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Analysis of the Range and Range Rate Tracking System”

F. O. VONBUNY, MEMBER, IRE

Summary—The “range and range rate’ (r; + r;) system in
its very simplest form is described. In particular, the errors in
position and velocity are treated using pessimistic values of the
measured quantities r; and 7; Thus, a realistic evaluation of
tracking qualities can be made for different orbits over certain
tracking stations. The range and range rate system briefly des-
cribed in this paper is a high-precision tracking system.

Knowledge of the uncertainty in position 5,; is important, but

knowledge of the uncertainty of the velocity vector &;; is of the
utmost importance. Thus the use of coherent Doppler measurements
to determine the velocity has a great advantage over any pulsed
system and, in addition, permits extremely narrow frequency
bandwidths (in the order of 10 to 100 cps) to be employed, reducing
the power requirements considerably.

The basis for using range r; and range rate 7; only is the fact that
r; and 7; can be measured to very high precision, thus furnishing
r and 7 with low errors. The nature of these errors is discussed.

INTRODUCTION

HE PRIMARY objective of a tracking system is
Tto determine the position vector r(f) and velocity

vector v = #(t) of an object moving in space. The
range and range rate (r; + ;) system briefly described
in this report is a high-precision tracking system. The
necessity for such a system, capable of determining
a point in space r and its velocity v = f within very small
limits, originates from the increasingly sophisticated re-
quirements for missile and satellite tracking. This is
particularly true in the testing of precise guidance systems
for rockets and space vehicles.

* Received February 27, 1962.

t National Aeronautics and Space Administration, Goddard
Space Flight Center, Greenbelt, Md.

The position vector r can be determined in three ways:

1) With a radar, which measures the range | r | = 7,
the azimuth angle «, and the elevation angle «;

2) With a system (such as an interferometer) which
measures angles and range separately;

3) With a system which measures ranges | r; | = r;
only. Here, of course, at least 3 ground stations
(j = 3) are necessary to determine a point in space
(Fig. 1). This system is known as the range and
range rate tracking system.

When the vector r = (2,), ¢+ = 1, 2, 3, has been deter-
mined, the time derivative i = v = (2;) immediately
gives the velocity of the object. This information is
obtained directly from Doppler measurements,

PrincipPLE oF THE RANGE AND RANGE RATE SysTeM

The simplest way to determine the position and velocity
vectors of a point in space is to measure six scalar quanti-
ties: range r; and range rate #; (j = 1, 2, 3) from three
locations (Figs. 1 and 2). In general, the most precise
and, at the same time, the simplest measurements that
can be made are measurements of time and frequency.
From such measurements, r; and 7; can be derived as
follows.

The range can be determined simply by measuring the
travel time of an electromagnetic wave. Knowledge of
the wave propagation velocity ([1], [2]) of this wave then
gives the distance. This can be done by means of a pulse,
as with radar, or by measuring the phase of a wave
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traveling from a transmitter to the spaceeraft and back.
The latter principle, called sidestone ranging, is applied
here. To resolve ambiguities conneccted with any phasce
measurement, a carrier with a frequency », is modulated
with different frequencies, say v, 5v,, 5(5»,), and so on.
Mecasuring the phases of these related frequencics permits
the determination of the r,;’s. This is, in principle, a time
measurement.

Since the carrier », is a CW signal, its Doppler shift
Avo; (at the jth station) can be measured very accurately,
particularly when frequencies of », > 1Ge¢ are being
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used. (The effects of the ionosphere are then small.)
Since the Doppler shift is proportional to the range rate
#;, the range rate can also be measured with great pre-

W cision, provided that the short-time stability of the oscil-
latbrdumxg the travel time (=~ 3 seconds t. the moon,

300 seconds to Venus, and 600 seconds to Mars) of the

wave is very good, say in the order of one part in 10°
-+ ~to b-parts in 10" 1t is therefore quite natural to use these
. quantities (r, and #,) for tracking.

THe position vector r (I'ig. 1) can be written as

0

r=rr
or
Ty
r=|x E(xi), 7:= 1,2,3 (1)
T3
where
r = | r| is the magnitude
1’ = r/ris the unit position vector.

A radar measures r and r°. The unit vector r° is de-
termined from two angular measurecments, azimuth «
and elevation e. Because the errors' sa and e associated
with @ and e are fairly large [3], the total error in the
position vector r determining the point P in space is
large. The resulting crror ellipsoid is highly eccentric.
As an example, consider an I'PS-16 radar [3] with & =
+10 m and da = de¢ = 0.2 mrad. For a distance of
1000 km the error components perpendicular to r are
approximately 2 X 107* X 10° = 2 X 10° m, giving the
eccentric ellipsoid shown approximately in Fig. 3. The
velocity error for distances of 1000 km and higher will
amount to tens of m/sec because of the fairly large angular
errors de and da. At a distance of 8000 km, typical errors
for a large (such as 50 scconds) smoothing time would
be 10 to 30 m/scc [4].

In view of these angular cerrors and their influence in
fixing P, the complete climination of any angular measure-
ment will improve the situation considerably. The range
and range rate system accomplishes this. (See Fig. 4.)

GENERAL THEORY OF THE SYSTEM

The point P is determined® by using three stations as
shown in Fig. 1. In this case no prior known equations of
motions are necessary. This is of importance when the
system is being used for precise evaluation of the flight
path of a vehicle where smoothing times of only 1 or 2
seconds are used. When the equations of motion of a
satellite are better known, a least-squarcs solution of
many measurements from these three stations will result
in a more precise orbit determination.

1 The notion & refers to uncertainty in the measurements,
whereas 7 refers to the rms errors obtained from least squares.

2 For satellites having large slant ranges (r; > 3,000 km),
one station is sufficient for tracking since a large number of measure-
ments can be made, yielding an overdetermined solution for the
path.
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Fig. 3—Schematic of a radar position vector error.
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Fig. 4—A substation of a range and range rate system.

The position of the point P in space is given (see
Iig. 1) by

r; = [i(x.-

i=1

1/2
- xii)z] ) .] = 1} 2: 3y (2)

where #; (+ = 1, 2, 3) are the vehicle coordinates and
x; (1 =1,2,3and j = 1,2, 3) are the station coordinates.
Here r; is the measured slant range from the jth station
to the vehicle. From (2), which represents 3 equations
in the 3 unknown satellite position components z: we
obtain

;= filr;, x4). ©))

Eq. (3) requires that the slant range measurements be
made at the same time at all three stations. In practice
this need not be so. The same means a time accurate
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to within -£1 msec. Such an error in time corresponds
only to =8 m in satellite position.

A time synchronization around the globe through the
use of WWYV can be accomplished to within +2 msec
[5-{7]. A synchronization to =1 msec between stations
separated by approximately 500 to 1000 km as necessary
for injection tracking is therefore not difficult. For reasons
of simplicity, assume the following station coordinates,
as shown in I'ig. 5 (next page):

(0, 0, 0); 2:2(Z12, T2, 0); 7:5(0, a3, 0).

(This, of course, does not restrict the problem at hand
since the local coordinate system can always be assumed,
as shown in Iig. 5, when 3 stations are being used.) The
position 2; of the spacecraft is then [from (2) and (3)]:

1 2 2 2 2
T = r— 1+ T F o
1 2x12 [ 1 2 12 22
T2 ( 2 2 2
— == —1r;+ 1'23):1
Ta3 ’ + (3a)
T ! (r} — 13 + x33)
2 s 1 3 Lag
2 2 n1/2
xy = (rf — 25 — 2D

Sinec the r; values are mcasured, (3a) can easily be evalu-
ated and the z; determined: '
Differentiating (3a) results in

. 1 . T22 . Loz .

T = T rmn 1 — =) — ity + =155 |,
T2 T2 T3

. 1 . . S

&y = —— (roh — 1), (4)
Tag

. | . .

Ty = — (rfy — oy — T &)
T3 J

Eq. (4) gives the velocity vector v in component form.
The values #; are measured by observing the Doppler shift
Ave; of a frequeney »o; that is, to a first approximation,®

2 2,
(Avg); = wo —C_ = )_\7':‘
or
;= 3\ Ay, (5)

where \ is the wavelength of the frequency used. (The
factor of 2 in (3) appears because the vehicle carries a
transponder.) Higher terms cun, of course, be included
if necessary.

Egs. (3a) and (4) fully determine the position vector r
and velocity vector v = £. This, of course, was obvious,
and the emphasis here shall not be directed to those
equations.

¢ The relativistic Doppler shift { = 3(v/¢)?] corresponding to 1 cps
at a frequency of 2 Ge (» = 10 km/sec) is not considered here.
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x| From (8) we obtain for the éz;,
—t——
0 100, 200 300 400km
" -1
fcm % 100km X axny = Aaxs e, (9)
Fig. 5—The three-stations solution for the (r + #) system. where
a; QG Qa3

A7V =1b b, b,
TrackiNg ERRORS
. . . . G C: Cs
The primary characteristic of a precise tracking system
is that the errors in position 5., and velocity 7, are small is the inverse matrix A. If we apply the principle of error
and their limits known. These errors will be discussed now. propagation, the position errors 7., then read

3 1/2
Errors in Position Moy = (Z a?T,-) ,
i=1
From (2), the variation of r; can be obtained to a first- s e L
order approximation by a simple first-order Taylor Mo, = <Z b‘fTJ) , (10)
expansion: -
_ ( 3Z 2T )1/2
3 3 Nes = cil; ’
or; = o, ar; oz, + oy 8x;;. (6) =1 ’
im1 0% =10z, he
where
The variational form of (2) as generalized by (6) is given by T, = % o+ i o, 5, (10a)
=]
3
or; = z_; a;(8z; — 8z;), () in which ¥ represents the number of measurements taken
during a certain time interval At The letter 7 instead
where of o has been chosen for the errors to indicate that the
(. — 24) measurements do not obey the normal distribution law.
a;; = —’—“T—" No smoothing has been applied to the station position
’ errors ox;; since these are of course constant during all
is the direction cosine of the position vector r;. measurements. As can be seen from (10) and (10a), the
Eq. (7) can be written for convenience in matrix form, as Positlon errors of the satellite 7., can not be reduced
follows: indefinitely by increasing the smoothing time (that is,

increasing N). Only a decrease of the survey errors of
dexny = Apxs 6X @axn) (8) the stations éxz;; will improve the satellite position errors.
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If the time required to make a single measurement
(N = 1) is designated A¢, then N measurements means a
smoothing time © = N AT. One single measurement
means actually 3 range and 3 range rate measurements,
which determine the position and velocity of a single
point in space. In order to get a ‘‘feeling” for the errors
represented by (10), some examples are given in Fig. 5
of a satellite passing over 3 stations in different paths
(Cases a, b, ¢, and d). Figs. 6-9 (pages 102-103) give, in
graphical form, the total position errors 7,.,, as a function
of time as the object passes over the 3 stations for Cases
a, b, ¢, and d. Tig. 10 (page 103) gives, in graphical form,
the influence of geometry on position crrors for Cases
a, b, ¢, and d. The time is also marked in Fig. 5 so that a
real comparison between the errors and the spacial
position of the satellite can be made.

In most cases, one station has no superiority over any
other; therefore, it is assumed for the numerical calculation
that the errors of these stations, éx,;, which are pure
survey errors, arc equal; that is,

éx;; = constant = ox,.

In this report the following measurement errors for a
single measurement during a time Af have been used:

67‘,‘ = :i:lOm, - ]-= 1,2’3

51," = ax,-,» = :*IIOm,

with no smoothing time (N = 1 or r = At = 0.1 second)
and with smoothing time (N = 20 or r = 2 seconds). Since
in this treatment the ér;; have been assumed equal, the
expression for the T'; is simplified to

=12 2
T, = % or; + oz, (10b)

because
3
2
Z a; =1
=1

Errors in Velocity
The velocity components %; of a satellite can be found
from (2) by differentiation with respect to time:

3

'1 E ft.'(zi - x-’i);

i i=1

7
or
3
F; o= Zaiii;- (11)
i=1

The variation of #; can be obtained in the manner as
generalized by (6) resulting in

‘l',_.

3 3
Z x,»(&:v.- ¢ ¥¥ 57',' - 51:.-;) + Z 2 73] 6:bi' (12)
=1 i=1
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Again (12) can be expressed in matrix form as
Poxy = A (3x3) " 5X(3X1); (13)

where the I-matrix reads, from (12) and (13),

—_ = Z x; (5.7) — a; Oy — 5$“) 71
1 =1
T = ——;Zx(&x—a,-garz—ﬁxiz) = 1Y
2 =1
- — Z(0x; — ay Ory — o,
L T3 12; ( e s 3)— —’ng

Eq. (13) can now be solved for the velocity variations
0%,;; that is,

X axn = Agxo Taxy, (13a)
where
o,
8X = | o1,
85
and

3
8, = D amy.,

i=1

3
511.72 = E b:"Yl'y

i=1
3

6I‘3 = ZC;'YI'.
i=1

By using the principle of error propagation again, we
obtain from (13) and (13a) for the velocity errors #;,

3 1/2
(Z a?Si> ’

i=1

Ni.

3 1/2
m=(2os) (19
i=1
3 1/2
N, (Z C?S,) ,
i=1
where
3
S; = % 5% %lz Zl i(6xt + of; &)
1 3
+ > @i ezl (14a)
i=1

Again N represents the number of measurements taken
during a time 7. ¥q. (i4a) shows clearly |similarly to
(10a)] that the velocity errors 5;, depend largely on
the station position errors éz;; which are, of course, con-
stant and therefore not subject to statistics expressed by N.
Only a good survey of the stations can ever reduce the
errors 7;, unless the slant ranges r; are large.
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Fig. 6—Total satellite position errors for Case a shown in Fig. 5
(also see Appendix A);* 5r= £10m,

These equations giving the velocity error components
7z, can be evaluated since all the quantites which appear
on the right side of (14) are measured and known. For the
variations &z, of the satellite, the rms values 7;, of a
single observation [N 1 in (10)] have to be used.
In order to get an idea of thesc tracking velocity errors,
the values 7,; are presented in Figs. 11-14, in graphical
form, for the Cases @, b, ¢ and d shown in Fig. 5. I'ig. 15
gives, in graphical form, the influence of geometry on
velocity errors for the four cases.

The following measuring errors for the radial velocities
have been assumed in this report:

of; = £0.2 m/sec, i=1,2,38.

If a frequency of, say, 2 Ge (A = 15 em) is used, the above
error corresponds to a Doppler error [from (5)] of

267" = —

84vo; = 3 0. 15

X 0.2 =~ 3 cps,

which is actually a very large one.
TFor large slant ranges r;, the velocity errors depend

Fig. 7—Total satcllite position errors for Case b shown in Fig. 5
(also see Appendix A);* 6r = 3=10m.

only on the uncertainty 67; in the measurement of 7,
as can be scen from (14a). This is the case for

l67‘ > =

- (15)

N ZZx((Sx + of; Br,)—i-»- Zx oxl;.

For the worst condition, namely N = 1, (15) is satisfied
for slant ranges r; > 8000 km. For these cases, the velocity
errors are given from (14) and (15) by

3 1/2
w=(ETaw)

=1

1/2
N, = ( Z b’ 5f~3) . (16)
i=1
1/2
Nis = ( Z C. 67‘?) .
T=1 P,

In using 3 stations for extremely large distances, carc
must be taken in applying (16) because the matrix A4
becomes ill-conditioned, since the elements of the in-
verted matrix A, namely a;, b;, and ¢,, are very uncertain
under such conditions. In order to demonstrate the use-
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Fig. 11—Total satellite velocity errors for Case a shown in Fig. 5;
ér = x10m, & = =0.2 m/sec.

fulness of the error equations in this simple form as
presented here, a further example is worked out in the
following,.

Assume the problem is to determine what influence the
uncertainties of the ship positions §'z;; have when ships
are used as tracking stations. In brief, what are the errors
in position #,, and velocity 5;, of a spacecraft in this
case? In order to make use of the graphs presented here,
the previous position errors éz,; are related to the position
errors of the ships 8'z,; ; that is, 8'¢;; = k; éx,;. Eq. (10a)
can then be simplified to

3
A 2 2 2
77,' = k E : a;; ) Z;;

(10c)
=
since
ort L k% 8%, with k, = k > 10.
Eq. (10¢) introduced into (10) results in
my = kn.,  i=1,2 3. (10d)

This means that the errors of spacecraft position 7},
when ships are used are k times the previous errors (using
the land-based stations). All the graphs (Figs. 5-9)
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Fig. 12—Total satellite velocity errors for Case b shown in Fig. 5;
§r = £10m, é7 = 0.2 m/sec.

presented here are therefore useful and have only to be
multiplied by k. As an example, éz,; was previously
assumed to be 410 m for land stations. In order to obtain
uncertainties in the ships position of, say, 6z,; = 6x,; =
+500 m (3 statute miles) and dxs; = 100 m (300 ft)
the values of k, = k, = 50 and k; = 10 have to be chosen.
(8°x;; = k; ox;.)

The same holds, of course, for the velocity errors n;,.
Eq. (14a) reduces then to

S; = k*S;

and

i = ks, (14b)

Eq. (14b) shows very clearly that the uncertainty 8'x,;
in station (ships) position has a large effect on the velocity
error of the spacecraft to be tracked. Also here, the
curves shown in Figs. 10-14 can be used when multiplied
by the proper values of k. It should be noted that smooth-
ing does not help at all in this case since, as mentioned
earlier, the station position uncertainties are constant
during a measurement period. Eqs. (10d) and (14b) hold,
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Fig. 13 (above left)—Total satellite velocity errors for Case ¢ shown
in Fig. 5; 6r = x£10m, 6/ = +0.2 m/sec.

Fig. 14 (above right)—Total satellite velocity errors for Case d shown
in Fig. 5; r = +10m, &/ = 0.2 m/sec.

Fig. 15 (left)—Influence of geometry on total satellite velocity errors;
or = 310m, & = 0.2 m/sec.



106

of course, in principle for all other tracking systems such
as radars, Doppler systems, and so on.

In conclusion it can therefore be said that only accurate
station positions will give small position and velocity
errors of the object being tracked. This situation becomes
less critical for the velocity errors when the slant ranges
r; are large (say 8000 km or larger) as can be seen from
(14a). The foregoing analysis is, of course, not restricted
to a local Cartesian coordinate system. The same error
equatiops,. that,is, (10) and (14), can be applied to any
typeof Cirtesian toordinate system. In Ilig. 2, however,
the origin of the coordinate system is located at the center
of the carth; therefore, (3a) and (4) arc not applicable
in this case. Jimi '_guqu,altions can be worked out for this
casc inia ;' smentary manner for the position x;
and velovity ¥ Since the position vectors s; = (z,; of
the statioxjg:a.nd‘f-;tbé'_iy motion with time (carth rotation)
are kn(')wri',"(‘l(‘j)"‘?lﬁfa (14) can be used generally when the
values 7; and #;:2i&Known by measurements.

The inﬂuencé _‘(_'jf' the troposphere and ionosphere is not
treated in thigrepaiy simply because its intluence on range
and rahgg" raté is aimill ata frequency of 2 Ge and can be
matheniatically corzécted by using standard profiles. The
deviations due to the uncertainties and variations of these
profiles for clevation angles e > 5° are certainly smaller
than the errors 6r; and 87; assumed before. For instance,
as Harris [8] points out, for a satellite at an elevation
angle of € = 30%and a frequency of 200 Me, the remaining
error in range is only 16 m. At 2000 Mec this error would
be in the order of 0.16 m and therefore can certainly be
neglected [9]-{11].

CONCLUSIONS

We have seen, using o simplified description, that the
errors in position and velocity, 7., and 5;,, are indeed very
small when very moderate measuring accuracies ér; and
87; of the only measured quantities r; and #; arc used,
as well as a very short smoothing time 7. Very poor con-
ditions, as far as errors for this system are concerned,
have been presented in graphical form (Figs. 6-15). These
poor conditions also take into account a time synchroniza-
tion error between the station of about 41 msee (corre-
sponding to an error of =8 m in position). In brief, no
severe time synchronization is necessary at all. This, of
course, simplifies the system requirements.*

It has been further demonstrated that the geometry
(position of satellite with respect to the ground station)
does not have too significant an influence on the position
and velocity errors (see Iigs. 10 and 15). This is par-
ticularly important where such a system of three or more
ground stations is used to track the injection or re-entry

4 The detailed graphs from which Figs. 6-15 were compiled
can be found in ‘‘Analysis of the Range and Range Rate Tracking
System,” Natl. Aeronautics and Space Adm., Washington, D. C.,

ASA TN D-1178; February, 1962,

IRE TRANSACTIONS ON SPACE ELECTRONICS AND TELEMETRY

June

of lunar or planetary transfer vehicles. A change in launch
time or launch azimuth, which in turn will change the
trajectory over the stations (FFig. 5), docs not therefore
harm injection tracking. Further, it has been shown that
the uncertainty in the station position greatly influences
the errors in position and velocity of a spacecraft. When
ships which have position uncertainties of the order of,
say, 2500 m (% statute miles) are used, errors in satellite
position of approximately +500 m and velocity errors
of 42 m/sec result. {A multiplying factor k& = 50 has
to be used for this particular cxample, dx;; = £500 m =
50 X (£10) m.]

It should also be noted that a prototype of such a
system as described has actually been built at the Goddard
Space I'light Center. This system operates at a frequency
of 250 Mec (because of availability of equipment) and has
been tested by using a calibration airplane. A preliminary
summarizing report on this development and test [12]
shows that sophisticated equipment on the ground or in
the vehiele is not necessary. llardware of the (r + #)
equipment has been developed at the Goddard Space
Ilight Center by L. Habib, G. Kronmiller, I’. Engels,
and H. Iranks. A contract for development and con-
struction of 3 stations operating at 1.7 Ge has been
awarded to Motorola. Thix system will be used by NASA
for obtaining improved tracking and orbital data for
scientific satellites and manned spacecraft of the future.
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