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ABSTACT : 775 

Gold thin films of 1800 A to be used as lubricants were vapor 

deposited on Ni, Nt-Cr and Ni-Re substrates. Strong bonding (adhesion) 

and durability between the film and substrate were found to be essential 

when thin films are used as a lubricant. Factors which were investigated
 

included the selection of the film and substrate material. -Strong durablilty
 

of the thin film is directly related to the type and structure of the
 

interfacial region. Two methods of substrate preparation prior to vapor
 

deposition were investigated: (1) mechanically polished surface and
 

(2) electron bombarded surface. Gold was vapor deposited on the mechanically
 

polished surface at room temperature and on the thermally etched surface
 

at an elevated temperature approximatly (800°F). Strength and durability
 

of the films were investigated in sliding friction experiments with a hemie
 

spherical niobium rider sliding on the films at a velocity of 5 feet per
 

minute. -Results obtained in these friction experiments indicated that
 

the film endurance life was considerably better on the thermally etched
 

surface. This increased film durability with the thermally etched surface
 

is believed to be due to the formation of a diffusion type interface
 

between the film and the substrate. Due to the disregistry at grain
 

boundaries, a higher rate of diffusion and preferential trapping in and
 

around the grain boundaries occurs, with these regions acting as 
 n
 

"lubricant reservoirs" during the friction experiments.
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INTRODUCTION
 

Thin, soft metal films may be used as lubricants in outer space for ro­

tating or sliding components to reduce the coefficient of friction and to
 

eliminate complete seizure of the moving parts. Previous experiments
 

have shown that thin metal films deposited conventionally have very
 

limited operational lives because of the weak adhesion of film to
 

substrate (ref. 1). This weakly bonded film, when brought into sliding
 

contact with another surface, is subject to easy rupturing, and thus
 

its use as a lubricant is limited.
 

References 2 to 4 describe in great detail the deposition
 

parameters for thin-film preparation, mostly on glass substrates, with
 

special emphasis on the structural, mechanical, optical, and magnetic
 

properties of the thin film. Less consideration has been given to
 

vapor thin films vapor-deposited on metal substrates. The objective
 

of this investigation was to study these vapor-deposited thin films
 

and to obtain strong bonding (adhesion) between film and substrate.
 

Strong bonding is essential for film durability in lubrication. Two
 

factors were considered: (1) material (both film and substrate.)
 

selection and (2) preparation of the substrate material.
 

The substrate and the film materials were selected on the basis of
 

solid-solubility principles (ref. 5) and thermal~expansion coefficients.
 

If two materials are mutually soluble, diffusion and alloying take
 

place at elevated temperatures, and, if the surface is atomically clean,
 

vacuum deposition can then result .in adherent films (ref. 6).
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Adhesion of a vapor-deposited metal film to a substrate depends on
 

the type and structure of the interfacial region and the nature of the
 

bonding forces across this region (ref. 6). Hence, surface cleaning
 

was investigated in order to achieve strong bonding (adhesion) between
 

the substrate and the film.
 

The friction characteristics of vapor-deposited 18000A gold films
 

on nickel, nickel -; l0-perceht-chromiitm, and nickel'- 5-percent­

rhenium substrates were determined under ultra-high-vacuum conditions 

(10-11mm Hg). The experiments were conducted with a hemispherical rider
 

of niobium (which is slightly miscible with gold or nickel) sliding on
 

the thin film. 'The rider was run at a load of 250 grams, a speed of
 

5 feet per minute, and ambient temperature.
 

APPARATUS
 

Vacuum Vapor-Deposition Apparatus
 

The vacuum vapor-deposition apparatus in figure 1 basically consists
 

of a commercial evaporator unit with an 18-inch-diameter by 30-inch­

high bell jar. A number of modifications were incorporated inside
 

the bell jar for proper specimen mounting, inversion, electron bombard­

ment, vapor deposition, and pumpdown to lower pressures.
 
1 

The 2 inch diameter disk specimen is mounted on a stainless-steel
 

specimen holder through which a circular rod is inserted for support and
 

inversion. This inversion gives a proper positioning of the disk for
 

electron bombardment and vapor deposition.
 

The specimen-mounting assembly has a fixed adjustment; that is,
 

when the disk is positioned for electron bombardment, it is always
 

3 inches from the electron gun, and when the disk is inverted for vapor
 



deposition, it is of 3.5 inches from the filament. The water-cooled
 

electron gun is located directly above the specimen disk and is controlled
 

by a power supply. The filament is constructed from two 0.023-inch
 

molybdenum wires, 2 inches in length and interwound. The evaporating
 

material used is a 3-inch-long, 0.020-inch-diameter gold wire of
 

99.999-percent purity. This gold wire is wound around the molybdenum
 

filament, which is inserted in the filament holders. Disk specimen
 

temperature is measured by two Chromel-Alumel thermocouples placed'
 

inside the specimen holder and is then recorded by a temperature recorder.
 

Before vapor deposition, a movable shield is placed in front of the
 

substrate so that both filament and gold can be well degassed before
 

any material is deposited on the substrate.
 

In addition to the mechanical pump, the three-stage oil diffusion
 

pump and the liquid-nitrogen baffle that are part of the usaal vacuum
 

system, two additional pumping systems were introduced: (1) a stainless
 

steel dome that was placed just below the top of the bell jar and
 

functioned as a cryopump while being cooled by liquid nitrogen and
 

liquid helium, and (2) a liquid-nitrogen-cooled titanium sublimation
 

pump. The pressure was measured with a nude, hot-cathode ionization
 

gage, and the vacuum was approximately l0- millimeter of mercury.
 

Ultra-High-Vacuum Friction Apparatus
 

The vacuum-friction apparatus (fig. 2) was used for determining
 

the coefficient of friction for the coated and uncoated surfaces. 
 The
 

apparatus has two distinct chambers, the specimen chamber and the
 

bearing chamber, both of which are connected to the forepumping system.
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The forepumping system of the apparatus consists of a cold trap
 

which is made up of molecular sieves backed by liquid-nitrogen-cooled
 

containers. This system is connected to two mechanical pumps through a
 

2-inch stainless-steel vacuum valve.
 

The specimen chamber, which is connected to the mechanical pumping
 

system by a bakable high-vacuum valve, is provided with an ion pump
 

(400-liter-per-second), as well as cryopumping surfaces (liquid nitrogen
 

and liquid helium). The specimen chamber contains a cold-cathode
 

(Kreisman) vacuum gage for measuring pressures. The pressure in the
 

specimen chamber is approximately l0-11 millimeter of mercury. The
 

specimen and bearing chambers are bakable at 7000 and 4000 F, respectively.
 

The bearing chamber, which is connected to the forepumping system by
 

a 2-inch valve, is equipped with an ion pump (125-liter-per-second)j
 

which is placed in operation only after the mechanical pumping system
 

has reduced the chamber pressure to about l0-0 millimeter of mercury.
 

The bearing chamber also contains a liquid-nitrogen-cooled titanium
 

sublimation pump. -The combination of pumps is used-to pump the bearing
 

-10
 
chamber to about 10 millimeter of mercury in preparation for an
 

experiment.
 
1
 

The rotating shaft, upon which the 21 -inch .disk specimen is mounted,
 

is supported on bearings in the bearing chamber. The shaft support
 

bearings have a large clearance and are mounted in a cartridge so
 

that the shaft expansion takes place into the test chamber and the possi­

bility of the magnet striking the diaphragm is eliminated. Since loading
 

was applied by deadweights, the expansion did not change the load on the
 

specimens. The bearing cartridges are water cooled to prevent any
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damage to the bearings during the bakeout cycle.
 

The rotating shaft projects through the rear wall of the test chamber
 

first and then through a molecular flow seal (fig. 2). On the bearing­

chamber end of the shaft is mounted a 20-pole magnet, which is separated
 

from a similar magnet, outside the vacuum chamber, by a 0.030-inch
 

diaphragm (0.160-in. air gap). The drive magnet, outside the chamber,
 

is powered by a hydraulic motor with a variable speed capability of
 

4000 rpm (sliding velocity at the friction specimens, 2000 ft/min).
 

Because-of instabilities in the drive motor at low speeds ( 10, 20,
 

and 100 rpm), these speeds were obtained by utilizing a speed reducer
 

with a ratio of 10.
 

The disk specimen is'mounted on the end of the horizontal shaft in
 

the test chamber. Against the disk, a 3/16-inch hemispherical rider
 

specimen is loaded. The rider is held in place by a rigid arm, which
 

projects through a port in the side of the vacuum chamber. The seal
 

is made at the wall by utilizing a bellows connection between the chamber
 

wall and the rigid gym. A 'removable,gimbal.assehnbly, which .is-used';to
 

load the rider against the disk surface and to monitor the frictional
 

force through a strain-gage assembly, is fastened to the rigid arm
 

outside the vacuum chamber.
 

PROCEDURE
 

Specimen Preparation'and Mechanical Polishing of Surfaces
 

The nickel disks used in this investigation were prepared from
 

electrolytic nickel. Small nickel slugs were placed into a zirconium
 

oxide crucible and the crucible was placed in an induction vacuum
 

furnace which was then evacuated. After evacuation, the furnace was filled
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with argon and the metal was melted. Once molten, the liquid nickel was
 

poured into a copper mold and cooled to room temperature. The nickel-alloy
 

disks used in this investigation were prepared in a similar manner.
 

Afterward, the castings were machined to the required dimensions. Before
 

the disk specimen was-mounted the high-vacuum evaporation apparatus, for
 

electron-bombardment cleaning and vapor deposition, the disk was
 

mechanically ground with 400- and 600-grade emery papers. It was then
 

finished with levigated alumina on a lapping wheel.
 

Once the surface was micropolished, vacuum deposition was preformed
 

at two temperatures on two surfaces: (1) at room temperature on a
 

micropolished surface which had not been cleaned by electron bombardment,
 

and (2) at 8000 F, on a micropolished surface which had been cleaned
 

by electron bombardment.
 

Thermal Etching
 

The substrate surface was cleaned under high-vacuum conditions
 

-
(10 6 to 10-7mm Hg) by electron bombardment. During bombardment, the
 

disk was kept at ground potential and served as the an6de; the electrons
 

were supplied by an annular tungsten cathode, which was kept at applied
 

voltages of 3.5 to 4.5 kilovolts and a beam curreht of 70 to 80
 

milliamperes. The electron-bombardment cleaning was performed for
 

approximately 30 to 45 minutes, and the disk temperature was in the
 

range 11000 to 12000 F. Electron bombardment can be used for both 

cleaning the surface and heating the substrate material, if the electron
 

beam is kept on continuously.
 

During electron bombardment the surface is cleaned by dissociation
 

of the contaminants (i.e., adsorbed gases or oxides)(ref. 4). Considerable
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energy is then liberated, the substrate temperature is increased and
 

surface topography is changed. This thermal process, known as thermal
 

etching (refs. 7 and a), develops grooves where the grain boundaries
 

intersect the surface and produces selective etching on the faces' of
 

individual grains. This selective-etching effect occurs because
 

different planes and grain boundaries have different surface energies
 

(ref. 9). Grain boundaries have a relatively high surface energy
 

with respect to the crystals and they do not have the normal
 

coordination number. Therefore, grain boundaries are the preferential
 

sites for thermal etching and solid-state reactions (ref. 7). it is
 

believed (ref. 9) that evaporation (either of metal or of oxide)
 

appears to be the dominant mechanism in the formation of the etched
 

structure.
 

Vapor Deposition
 

After thermal etching, the electron-beam intensity was gradually
 

reduced, and thus the temperature of the disk was lowered. Once.a
 

temperature of approximately 8000 F was reached, the electron beam
 

was cut off, and the disk was inverted for vapor deposition of gold.
 

The rate of evaporation depended on the filament current. . A current 

of about 35 to 40 amperes was passed through the filament until the 

temperature was high enough to melt the gold wire and thus wet the 

molybdenum filament. Once this was achieved, evaporation was allowed 

for 2 minutes. The thickness of the films deposited was kept at 
0 

approximately 1800 A.- After deposition, film thickness was measured
 

with an interference microscope.
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RESULTS AND DISCUSSION 

The strength and the durability of thin films are determined largely
 

be the degree of adhesion, Adhesion of a vapor deposited metal film to a
 

metal substrate depends on the formation of an alloyed surface. Very
 

weak adhesion between the-film and the substrate occurs when the substrate
 

surfaces are not properly cleaned. The gold films deposited on the
 

"uncleaned" surfaces of nickel, nickel-chromium, and nickel-rhenium
 

disks were poorly adherent, as was shown by the scotch tape-test and by
 

the friction test. In the first test, if adhesion was poor, the film
 

adhered to the tape rather than to the substrate. This test, although
 

qualitative, gave a good comparison between films with good and poor
 

adhesion.
 

Figure 3 shows typical thermally etched copper surfaces. Copper is
 

a particulatly suitable metal with which to illustrate the general
 

phenomenon of thermal etching since it etches readily in vacuum during
 

electron bombardment. If figures 3(b) and (c)are compared, it can
 

be seen that, when the intensity and the duration of the electron beam
 

bombardment are increased, thermal etching will occur, particularly
 

at the grain boundaries. The micrograph of figure 3(a) was taken at
 

a higher magnification to illustrate the thermal faceting on the
 

various grains.
 

The groove formation at the grain boundaries is illustrated in figure
 

4. The groove formed can be measured interferometrically (refs. 10 and 11)
 

by the boundary groove angle e. The angle e depends not only on
 

the temperature and time of thermal etching, but also on the otientation
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of the planes-at the particular grain boundary. Since it is believed that
 

evaporation (either of metal or of oxide) is the dominant mechanism for
 

the formation of the etched surface in vacuum (ref. 9), surface cleaning
 

must take place at the same time. Figures 5(a) and (b) show etched
 

surfaces of a hickel - 10-percent-chromium alloy disk which was etched
 

for 5 and 10 minutes, respectively. As the time was increased, the
 

etching became more selective at the grain boundaries.
 

The micrographs were taken after vapor deposition of gold on the
 

thermally etched nickel - 10-percent-chromium alloy surface (fig. 5(c)).
 

The preferential accumulation of gold in and around the grain boundaries
 

which is indicated can be attributed to the fact that, during vapor
 

deposition, the impinging gold atoms migrate on the surface because
 

they have kinetic energy and accumulate in the grooves of the grain
 

boundaries (ref. 12). Another factor is the elevated temperature of
 

the substrate (approximately 8000 F), which enhances the surface 

migration of the impinging atoms. This phenomenon indicates that grain
 

boundaries may act as trapping sites and become saturated with deposited
 

atoms.
 

Since nickel and gold are mutually soluble (ref.-13) and deposition
 

is performed at elevated temperatures, diffusion takes place. It is
 

believed that the strong bonding found between the substrate and the
 

film on the electron-bombarded surfaces is due to the cleanliness of
 

the surface and to the formation of a diffusion type of interface. The
 

diffusion-type interface is characterized by a gradual change in composition
 

across the interfacial region (ref. 6) rather than by a sharp boundary
 

between the film and the substrate. This was also confirmed by an
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electron-beam microprobe on the gold-deposited nickel alloy disks used
 

in this investiation. The gold diffusion was detectable in the bulk
 
0 

to a depth of about 2700 A. As is well known, the rate and depth of
 

diffusion are dependent on both temperature and time. As already
 

described, the time and the temperature for diffusion are relatively
 

short.
 

Intimate contact between the film and the substrate is essential
 

for this diffusion bonding. A vacuum deposited film, however, is in
 

good contact with the substrate. The diffusion rate of gold is not
 

uniform over the entire etched surface. At the grain boundary, the
 

average distance between the atoms is somewhat larger than in the
 

perfect crystal, and therefore a disregistry is formed at the grain
 

boundaries. Because of the presumably "open structure" of the grain
 

boundaries, the rate of diffusion is higher there than it is through
 

crystals (ref. 14). In addition, it has been found that grain­

boundary-diffusion depends on orientation difference across the
 

boundary, diffusion being least for small orientation differences (ref. 15).
 

Considering the preferential etching of grain boundaries, the preferential
 

saturation around the grain boundaries of the impinging atoms, and the
 

higher rate of diffusion through the ,grain boundaries, it can be said
 

that grain boundaries act as "reservoirs" for the deposited material.
 

Very few quantitative studies of the effects of solute on grain
 

boundary diffusion have been done. Some qualitative results have been
 

published in the literature (ref. 16 and 17). An investigation had been
 

'conductedwith silver diffusing into polycrystalline copper alloys. It
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was observed that the alloying elements in copper had decisive effects on
 

the rate of silver diffusion along the grain boundaries. According to
 

the above investigators, a faster rate of silver diffusion was observed
 

along the copper-alloy grain boundaries. From the solid solubility
 

principles the gold-nickel combination used in this investigation
 

would be similar to the copper-silver combination and, should, therefore,
 

reveal similar effects. An electron-beam microprobe study was performed
 

on the gold-nickel specimens of this investigation to differentiate
 

between diffusion in the grain boundaries and diffusion in the grains.
 

By the use of the absorbed electron methodone grain boundary, in one
 

instance, appeared to have a higher gold concentration than the adjaent
 

matrix; further attempts on other grain boundaries failed to show such
 

an affect, however. The difficulties are probably the same as those
 

that beset other methods: the large beam width, which activates a
 

relatively large area and gives inadequate resulution; and interference
 

from other elements in the specimen, which presents standardization
 

problems.
 

The friction curves for the gold film on pure nickel (fig. 6(a))
 

indicate that the films had relatively short durability. The
 

coefficient of friction did not remain at a constant low value but
 

steadily rose to higher values. This continuous rise of the coefficient
 

of friction revealed that pure nickel was a poor friction material and
 

that not even the gold films on a clean surface could afford protection.
 

This might be attributed to the fact that pure pickel-is relatively
 

soft (Brinnel 75) when compared with nickel alloys which have a higher
 

hsanpnqR (Th'Teli sini 
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A comparison of gold-film strength and durability on thermall".r 

etched (cleaned) and unetched (uncleaned) surfaces for nickel alloys 

(figs. 6(b) and (c)) indicated that the gold film was broken immediately 

on contact of the niobium rider on the rotating Ai~k. - Th- coeffi6i6nt 

of friction at the beginning of the experiment for the gold films on 

uncleaned nickel alloy substrates was about 1.2. This value was 

indicative of the unlubricated sliding (1.2 and 1.25 for Ni-Cr and
 

Ni-Re respectively). This indicated that the gold film was broken
 

and metal-to-metal contact through the film had occurred. Based on
 

the above evidence it was obvious that very weak adhesion existed
 

between the gold film and the uncleaned surface.
 

The thermally etched nickel alloy substrates of nickel-chromium
 

and nickel-rhemium with gold films maintained a coefficient of
 

friction between 0.3 and 0.4 for a relatively long time (45 min.).
 

This indicated that there was strong bonding (adhesion) due to the
 

formation of a diffusion-type interface, as discussed previously.
 

As the-film was broken, the coefficient of friction did not abruptly
 

rise to the value for the bare metal but increased gradually and became
 

erratic. The absence of abrupt change may be attributed to the depth
 

of diffusion and the grain boundary reservoirs, which can supply
 

additional lubricant during the friction test;
 

SUMARY OF RESULTS
 

The following results were obtained from an investigation of vapor­

deposited thin gold films as lubricants on nickel and nickel-alloy
 

substrates in vacuum:
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1. Marked improvement in film endurance life during friction experi­
0. 

ments was obtained with 1800-A gold films when substrates were cleaned
 

by electron bombardment and thermally etched prior to deposition of the
 

gold.
 

2. Vapor deposition of gold on nickel and nickel alloys at
 

approximately 800 F formed a diffusion type interface in which there
 

was a mutual solubility of the substrate and the film. Because of the
 

disregistry at grain boundaries, a higher rate of diffusion and
 

preferential trapping in and around the grain boundaries occurred with
 

these regions acting as lubricant reservoirs during the friction
 

experiments.
 

3. Nickel-chromium and nickel-rhenium alloy substrates produced
 

longer film durability in friction studies than did pure nickel
 

substrates, presumably because of increased substrate hardness.
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