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ON THE ESTABLISHMENT OF DENSITY PROFILE FOR THE FLOW
OF A TWO-FLUID SINGLE PHASE GAS MIXTURE
by Timothy W. Kao

Abstract . The establishment of density profile for a two-fluid single phase gas mixture
under a body force from a uniformly mixed upstream condition is analysed. The flow is
assumed to be two-dimensional and confined between two parallel walls. An inviscid
hydrodynamical model is adopted. A perturbation procedure is used to obtain a closed
from zeroth order solution. The interplay between Fickion and baro~diffusion is brought
out. The problem bears on cavity type gaceous nuclear reactor propulsion device where

the critical concentration of the nuclear fuel in a fuel-propellant mixture is important.



(1) Introduction

For many industrial purposes it is desirable to know the establishment of stratificatification
for a two-fluid single phase fluid system in the presence of strong body forces. In particular, it is
very often necessary to know the concentration of the héavier species at various points downstream
of the inlet where the two fluids are uniformly mixed. This knowledge is needed, for example, in
gaseous nuclear propulsion device where the heavier fluid is uranium, and the critical concentration
for the onset of reaction is of paramount importance. In most problems of this nature the body force
is usally a centrifugal force, and for high flow velocities the effect of viscosity is generally negligible.
The dominant effect is one of mass diffusion.

In this paper an inviscid, incompressible, hydrodynamical theory is proposed. Strictly
speaking the thermodynamics of the system has to be considered together with the mechanical
equations in order to obtain a complete set of equations (see for example Landau and Lifshitz (1)).
However, when the change of density of the fluid mixture taken as a whole is assumed to be
proportional to the change in concentration of the heavier fluid, a purely mechanical consideration
suffices and thermodynamics can be left out of the analysis. This of course results in a major

simplification of the problem. A perturbation scheme is then used to solve the problem, which is here

considered as a two-dimensional flow in a horizontal duct with a body force in the vertical direction.

2. The Governing Equations

The equation of continuity for the total mass of fluid is

2+ 9.(p¥) =0, )

(1) L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Addison.-Wesley Publishing Co., Inc.
Reading, Mass. pp 219-227,
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where s the total density of the fluidand denotes the velocity.
We note that velocity is here understood as the total momentum per unit mass of fluid,
and the equations of motion are the Euler's equations

DV —
for =~ Yh+egs @

where ’F is the pressure, —3' is the body force and —g—t = (—% + .V )

is the substantial derivative.

If we denote c to be the mass concentration of the heavier fluid, the equation ‘of

continity for that species is

Dc i
Dt = - V-L 3)
where i is the mass flux of that species.

The mass flux is made up of three parts

g
L

- DL +(Eer « ()91, 0

where D is the diffusion coefficient or mass transfer coefficient

{T is the barodiffusion ratio

T is the thermal diffusion ratio

and | is the absolute temperature.



‘LT and ‘LF are determined by thermodynamic properties alone. For the purpose of this analysis
it can be shown (see Landau and Lifshitz (1))that ‘LY is negative.

In the present analysis we shall assume a uniform temperature distribution so that
- ek
¢ = -D T_Vc—'(,?)Vl’]J ()

where k = -k is positive. From the above equation we can conclude at once that equilibrium
p
is reached when the flux due to mass concentration is balanced by the pressure flux.

Substitution of (5) into (3) yields

DD‘S‘C=V-(D<7c)—V-(€%PV]>). ©

—
(1), (2), and (6) are five equations for the six unknowns, c, f s P,V . To complete the

system we assume
Cp=pP") = ple-cm), @

»”*
where " and C are reference quantities and B is a constant of propationality.
q propa Y

We shall now formulate our problem in terms of a duct flow. The flow is assumed
to be steady two-dimensional and bounded by two parallel walls at y = 0 and y = L as shown
in Figure |. The body force g is taken to be in the negative g— direction. If we denote
(u, v) to be the components of '\—; in the (x, y ) - directions, then for an incompressible
flow the equation of continuity is

?l+2_\_f_ = 0
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. The equations of motion are

2
(B e B) - % o
3
P(nsx + 55 = -3 -y (10)
and (6) becomes
w2 +'V-%%-= V. (DVe) —v.(ﬁ-fFEvF), an
where VET%+3%‘Q and
(p-p*) = ple-c*) . (12)
Hence U %% +V%%=v-(pvf>—(sv.(f-%?-vr). (13)

The boundary conditions are

f = constant for =0 |, 0 < 4& < L,
\P\ < for X — 0, OﬁAéS.\_J
rd

L =0 for 0SXx <=0 A}‘—_o)
A = 0 for 0 £ x <0 | }f-‘-l_.

3. Seolution of the Boundary Value Problem and Discussion

The boundary value problem is now to be solved by a perturbation procedure. In

general g may be assumed to be a function of x. Now D  and k are known functions

of p and p. Welet D = {—\(‘Pl»‘))) and ((L%LD) = {:(F"FB



We now assume a perturbation series of the form

w =u.43)+ U, + Uz + .

. -

v O 4 NV o+ AL+
+ = 0x) +op 4 P
P Potiy) + i+ Po

where terms of Ist and higher orders are << than the zeroth order quantities,

N TR O 2V I
NOPSEE TRS TREL Y. *ﬁ%afo‘ﬂ

Substitution ot the above into the equationsand collecting zeroth order terms we have

oo %
o = -B ~pg0,

it then follows that

f\ = f“'T)+ 3.(&
fa

(14)

(13)

Wk = 00 FuenB) -pA6enditend). o

Utilization of the Ist two we then have

wB = RUEEWR) +HGepH) + pH GG, w
The system consisting of the above equation together with (14) and (15) is the non-linear zeroth

order equations. Bearing in mind that 5:‘ and :f

are really diffusion coefficients we could
assume (as leading terms in an ordinary iterative procedure) 5— and 52

denote £ by ‘&| , and sz

to be constants and
by k,. Hence we have



/uo%ﬁ’; = &\<2;%' +%%"> + 3‘G&"2§‘Z »

or

1Y 2 £ 2
(%ﬁ*@?‘i)—%g& +ﬁg—_g",f§ =0 (18)

The boundary conditions are now

p = constant = f, for x=0o, 0SMZL,
\f\<oo Jor X, 0=y &L,
2é+f3‘3‘-ﬁ'/°° =0 Jor 02X <, 4 =0,

75“—-&@9—{(3 [ov 0€x <09 4(3:1_
The velocity u, is determined by the inlet velocity distribution. For any given U, at the
inlet and g equation (18) together with the above boundary can be readily solved by finite

differences. For the important case when U, is constant =A and g is constant an analytical

solution is presented.

We first cast the equations into non-dimensional form by using L as the reference
length, A the reference velocity and fpo as the reference density, we have using the

same symbols to denote now the corresponding dimensionless quantities, the following:

) s L 3 . -2 2P
(%%z +%‘%;) - g'% + 3z F ‘—',% =0 ,

2 2
where F = A /La is a Froude number, and k== —~, k, =

if we denote \{ by & and (8 _‘ﬁ{, F-z) by y
\ 1

we have



lf. Z-ﬁ_o(?f—"- +72& =0

PRt 43 72X ?3 > (19)
Po =1 , 4o x=0, 0 Y =
Ifo' < oo ) 5—0‘/ 2’._—700) [} S‘a

%51’7/%-0, }n{ 0& X <0d, 4=0,
:%%.' +Xf’."0, .j—w 0<% X L»o0, ”3‘\.
By separation of variables, the solution to the above problem is

2

Lyd) = a &%+ Zoa“ Ply) exp [- (J*+ Y% +wm* -)E], (0

where (ﬂ(a) = oxp (-2‘;_2‘_} (Sl;nnJT‘A - ‘?'—)‘_J-D- Cos )\)\'3) are eigen-functions of the Sturm-
Liouville system from separation of variables and are orthogonal with respect to the weight function

ey% in the interval (0,1). @, are the Fourier coefficients given by

N ‘l—-vj}e— ‘Pu‘aﬂg)]/[f e"”ﬁ”(;;)&g]

= wx ¥ LY e e ] /(LY + e T

and
o = ¥/ -~ &%),

Note that eqn. (19) with its associated boundary conditions automatically ensures that

1
/ fo e g) J? = 1 asitshould be. This last result has been utilized to obtain a.
From the solution it is immediately clear thatas x =+ o0, £ — (¥ é’”)/(\ -

It is also seen that the important parameter of the problem is the dimensionless number y.

For y —» O, A is constant throughout as to be expected. If y is very large then

the heavier gas sinks to the bottom. For some physically realistic value there would of course

be a balance between baro-diffusion and mass diffusion and the asymptotic form of /Da

above indicates the equilibrium distribution. It has an exponential behavior as one would expect.

The approach to the equilibrium position is also exponential. It is seen that the series converges rather

rapidly for all x>a .



Figures (2) and (3) are two typical cases (for fixed € , and ¥ )of density profiles as a function

of depth for various values of distance from the inlet. The exponential profile is reached
asymptotically for largexFig (4) shows for fixed X and ¥ the depth along the channel
where an increase in density can be expected. For given valuesof o and y, the above figures

thus yields the intormation needed for determining the critical concentration for example.

Figures (5) shows the depth of where density increase can be expected for various values of y.

It shows that as y increases, the depth of the region of increasing density decreases.

Figures (6) shows the distance downstream from the inlet as a function of y for the density profile
to reach 80 per cent of its asymptotic value. The graphs are plotted for constant values of o

It exhibits a maximum of y approximately egMAL to 5. The curves goes to zeroasy = 0.

Figure (7) is a typical plot of the density as a function of depth with natural scales.



Appendix
Solution of the boundary value problem

By separtion of variables we assume

flxy) = X6 7(3)

Equation (19) and boundary condition become

: 41X x |
5089 - wTZ - A x=o, (A1)
| Ri)| < 00, '
3 A2
%(];Y(‘a) +Y%% + A*Y =o, 42
é,%-\-)"?-o, o«~3=o,\.
From (A1) we have, on using the condition at X =0¢,
% = pe (JT@F3ZF -0%
and from (A2),we have
-
Y= e LA sx)nwta v Az coscoyd, (A3)

where L = J &%ﬁ

Substitution of (A3) into the boundary conditions following (A2) we obtain the secular equation

[w+ (B snw =0,

[ SA‘/V\.W =O



or

w=nx , Mm=0,1,2,3, ...
that is
4A2-X2 7.2 2 z —Ul

y =NJ, or An='an|'+-4-_

A particular solution, not an etgen solution, also comes from

W= - (%Y-

e S

or 4 e , ov A=0

=¥
For A=0, Y =e , and X =a, a constant

For '(z et + Jo( +4* D> X , hence X satisfies the
conditionat X=o4 . Indeed X ~» 0,as Z —»o00 . The corresponding elgen

functions are then

Yh(la) = Qa € 2‘3 r_sw\n‘n'”— "\}‘.LCO’\WJ\'Z.]

We note that the eigen functions .Y,\(a) are orthogonel with respect to the weight function
emﬁ in the interval (0,1) and form a complete basis for expansion of L, - functions.

Thus we write

Ja(-*%rn:lr -eé)x

fotxy) = aema + Za &_ﬂa [smmra —-&murg] e

At x =0, [&Y) =1, a& x —>od folxy) — a &Vt

and from the conservation of mass we have

=ﬁf ’ML .oa= ¥/0G-&%) .

i0



At x. =0, then

¥

G- g-em) = Z%Y.(g) ,

n=o

f‘ y & ¥,
ye ° )
° (‘_ (|-€'Y)>€' Y”l‘a)%

‘.' (l“ =

[ eh Ty

The series converges by virture of the Sturm-Liouville Theorem.

1
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Figure 1. - Definition sketch.
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Figure 2. - Variation of density with depth for different distances down-
stream from the inlet. Casefor y=5 a=2
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Figure 3. - Variation of density with depth for different distances down-
stream from the inlet. Casefor y =15 a=0.5.
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Figure 7. - Natural scale of typical plot of variation of density with depth.
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