15 degree; and orientation plus attitude hold, _0.25 degree. The orienta-

tion accuracy number assumes a perfect computer signal from the DCU for

torquing and less than one hour required for the maneuver.

TABLE 3ZB

SCS ATTITUDE HOLD AND MANEUVER ACCURACY

Item Ac cur acy
I ' T '

± O. 01' degreeSun sensor or Canopus tracker

Limit cycle

SCS electronics

Switching and null of set

Preamplifier null offset

Demodulator null offset

Gyro drift

Uncompensated random drift

Spinmotor frequency
reference error

Torquing

Oyro torquer linearity

Current source accuracy

±0.035 degree

Negligible

±0.035 degree

0. i degree/hour

0.01 per cent

0.05 per cent

0.10 per cent

±0.10 degree

±0.05 degree

±0. i0 degree

• 0.18 degree
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TABLE 32A

VOYAGER SCS OPERATING CHARACTERISTICS

.. Mission Sequence

Initial Acquisition

A. Sun Acquire

1. Initial attitude error

2. Final attitude error

3. Initial rate

4. Final rate

5. Time for completion

6. Attitude reference

• 7. Damping source

8. Control moment source

9. Control moment accel.

Pitch

(3°)

180 degrees

0. 15 degree

1.7 deg/sec

0

30 minutes

Coarse acquisition

sun sensor

Gyr o

Cold gas jets

0.005 deg/sec 2

Yaw

(30)

180 degrees

0.15 degree

1.7 deg/sec

0

30 minutes

Coarse acquisition

sun sensor

Gyr o

Cold gas jets

0.005 deg/sec 2

Roll

(3 _)

No A.

N.A.

1.7 deg/sec

0.01 deg/sec

N.A.

N.A.

Gyr o

Cold gas jets

0.01 deg/sec 2

B. Canopus Search and Acquire

1. Initial attitude error

2. Final attitude error

3. Search rate

4. Attitude reference

5. Rate source

6. Time for completion

7. Control moment source

8. Control moment accel.

Transit Cruise

1. Limit cycle amplitude

2. Limit cycle rate

3. Control moment source

4. Control moment accel.

5. Attitude reference

6. Damping source

Midcour se Correction

A. Orientation Maneuver

1. Accuracy

2. Rate

3. Time for completion

4. Attitude reference

5. Rate source

6. Control moment source

7. Control moment accel.

N. Ao

No A°

N.A.

N.A.

Limit cycle sun sensor

Gyro

N.A.

Cold gas jets

0. 005 deg/sec 2

± 0.1 degree

0.000025 deg/sec

Cold gas jets

0.005 deg/sec 2

Limit cycle sun sensor

Pseudo rate

0.25 degree

0.1 deg/sec

<30 minutes

DCU command

Gyro-network

Cold gas jets

0.005 deg/sec 2

No Ao

Limit cycle sun sensor

Gyr o

N.A.

Cold gas jets

0.005 deg/sec 2

± 0. 1 degree

0.000025 deg/sec

Cold gas jets

0.005 deg/sec2

Limitcycle sun sensor

Pseudo rate

0.25 degree

0. I de_/sec

<30 minutes

DCU command

Gyro- network

Cold gas jets

0.005 deg/sec g

180 degrees

0.15 degree

0.1 deg/sec

Canopus

Gyro

30minutes

Cold gas jets

0.01 deg/sec 2

± 0.1 degree

0.00005 deg/sec

Cold gas jets

0.01 deg/sec 2

Canopus tracker

Pseudo rate

0.25 degree

N.A.

N.A.

Gyr o

Gyro-network

Cold gas jets

0.01 deg/sec 2
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TABLE 32A (Cont'd)

Mission Sequence Pitch Yaw

(3 a) (3 a)

Midcourse Correction (Concl'd)

B. Orientation Hold

I. Accuracy

2. Limit cycle rate

3f Limit cycle amplitude

4. Time for completion

5. Attitude reference

6. Rate source

7. Control moment source

8. Control moment accel.

C.

0.25 degree

0.000025 deg/sec

± 0. 1 degree

< 30 minutes

Oyro

Gyro - network

Cold gas jets

0.005 deg/sec 2

0.25 degree

0.000025 deg/sec

± 0. 1 degree

< 30 minutes

Gyr o

Gyro - network

Cold gas jets

0.005 deg/sec 2

AV Firin_

1. Limit cycle amplitude

2. Time for completion

3. Attitude reference

4. Rate source

5. Control moment source

D. Reorientation Maneuver

i. Accuracy

2. Rate

3. Time for completion

4. Attitude reference

5. Rate source

6. Control moment source

7. Control moment accel.

E. Canopus Acquire

1. Initial attitude error

2. Final attitude error

3. Attitude reference

4. Rate source

5. Time for completion

6. Control moment source

7. Control moment accel.

Lander Separation

A. Orientation Maneuver

1. Accuracy

2. Rate

3. Time for completion

4. Attitude reference

5. Rate source

6. Control moment source

7. Control moment accel.

± 0. 1 degree

< 30 seconds

Gyr o

Gyro - network

Hot gas jets

0. 15 degree

0. 1 deg/sec

< 30 minutes

Gyro/sun sensor

Gyro - network

Cold gas jets

0.005 deg/sec 2

N. Ao

N.A.

Limit cycle sun sensor

Gyro

N.A.

Cold gas jets

0.005 deg/sec 2

0.25 degree

0.1 deg/sec

30minutes

± 0.1 degree

< 30 seconds

Gyro

Gyro - network

Hot gas jets

0.15 degree

0.1 deg/sec

< 30 minutes

Gyro/sun sensor

Gyro - network

Cold gas jets

0.005 deg/sec 2

N. A°

N.A.

Limit cycle sun sensor

Gyr o

N.A.

Cold gas jets

0.005 deg/sec 2

DCU command

Gyro - network

Cold gas jets

0.005 deg/sec z

0.25 degree

0.1 deg/sec

30 minutes

DCU command

Gyro - network

Cold gas jets

0.005 deg/sec 2

Roll

(3 a)

0.25 degree

0.00005 deg/sec

± 0.1 degree

< 30 minutes

Gyro

Gyro - network

Cold gas jets

0.01 deg/sec 2

± 0.1 degree

< 30 seconds

Gyro

Gyro = network

Hot gas jets

0. 5 degree

N.A.

N.A.

Gyro

Gyro = network

Cold gas jets

0.01 deg/sec 2

0.5 degree

0. 15 degree

Canopus tracker

Gyr o

<30 minutes

Cold gas jets

0.0Ldeg/sec 2

0.25 degree

N.A.

N.A.

Gyr o

Gyro = network

Cold gas jets

0.01 deg/sec z
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TABLE 32A (Cont'd)

Mission Sequence Pitch Yaw

(3°) (3_)

B. Orientation Hold

1. Accuracy

2. Limit cycle rate

3. Time for completion

4. Attitude reference

5. Rate source

6. Control moment source

7. Control moment accel.

8. Limit cycle amplitude

C. Reorientation Maneuver

i. - Accuracy

2. Rate

3. Time for completion

4. Attitude reference

5. Rate source

6. Control moment source

7. Control moment accel.

D. Canopus Acquire

i. Initial attitude error

2. Final attitude error

3. Attitude reference

4. Rate source

5. Time for completion

6. Control moment source

7. Control moment accel.

Orbiter Retrofiring

A. Orientation Maneuver

I. Accuracy

2. Rate

3. Time for completion

4. Attitude reference

5. Rate source

6. Control moment source

7. Control moment accel.

B. Orientation Hold

I. Limit cycle amplitude

2. Limit cycle rate

3. Time for completion

4. Attitude reference

5. Rate source

6. Control moment source

7. Control moment accel.

8. Accuracy

0.25 degree

0.000025 deg/sec

< 30 minutes

Gyro

Gyro - network

Cold gas jets

0.005 deg/sec 2

± 0. i degree

0.15 degree

1.0 deg/sec

< 30 minutes

Gyro/sun sensor

Gyro - network

Cold gas jets

0.02 deg/sec z

No Ao

N.A.

Limit cycle sun sensor

Gyr o

N.A.

Cold gas jets

0.02 deg/sec 2

0.25 degree

1.0 deg/sec

< 30 minutes

Oyro

Gyro=network

Cold gas jets

0.0Z deg/sec 2

± 0. i degree

0.0001 deg/sec

< 3 0 minute s

Oyro

Gyro =network

Cold gas jets 2
0.02 deg/sec

0.25 degree

0.25 degree

0.000025 deg/sec

< 30 minutes

Gyro

Gyro - network

Cold gas jets

0.005 deg/sec z

± 0.1 degree

0.15 degree

1.0 deg/sec

< 30 minutes

Gyro/sun sensor

Gyro - network

Cold gas jets

0.0Z deg/sec 2

N. A.

N.A.

Limit cycle sun sensor

Gyr o

N.A.

Cold gas jets

0.02 deg/sec 2

0.25 degree

1.0 deg/sec

< 30 minutes

Gyr o

Gyr o -network

Cold gas jets

0.02 deg/sec 2

± 0. I degree

0.0001 deg/sec

< 30 minutes

Gyr o

Gyr o-network

Cold gas jets

0.02 deg/sec 2

0.25 degree

Roll

(3°)

0.25 degree

0.00005 deg/sec

< 30minu_s

Gyro

Gyro - network

Cold gas jets

0.01 deg/sec 2

± 0. I degree

0.5 degree

N.A.

N.A.

Gyro/sun sensor

Gyro - network

Cold gas jets

0.01 deg/sec 2

0.5 degree

0.15 degree

C anopus tracker

Gyr o

30 minutes

Cold gas jets

0.01 deg/sec z

0.25 degree

N.A.

N.A.

Gyro

Gyr o-network

Cold gas jets

0.01 deg/sec z

± 0.1 degree

0.00005 deg/sec

< 30 minutes

Gyr o

Gyr o -network

Cold gas jets

0.01 deg/.sec 2

0.25 degree
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TABLE 32A {Cont'd)

Mission Sequence

Orbiter Retrofiring (Concl'd)

C. AV firing

Pitch

(3°)

1: Limit cycle amplitude

2. Time for completion

3. Attitude reference

4. Rate source

5. Control moment source

D. Reorientation Maneuver

1. Accuracy

2. Rate

3. Time for completion

4. Attitude reference

5. Rate source

6. Control moment source

7. Control moment accel.

E. C anopus Acquire

1. Initial attitude error

2. Final attitude error

3. Attitude reference

± 0.1 degree

< 30 seconds

Gyro

Gyro - network

Hot gas jets

0.15 degree

1.0 deg/sec

< 30 minutes

Gyro/sun sensor

Gyro - network

Cold gas jets

0.02 deg/sec 2

N° A.

N.A.

Limit cycle sun sensor

Yaw Roll

(_a) (3a)

± 0.1 degree

< 30 seconds

Gyro

Gyro - network

Hot gas jets

0.15 degree

1.0 deg/sec

< 30 minutes

Gyro/sun sensor

Gyro - network

Cold gas jets

0.0g deg/sec 2

N. A0

N.A.

Limit cycle sun sensor

± 0.1 degree

< 30 seconds

Gyro

Gyro - network

Hot gas jets

0.5 degree

1.0 deg/sec

< 30 minutes

Gyro

Gyro - network

Cold gas jets

0.01 deg/sec 2

0.5 degree

0.15 degree

Canopus tracker
4. Rate source

5. Time for completion

6. Control moment source

7. Control moment accel.

Navigation Sighting

i. Limit cycle amplitude

2. Limit cycle rate

3. Time for completion

4. Attitude reference

5. Rate source

6. Control moment source

7. Control moment accel.

8. Accuracy

Gyr o

N.A.

Cold gas jets

0.02 deg/sec 2

± 0.1 degree

0.0001 deg/sec

1 hour

Gyro

Gyro - network

Cold gas jets

0.02 deg/sec 2

0.25 degree

Gyr o

N.A.

Cold gas jets

0.02 deg/sec 2

± 0.1 degree

0.0001 deg/sec

1 hour

Gyro

Gyro - network

Cold gas jets

0.0Z deg/sec 2

0.25 degree

Orbiter In)e ction

A. Orientation Maneuver

1. Accuracy

2. Rate

3. Time for completion

4. Attitude reference

5. Rate source

6. Control moment source

7. Control rnoment accel.

0.25 degree

1.0 deg/sec

< 30 minutes

Gyro

Gyro - network

Cold gas jets

0.02 deg/sec 2

0.25 degree

1.0 deg/sec

< 30 minutes

Gyro

Gyro - network

Cold gas jets

0.02 deg/sec 2

Gyro

< 30 minutes

Cold gas jets

0.01 deg/sec 2

± 0.1 degree

0.00005 deg/sec

1 hour

Gyr o

Gyro - network

Cold gas jets

0.01 deg/sec 2

0.25 degree

0.25 degree

N.A.

N.A.

Gyro

Gyro - network

Cold gas jets

0.01 deg/sec 2
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TABLE 3ZA (Cont'd)

Mission Sequence

B. Orientation Hold

I. Limit cycle arnplitude

Z. Limit cycle rate

3. Time for completion

4. Attitude reference

5. Kate source

6. Control moment source

7. Control moment accel.

8. Accuracy

C. AV Firin G

i. Limit cycle amplitude

Z. Limit cycle rate

3. Time for completion

4. DCU steering command

5. Kate source

6. Control moment source

D. Re orientation Maneuver

1. Accuracy

Z. Rate

3. Time for completion

4. Attitude reference

5. Rate source

6. Control moment source

7. Control moment accel.

E. Canopus Acquire

1. Initial attitude error

Z. Final attitude error

3. Attitude reference

4. Rate source

5. Time for completion

6. Control moment source

7. Control moment accel.

Pitch

(3_)

± 0.1 degree

0.00008 deg/sec

< 30 minutes

Gyro

Gyro - network

Cold gas jets

0.02 deg/sec 2

0.Z5 degree

± 0.1 degree

0.03 deg/sec

< 12 minutes

1 deg/sec

Gyro - network

Hot gas jets

0.15 degree

1.0 deg/sec

< 30 minutes

Gyro/sun sensor

Gyro - network

Cold gas jets

0.03 deg/sec z

No A.

N.A.

Limit cycle sun sensor

Gyr o

N.A.

Cold gas jets

0.03 deg/sec z

Yaw

(3°)

± 0. I degree

0.00001 deg/sec

< 30 minutes

Gyro

Gyro - network

Cold gas jets

0.0Z deg/sec Z

0. Z5 degree

m 0. i degree

0.03 deg/sec

< lZ minutes

1 deg/sec

Gyro - network

Hot gas jets

0.15 degree

1.0 deg/sec

;< 30 minutes

Gyro/sun sensor

Gyro - network

Cold gas jets

0.03 deg/sec z

N. A.

N.A.

Limit cycle sun sensor

Gyr o

N.A.

Cold gas jets

0.03 deg/sec z

Koll

(3_)

_- 0. 1 degree

0. 00006 deg/sec

< 30 minutes

Gyro

Gyro - network

Cold gas jets

0.01 deg/sec Z

0.Z5 degree

± 0. 1 degree

0.01 deg/sec

< lZ minutes

0

Gyro - network

Hot gas jets

0.5 degree

1.0 deg/sec

< 30 minutes

Gyro

Gyro - network

Cold gas jets

0.0Z deg/sec 2

0.5 degree

0.15 degree

Canopus tracker

Gyro

< 30 minutes

Cold gas jets

0.0Z deg/sec z
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TABLE 3ZA (Concl'd)

Mission Sequence

Mars Orbit Cruise

i. Limit cycle amplitude

2. Limit cycle rate

3. Control moment source

4. Control moment accel.

5. Attitude reference

6. Damping source

Pitch

(3_,)

± 0. i deg/sec

0.00015 deg/sec

Cold gas jets

0.03 deg/sec 2

Limitcycle sun sensor

Pseudo rate

Yaw

(3o)

± 0. I deg/sec

0.00015 deg/sec

Cold gas jets

0.03 deg/sec 2

Limit cycle sun sensor

Pseudo rate

Occultation

1. Limit cycle amplitude

2. Limit cycle rate

3. Control moment source

4. Control moment accel.

5. Attitude reference

6. Damping source

± 0.1 deg/sec

0.00015 deg/sec

Cold gas jets

0.03 deg/sec 2

Gyro

Gyro - network

± 0. I deg/sec

0.00015 deg/sec

Cold gas jets

0.03 deg/sec 2

Gyro

Gyro - network

Roll

(3o)

± 0.1 deg/sec

0.0001 deg/sec

Cold gas jets

0.0Z deg/sec 2

Canopus tracker

Pseudo ram

0. I deg/sec

0.0001 deg/sec

Cold gas jets

0.02 deg/sec z

Gyro

Gyro - network
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g. Components and block diagram

a. Major components. The functional diagram for the SCS designed

to perform the tasks outlines described above is shown in figure 109. The

major components used in the SCS and indicated on the diagrams are:

b. Sun and Canopus sensors. These sensors include the following:

I) Coarse acquisition sun sensor. This sensor is used for

initial alignment of the spacecraft roll axis to the sun line, and therefore has

an unlimited field of view. It initiates pitch and yaw commands to the vehicle

so that the field of view of the limit cycle sun sensor can capture the sun line.

Z) Limit cycle sun sensor. This sensor generates accurate pitch

and yaw error signals for precision pointing of the vehicle X-axis along the

sun line. High accuracy is obtained at the expense of a limited field of view.

3) Canopus star tracker. The star tracker generates roll error

signals for accurate alignment of a preselected vehicle plane with the plane

formed by the Sun, Canopus, and the spacecraft. This preselected plane

passes through the vehicle roll axis and the Canopus star tracker.

c. Cold _as reaction system. Nitrogen gas jets are used for vehicle

attitude control during all nonthrusting phases of the mission. Four jets in

each axis provide a torque couple for pitch, yaw, and roll rotation in either

direction. Thasystemiscomprised of lZ jets, two nitrogen storage tanks, a

pressure regulator, pressure transducers, and other necessary plumbing.

d. Gyro/electronics package. The gyro/electronics package includes:

1) Three floated single-decree-of-freedom gyros. These gyros

are rate sensors for damping and attitude sensors for attitude hold during

spacecraft maneuvering and during Martian orbit when either the Sun or Canopus

is occulted.

Z) Power supply. This supply provides power to the gyros and

their associated electronics.

3) Temperature control amplifiers. These circuits control

gyro temperature within close limits to provide the necessary gyro accuracy.

4) Caging electronics. A precision current supply, a dc-to-

pulse-width converter, and a torquer switch bridge allow caging of the gyros

in a rate mode so that their output may be used for rate damping.

5) Evaluation electronics. A current pulse generator, pulse

rebalance electronics, and a torquer switch bridge allow an accurate evaluation
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of gyro drift during flight. To evaluate drift, the gyros are caged by these

circuits while the spacecraft is attitude stabilized to the Sun and Canopus

sensor inputs. .Any gyro drift during this phase is apparent as torquing pulses

and these are sent to the DCU where they are subsequently used to bias maneu-

vering commands. By this means gyro drift is effectively compensated and

very accurate maneuvering can be accomplished even during extended missions.

e. Control electronics package

I) Mode command lo_ic. This logic controls the switching

necessary to provide the various SCS modes during the mission. The mode

switching logic receives its commands from the DCU with the exception of the

Sun and Canopus occultation signals which are generated by the Sun and Canopus

sensors. Some of these mode command logic circuits is located in the gyro/

electronics package.

2) Jet solenoid drivers. On-off commands to the cold gas jet

solenoids and the hot gas jet solenoids are directed through these drivers by

the on-off level switches and the mode command logic.

3) On-off level switches. These switches pass signals to the

jet solenoid drivers when the switch inputs exceed a present deadband level.

4) Pseudo-rate networks. These networks around the on-off

level switches provide system stability during Sun and Canopus attitude hold

without the necessity for gyro rate information.

5) Lead-la_ networks. These active networks on the inputs to

the on-off level switches provide system stability during attitude hold with

gyros, and during steering phases.

6) Power supply. This supply provides power to the control

electronics, the Canopus star tracker and the sun sensors.

f. Interface components. The components shown in figure 109 which
interface with the SCS are:

1) Digital computer unit. This component of the guidance and

control system has an interface with the SCS to perform the following functions:

selects the SCS modes by sending commands to the SCS mode command logic;

determines the gyro drift rates prior to any orientation using the gyros; con-

tinuously computes and maintains a memory of the spacecraft attitude during

all orientation phases, and commands the SCS with rate signals given in body

axes; and supplies a precision 28.8-kc reference signal.
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2) Hot-_as reaction s)rstem. This system provides three-axis

attitude control during all thrusting phases of the mission. The signals to the

hot gas reaction jet solenoids are provided by the SCS jet solenoid drivers

when commanded by mode logic.

3) Spacecraft power supply. This supply provides raw Z8-volt

dc power to the SCS during flight, The spacecraft power is derived from solar

panel arrays backed up by batteries.

g. Component description. The SCS consists of the following eleven

basic components as installed in the spacecraft: reaction system; gyro/elec-

tronics package; control electronics package; Canopus star tracker; coarse

acquisition sun sensor (five items); and limit cycle sun sensor (two items).

For the purpose of describing the SCS components, the actual physical group-

ing is ignored. Instead the SCS is regrouped and described in terms of com-

mon equipment as follows: sensors; reaction system; and electronics.

h. Sensors. The sensors used in the Voyager SCS are described in

the following par agr aphs.

I) Gyros. The gyros for the SCS are the Honeywell GGI59 gas

bearing (MIG) gyro, which is the most highly refined floated gyro. A proven

ceramic gas bearing motor is combined with a new frictionless hydrostatic

fluid gimbal suspension. The gyro has spin motor rotation detection (SMRD).

2) Sun sensors. Two separate sun sensor units are used to

provide sun acquisition without gimbals or complicated search maneuvers and

to provide accurate sun reference attitude when the SCS is holding the vehicle

roll axis parallel to the sun line. The sun sensor units are: (a) coarse

acquisition sun sensor;and (b) limit cycle sun sensor.

a) Coarse acquisition sun sensor. The coarse acquisition

sun sensor will give attitude indications of the Voyager spacecraft over a range
of 360 degrees in pitch and yaw. The sensor is nearly identical to the acquisi-

tion Sun sensor to be used on the advanced orbiting solar observatory and will

have been developed, qualified, and flown prior to its use in the Voyager pro-

gram.

The pitch and yaw configurations are identical. The device consists of

four silicon detectors in each axis, connected in a bridge network so that the

bridge output is proportional to the sine of the angle between the controlled

axis of the vehicle and the line-of-sight to the sun, This type of output signal

results from the mounting geometry and the fact that individual cell current

output into a low impedance load is proportional to illumination, or incident

flux, in the sensitive spectral region of the detectors.
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The detectors are mounted two to a head as shown in figure 110. Two heads

are used in each axis and are mounted on the vehicle with their axis of symmetry

aligned to the vehicle roll axis, one aligned to the + roll axis, the other to the

-roll axis. Thus the detector normals make angles with the spacecraft roll

axis of 45 degrees, 135 degrees, 225 degrees, and 315 degrees. Two null

points exist; one at 0 degree and one at 180 degrees. The SCS cannot acquire

the 180-degree null point, since at any attitude between 0 degree and 180 degrees,

the output signal is positive and causes a vehicle rotation toward zero null and

not towards 180 degrees null. The vehicle will similarly rotate towards zero

null for attitudes between zero and -180 degrees. Thus the 180-degree null

point is an unstable position and will not be of concern.

In addition to the output logic as discussed above, the outputs of all detectors

in both axes are summed to provide an indication of Sun occultation. Regardless

of vehicle attitude, the summation of detector outputs will remain above a certain

level in bright sunlight. The only condition causing the signal summation to drop

below this level is a decrease in solar illumination indicating occultation or

impending occultation.

High reliability and low size, weight, and power consumption are achieved

through the use of photovoltaic detectors operating as current sources which

require no bias voltage, and integrated circuits, notably Texas Instrument solid

circuits which perform the same function as a multicomponent circuit (e. g.,

amplifier) with the same weight, power, size, and reliability as a single tran-

sistor.

The volume occupied by the complete subsystem consisting of four sensor

heads and one electronics package will not exceed four cubic inches. Weight

will be only seven ounces, power drain only 0.35 watt. The MTBF is 240,000

hours based on high-reliability parts.

The null accuracy of the device will be about 1 degree, the inaccuracy

resulting almost solely from the differences in drift characteristics between

detectors.

b) Limit cycle sun sensor. The basic element of the limit
cycle sun sensor is a critical angle prism. The prism is of isosceles geometry

with the isosceles angles cut approximately at the critical internal reflectance

angle of the glass material for the wavelength of maximum detector sensitivity.

When the Sun's rays enter the prism normal to the front surface, they pass

through the prism and strike the lateral faces at the critical angle, causing

virtually all the incident radiation to be totally internally reflected.

A null signal is obtained when the silicon detector senses the Sun's rays

through the scanning aperture in a vibrating reed. If the Sun's rays are

shifted either to the right or the left, the angle of incidence to the further face
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Figure 110 COARSE ACQUISITION SUN SENSOR -- MECHANICAL CONFIGURATION
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increases. Thus, a significant portion of the radiation is refracted through

the prism and transmitted through the scanning aperture to the detector as an

off-null signal. The radiation to the other face strikes at a reduced angle of

incidence, which ensures a reflection. Since the transition from total internal

reflection to refraction is abrupt, the sensor output is very sensitive to the

angular position of the Sun with respect to the null position. The slope of the

output near null is very steep, providing excellent null accuracy and linearity

for small angular deviations. The truncated apex of the prism is opaque to

eliminate direct rays from the Sun to the photo-sensor. The physical con-

figuration of each of the single axis units is illustrated by the layout shown in

figure 111. While most of the processing circuits will be located external to

the tracker assembly, space is available in the sun sensor packaging for those

portions of the circuits functionally required at this location.

Experimental data (figure 1 1Z) shows that the proposed sun sensor is

capable of excellent tracking accuracy, has good linearity about the null-

axis, and provides a wide acquisition field of view.

Device specifications are

Weight: 1.5 lbs.

Volume: 13 cubic inches in two packages

Power: 0.5 watt at +15 volts dc

MTBF: 133,000 hours

Accuracy: better than 0.01 degrees

Instantaneous

field: ± 0. Z5 degrees

Total field greater than± 5 degrees

i. Canopus star tracker. The Canopus star tracker performs two

functions: provides the SCS with vehicle roll reference and provides the DCU

with Canopus position for navigation. Consequently both digital and analog

signals are required. This is achieved without complicated A/D or D/A

conversion by feeding the components of the scan-generated error signal into

both digital and analog signal processing electronics, and utilizing a digital

gimbal loop. Thus analog error signals proportional to roll error are fed to

the SCS and binary outputs sufficient to determine the position of Canopus with

respect to a vehicle.fixed reference are fed to the DCU.
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The star tracker's detector is an image dissector photornultiplier (PM)

tube which electronically scans its sensitive surface along two orthogonal scan

paths. The scan paths cross at the center of the sensitive area. If the star

image is centered, the pulse train from the PM tube will be symmetric and all

pulses will be of identical width. If the star is not centered, the pulse train

will be asymmetric, and pulses will be of unequal width. By splitting the PM

tube output pulses into azimuth and elevation (X and Y) components, a sufficient

amount of information is available to determine the star image position. To

obtain an analog signal, the roll error is synchronously demodulated at the

scanning frequency. If the error is zero the signal will be a second harmonic

and is filtered out. For a nonzero error, the filtered signal amplitude is

proportional to error magnitude, and the phase gives roll error direction. To

obtain digital error signals, the PM tube output pulses (after being split into

azimuth and elevation components) are used together with scan reference

signals to control an up-down binary counter. During the first half of the scan

cycle, the counter counts up only while the PlV_ tube output is above an established

threshold. The counter output at the end of a scan cycle is proportional to the

difference in pulse width for the two halves of the scan cycle. If the star is

centered, all pulse widths are the same and the up count equals the down count.

If the star is not centered, the difference in pulse widths, which is proportional

to star position, will be in the counter and available to the DCU. To accommo-

date the apparent motion of Canopus during heliocentric orbit (Canopus is not

a pole star), the stepper motor is energized to reposition the gimbal mirror

whenever the error in the pitch axis exceeds a certain preset level; e.g., twice

the limit cycle magnitude.

The gimbal readout consists of a coded wheel rigidly attached to the mirror

gimbal shaft, a light source with collimating optics, and a photodetector with

associated pulse amplifier electronics.

This method is preferred over using a prepackaged gimbal readout to

realize a savings in mechanical moving parts since prepackaged readouts have

additional bearings and shafts which are not necessary in this application.

The gimbal readout system is a "serial" rather than"parallel" readout which

requires knowledge of some reference or starting point from which to start

counting. A special loop has been provided to enable the girnbal to acquire the

reference position on command from the DCU.

The mechanical configuration of the tracker is shown in figures 1 13 and
114.
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The Canopus star tracker characteristics and capabilities are:

Weight: s even pounds

Volume: 350 cubic inches, one package

Power: 7. Z watt

MTBF: 64,500 hours (includes gimbal duty cycle)

Accuracy: Z0 arc- seconds

Instantaneous field: _-1.5 degrees each axis

Total field: ± 1.5 degrees roll

± 18 degrees pitch

j. Reaction s[stem. The reaction system proposed at the present

time for Voyager is a nitrogen cold gas system as shown in figure 115. The

reasons for selecting this system and detailed weight and volume breakdowns

are given in the tradeoff study section of this document. General characteris-

tics of the system are given below.

Total system weight

Total system volume

Jet thrust

Isp

Storage pressure

Tank size

Tank weight

Tank volume

Nitrogen volume

Tank material

Jet valve power required

Tubing

Reliability

53 pounds

Z795 cubic inches

0.03 ib/jet (twelve jets used)

60 seconds

3000 psi

13.7 inches OD (two tanks used)

11.6 pounds each

1360 cubic inches each

Z580 cubic inches total

titanium

approximately I00 ma at 28 volts

3/16 inch OD stainless

0.9997 (based on Ii, 160 hours

oper ation)

The reaction system component failure rates are shown in the reliability

analysis section.
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k. Gyro and control electronic packages.

I) Electronics mechanization. Circuit concepts compatible

with the requirements and design techniques used in microminiature circuit

fabrication are developed wherever feasible throughout the gyro and control

electronics.

The physical design for the active circuit elements, is based on the use of

integrated circuits which should become available as standarized analog building

blocks (functional electronic blocks) within the next two years. It is recognized

that drawbacks such as limited accuracy still exist in the summing and feed-

back elements, within the integrated silicon block, and that any requirement

for large capacitors in some shaping networks cannot be met now, or in the

foreseeable future. To overcome these limitations, a marriage of thin-film

techniques for the feedback and summing networks will be combined with the

active microcircuit elements to form the complete system.

Present design status indicates that the required functional electronic

blocks will be available in the necessary quantity by the end of 1965. However,

in the event of an unforeseen lack of progress in semiconductor technology, the

required active circuits could also be constructed using presently available

pico semiconductor packages. Little overall effect on system size or power

would result if the thin-film deposited circuit elements and pico-sized com-

ponent versions of the active elements are used.

The major blocks of the gyro and control electronics are briefly described

in the following paragraphs. At this time it is not practical to exactly define

the circuits required for the SCS, but the circuits have been detailed to the

extent necessary for realistic size, weight, power, and reliability estimates.

The functional block diagrams for the control electronics and the gyro electronics

packages areshowninfigures 116 and 117, respectively.

2) Control electronics. The control electronics provide the

elements necessary to process the error input signals from the gyros or optical

sensors and command the appropriate reaction jets when the preset deadband of

the on-off level switch is exceeded. The phase of the error signal determines

which polarity of jets is to be energized. The amplitude of the error signal

determines when the deadband is exceeded. The mechanization chosen for the

control electronics uses an ac (square wave) summing technique at the input

to the switching amplifier. The conversion from dc to ac (square wave) is

accomplished by simple, single half-wave chopper transistors which also

function as mode control switches when energized continuously.

The following elements make up the control electronics: active lead-lag

circuit; switching amplifier; peak reading half-wave voltage detector; low

hysteresis switch (LHS); lag feedback circuit (for pseudo rate); jet solenoid

driver; control electronics power supply; and mode command logic.

-306-



I

I
I

I
I
I
I,,,

,||I

I

r

0

|

|
5

i

I
I

I
I
I
I
I
I
I

I
I
I

:|:
I

I
I_

i

..%

m

0

u.i
Q
.<

U
.<
n

U

z
0
n,,
I'-
U
u.I
_1
u.I

.J
0

I-
Z
0
U

ii
0

n,..
(3
,<

v
U
0
..J
en

',0

e.-.

-307-

I i



!
IIii

iI
I
I
1

,' ....... J I............ j
0

!

w

0

v

U
Z
0

I--
U
uJ

w

0
L.I-
0

0
.<

v

g
°--
LL

-308-



3) Gyro electronics. The gyro electronics provide the elements
necessary to control the gyros in the rate, attitude, and gyro evaluation con-

figurations and to supply an output error signal to the control electronics. The
mechanization of these circuits uses ac, dc, and pulse techniques to attain the

required accuracy and interface with the DCU with a minimum of circuits.

The following elements shown in figure 117 make up the gyro electronics:

rate caging electronics; pulse rebalance electronics; and gyro auxiliary elec-
tronics.

4) Packaging.

a) Control electronics package. The control electronics

will be packaged as a separate unit. This unit is envisioned as a simple hard-

mounted package with the electronics designed as plug-in subassemblies

replaceable by function.

b) Gyro electronics package. The gyro electronics will be
contained within the outlines of the gyro mounting block. Locating the gyro

electronics on the mounting block creates a relatively stable temperature

environment compatible with the use of integrated circuits. The electronics

will be designed as plug-in subassemblies replaceable by function.

c) Summary. The gyro and control electronics package
characteristics are summarized in table 32C.

TABLE 32C

GYRO AND CONTROL ELECTRONICS PACKAGE CHARACTERISTICS

Item

Control Electronics Package

Gyro/Electronics Package

Gyros (3)

Casting (1)

Harness and Mounting

Power Supply (i)

Caging Electronics (3)

Pul se Rebalance

Electronics (3)

Temperature Control

Electronics (3)

Totals

Volume (in3)

125

245

m

470

Weight (lb)

3.0

i0.0

3.00

1.25

• 0.50

1.25

1.00

2. 00!

1.00

13.0 i0.00

Power Required (watts)

Steady-State Peak
2.5

31.0

9

1.0

2.0

I0.0

9. 0 90*

33.5 31.0

• Gyro warmup power-twenty minutes maximum
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I. Size, weight, and power characteristics. The SCS size, weight, and

power characteristics are summarized below in table 32D for the system

without redundancy.

TABLE 32D

SCS SIZE, WEIGHT AND POWER SUMMARY

Item No.

Volume

(in 3 )

Gyro/Electronic s Package 1 245

Control Electronics Package 1 IZ5

Canopus Star Tracker 1 350

Limit Cycle Sun Sensor 1 13

Coarse Acquisition Sun Sensor 1 4

Reaction System 1 2795

Totals 3532

Weight

(lb.)

I0.0

3.0

7.0

1.5

0.44

53. 0

75.0

Power

Steady
State

31.0

2.5

7.2

0.5

0.35

41.6

(watts)

Peak

9 0*

20 **

*Gyro warmup power - Z0 minutes maximum

**Reaction jet solenoids estimated at three watts each. Six jets could possibly

be on simultaneously during initial acquisition for periods of one to two

minutes. Otherwise jet operating duty cycle is so small as to make average

power negligible.

3. Total impulse requirements. Table 33 lists the total impulse require-

ments resulting from the various SCS functions and external disturbances during

the mission. The assumptions and calculations on which these figures were

based appear in appendix I.

TABLE 33

MARS MISSION IMPULSE REQUIREMENTS

Io

Z.

o

4.

5.

6.

7.

Total

Item

Initial Acquisition

Cruise Limit Cycling

Plus Solar Pressure

Orientations

Payload Indexing

Gravity Gradient

Meteorites

MaGnetic Field

Total

Impulse

(Pound- S e c ond s)

58

5Z

165

IZ0

97

164

0

656
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6.4 System Tradeoffs

A number of tradeoff studies were made in the process of defining the SCS

proposed in this document. The five specific studies made and reported in this

section are the following: 1. SCS configuration; 2. reaction systems; 3. onboard

or ground switchover of redundant SCS circuits; 4. sun sensors; and 5. Canopus
star trackers.

These studies are discussed in the following paragraphs.

1. SCS confisuration. The SCS configuration tradeoffs concern choices
pertaining to use of the DCU and to the selection of gyros. The DCU tradeoff

involves an analog system which makes minimum use of the DCU as opposed to

a digital system which makes maximum use of the DCU. The gyro tradeoff con-

sidered a digital system using either floated integrating gyros or electrically

suspended gyros (ESG's). The tradeoff areas therefore involves the following

three system configurations: an analog systemusing integrating gyros; a digital

system using integrating gyros; and a digital system using ESG's. The tradeoff

areas of the above system configurations are illustrated in figure 118.

The following criteria define the choice of an SCS: weight; size; power re-

quirements; reliability; and development status. As is shown in the following

study, the logical choice is the analog system using integrating gyros. This is

the system chosen and detailed in this document.

a. Digital versus analo$ SCS. A comparison is made here of the
digital and analog systems. Both systems use GO1 59 floated integrating gyros

and optical sensors for obtaining vehicle rate information and attitude reference.

The associated gyro electronics for each system, although functionally different,

are comparable with respect to the criteria listed above.

The tradeoff areas, as showninfigure 118 are, optical sensor interface with

the SCS, SCS loop stabilization, and jet control logic.

I) Optical sensor interface. In the analog version the inputs
from the optical sensors are connected to on-off amplifier summing junctions.

In the digital system, the sensors interface with the digital computer; there-

fore, an analog-to-digital converter is required in order to convert the sun sen-

sor analog signal to a digital signal. In the present design, the Canopus tracker

is provided with both digital and analog outputs; therefore, only the output

failure rates enter into the tradeoff considerations. The output failure rates

are nearly equal: 1. 505 percent/1000 hours for the analog output and 1. 535 per-

cent/1000 hours for the digital readout.

2) SCS loop stabilization. Both versions of the SCS require vehi-

cle angular rates for the SCS loop stabilization. In the analog system, these
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rates are obtained through active lead-lag networks when attitude reference is

provided by the gyros. When the attitude reference is derived from the optical

sensors, then the SCS loop stabilization is achieved by pseudo rates which are

obtained through first-order lag networks connected in the feedback path of the

on- off switching amplifier s.

In the digital version, if the attitude reference is provided by the gyros,

the corresponding vehicle rates are derived by the DCU through differentiation

of the attitude signals. With optical sensor inputs, the digital system requires

only the type of control logic used in the Mercury spacecraft SCS. This method

needs only the sign of the vehicle rate for stabilization, which is determined by
the DCU.

3) Jet control logic. In the analog version, the jet control logic

is conveniently handled by the on-off switching amplifiers (one per axis). In

the digital system, the jet control logic consists of two separate blocks of logic

statements provided by Project Mercury-type control logic using attitude error

and the sign of vehicle rate and conventional jet control logic using the sum of
rate and attitude.

4) Tradeoff evaluation summary. The three tradeoff areas dis-

cussed above were evaluated in terms of weight, size, power, reliability, and

development status. The results are given in table 34, which shows that the

analog SCS is superior to the digital SCS on a basis of weight, size, power, and

reliability.

b. Electrically suspended _yros (ESG) versus integrating gyros.
The tradeoff areas between the SCS using ESG's and the SCS using integrating

gyros are shown in figure 118. In general, the tradeoffs are the following:

integrating gyro versus ESG and associated electronics; and comparison of the

DCU computational requirements for the respective systems.

The tradeoffs in terms of size, power, weight, reliability, and development
status appear in tables 35 and 36.

The ESG attitude reference approach warrants a tradeoff study because of

the following advantages which ESGWs offer over conventional floated integrating
gyros: a strapped-down ESG has no attitude or rate limitations due to vehicle

maneuvering; long life potential due to nonmechanical coupling of moving parts;

high accuracy; and future ESGWs may be able to add an acceleration measurement

capability to their attitude reference function which would eliminate the accel-

erometer package and reduce the associated alignment problems. Present

disadvantages of the ESGts are their size, weight, and power requirements.
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TABLE 34

ANALOG VERSUS DIGITAL SCS TRADEOFF SUMMARY

Paramete r

Weight (lb.)

Size (cu. in. )

Power (watts)

Reliability (percent failed

per i000 hours)

Development Status

Analog SCS

3 on-off switching

amplifier s

3 DC amplifiers and

lead networks

3 Pseudo rate net-

works

Digital SCS

DCU increase due to:

1 Sun sensor A/D,

Jet control logic,

Attitude signal pro-

cessing

O. 08

i. 56

I. 04

I. 5571

Off-the- shelf equip-

ment

1.0

45.0

2.0

1.9652

Off-the- shelf integrated

circuits

Note: Above is typical for three axes.

The DCU performs the sun sensor analog-to-digital function.

The jet control logic for the digital system is discussed in the section

below.

llncludes Canopus tracker failure rate with analog readout.

21ncludes Canopus tracker failure rate with digital output.
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c. Tradeoff evaluation summary. From tables 35 and 36, the gyro

requirements and the SCS are observed to be greater with the ESG's than with

the analog approach using integrating gyros. The ESG approach also reduces

computer and SCS reliability for this mission. Therefore, ESG's are not

recommended.

Z. Reaction systems.

a. Qualitative comparison of systems. In selecting the reaction sys-

tem for Voyager an evaluation was made of the following approaches:

Mass Expulsion Systems

Cold gas jets

Sublimation jets

Hypergolic jets

Monopropellant jets

Detonation jets

Vapor jets

Momentum Transfer Systems

Reaction wheels

Control moment gyros

Fluid flywheels

Reaction spheres

To reduce the number to the most likely contenders in each of the above

groups, a qualitative evaluation of all systems was made. This was done by
itemizing advantages and disadvantages of each and making _ selection based

on this information. The advantages and disadvantages considered for each of

the systems are given in the following paragraphs.

1) Mass expulsion systems.

a) Cold gas _ets.

Good history of performance on other vehicle such as
Mariner.

Most developed and proved system of those considered.

Components for the system are readily available.

Thrust range covers Voyager requirements.

High reliability since it is a simple system.
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TABLE 35

GYRO COMPARISON: ESG'S VERSUS INTEGRATING GYROS

Three GG1 59 Gyros and Two ESG's and

Parameter Associated Electronics Associated Electronics

Weight (pounds)

Size (in. 3)

Power* (watts)

Reliability (percent failed

per 1000 hours)

Development status

10

Z45

Warm up - 90

Running - 31

12.70**

Off -the - shelf

Equipment

21

340

4

8 3 •0 _*

The unit is in the

study and develop-

ment stage for space

vehicle application

*Total mission power requirements are:

3 GGI 50 gyros - 122 kw-hr.

2 ESG's - 448 kw-hr.

**These failure rates include no redundancy.

TABLE 36

DCU COMPARISON: ESG VERSUS INTEGRATING GYROS

Parameter

Size (in. 3)

Weight (pounds)

Power (watts)

Reliability (percent

failed per 1000 hours)

Development status

GG159 Gyros Including

Gyro Calibration,

Derive 0, _][0[ , i/[01

Transform[aij] to body

coordinates

45

1.0

2.0

1. 965*

Off-the- shelf equipment

ESG Including

ESG Read Out Logic,

Compute [Sij]

Compute [bij ]

Compute att. error about

body axes; [Aij]

Derive pitch, yaw, roll rates

107

4

9 - 12

2.721.

Off-the-shelf integrated

circuits

Note: The numbers in the table are the increase in DCU requirements over

those for the analog SCS.

The DCU computational requirements for the ESG-SCS were determined from the

mathematical functions which are discussed in the following section.

$1ncludes Oanopus tracker failure rate
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Power is needed only for jet solenoids and this can be

low (100 ma at 28 volts dc typically),

Highest weight system (by a factor of two or three) of

those considered.

Approximate system weight = 7 lb + (0. 034) x (total

impulse).

Probably lowest cost system of those considered.

b) Sublimation jets

Not much actual operating history available at present.

There are systems operating in laboratory but none are

yet flight- rated.

Thrust ranges satisfactory.

Should have excellent reliability since it is the least com-

plex system considered.

Low power requirement, comparable to cold gas system.

Should weigh less than half of comparable cold gas sys-

tem due to lower tankage weight and higher specific im-

pulse.

Approximate system weight = 7 lb + (0. 013) x (total

impulse),

Cost probably somewhat higher than cold gas but should

be less than others considered.

May require additional heaters during peak demand

periods.

May present unusual pre-flight checkout problems.

c) Hypergolic bipropellant jets

Not recommended at the present time for thrust levels

below about one pound due to orifice clogging problems.

Requires tankage, plumbing, valving, etc., for both fuel

and oxidizer. Positive expulsion tanks necessary.
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Reliability somewhat lower than cold gas or sublimation

due to added complexity.

Combustion byproducts could be undesirable.

Volume and weight should be considerably lower than

cold gas and somewhat lower than sublimation when based

solely on total impulse requirements. Approximate sys-

tem weight = 11 lb + (0. 004) x (total impulse).

Nozzles would require heat transfer considerations due
to heat of combustion.

d) Monopropellant _ets.

Not recommended for extended missions due to possible

chemical instability of monopropellants such as hydrazine

and hydrogen peroxide.

May have catalyst and clogging problems, particularly
on extended missions.

Thrust range satisfactory.

Weight probably slightly more than hypergolic system.

e) Detonation jets.

Present stage of development not adequate for detailed
conside ration.

System could have the required low thrust necessary.

Other characteristics would be similar to the hypergolic

system.

f) Vapor jets.

Present state of development unsatisfactory.

Thrust range probably satisfactory. Weight comparable

to a hypergolic system. May require the addition of

heat to propellant.
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2) Momentum exchange systems

a) Reaction wheels.

Good history of performance on vehicles such as Nimbus,

OGO, OAO.

Proposed for use on OSO. Most developed and proven of

those considered. Production units presently available.

Characteristics such as torque, inertia, and power con-

sumption may be varied rather widely.

Reliability apparently very good due to reasonably low

speeds, sealed units, over-design, etc. The failure rate

estimate is 0. 1 percent per 1000 hours for a typical
Bendix unit.

b) Control moment gyros.

Less history of performance and application data avail-

able than reaction wheels. Present availability question-
able.

Weight probably slightly higher than reaction wheel.

Reliability lower than reaction wheel due primarily to

higher wheel speeds. Torquer also degrades the relia-

bility. Estimated failure rates are 10 to 20 percent per

1000 hours for ballbearing and 2 percent per 1000 hours

for gas bearing units.

Temperature control may be necessary.

Cross-coupling effects can cause problems. Compensa-

tion for these effects could delete any advantages.

Torque control power is very low, but gyro wheel power

must remain on continuously. Average power consumption

probably not much less than that for reaction wheels.

e) Fluid flywheel.

Presently in laboratory development stage.

Little application data available.
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Weight probably higher than either reaction wheels or

control moment gyros. Possible lower power consump-

tion might balance this out so that over-all vehicle weight

could be the same or less for fluid flywheel system.

Reliability should be high as the fluid is the only moving

part. Magnetic fields generated by the pump currents

could be a problem.

Flexibility of location of the fluid loop could be an advan-

tage.

d) Reaction sphere.

Presently in laboratory development stage.

b. Quantitative com_arisonof systems. From the preceding qualita-

tive comparison the following conclusions were drawn: If a mass expulsion

system is necessary, then the cold gas, the hypergolic bipropellant, and the

sublimation systems are possibilities. If a momentum exchange system is

necessary then the reaction wheels appear as the best choice.

Examination of the mission impulse requirements (appendix I) shows that

a mass expulsion system is definitely necessary. The desirability of using a

momentum exchange system in addition to the mass expulsion system must be

based on the choice of mass expulsion system and further analysis.

The possible reaction system configurations for consideration then are:

cold gas system without reaction wheels; cold gas system with reaction wheels;

hypergolic system without reaction wheels; hypergolic system with reaction

wheels; sublimation system without reaction sheels; and sublimation system

with reaction wheels.

For ta quantitative comparison of the above configurations, a weight com-

parison study was made. Table 37 summarizes the results. The data in the

table are derived and discussed in the following paragraphs.

TABLE 37

REACTION SYSTEMS WEIGHT COMPARISON

System

Cold Gas

Hypergolic

Sublimation

Without Reaction

Wheels (Ibs)

53

Z36

Z4

With Reaction

Wheels (Ibs)

48

34

38
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1) Cold gas systems

a) Cold gas _et system without reaction wheels. The follow-

ing assumptions were used (see appendix I for more details): i2-jet system;

8.3-foot radius moment arms for jets; Nitrogen gas used (Isp of 60 seconds);

requires total impulse of 1330 pound- seconds (safety factor of two included)

(see appendix I for derivation); 3/16-inch O.D. stainless tubing for both high

and low pressure; 3000 psia gas storage; spherical titanium storage tanks; jet

thrust of 0.03 pound per jet; and jet minimum impulse time of 0.01 second,

Characterisitcs of the cold gas jet system evolved from the above assump-

tions are summarized in table 38 below.

TABLE 38

COLD-GAS JET SYSTEM CHARACTERISTICS

Item Number

Regulator I

Plumbing

Valve, solenoid, 12

land nozzle

Charge valve 2

Transducer 2

Check valve 2

Nitrogen

Tank 2

Totals

Item System

Weight (lb) Weight (lb)

O. 50 O. 50

3. O0 3. O0

0.25 3. 00

0. O9

0.25

0.25

22

11.6

0.18

0.50

0. 50

22

23. Z0

52.9

Item

Volume (in 3)

15

2.75

2,5

2,5

2,5

• 2580

1360

Sy stern
Volume (in3)

15

12

33

2720

2795
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b) Cold _as )et system with reaction wheels. The same
assumptions hold except that total impulse now required is 818 pound-seconds

(safety factor of Z included). The cold gas jet system under these assumptions
is summarized below in table 39.

TABLE 39

CHARACTERISTICS OF COLD-GAS JET SYSTEM WITH

REACTION WHEELS

Item Sy stem Item Sy stem

Item Number Weight (Ib) Weight (Ib) Volume (inS) Volume (inS)

Fixed Items

Nitrogen

Tank

Total s

Z

13.6

7.2

7.7

13.6

14.4

28.0

1600

843

75

1646

1761

The reaction wheels for this system are based on the following assumptions:

wheels used in pitch and yaw only since the savings possible in the roll are
small; wheels have a momentum capability of 1.2 ft-lb-secl; wheels have a

torque capability of 0. 1 ft-lb; and Bendix reaction wheels used as a basis for

size, weight, and power estimates.

Based on the above assumptions, the required reaction wheel would weigh

about eight pounds and consume about 4. 5 watts peak power. The complete

reaction wheel system weight then is summarized in table 40.

c) Cold gas jet system comparison. The systems withand

without reaction wheels weigh: .

Cold Gas Jet System

without Reaction Wheels

Cold Gas Jet System
with Reaction Wheels

Jet system weight = 53 lbs Jet system weight -- Z8 lbs

Reaction wheel system = ZO ibs

Total 48 lbs

IDerlved in the reaction-wheel analysis which follows.
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TABLE 40

COMPLETE REACTION WHEEL SYSTEM WEIGHT

Item System

Item Number Weight (lb) Weight (lb)

Wheel

Electronic s (Wheel

drives, unloading)

Fitting s

Power Source I

Totals

8

0.5

0.5

1

16

1

1

Z.

ZO

IAssumes that approximately 0.25 pound of solar panels, etc., is added to

the vehicle per watt required.

It is observed that using the reaction wheels results in no significant weight

savings. Coupling this with the lower reliability and additional complexity

entailed when adding reaction wheels, the decision is for a cold gas jet system

without reaction wheels.

Z) Reaction wheel analysis. The sizing of the reaction wheel

torque and momentum capability is shown below:

a) _. As shown by table I-7 (appendix H), the major con-

tributors to cyclic torques are the gravity gradient torque and the payload

indexing torque. The maximum value of each torque is found below:

I Gravity gradient peak cyclic torque.

the vehicle Y axis and is found from

3g Rp2

Tyma x = R3 (I z-I x ) By

This occurs about

where

3gRp 2
10-7 ) rad2/sec2------- = 3c0o = 3(3,6x

R3

Iz-I x = 479slug-ft 2
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and

1

By = _" [(cos_sinE cosE) 2 + (sin_,cosE)2] 1/2

By -- maximum cyclical torque component

letting

= n/8 and E = _z/4 ,

By = 0.269

then

Tyma x = 3 (3.6 x 10-7 ) (479) (0.269) = 1.4 x 10-4 ft.-lb.

2-- Payload indexin G peak cyclic torque. Referring to the

payload indexing section of appendix H, the peak disturbing torque from pay-

load indexing is 3.52 x 10 -3 ft-lb or over 25 times the peak gravity gradient

torque. The payload indexing torque is therefore used for sizing the reaction
wheels.

A reasonable value of 0.1 ft-lb for torque is assumed for the wheel torque

capability. This places the wheel within the realm of commerically available

wheels as far as torque is concerned, and at a level of one-fifth of the jet
torque couple which is 0. 5 ft-lb.

b) Momentum. The cyclic momentum requirements for Voyager

occur principally from the gravity gradient and payload indexing effects. For

either case, the momentum for a half cycle must be absorbed by the reaction

wheels, and is found from the general relationship: Momentum absorbed per

half-cycle = (average torque per half-cycle) x (time per half-cycle).

i Gravity gradients. For gravity gradients, there are two
nulls per Martian orbit, so the time for a half-cycle is one quarter of the

Martian orbital period, or
26,600

= 6625 seconds. The average torque per

half cycle is:

Tavg = max. torque for
a circular orbit

torque for elliptical orbit
X

torque for circular orbit
x average torque

maximum torque

= (1.4xlO -4) x (0.223) x (0.628) = 1.96 x lO'5ft-lb
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The momentum absorbed per half-cycle is then Tavg x time = (I. 96 x I0 "5)

x (6.63 x 103 ) = 0. 130 ft-lb-sec.

g Payload Indexing. For payload indexing, the torque is

constant at 3.52 x'_0 -3 ft-lb and a half cycle requires 263 seconds. The momen-

tum absorbed per half-cycle is then:

T x t = (3.52x 10 -3 ) x (263)

= O.925 ft-lb-sec

The momentum absorbed from payload indexing is seen to exceed the

momentum absorbed from gravity gradient by a factor of 7.1. The payload

indexing momentum is therefore used to size the reaction wheel.

A value of I. 2 ft-lb-sec is assumed for the wheel momentum capabilities.

This again is within the realm of commercially available wheels and provides

a factor of safety of I.3.

3) Hypersolic systems. For the hypergolic jet system without

reaction wheels, the following assumptions were made: I2-jet system; 8.3-

foot radius moment arm for jets; total impulse of 56, 280 pound-second is re-

quired (safety factor of 2 included) (derived in the hypergolic system weight

analysis which follows); jet thrust of 1.0 pound per jet; jet minimum impulse

time of 0.01 second; and specific impulse of 250 seconds.

The hypergolic jet system evolved from the above assumptions is summa-

rized below.

Item Weight (Ib)

Fixed items (plumbing valves,

solenoids, jets, etc. )

II

Tanks, fuel, and oxidizer 225

Total . 236

This high weight is primarily due to the high propellant requirements.

This, in turn, is due to the high thrust level (1.0 lb) required for reliable

operation of a hypergolic engine. Lower thrust levels could lead to orifice

clogging problems and should not be considered.
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a) Hypergolic jet system with reaction wheels. The same

assumptions hold except, total impulse now required is 818 pound-seconds

(safety factor of 2.0 included) (see mission impulse requirements section for

derivation). The hypergolic jet system under these assumptions is summa-
rized below.

Item

Fixed items (plumbing,

valves, solenoids, jets

etc. )

Weight (lb)

11

Tanks, fuel and oxidizer 3.3

Total 14.3

The reaction wheels for this system would be identical to those previously

assumed for the cold jet system. (Reaction wheel system total weight is 20
pounds. )

b) Hypergolic jet system comparison. The systems with and
without reaction wheels have the following weights:

Hypergolic Jet System
without Reaction Wheels

Hypergolic Jet System
with Reaction Wheels

Jet system weight = 236 lb. Jet system weight = 14.3 lb.

Reaction wheel = Z0 lb.

system

Total 34.3 lb.

On the basis of weight alone, the hypergolic jet system with reaction wheels

is by far superior to the hypergolic system without reaction wheels. However,

the additional complexity and degraded reliability of the over-aU system must
be taken into account.

4) Hypergolic system weight analysis. To obtain the hypergolic

system weight it is necessary to first obtain the total impulse required for the

mission. In general, this will differ from that of the cold gas jet system in the

limit cycle regime if different thrust jets are used, since the limit cycle rate

and period will change. If the minimum jet on-time and jet torque arms are

the same for both systems, then the limit cycle impulse required will vary as

the square of the thrust ratios, hypergolic to cold gas.
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For this analysis it is assumed that the hypergolic jet thrust level is one

pound and the minimum on-time is 0. 01 second. These assumptions are con-

sidered to be optimum for hypergolics at the present time. Lower thrusts

could possibly present jet orifice clogging problems while shorter on-times

require more complex drive circuits and also result in reductions in specific

impulse. Further analysis of these areas was considered beyond the scope of

this study.

For the above assumptions the impulse required for limit cycling becomes

fl ....... = 25 (33.3t 2

Lmpulse {cold gasj _ cold gas jet thrust

= 27, 500 pound-seconds

and the total impulse required (including maneuvers and disturbance st becomes

27, 500 + 630 = 28, 130 Ib-sec. Using a safety factor of 2, the total required

impulse is 56, 270 ib-sec.

The approximate system weight for a hypergolic system with an Isp of P50

seconds is 11 lb + (0. 004 x impulse requiredt. Therefore the system weight

is approximately 236 pounds.

Figure 11 9 indicates the trend in system weight as a function of jet thrust

and minimum jet on-time for this system. Reduction in jet thrust and/or the

minimum jet on-time will reduce the system weight.

5) Sublimation systems.

at Sublimation jet system without reaction wheels. The

following assumptions were made: 12-jet system; 8. 3-foot radius moment

arm for jets; total impulse of 1330 lb-sec required (safety factor of two included};

jet thrust of 0.03 pound per jet; jet minimum on time of 0.01 second; and

specific impulse of 85 seconds. The sublimation jet system weight based on

the above assumptions is summarized below.

Item Weight (lb)

Fixed items (plumbing,

valves, solenoids, jets,

etc. )

Tank and propellant 17___I

Total 24 pounds

1Derived from manufacturer's data on a laboratory-tested sublimation system. Tank plus propellant weight is approximately
equal to 0.013 × (required impulse).
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b) Sublimation jet system with reaction wheels. The same

assumptions hold except that total impulse now required is 818 lb-sec (safety

factor of two included}. The sublimation jet system weight under these assump-

tions is summarized below.

Item Weight (lb)

Fixed items (plumbing, 7

valves, solenoids, jets,

etc. )

Tank and propellant 10.7

Total 17.7 pounds

The reaction wheels for this system would be identical to those previously

assumed for the cold gas jet system. (Reaction wheel system total weight is

20 pounds. )

c) Sublimation jet system comparison. The systems with

and without reaction wheels have the following weight s :

Sublimation Jet System Sublimation Jet Sy stem

without Reaction Wheels with Reaction Wheels

Jet system weight = 24 lb. Jet system weight = 18 lb.

Reaction Wheel = 20 lb.

system

Total 38 lb.

The addition of reaction wheels with a sublimation system causes a weight

penalty and was therefore not considered further.

6) Summary, For the six reaction systems described, the

preceding analysis has narrowed down the choice to one of the following three:

Cold gas systems without reaction wheels (53 pounds}

Hypergolic system with reaction wheels (34 pounds}

Sublimation system without reaction wheels (24 pounds}

Additional points for future consideration are presented below and should be

taken into account before a final decision is made,
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a) Cold gas jet system. It is important to observe that future

weight shaving on this system appears to be slight. Some improvement can be

achieved by changing to other gases, but the gain is small.

The simplicity, reliability, availability, and operational history are firm
selling points.

The ease of testing the entire system at pre-launch is an important factor
for consideration.

b) Hypergolic jet system with reaction wheels. Important con-

siderations are a weight saving of 19 pounds over the cold gas jet system can

be achieved with this system (34 pounds instead of 53 pounds). However, the

reduced reliability or probability of mission success due to added complexity

of this dual system would have to be considered. Testing a hypergolic system

presents many problems not present with a cold gas system.

c) Sublimation _et system. Note that lowest weight, simplicity
and high reliability are this systems prime attractive points.

Lack of operational data is a serious drawback at present, but this may

well be corrected by the time the Voyager system must be firm.

System operating pressure must be considered. Apresent manufacturer

specifies a system propellant pressure of about one-half atmosphere. This

pressure would cause serious test and prelaunch irritation, if not problems,

since the system would require vacuum chambers for observation of propellant
flow.

7) Summary. In view of the weight tradeoffs and all other perti-

nent factors, the decision is to presently consider a cold gas reaction jet sys-
tem for Voyager.

3. Onboard versus _round switchin$ for failure correction. At this point

in the Voyager program it does not appear possible to show a preference for

onboard or ground-based failure correction since the decision is so dependent

on the over-all vehicle and its subsystem configuration. A few considerations

involved in the decision are presented to briefly review what is involved.

The considerations involved in onboard versus ground-based switching for

failure correction tie in very closely with possible telemetry configurations.

If many signals are to be telemetered to Earth, then it may be possible to con-

duct performance and failure analyses on Earth and send switching commands

back to the vehicle through the telemetry link. This concept would require

carrying standby components, such as gyros, power supplies, rebalance elec-
tronics, etc., and switching them in by ground command in the event of failures.
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The other alternative (if standby redundancy is necessary} is to carry standby

components and monitor performance either within the SCS itself by monitor

circuits or by having the DCU monitor performance. If the SCS does its own

monitoring, then it could perform its own switching functions, if the DCU does

the monitoring, then it could command switching. The Earth-based system has

advantages of weight saving since the monitoring and analysis are not done on

board. The weight of telemetry may very well be the same sihce it may be

necessary to telemeter failure information to Earth regardless of whether

monitoring and switching are done onboard or not. The disadvantage of the

Earth-based system is the amount of telemetry necessary, the communication

time delays, and the fact that telemetry reliability would enter into the series

chain of SCS success probability.

The best system might be to have the DCU monitor and command on-board

switching. Failure information could then be telemetered but telemetry would

not be a series element in SCS success probability. The disadvantage is the

additional requirements on DCU capabilities. Time sharing might help here

since continuous monitoring probably is not necessary.

4. Sun sensors. Two separate coarse acquisition Sun sensor mechaniza-

tions were studied to provide acquisition without gimbals or complicated search

maneuvers and accurate positioning of the vehicle along the sun line. This was

done since the requirements necessitating large acquisition field of view, high

accuracy about null, and long operating time in a hostile space environment are

conflicting requirements.

The acquisition sun sensor described represents the simplest practical

configuration resulting in acquisition signals over 4= steradians and requires

very little tradeoff study due to the absence of stringent accuracy requirements.

The limit cycle sun sensor, however, was the object of more thorough

analysis. In anticipation of use of the sun sensor output by the DCU, several

digital mechanizations were investigated. Since a digital output is not required,

the digital study is only briefly discussed here. Three types of digital mechani-

zation were studied in an effort to determine complexity:

a. Use of a pulse code modulation detector arrangement in which the

output is in binary form.

b. Use of a linear detector mosaic in which the output is analog but

at discrete levels rather than continuous, and which would require conversion

to binary form.

c. Proportional analog output requiring complete analog-to-digital

conve r sion.
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Examination showed that all three mechanizations require extremely com-

plex detector configurations or signal processing electronics compared to that

required for an analog output.

Two types of analog sensors were studied: One uses a detector bridge and

shadow vane configuration similar to that of the sterilized sun sensor proposed

fo_ the Voyager lander. The other uses only a single detector, an internally

reflecting prism, and vibrating-reed modulator to form proportional error

signals. Each of these two types has distinct advantages and disadvantages.

The detector bridge configuration is simpler by about a factor of two than the

single detector configuration. However, the single detector is considerably

more accurate since it is not dependent on critical bridge balancing parameters,

notably slight variations in detector drift, and cover glass transmission with

time and solar exposure. Since accuracy is a critical guidance requirement,

the single detector configuration is recommended. However, as detector state-

of-the-art continues to advance, a bridge configuration may become available

that will maintain sufficient balance over the time and environment of Voyager.

Should this come about, the bridge configuration would be adopted so as to

realize a reduced failure rate.

The proposed sun sensor is a part of the extremely accurate Sun tracker to be

used on the Advanced Orbiting Solar Observatory. The unit will have been fully

developed, qualified, and flown prior to its use in the Voyager program. Ulti-

mate accuracy of the device is much better than required by Voyager, being

limited only by the alignment of the sensor to a known vehicle reference.

5. Canopus star tracker. The useful field of view of the Canopus tracker

must be approximately ± 18 degrees in the pitch plane to provide for apparent

Canopus motion since Canopus is not a pole star, and in the roll plane must be

sufficiently large to satisfy SCS requirements.

The relatively large pitch field of view can be achieved by either of two

following methods: gimballing the optical axis of a small instantaneous field

of view; or providing an instantaneous field of view of ± 18 degrees in pitch.

Operation without the use of gimbals is desired to maximize reliability.

To achieve the large angular field requires the use of a large detector. The

type and size of detector is a complicated function of detector sensitivity,

optical parameters, available star light, and scanning techniques. The most

likely and currently most popular method to achieve large field and reliable

scanning is to utilize image dissector photomultiplier tubes which feature elec-

tronic scanning. These tubes have a large sensitive area compared to other

types of available detectors which would also require some type of mechanical

scanning. The angular field of the tube would be 36 degrees corresponding to

a maximum tube sensitive area dimension of 0.6 inch. The current capability

of determining star position on the tube face is about ± 0. 002 inch resulting in
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an angular resolution and accuracy of about +8 minutes of arc. Assuming that

future developments r_sult in improving the capability of determining star

position to _- 0. 001 inch, the angular uncertainty is still about ± 4 minutes of

arc. Further, assuming larger tubes become available with twice the active

surface, the angular accuracy could be at best only ±2 arc minutes. This is

in agreement with accuracy capabilities predicted by at least one other star

tracker supplier for a nongimbaled image dissector tracker with the required

field of view. However this accuracy does not satisfy the stringent guidance

and navigation requirements for the Voyager mission. Consequently nongimbaled

trackers were not further considered as being capable of satisfying both SCS

,and guidance requirements.

A star tracker utilizing a gimbaled mirror to provide sufficient field to

track the apparent Canopus motion in pitch can be mechanized with accuracies

approaching 10 seconds of arc. The major problem is satisfying the DCU re-

quirement for a binary output and the SCS requirement for an analog error sig-

nal output. This problem was solved by feeding the components of the scan-

generated error signal into both digital and analog signal processing electronics.

The digital output required by the DCU prompted the use of a digital rather

than analog gimbal loop. A completely digital mechanization does away with

the need for any complicated analog-to-digital or digital-to-analog conversion
and further benefits are obtained.

A pulsed gimbal readout can be used and is achieved without additional

gears or bearings. A collimated light beam is directed through a coded wheel

rigidly attached to the mirror gimbal shaft and strikes a solid-state photo

detector. A pulse amplifier consisting of only a few transistors and associated

components form the remainder of the readout, The failure rates of all com-

ponents are extremely low with the light source being the least likely to fail.

The particular bulb selected has been estimated by the National Bureau of

Standards to have a lifetime of one billion years. Prepackaged pulse readouts

were discarded because they are generally heavier and less reliable than the

method employed.

The digital mechanization lends itself readily to use as a bang-bang servo

system with the stepper motor being energized only periodically to make correc-

tions and then making the corrections by a fixed number of steps without the

usual "hunting" in _znalog servo systems. Finally, the electronics available

for use in digital mechanizations are more reliable than those available for

analog mechanizations.
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6. 5 Reliability

The approach selected in this analysis is to present system success prob-

abilities for a number of variations in mission and system configuration. These

results are presented in table 41. The over-all SCS functional reliability

diagram is shown in figure iZ0. Failure rate data are shown in tables 42 and

43. A discussion of areas for future consideration for reliability improvement

is given in the summary at the end of this section.

I. Mission success probabilities. A summary of mission success prob-

abilities for various mission and system configurations is shown in table 41.

The table is followed by paragraphs discussing the data for each entry in the

table.

2. System/mission No. i. The ground rules for this system/mission are

as follows: no redundancy; and all gyros, electro-optical sensors, circuits,

etc., must operate for the full mission for success. The reliability diagram

for this system/mission is shown in figure 111.

For future analyses, a further breakdown of table 41 is shown below, with

and without the electro-optical (E-O) sensors (Sun sensors and Canopus star

tracker). The success probabilities for these cases are presented in table 4Z.

TABLE 4Z

SUCCESS PROBABILITIES

Circuit

Technique

Conventional

high reliability

c ir c uitr y

With Electro-

Optical Sensors

o.68z

Probability of

reaching orbit

around Mar s

Probability of

completing the

entire mission

Inte g rated

circuitry

Conventional

high reliability

circuitry

O. 675

0. 396

Without Electro-

Optical Sensors

0. 890

0.871

o. 589

Inte grated

circuitry 0. 399 o. 586
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3. System/mission no. 2. The ground rules for this system/mission are
as follows:

No SCS redundancy.

No gyro evaluation required in orbit. It is assumed that there will be no

requirement for the vehicle to maneuver once in orbit around Mars and there-

fore there is no requirement for the DCU to store gyro drift information. The

small drift of the gyros during occultationwill merely cause the vehicle to be

slightly off reference after occultation. With the gyros available as rate sources,

realignment to the Sun and Canopus following occultation should be completely
satisfactory.

The pitch and yaw gyros may fail to zero output in orbit without causing

mission faihre. T_is assumption is based upon the fact that these gyros are

used only for attitude hold during Sun occultation in orbit. The periods of
occultation should not exceed approximately three hours, and, even if some

drift occurs, the sun sensors should be able to reacquire the Sun line within

a reasonable time. Since the rate damping during reacquire would be from

pseudo-rate only, the acquisition will not be as optimum as with gyros, but
should be adequate.

The reliability diagram for this system/mission is shown in figure 122.

For future analysis, a further breakdown of table 41 is shown below with

and without the electro-optical sensors. The success probabilities for these

cases are presented in table 43.

TABLE 43

Probability of

reaching orbit
around Mar s

Probability of

completing the
entire mission

OTHER SUCCESS PROBABILITIES

Circuit

Technique

With Electro-

Optical Sensors

Conventional

high reliability

circuitry

Inte g rated

circuitry

Conventional

high reliability

circuitry

0.682

O. 675

Without Electro-

Optical Sensors

0.890

0.871

0.493 0.734

Integrated

circuitry 0. 487 0. 716
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4. System/mission no. 3 -- The ground rules for this system/mission

are as follows:

Redundant electronics, self-monitoring and switching. Specifically

the items which are paralleled with a passive standby are:

Control electronics package power supply

On-off level switch and pseudo rate in each axis

Gyros in each axis

Gyros temperature control amplifiers in each axis

No gyro evaluation required in orbit. Refer to system/mission no. 2

for discussion.

Pitch and yaw gyros may fail to zero output in orbit without causing

mission failure. Refer to system/mission no. 2 for discussion.

The reliability diagram for this system/mission is shown in figure IZ3.

For future analysis, a further breakdown of table 41 is shown below with and

without the electro-optical sensors. The success probabilities for these cases

are presented in table 44.

TABLE 44

SUCCESS PROBABILITIES (ELECTRO/OPTICAL)

" Circuit

C onve ntional

| Probability of high reliability

reaching orbit Circuitry

around Mars .....................

Integrated

Circuitry

Conventional

Probability of high reliability

completing the Circuitry

entire mission .....................

, Integrated

Circuitry

With Electro-

Optical Sensors

0.748

0.760

Without Electro-

Optical Sensors

0.977

0.98Z

0.6Z4

0.635

0.9Z9

0.93Z
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5. System/mission no. 4. -- The ground rules for this system/mission

are as follows:

Redundant electronics, refer to system/mission no. 3.

No gyro evaluation required in orbit, refer to system/mission no. 2.

Pitch and yaw gyros may fail to zero output in orbit without causing mis-

sion failure, refer to system/mission no. g.

Assume that two Canopus star trackers are employed, one a relatively

simple analog device (withno gimbaling)for SCS use, and the other a more

complex star tracker {as now used in the detailed system of this document for

both guidance and control) would be used for guidance only. Since the guidance

system requires the Canopus tracker for only a few hours during the entire

mission for navigation sighting, it would be available at all other times as a

passive backup unit to the SCS Canopus tracker. The SCS Canopus tracker

would be used throughout the entire mission under these ground rules. This

simplified SCS Canopus tracker is discussed briefly below.

The Canopus star tracker described in this document as a component of

the SCS is a dual-purpose device which was designed to satisfy both guidance

and control requirements. Consequently, it is more complex than a device

designed to satisfy only the control requirements. A simpler, smaller, less

accurate Canopus tracker could be designed which would satisfy SCS require-

ments and enhance reliability. The more accurate and complex Canopus

tracker would be retained for guidance use and could he used as the SCS

tracker backup.

The simplified SCS Canopus tracker would utilize an image dissector

photomultiplier tube as a detector and short focal length optics to provide a

large total field of view so that gimbals are not required. A large circular

scanning aperture would be driven in a star-shaped scan pattern across the

tube face to produce a pulse train output with the phas e and pulse width contain-

ing the Canopus image information. This output would be filtered _nd syn-

chronously demodulated to provide adc roll error signal to the SCS. A

presence signal would also be available indicating that Canopus is within the

tube sensitive area.

The tube size and optics focal length would result in a total field of view

of ± 18 degrees, sufficient to accommodate the apparent Canopus motion

throughout the mission and small vehicle motions in both pitch and roll. The

accuracy of determining star position on the tube face near null would be about

:k 0. 002 inch resulting in an angular accuracy near null of about ± 0.1 degree.

The accuracy away from null would degrade to about :k 0.5 degree due to de-

creasing resolution of tube and optics near the edge of the field of view. Since

the vehicle will be operating near the roll null position in limit cycle operation,

roll accuracy should remain better than ± 0.2 degree during the mission.
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SCS simplified Canopus Tracker characteristics:

Size 100 inch 3

Weight 3. 5 pounds

Power 5 watts

Reliability = 0. 869 percent/i000 hours for high-reliability

components

The reliability diagram for system/mission no. 4 is essentially identical

to that of system/mission no. 3 except that the Canopus star tracker area

would differ as discussed above. Since system no. 3 and no. 4 are identical

except for star trackers, the probabilities of success without electro-optical

sensors are the same and no breakdown in shown here.

6. Reliability and redundancy analysis techniques. The failure rates used

in making SCS reliability analyses (tables 45 and 46) are those presently in use

by Honeywell for the Apollo command module SCS project. These failure rates

have been accepted by North American Aviation's Space and Information Systems

Division and NASA. (Some modifications to these failure rates are presently

being negotiated with North American Aviation and NASA in order to update

them. )

The failure rate assigned to the proposed analog microelectronics in-

tegrated circuits (0.05 percent/1000 hours/circuit) was based on the current

reliability growth of the semiconductor industry. It is felt that this projected

failure rate (0.05 percent/1000 hours/circuit) is conservative and will be

achievable by 1967 because of the following:

Texas Instruments has projected a failure rate of 0.01 percent/

I000 hours in 1963 for digital microelectronics circuits. (1962 Texas Instru-

ments Inc. Reliability Report - Ist quarter. )

Fairchild Semiconductor has demonstrated a failure rate of 0. 028

percent/1000 hours at the 60 percent confidence level for their micrologic

devices at the present time. (Microlo$ic Reliability Report - March 1963 -

Fairchild Semiconductor. ) Integrated circuits are relatively new and the reli-

ability growth will probably be more rapid th_n that of the conventional parts

because of increased awareness of and desirefor high reliabilities, which

was not present in the development of many of today's conventional components.

Active or power-on redundancy techniques were used only in the reaction

jet subsystem. The pressure tank was made redundant {by use of two tanks)

to ensure a supply of gas in the event a micrometeorite penetrated one tank.

The jets were considered to be actively redundant due to the torque coupling

arrangement that exists in the jets.
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TABLE 45

SCS SUBASSEMBLy RELIABILITY*

Failure Rate with Standard Failure Rate with Integrated

Item High Reliability Techniques Circuitry Techniques

Gyro {GGI59)

Reaction system**

Canopus star tracker

Coarse acquisition sun sensor

Limit cycle sun sensor

Power supply, gyro electronics package

Power supply, control electronics package

Gyro temperature control amplifier

Mode command logic (cruise phase}

Mode command logic (maneuvering phase}

Preamplifier

Demodulator -amplifier

Pulse rebalance circuitry

DC to pulse-width converter

DC precision current supply

Torquer switch bridge

ON-OFF level switch and pseudo rate

Active lead-lag network

Jet solenoid driver**

Failure mo_ifor

Z.0000

0.9997

1.5670

0.4166

0.7518

0.5754

0.5070

0.4974

0.Z7Z0

0.4280

0.0506

0.115Z

0.735Z

0.06Z6

0.0740

0.0316

0.2460

0.0122

0.9999

0.1286

Z.0000

0.9997

1.5670

0.4166

0.7518

0.5958

0.4362

0.1624

0.2000

0.0500

0.IOZ4

0.10Z4

0.6640

0.0500

0.0500

0.0500

0.400Z

0.0500

0.9999

0.II00

*Expressed as failure rate in percent per thousand hours.

**These items required a separate analysis due to inherent redundancy; therefore, only total mission

reliability is shown.

TABLE 46

SCS INDIVIDUAL COMPONENT RELIABILITY*

Item Failure Rate

Analog microcircuitry block 0.05

Resistor, metal film 0.006

Transistor, medium-signal 0.007

Diodes, general purpose 0.00ZZ

Diodes, zener 0.0Z

Capacitors 0,005Z

Coils 0.01

Transformers, signal 0.05

Transformers, power 0.10

Temperature sensor 0.33

Gyro heater 0.07

Gyro (MIG, gas bearing) 2.00

Tanks, pressure 0.013

Valve, check 0.50

Regulator, pressure 0.001

Jet solenoid and valve 0.301

h L

* Expressed as failure rates in percent per I000 hours.
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Standby or power-off redundancy techniques were used in place of active

redundancy techniques in the rest of the system where a need for redundancy

was indicated Or desirable because of increased reliability over active tech-

niques and, in some cases, ease of design.

A second Canopus tracker which is not gimballed, but rather has a large

field-of-view, may be used as an SCS roll reference. The elimination of

gimbals would increase the trackers's reliability, and hence overall SCS re-

liability. The first {gimballed) Canopus tracker would then only be required

for navigation sightings, and could serve as a back-up to the fixed-gimbal

SCS Canopus tracker to further increase reliability.

Summar 7

It is obvious that for a mission of this duration and the pyramided com-

plexity of ground equipment, launch equipment, boosters, vehicle subsystems,

DSIF, etc., that reliability of each subsystem may well be the overriding

design criterion. For these reasons, the approach of presenting mission

system variations to show reliability improvement was selected. A reasonable

amount of data has been presented to serve as a present design base and to

show trends for future improvement. Other possibilities, not detailed here

but subject for consideration, are:

Consider digital computer unit monitoring and switch-in of standby

components in case of failures.

Consider telemetry of performance and failure data to Earth for

analysis and switch-in of standby components by DSIF command. This was not

explored in this study since telemetry considerations were unknown.

Consider mission phases where degraded accuracy or even sensor

shutdown could be tolerated and analyze the system design accordingly.

Consider use of the auxiliary star tracker of the guidance system as

the attitude reference in roll during Canopus occultation while in orbit about

Mars rather than the roll gyro. This approach could discard the roll gyro

completely in orbit or use the auxiliary star tracker as a backup in case of

gyro failure.

This approach involves considerations of the geometry of the star

used by the auxiliary star tracker and the complexity of resolving the various

coordinate systems involved to determine if an over-all reliability gain could
be achieved.

It may be desirable to hold a particular plane of the spacecraft in

the spacecraft-ecliptic axis plane throughout the mission to simplify com-

munication antenna pointing actuators. If this is the case and if somewhat
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lower accuracy than present can be accepted, a simplified SCS Canopus

tracker as described in system/mission no. 4 could be considered which

would have a wide enough field-of-view to accommodate the apparent motion

of Canopus while this orientation is maintained. This approach would enhance

both SCS and communications system reliabilities if the attainable accuracies

are acceptable.
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