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Preface 

The papers collected in this volume were presented at the Symposium 
on Mathematical Optimization Techniques held in the Santa Monica 
Civic Auditorium, Santa Monica, California, on October 18-20, 1960. 

The objective of the symposium was to bring together, for the pur­
pose of mutual education, mathematicians, scientists, and engineers 
interested in modern optimization techniques. Some 250 persons at­
tended. The techniques discussed included recent developments in 
linear, integer, convex, and dynamic programming as well as the varia­
tional processes surrounding optimal guidance, flight trajectories, 
statistical decisions, structural configurations, and adaptive control 
systems. 

The symposium was sponsored jointly by the University of Cali­
fornia, with assistance from the National Science Foundation, the 
Office of Naval Research, the National Aeronautics and Space Admin­
istration, and The RAND Corporation, through Air Force Project RAND. 

Richard Bellman 
Santa Monica 
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Introduction 
RICHARD BELLMAN 

One of the self-imposed, and sometimes unappreciated, tasks of the 
mathematician is that of providing a choice of firm bases for the quanti­
tative description of natural processes. Among the several motivations 
for these Herculean labors, the fact that they are interesting is cer­
tainly paramount. The physical world has been and continues to be 
the primary source of intriguing and significant mathematical prob­
lems. Although one would think that the armchair philosopher with 
his ability to conjure up countless infinities of universes could easily 
create arbitrarily many fascinating fictitious worlds, historically this 
has not been the case. The mathematician, from all appearances, needs 
the constant infusion of ideas from the outside. Without these stimuli 
the pure breed of ax ioma tics, as pure breeds are wont to do, becomes 
sterile and decadent. 

The second motivation is pragmatic. The task, if successful, has 
many important ramifications. Predicted results, derived from mathe­
matical models of physical phenomena, can be compared with experi­
mental data obtained from a study of the actual physical phenomena, 
and thus used to test the validity of the fundamental assumptions of 
a physical theory. Mathematics can therefore, if not capable of con­
structing the actual universe by the critique of pure reason, at least 
play an essential role in demonstrating what hypotheses should not be 
put forth. 

Finally, there is the perennial hope that with sufficient under­
standing of a physical system will come the ability to control it. Thus, 
celestial mechanics leads to improved calendars, or at least to theories 
capable of constructing improved calendars, to more accurate navi­
gation, and to a very profitable and thriving trade in horoscopes; 
nuclear physics leads to industrial reactors and cancer cures; and so on. 

In view of what has been said, it is perhaps natural to expect that 
purely descriptive studies would precede a theory of control processes. 

vii 



viii Introduction 

Historically, this has indeed been the case to a great extent. Yet, even 
so, seventeenth-century theology led to the postulation of various eco­
nomical principles of natural behavior that turned out to be of enor­
mous mathematical and physical significance. We know now that there 
is no clear-cut line of demarcation between descriptive and control 
processes. It is to a great extent a matter of analytic convenience as 
to how we propose to derive the basic equations and to conceive of the 
various physical images of a particular equation. This "as if" quality 
of mathematics is one of the most powerful aspects of the scientific 
method. 

One of the most interesting and important classes of optimization 
problems of contemporary technology is that connected with the deter­
mination of optimal trajectories for manned and unmanned flights. 
Initially, these questions can be formulated in terms of the classical 
calculus of variations. A fundamental quantity associated with the 
trajectory can be written as a functional, 

J(x, y) = fo T g(x, y) dt, (1) 

where x = x(t) is the position vector and y = yet) is the control vector, 
connected by a vector differential equation, 

dx 
- = hex, y), 
dt 

x(O) = c, 

and generally by some local and global constraints of the form 

k.(x, y) ~ 0, i = 1, 2, ... , M, 

fo T Tj(X, y) dt ~ ail j = 1, 2, ... , R. 

(2) 

(3) 

Even if the constraints of (3) are not present, the problem of deter­
mining the analytic structure of the optimal trajectory and of the 
optimal control policy is a difficult one, and the question of computa­
tional solution is even more complex. When the constraints are present, 
we face the delicate juggling act of balancing a set of differential equa­
tions and differential inequalities involving state variables and 
Lagrange multipliers. 

The first three chapters, by Miele, Dergarabedian and Ten Dyke, 
and Breakwell, present the approaches to these matters by means of 
the conventional calculus of variations. The fourth chapter, by Dreyfus, 
combines these techniques, the method of successive approximations, 
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and the theory of dynamic programming to provide a new approach. 
Many further references will be found in these chapters. 

Another important area of modern life is that concerned with the 
communication and interpretation of signals, and with their use in 
various multistage decision processes such as radar detection and 
equipment replacement. We find a large area of overlap between the by 
now classical theory of prediction and filtering of Wiener-Kolmogorov 
and the modern statistical theories of estimation of Wald, Girshick, 
Blackwell, and others. The fifth and sixth chapters, by Parzen and 
Kailath, are devoted to prediction and filtering; the seventh, by 
Middleton, is a comprehensive study of the formidable optimization 
problems encountered throughout the theory of communication. The 
eighth chapter, by Hall, discusses questions of the optimal allocation 
of effort in testing and experimentation. The last chapter of part two, 
by Derman, presents an application of dynamic programming to the 
study of a class of replacement processes. 

The third part of the book consists of chapters devoted to geometric 
and combinatorial questions directly or indirectly connected with 
linear and nonlinear programming, and to applications of these theories. 
Linear programming is devoted to the study of ways and means of 
maximizing the linear form 

N 

L(x) = E a,x, 
i_I 

over all Xi subject to the constraints 

N 

L: b,jXj ::; e" 
;=1 

i = 1,2,· .. , M. 

(4) 

(5) 

Geometrically, this forces us to examine the vertices of a simplex de­
fined by the inequalities of (5). The chapter by Kruskal is devoted to 
an aspect of this, and the one by Tucker illustrates the applicability of 
the simplex method of Dantzig to the systematic exposition of a number 
of questions in the field of linear inequalities. Thus a method designed 
primarily as a computational tool turns out to be of fundamental 
theoretical significance. There is certainly a moral attached to this. 

The theory of nonlinear programming is devoted to the study of the 
maximization of a general function of N variables, 

F(x) = F(Xl, X2, ••• , XN), (6) 

over all X, subject to the constraints 

i = 1,2,···, M. (7) 
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The chapter by Wolfe contains an expository account of some of the 
principal analytic and computational results concerning this ubiquitous 
problem. 

In a slightly different vein are the chapters by Elfving and Prager. 
The first considers a problem related to that discussed by Hall, using 
the ideas of game theory, and the second considers some optimization 
problems arising in the design of structures. 

The fourth part of the volume contains three chapters on automation 
and control and the use of digital computers. The first, by LaSalle, is 
a survey of the modern theory of control processes in the Soviet Union, 
where some of the leading mathematicians and engineers, such as 
Pontryagin and Letov, are devoting their energies to a determined 
attack on the theoretical aspects of control theory. The second chapter, 
by Kalman, shows how the functional-equation technique of dynamic 
programming can be established along the lines of Hamilton-Jacobi 
theory and the work of Caratheodory, and discusses some further re­
sults in the theory of optimal control. The last chapter, by Bellman, is 
devoted to a formulation of mathematical model making as an adaptive 
control process, and thus as a process that can in part be carried out 
by digital computers. 
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Chapter 1 

A Survey of the Problem of Optimizing 
Flight Paths of Aircraft and Missiles t 

ANGELO MIELE 

1. Introduction 

This chapter reviews the problems associated with the optimization of 
aircraft and missile flight paths. From a physical point of view, these 
problems are of two types: problems of quasi-steady flight and problems 
of nonsteady flight. The quasi-steady approach, in which the inertia 
terms appearing in the dynamical equations are regarded as negligible, 
is of considerable interest along a large part of the flight path of an 
aircraft powered by air-breathing engines. On the other hand, the 
nonsteady approach is indispensable in the analysis of rocket-powered 
aircraft, guided missiles, skip vehicles, and hypervelocity gliders; it is 
also of interest in the study of the transient behavior of aircraft 
powered by air-breathing engines. 

Regardless of the steadiness or nonsteadiness of the motion, the 
determination of optimum flight programs requires the study of func­
tional forms that depend on the flight path in its entirety. Thus, the 
calculus of variations [1] is of primary importance in flight mechanics, 
even though there are certain simplified problems of quasi-steady flight 
in which it is by no means an indispensable tool. As a matter of fact, 
for these simplified problems, the optimization on an integral basis by 
the calculus of variations and the optimization on a local basis by the 
ordinary theory of maxima and minima yield identical results [2], 
[3], [4]. 

t This paper was presented also at the semiannual meeting of the American 
Rocket Society, Los Angeles, California, May 9-12, 1960. 
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However, since all optimum problems of the mechanics of flight can 
be handled by means of the calculus of variations, it follows that the 
most economical and general theory of the Bight paths is a variational 
theory. The results relative to quasi-steady flight can be obtained as 
a particular case of those relative to nonsteady flight by letting the 
acceleration terms appearing in the equations of motion decrease, 
tending to zero in the limit. 

Historical Sketch 

Although the application of the calculus of variations to flight 
mechanics is quite recent, it is of interest to notice that Goddard [5] 
recognized that the calculus of variations is an important tool in the 
performance analysis of rockets in an early paper published about 40 
years ago. Hamel [6], on the other hand, formulated the problem of the 
optimum burning program for vertical flight about 30 years ago. 

Despite these sporadic attempts, however, the need for an entirely 
new approach to the problem of optimum aircraft performance was 
realized by the Germans only during World War II. Lippisch [7], 
designer of the Messerschmitt 163, investigated the most economic 
climb for rocket-powered aircraft and shed considerable light on a new 
class of problems of the mechanics of Bight. In the years following 
World War II, the optimum climbing program of turbojet aircraft at­
tracted considerable interest and was investigated in a highly simplified 
form by Lush [8] and Miele [9] using techniques other than the in­
direct methods of the calculus of variations. 

A short time later, a rigorous variational formulation of the problem 
of the optimum Bight paths became possible as a result of the work of 
Hestenes [10], Garfinkel [11], and Cicala [12], [13] on the formula­
tions of Bolza, Lagrange, and Mayer; subsequently, a general theory 
of these problems was formulated by Breakwell [14], Leitmann [15], 
Fried [16], and Miele [17]. Incidentally, while the indirect methods of 
the calculus of variations are of fundamental importance in solving 
extremal problems, several other optimization techniques have been 
employed in recent years-more specifically, the theory of dynamic 
programming [18], [19], [20], the theory of linear integrals by Green's 
theorem [21], [22], and the gradient theory of optimum flight paths 
[23 ]. 

Since most of the recent developments are based on indirect varia­
tional methods and since the results of the quasi-steady theory can 
be obtained from the variational procedure, this chapter is organized 
as follows. First, the problems of BoIza, Mayer, and Lagrange are 
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formulated; then, the following problems are reviewed: (a) quasi-steady 
flight over a flat earth; (b) nonsteady flight over a flat earth; and (c) 
nonsteady flight over a spherical earth. 

2. Techniques of the Calculus of Variations 

The calculus of variations is a branch of calculus that investigates 
minimal problems under more general conditions than those considered 
by the ordinary theory of maxima and minima. More specifically, the 
calculus of variations is concerned with the maxima and minima of 
functional expressions in which entire functions must be determined. 
Thus, the unknown in this case is not a discrete number of points, but 
rather the succession or the assembly of an infinite set of points-all 
those identifying a curve, a surface, or a hypersurface, depending upon 
the nature of the problem. 

Applications of the calculus of variations occur in several fields of 
science and engineering-for instance, classical geometry, elasticity, 
aerolasticity, optics, fluid dynamics, and flight mechanics. Neverthe­
less, this branch of mathematics has thus far received little attention 
from engineers, the probable reason being that the applications de­
scribed in almost every known textbook (the classical brachistochronic 
problem, the curve of minimum distance between two given points, the 
isoperimetric problem of the ancient Greeks, etc.) are either obsolete 
or susceptible to obvious answers. In the last 15 years, however, the 
calculus of variations has experienced a revival in engineering. Two 
fields of problems are mainly responsible for this: applied aerodynamics 
and the study of the optimum shapes of aircraft components; flight 
mechanics and the study of the optimum trajectories of aircraft and 
missiles. 

The Problem of Bolza 

The most general problems of the calculus of variations in one dimen­
sion are the problems of Bolza, Mayer, and Lagrange. Perhaps the 
simplest way to approach these problems is to study first the problem 
of Bolza, and then to derive the other two problems as particular cases. 
Theoretically, however, these three problems are equivalent, since it 
is known that anyone of them can be transformed into another by a 
change of coordinates [1]. 

The problem of Bolza is now stated as follows: "Consider the class 
of functions 

k = 1, . ", n, (2.1) 
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satisfying the constraints 

CPj(x, Yk, Yk) = 0, 1 = 1, .. " p, (2.2) 

and involving 

f=n-p>O 

degrees of freedom. Assume that these functions must be consistent 
with the end-conditions 

r = 1, ... , 8< 2n + 2, (2.3) 

where the subscripts i and f designate the initial and final point, re­
spectively. Find that special set for which the functional form 

(2.4) 

is minimized." 
For the particular case H == 0, the problem of Bolza is reduced to the 

problem of Mayer. Furthermore, if G == 0, the problem of Bolza is re­
duced to the problem of Lagrange. 

Euler-Lagrange equations. The problem formulated above can be 
treated in a simple and elegant manner if a set of variable Lagrange 
multipliers 

Xj(X) , j = 1, .. " p, (2.5) 

is introduced and if the following expression, called the fundamental 
function or augmented function, is formed: 

p 

F = H + E XjcPj. (2.6) 
j-l 

It is known [1] that the extremal are, the special curve extremizing 1/;, 
must satisfy not only the set of equations (2.2) but also the following 
Euler-Lagrange equations: 

d (OF) of 
dx 0Yk - OYk = 0, 

k = 1, .. " n. (2.7) 

The system composed of the constraining equations and the Euler­
Lagrange relations includes n + p equations and unknowns; con­
sequently, its solution yields the n dependent variables and the p 
Lagrange multipliers simultaneously. 

The boundary conditions for this differential system are partly of 
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the fixed end-point type and partly of the natural type. The latter 
must be determined from the transversality condition 

dG + F - L -. ilk dx + L -. dYk = 0, [( 

n aF) n aF J' 
k-1 aYk k-1 aYk i 

(2.8) 

which is to be satisfied identically for all systems of displacements 
consistent with the prescribed end-conditions. 

Discontinuous solutions. There are problems of the calculus of vari­
ations that are characterized by discontinuous solutions, that is, solu­
tions in which one or more of the derivatives ilk experience a jump at a 
finite number of points. These points are called corner points; the entire 
solution is still called the extremal arc, while each component piece is 
called a subarc. 

When discontinuities occur, a mathematical criterion is needed to 
join the different pieces of the extremal arc. This criterion is supplied 
by the Erdmann-Weierstrass corner conditions, which are written as 

(2.9) 

(2.10) 

where the negative sign denotes conditions immediately before a corner 
point and the positive sign denotes conditions immediately after such 
a point. 

Incidentally, discontinuous solutions are of particular importance in 
engineering. In fact, while nature forbids discontinuities on a macro­
scopic scale, not infrequently the very process of idealization that is 
intrinsic to all engineering applications leads to a mathematical scheme 
that forces a discontinuity into the solution. 

First integral. A mathematical consequence of the Euler equation is 

- F - L -. ilk - - = O. (2.11) 
d ( n aF ) aF 

dx "-1 aYk ax 

Consequently, for problems in which the augmented function is 
formally independent of x, the following first integral occurs: 

n aF 
-F + L -. ilk = 0, 

"-1 aYk 
(2.12) 
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where C is an integration constant. For the case of a discontinuous 
solution this first integral is valid for each component subarc i further­
more, because of the corner conditions, the constant C has the same 
value for all the subarcs composing the extremal arc. 

Legendre-Clebsch condition. After an extremal arc has been deter­
mined, it is necessary to investigate whether the function if! attains a 
maximum or a minimum value. In this connection, the necessary con­
dition due to Legendre and Clebsch is of considerable assistance. This 
condition states that the functional if! attains a minimum if the follow­
ing inequality is satisfied at all points of the extremal arc: 

" " iJ2F L L -- OYkOYj > 0, 
k-l j-l iJYkiJYj 

(2.13) 

for all systems of variations 0Yk consistent with the constraining 
equations 

n iJCP' L -' 0Yk = 0 
k-l iJYk ' 

j = 1, .. " p. (2.14) 

It is emphasized that condition (2.13) is only a necessary condition. The 
development of a complete sufficiency proof requires that several other 
conditions be met. For this, the reader is referred to the specialized 
literature on the subject [1]. 

The Problem of Mayer with Separated End-Conditions 

An important subcase of the Mayer problem is that in which the end­
conditions are separated. In this particular problem, the functional to 
be extremized takes the form 

while the end-conditions appear as 

Wr(x" Yk,) = 0, 

wr(x/, YkJ) = 0, 

(2.15) 

r = 1, .. " q, 

r = q + 1, ... ,8. 

It is worth mentioning that, in the general case, the transversality con­
dition reduces to 

[(
iJG n iJF) n (iJG iJF) ] / - - L -. Yk dx + L - + -. dYk = 0, 
ax k-l aYk 10-1 ay" aYk i 

(2.16) 
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and to 

[( aG _ C)dX + t(aG + a~)dYkJI = ° 
dx k-1 aYk aYk • 

(2.17) 

if the fundamental function is formally independent of x. 

3. Quasi-Steady Flight over a Flat Earth 

Consider an aircraft operating over a flat earth, and assume that the 
inertia terms in the equations of motion are negligible. Denote by T the 
thrust, D the drag, L the lift, m the mass, g the acceleration of gravity, 
X the horizontal distance, h the altitude, V the velocity, 'Y the in­
clination of the velocity with respect to the horizon, and E the inclina­
tion of the thrust with respect to the velocity. Assume that the drag 
function has the form 

D = D(h, V, L) 

and that the thrust and mass flow of fuel are functions of the following 
type: 

T = T(h, V, a), 

{3 = (3(h, V, a), 

where a is a variable controlling the engine performance and is called 
the engine-control parameter, the thrust-control parameter, or the 
power setting. 

With these considerations in mind, we write the equations governing 
quasi-steady flight in a vertical plane as 

CP1 == X - V cos 'Y = 0, (3.1) 

CP2 == h - V sin 'Y = 0, (3.2) 

CPa == T(h, V, a) cos E - D(h, V, L) - mg sin 'Y = 0, (3.3) 

cp, "'" T(h, V, a) sin E + L - mg cos 'Y = 0, (3.4) 

CPs == rh + (3(h, V, a) = 0, (3.5) 

where the dot denotes a derivative with respect to time. These equa­
tions contain one independent variable, the time t, and eight dependent 
variables, X, h, V, 'Y, m, L, a, E. Consequently, three degrees of freedom 
are left, as is logical in view of the possibility of controlling the time 
history of the lift, the thrust direction, and the thrust modulus. 

Because of the characteristics of the engine, the thrust modulus can-
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not have any arbitrary value but only those values that are bounded 
by lower and upper limits. Assuming that the lower limit is ideally zero, 
we complete the equations (3.1) through (3.5) by the inequality 

o ~ T(h, V, a) ~ Tmax(h, V), 

which can be replaced by the constraints 

cPa == T(h, V, a) - ~2 = 0, 

cP7 == T max(h, V) - T(h, V, a) - 7]2 = 0, 

where ~ and 7] are real variables. 

Additional Constraints 

(3.6) 

(3.7) 

In many engineering applications it is of interest to study particular 
solutions of the equations of motion-more specifically, those solutions 
that simultaneously satisfy either one or two additional constraints 
having the form 

cPs == A (X, h, V, "'I, m, L, a, E) = 0, 

cP9 == B(X, h, V, "'I, m, L, a, E) = o. 
(3.8) 

(3.9) 

The effect of these additional constraints is to reduce the number of 
degrees of freedom of the problem and to modify the Euler-Lagrange 
equations. Consequently, the solution of the variational problem is 
altered. 

The Mayer Problem 

In the class of functions X(t), h(t), V(t), 'Y(t), m(t), L(t), a(t), E(t), 
W), 7](t), which are solutions of the system composed of (3.1) through 
(3.9), the Mayer problem seeks the particular set extremizing the dif­
ference t:.G between the final and the initial values of an arbitrarily 
specified function G=G(X, h, m, t). 

The Euler-Lagrange equations associated with this variational prob­
lem are written as follows: 

. aA aB 
hI = hS-+h9-' ax ax (3.10) 

>-2 = h3 - cos E - - + h4 - sin E + h6 - + he-(
aT aD) aT a{3 aT 

ah ah ah ah ah 

a aA aB 
+ h7 i)h (Tmax - T) + hSi)h+ h9i)h' (3.11) 
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(
aT aD) aT o = -h}COS'Y - h2 sin 'Y + h3 - cos E - - + h,-sin E av av av 

a{3 aT 0 oA oB 
+ A6 -+ A&-+A7-(Tmax - T) +A8-+A9-' (3.12) oV oV oV oV oV 

aA o = V(Al sin 'Y - A2 cos 'Y) + mg( -A3 cos 'Y + A, sin 'Y) + A8-
o'Y 

oB + A9 -, (3.13) 
o'Y 

. oA oB 
A6 = -g(A3sin'Y+A,cos'Y) +A8-+A9-' (3.14) 

om om 
oD oA oB 

0= -A3-+A,+A8-+A9-' (3.15) oL oL oL 
oT . o{3 oT oA 

o = - (A3 cos E + A, sm E) + A6 - + (A& - A7) - + A8-ocr. ocr. ocr. ocr. 
oB 

+A9-' acr. 
oA oB 

0= T(-AasinE+A,cosE) +A8-+A9-' 
OE OE 

o = A&~, 

o = A711, 

and admit the first integral 

V(A} cos 'Y + A2 sin 'Y) - A6{3 = C, 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

where C is an integration constant. Furthermore, these equations must 
be solved for boundary conditions consistent with the transversality 
condition, which is rewritten here as 

[dG + A} dX + A2 dh + A6 dm - C dt]~ = O. 

Problems with Three Degrees of Freedom 

If there are no additional constraints, that is, if the two functions 
A and B are identically zero, it is possible to obtain several general 
results by inspection of equations (3.1) through (3.19). 

Concerning the optimization of the thrust direction, (3.15) and (3.17) 
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yield the important result that 

aD 
E = arctan-, 

aL 
(3.20) 

which, for flight at subsonic speeds with a low angle of attack and for 
a parabolic drag polar, leads to the following conclusion: The flight 
performance is extremized when the inclination of the thrust axis is 
equal to twice the downwash angle [14]. 

Concerning the optimization of the thrust modulus, (3.18) and (3.19) 
indicate that the extremal arc is discontinuous and is composed of sub­
arcs of three kinds [17]: 

a. ~ = 0, A7 = 0, 

b. 7] = 0, As = 0, (3.21) 

c. As = 0, A7 = 0. 

Subarcs of type (a) are flown by coasting (T=O); subarcs of type (b) 
are flown with maximum engine output (T = T max); and subarcs of 
type (c) are flown with continuously varying thrust. The way in 
which these different subarcs must be combined depends on the nature 
of the function G and the boundary conditions of the problem. This 
problem is not analyzed here, because of space considerations, but 
must be solved with the combined use of the Euler equations, the 
corner conditions, the Legendre-Clebsch condition, and the Weierstrass 
condition (see, for instance, [15]). 

Problems with One Degree of Freedom 

By specifying the form of the functions A and B for particular cases, 
we can obtain a wide variety of engineering information on the nature 
of the optimum paths for quasi-steady flight. 

Maximum range at a given altitude. Consider the problem of maxi­
mizing the range (G == -X) for a given fuel weight, the flight time 
being free. If we assume that the trajectory is horizontal and the thrust 
and the velocity are parallel, the two additional constraints take the 
form 

A == 'Y = 0, 

B == E = 0, 

(3.22) 

(3.23) 

and the number of degrees of freedom is reduced to one. After laborious 
manipulations, it is possible to eliminate the Lagrange multipliers and 
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to obtain the following result: The optimum path includes subarcs 
along which T = T max and subarcs flown with variable thrust along 
which 

(
VieT T - D) 

J =0 
Va' 

(3.24) 

where e = {3glT is the specific fuel consumption and J is the Jacobian 
determinant of the functions VieT and T - D with respect to the 
velocity and the power setting. In an explicit form, (3.24) can be re­
written as 

a a 
-(VieT) av - (VieT) aa 

=0. a a 
-(T-D) 
av 

-(T - D) 
CJa 

This leads to 

~(eD) =0 
av V ' 

(3.25) 

if the specific fuel consumption is independent of the power setting. 
Now, denote the zero-lift drag by Do and the induced drag by D;. If 

it is assumed that the drag polar is parabolic with constant coefficients 
and that the specific fuel consumption is independent of the speed 
(turbojet aircraft operating at low subsonic speeds), (3.25) leads to 
the well-known result (see [7]) that D;IDo= 1/3. This solution is modi­
fied considerably if compressibility effects are considered [4]. 

Maximum endurance at a given altitude. A modification of the previ­
ous problem consists of maximizing the flight time (G == -t), assuming 
that 'Y = E = 0, that the fuel weight is given, and that the range is 
free. The optimum path includes sub arcs T = T max and subarcs along 
which 

This expression reduces to 

a 
-(cD) = 0, av 

(3.26) 

(3.27) 



14 Aircraft, Rockets, and Guidance 

if the specific fuel consumption is independent of the power setting. 
For the particular case in which the specific fuel consumption is inde­
pendent of the flight speed and the drag polar is parabolic with constant 
coefficients, (3.27) leads to DslDo = 1 (see [24]). 

Maximum range at a given power setting. Consider the problem of 
maximizing the range (G == -X) for a given fuel weight, the flight 
time being free. If we assume that the power setting is given and that 
the thrust is tangent to the flight path, the additional constraints take 
the form 

A == a - Const = 0, 

B == E = O. 

(3.28) 

(3.29) 

If the inclination of the trajectory with respect to the horizon is such 
that cos 'Y ~ 1 and mg sin 'Y « T, the following optimizing condition 
is obtained [4]: 

(
V/CT T- D) 

J =0. 
V h 

(3.30) 

Numerical analyses indicate that, as the weight decreases as a result 
of the consumption of fuel, the flight altitude resulting from equation 
(3.30) increases continuously. The associated flight technique is called 
cruise-climb [25] and is characterized by a constant Mach number and 
a constant lift coefficient in the following cases: 

a. A turbojet-powered aircraft operating at constant rotor speed in 
an isothermal stratosphere. 

b. A turbojet-powered aircraft operating at a constant corrected rotor 
speed in an arbitrary atmosphere. 

For the particular case of a turbojet aircraft flying at low subsonic 
speeds in the stratosphere [25], the optimum ratio of the induced drag 
to the zero-lift drag is Di/Do = 1/2. Compressibility effects cause a 
substantial departure from this result [26]. 

Maximum endurance at a given power setting. A modification of the 
previous problem consists of maximizing the flight time (G == -t), 
assuming that the fuel weight is given and the range is free. Retaining 
all the foregoing maximum-range hypotheses, we may express the 
optimizing condition by 

(
l/CT T - D) 

J = O. 
V h 

(3.31) 
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In analogy with the maximum-range discussion, numerical analyses 
indicate that best endurance is obtained by operating along a cruise­
climb trajectory. For the particular case of a turbojet aircraft flying 
at low subsonic speeds in the stratosphere, best endurance is obtained 
when DilDo = 1. Thus, the optimum operating altitude is the in­
stantaneous ceiling of the aircraft [27]. 

Minimum time to climb. Consider the problem of minimizing the 
time employed in climbing from one altitude to another (G == t), re­
taining constraints (3.28) and (3.29). If we neglect the variations in the 
weight of the aircraft due to the fuel consumption and consider the 
horizontal distance traveled by the aircraft as free, the optimizing con­
dition is given by 

J(v~n'Y T - D ~ mg sin 'Y L - m; cos 'Y) = 0 (3.32) 

and implies that 

a sin2'Y aD 
-(TV - DV) -mg-- -- = o. 
av cOS'Y aL (3.33) 

An important particular case occurs when the induced drag is cal­
culated by approximating the lift with the weight, that is, 

Di(h, V, L) f"J Di(h, V, mg). (3.34) 

In this case, the optimizing condition reduces to subarcs along which 
cos 'Y = 0 and subarcs along which 

a 
- (TV - DV) = o. av (3.35) 

Equation (3.35) states that the fastest quasi-steady ascent occurs when 
the net power (difference between the available power and the power 
required to overcome the aerodynamic drag) is a maximum with respect 
to the velocity for a constant altitude. 

Most economic climb. Under the hypotheses of the minimum time­
to-climb discussion, the climbing technique for minimum fuel consump­
tion (G == -m) can be investigated. The optimizing condition is ex-



16 Aircraft, Rockets, and Guidance 

pressed by 

(

V sin 'Y 

J cT 

V 

and implies that 

T - D - mg sin 'Y L - mg cos 'Y) 
=0 

'Y L 

~ (TV - DV) _ mg sin
2 

'Y aD [1 _ a log (CT)] = o. 
av cT cT cos 'Y aL a log V 

(3.36) 

If the induced drag is approximated as in equation (3.34), then the 
optimizing condition reduces to subarcs along which cos 'Y = 0 and 
subarcs along which 

~(TV - DV) = o. 
av cT 

(3.37) 

Maximum range/or a glider. The problem of maximizing the range 
(G = -X) of a glider (T = 0) is now considered, assuming that the 
flight time is free. Simple manipulations yield the result that 

aD 
-=0. 
av 

4. Nonsteady Flight over a Flat Earth 

The equations governing the nonsteady flight of an aircraft over a flat 
earth are written as 

rpl = X - V cOS'Y = 0, (4.1) 

rp2 = h - Vsin'Y = 0, (4.2) 

. . D(h, V, L) - T(h, V, a) cos E 
rpa = V + gsm'Y + = 0, (4.3) 

m 

. g L + T(h, V, a) sin E 
rp4 = 'Y + - cos 'Y - = 0, (4.4) 

V mV 

rp5 = rh + (3(h, V, a) = 0, (4.5) 

and must be completed by the inequality relative to the thrust modulus, 
which is equivalent to 

rpu = T(h, V, a) - ~2 = 0, 

rp7 = T max(h, V) - T(h, V, a) - '12 = O. 

(4.6) 

(4.7) 
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Considering the possibility of having two additional constraints of the 
form 

cPs == A(X, h, V, 'Y, m, L, a, E) = 0, 

cP9 == B(X, h, V, 'Y, m, L, a, E) = 0, 

(4.8) 

(4.9) 

we formulate the Mayer problem as follows: In the class of functions 
X(t), h(t), Vet), 'Y(t), met), L(t), aCt), E(t), Ht), 'I1(t) that are solutions 
of the system composed of equations (4.1) through (4.9), find that 
particular set that extremizes the difference AG = G, - G., where 
G = G(X, h, V, 'Y, m, t). 

The optimum path is described by the equations of motion in combi­
nation with the following set of Euler-Lagrange equations: 

· aA aB 
Al = AS-+A9-' ax ax (4.10) 

· As(aD aT ) A4 aT . a{3 aT 
A2 = - - - - cos E - - - sm E + A5 - + A6-

m ah ah m V ah ah ah 

a aA aB 
+ A7- (Tmax. - T) + AS-+A9-' 

ah ah ah 
(4.11) 

Xs = - Al cos 'Y - A2 sin 'Y + - - - - cos E 
As (aD aT ) 
m av av 

A4 ( L + T sin E) A4 aT a{3 
+ - -gcos'Y + - - -sin e + A5-

P m mV av av 

aT a aA aB 
+Ae-+A7-(Tmax - T) +AS-+A9-' (4.12) 

av av av av 

X4 = VeAl sin 'Y - A2 cos 'Y) + g (AS cos 'Y - ~ sin 'Y) 

aA aE 
+ AS-+A9-' 

a'Y a'Y 
(4.13) 

· As A4 aA aB 
A5 = - (T cos E - D) + -- (L + Tsin E) + As- + A9-' (4.14) 

m2 m2V am am 

1 ( aD A4) aA aB 0=- A3--- +A8-+A9-' 
m aL V aL aL 

(4.15) 
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1 aT ( ).,.) afJ aT o = - - - ).3 cos E + - sm E +).5 - + ().6 - ).7) -
m aa V aa aa 

aA aB 
+ ).8-+).9-' 

aa aa 

o = - ).3 sin E - - cos E +).8 - + ).9 - , 
T( ).') aA aBo 
m V aE aE 

o = ).6~, 
o = ).7'11. 

These equations admit the following first integral: 

V(Xl cos 'Y + X2 sin 'Y) + X3 (T cos~ - D - g sin 'Y) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

)., (L + T sin E ) + V m - g cos 'Y - ).6fJ = c 

and must be solved for boundary conditions consistent with 

If there are no additional constraints, that is, if A == 0 and B == 0, 
the conclusions of Section 3 concerning problems with three degrees of 
freedom are still valid. Thus, the optimum thrust direction is supplied 
by (3.20). Furthermore, the optimum thrust program is described by 
(3.21) and, therefore, is generally composed of coasting subarcs, maxi­
mum-thrust subarcs, and variable-thrust subarcs. 

On the other hand, if additional constraints are present, the con­
clusions depend to a large degree on the form of the functions A and 
B. In this connection, several particular cases are considered below. 

Vertical Ascent of a Rocket 

For a rocket-powered vehicle in vertical flight with the thrust 
parallel to the velocity, the additional constraints are written as 

1r 
A == 'Y- - = 0, 

2 

B == E = O. 

(4.20) 

(4.21) 

After choosing the control parameter identical to the mass flow, we 
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may represent the engine performance by 

T = aVE, 

{3 = a, 

19 

(4.22) 

(4.23) 

where VE is the equivalent exit velocity (assumed constant). Two par­
ticular cases are now considered: minimum propellant consumption 
and minimum time. 

Minimum propellant consumption. Consider the problem of mini­
mizing the propellant consumption (G == -m) for given end-values of 
the velocity and altitude, the flight time being free. Employing the 
Euler-Lagrange equations, the equations of motion, and the trans­
versality condition and eliminating the Lagrange multipliers, we obtain 
the following result: The optimum burning program includes coasting 
subarcs, maximum-thrust subarcs, and variable-thrust subarcs along 
which (see [28] and [29]) 

(V) aD D --1 +V--mg=O. 
VE av (4.24) 

The way in which these subarcs are to be combined depends on the 
boundary conditions of the problem. For example, if both the initial 
and final velocities are zero (case of a sounding rocket), the initial sub­
arc is to be flown with maximum thrust; the intermediate subarc, with 
variable thrust; and the final subarc, with zero thrust. 

Brachistochronic burning program. The burning program minimiz­
ing the flight time (G == t) is now considered. Assume that the end 
values for the velocity, the mass, and the altitude are prescribed; then, 
the extremal arc is composed of coasting subarcs, maximum-thrust 
subarcs, and variable-thrust subarcs along which (see [30]) 

[D(;E -1) + V :~ -mgJ exp (V :E gt
) = Const. (4.25) 

Level Flight of a Rocket-Powered Aircraft 

For a rocket-powered aircraft operating in level flight with the 
thrust tangent to the flight path, the additional constraints are written 
as 

A == 'Y = 0, 

B == E = o. 
(4.26) 

(4.27) 
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Two particular problems are now considered: maximum range and 
maximum endurance. 

Maximum range. If the range is to be maximized (G == -X) for a 
given propellant mass and given end-velocities, the Hight time being 
free, then the optimum burning program includes coasting subarcs, 
maximum-thrust subarcs, and variable-thrust subarcs along which (see 
[31]) 

(
aD aD) V D + V E - - mg - - V ED = o. 
aV aL 

(4.28) 

For a parabolic polar with constant coefficients, (4.28) yields, as a 
particular case, the results derived in [32]. 

Maximum endurance. A modification of the previous problem con­
sists of maximizing the Hight time (G == -t) for a given propellant 
mass and given end-velocities, the range being free. The optimum burn­
ing program includes coasting subarcs, maximum-thrust subarcs, and 
variable-thrust subarcs along which (see [33]) 

aD aD 
D + V E - - mg- = O. (4.29) av aL 

N onlifting Rocket Trajectories 

For the class of nonlifting paths Hown with the thrust tangent to the 
Hight path, the additional constraints are written as 

A == L = 0, 

B == E = O. 

(4.30) 

(4.31) 

The optimum burning program associated with these paths was deter­
mined for problems with no time condition imposed in [34] and for 
problems in which a condition is imposed on the Hight time in [17]. 

Simplified Analysis of the Climbing Flight of Turbojet Aircraft 

A simplified approach to the problem of the optimum climbing tech­
nique for a turbojet-powered aircraft is now presented. It is assumed 
that the power setting is specified and that the thrust is tangent to the 
Bight path, so that the additional constraints take the form 

A == a - Const = 0, 

B == E = O. 

(4.32) 

(4.33) 
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It is also stipulated that the variations in the weight of the aircraft 
due to the fuel consumption are negligible and that the induced drag 
is calculated by approximating the lift with the weight, that is, 

Di(h, V, L) :::: Di(h, V, mg). (4.34) 

Two particular problems are now considered: minimum time and mini­
mum fuel consumption. 

Brachistochronic climb. Consider the problem of minimizing the 
flight time (G == t) for given end-values for the velocity and altitude, 
the horizontal distance being free. The extremal arc is composed of sub­
arcs of three kinds: vertical dives, vertical climbs, and subarcs flown 
with variable path inclination along which (see [8] and [9]) 

a V a 
-(TV - DV) - - - (TV- DV) = o. 
av g ah 

After defining the energy-height as 

V2 
H = h+~, 

2g 

(4.35) 

and transforming (4.35) from the Vh-domain into the VH-domain, one 
obtains the well-known result ([8], [35]) that 

[~ (TV - DV)] = 0, 
av H-Con.t 

which is the basis of the energy-height method commonly used by air­
craft manufacturers. This method consists of plotting the net power 
as a function of the velocity for constant values of the energy-height 
and of finding the point at which the net power is a maximum. 

Most economic climb. A modification of the previous problem con­
sists of minimizing the fuel consumed (G == -m) for the case in which 
the time and the horizontal distance are free. The optimum climbing 
program includes subarcs of three kinds: vertical dives, vertical climbs, 
and variable path-inclination subarcs along which (see [9]) 

~(TV- D~ ~ V !...(TV- D~ =0. 
av cT -) g ah cT -} 

(4.36) 

If the problem is transformed into the velocity-energy height domain, 

_I· • 

i. 
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this equation can be rewritten as 

[
a (TV - DV)] 
av cT H-Conlt = O. 

More General Investigations of Climbing Flight 

The preceding investigations were carried out under particular hy­
potheses, of which the essential analytical objective was to simplify the 
calculation of the part of the drag that depends on the lift, that is, the 
induced drag. When we remove the above restrictions, the problem of 
the optimum climbing program no longer yields analytical solutions 
(see [36]-[40]). 

As an example, consider the problem of extremizing the flight time 
(G == t) for given end-values for the velocity, the altitude, and the path 
inclination, the horizontal distance being free. If we retain hypotheses 
(4.32) and (4.33) and neglect the variation in the weight of the aircraft, 
the optimum path is described by the following equations of motion: 

it, = V sin 'Y, 

. T-D 
V = --- - g sin'Y, 

m 

i = ~ (~ - g cos 'Y ). 

and by the optimum conditions: 

As a 
}.2 = - - (D - T) 

m ah ' 

[
1 a 

}.S = - A2 sin 'Y + As - - (D - T) 
m aV 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

+ ~ :~ (~ - g cos 'Y) J. (4.41) 

A2vsin'Y+Aa[T:D -gsin'Y+ :~(~ -gcos'Y)]=1. (4.42) 

The system composed of equations (4.37) through (4.42) involves the 
six unknown functions h(t), V(t), 'Y(t), L(t), A2(t), Aa(t) and must be inte­
grated with the help of digital computing equipment. An important 
complication arises from the fact that this is a boundary-value problem, 
that is, a problem with conditions prescribed in part at the initial point 
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and in part at the final point. Thus, the use of trial-and-error techniques 
is an unavoidable necessity. More specifically, the integration of equa­
tions (4.37) through (4.42) requires that the following initial values be 
specified: 

h(O) = hi, 

'Y(O) = 'Yi, 

>'2(0) = >'2i, 

V(O) = Vi, 

L(O) = L i , 

>'3(0) = >'3i. 

Of these, three (hi, Vi, 'Yi) are known from the initial conditions of the 
problem, two (>'2$, ;\3i) must be guessed, and one (Li) is to be determined 
by solving (4.42). As a conclusion, if the multipliers;\2 and;\3 are varied 
at the initial point, a two-parameter family of extremal solutions can 
be generated. The boundary-value problem consists of determining the 
particular member of this family that satisfies all the conditions pre­
scribed at the final point. 

Flight in a Vacuum 

The case of a rocket-powered vehicle operating in a vacuum is now 
considered. Because of the absence of aerodynamic forces, steering can 
be accomplished only by varying the direction of thrust. The equations 
of motion and the Euler-Lagrange equations relevant to this problem 
are obtained from equations (4.1) through (4.19) by setting A = L = 0 
and D = O. 

Problems with two degrees of freedom. If the second additional con­
straint does not exist (B = 0), several general conclusions can be de­
rived. The optimum thrust direction is supplied by 

C1 + C2t 
tan1/!= , 

Cs + C4t 
(4.43) 

where 1/! = 'Y + E is the inclination of the thrust with respect to the 
horizon, and C1 through C4 are integration constants. Thus, the in­
clination of the thrust with respect to the horizon is a bilinear function 
of time [41]. 

Concerning the thrust modulus, the optimum flight program in­
cludes subarcs of only two kinds: coasting subarcs and maximum­
thrust subarcs. No variable-thrust subarc may appear in the compo­
sition of the extremal arc. While this result was independently surmised 
for particular cases ([42]-[44]), the conclusive proof can be found in 
[15]. In [15], it was also concluded that the extremal path may be com­
posed of no more than three subarcs. The way in which these subarcs 
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must be combined depends on the nature of the function G and the 
boundary conditions of the problem. 

Maximum range. Consider the problem of maximizing the range 
(G == -X), assuming that the propellant mass is given, that the initial 
velocity is zero, and that the final altitude is equal to the initial altitude. 
Assume, also, that the velocity modulus at the final point, the path in­
clination at the final point, and the time are free. Under these condi­
tions the extremal arc includes only two subarcs, that is, an initial sub­
arc flown with maximum thrust and a final subarc flown by coasting. 
During the powered part of the flight trajectory, the thrust is inclined 
at a constant angle with respect to the horizon and is perpendicular to 
the velocity at the final point [45], [46]. 

Maximum burnout velocity. Consider the problem of maXlmlzmg 
the burnout velocity (G == - V), assuming that the propellant mass is 
given, the initial velocity is zero, the final altitude is given, the inclina­
tion of the final velocity is zero, and the range is free. Concerning the 
thrust modulus, the trajectory is composed of a maximum-thrust sub­
arc followed by a coasting subarc. Along the maximum-thrust sub arc 
the thrust direction is to be programmed as follows (see [47]): 

(4.44) 

Vertical flight. If the flight path is vertical, the additional constraint 

7C' 

B='Y--=O 
2 

is to be considered. Consequently, one degree of freedom remains­
that associated with the optimization of the thrust modulus. 

Consider, now, the problem of maximizing the increase in altitude 
(G == -h) for given end-velocities and a given propellant mass, the 
flight time being free. The extremal arc for this problem is composed 
of only two sub arcs, that is, an initial subarc flown with maximum 
engine output followed by a final sub arc flown by coasting. 

An interesting case occurs when the flight time is to be extremized 
(G == t) for given end-velocities and a given propellant mass, the in­
crease in altitude being free. This is a degenerate case, insofar as any 
arbitrary thrust program (3(t) is a solution of the Euler-Lagrange equa­
tions. Consequently, the flight time is independent of the mode of 
propellant expenditure. 
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5. Nonsteady Flight over a Spherical Earth 

The equations governing the nonsteady Hight of an aircraft in a 
great circle plane are given by 

. R 
cPl == X - --Vcos'Y = ° 

R:+-h ' 

cP2 == it - Vsin'Y = 0, 

. (R)2 . D(h, V, L) - T(h, V, a) COS E 
cPa == V + g -- sm'Y + = 0, 

R+h m 

. V cos 'Y g ( R )2 L + T(h, V, a) sin E 
cP4 == 'Y - --+ - -- cOS'Y - -------

R+h V R+h mV 

+ 2w cos tp = 0, 

cP5 == rh + (3(h, V, a) = 0, 

cPe == T(h, V, a) - ~2 = 0, 

cP7 == Tmn.(h, V) - T(h, V, a) - '72 = 0 

cPs == A (X, h, V, 'Y, m, L, a, E) = 0, 

cPu == B(X, h, V, 'Y, m, L, a, E) = 0, 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
(5.6) 

(5.7) 

(5.8) 

(5.9) 

where g denotes the acceleration of gravity at sea level, R the radius of 
the earth, X a curvilinear coordinate measured on the surface of the 
earth, h the altitude above sea level, w the angular velocity of the earth, 
and tp the smaller of the two angles that the polar axis forms with the 
perpendicular to the plane of the motion. 

For the problem of extremizing the difference !J.G between the end­
values of an arbitrarily specified function G(X, h, V, 'Y, m, t), the 
Euler-Lagrange equations are written as follows: 

aA aB 
).1 = X8 - + Xg - , 

ax aX 
(5.10) 

R 
X2 = ).1 . V cos 'Y 

(R + h)2 

+ Xa[~(aD _ aT cos E) _ 2g R2 sin 'YJ 
m ah ah (R + h)3 

X [_ sin e aT cos 'Y (V _ 2g ~)J 
+ 4 mV ah + (R + h)2 V R + h 

a{3 aT a(Tmax - T) aA aB + X5 - + Xe- + X7 + X8 - + X9-, (5.11) 
ah ah ah ah ah 
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R >"3(aD aT ) 
h3 = ->"I--COS'Y - >"2 sin "I + - - - -cos E 

R + h m av aV 

>.. [L + T sin E _ sin E aT _ cos "I (1 ~ ~)J 
+. mV2 mV aV R + h + V2 R + h 

a{3 aT a aA aB 
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They must be solved for boundary conditions consistent with 

[dG + Al dX + A2 dh + A3 dV + A4 d", + Aodm - C dt]~ = o. 
For problems with three degrees of freedom (A == 0, B == 0), the 

general conclusions relative to the optimum thrust direction and the 
optimum thrust program are identical to those obtained in the flat­
earth case. 

Generally speaking, the equations of motion and the Euler-Lagrange 
equations must be integrated with the help of digital computing equip­
ment. In a few particular cases, the optimizing condition can be ex­
pressed in an explicit form, that is, in a form not involving multipliers. 
Some of these particular cases are discussed below. 

Optimum Thrust Program for Vertical Flight 

The additional constraints for a vertically ascending rocket with 
thrust tangent to the flight path are expressed by (4.20) and (4.21). 
For the problem of minimizing the propellant consumption (G == -m) 
for given end-values of the velocity and altitude, the burning program 
is composed of coasting sub arcs, maximum-thrust subarcs, and vari­
able-thrust subarcs. If the effects due to the earth's rotation are 
neglected, the optimum condition for the variable-thrust subarcs is 
written as (see [48]): 

D(~ -1) + V aD _mg(~)2 = o. 
VE av R+h 

(5.20) 

Optimum Thrust Program for Level Flight 

For a rocket-powered aircraft in level Hight with the thrust tangent 
to the flight path, the additional constraints are expressed by (4.26) 
and (4.27). Consider the problem of maximizing the range (G == -X) 
for a given propellant mass and given end-velocities (free flight time); 
the burning program includes T=O sub are, T= Tmax subarcs, and vari­
able-thrust subarcs along which (see [46]) 

( D _ L aD) (~ _ 1) + V aD 
aL VE av 

- mg :~ [g(R V~ h) + (R: h)] = O. (5.21) 
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Optimum Flight Program for Equilibrium Paths 

A modification of the previous problem consists of eliminating the 
altitude constraint and of simultaneously optimizing the burning pro­
gram and the angle-of-attack program. If the thrust is assumed tangent 
to the flight path, the first additional constraint is written as 

A == E = 0, (5.22) 

while the second additional constraint is B == O. For a hypervelocity 
glider boosted by rockets, the following simplifications are permissible: 

a. The altitude of the vehicle above sea level is such that 

h 
-«1. 
R 

b. The slope of the flight path with respect to the local horizon is 
such that 

cos 'Y ~ 1, 

sin 'Y '" 'Y, 

mg sin 'Y« D. 

c. Both the Coriolis acceleration and the part of the centripetal ac­
celeration that is due to the time rate of change of the inclination of 
the velocity with respect to the horizon are neglected in the equations 
of motion on the normal to the flight path. t 

For the problem of maximizing the range (G == -X) with a given 
propellant mass and given end-velocity (free time), the angle-of-attack 
program is such that [49] 

aD 
-=0. 
ah 

(5.23) 

Therefore, for each instantaneous velocity, the flight altitude is to be 
adjusted in such a way that the over-all drag is a minimum. Concerning 
the burning program, the optimum path includes only two subarcs, 
that is, a maximum-thrust sub arc followed by a coasting subarc. No 
variable-thrust subarc appears in the composition of the extremal arc. 

t The resulting trajectory is called an equilibrium trajectory, since the weight 
is balanced by the aerodynamic lift plus the portion of the centrifugal force 
that is due to the curvature of the earth. 
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6. Conclusions 

It is clear from the present survey that much has been achieved in re­
cent years in the field of terrestrial flight mechanics. Many problems 
have been conquered. Nevertheless, an even larger domain is still un­
explored both from a theoretical standpoint and with regard to prac­
tical engineering applications. 

There is an immediate need for improved methods for integrating 
the system of Euler equations and constraining equations and for solv­
ing the associated boundary-value problems. An extension of the avail­
able closed-form solutions would be of great value for engineering appli­
cations. In view of the rather weak character of the maxima and 
minima of the mechanics of flight, the finding of short cuts and simpli­
fications applicable to particular problems would also be valuable. 

At the present time, the work in the area of sufficient conditions for 
an extremum lags far behind the work accomplished in obtaining 
necessary conditions. These sufficiency conditions have given rise to 
questions, some with answers still incomplete or unknown, especially 
in connection with discontinuous extremal solutions. 

In the era of supersonic interceptors, intercontinental missiles, satel­
lites, and interplanetary vehicles, variational methods constitute a 
much-needed and important step forward in advance performance cal­
culations. It is the opinion of the writer that, as the industry progresses 
toward faster and faster vehicles, the calculus of variations will become 
the standard, rather than the specialized, tool for optimum performance 
analysis of aircraft and missiles. 
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Chapter 2 

Estimating Performance Capabilities 
of Boost Rockets 

P. DERGARABEDIAN 
AND R. P. TEN DYKE 

1. Introduction 

Before an optimization problem can be solved, it is necessary to define 
an objective function, a cost function, and a set of constraints. This 
chapter reports results of a parametric study of boost rockets. The term 
boost rocket includes rockets launched from the surface of the earth for 
the purpose of achieving near-orbital or greater velocities. The signifi­
cant benefit of this study is the derivation of objective functions for use 
in problems of ballistic missile preliminary design. 

The parameters studied can be divided into two categories: vehicle­
design parameters and trajectory parameters. Vehicle-design parame­
ters describe the physical rocket and include such quantities as weights, 
thrusts, propellant flow rates, drag coefficients, and the like. A set of 
these parameters would serve as a basic set of specifications with which 
to design a vehicle. Trajectory parameters include such quantities as 
impact range, apogee altitude, and burnout velocity. Trajectory 
parameters can also serve, though not uniquely, as specifications for a 
missile system. A particular vehicle system can perform many missions, 
and anyone mission can be performed by many vehicles. We usually 
think of missions in terms of trajectory parameters and vehicles in 
terms of design parameters, and the problem becomes one of relating 
the two. 

The simplest relation is found in the well-known equation: 

Vi = Jig In ri, (1.1) 



34 Aircraft, Rockets, and Guidance 

where Ii = stage i specific impulse (thrust divided by flow rate of fuel), 
g = gravitational constant = 32.2 ft/sec2, 

r i = stage i burnout mass ratio (initial mass divided by burnout 
mass), 

Vi = velocity added during stage i. 
[A list of the symbols used in this chapter is provided in Ap­
pendix C.] 

If several stages are used, the total velocity is the sum of the veloci­
ties added during each stage. Certain assumptions used in the deriva­
tion of the rocket equation limit its usefulness for boost rockets. They 
are (a) no gravitational acceleration, (b) no drag, and (c) constant 
specific impulse. When it becomes necessary to include these effects, 
the most frequent technique is to solve the differential equations of 
motion by use of a computing machine. Since some of the inputs to the 
problem are not analytic, such as drag coefficient as a function of 
Mach number, the machine uses an integration technique that virtually 
"flies" the missile on the computer. In this manner, such variables as 
impact range, apogee altitude, burnout velocity, and burnout altitude 
can be determined as functions of vehicle-design parameters. 

The same vehicle can be flown on many paths, so it is necessary to 
provide the machine with some sort of steering program. The most 
frequently used program for the atmospheric part of flight is the "zero­
lift" turn. On the assumption that the rocket-thrust vector is aligned 
with the vehicle longitudinal axis, the vehicle attitude is programmed 
to coincide with the rocket-velocity vector. For this reason, the zero­
lift trajectory is frequently referred to as the "gravity turn." If a 
rotating earth is used, the thrust is aligned with the velocity vector as 
computed in a rotating coordinate system. Since the missile is launched 
with zero initial velocity, a singularity exists for the velocity angle at 
the instant of launch. All gravity-turn trajectories, regardless of burn­
out angle, must initiate vertically. For that reason, a mathematical 
artifice (an initial "kick" angle) is applied to the velocity vector a few 
seconds after launching to start the turn. 

Most problems can be solved very quickly by the computer, and the 
accuracy of the results is almost beyond question; but there are also 
disadvantages. First, the actual computer time consumed may be small, 
but the time required to prepare the input data and arrange for com­
puter time can be quite long in comparison. Second, the degree of 
accuracy required of results for preliminary design purposes is quite 
different from that required for, let us say, targeting purposes; the high 
accuracy offered by the digital machine frequently goes to waste. 
Finally, while it may be possible to feed the computer one set of data 
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and receive a set of answers, it may at times be preferable to be able 
to view an analytic relation or graph and get a "feel" for the system as a 
whole. For these reasons, simplified-even if approximate-solutions 
to the problem of determining trajectory parameters for boost vehicles 
are quite useful. 

Two techniques may be employed to determine approximate solu­
tions to the differential equations of motion. One technique uses ap­
proximation before the equations are solved. The original model is 
transformed into a simpler one for which the solutions are known. In 
this case one must make a priori guesses as to the accuracy lost in 
simplification. The digital computer, however, has provided the tool 
for making approximations after solution. The model to be simplified 
is the solution of the set of differential equations, not the set itself, 
and the accuracy of the approximations can be readily observed. The 
latter technique has been employed in this study. 

The differential equations are helpful in showing which are the im­
portant variables to consider. A short theoretical analysis (Appendix B) 
shows that the following missile-design parameters, together with a 
burnout velocity angle, determine a trajectory: 

I = vacuum specific impulse, i.e., vacuum thrust divided by 
flow rate of fuel, 

r = burnout mass ratio, 
No = ratio of initial (launch) thrust to liftoff weight, 

CDMA = drag parameter [CDM is the maximum value for drag 
Wo coefficient (function of Mach number), A is the reference 

I area, and W 0 is the liftoff weight of missile], 
2 = ratio of initial (sea-level) specific impulse to vacuum 
I specific impulse, 
tb = burning time = I./No(l - l/r) for constant-weight flow 

rate. 
The trajectory parameters studied are the following: 

Vb = burnout velocity, 
fJb = velocity burnout angle (with respect to local vertical), 
hb = burnout altitude from the earth's surface, 
Xb = surface range at burnout, 
R = impact range. 

It is clear from the number of parameters studied that it would be 
impossible simply to plot the results. Therefore, simplification and 
codification of the results have been a significant part of the study. 
Results are presented in two forms: (a) a set of general equations for 
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determining Vb, hb, and Xb as functions of {3b for selected ranges of missile­
design parameters, with necessary "constants" used in the equations 
presented in graphical form; and (b) a simple equation for maxi­
mum impact range as a function of missile parameters, together with 
many of its derivatives. 

In addition, a table of equations of several free-flight trajectory 
parameters based on the Kepler ellipse is included in Appendix A. 
These equations are well known but are included for convenience. The 
formulas, together with burnout conditions determined from the com­
puter study, will aid in the solution of a large variety of the problems 
frequently encountered in preliminary design. 

The free-flight trajectory for a vehicle is defined by the velocity and 
position vectors at burnout. The velocity vectort is defined in terms of 
its magnitude, Vb, and of the angle, {3b, between it and the local vertical. 
The position vector is defined by an altitude h and surface range Xb. 
The quantities Vb, hb, and Xb are determined as functions of {3b and the 
vehicle-design parameters. 

2. Velocity versus Burnout Angle 

The "theoretical" burnout velocity for a vehicle may be determined 
by equation (2.1). We define the quantity V L as being the loss in 
velocity caused by gravitation and atmosphere. Then 

(2.1) 

where 

(2.2) 

The following empirical equation for V L in terms of vehicle-design 
parameters has been derived by comparing results of several hundred 
machine trajectory calculations, assuming single-stage vehicles, a 
gravity turn, and a spherical, nonrotating earth: 

VL = (gtb - Kqq) [1 - Kq(1 - ~) (:~o)] 
CDMA 

+KD--+K". 
Wo 

(2.3) 

t The term velocity will refer to the magnitude of the velocity vector. If the 
vector is meant, velocity vector will be used. 
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It will be convenient to discuss this equation term by term, so we 
shall designate the three components as follows: 

Va = gravitational loss 

CDMA 
VD = drag loss = K D ---, 

Wo 
Va = nozzle-pressure loss = Ka 

Gravitational Loss 

(2.4) 

(2.5) 

(2.6) 

The gravitational loss was determined by setting the drag equal to 
zero and flying the vehicle to several burnout angles. The term gtb is 
the gravitational loss to be expected from a vertical flight in a constant 
gravitational field. A realistic gravitational field varies as the inverse 
square of the distance from the earth's center, so the term actually 
overestimates this loss. For ranges of vehicles using currently available 
propellants, the differences between the amount gtb and the correct 
gravity loss will be small; and for this equation the difference has been 
included as the constant Kaa. The term 

fits a curve as a function of {3b. The constant Kg was determined by a 
least-squares curve-fitting technique and usually resulted in a curve fit 
that was within 30 ft/sec of the machine results. The above form was 
found to fit actual results better than a more obvious choice, K cos {3b, 
which resulted in maximum differences of 300 ft/sec. Curves for Ka as 
a function of I and No are found in Figure 1, and a curve for Kaa as a 
function of I is found in Figure 2. 

Drag Velocity Loss 

The velocity lost to drag is proportional to the quantity CDMA/Wo, 
in which CDM has been chosen as a single parameter to define all drag 
curves. The reasons for this choice are that (a) most realistic drag 
curves have approximately the same form, except for the absolute 
magnitudes of the values, and (b) the greater portion of the drag loss 
occurs early in powered flight, where CD attains a maximum. The actual 
drag curve used in the machine trajectory calculation is shown in 
Figure 3. The empirical constant KD was obtained by computing the 
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Fig. 1. Kg as a function of vacuum specific impulse, I, and 
initial thrust-to-weight ratio, No. 

difference between burnout velocities for similar vehicles with and 
without drag. All comparisons were made for identical burnout angles. 
The constant was found to be a function of I./No, I3b, and No. The 
function KD was so weakly dependent upon No, however, that this 
effect was disregarded for simplicity in presenting the results; KD is 
shown in Figure 4 as a function of I./No and I3b. 
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For the same propellant Bow rate, the effective thrust at sea-level 
ambient pressure is less than in a vacuum. This may be thought of as 
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a change in specific impulse. The ratio of sea-level specific impulse to 
vacuum specific impulse is dependent upon the chamber pressure, 
nozzle area-expansion ratio, and ratio of specific heats for the com­
bustion products. Thrust coefficient tables are readily available to 
provide this information. It was again assumed that the greater portion 
of the losses would occur early in flight, and all losses were computed 
for vertical trajectories. The results are given in Figure 5, where Ka is 
plotted as a function of 1./1. 
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Fig. 5. Ka as a function of ratio of sea-level to vacuum specific impulse, I,/I. 

Accuracy of Results 

Accuracies to within 150 ft/sec should be expected with the above 
results. Occasionally, cases may occur exceeding these limits. First, 
drag curves may not actually be similar to the one selected for this 
study. Second, simplification of the results to a form facilitating rapid 
computation has necessitated several approximations. It is believed 
that the results as presented will be more useful in preliminary design 
than extremely accurate results would be. On the assumption that the 
typical first stage is designed to achieve about 10,000 ft/sec, the ac­
curacy of 150 ft/sec amounts to 1.5 per cent. 

Application to More Than One Stage 

All computations were performed for single-stage vehicles, but the 
results may be applied to multistage vehicles. 

If the first stage can be assumed to burn out at greater than 200,000 
ft at a velocity angle less than 75°, the drag losses may be assumed to 
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have occurred during first stage. It is important to note that the con­
stant KD is determined on the basis of the velocity burnout angle for 
the first stage. For multistage vehicles, this angle may be 5° to 15° less 
than the angle at final-stage burnout; but for f3b less than 75°, the 
drag losses are relatively insensitive to f3b, and any reasonable estimate 
will probably be satisfactory. 

Under almost any circumstances, the nozzle-pressure loss can be 
considered to occur during the first stage. Constants applicable to the 
first stage should be used. 

The most significant velocity loss from succeeding stages is gravita­
tionalloss. Since the velocity angle is more constant during succeeding 
stages, it is usually satisfactory to assume a constant value between the 
assumed burnout of the first stage and the desired final burnout angle. 
Then the velocity loss for succeeding stages may be computed as 

( R.)2 _ 
V L2 = g ---_ tb2 cos fl, 

R.+h 
(2.7) 

where ~ is an intermediate velocity angle, ii is an "average" altitude for 
second-stage powered flight, and the subscript 2 refers to succeeding 
stages. The difference between burnout angles of the first stage and 
that for the final burnout will depend on the thrust pitch program 
selected for succeeding stages. Several authors have discussed the opti­
mum pitch program for a variety of missions assuming powered flight in 
a vacuum (see [1]-[4]). For a ballistic missile, with impact range the 
desired result, holding the thrust vector constant with respect to a sta­
tionary inertial coordinate system has been found to yield greater 
ranges than the gravity turn. For this case, the change in f3 from first­
stage burnout to final burnout will be comparatively small. In contrast, 
many satellite missions require that burnout angles approach or equal 
90°. Under these circumstances, a gravity turn or one in which the 
vehicle is pitched downward is a more likely trajectory. The resulting 
difference in burnout angles between first and final stages will be quite 
large. 

In any trajectory in which thrust is not aligned with velocity, some 
energy is expended in "turning" the velocity vector. The proportion of 
the thrust that goes to increasing the velocity varies as the cosine of 
the angle of the attack; hence for small angles of attack the loss is small. 

Effect of the Earth's Rotation 
The significant parameter in determining performance is the inertial 

velocity. Thus, the velocity of the launch point must be considered in 
any realistic calculation. A simple, albeit approximate, correction may 
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be made by taking the vector sum of the inertial velocity vector of the 
launch point and the vehicle velocity vector at burnout. In several 
comparisons between this approximate technique and that of a 
machine-determined trajectory for an eastward launch on a rotating 
earth, this approximation underestimated the actual burnout velocity. 
It has not been determined whether this is generally true; but the few 
comparisons indicate that the approximation tends toward COnserva­
tive results. 

3. Burnout Altitude versus Burnout Angle 

The burnout altitude is a particularly important parameter in deter­
mining payload capabilities for low-altitude satellites with circular 
orbits. As with the rocket equation, a closed-form expression may be 
derived for the distance traversed by an ideal rocket in vertical flight 
(constant g, no drag, constant specific impulse), namely 

2 

h * = gItb (1 _ ~) _ gtb • 
T - 1 2 

(3.1) 

It was found that the above form could be modified to account for 
drag, nozzle pressure, and burnout angle as follows: 

(3.2) 

where 
28 

Kh = 93 + - [1 + 5(2 - N o)2], 15: No 5: 2. (3.3) 
r 

Equation (3.2) assumes that the drag and nozzle-pressure losses are 
averaged over the duration of flight. This is not exactly true, but the 
approximation has proven to be satisfactory because the correction is 
small. The constant Kh has been determined empirically. Accuracies 
for (3.2) have been found to agree with machine calculations to about 
20,000 ft. 

In calculating values for multistage vehicles, (3.2) yields the altitude 
of burnout for the first stage. The additional altitude achieved during 
succeeding stages may be calculated by using the first-stage burnout 
velocity as computed from (2.3) and the following relation, derived by 
integrating Ig In T - gt cos fJ at a constant, average flight path angle, p: 

hb2 = hbl + V bltb2 cos P 

{I ( In T2) gt;2 cos P} -+ g 2tb2 1 - --- - cosfJ, 
T2 - 1 2 

(3.4) 
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where the subscripts 1 and 2 refer to the first and second stage, respec­
tively. The above form may be extended to cover additional stages. 
Again, an intermediate value for the flight path angle fJ may be selected 
between the estimated first-stage burnout flight path angle and the 
desired final burnout angle. 

No correction is suggested for use with a rotating earth. In several 
comparisons with machine trajectories assuming an eastward launch 
on a rotating earth, the altitude value for the nonrotating earth was 
approximately equal to that for the rotating earth. 

4. Burnout Surface Range 

The surface range at burnout may be determined by the following 
empirical expression: 

Xb = 1.1h* (~). 
90° 

(4.1) 

The surface range is the least important of the trajectory parameters 
in determining gross vehicle performance. It is important, however, in 
that it adds to the impact range of a surface-to-surface ballistic missile. 
Again, no correction is offered for the rotating earth because, for reason­
ably short flight duration, the increased inertial velocity of the vehicle 
and the velocity of the launch point may be assumed to cancel. Equa­
tion (4.1) has been found to yield surface range at burnout within an 
accuracy of about 10 per cent. 

For multistage vehicles, the same technique used in determining 
altitude may be applied, thus: 

(4.2) 

5. Free-Flight Trajectory 

The calculation of the burnout conditions of a vehicle is only an inter­
mediate step in determining its performance. Performance is usually 
measured in terms of impact range, apogee altitude, or some other end 
condition. Since all vehicles in free-flight follow a Kepler ellipse, values 
for range, apogee altitude, and the like may be determined from the 
burnout conditions by using equations yielding these values in closed 
form. A number of these equations are listed in the first part of Ap­
pendix A. 
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6. Range Equation 

Experience in the optimization of performance of medium- and long­
range missiles at Space Technology Laboratories has shown that the 
trajectory consisting of a short period of vertical flight, followed by a 
gravity turn to staging and a constant attitude (thrust angle with 
respect to launch coordinate system) throughout subsequent stages of 
flight, yields a near-optimum range trajectory. 

In the case of a single-stage missile, the constant-attitude part of 
the trajectory is initiated at an altitude of approximately 150,000 ft. 
The velocity angle of the missile at burnout is optimized for maximum 
range. An examination of the trajectory equations shows that the range 
of a missile is determined by specifying the same vehicle-design parame­
ters that were investigated in the previous section. (In determining 
the empirical equation, however, only one value of the ratio 1.11 was 
used, based on a chamber pressure of 500 psi, an expansion ratio of S, 
and a 'Y of 1.24.) This study was performed at a different time from 
that in the preceding section, and a slightly different drag curve was 
assumed, but it is not expected that the results will be significantly 
different for this reason. 

Machine calculations were performed to determine maximum range 
of vehicles launched from a spherical, nonrotating earth. Here, impact 
range is measured from the launch point rather than from the burnout 
point. Computer data have been used to plot a curve showing the 
quantity V* as a function of missile range. Even with a large variation 
in vacuum specific impulse, varying from 200 to 1,000 sec, all of the 
data points fall essentially on a single curve for a given No and 
CDMAIWo. For any other values of No and CDMAIWo similar results 
are obtained. Figure 6 shows the mean curve obtained for No = 1.5 
and CDMAIWo = 0.000265. 

The results of Figure 6 have been replotted in Figure 7 on semilog 
paper, together with a curve given by 

R = D(eV'/BQ - 1). (6.1) 

For ranges varying from 400 to 6,000 n mi, it can be seen that (6.1) 
quite accurately represents the curve obtained from the machine cal­
culations. We have found that the parameter B is very insensitive to 
changes in No and CDMAIWo, while the parameter D is fairly sensitive 
to such changes. The values of the parameters in Figure 6 are D = SO 
and B=20S. 

The parameter B determines the slope of the fitted curve, and the 
parameter D determines the displacement. The two constants, how-
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ever, must be treated as a pair. Many curves might be fitted to the 
empirical data, giving better accuracies in some ranges and poorer ac­
curacies in others. We have arbitrarily selected the value of 208 sec 
for B, and all values of D have been determined on this basis. If another 
value for B is selected, new values for D must be derived. Figure 8 
shows D as a function of No for various values of CDMA/Wo. 

140 

130 

120 

flO 

100 

c l ) 
DM 0 I--

_ 90 

·e 80 
.=. 
~ 70 
2 
.2 60 

C:) 50 

40 

30 

20 

10 

o 
1.0 

l0-
//-~ 
~ P 

Wo • 

..-~ -
./ 

V 260XIO~ 
V -I- Jox~-6 
~ - I 600XIO-6 

~ AOoxIO~ 

-=-
i 10 ?ox 10-6 

! 

2.0 3.0 4.0 
Initiol thrust-Io-weight ratio, No 

Fig. 8. D factor as a function of initial thrust-to-weight ratio 
for various CDMA/Wo• 

The results of (6.1) can be extended for use from 400 to 10,800 n mi 
(halfway around the earth) by the following argument. Burnout angles 
were selected to maximize range. For ranges beyond 6,000 n mi, the 
use of maximum-range trajectories results in very large range misses 
for errors in burnout speed. This can be seen by the slope of the curve 
in Figure 7. Lofting the trajectories so that the burnout velocity in­
creases as determined by equation (6.1) results in an increase of about 
5 per cent above the maximum-range burnout velocity for the 10,800 
n mi range. At the same time, the lofting decreases the miss from about 
10 n mi to less than 2 n mi for an error in the burnout speed of 1 ft/sec. 
For design purposes, deviation from the maximum-range trajectory for 
ranges beyond 6,000 n mi is reasonable and, in fact, desirable. 

In the case of two-stage missiles we note that 

V* = JIg In TI + J2g In T2. 
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Thus, for two-stage missiles, (6.1) becomes 

R D( 11/B II/B 1) = rl r2 - • (6.2) 

By differentiating (6.2) one may obtain a number of exchange ratios, 
some of which have been derived and are presented in Appendix A. 

Equation (6.2) has been checked many times against results of 
machine computation. To date, the equation has been accurate to 
about 5 per cent of the range. It has been found that the equation is 
useful in two ways. First, if the missile under study has no close counter­
part and no machine data are available, a value for D as found in 
Figure 8 is used. Frequently, however, a vehicle is studied for which 
a small amount of machine data is or can be made available. In this 
case, the value of D is derived by solving (6.2) "backward." Once a 
value of D has been determined for the particular missile system, the 
calculation of perturbations of this missile system may be made by 
using (6.2) and the D value thus derived. 

Appendix A: Formulas 

Miscellaneous Formulas for Kepler Ellipse 

u= 
R. 

E = vI - 2>. sin2 fJ + >.2 sin2 fJ 

2 
VbUb 

>.=­
gR. 

R. = earth radius = 20.9 X 106 ft 

Conservation of Energy 

2 
2gR. 

V2[t] - - = const 
z 

Conservation of Angular Momentum 
V z sin {J = const 

Impact Range Angle from Burnout 

. (1 - >.u sin2 
f3b) • (1 - >. sin2 

f3b) 1/1 = 1r - sm-1 - sm-1 

E E 

Velocity Required To Obtain Impact Range 

Vb = - ----------[
gR. 1 - cos 1/1 ] 1/2 

U U sin2 {Jb + sin {Jb sin (1/1 - f3b) 
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Apogee Altitude 

uR.A sin2 {3b 
hrJ = - R. 

1 - E 

Velocity Required To Obtain Apogee Altitude 

R. + ha 

[

2gR' 1 _ ~ ]1/2 
Vb = -0'- 1 _ (~ sin {3bY 

ua = ---
R. 

Period for Complete Elliptic Orbit 

3/2 
Tb 

T=211'-----­
(2 - A)3/2(gR;)1/2 

Time to Apogee from Burnout 

ta = 2: [ vI -E2 cot (3b + cos-1 C ~ A) J 

Exchange Ratios for Single-Stage Vehicles 

R(n mi) = D(rl/B - 1) 

aR R+D 

aVb Bg 

aR I = _ I(R + D) 
aWb Wo BWb 

aR I(R + D) 
--= 
awo BWo 

aR (R + D) lnr 

aI B 

aWol [B RNo aD J-1 

aWb CDMA/Wo = r 1 - I D(R + D) aNo 

aWol = T 

aWb No.CDMA/Wo 

awo Wo 
--=-
aWL W L 
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Exchange Ratios for Two-Stage Vehiclest 

• l11B I,IB 
R(n IDI) = D(rl r2 - 1) 

aR (R + D) 

aWi BWbl 

aR 12(R + D) aR 
-=- +-
aWb2 BW b2 aWi 

12(R + D) aR I 
aWOl r1lr, BWOI 

aRI II(R+D) 

aWOl Wos = BWOI 

aR (R + D) In rl 

all B 

aR (R + D) In r2 

a12 B 

aWOl WOI --=--
aWL WL 

t N umericalsubscripts refer to stages and are in order of burning period. 
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Appendix B: Analysis 

This appendix describes the theoretical analysis that determined the 
selection of missile-design parameters for this study. This analysis also 
suggested the use of the V L concept in reducing the computer output 
data to a manageable form. 

Equations of Motion 

In determining the performance of a rocket, one is confronted with 
complicated differential equations of motion. Accurate solutions are 
obtained only by using a digital computer. However, without a com­
puter one can obtain a large amount of information about such factors 
as gravitational and atmospheric effects on the performance of boost 
rockets by examining the individual terms in the equations. The basic 
equation of motion is: 

where 

z = nLz, t]K[t] + a[z, z, m], 

z = radius vector from earth center to missile, 

n = thrust-to-mass ratio = ~[~~, 
t = time, 

m [t] = mass of missile, 
K = unit vector in the direction of thrust, 
a = a[gravitation] + a [drag]. 

For a, we use 

2 
gR. z 

a[gravitation] = - - -, 
Z2 Z 

1 (pPCDA) (V) 
a[drag] = - "2 m V ' 

where CD = drag coefficient, a function of Mach number, 
R. = radius of earth, 
V = vehicle velocity vector relative to the atmosphere, 
A = reference area, 
p = air density. 

(B.l) 

(B.2) 

(B.3) 

Replacing a with the terms for a [gravitation] and a[drag] and dividing 
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by g, we obtain 

z = ~ l1,,[t] _ (R~)(~) _ ~PV2(CDA)(V). 
g W [t] Z2 Z 2 W[t] V 

(BA) 

We assume that thrust in a vacuum is proportional to the weight flow 
rate. Thrust as a function of altitude is taken as the vacuum thrust 
corrected for ambient pressure, as follows: 

F[z = 00] = F", = nv, (B.5) 

F(z) = F", [1 - p;:l (1 - ~)], (B.6) 

where p [z 1 = ambient pressure, 
p. = ambient pressure at sea level, 

1./1 = ratio of sea-level thrust to vacuum thrust for identical 
flow rates. I 

Values for 1,/1 may be calculated from tables showing thrust coefficient 
versus expansion-area ratio, ratio of specific heats for exhaust products, 
and chamber pressure. Defining No as ratio of initial thrust to initial 
weight and assuming constant W, we can write the equation of motion 
in terms of missile-design parameters as follows: 

Z I 1 (:. -1):' 
- = No - ----K - No K 
g I. No No 

1--t 1--t 
I. I. 

2 
R. z 1 CDA 

- - -- -pV2-------
Z2 Z 2 Wo(l-~Ot) V 

v 
(B.7) 

In some cases, flow rate will not be constant, but we assume it to be 
so during the first several seconds of flight. Forming the dot product 
of V /V with z, integrating for a gravity turn (thrust aligned with 
velocity), and assuming a spherical, nonrotating earth, we obtain 

NO(!-' - 1)~ 
Vb = Iln r _ f Ib I. p. dt _ Q, 
g 0 No 

I--t 
I. 

(B.B) 
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where 

f tb R2 f tb ! pPCDA 
Q = ~ cos {3 dt + ------ dt. 

o Z2 0 Wo(l-~Ot) 

We define the velocity lost to gravitation, drag, and atmosphere as: 

2 

Va = g ~ COS {3 dt, f
tbR 

o Z2 

NO(~ - l)!!.-
f tb I. P. 

V .. = g 0 dt. 
No 

I--t 
I, 

The design velocity is given by 

V* = Iglnr. 

Hence the burnout velocity becomes 

Vb = V* - Va - VD - Va. 

(B.9) 

(B. 10) 

(B.ll) 

(B.12) 

It is apparent that the velocity lost is intimately tied in with the tra­
jectory itself. Forming the dot product of 1./ g with a unit vector normal 
to the velocity, and again assuming a gravity turn and nonrotating 
earth, we obtain 

g R! . V sin {3 
fJ = - -sm{3 - --. 

V Z2 Z 
(B.13) 

For low velocity, the turning rate is large, and the greater portion of 
turning is to be expected early in the trajectory. The amount of turning 
to be achieved is limited, however, by the desired burnout angle. 
Therefore, it is frequently necessary to keep sin {3 (therefore {3) quite 
small during the early part of the trajectory to prevent too much 
turning. The trajectory can be thought of as consisting of three seg­
ments: (a) a segment during which the vehicle flies steeply, (b) a period 
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of turning, and (c) a segment in which the velocity angle remains 
relatively constant. 

For the early segment of Hight, the velocity can be approximated by 

v == (No - l)gt. (B.14) 

For a given burnout angle, the start of the period of turning depends 
primarily on the initial thrust-to-weight ratio, No. Thus, for low values 
of No (near 1.0), the initial segment of flight is at lower velocity and 
the turning rate is increased. To achieve the same burnout angle as 
that for a higher value of No, the initial segment of the trajectory must 
be steeper (smaller {l). 

The turning rate for a gravity turn is zero when the vehicle velocity 
equals that required for a circular satellite orbit at the same altitude. 

Gravity Loss 

We can use the foregoing to gain insight into the behavior of the 
velocity lost to gravitation and atmosphere. In vertical flight the 
gravity loss should be proportional to tb. For a missile burning out in its 
trajectory at angle {lb, the gravity loss is some fraction of that lost in 
purely vertical flight; and we would expect that fraction to depend on 
No and the proportion of total mass consumed as propellant (1 - l/r). 

It is sometimes proposed that the velocity lost to gravitation is not 
really lost at all but converted into potential energy. It may be ob­
served, however, that a vehicle in powered flight is not a conversative 
system. A ballistic missile does not burn impulsively (i.e., all the propel­
lant is not burned on the ground). Some of the fuel is used to lift the 
unburned fuel, so that the vehicle always ends up at some altitude. 
Energy is imparted to the expended propellant by raising the unburned 
propellant to some finite altitude. 

One way to see what happens is to consider the following comparison 
of two single-stage vehicles that are identical in all respects except 
thrust. Figure 9 compares vertical trajectories for the two vehicles. 
With vehicle (1) we assume an infinite thrust (impulsive burning) and 
with vehicle (2) a finite thrust. Vehicle (1) burns out all its propellants 
at the surface of the earth, achieves a theoretical velocity V*, rises, 
returns to earth, and impacts at the same velocity. For vehicle (2), 
at height hb, we have 

Vlmpaot = V* - gtb + gt; 

(B.15) 

(B. 16) 
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Vimpact = V* - gtb (1 - ::), (B. 17) 

where tb = burning time for vehicle (2), 
tj = time from burnout altitude to impact on reentry. 

The time tj is less than tb, for it takes a time tb to get from a velocity of 
o to Vb, whereas it takes a time tj to get from a velocity of Vb to Vimpact, 

where Vimpact> Vb. The kinetic energy of vehicle (1) at impact is 
., 
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Fig. 9. Comparison of impulsive and finite thrust for vertical trajectory 
(constant gravitational field and no atmosphere). 

essentially proportional to the square of its impact velocity, V*. The 
kinetic energy of vehicle (2) is essentially proportional to the square 
of its impact velocity, and V impact is smaller than the theoretical velocity 
of vehicle (1). As the thrust-to-weight ratio of vehicle (2) increases, 
Vlmpact gets closer to V*, and hence gravity losses decrease. In actual 
missiles the thrust-to-weight ratio is closer to 1 than to infinity because 
the weights of engines and structural components increase with in­
creased thrust. We reach a point where the advantage of higher thrust 
in terms of velocity losses is offset by increase in burnout weight. 

We see that not all of the velocity loss goes into gaining altitude; 
some is lost to the expended propellants. By substituting the appropri­
ate numerical values for an existing vehicle in these equations, it was 
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determined that approximately 25 per cent of the velocity loss went 
into gaining altitude; 75 per cent was lost as equivalent energy to the 
expended propellants. This calculation presents a good argument for 
holding the burnout altitude as low as possible. It is true that low burn­
out altitudes mean larger drag effects, but these are relatively small 
when compared with gravity losses. Aerodynamic effects, of course, 
lead to heating, and heating often means an increase in structural 
weight, but gravitational losses are still a prime concern. 

Drag L088 

The drag loss (B.lO) is dependent on the ratio CDA/Wo, p, and V2. 
The air density p is dependent on altitude and, for qualitative purposes, 
can be considered to decay exponentially with altitude according to 
the following equation: 

(B.18) 

The dependency of the drag losses on V2 is significant during late seg­
ments of flight if the trajectory is flat (low) and if high velocities are 
achieved below, say, 150,000 ft. The effect of V2 for most "normal" 
trajectories is not important, because these values occur when the 
vehicle is beyond the atmosphere. The greatest erosion of velocity oc­
curs when CD is near its peak and early in flight when p is of the same 
magnitude as p,. In a typical trajectory with an initial thrust-to-weight 
ratio of 1.2, the vehicle achieves Mach 1 in 80 sec at about 30,000 ft, 
where the density is approximately 0.37 times that at the earth's 
surface. 

It would be expected that for equivalent trajectories the velocity 
loss due to drag would be sensitive to No. There are two effects, how­
ever: for high No, higher velocities are achieved at lower altitudes, and 
hence the density for Mach 1 velocity is large; but for high No, the 
duration of time through which the drag forces are acting is reduced, 
and the effects tend to cancel. Thus, drag losses are very insensitive 
to No. 

For the most part, V D depends on CDMA/Wo, No/I., and {3 at burn­
out. Because the trajectory changes little with variation in CDMA/Wo, 
the losses can be expected to be proportional to this quantity. The 
CDM (the maximum CD) is the single parameter selected to be char­
acteristic of all drag curves, for reasons stated elsewhere in this chapter. 
The term I./No is equivalent to Wo/W, which determines the change 
in CDMA/W[tJ with time. For the same initial weight, the missile with 
lower I./No has less weight at the time when the drag forces become 
most important. The burnout angle {3 is a measure of the proportion 
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of the total trajectory contained in the atmosphere. As {3 is increased, 
the density associated with each velocity is increased, and the resulting 
velocity loss is greater. 

As the trajectory becomes very flat and high velocities are achieved 
at low altitudes, the effect of V2 and the long duration of the drag force 
combine to increase the drag loss to very high values. It is not expected 
that such trajectories are realistic, as aerodynamic heating may pre­
clude extremely flat burnout angles. Flat burnout angles may be 
achieved if the thrust is reduced to increase the total time of powered 
flight. Usually, thrust levels that are sufficient to boost the vehicle at 
launch yield comparatively short over-all burning times. Thrust may 
be reduced by throttling a single-stage vehicle or, more profitably, by 
staging. If either of these techniques is not sufficient, and if flat burn­
out velocities are required, a coasting period may be inserted between 
burning periods. If restart capabilities are not available or not desirable, 
the remaining alternative is to fly the vehicle steeply during an early 
segment of flight and pitch down after sufficient altitude has been 
achieved, yielding a negative angle of attack. In this type of trajectory, 
considerable velocity (and payload) is lost in turning the velocity 
vector when the magnitude of the velocity is high. To date, no approxi­
mation has been found to determine these "turning losses"; the only 
realistic approach has been to use a computing machine. 

Nozzle-Pre88ure L088 

The term Va results from the fact that thrust is lost when the nozzle 
pressure in the exit plane is less than the ambient pressure. This loss is 
frequently thought of in terms of a reduction in specific impulse. The 
amount of the thrust loss as a function of trajectory parameters is de­
pendent only on the ambient pressure; hence the total velocity loss 
occurs early in powered flight. 

The integral in equation (B,ll) shows that the nozzle-pressure loss 
should also be proportional to No. An increase in No increases the rate 
at which altitude is achieved, however, and reduces the duration of 
flight time at high ambient pressure by an amount also dependent on 
No; the two effects tend to cancel. The effect of I./No, or the change 
in vehicle weight with time, is less significant with the nozzle-pressure 
loss than with the drag loss because the largest percentage of nozzle­
pressure loss occurs early in powered flight. 

Appendix C: Symbols 

A vehicle reference area for drag calculations 
B empirical parameter in simplified range equation 
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CD drag coefficient, function of Mach number 
GDM maximum drag coefficient 
D empirical parameter in simplified range equation 
F thrust (lb) 
g gravitational constant, 32.2 ft/sec2 

hb burnout altitude measured from earth's surface 
h intermediate altitude between first-stage burnout and final 

burnout, used in computing velocity loss in succeeding stages 
h* burnout altitude for vertical trajectory, neglecting atmos-

pheric effects 
i index denoting stage measured from launch 
I vacuum specific impulse, i.e., vacuum thrust divided by flow 

rate offuel 
I. sea-level specific impulse, i.e., sea-level thrust divided by flow 

rate of fuel 
Ka empirical constant used to determine Va 
KD empirical constant used to determine V D 

Kg empirical constant used to determine Vg 
Kgg empirical constant used to determine Vg 
In natural logarithm 
m mass of vehicle 
No initial thrust-to-weight ratio, i.e., launch thrust divided by 

launch weight 
n thrust-to-mass ratio, a function of time 
p atmospheric pressure, a function of altitude 
p. atmospheric pressure at sea level 
R impact range 
R. radius of earth = 20.9 X 106 ft 
r burnout mass ratio = stage initial weight (mass) divided by 

stage burnout weight (mass) 
T total period of elliptic orbit 

time 
ta 
tb 
tJ 
V 
V[t] 
Va 
Vb 
VD 

Vlmpaet 

Vg 

VL 

time from selected trajectory conditions to apogee 
burning time 
time from reaching burnout altitude to impact on reentry 
vehicle velocity vector 
magnitude of velocity as function of time 
velocity lost to nozzle pressure 
magnitude of burnout velocity 
velocity lost to drag 
velocity at impact 
velocity lost to gravitation 
total velocity lost = Va + V D + VII 
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theoretical velocity as determined by rocket equation 
weight of vehicle, a function of time 
vehicle initial weight 
vehicle final (burnout) weight 
weight jettisoned between stages of two-stage vehicle 
weight of payload (includes guidance and other weights that 

do not vary with last-stage size) 
surface range at burnout 
radius vector from earth center to vehicle 
magnitude of z 
angle between vehicle velocity vector at burnout and local 

vertical 
selected f3 between those for first-stage and final-stage burn­

out to be used in determining velocity losses and altitude 
gains 

eccentricity of free-flight ellipse 
unit vector aligned with thrust 
nondimensional parameter = Vb

2U/gR. 
ratio of specific heats of combustion products 
atmospheric density, function of altitude 
brackets indicate functional notation 
non dimensional parameter = R. + hb/ R. 
impact range angle 

partial derivative of u with respect to v with w held constant 
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Chapter 3 

The Optimum Spacing of Corrective Thrusts 
in Interplanetary Navigationt 

J. V. BREAKWELL 

1. The Problem of Corrective Thrusts 

Suppose that a spaceship is in free (i.e., unpowered) flight on its way 
from Earth to Mars. Except in the immediate vicinity of Earth and 
Mars, its trajectory is essentially a heliocentric ellipse. Let us pretend 
that the orbits of Earth and Mars and the "transfer ellipse" are co­
planar. Now, the actual transfer trajectory, if uncorrected beyond some 
point P n, will miss the destination planet Mars by a distance D n- l , to 
which we may attach a sign (e.g., ±) according to whether the space­
ship passes to the left or to the right of Mars (see Fig. 1). Suppose that 
a corrective velocity impulse v~) is to be applied at the point P n on 
the transfer trajectory. This, of course, effectively includes the appli­
cation of a finite thrust over a duration very much smaller than the 
Bight duration. The amount of velocity correction v~) is computed as 
follows: (a) Make an estimate Dn- l of Dn - l based on measurements 
(probably angular) determining present and past positions; (b) Com­
pute v~) so that, in a linearized error theory, 

aD (e) 
- (tn) 'Vn = - fJn- l • (1.1) av 

It should be mentioned here that errors in the estimate Dn- l may 
include biases in the subsequent trajectory calculation due, for example, 
to oversimplifying the computation. Our main concern, however, will 

t A version of this paper appears as Chapter 12 in George Leitmann (ed.), 
Optimization Techniques with Applications to Aerospace Systems, Academic Press, 
New York, 1962. 
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be with random errors in Dn- l due to random measurement errors. 
The "control effectiveness" aD(t)/av certainly decreases toward zero 

as the spaceship moves from Earth to Mars. Consequently if Dn - l were 
estimated correctly, the economical practice in terms of fuel expended 
on velocity correction would be to correct as soon as possible. On the 
average, however, Dn - l is not estimated correctly. This means that a 
correction at P n still leaves us with a miss-distance Dn which may have 
to be reduced by further corrections. This supposedly reduced miss­
distance is 

1\ aD , 
Dn = D n- 1 - Un-l + - (tn) ·Vn, av 

(1.2) 

where the last term is due to a possible velocity mechanization error 
v~. Moreover, we may expect that the error in estimating D n - l , like 
the control effectiveness, decreases toward zero as we approach the 
target planet. The problem we face is that of choosing the correction 
points PI, P2, ••• , PN so as to achieve in some average sense a re­
quired terminal accuracy with a minimum total velocity correction and 
hence a minimum expenditure of fuel for corrective thrusts. 

2. Discussion 

The problem as we have described it so far is two-dimensional. Actually, 
the true situation is three-dimensional, even if the "nominal" transfer 
trajectory is coplanar with the orbit of Mars, since it will be necessary 
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to consider an "out-of-plane" miss-distance component related to out­
of-plane position and velocity components. The out-of-plane one­
dimensional correction problem is independent of the "in-plane" cor­
rection problem, except that both kinds of correction are made simul­
taneously so as to economize on 

N 

L I v!C) I. 
n-l 

Mention should be made at this point of a related problem treated in 
one dimension by Arnold Rosenbloom [1]. Instead of considering an 
average expenditure of fuel, Rosenbloom sets an upper limit on fuel 
available and inquires as to what to do to minimize some average 
terminal error. Mathematically this is a more difficult problem and 
one that will not be discussed further here. 

Returning to our two-dimensional problem, we note that the velocity 
correction v~) is not uniquely determined by the relation (1.1). 
Naturally we resolve this choice by minimizing the individual velocity 
correction magnitude I v~) I. It is easy to see that this amounts to 
choosing v~) either parallel or anti parallel to the vector aD(t)/av, de­
pending on the sign of Dn- 1• It then follows that 

I v!C) I = I /)n-ll . (2.1) 

I :~ (tn
) I 

The control-effectiveness vector aDjav(t) is to be evaluated along the 
nominal correction-free transfer orbit. Its magnitude and direction are 
indicated in Figure 2 for the case of a "Hohmann transfer" from Earth 
to Mars, that is, a 180° transfer along an ellipse cotangential to the 
Earth and Mars orbits, treated as coplanar heliocentric circles. The 
gravitational fields of Earth and Mars themselves were ignored in the 
calculation of aD(t)/av. The abscissa in Figure 2, the so-called mean 
anomaly, increases uniformly with time from 0° to 180°. It appears, 
then, that the effectiveness magnitude I aD(t)/avl decreases to zero 
essentially linearly with time, while the direction of aD (t)/ QV, measured 
from the "transverse" direction perpendicular to the radius from the 
Sun, increases essentially linearly with time from 0° to 90°. Thus, as 
might be anticipated, an early correction is made forward or backward 
along the transfer orbit and the last correction is made perpendicular 
to the motion. 

We may use (2.1) with n increased by 1, together with (1.2) to ex­
press I V~Lll in terms of errors at P" and P nH' In particular, if we 
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neglect the mechanization errors v', we obtain: 

This tells us, for example, that if the latest miss-distance is correctly 
estimated CDn. = Dn.), the corrective velocity depends only on the 
last previous error in miss-distance estimation, regardless of how many 
corrections have been made. On the other hand, if the last previous 
miss-distance estimate were correct, the new correction would be due 
only to an incorrect new estimate of a miss-distance that is really zero. 

If we now disregard any biases in the estimates D, we may assume 
that the differences (D - D) are normally distributed with zero mean 
and with variances and covariances that may be obtained in a straight­
forward manner from assumed variances in the various independent 
angular measurements involved, the errors of which are presumably 
normal with zero bias. The in-plane velocity correction magnitude 
I v~~ll is thus expressed by means of (2.2) as the absolute value of a 
normal random variable with zero mean and computable variance. 

Meanwhile we may use (1.2) to establish a time tN for the last cor-
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rection such that any earlier time would lead to an expected miss 
E{ IDNI } in excess of some allowed terminal error. The "launching" 
error Do before the first correction may be presumed to be, on the 
average, far greater in absolute value than the allowed terminal error. 
What we would like to do, given tN and a root-mean-square (rms) 
launching error UDo, is to choose a sequence of times t1, t2, ••• , tN, with 
the integer N not specified, so that the 90 percentile, say, of the dis­
tribution of 

is as small as possible. This, however, is an awkward quantity to com­
pute because of the correlation between successive terms in the sum. 
A more workable, and closely related, criterion is the minimization of 
the sum 

(2.3) 

We may take advantage here of the fact that the expected magnitude 
E { I x I } of a normal random variable x with zero mean and variance 
u; is just uz v'2/-rr. 

3. The Three-Dimensional Problem 

The three-dimensional situation has been discussed by the author [2], 
[3]. If we denote the out-of-plane miss by D' and choose the z-direction 
perpendicular to the plane of motion, the out-of-plane velocity cor­
rection at P n+1 is 

aD' 

aD' aD' n, (3.1) 
a; (t,.) [D,{_l - D,{-l _ i ,] 

a; (tn+l) a; (tn) 

where small mechanization errors i' are now included. The in-plane 
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velocity correction becomes 

[
nn_l - D,._l ,] 
----- - wn , (3.2) 

aD 
-(tn) 
av 

where aD/av(t) denotes 

• l[aD J2 [aD J2 11 ax (t) + ail (t) , 

and where w' denotes the component of the mechanization error v' in 
the direction of the in-plane vector (aD/ax, aD/ay). Since 

no longer has a simple statistical distribution, in spite of the assumed 
normality of the mechanization errors as well as the measurement 
errors, the criterion (2.3) is replaced by a related criterion, namely, 
that of minimizing 

(3.3) 

which is more easily computable. 

4. Examples 

To carry out a minimization of SN without a digital computer, we must 
make some simplifying assumptions relative to the miss-distance esti­
mates D. We shall consider two examples. As our first example, in two 
dimensions, let us suppose the estimate Dn- 1 is based on measurements 
rather close to the position P n so that they effectively measure position 
and velocity at P n with an uncertainty in velocity that has a substan­
tially greater effect on miss-distance than has the uncertainty in posi-
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tion. In this case, we have 

(4.1) 

where (1~ is the rms velocity measurement uncertainty in the direction 
of aD/av(tn). We shall further suppose that this uncertainty is inde­
pendent of time, as is the rms value (1' of w'. 

The sum SN now simplifies to 

It was shown in [3] that for sufficiently large rms launching error, in 
fact if 

aD . /-2 --,2 
(1Do> 3 - (0)0/ (1. + (1 , 

av 

the optimum choice of correction times tn must be such that tl = 0 
(or as soon as feasible) and 

aD 
- (tn-I) aV 
----=p, 

aD 
-(tn) 
av _ 

a value independent of n, and that the optimum integer N is deter­
mined approximately by the condition p = 3.0. In the case of the 
Hohmann transfer from Earth to Mars, the approximate linearity of 
aD/av as a function of time leads to the following rough description of 
the optimum spacing of corrections: Make the first correction as soon 
as feasible; after any correction proceed two-thirds of the way to the 
target (i.e., wait for two-thirds of the remaining time) before the next 
correction. A similar result was given by Lawden [4]. Figure 3 shows 
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Fig. 3. Fuel expenditure versus spacing ratio (Example 1). 

that the behavior of SN as a function of p is not very sensitive to 
changes in "spacing ratio" from the optimum value 3. This "cascading" 
of corrections is surprisingly effective in reducing errors. Indeed, it was 
shown in [2], [5] that if we restrict our terminal error by the stringent 
requirement that in aiming to "bounce off" Mars in a particular direc­
tion (e.g., en route to Venus) along the "other asymptote" (see Fig. 4), 
our error in the subsequent velocity vector will be no greater than the 
velocity errors incurred at the correction points on the way to Mars; 
then 8 corrections suffice for the Earth-Mars leg, the last correction 
occurring about 31 hr before passing Mars. 

0" 

Fig. 4. Trajectory near planet. 
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The weak assumption in this first example is that D,,_1 is estimated 
on the basis of observations close to P ft. It is certainly more plausible 
to assume that D,,_1 is estimated On measurements at least as far back 
as P ,,-1, if not all the way back to the start-the estimation in the latter 
case taking account of the previous corrective velocities. 

To see the effect this might have on the optimum spacing, we choose 
for our second example a rather different "one-dimensional" situation 
(see Fig. 5). Suppose that a vehicle has a nominal straight-line motion 

Fig. 5. Position determination by sub tended angle. 

from A to B with constant speed V in unit time, but that its actual 
position at time t has a small lateral component z perpendicular to 
AB in a fixed plane. Suppose further that lateral position z at any time 
is measured by means of the exterior subtended angle (J of which the 
standard deviation CT8 is assumed to be independent of time. It is then 
easy to show that the standard deviation of lateral position determi­
nation z is 

CT. = Vt(l - OCT8, 

which is, of course, largest midway from A to B. Perfectly mechanized 
corrective thrusts are to be applied perpendicular to AB. The author 
has shown [3], [5] that if the miss-distance is estimated at any time 
from closely spaced measurements of z all the way back to A, the 
optimum choice of correction times tn is such that 

1 - t,,-1 
---~ 2.62 as t" ~ 1. 
1 - t" 

Figure 6, which is analogous to Figure 3, shows again that the ex­
pected fuel consumption for corrections is not very sensitive to a change 
of the spacing ratio p from the optimum value, in this case 2.62. Also 
included in Figure 6 is a curve representing the relative fuel expendi­
ture, computed for a general constant spacing ratio p, for the case in 
which miss-distance is estimated only on the basis of closely spaced 
measurements since the last correction. 

It is interesting to note here that because of the closeness of the last 
observations, and in spite of the assumed improvement in measure­
ment as we approach B, the neglect of position information prior to the 
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Fig. 6. Fuel expenditure versus spacing ratio (Example 2). 

previous correction is costly. It is also interesting that the optimum 
spacing is not substantially different from that in the first example. 
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Chapter 4 

1. Introduction 

The Analysis and Solution of 
Optimum Trajectory Problems 

STUART E. DREYFUS 

There are extremely attractive alternatives to both the customary 
analytic approach (see [1]) and the method of numerical solution 
(see [2]) usually adopted in the analysis of trajectory problems. This 
chapter will indicate the nature of these alternatives and provide some 
references to fuller discussions. 

2. Analytic Approach 

Although the conventional variational approach characterizes opti­
mality globally by means of comparison functions, it leads to a local 
theory consisting of the Euler-Lagrange differential equations and 
other local conditions. 

On the other hand, dynamic programming [3] and the theory of 
Caratheodory [4] begin with a local characterization of optimality. 
It is shown in reference [5] how the classical results follow easily and 
intuitively from this approach. 

The fundamental difference in approaches stems from the definition 
of an optimal solution. In the classical approach an optimal solution 
is a control function (or set of functions) of an independent variable, 
usually time, that yields a trajectory starting in a specified initial state 
configuration and satisfying certain terminal conditions. 

In dynamic programming a solution is a mapping from state (that is, 
configuration, phase) space to a control space, so that each possible 
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physical state has associated with it an optimal control action. This 
space of controls is so constructed that the trajectory thus determined 
from any feasible initial point satisfies any specified terminal conditions. 

This new approach also allows a simple characterization of a relative 
extremal for the synthesis problem when the domain of the solution 
function is bounded and the solution consists of Euler curves and 
boundary curves [6]. 

3. Numerical Solution 

An attractive method of numerical solution stems from the technique 
of successive approximations, where a nominal curve is guessed and 
then successively improved via a linearized theory. This idea is not new, 
of course, but it has recently found a number of successful applications 
[7], [8], [9]. Experimentation seems to indicate that this approach 
avoids the instabilities inherent in straightforward integration of the 
Euler equations. 

The ordinary differential equations furnished by the Euler equation 
can be thought of as characteristics of the Hamilton-Jacobi partial 
differential equation derived directly via dynamic programming. Use 
of these equations in the approximation method mentioned above is 
preferable to the direct solution of the partial differential equation, or 
recurrence relation, of dynamic programming. The dynamic-program­
ming method of solution, however, though time and space consuming, 
does guarantee the determination of the absolute extremum, and also 
finds applications in the study of stochastic and adaptive variational 
problems, where, as yet, no other general methods exist. 

4. Optimal Guidance 

Deviation from a preprogrammed optimal trajectory often occurs 
during flight, due to unpredictable forces such as wind, and occasionally 
as a result of mechanical malfunctions. Much attention has recently 
been concentrated on this problem. Earlier guidance schemes attempted 
to return to the old trajectory in the event of deviation, or to match 
the old terminal conditions. Current research recognizes that after de­
viation, particularly one of some magnitude, some new trajectory is 
optimal for the new problem at hand. If the optimal decision were 
known as a function of the coordinate in state space-rather than as 
a function of time as in the classical theory-optimal decisions could be 
easily rendered, despite disturbances, no matter how large. 

Theories are currently being developed that determine the optimal 
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decision in the state-space neighborhood of the optimal trajectory. These 
involve second-order analyses, including, in the classical case, the 
second variation [10], [11], and in the dynamic-programming ap­
proach, second partial derivatives [12]. 

5. Stochastic and Adaptive Variational Problems 

Optimal guidance theories recognize that deviations may occur, but 
do not consider the probability of these deviations in advance. Stochas­
tic variational theory seeks an optimal trajectory, usually in an ex­
pected-value sense, taking account of probable disturbances, the 
statistics of which are assumed known. Either the current state or the 
future forces may be statistical [13], [14]. 

If, initially, even the statistical description of the unknown forces, 
or of components of the state vector, is lacking, then the problem is 
called adaptive [15]. 

6. Conclusion 

New problems, approaches, and results are appearing in the optimal­
trajectory and control area. It is becoming obvious that a complete 
solution of a variational problem should consist of a mapping from 
state-variable space to the control space, so that each possible physical 
state has associated with it an optimal control action. If such a mapping 
can be found, both the optimal guidance and stochastic control prob­
lems are solved. 

This mapping can generally be characterized as the solution of a 
partial differential equation. Since computation of the solution is often 
made prohibitive by the dimension of the state description, successive­
approximation techniques are necessary. These schemes, often called 
gradient techniques, exist for deterministic systems. 

While some analytic results exist for special stochastic problems, a 
practical method of numerical solution for general stochastic problems 
is yet to be developed. 
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Chapter 5 

A New Approach to the Synthesis of Optimal 
Smoothing and Prediction Systemst 

EMANUEL PARZEN 

1. Introduction 

This chapter describes a new approach to a wide class of smoothing 
and prediction problems. The method can be applied to either station­
ary or nonstationary time series, with discrete or continuous parame­
ters. It can easily be extended to time series observed in space-time and 
also to multiple time series, that is, those for which the observed value 
at each point of space-time is not a real number but a vector of real 
numbers. 

Over the past few years I have been studying relationships between 
the theory of second-order stationary random functions, time series 
analysis, the theory of optimum design of communications and control 
systems, and classical regression analysis and analysis of variance. In 
the spring of 1957 I observed that reproducing-kernel Hilbert spaces 
provide a unified framework for these varied problems. The results 
obtained in 1957-1958 were theoretical elaborations of this idea, and 
were stated in a lengthy Stanford technical report [1] completed in the 
fall of 1958. Since then I have been concerned with developing examples 
and applications, well aware that the reproducing-kernel Hilbert space 
approach would be of no value unless it could provide new answers as 
well as old ones. It is hoped that the results presented here provide 
evidence that this approach is of value.~ . 

It may be of interest to relate t4i"s approach to one that is being 

t Prepared with partial support of the Office of Naval Research. 
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developed in the Soviet Union by V. S. Pugachev ([21-[5]). Pugachev 
has in recent years advanced a point of view that he calls the method 
of canonic representations of random functions, for which in a recent 
article [5] he makes the following claim: "The results of this article, 
together with the results of [previous 1 papers, permit us to state that 
the method of canonic representations of random functions is the 
foundation of the modern statistical theory of optimum systems." The 
methods to be presented in this chapter appear to provide a more 
powerful and elegant means of achieving in a unified manner the results 
that Pugachev has sought to unify by the method of canonic repre­
sentations. 

It may also be of interest to describe the standard approach to pre­
diction and smoothing problems. The pioneering work of Wiener [6] 
and Kolmogorov [71 on prediction theory was concerned with a station­
ary time series observed over a semi-infinite interval of time, and 
sought predictors having minimum mean square over all possible linear 
predictors. Wiener showed how the solution of the prediction problem 
could be reduced to the solution of the so-called Wiener-Hopf integral 
equation, and gave a method (spectral factorization) for the solution 
of this integral equation. Simplified methods for solution of this equa­
tion in the practically important, special case of rational spectral 
density functions were given by Zadeh and Ragazzini [8] and Bode and 
Shannon [9]. Zadeh and Ragazzini [101 also treated the problem of 
regression analysis of time series with stationary fluctuation function 
by reducing the problem to one involving the solution of a Wiener­
Hopf equation. There then developed an extensive literature treating 
prediction and smoothing problems involving a finite time of observa­
tion and non stationary time series. The methods employed were either 
to reduce the solution of the problem to the solution of a suitable 
integral equation (generalization of the Wiener-Hopf equation) or to 
employ expansions (of Karhunen-Loeve type) of the time series in­
volved. In this chapter, we describe an approach to smoothing and 
prediction problems that may be called coordinate free, which, by the 
introduction of suitable coordinate systems, contains these previous 
approaches as special cases. 

Finally, let us briefly outline the class of problems for which we shall 
give a unified, rigorous, and general treatment. A wide variety of prob­
lems concerning communication and control, or both (involving such 
diverse problems as the automatic tracking of moving objects, the 
reception of radio signals in the presence of natural and artificial dis­
turbances, the reproduction of sound and images, the design of guidance 
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systems, the design of control systems for industrial processes, fore­
casting, the analysis of economic fluctuations, and the analysis of any 
kind of record representing observation over time), may be regarded 
as special cases of the following problem: 

Let T denote a set of points on a time axis such that at each point 
tin T an observation has been made of a random variable X(t). Given 
the observations {X Ct), t E T}, and a quantity Z related to the obser­
vation in a manner to be specified, one desires to form in an optimum 
manner estimates and tests of hypotheses about Z and various func­
tions if;CZ). 

This imprecisely formulated problem provides the general context 
in which to pose the following usual problems of communication and 
control. 

Prediction or extrapolation: Observe the stochastic process X(t) over 
the intervals - T :::; t :::; s; then predict X(s + a) for any a > O. The 
length T of interval of observation may be finite or infinite. The opti­
mum system yielding the predicted value of X(s + a) is referred to 
as an optimum dynamic system if it provides estimates of X(s + a) 
for all a > O. 

Smoothing or filtering: Over the interval s - T :::; t :::; s, observe the 
sum XCt) = SCt) + NCt) of two stochastic processes or time series SCt) 
and NCt), representing signal and noise respectively; then estimate 
SCt) for any value of t in s - T ::; t ::; s. The terminology "smoothing" 
derives from the fact that often the noise N(t) consists of very high­
frequency components compared with the signal SCt); predicting SCt) 
can then be regarded as attempting to pass a smooth curve through a 
very wiggly record. 

Smoothing and prediction: Observe SCt) + N(t) over s - T :::; t ::; s; 
then predict SCs + a) for any a > o. 

Parameter estimation: Over an interval 0:::; t :::; T, observe 
SCt) + N(t), where SCt) represents the trajectory (given by 
SCt) = Xo + vt + at2/2, say) of a moving object and NCt) represents 
errors of measurement; then estimate the velocity v and acceleration 
a of the object. More generally, estimate such quantities as SCt) and 
dSCt)/dt at any time tin 0 :::; t :::; T, when the signal is of the form 
SCt) = (31WICt) + ... + (3qWq(t). 

Signal extraction and detection: Observe X(t) = A cos w(t - T) + N(t) 
over an interval 0 ::; t :::; T; then estimate the parameters A and T, 

or test the hypothesis that A = 0 against the hypothesis that A > O. 
This problem is not explicitly treated in this chapter, although it could 
be handled by means of the tools described here. 
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2. A New Approach to Prediction Problems 

Let us consider a stochastic process or time series {X (t), t E T}, which 
is a family of random variables indexed by a parameter t varying in 
some index set T. Assume that each random variable has a finite second 
moment. Let 

K(s, t) = E[X(s)X(t)] (2.1) 

be the covariance kernel of the time series. It might be thought more 
logical to call the function defined by (2.1) the product moment kernel, 
and reserve the name covariance kernel for the function defined by 

K(s, t) = Cov [Xes), X(t)] = E[X(s)X(t)] - E[X(s)]E[X(t)]. (2.2) 

This terminology seems cumbersome, however, and is not adopted. We 
shall call the function defined by (2.2) the proper covariance kernel. 

Let Z be a random variable with finite second moment for which one 
knows the cross-covariance function pz(·), defined by 

pz(t) = E[ZX(t)], tin T. (2.3) 

A basic problem in statistical communication theory-which, as we 
shall see, is also basic to the study of the structure of time series-is 
that of minimum mean-square error linear prediction: Given a random 
variable Z with finite second moment, and a time series {X(t), t E T}, 
find that random variable, linear in the observations, with smallest 
mean-square distance from Z. In other words, if we desire to predict 
the value of Z on the basis of having observed the values of the time 
series {X(t), t E T}, one method might be to take that linear functional 
in the observations, denoted by E* [Z/ X(t), t E T], of which the mean­
square error as a predictor is least. t 

The existence and uniqueness of, and conditions characterizing, the 
best linear predictor are provided by the projection theorem of abstract 
Hilbert-space theory. (For proofs of the following assertions concerning 
Hilbert-space theory, see any suitable text, such as Halmos [13 ].) 

By an abstract Hilbert space is meant a set H (with members u, 
v, ... , that are usually called vectors or points) that possesses the fol­
lowing properties: 

i. H is a linear space. Roughly speaking, this means that for any 
vector u and v in H, and real numbers a, there exist vectors, denoted by 

t The symbol E* is used to denote a predictor because, in the case of 
jointl:y normally distributed random variables, the least linear predictor 
E* [ZJ X(t), t E T] coincides with the conditional expectation E[ZI X(t), t E T). 
For an elementary discussion of this fact, see Parzen [11], p. 387, or [12], 
Chap. 2. 
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u + v and au, respectively, that satisfy the usual algebraic properties 
of addition and multiplication; also there exists a zero vector 0 with 
the usual properties under addition. 

ii. H is an inner product space. That is, to every pair of points, u and 
v, in H there corresponds a real number, written (u, v) and called the 
inner product of u and v, possessing the following properties: for all 
points u, v, and w in H, and for every real number a, 

a. (au, v) = a(u, v) 
b. (u + v, w) = (u, w) + (v, w), 
c. (v, u) = (u, v), 
d. (u, u) > 0 if u .= o. 

iii. H is a complete metric space under the norm Ilull = (u, U)1/2. 

That is, if {u,,} is a sequence of points such that II U m - unll -+ 0 as 
m, n -+ 00, then there is a vector u in H such that II Un - ull 2 -+ 0 
asn -+ 00. 

The Hilbert space spanned by a time series {X(t), t E T} is denoted 
by L 2(X(t), t E T) and is defined as consisting of all random variables 
U that are either finite linear combinations of the random variables 
{X(t), t E T}, or are limits of such finite linear combinations in the 
norm corresponding to the inner product defined on the space of square­
integrable random variables by 

(U, V) = E[UV]. (2.4) 

In words, L 2(X(t), t E T) consists of all linear functionals in the time 
series. 

We next state without proof the projection theorem for an abstract 
Hilbert space. 

PROJECTION THEOREM. Let H be an abstract Hilbert space, let M be 
a Hilbert subspace of H, let v be a vector in H, and let v* be a vector in M. 
A necessary and sufficient condition that v* be the unique vector in M 
satisfying 

IIv* - vII = min lIu - vII 
UEM 

(2.5) 

is that 

(v*, u) = (v, u) for every u in M. (2.6) 

The vector v* satisfying (2.5) is called the projection of v onto M, and 
is also written E* [vi M]. 
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In the case that M is the Hilbert space spanned by a family of 
vectors {x(t), t E T} in H, we write E*[v/ x(t), t E T] to denote the 
projection of v onto M. In this case, a necessary and sufficient condition 
that v* satisfy (2.5) is that 

(v*, x(t» = (v, x(t» for every t E T. (2.7) 

We are now in a position to solve the problem of obtaining an explicit 
expression for the minimum mean-square error linear prediction 
E* [Z/ X(t), t E T]. From (2.7) it follows that the optimum linear pre­
dictor is the unique random variable in L 2(X(t), t E T) satisfying, 
for all t in T, 

E[E*[Z / X(t), t E T]X(t)] = E[ZX(t)]. (2.8) 

Equation (2.8) may look more familiar if we consider the special case 
of an interval T = {t: a :::; t :::; b}. If one writes, heuristically, 

J b X(s)w(s) ds (2.9) 

to represent a random variable in L 2(X(t), t E T), then (2.8) states 
that the weighting function w*(t) of the best linear predictor 

E*[Z / X(t), t E T] = f b w*(s)X(s) ds, (2.10) 
tJ 

must satisfy the generalized Wiener-Hopf equation 

f b w*(s)K(s, t) ds = pz(t), 
tJ 

a:::; t :::; b. (2.11) 

There is an extensive literature [14], [15], [16] concerning the 
solution of the integral equation in (2.11). However, this literature is 
concerned with an unnecessarily difficult problem-one in which the 
very formulation of the problem makes it difficult to be rigorous. The 
integral equation in (2.11) has a solution only if one interprets w*(s) 
as a generalized function including terms that are Dirac delta functions 
and derivatives of delta functions. 

A simple reinterpretation of (2.11) avoids all of these difficulties. Let 
us not regard (2.11) as an integral equation for the weighting function 
w*(s); rather, let us compare (2.10) and (2.11). These equations say 
that if one can find a representation for the function pz(t) in terms of 
linear operations on the functions {K (s, .), sET}, then the minimum 
mean-square error linear predictor E* [Z I X (t), t E T] can be written in 
terms of the corresponding linear operations on the time series 
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{X(s), sET}. It should be emphasized that the most important linear 
operations are integration and differentiation. Consequently, the prob­
lem of finding the best linear predictor is not one of solving an integral 
equation but rather one of hunting for a linear representation of pz(t) 
in terms of the covariance kernel K(s, t). A general method of finding 
such representations will be discussed in the following sections. In this 
section we illustrate the ideas involved by considering several examples. 

Example 2A. Consider a stationary time series X(t), with covariance 
kernel 

K(s, t) = Ce-P1H1 , (2.12) 

which we have observed over a finite interval of time, a ~ t ~ b. 
Suppose that we desire to predict X(b + e) for e > O. Now, for 
a ~ t ~ b, we have 

pet) = E[X(t)X(b + e)] = Ce-P(b+c-t) = e-PcK(b, t). (2.13) 

In view of (2.13), by the interpretation of (2.10) and (2.11) just stated, 
it follows that 

E*[X(b + e) I X(t), a ~ t ~ b] = e-PcX(b). (2.14) 

The present methods yield a simple proof of a widely quoted fact. 
Define a stationary time series X(t) with a continuous covariance 
function R(s - t) = E[X(s)X(t)] to be Markov if, for any real numbers 
a < band e > 0, the least linear predictor of X(b + e), given X(t) 
over the interval a ~ t ~ b, is a linear function of the most recent 
value X(b) j in symbols, X(t) is Markov if 

E*[X(b + e) I X(t), a ~ t ~ b] = A(e)X(b) (2.15) 

for some constant A(e) depending only on e. 
Let us now establish the following result: 

Doon's THEOREM: Equation (2.15) holds if and only if, for some 
constants C and (J, 

R(u) = Ce-P1ul • 

PROOF: From the fact that 

pet) = E[X(b + e)X(t)] = R(b - t + e), 

(2.16) 

it follows by the projection theorem that (2.15) holds if and only if, 
for every a < b, e > 0, and t in a ~ t ~ b, we have 

R(b - t + e) = A (e)R(b - t). (2.17) 
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By (2.17) it follows that for every d 2:: 0 and c 2:: 0 we have 

R(d + c) = A(c)R(d). (2.18) 

Letting d = 0, we obtain A(c) = R(c); consequently, for every c 2:: 0 
and d 2:: 0, R(u) satisfies the equation 

R(d + c) = R(d)R(c). (2.19) 

It is well known (see Parzen [11], p. 263) that a continuous even 
function R(u) satisfying (2.19) is of the form of (2.16). 

Example 2B. (Reinterpretation of the Karhunen-Loeve expansion.) 
Many writers on statistical communication theory (see [17], pp. 96, 
244, 338-352, [18], and [19]) have made use of what is often called 
the Karhunen-Loeve representation of a random function X(t) of 
second order. The results obtained are clarified when looked at from 
the present point of view. 

The fundamental fact underlying the Karhunen-Loeve expansion 
may be stated as follows: 

MERCER'S THEOREM. If f cp,,(t) , n = 1,2, ... } denotes the sequence 
of normalized eigenfunctions and {~n, n = 1, 2, .. , } the sequence of 
corresponding nonnegative eigenvalues satisfying the relations 

f b K(s, t)cp,,(s) ds = ~ncp,,(t), 
G 

a ~ t ~ b, (2.20) 

f b CPm(t)cp,,(t) dt = oem, n), 
G 

(2.21) 

where oem, n) is the Kronecker delta function, equal to 1 or 0 depending 
on whether m = n or m >= n, then the kernel K(s, t) may be represented 
by the series 

co 

K(s, t) = :E ~"cp,,(s)cp,,(t), (2.22) 
,,-1 

and this series converges absolutely and uniformly for a ~ s, t ~ b. 
If we wish to predict the value of a random variable Z on the basis 

of the observed values X(t), a ~ t ~ b, we may write an explicit ex­
pression for the minimum mean-square error linear predictor as follows: 

co 1 f b 
E*[Z I X(t), a ~ t ~ b] = :E - pz(t)cp,,(t) dt 

1O-l~" G 

x f b X(S)cp,,(s) ds. 
(I 

(2.23) 
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In order to prove the validity of (2.23), we need to prove that the 
infinite series is well defined and that it satisfies (2.8). Now 

E [i b X(S) <Pm(S) ds i b X(t) <pn(t) dt] 

= i bib K(s, t)<pm(S)CPn(t) ds dt = 'Xn~(m, n). (2.24) 

Therefore the mean square of the infinite series in (2.23) is equal to 

co Ilfb 12 E 'Xn a PZ(t)CPn(t) dt • (2.25) 

Consequently, a necessary and sufficient condition that the infinite 
series in (2.23) be well defined is that the infinite series in (2.25) be 
finite, which may be shown always to be the case. Next, we can show 
that (2.8) is satisfied by verifying that, for any t in a ~ t ~ b, 

E [X(t) {E :n i b PZ(S)CPn(S) ds i b X(U)CPn(U) dS} ] 

co fb 
= ~ <Pn(t) PZ(S)CPn(S) ds = pz(t). 

n=l a 
(2.26) 

If it is permissible to interchange the processes of summation and 
integration in (2.23), then we may write 

E*[Z I X(t), a ~ t ~ b] = f bW*(S)X(s) ds, (2.27) 
a 

where 

co 1 f b 
w*(s) = ~ <Pn(S) - PZ(t)CPn(t) dt. 

n_l 'Xn a 
(2.28) 

The condition for the infinite series in (2.28) to be well defined is that 

co Ilfb 12 ~ 2" PZ(t)CPn(t) dt < <Xl. 

n-l 'Xn a 

(2.29) 

It can be shown that if (2.29) holds, then (2.27) is valid. Although 
(2.25) is always finite, however, (2.29) rarely holds. The optimal pre­
dictor is not usually of the form of (2.27). Thus we again see that it 
is not desirable to reduce prediction problems to the solution of the 
integral equation in (2.11). 
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Example 2C. (The method of shaping filters.) Another technique em­
ployed in statistical communication theory is the method of shaping 
filters (see Lanning and Battin [14]). Let X(t) be a stochastic process 
with covariance kernel K(s, t). Let 7J(t) be a white-noise process, and 
let Wet, s) be a weighting function such that for every t we have 

X(t) = f ' Wet, S)71(S) ds. 
-00 

(2.30) 

In words, the time series X(t) is represented as the response to a white­
noise input of a system ("filter") described by a time-varying impulse­
response function Wet, s). If (2.30) holds, then Wet, s) is called a 
shaping filter for the time series X(t). We now show how to use shaping 
filters to solve the prediction problem, given a time series X(t) that has 
been observed over a semi-infinite range, - 00 < t < b. 

If (2.30) holds, and if the cross-covariance function pz(t) may be 
written, for a square-integrable function res), as 

pz(t) = f' Wet, s)r(s) ds, 
-00 

- 00 < t < b, (2.31) 

then 

E*[Z I X(t), - 00 < t ~ b] = f b r(sh(s) ds. (2.32) 
-00 

To prove (2.32), note that, for - 00 ~ t ~ b, we have 

E[f_: Wet, sh(s) ds f_:r(Sh(S) dS] 

= f' Wet, s)r(s) ds = pz(t). 
-00 

(2.33) 

The expression given by (2.32) can be further simplified if we make 
the following reasonable assumptions about the shaping filter. Let 
L, and M t be differential operators of orders nand m respectively: 

n die 
L, = L ale(t) - , 

Ie-O dt le 

m die 
M t = L bk(t) - • 

k-O dt le 

(2.34) 

Let H L(t, 8) and H M(t, s) be the respective one-sided Green's functions 
characterized by the property that any sufficiently differentiable func-
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tion f is given by 

f(t) = f_~ H L(t, s)L.f(s) ds 

= f ' HM(t, s)M.f(s) ds. 
-00 

Suppose that the covariance kernel of X(t) may be written 

f
min (, •• ) 

K (t, s) = M ,H L(t, u)M.H L(S, u) du, 
-00 

or, equivalently, that 

X(t) = f' M,HL(t, S)11(S) ds. 
-00 

85 

(2.35) 

(2.36) 

(2.37) 

For an interesting discussion of how to find differential operators satis­
fying (2.36), see Batkov [20]. It may be shown that if (2.36) holds, 
then the right-hand side of (2.32) may be written in the form 

f b dt f' L,HM(t, u)pz(u) du f' L,HM(t, u)X(u) duo (2.38) 
-~ -~ -~ 

In the particular case M, == 1, (2.38) reduces to 

f b dt{ Ltpz(t)} {LeX(t)}. 
-00 

(2.39) 

For the sake of rigor, it should be noted that in (2.38) and (2.39) the 
highest-order derivative of the observed time series X(t) may not exist, 
and we must then write dX(n-l)(t) for X(n)(t) dt. 

3. General Solution of the Problems of Linear Prediction 

It is possible to give a treatment of problems of prediction and smooth­
ing that distinguishes between the statistical and analytical aspects of 
the problem. Such methods as that of expansions in eigenfunctions 
used in example 2B and that of shaping filters used in example 2C are 
merely analytical means of evaluating certain abstract quantities that 
can be defined without reference to these methods. The statistical prob­
lems of prediction and smoothing may be solved in terms of these ab­
stract quantities once and for all. Indeed, the theory we shall now 
describe underlies the solution of many optimization problems; for 
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example, it includes as a special case the theory of generalized inverses 
of matrices (see Greville [21] for references to the history of the notion). 

The basic tool in our theory is the notion of the reproducing-kernel 
space corresponding to a covariance kernel K. 

THEOREM 3.1. (Existence and uniqueness of the reproducing-kernel 
Hilbert space corresponding to a covariance function.) Let {X(t), t E T} 
be a time series with covariance kernel K(s, t) given by (2.1). Let H(K) 
consist of all functions h( .) defined on T and of the form, for some U in 
L 2(X(t), t E T), 

h(t) = E[X(t)U], for all t E T. (3.1) 

On H (K) define an inner product by 

(h, h)K = EI U12. (3.2) 

Then H(K) is a Hilbert space. Further, H(K) possesses the following two 
properties: (a) for every t E T, 

K(·, t) belongs to H(K), (3.3) 

where K(·, t) is the function defined on T with value at s equal to K(s, t); 
(b) for every t in T and h(·) in H(K), 

h(t) = (h, K(·, t))K. (3.4) 

One calls (3.4) the reproducing property of the kernel K(s, t). Since 
(3.4) holds, we call H(K) a reproducing-kernel Hilbert space, with re­
producing kernel K (for the theory of such spaces, see [22]). The re­
producing-kernel Hilbert space H(K) is uniquely determined by the 
conditions (3.3) and (3.4). 

Intuitively, a reproducing-kernel Hilbert space is a Hilbert space 
that contains a function playing the role of the Dirac delta function 
~(t). It should be recalled that, for square-integrable functions f(·), 

f co f(s)~(s - t) ds = f(t). 
-co 

(3.5) 

Consequently, the kernel K(s, t) = ~(s - t) satisfies (3.4). It does not 
satisfy (3.3), however, and therefore it is not truly a reproducing kernel. 

THEOREM 3.2. (General solution of the prediction problem.) Let 
{ X (t), t E T} be a time series with covariance kernel K (s, t), and let 
H(K) be the corresponding reproducing-kernel Hilbert space. Between 
L 2(X(t), t E T) and H(K) there exists a one-to-one inner product pre-
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serving linear mapping under which X(t) and K(·, t) are mapped into 
one another. Denote by (h, X)K the random variable in L2(X(t), t E T) 
that corresponds under the mapping to the function h(·) in H(K). Then 
the general solution to the prediction problem may be written as follows. If 
Z is a random variable with finite second moment, and if 

pz(t) = E[ZX(t)], 

then 

E*[Z 1 X(t), t E T] = (pz, X)K, (3.6) 

with mean-square error of prediction given by 

E[I Z - E*[ZI X(t), t E T] 12] = EI ZI2 - (pz, PZ)K. (3.7) 

PROOF. The validity of Theorem 3.2 follows immediately from the 
definition of the concepts involved. However, it may be instructive to 
give a proof of the theorem, using the following properties of the 
mapping (h, X)K. For any functions g and h in H(K) and random vari­
ables Z with finite second moment, we have 

E[(h, X)K(g, X)K] = (h, g)K, 

E[Z(h, X)K] = (pz, h)K, 

(3.8) 

(3.9) 

where pz(t) = E[ZX(t)]. Now a random variable in L 2(X(t), t E T) 
may be written (h, X)K for some h in H(K). Consequently, the mean­
square error between any linear functional (h, X)K and Z may be 
written thus: 

E[ 1 (h, X)K - Z 12] = E[(h, X);] + E[Z2] - 2E[Z(h, X)K] 

= E[Z2] + (h, h)K - 2 (pz, h)K 

= E[Z2] - (pz, PZ)K + (h - Pz, h - PZ)K. (3.10) 

From (3.10) it is immediately seen that (pz, X)K is the minimum mean­
square error linear predictor of Z, with mean-square prediction error 
equal to E[Z2] - (pz, PZ)K. The proof of Theorem 3.2 is thus complete. 

Theorem 3.2 represents a coordinate-free solution of the prediction 
problem. The usual methods of explicitly writing optimum predictors, 
using either eigenfunction expansions, Green's functions (impulse re­
sponse functions), or (power) spectral density functions, are merely 
methods of writing down the reproducing-kernel inner product cor­
responding to the covariance kernel K(s, t) of the observed time series. 

Example 3A. (Eigenfunction expansions.) Let X(t), a ~ t ~ b, be a 
time series of which the covariance kernel K(s, t) has the eigenfunction 
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expansion (2.22). The corresponding reproducing-kernel Hilbert space 
consists of all square-integrable functions h(t) on the interval a ~ t ~ b 
such that 

and 

2: - h(t)cp,.(t) dt < 00. co 11fb 12 
"-1~" a 

(3.11) 

The reproducing-kernel inner product between two such functions is 
given by 

(3.12) 

The random variable (h, Xh in L:(X(t), a ~ t ~ b) corresponding to 
h(·) in H(K) under the mapping described in Theorem 3.2 is given by 
(3.12) with g replaced by X. 

Example 3B. (Autoregressive schemes.) The reproducing-kernel 
Hilbert space and inner product corresponding to time series of the 
type described in example 2C can be determined; the reader may 
easily infer them from (2.32) and (2.38). Here let us consider a station­
ary time series X(t), observed over a finite interval a :::; t :::; b, of the 
type that statisticians call an autoregressive scheme. 

A continuous-parameter stationary time series X(t) is said to be an 
autoregressive scheme of order m if its covariance function may be 
written (see Doob [23], p. 542) as 

f 
co ei(·-t)Ol 

R(s - t) = E[X(s)X(t)] = dw, (3.13) 

-co 211' 1 i: ak(iw)m-k 12 
k_O 

where the polynomial 

has no zeros in the right-hand half of the complex z-plane. It can be 
shown that, given observations of such a time series over a finite inter­
val a :::; t ~ b, the corresponding reproducing-kernel Hilbert space 
contains all fUnctions h(t) on a ~ t ~ b that are continuously dif-
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ferentiable of order n. The reproducing-kernel inner product is given by 

(h, g)K = f b (Lth)(Ltg) dt + i: dj,kh(f-l) (a)g(k-l) (a), (3.14)· 
a i,k-O 

where 
m 

Lth = E a"h(m-k)(t), (3.15) 

(3.16) 

The first- and second-order autoregressive schemes are of particular 
importance. 

A time series X(t) is said to satisfy a first-order autoregressive scheme 
if it is the solution of a first-order linear differential equation with input 
a white noise 7]'(t) (the symbolic derivative of a process 7](t) with in­
dependent stationary increments): 

dX - + (:JX = 7J'(t). 
dt 

(3.17) 

It should be remarked that, from a mathematical point of view, (3.17) 
should be written as 

dX(t) + (:JX(t) dt = d7J(t). (3.18) 

Even then, in saying that X(t) satisfies (3.17) or (3.18) we mean that 

X(t) = f t H(t - s) d7J(s), 
-co 

(3.19) 

where H(t - s) = e-fJ(l-I) is the one-sided Green's function of the dif­
ferential operator 

Ld = f'(t) + (:JI(t)· 

The covariance function of the time series X(t) is 

1 
R(t - u) = - e-Plu-tl • 

2(:J 
(3.20) 

The corresponding reproducing-kernel Hilbert space H(K) contains all 
differentiable functions. The inner product is given by 

(f, g) = 1: b (f' + (:Jf)(g' + (:Jg) dt + 2(:Jf(a)g(a). (3.21) 
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More generally, corresponding to the covariance function 

K(s, t) = Ce-Ill.-tl , 

the reproducing-kernel inner product is 

(h, g)K = _1_ {f b (h' + (3h) (g' + (3g) dt + 2{3h(a)g(a)} 
2{3C a 

(3.22) 

= -l-f b (h'g' + (32hg) dt + _1 {h(a)g(a) + h(b)g(b)}. (3.23) 
2{3C /J 2C 

The random variable (h, X)K in L 2(X(t), a :::; t :::; b), corresponding to 
h(·) in H(K), may be written as 

(h, X)K = -1-{{32f bh(t)X(t) dt + f b h'(t) dX(t)} 
2{3C /J /J 

1 + - {h(a)X(a) + h(b)X(b)}. 
2C 

(3.24) 

Note that X' (t) does not exist in any rigorous sense; consequently, we 
write dX(t) where X'(t) dt seems to be called for. It can be shown that 
(3.24) makes sense. In the case that h(·) is twice differentiable, one 
may integrate by parts and write 

f \'(t) dX(t) = h'(b)X(b) - h'(a)X(a) - f bX(t)h"(t) dt. (3.25) 
a /J 

A time series X(t) is said to satisfy a second-order autoregressive 
scheme if it is the solution of a second-order linear differential equation 
with input a white noise 17' (t): 

d2X dX -- + 20: - + ",/2X = .,,'(t). 
dt2 dt 

(3.26) 

If w2 = ",/2 - 0:2 > 0, the covariance function of the time series is 

R(t-u)=-- cosw(u-t)+-sinw\u-t\ . (3.27) 
e-alu-tl { 0: } 

40:",/2 w 

The corresponding reproducing-kernel Hilbert space contains all twice­
differentiable functions on the interval a :::; t :::; b with inner product 

(h, g)K = f b (h" + 20:h' + ",/2h) (g" + 20:g' + ",/2g) dt 
a 

+ 40:",/2h(a)g(a) + 40:h'(a)g'(a). (3.28) 
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To write (h, X)K, we use the same considerations as those in (3.24). 

4. General Solution of the Problem of Linear Smoothing (Regression 
Analysis) 

Let {X(t), t E T} be a time series of which the proper covariance 
kernel 

K(s, t) = Cov [Xes), X(t)] (4.1) 

is known. The mean-value function, 

met) = E[X(t)], (4.2) 

is only assumed to belong to a known class M. One case of particular 
importance is that in which M consists of all finite linear combinations 
of q known functions Wl(t), .•. , wq{t), so that the mean-value function 
is of the form 

(4.3) 

for unknowns {31, ••• , (3q that are to be estimated. 
In this section we consider the problem of estimating various func­

tionals of the true mean-value function m(·); in statistical theory, this 
is known as the problem of regression analysis of time series (see 
Parzen [24]). We seek estimates that (a) are linear in the observations 
{X(t), t E T} in the sense that they belong to L 2(X(t), t E T), (b) are 
unbiased, in a sense to be defined, and (c) have minimum variance 
among all linear unbiased estimates. 

THEOREM 4.1. (General solution of the problem of minimum variance 
unbiased linear estimation.) Let {X(t), t E T} be a time series with 
known proper covariance kernel K(s, t), and unknown mean-value function 
met) belonging to a known class M of functions. Let H(K) be the cor­
responding reproducing-kernel Hilbert space, and assume that M is a 
subset of H(K). 

i. Between L 2(X(t), t E T) and H(K) there exists a one-to-one linear 
mapping with the following properties: for every tin T, and hand g in 
H(K), 

(K(·, t), X)K = X(t), (4.4) 

Em[(h, X)K] = (h, m)K for all min M, (4.5) 

Cov [(h, X)K, (g, X)K] = (h, g)K, (4.6) 

where (h, X)K denotes the random variable in L 2(X(t), t E T) that cor-
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responds under the mapping to the function h(·) in H(K). The subscript 
m on an expectation operator is written to indicate that the expectation is 
computed under the assumption that m(.) is the true mean-value function. 

ii. A random variable (h, X)K in L2(X(t), t E T) is said to be an un­
biased linear estimate of the value met) at a particular time t of the mean­
value function m( .) if 

Em[(h, X)K] = (h, m)K = met) for all min M. (4.7) 

The uniformly minimum variance unbiased linear estimate m*(t) of met) 
is given by 

m*(t) = (E*[K(·, t) I M], X)K, (4.8) 

in which M is the smallest Hilbert subspace of H(K) containing M, and 
E*[K(., t) I MI is the projection onto M of K(·, t). 

iii. In the special case that M is finite dimensional and is spanned by 
q functions WI, . . . , Wq that are linearly independent as functions in 
H (K), we can write explicitly 

(WI, Wl)K ... (WI, Wq)K (X, Wl)K · . 
Wm*(t) = - · . 

(Wq, Wl)K ... (Wq, Wq)K (X, Wq)K 
(4.9) 

Wl(t) wq(t) 0 

(WI, Wl)K ... (WI, Wq)K Wl(t) · . 
WVar [m*(t)] = - · . 

(Wq, Wl)K ... (Wq, Wq)K wq(t) 
(4.10) 

Wl(t) wq(t) 0 

where 

(WI, Wl)K ... (WI, Wq)K . . 
W= (4.11) . . 

(Wq, Wl)K ... (Wq, Wq)K 

More generally, for any linear function 1/I(fJ) of the parameters fJl, ... , fJq, 

(4.12) 

where the constants 1/11, ••• ,1/Iq are known, the minimum variance un­
biased linear estimate of 1/1( • ) is 

(4.13) 
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where {31*, ••• , {3,/ are any solution of the set of normal equations 

[

(WI, ~I)K ••. (WI, ~q)K] [{3t] = [(WI, :X)K]. 

(Wq, WI)K ••• (Wq, Wq)K {3q* (Wq, X)K 

(4.14) 

In particular, if the true mean-value function m(·) is of the form 

m(t) = (3w(t), 

where w( . ) is known and {3 is a constant to be estimated, then 

(W,X)K 
m*(t) = (3*w(t), {3* = , 

(w, W)K 

1 
Var[m*(t)] = ---

(w, W)K 

If the true mean-value function is of the form 

m(t) = (3IWI(t) + (32W2(t), 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

where Wi(·) are known functions and {3I and (32 are constants to be esti­
mated, then 

m*(t) = (3I*WI(t) + (32*W2(t), 

Var Lm*(t)] = WllW~(t) + 2W
I2
WI(t)W2(t) + W 22

W:(t). 

In (4.19), we have 

where 

{31* = Wll(WI, X)K + W12(W2, X)K, 

{32* = W21(Wl, X)K + W22(W2, X)K, 

W 

(WI, WI)K W22= __ _ 
W 

W12 = W21 = _ (WI, W2)K , 
W 

W = (WI, WI)K(W2, W2)K - 1 (Wl, W2)K 12. 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

To establish Theorem 4.1 there is no need to employ the method of 
Lagrange multipliers as so many writers do (see, for example, Lanning 
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and Battin [141, pp. 300-302); rather, we use the projection theorem. 
The minimum-variance unbiased linear estimate of met) may be char­
acterized as the linear functional (h, X)K that, among all linear func­
tionals satisfying 

Em[(h, X)K] = (h, m) = met) = (K(·, t), m)K 

for all m in M, has minimum norm square 

(4.23) 

(4.24) 

By the projection theorem, the function in H(K) having minimum 
norm among all functions satisfying the restraints (4.23) is 
E*[K(·, t)IM]. Consequently, (4.8) has been proved. For a complete 
proof of Theorem 4.1, the reader is referred to [24]. 

Example 4A. To illustrate the use of the foregoing formulas, let us 
consider an example that has been treated by many authors. The 
statement of this problem is given by Lanning and Battin ([14], pp. 
294, 303, 307): "Consider the problem of predicting a future position 
of a moving target by a system which receives target data, in the 
presence of noise, starting at t = 0." Its position Set) is an unknown 
linear function of time t, 

(4.25) 

where {31 and {32 are unknown constants; in Section 6 we consider the 
case in which {31 and (32 are random variables. The observed X(t) is 
assumed to be the sum of Set) and a stationary random noise N(t), 
with covariance function 

R(u) = E[N(ON(t + u)] = Ce-P1ul • (4.26) 

It is desired to use observations X(t), 0 ~ t ~ T, to estimate the parti­
cle's position Set) at any given time t. Since Set) = E[X(t)], the prob­
lem of estimating Set) is equivalent to the problem of estimating the 
mean-value function of an observed time series. Consequently, the 
minimum-variance unbiased linear estimate S*(O of the value of Set) 
at a particular time t is given by the right-hand side of (4.19), with 
Wl(t) = 1 and W2(t) = t. The inner products appearing in (4.22) are 
explicitly given by means of (3.23) as follows: 

{3T+ 2 
(1, l)K = , 

2C 

{32T2 + 2{3T 
(1, t)K = , 

4C{3 



Smoothing and Prediction Systems 95 

{33T3 + 3{32T2 + 3{3T 
(t, t)K =, (4.27) 

6C{32 

2 ({3T)4 + 8({3T) 3 + 24({3T)2 + 24({3T) 
W = (1, I)K(t, OK - (1, t)K = . 

48C2{32 

The variance of the estimate S*(t) is given by the right-hand side of 
(4.20). 

If the time series X(t) is assumed to be normal (or Gaussian), or if 
linear functionals (h, X)K may be assumed to be approximately nor­
mally distributed, then one may state a confidence band for the entire 
mean-value function met) as follows. Given a confidence level a, let 
Kq(a) denote the a percentile of the X2 distribution with q degrees of 
freedom; in symbols, 

(4.28) 

In particular, for q = 2 and a = 95 per cent, Kq{a) is approximately 6. 
It can be shown that if the space M of possible mean-value functions 

has finite dimension q, then the interval 

m*(t) - vKq{a) u[m*(t)] ::; met) 

::; m*(t) + vKq(a) u[m*(t)], (4.29) 

for all t in - 00 < t < 00, is a simultaneous confidence band for all 
values of the mean-value function with a level of significance not less 
than a; that is, if m(·) is the true mean-value function, then (4.29) 
holds with a probability greater than or equal to a. 

5. Iterative Evaluation of Reproducing-Kernel Inner Products 

In this section we give an iterative method of evaluating the re­
producing-kernel inner product (h, h) K and corresponding random vari­
able (h, X)K that makes possible the approximate synthesis of an opti­
mum linear communication or control system in the presence of noise 
for which the covariance kernel K can be of any form and can be 
known either analytically or numerically. The method to be described 
is a gradient method related to the method of steepest descent. For a 
general discussion of the role of such methods in solving integral equa­
tions, see Kantorovich ([25], Chap. III), and in solving partial dif­
ferential equations and algebraic linear equations, see Forsythe and 
Wasow ([26], Sec. 2). 
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Let K(s, t) be a covariance kernel, defined for a ::; s, t ::; b. Let 
H(K) be the corresponding reproducing-kernel Hilbert space. Let 
C(a, b) be the space of continuous functions on the interval a to b. 

For a given function h in H(K), it is of interest to develop methods 
of generating sequences {H n} of functions in C ( a, b) having the proper­
ties that 

f b 2 

lim E[ I (X, h)K - Hn(t)X(t) dt I ] = 0, 
n .. ao (I 

(5.1) 

(h, h)K = !~n; f b f b Hn(s)K(s, t)Hn(t) ds dt. (5.2) 

It is easily shown that sequences {Hn} satisfying (5.1) and (5.2) 
exist. As in example 2B, let values >-" be the eigenvalues (arranged in 
decreasing order, >-1 ~ >-2 ~ ... ) and let <Pn(·) be the corresponding 
eigenfunctions of the kernel K(s, t). Then a function h belongs to 
H(K) if and only if 

and 

(h, h)K = :E - h(t)CPn(t) dt < 00. '" 1 If b 12 
,,-1 >-" .. 

(5.3) 

Consequently, define 

" 1 fb 
Hn(t) = :E <pk(S) - h(S)cpk(S) ds. 

k-l >-k .. 
(5.4) 

Clearly H n (·) belongs to C(a, b). 
It may be verified that 

Hn(s)K(s, t)Hn(t) ds dt = :E - h(t)<Pk(t) dt f bfb " 11fb 12 
a a k_l >-k a 

(5.5) 

and 

f b " 1 fb fb 
Hn(t)X(t) dt = :E - h(S)CPk(S) ds X(t)CPk(t) dt. 

a 10_1 >-k a a 
(5.6) 

Therefore the sequence defined by (5.4) satisfies (5.1) and (5.2). It is 
not computationally convenient, however, to use (5.4), inasmuch as it 
involves the calculation of eigenvalues and eigenfunctions. 
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Define a transformation T on functions H in C(a, b) as follows: 

TH(t) = f b H(s)K(s, t) ds, 
a 

a:::; t:::; b. (5.7) 

It can be proved that 

f b H(t)X(t) dt = (TH, X)K, (5.8) 
a 

f b f b H(s)K(s, t)H(t) ds dt = (TH, TH)K. (5.9) 
a a 

Next, define a sequence of functions Hn as follows: Let a be a con­
stant to be specified. Let Ho(t) = 1, or some other function in C(a, b). 
For n ~ 1, lett 

Hn+I = Hn - a(THn - h). (5.10) 

We claim that if a is chosen in an interval specified by (5.18) or (5.21), 
then the sequence Hn defined by (5.10) satisfies (5.1) and (5.2). To 
prove this assertion it suffices to show that 

E[ 1 (h, X)K - (THn, X)K 12] = II (h - THn)ll~ ~ 0 as n ~ cx:l. (5.11) 

From (5.10) we may write 

THn+I - h = (THn - h) - aT(THn - h) 

= (I - aT) (THn - h), (5.12) 

where 1 is the identity operator, Ih(t) = h(t). From (5.12) it follows 
that, for n ~ 0, 

THn - h = (I - aT)n(THo - h). (5.13) 

We next note that for any function gin H(K), 

g(t) = E CPn(t) f b CPn(S)g(S) dt, (5.14) 

00 fb 
Tg(t) = L CPn(t)Xn CPn(S)g(S) ds, 

n=l a 
(5.15) 

II (I - aT)gll~ = L - CPn(S)g(S) ds {I - aXn} 2. 
00 l{fb }2 

n-l Xn a 
(5.16) 

t Leonov gives an iterative procedure similar to the one given here in his very 
interesting paper [27], which he correctly describes as the first application of the 
methods of functional analysis to the problem of determining the weight function 
of an optimal system. Although he mentions the problem of establishing the 
convergence of the procedure, the proof he sketches does not seem to be satis­
factory. 
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Defining g = THo - hand 1'" = Jab 'P,,(S)g(S) ds, from (5.13) and 
(5.16) we have 

(5.17) 

Let a be chosen so that, for every integer m, 

-1 < 1 - a).m < 1 or 0 < a < 2/).m. (5.18) 

If (5.18) holds, then for any integer M 

(5.19) 

which tends to 0 as we first let n tend to CX), and then let M tend to CX) 

[note that the last term in (5.19) is the remainder term of a convergent 
series]. We have thus shown that if (5.18) is satisfied, then (5.11) holds. 
Further, the procedure converges monotonically, in the sense that 

(5.20) 

If M is a constant such that maxm ).m < M, then (5.18) is satisfied 
if we choose a so that 

0< a ~ 21M. 

A convenient choice for Mis 

'" fb M = 1:).m = K(t, t) dt. 
..... 1 a 

It should be remarked that (5.19) implies that 

!~ ~b 1 (TH" - h)(t) 12 dt = 0, 

since, for any g in H(K), 

1 g(t) 12 ~ IlglI~K(t, t), 

fbi g(t) 12 ~ IIgll~ f b K(t, t) dt. 
a a 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

The iterative method given by (5.10) undoubtedly does not converge 
very quickly. Other iterative methods (such as an analogue of the con­
jugate gradient method [28]) can be developed and should be studied. 
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6. Random Regression Coefficients 

Let {X (t), t E T} be a time series of the form 

X(t) = met) + yet). 

99 

(6.1) 

It is assumed that yet) is a time series with known mean-value and 
covariance functions: 

E[Y(t)] = 0, E[Y(s)Y(t)] = Ry(s, t). (6.2) 

It is assumed that met) is of the form 

met) = f3IWI(t) + ... + f3qWq(t), (6.3) 

where the functions WI, ... , Wq are known, and f31, ••. ,f3q are 
random variables independent of {Y(t), t E T} with known means 

Jl.j = E[f3j], j = 1, .. " q, 

and covariance matrix r = {ri;}, where, for i, j = 1, ... , q, 

r ij = Cov [f3i, f3j]. 

(6.4) 

(6.5) 

We call the foregoing set of assumptions the case of random regression 
coefficients. 

The problem of estimating (or predicting) the value of met) under 
the assumption of random regression coefficients has been considered 
by Lanning and Battin ([14], pp. 305-309) and Bendat ([29], Chap. 9). 
We here consider the more general problem of estimating a parametric 
function 

(6.6) 

Strictly speaking, the problem before us is one of pure prediction. The 
minimum mean-square error predictor of the random variable if;(f3) , 
given the observations X(t), t E T, is the projection E*[if;(f3)/X(t), 
t E T]. Consequently, our aim in this section is to give an explicit 
formula for the projection. 

One answer to this problem was given in Section 2, namely 

E*[if;({3) / X(t), t E T] = (p, X)Rx ' (6.7) 

where 

Rx(s, t) = E[X(s)X(t)], pet) = E[if;({3)X(t)]. (6.8) 
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We easily verify that 

Rx(s, t) = E[m(s)m(t)] + E[Y(s) Y(t)] 

q 

= L: Wj(S)(rjk + #li#lk)Wk(t) + Ry(s, t), (6.9) 
1.10-1 

q 

p(t) = E[1f({j)X(t)] = L: 1fj(rjk + #ljllk)W,,(t). (6.10) 
i.k-1 

We now propose to obtain an expression for the best estimate of 
1f«(j) in terms of the reproducing-kernel inner product corresponding to 
R y , and the matrices 

(6.11) 

THEOREM 6.1. The minimum mean-square error linear predictor of 

1f«(j) = 1f1i31 + ... + 1fq{jq, 

given the observations {X (t), t E T}, is 

where 

(6.12) 

(6.13) 

[ 
~~] = (r-1 + K)_1![(W1, ~)RY] + r-1[ ~1 ]). (6.14) 

{jq (wq, X)Ry Ilq 

The estimates fh*, ... , {3q* have covariance matrix 

{ [ * *]} -1-1 Cov (3;, 13k = rK(r + K) , 

and mean-square error matrix 

{ [ * * ]} -1 -1 E ({3i - (jj) ({j" - 13k) = (r + K) . 

(6.15) 

(6.16) 

Application. To understand the meaning of Theorem 6.1, let us con­
sider the case q = 1. We then observe that X(t) = (3w(t) + Yet), 
where Yet) satisfies (6.2), wet) is a known function, and {3 is a random 
variable (independent of yet), t E T) with mean Il and variance 0"2. 
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The minimum mean-square error linear predictor of {3 is 

{3*=------
1 - + (w, W)R 
0-2 

0-2(W, W)R 
Var [{3*] = -----

1 -+ (W,W)R 
0- 2 

{
I }-I E[I {3* - {312] = Var [{3] - Var [{3*] = 0-

2 
+ (w, W)R • 
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(6.17) 

(6.18) 

(6.19) 

On the other hand, if {3 is assumed to be an unknown constant rather 
than a random variable, then the minimum mean-square error unbiased 
linear estimate of {3 is 

{3* = (w, X)R , (6.20) 
(w, W)R 

1 
Ep I {3* - {31 2 = Varp [{3*] = -- . (6.21) 

(W,W)R 

One sees that for 1'0 = 0 and 0- very large, (6.17) and (6.20) yield ap­
proximately the same expression for {3*. This result was previously ob­
tained by Lanning and Battin ([14], p. 309). 

PROOF OF THEOREM 6.1. Let us write tr to denote transpose, and 
define vectors 1'0, {3, (3*, wet) in the obvious manner; for example, 
y;tr = (Y;I, ••• , Y;q). To prove (6.13), it suffices to prove that for every 
tin T we have 

E[{3X(t)] = E[{3*X(t)]. (6.22) 

Let A be the second-moment matrix of (3, defined by A = l' + p.p.tr. 

Clearly we have 

E[{3X(t)] = Aw(t). 

To evaluate the right-hand side of (6.22), let us write 

{3* = (1'-1 + K)-IV + 1'0, 
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where Vtr = (VI, ... , V q), Vi = (Wi! X - E[X]Ry ), and E[X] is the 
function of t defined by E [X] (t) = p.trw(t). It may be verified that 

E[VX(t)] = (KI' + I)w(t) = (1'-1 + K)l'w(t), 

E[i3*X(t)] = I'w(t) + p.p.trw(t) = Aw(t). 

The proof of (6.22) is complete. To prove (6.15), verify that 

{Cov [i3;,i3:]} = (l'-l+K)-lE[VV
tr
](I'-l+K)-\ 

E[VV
tr

] = (KI' + I)K = (1'-1 + K)I'K. 

To prove (6.16), verify that 

{E[(i3; - {3i)(i3: - (3k)]} = {Cov [{3;, {3k]} - {Cov [{3;, {3:]} 
= I' - I'K(I'-1 + K)-1 

= {1'(1'-1 + K) - I'K} (1'-1 + K)-1 

= (1'-1 + K)-I. 

7. Minimum-Variance Linear Unbiased Prediction 

Let {X (t), t E T} be a time series of which the proper covariance 
function, 

K(s, t) = Cov [Xes), X(t)], (7.1) 

is known. The mean-value function met) = E[X(t)] is known only to 
be a member of a class M of possible mean-value functions, where Mis 
a subset of the reproducing-kernel Hilbert space H(K) corresponding 
to K. To make the discussion concrete we assume that M consists of 
all functions met) of the form 

(7.2) 

where the functions WI, ••• , Wq are known. 
Let Z be a random variable for which we know the variance Var [Z] 

and the covariance 

pz(t) = Cov [Z, X(t)]. (7.3) 

The mean of Z depends on the true mean-value function as follows: 

E[Z] = (h, m)K for every m in M, (7.4) 
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for some h in H (K). If M consists of all functions of the form (7.2), then 

E~[Z] = 1/IIJ31 + ... + 1/Iq(3q (7.5) 

for some known constants 1fl' ... ,1fq. 
One case of particular importance is Z = X(to), where to does not 

belong to Ti then 1/1/ = Wj(to) for j = 1, ... , q. 
It is desired to predict Z, given the observations {X(t), t E T}. 

Now if the means E[X(t)] and E[Z] were known, then the minimum 
variance linear predictor Z* of Z would satisfy 

Z* - E[Z] = (Pz, X - m)K, 

from which it follows that 
q q 

(7.6) 

Z* = (pz, X)K + 2: (3."". - 2: (3.(pz, W.)K. (7.7) 
i=1 i-I 

One might think it plausible in the case of unknown means that the 
minimum-variance unbiased linear predictor is given by 

(7.8) 

where (3.*, ••• , (3q* are any solution of the "normal equations" given 
in (4.14). We now show that this conjecture is correct. 

THEOREM 7.1. Let {X(t), t E T} have known proper covariance kernel 
K, and unknown mean-value function m belonging to a subspace M of 
H(K). Let Z be a random variable with cross-covariance function 
pz(t) = Cov [Z, X(t)]i and let its mean, for each m in M, be given by 
Em[Z] = (h, m)K, where h belongs to H(K). The minimum-variance 
linear unbiased predictor Z* of Z, given the observations {X(t), t E T}, is 

Z* = (X, PZ)K + (X, E*[h - pz 1 M])K, (7.9) 

with mean-square error of prediction 

E 1 Z* - Z 12 = Var [Z] -lIpzll~ + IIE*[h - pz I MlII~. (7.10) 

REMARK. A linear estimate (X, g)K is said to be an unbiased linear 
predictor of Z, if for all min M we have 

Em[(X, g)K] = (m, g)K = (m, h)K = Em[Z]. (7.11) 

The notion of unbiased linear prediction was first considered by Dolph 
and Woodbury [30]. 
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PROOF. The mean-square error of prediction of an unbiased linear 
estimate of Z is given, independently of m, by 

EI Z - (X, g)K12 = Var [Z - (X, g)K] 

= Var [Z] + Var [(X, g)K] 

- 2 Cov [Z, (X, g)K]. (7.12) 

It may be shown that pz belongs to H(K) and that 

Cov [Z, (X, g)K] = (pz, g)K. (7.13) 

In view of (7.13), we can write 

E I Z - (X, Y)K 12 = Var [Z] + (y, g)K - 2(pz, Y)K 

= Var [Z] - IIpzII~ + IIg - pzII~. (7.14) 

Letting g = pz + I, we see that the best predictor is given by 
Z* = (X, PZ + f)K, where I is the function of minimum norm IIfIIK 
satisfying the constraints 

(m, f)K = (m, h - PZ)K for all m in M. (7.15) 

It is clear that 1= E* [h - pzl M]. The proof of Theorem 7.1 is now 
complete. 

Let us now exhibit an explicit formula for the best predictor X*(t) of 
X(t), for t not in T. From Theorem 7.1, it follows that if met) is of 
the form of (7.2), then 

WX*(t) = -

(WI, WI)K ••• (WI, Wa)K . . 
. . 

(Wa, WI)K ••. (wa, Wa)K 

dl(t) da(t) 

(X, Wa)K 

(X,K(·, t»K 
(WI, WI)K ••• (WI, Wg)K dl(t) . . 

daCt) 
WE I X*(t) - X(t) 12 = . . 

(wq, WI)K •.• (wg, Wq)K 

where 
dl(t) da(t) 

dj(t) = Wj(t) - (Wi> K(·, t»K, 
d(t) = K(t, t) - (K(·, t), K(·, t»K, 

(WI, WI)K ••• (WI, Wg)K . . 
W= . . 

(wa, WI)K .•• (wa, Wa)K 

d(t) 

(7.16) 

(7.17) 

(7.18) 
(7.19) 

(7.20) 
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8. Decision Theoretic Extensions 

The problems considered in the foregoing discussion have all in­
volved linear estimates chosen according to a criterion expressed in 
terms of mean-square error. Nevertheless the mathematical tools de­
veloped continue to play an important role if one desires to develop 
communication theory from the viewpoint of statistical decision theory 
or any other theory of statistical inference (see [31], [32], [33]). All 
modern theories of statistical inference take as their starting point the 
idea of the probability density function of the observations. Thus in 
order to apply any principle of statistical inference to communication 
problems, it is first necessary to develop the notion of the probability 
density function (or functional) of a stochastic process. In this section 
we state a result showing how one can write a formula for the prob­
ability density functional of a stochastic process that is normal 
(Gaussian). 

Given a normal time series {X(t), t E T} with known covariance 
function 

K(s, t) = Cov [Xes), X(t)] (8.1) 

and mean-value function met) = E[X(t)], let Pm be the probability 
measure induced on the space of sample functions of the time series. 
Next, let ml and m2 be two functions, and let PI and P 2 be the prob­
ability measure induced by normal time series with the same covariance 
kernel K and with mean-value functions equal to ml and m2, respec­
tively. By the Lebesgue decomposition theorem it follows that there is 
a set N of PI-measure 0 and a nonnegative PI-integrable function, 
denoted by dP2 IdP I , such that, for every measurable set B of sample 
functions, 

P 2(B) = f dP
2 
dP I + P 2(BN). 

B dPI 

(8.2) 

If P 2(N) = 0, then P 2 is absolutely continuous with respect to PI, 
and dPddP I is called the probability density function of P 2 with respect 
to Pl. Two measures that are absolutely continuous with respect to 
one another are called equivalent. Two measures PI and P 2 are said to 
be orthogonal if there is a set N such that PI(N) = 0 and P 2(N) = 1. 

It has been proved, independently by various authors under various 
hypotheses (for references, see [24], Sec. 6), that two normal prob­
ability measures are either equivalent or orthogonal. From the point 
of view of obtaining an explicit formula for the probability density 
function, the following formulation of this theorem is useful. 
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THEOREM (Parzen [24]). Let Pm be the probability measure induced on 
the space of sample functions of a time series {X(t), t E T} with covari­
ance kernel K and mean-value function m. Assume that either (a) T is 
countable or (b) T is a separable metric space, K is continuous, and the 
stochastic process {X(t), t E T} is separable. Let Po be the probability 
measure corresponding to the normal process with covariance kernel K 
and mean-value function m(t) = O. Then Pm and Po are equivalent or 
orthogonal, depending on whether m does or does not belong to the re­
producing-kernel Hilbert space H(K). If mE H(K), then the probability 
density functional of Pm with respect to Po is given by 

dPm { 1 } {(X, m) = -- = exp (X, m)K - - (m, m)K . 
dPo 2 

(8.3) 

Using the concrete formula for the probability density functional of 
a normal process provided by (8.3), we have no difficulty in applying 
the concepts of classical statistical methodology to problems of in­
ference on normal time series. 
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Chapter 6 

Adaptive Matched Filters t 
THOMAS KAILATH 

1. Introduction 

There has been a considerable interest in the field of adaptive systems 
in the past few years [1], [2]. Since the subject is still relatively new, 
few optimally adaptive systems have been found. In fact, there is still 
discussion [3] of the characteristics and properties that entitle a system 
to be called "adaptive." 

We have encountered, as a result of some studies in communication 
through randomly varying media, an "optimum" receiver that we feel 
qualifies as an adaptive system. The adaptive features of this system 
materialized from direct calculation of the optimum receiver and 
were not inserted on the basis of any intuitive or heuristic arguments. 
Nevertheless, our directly, if somewhat fortuitously, obtained adaptive 
receiver enables us to compare some of its characteristics with intuitive 
ideas and guesses regarding its detailed adaptive and optimal nature. 
This leads us to some interesting conclusions; not surprisingly, we 
find that intuitive extrapolations and guesses about optimal adaptive 
procedures are not always confirmed mathematically. 

The problem we shall examine is depicted in Figure 1, where one of a 
set of known signals X(k){t) of finite duration is transmitted through a 
random linear time-variant channel operator, or filter, A. The result 
is a waveform, Z(k) (t), which is further corrupted by additive noise, n{t), 

t This work was sponsored in part by the U.S. Army Signal Corps, the Air 
Force Office of Scientific Research, and the Office of Naval Research. The paper 
is based on work being done in partial fulfillment of the requirements for the 
degree of Doctor of Science in the Department of Electrical Engineering at the 
Massachusetts Institute of Technology. The author wishes to express his grati­
tude to Dr. R. Price of Lincoln Laboratory, M.LT., and to Professors J. M. 
Wozencraft and W. M. Siebert of the Department of Electrical Engineering, 
M.LT., for helpful discussions. 
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before becoming available to the receiver. The final received signal is 
called y(t). Let T denote the duration, or the interval of observation, 
of y(t). We then define the optimum receiver, in the sense of Woodward 
[4], as being one that computes the set of a posteriori probabilities 
[p(X(k)(t) I y(t»], or functions that are monotonically related to these 
probabilities. 

The term "optimum" merits some explanation. Woodward has shown 
that all the information concerning the transmitted signals that is 
present in the received signal y(t) is contained in the set of a posteriori 
probabilities [p(X(k)(t) I y(t»]. These probabilities can then be weighted 
and combined according to different criteria [5], [6 ]-for example, 
Neyman-Pearson, ideal observer, and minimum average risk-to make 
the final decision as to which signal X(k)(t) was actually present. In 

r----------------, 
I I 

Y I Decision : 
I bOl 

D 

I I L _______________ ~ 

Fig. 1. The communication system. 

Figure 1, the box marked D denotes this latter processing. We shall 
consider only how to obtain a posteriori probabilities, and this will de­
fine our optimum receiver. 

Our first task in the following discussion will be to set up a model for 
the channel and signals. After setting up this model, we are able to 
state our assumptions more definitely and then to proceed to the com­
putation of the optimum receiver. A discussion of some of the adaptive 
features of this receiver is given in Section 4. This leads to the deriva­
tion of the "Rake" system, which employs a practically demonstrated 
adaptive receiver that is designed on the basis of the previous mathe­
matical theory, tempered by some heuristic ideas combined with 
engineering balance and judgment. In Sections 1 through 5, we are 
concerned only with detection in a single time interval. In Section 6 
we shall discuss some questions connected with the step-by-step de­
tection of successive signals transmitted through a channel having a 
long memory, that is, a channel with statistical dependencies extended 
in time for periods considerably greater than a single-waveform dura­
tion. In the concluding Section 7 we give a detailed summary of the 
paper. This section may profitably be read before beginning Section 2. 
Finally, in Appendix A we derive the Wiener minimum-variance esti-
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mator, and in Appendix B we give results for a threshold or weak 
(defined more precisely by Equation (5.4» signal case. 

Because of the general nature of this symposium, most of the par­
ticipants not being communication theorists, we have included much 
tutorial material, which has had to be drawn from previously pub­
lished papers by the author. However, the material in the latter half 
of Section 4, in Sections 5 and 6, and in Appendix B is largely new. 

2. A Model for the Channel 

The channel operator A is assumed to be a linear time-variant filter. 
No restriction is placed on its memory or rate of variation. We shall 
replace the continuous channel by a discrete approximation, thus 
converting it into a sampled-data channel. This is done chiefly for 
convenience in analysis and interpretation; the same results can be 
obtained by using Grenander's method of observable coordinates [7], 
[8], as has already been done to some extent by Davis [9] and 
Helstrom [10]. We might also point out that in these days of increasing 
digital-computer usage, not only are such sampled-data channels be­
coming increasingly important but it is often almost mandatory to re­
place continuous channels by their discrete approximations. The solu­
tion for the continuous case, which we shall not discuss here, can 
usually be found as the limit in the mean, as the sampling density 
becomes infinite, of the finite discrete solution. A discussion of some 
of the mathematical problems involved is given in [7] and [8]. 

In setting up the discrete model, the first step is to obtain a discrete 
analogue of the convolution integral 

z(t) = fo 'aCt - T, t)X(T) dT, (2.1) 

where aCT, t) is the impulse response of the filter, that is, the response of 
the filter measured at time t to an impulse input T seconds ago. We 
shall assume that aCT, t) = 0 for T < 0, so that the filter can be physi­
cally realized. The input to the filter is x(t), with x(t) = 0 for t < o. 
A discrete approximation to (2.1) can be written 

m 

z(m) = :E a(m - k, m)x(k), (2.2) 
k-D 

where we choose the samples on a suitable time scale, one unit apart. 
A convenient interpretation of (2.2) is given by the sampled-data 

delay line filter shown in Figure 2. This "multipath" model serves as 
a convenient discrete approximation to the actual channel. We should 
note that this model, with its uniform tap arrangement, does not need 
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otloy line 

Fig. 2. A simple delay-line channel model. 

to bear any direct structural relationship to the actual channel con­
figuration, though in some cases-for example, channels with paths at 
known delays-it is convenient to make them coincide. 

We now introduce matrix notation and rewrite (2.2) in the form 

z = Ax, (2.3) 

where x and z are column matrices of the sample values of x(t) and 
z(t), and A represents the channel. (Boldface symbols will be used 
throughout this chapter to denote matrices.) As an illustration, let us 
consider a three-tap channel. Then we have 

lZJO = [::~~~ aO~l)] [xoJ . 
Z2 a2(2) al(2) Xl 

o a2(3) 

(2.4) 

We shall write ak(m) = a(m, k) as akm for convenience. Notice that 
the matrix has all zeros above the main diagonal. This reflects the 
realizability condition: no output before an input. 

We can rewrite (2.4) with the roles of channel and signal inter­
changed [11], 

aOO 

aOI 

l}[~' 
000 0 

n Xl Xo 0 0 au 

o 0 
(2.5) 

Xl Xo al2 

o 0 o 0 

a22 J 
a23 
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z = Xa, (2.6) 

where X is a matrix in which the elements are sample values of x(t), 
and z is a matrix in which the sample values belonging to each tap are 
arranged sequentially in a column. The advantage of rewriting the 
convolution formula in this way is that it enables us to compute the 
covariance matrix of z, ell .. , in a straightforward fashion. Thus, if we 
assume that the tap functions are composed of a mean component aCt) 
and a zero mean random component a·(t), then we can write, with an 
obvious notation, 

Z = Z, + z = A'x + Ax = Xa' + xa. (2.7) 

Now the covariance matrix of z is given by 

ell •• = (z - z)(z - z), = (z,)(z,), (2.8) 

= Xa'a~X, = X«I».uX,. (2.9) 

The bar denotes an ensemble average over the random processes con­
trolling the taps, and t denotes the transpose of the matrix. To illustrate 
again, using for notational simplicity only two taps and deleting the 
superscript r, we have 

[

XO 0 0 OJ 
«1» .. = 0 Xl Xo 0 

o 0 0 X 

(2.10) 

Notice that ell AA can be conveniently partitioned, as shown, into 
blocks representing the self- and crossvariances of the sample values 
of the different tap functions. Thus, if the tap functions were statis­
tically independent, all "off-diagonal" blocks would be zero. The co­
variance matrices «I»AA and «1» .. are either positive semidefinite or 
positive definite. If they are positive semidefinite, we have singular 
covariance matrices; examples are provided by random time-invar­
iant channels [11]. 
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A more detailed discussion of the channel model-including a dis­
cussion of time-invariant channels, narrow-band channels, multi-link 
(for example, diversity) and/or multidimensional (for example, 
optical) channels is given in [11] and [12]. 

3. Assumptions for the Problem 

Using the discrete model and the matrix notation, we can write (see 
Fig. 1) 

Y = Z(k) + n = Ax(k) + n = Arx(k) + Ax(k) + n, (3.1) 

where X(k) represents the kth transmitted signal and y represents the 
received signal. Our major assumptions will be the following: (a) The 
output signal Z(k) has a Gaussian distribution for each k. (b) The noise 
n is also Gaussian, not necessarily white for the present discussion. t 
(c) The noise has zero mean and a nonsingular covariance matrix «I»nn. 
(d) The noise n and the output signal Z(k) are statistically independent 
for all k. (e) The statistics of Z(k) and n are known a priori. 

Under our assumptions, for each X(k), y is a Gaussian signal with 
mean Z(k) = Ax(k) and covariance matrix «I»~ = «I»~:) + «I»nn. Since 
the sum of a positive definite and a positive semidefinite quadratic 
form is always positive, the covariance matrix «I»~ is nonsingular 
even when «I»~) is singular. We may therefore (see [13]) write 

(
1 )N12 1 

p(y 1 X(k» = 211" 1 «I»~~ 11/2 

1 { (k) (k) -1 (k) } 
·exp [-- (y - Z ),[«1»1111] (y - z ) ], 

2 
(3.2) 

where N, the number of samples in the vector y, is related to the dura­
tion, say T seconds, of the observation yet). 1 «1»11111 denotes the deter­
minant of «1»1/11' Thus far, no assumptions as to the channel or the noise 
being stationary are required. These specifications cover a wide variety 
of channels, particularly in scatter-multipath communications. Of 
course, our assumptions also exclude several types of channels, espe­
cially those with paths for which the delays fluctuate randomly, be­
cause then the Z(k) no longer have Gaussian statistics. We can show, 
however, that for threshold conditions our results hold for arbitrary 
channel statistics, provided the noise is Gaussian [11], [14]. (See also 

t In the present discrete formulation, noise will be called "white" if samples 
of it have equal variance and are uncorrelated. 
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Appendix B.) We should also mention that many of the results ob­
tained apply to the detection of Gaussian signals in Gaussian noise. 

In fact, for these results the filter A need not be linear as long as it 
yields a Gaussian random function Z(k) when X(k) is the input. However, 
the assumption of linearity enables us to obtain more explicit results 
for communication channels (see the following and [11 ]). 

4. The Optimum Receiver 

In [11] a fairly comprehensive discussion of optimum receiver struc­
tures obtained directly by using (3.2) has been given. Here we are inter­
ested only in one particular structure, namely, that having the 
estimator-correia tor property mentioned in Section 1. We shall there­
fore give the estimator-correlator derivation here only for the re­
stricted case of additive white Gaussian noise, t and for variety we shall 
use a different method of proof from that given earlier [15]. 

Computation of A Posteriori Probabilities 

As stated in Section 1, the optimum receiver essentially computes the 
set of a posteriori probabilities [p(X(k) , y) ]. We shall show how to obtain 
one of these, say p(X(k) , y). If we use Bayes' rule and assume that the 
a priori probabilities p(X(k» are known, then what we essentially have 
to compute is the "forward" probability p(y' X(k». For this we havet 

p(y' x) = f co p(y I Xa)p(a) da. 
-co 

(4.1) 

Since y = Xa + 0, where a has a Gaussian distribution with mean a 
and covariance matrix cIt AA, and where 0 has zero mean and covariance 
matrix Nol (I is the identity matrix), (4.1) can be rewritten 

p(y' X) 
1 1 

(27f-)N/2N~2 (27r)M'21 cItAA 11/2 Q(y, X), 

where 

Q(Y, X) = f co exp (-~ {(y - Xar - Xll)c_
1
_ (y - Xar - Xll) 

-co 2 No 

+ a~cIt~~ar} ) dar. (4.2) 

t The colored-noise case may be reduced easily to the white-noise case by 
means of whitening filters [15]. 

t The Buperscript k has been dropped for convenience but will be restored 
whenever necessary to avoid confusion. 
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The letters Nand M denote the number of samples in the y and a 
vectors, respectively. We have here assumed that cJ»AA is nonsingular; 
we shall show later how to handle the situation in which cJ» AA is singular. 
The integral can be evaluated using a result given in Cramer [13], and 
we finally get 

p(y I X) = K1exp {-e' ~oxa)} 
{

I (-1 X,X)-1 } ·exp --2 (y - xa),X cJ»AA +-- X,(y - xa) 
2No No 

(4.3) 

where 
-1 

{ 
YtY + ii,XtXii 1 / (No 1+ XtXcJ»AA) /1/2} 

Kl = exp --- . 
2No (2'II-)M/2 No 

This can be further rewritten as 

1 [-YtY] (k) Kl = exp -- K 
(211")M/2 2No 2, 

(4.5) 

where the superscript has been reintroduced to show that K2 depends 
on (k). Now, restoring superscripts everywhere, we have 

(4.6) 

In comparing the a posteriori probabilities, it is convenient first to 
take logarithms of these quantities, so that we have 

1 [1 ( X(k) X(k) )-1 
A'(k) = -- -- (y - X(k)ii)tX(k)cJ»AA 1+ t cJ»AA 

2No No No 

·X, (y - X ii) + 2y,Xii (k) (k) ] 

(k) (k) " + [In K2 + In p(x )] + In (,,-, ... ). (4.7) 

The first term on the right-hand side gives the receiver structure; that 
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is, it determines the operations to be performed on the received data 
in testing the kth hypotheses. We shall henceforth denote this term by 
A (k). The second term is a "bias," or weighting, term. The last term is 
the same for all hypotheses and can be omitted in comparisons of 
the A'(k). 

Before proceeding to examine the receiver structure, we must clarify 
the question of the singularity of «ItAA. Clearly in (4.3) and (4.4) the 
proofis based on a nonsingularity of «ItAA; in (4.4), however, «ItAl does 
not appear, and we might therefore suspect that this equation is valid 
even w.hen «ItAA is singular. This is in fact so, and can be proved in 
several ways. Two methods are given in [15] and [16]; here we shall 
indicate another argument. Since the sum of a positive definite matrix 
and a positive semidefinite matrix is always a positive definite (and 
therefore nonsingular) matrix, the matrix [«ItAA + Ell, where E > 0, is 
positive definite. We can use this perturbed matrix in all the steps of 
our preceding proof, and at the end-in (4.4)-we may let E ~ O. This 
sort of "continuity" argument is often used in matrix analysis [17]. 

The Receiver Structure 

Let us now return to the study of the receiver, for which we have 

X(k)X(k) -1 

(k) 1 ( X(k)_) X(k) (I + I flJAA ) A = - y - a I fIJ AA m No 

(4.8) 

It is instructive first to consider the case in which the random com­
ponent of the channel, ar , is zero and in which the channel is therefore 
completely known to the receiver as ii. In this case, we have 

(4.9) 

Thus the essential receiver operation is the formation of the dot, or 
inner, product of y and Z(k); this is equivalent, for continuous signals, 
to the crosscorrelation of y and Z(k), and therefore the A(k) computer 
can be represented by the block diagram of Figure 3. This conclusion is 
of course a trivial extension of the well-known result for the detection 
of known signals X(k) in white Gaussian noise. The presence of the 
known channel A is taken into account by modifying X(k) by A to 
produce Z(k) at the receiver, which treats the Z(k) as known signals in 
additive Gaussian noise. 
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Now, however, suppose that channel A is purely random; in this 
case, the Z(k)( = A'X(k») are still signals corrupted by additive noise, 
but the receiver cannot reconstruct the Z(k) since the channel A' is 
random and not completely known at the receiver. It is not easy to 
say offhand what the optimum operation in such a situation should be. 
One suggestion might be to use a known sounding signal to estimate 
the channel, and then, if we assume that the channel is not varying 
too rapidly, to use this estimate of the channel as the actual channel 
during the transmission of a succeeding information-bearing signal 
[18]. Another suggestion might be first to consider the signal being 
tested as having actually been sent, then to make a maximum-like-

y(t)-----{ 

"r---- ----, 
I I 
I I 
I I 
I I 
I .r(kl(/) I L ________ .l 

To 
decision 

box 

Fig. 3. An element of the optimum receiver for the case of a signal 
perturbed by a known channel A. 

lihood t estimate of the unknown channel parameters, and finally to 
use these estimated values as the actual parameter values in computing 
the likelihood function [8], [19]. A third suggestion might be to form 
an "average" estimate of the channel and use this average channel to 
generate signals Z(k) at the receiver, to be correlated with the received 
waveform y. 

All of these suggestions seem reasonable and in fact are often used 
in adaptive systems of many kinds [1], [2] that operate in the face of 
changing and incompletely known system parameters. In our case of 
Gaussian statistics, however, we can find the ideal receiver explicitly 
and thereby rigorously test those intuitive notions in at least one 
concrete case. 

For the purely random channel, with ii = 0, from (4.8) we have 

NoA(k) = y,XcI»AA(NoI + X,XcI».U)-lX,y. (4.10) 

This may be rewritten as 

(k) (k) (k) 
NoA = y,H Y = y,z. , (4.11) 

t By maximum likelihood estimator, we mean here the value of a(k) that 
maximizes p(yl X(k)a) j see [13]. 
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where 

(4.12) 

A block diagram for the receiver structure implied by (4.11) is 
shown in Figure 4. 

y(f)--.__-I 

Estimating 
filter 

To 
decision 

box 

Fig. 4. An element of the optimum receiver for a purely random 
channel A for white Gaussian noise. 

Equation (4.11) is of the same form as (4.9); that is, the optimum re­
ceiver crosscorrelates the received signal y against a waveform z~t). 
In this case, however, z~t) is not known a priori at the receiver but is 
computed from the received data y by means of the operations repre­
sented by H(k), and H(k) depends on the channel and noise covariances 
cI»AA and NoI, and also on the signal X(k). On closer examination it is 
found that the series of operations (4.12) on y that give z~t) are equiv­
alent to the optimum extraction of Z(k) from y = Z(k) + n on a mini­
mum-error-variance criterion. This is perhaps more easily seen (cf. 
Appendix A) if we recast (4.12), with the aid of some matrix algebra, 
in the form 

(k) _ X(k) X(k)(N I + X(k) X(k»-1 z. - cI»AA I 0 cI»AA I Y 
(k) (k) -1 = cI» .. (Nor + q, .. ) y (4.13) 

H
(k) 

= y. 

The expression for H(k) is reminiscent of the formula for the unrealizable 
Wiener filter in the frequency domain [20], namely, 

H(w) = ¢ .. (w)[No + ¢ •• (w)]-I. (4.14) 

A proof that H(k) is indeed the minimum-variance estimator is given 
in Appendix A. We should also note that since we are dealing with 
Gaussian statistics, this estimator is also optimum for a fairly general 
class of criteria [21]. We should point out that H(k) is a symmetric 
matrix, and therefore represents an unrealizable filter. By a simple 
artifice [22], [15], however, it can be replaced by a realizable filter if 
desired; such a filter is obtained by deleting all terms in HO:) above the 
main diagonal and by doubling all terms below it. Although z~t) is then 
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no longer a minimum-variance estimate, receiver output is unchanged. 
This interpretation of z~t) fits quite happily with our intuition. 

With the knowledge of the solution in the deterministic case, in 
which Z(k) can be computed exactly at the receiver, it seems eminently 
reasonable that in the random-channel case, in which Z(k) cannot be 
computed exactly, we should say that Z(k) should be estimated from the 
received data and this estimate z~t) should be used in place of the un­
available exact Z(k). This interpretation was first recognized by Price 
[22] for the single-path channel and at low signal-to-noise ratios for a 
more general channel, and was later extended by Kailath [15]. 

This rather satisfying interpretation of the receiver action leads us 
to believe that this form of receiver, which may be described as an 
estimator-correia tor receiver (see Fig. 4), is effective even in situations 
that do not conform exactly to our assumption of Gaussian statistics. 
This interpretation also enables us to make engineering approximations 
to the operations demanded by (4.11). Thus the Wiener-Hopf equation 
for H(k) can be solved only in a few special cases, but in our equipment 
we may for convenience use simpler estimating filters, for example, 
narrow-band RC filters, and simpler estimating operations, for example, 
crosscorrelation. In fact, such simplifications were made in constructing 
the Rake antimultipath receiver [23] that grew out of the above 
interpretation. 

We should also point out that this estimator-correlator can be re­
garded as an "adaptive" matched filter. This point of view depends on 
the fact that the crosscorrelation 

(k) IT (k) 
YtZ• or 0 y(t)z. (t) dt 

can be alternatively performed by a filter matched to Z~l) (t), that is, 
by a filter with impulse response Z~l)( -t). In our case, however, the 
specification of the matched filter is not completely determined a priori, 
but its impulse response is calculated from the received data. The re­
ceiver may therefore be regarded as adapting, or matching, itself to 
the state of the channel. Figure 5 is a block diagram reflecting this 
point of view. 

Finally, let us study the receiver for the case where random and 
deterministic components are both present. For physical reasons, in 
communication channels the deterministic (or mean value) component 
is often called the specular component. The receiver formula is (4.8), 
which through (4.9), (4.11), and (4.12) can be rewritten 

(k) (k) _(k) (k) 
NoA = 2YtZ + (y- z )tZer, (4.15) 
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Fig. 5. The estimator-correlator receiver as an 
adaptive matched filter. 

where z~) = H(k) (y - Z(k») = the minimum variance estimate of 
the random component of Z. A block diagram for (4.15) is shown 
in Figure 6. This receiver will reappear in Section 6, where the 
specular component will arise by extrapolation from previous data and 
decisions. 

Discussion of the Receiver Operation 
Having now determined the general structure of the optimum re­

ceiver, we can compare it with our earlier intuitive ideas of what the 
receiver should do. 

We see that the optimum receiver does not first use the received 
signal to make a maximum-likelihood estimate of a that is then used 
as if it were exact. This type of operation was suggested by Root and 
Pitcher [19], [8] for the case in which the statistics of the channel 
were not known. It is readily shown that this type of test-called a 
generalized maximum-likelihood test by Davenport and Root [8]­
also leads to an estimator-correlator receiver. The estimator, however, 
turns out to be a maximum-likelihood, or least-squares, estimator. 
Such estimators do not take advantage of any a priori knowledge of 
the channel statistics and hence lead to a relatively weaker type of 
receiver than the one we have found. As a matter of fact, we can show 
that the least-squares estimate of z in our case of additive Gaussian 
noise is also a minimax [6] estimate. It is therefore based on the most 
pessimistic view of the channel statistics; if we can obtain any infor­
mation about the actual channel statistics, it is worth trying to do so. 
We might mention, however, that the generalized maximum-likelihood 
test has often been suggested and has been used to advantage in 
statistics [10]. 

Whether we use a minimum-variance or a minimax estimator, how­
ever, we see that the receiver does adjust its parameters to take account 
of the channel conditions as they are reflected in the received signal. 

It is important to note that, contrary to intuition, the mathematics 
shows that the optimum receiver for Gaussian statistics does not di-
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rectly estimate the channel; that is, the receiver does not somehow 
obtain an estimate, sayae, averaged over all possible transmitted sig­
nals, of the channel, from which it obtains the z~t) by the operation 
z!~) = X(k)a •. Consequently, from (4.11) we see that z!t) may be 
written 

(k) X(k) (k) 
Z. = a., 

where 

a~k) =cIJAA(NoI+X~k)X(k)cIJAA)-lX~k)y = F(k)X~k)y, say.t (4.16) 

Therefore a!l) may be regarded as an estimate of the channel vector a 
under the hypothesis that the signal X(k) was sent. The last clause is 

y(fl + 

Amplifier 

T I (ldl 
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Fig. 6. An element of the optimum receiver for a channel A having a 
specular and a random component and white Gaussian noise. 

important: a!~) is not an estimate of the channei a itself, unless X(k) was 
the signal actually transmitted. 

Equation (4.14) shows, moreover, that it is impossible to have an 
optimum receiver consisting of a single filter matched to the channel, 
followed by a bank of filters matched to the transmitted signals X(k). 

Such a receiver is possible (see (4.9» only when the channel is known 
to the receiver. We should point out, however, that this does not mean 
that such receivers should not be considered. Although they do not 
conform to the a posteriori probability criterion, they might still be 
valuable in practice and, in fact, in theory also. Thus, using this re­
ceiver, Green gives a provocative discussion of a communication system 

t We should remark that a~k) as given by (4.15) is the discrete version (for 
time-variant or time-invariant channels) of Turin's (24) frequency domain esti­
mate of time-invariant channels. We have already noticed such similarity­
(4.13) and (4. 14)-for the Wiener filter. Our remark suggests, in view of the close 
relation between a. and Z" that Turin's result can be directly obtained from 
(4.14). 
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in which the transmitter, but not the receiver, knows the instantaneous 
channel behavior [25]. 

As our last point in this section, let us study more closely the 
estimator-correia tor feature for the receiver of (4.8), where we consider 
random as well as specular components. We see that (4.15) may be 
rewritten 

N A (k) _ ( _(k») _(k) + 2 _(k) 
o - Y - Z tZr. Y tZ 

(k) _(k) (k) _(k) 
= Y t(zr. + Z ) + (y - Zr. ) tZ • (4.17) 

The first term on the right-hand side may be regarded as the cross-­
correlation of y, and a total estimate of Z(k), viz., the sum of the known 
mean component of Z(k) and the estimated random component of Z(k). 

This term corresponds to an estimator-correIa tor operation. This, how­
ever, does not completely describe the receiver because of the term 
(y - z~!»)tz(~). Therefore, in the case of a channel with specular as 
well as random components, the receiver cannot be considered an 
estimator-correlator receiver and in this sense is not a natural ex­
tension of the deterministic-channel case. The factor 2 for the specular 
component intervenes and prevents such an interpretation. Hence, care 
must be exercised in using the estimator-correlator concept. However, 
even though the general receiver of Equation (4.15) or Figure 6 does 
not directly correspond to an estimator-correlator receiver, the form 
shown-which handles specular and random components separately­
is in fact entirely satisfactory. 

5. The Rake Receiver 

We have shown in Section 4 that we cannot have an optimum receiver 
comprised of a single filter matched in some sense to an "estimated" 
channel, followed by a bank of filters matched to the signals X(k). 

From (4.15) we see that the closest we can approach this type of re­
ceiver is to arrange for Xl~)X(k) to be the same for all k. This condition 
requires that the X(k) differ by the orthogonal matrices U(k); that is, 
we have X(k) = U(k)X, where Uf1)U(k) = I, so that X~~)X(k) is a constant. 
For a channel with a single time-variant path, this condition (see 
Sec. 2) is equivalent to the requirement that all signals have identical 
envelopes. This condition is met, for example, in frequency-shift keying. 
For a single time-invariant path, the condition implies that the signals 
have equal energies. For more general channels, the conditions are more 
complicated but are of the same nature as those above. With the con-
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dition that x11
) X(k) be the same for all k, the filter F(k), given (see 

(4.15» by 

F(k) = cI»AA(NoI + X!k)X(k)cI»AA)-\ 

will be the same for all hypotheses. 
For the binary case, decision is based on the difference of the func­

tions A (k); that is, the important operation is given by 

K(I) 

A = A'(1) - A'(2) = A(l) - A(2) + (In _2_). (5.1) 
K(l) 

2 

As before, A (I) - A (2) determines the receiver operations and the other 
term is a biasing, or weighting, term. Using (4.10) and (4.15), t we have 

(I) (2) X(I)Fx(l) X(2)FX(2) 
A - A = y, , Y - y, t Y 

_ X(I)FX(I) + (y X(2)FX(I) X(I)FX(2) ) 
- Yt t Y t I Y - Yt I Y 

+ YtX(2)FX~2)y 
= Yt[X(I) + X(2)]F[X{1) - X(2)]tY. (5.2) 

The two terms inside the parentheses in the middle equality are trans­
poses of each other; since they are scalars, they are equal and thus 
cancel each other out. 

A block diagram for the receiver implied by (5.2) is shown in Figure 
7. In the single-path channel case, X(k) represents a multiplication 

y 

Fig. 7. The general Rake receiver. 

operation, and this block diagram of Figure 7 is almost exactly that of 
the Price-Green Rake receiver (see Fig. 3 of [23]). The difference arises 
because-except in the case of a single time-invariant channel path­
F is an unrealizable operator. To overcome this difficulty, we can 
either use a delay or break up F into two filters, F+ and F_. F+ (F_) 
is F with the diagonal elements halved and the elements above (below) 
the diagonal set equal to zero. 

At this point, a host of speculations may be raised by the realization 

t This technique was suggested by some unpublished work of Professor Siebert. 
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that we can regard the signals X(l) and X(2) as being composed of a 
common part, (X(l) + X(2» /2, and an information-bearing part, 
± (X(l) - X(2»/2, for example, 

X(1) + X(2) X(l) - X(2) 
X(l) = +----

2 2 
(5.3) 

Thus, we might ask whether, in (5.2), YerX(!) + X(2)]F provides an 
estimate of the channel by the known sounding signal (X(1) + X(2» /2, 
which is then mUltiplied by the information-bearing signal 
± (X(l) - X(2»/2 to provide z~t). The answer is no. This is disappoint­
ing, but, in view of the previous discussions of Section 4, not surprising. 
This is not to say, however, that receivers constructed on the above 
philosophy will not work; it just means that they will not be optimum 
from a decision-theory point of view. In practice, it might even be pref­
erable to build a receiver based on the "erroneous" philosophy. It 
would be interesting to study how far from optimum such a receiver is. 

But one conclusion must be drawn that is of relevance to studies in 
adaptive and learning systems: The intuitive choice is not always con­
sistent with the requirements of some theoretically powerful concept 
such as the computation of a posteriori probabilities. 

To return to the Rake structure, for the multi path case, the filters 
X(k) perform mUltiplications of the received signal with shifted replicas 
of the stored signal X(k). The filter F(k) does not break down in any 
simple way, except in the threshold case. The threshold case is defined 
by the condition (see Appendix B) that 

(5.4) 

where >'max is the largest eigenvalue of til ••. This is a necessary and suf­
ficient condition [26] for a Neumann series expansion of F in (5.2). 
If we retain only the first term in the expansion, even though retaining 
additional terms is not particularly troublesome, we get (see Ap­
pendix B) 

No(A(1) - A(2» = y,[X(1) + X(2)]«I»AA[X(1) - X(2)]tY. (5.5) 

Let us also assume that the channel tap functions are uncorrelated, 
so that only the diagonal blocks, say til" of «I»AA are nonzero. The co­
variance matrix for the ith tap is til;. Now, closer study of (5.5) shows 
that it can be implemented as shown in Figure 8. The receiver is a 
cascade of units, one for each channel tap, strung out on the delay 
line. Notice that the units are arranged on the receiver delay line in 
the opposite order to their arrangement on the delay line, thus pro­
viding a generalized type of matched filter, matched both to the channel 
and to the transmitted signals. Figure 8 is identical with the receiver 
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y(t)--~==========::j 
Fig. 8. The original Rake receiver. 
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originally obtained by Price and Green [23] by a brilliant combination 
of theoretical and physical ideas. Our derivation above is more compact 
and leads to the final result much more directly than in [23]. (For 
those more interested in the details of Rake, we remark that here we 
obtain the Type II Rake directly as the optimum system.) It shows 
under what conditions the Price-Green Rake is optimum and also 
yields the receiver structure (5.2) for the general case. However, this 
more complete theoretical analysis was only done long after the original 
Rake had been built and proved successful. It is a tribute to the deep 
theoretical understanding and fine engineering judgment of Price and 
Green that they converged exactly on the optimum system. One of the 
explanations they gave for the action of each unit on the receiver delay 
line is of interest: 

Suppose X(l) was transmitted. The received signal y should be mul­
tiplied by x(l) to provide a preliminary weighting against the noise 
(suppressing portions of y where the signal x is weak and reinforcing 
portions where x is high). The pr"oduct should then be smoothed in a 
filter ~i whose bandwidth is equal to the fluctuation rate of the cor­
responding tap to get an approximate estimate of the tap-gain function. 
This estimate can then be used to perturb the stored signals before the 
final correlation with y. We would not know, of course, whether x(l) 
was actually transmitted. But since either X(l) or X(2) was transmitted, 
the sum y,(x(l) + X(2» can be used in lieu of the proper but unknown 
y,X(l). Thus the structure of each unit in Figure 8 is obtained. However, 
we should notice again that this intuitively very reasonable explanation 
of the adaptive features of Rake is not optimal in general from a 
decision-theoretic point of view. 

Price and Green went a step further and took advantage of the fact 
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that the communication extends over several time intervals in each 
of which either x(I) or X(2) is transmitted. They allow the filters «1». to 
ring (that is, have a memory) over several time intervals. This longer 
ring time provides a more accurate channel estimate than can be ob­
tained by restricting the filter memory to a single interval. This has 
been a simple and reasonably successful method of accounting for 
channel memory. However, no attempts seem to have been made to 
justify it on a decision-theoretic basis. We shall turn now to such an 
attempt. 

6. Sequential Operation 

In the preceding pages, we have studied the optimum structure for 
the reception of signals in just a single time interval, namely, the ob­
servation time T. In a communication system, however, we would be 
sending a sequence of signals. For continuous operation, we could 
operate on an interval-to-interval basis, treating each interval inde­
pendently of the others. If the channel has a statistical memory that is 
greater than the duration of the interval, such a procedure clearly 
throws away information. One method of compensating for this loss 
of information is to form longer intervals-perhaps sentences or para­
graphs long-so that the channel is now essentially independent from 
interval to interval, though this procedure enlarges the set of possible 
messages and the bank of receiver filters by a prohibitive factor. 
Another method is to retain the original interval length but attempt 
to use information from other intervals in making a decision in any 
particular interval. We shall discuss some aspects of this latter pro­
cedure, particularly those dealing with the learning or adaptive nature 
of the scheme. 

In the rest of this section, we discuss an approach to using interval­
to-interval information; we show how to obtain the conditional prob­
abilities required in any sequential scheme and also discuss the physical 
interpretation of the operations involved; and finally we give a more 
explicit formula for the computation of the conditional probabilities, 
which is obtained simply by partitioning the matrix formulas of (4.8) 
and (4.14). We also show how the formulas simplify in the threshold 
case and how in a simple case they provide a rationale for the Rake 
operation mentioned above. 

Some Methods of Operation 

Numerical subscripts will be used for values of corresponding quanti­
ties in the specified time intervals: Zero will refer to the interval a bout 
which a decision is being made; the negative integers, to previous inter-
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vals; the positive integers, to later intervals. We shall assume a sequen­
tial decoding scheme such that when a decision is to be made about a 
given interval (denoted by the subscript zero), all previous intervals 
(denoted by negative subscripts) are assumed to have been correctly 
decoded. Now all the relevant information pertaining to the decision 
in interval zero is contained in the a posteriori probability 

(k) I ( ) ( ) (I) (m) 
p(xo Yo, Y-I, X-I, Y-2, L2, ••• , YI, Xl ,Y2, X2 , ••• ). 

We leave the parentheses ( ) for X_I, X-2, •.. unfilled to indicate that 
these have been decided upon and are known without error. If we as­
sume that the channel memory extends over M intervals, clearly the 
terms Y-M-I, X-M-I, Y-M-2, X-M_2, ••• can be omitted. This is not true, 
however, for Y+M+I, XM+1, YM+2, XM+2, ••• , even though it appears 
plausible at first glance. Clearly, YI, Xl, ••• ,YM, XM will also contribute 
information about the channel behavior in interval zero; if we had 
better information about YI, Xl, we could make a better decision in this 
interval. But Y2, X2, .•• , YM+I, XM+I all contribute information about 
interval one, and therefore also aid the decision in interval zero. Simi­
larly, we can argue that YM+2, XM+2, ••• all provide useful information 
about interval zero. Thus, theoretically, an infinite delay is required if 
we are to conserve all the information. In practice, however, one might 
be content with looking only M intervals ahead. In any case, for a 
decision in interval zero, we would pick on a maximum a posteriori 
probability criterion (which corresponds to minimum probability of 
error), say the ~t) that maximizes the sum 

, (k) I ( ) ( ) (I) (m) L: p(xo Y-m,'" , Y-I, LM, ••• , LI, Yo, YI, ••• ,Xl ,X2 , ••• ), 

where the prime denotes the sum over alll, m, .... If we assume that 
the X(k) are equally likely and are picked independently in each interval, 
this reduces to the maximum-likelihood criterion: Pick ~t) to maximize 

L:' p(Yo I X~k), Y-M, ••• ,LM, •.• , Yh •.• , x:I), ... ). 

In practice, even when we drop YM+I, ... , X~~h •.• , these schemes 
involve too much computation, and it is profitable to search for simpler 
nonoptimum methods. The convolutional-encoding and sequential­
decoding concept developed by J. M. Wozencraft [27] is, as far as we 
know, the only feasible technique suggested so far. However, we shall 
not enter upon a discussion of this method here; since we observe that 
a necessary step in all methods is the computation of a posteriori prob­
abilities and likelihood functions, we shall study this calculation more 
closely. 
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Calculation of Probabilities and Interpretation of Receiver 

Dropping all superscripts for convenience, let us consider 
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r = P(yo I Y-M, ... , YI, .•• , YN, X-M, •.• , X-I, Xo, Xl, ••• , XN). 

Now 

r = K·p(yo, YI, ••• ,YN I Y-M, ... ,Y-I, X-M, ..• , Xo, ••• , XN), 

where K is a constant, since we are assuming that a particular set 
Xo ... XN and Yo ... YN is given. Now we define two new matrices, 

Yul = [yo I, Yil, ••. ,YNI] and Ydl = [Y-MI, ... , YlI]. 

Similarly defining Xu and Xd, we have 

r = K·p(yu I Yd, Xd, xu). (6.1) 

The subscripts u and d are chosen to represent the undecided intervals 
and decided intervals, respectively. Thus r tells us in what way our 
knowledge of the previously transmitted symbols affects our impres­
sions of later intervals. We would expect that, from the previous inter­
vals and Yd, Xd, we should be able to form an estimate, reliable to within 
the factor of uncertainty due to the additive noise, of the channel be­
havior in the past. Now, since there is a correlation between successive 
channel values, this knowledge should help to reduce our uncertainty 
about the present and future behavior of the channel. We would expect 
that, based on the past, we could make a prediction about the channel 
behavior in the future, thus reducing the randomness of future values. 
For our Gaussian channel, this is in fact so: If the covariance matrix 

cJ)1/1/ = [.,,~ j ., .. ] 
cJ)ud I cJ)uu 

I 

(6.2) 

is known (note that this matrix depends on Xd and the assumed xu), 
and we assume a purely random channel (Le., A = 0), t then we have 

t To avoid complications, we shall assume for the present discussion that we 
have no intersymbol interference from interval to interval. This will be the 
situation if we have a single-path channel or if we allow sufficient "dead-time" 
between symbols for the channel response to one signal to die out before the 
next signal is transmitted. 

t The symbol,......, is used to denote that In r is directly related to the right-hand 
side. 
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Thus we now have a mean component, 'i" = 4>"d4>;;ld, which is the 
minimum-variance prediction, or extrapolation, of y" given Yd, for 
assumed Xu. This is evident because the conditional mean is the opti­
mum predictor for the minimum-variance criterion [13]. 

The presence of the new mean component, y", reduces the variance 
of y" from 4>"" = NoI + 4>zuou to 

-1 
(y" - y")(y,, - y,,), = 4>u" - 4>ua4>dd4>d" 

= NoI + 4>ouou' say. (6.4) 

After some algebra (using the identity 

[NoI + B]-1 = N o-l - N o-IB[NoI + B]-I), 

an element of a receiver implementing (6.3) can be written 

(k) A (k) A A (k) A(k} 

NoA = 2y",yu + (y" - y,,),H (y" - y" ), (6.5) 

say, where 

(k) A (k) A (k) 
NoA = 2y"tY" + (y" - y"),Z,,r8' (6.6) 

A (k) HA (k)( A (k)) 
Zur. = y" - y" , 

H~ (k) = ..;,. (k) [N I + cl» (k) ]-1 
~J!"ZU 0 zuJ!u· 

(6.7) 

(6.8) 

We see that (6.6) is similar to (4.15) for the single interval specular 
plus random component case. The difference is that in sequential 
operation we replace the single interval mean value y = z (assumed to 
be zero here for convenience) and covariance N oI + 4> .. by the con­
ditional mean and covariance y" and N oI + cl»z"o". 

The previous data Yd, Xd are used to make a minimum-error-variance 
extrapolation of the observed waveform in the present interval, and 
this prediction helps reduce the "randomness" in the present interval. 
Now the usual single interval estimator-correlator receiver can be used. 
This interesting generalization of the estimator-correlator receiver is 
what we would intuitively expect and it is satisfying to see the theoreti­
cal analysis bear this out. 

We should notice that this solution applies not only to communi­
cation problems but also to Bayesian learning and pattern recognition 
problems [28] where the y d are completely identified (as to source) 
observations that are used to classify a new observation y". Thus the 
problem studied in [29] and [30] can be considered a special case of 
(6.5). We have pointed out there [30] that our interpretation of (6.5) 
as a generalized estimator-correlator receiver also applies to the pattern 
recognition problem. In [29] and [30] we have Yd = z~) + n, where 
the Z~l) is drawn from a Gaussian distribution with mean zero and co-
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variance «IJc:l and the z~t), d = -1, -2, ... , -M, are all identical. 
That is, the "pattern" Z(k) remains invariant during the learning and 
observation period. With this constancy assumption, the conditional 
mean and variance simplify to 

[ N J-1 

y" = «IJ.. «IJ .. + 1l; I s, (6.9) 

(6.10) 

where 
Y-1 + Y-2 + ... + Y-m 

s = ---------
M 

= sample mean of learning observations. (6.11) 

(Equations (6.9), (6.10), and (6.11) can be obtained by using the matrix 
identity 

where a is a column vector whose elements may again be column 
vectors.) 

In this case the sample mean is a simple sufficient statistic [13] for 
the learning observations. We expect that this result, first obtained in 
a much different way by Braverman [29], can be applied to the Rake 
system as follows. Consider a simple time-invariant single-path channel 
and let the signalling waveforms X(l) and X(2) be orthogonal. Then the 
Y dt (X~l) + X~2») provides a completely identified learning observation 
for the channel tap gains. Averaging of these learning observations to 
obtain the mean according to (6.11) can be done by a narrow-band 
(integrating) filter, which is actually what is used in Rake [23]. This 
simple argument needs to be more completely examined and general­
ized. We have not yet done this. However, in conclusion we shall pre­
sent a more explicit solution in terms of the signals x and the channel 
covariance. 

More Explicit Formulas 

Thus we have 

r ""'"' p(y" I Yd, Xd, x .. ) ""'"' p(Y .. , Yd I x .. , Xd) = p(y I x), 

where 

(6.12) 

This, however, looks again like the one-shot problem, so we can im­
mediately write, by (4.8), 
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(
XX )-1 

In r "" ytXcI»AA 1+ ;0 cI»AA XtY· (6.13) 

Moreover, in a threshold situation (see Appendix B), by choosing the 
first term in the Neumann series expansion for the term in parentheses, 
we have 

In r "" Y tXcI» AAXty 

= Y"tX"cI»a,.a,.XutY" + 2Y"IX"cI»a,.0dXdIY" + YdtXdcI»a~dXdtY. (6.14) 

This expression has also been obtained by Wozencraft [31]. The 
first term on the right-hand side corresponds to the normal opera­
tions in interval u; the second term represents the information con­
tributed by the data and decisions of interval d, and it depends on the 
correlation of the channel cI»a"ad; the last term is a constant that has 
already been computed in interval d. Equation (6.14) provides a form 
that is convenient for realization, but we shall not discuss this here, 
since our chief purpose was to illustrate the adaptive features of this 
type of receiver. 

7. Concluding Remarks 

The application of adaptive concepts to the design of a communication 
system receiver offers attractive possibilities, just as it does in other 
areas in which random processes are encountered, such as in control 
systems. The incorporation of adaptive capability into any system is 
for the most part likely to remain based on intuition and heuristic argu­
ment, as well as on trial-and-error procedures, because a strictly mathe­
matical approach usually fails to take proper account of engineering 
considerations. It is nonetheless important to seek guidelines from 
mathematical analysis wherever possible, if only to establish standards 
by which practical systems may be judged and expedient improvement 
sought. 

There is already established a firm mathematical discipline in the 
field of communications, known as statistical detection (or decision) 
theory. This theory may be applied to optimize signal reception, 
virtually without invoking any preconceived notions of receiver struc­
ture such as that adaptivity is a "good thing" to have. In the applica­
tion of this theory to the particular reception problem considered here, 
an adaptive network has materialized from the mathematics used to 
specify the optimum receiver, thus giving reassuring confirmation of 
the basic soundness of the idea of adaptivity. At the same time, how­
ever, close examination of this abstractly synthesized adaptive behavior 
-which can, in such an instance, justifiably be called optimal adaptive 
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behavior-has provided the opportunity to see where intuition may 
perhaps go astray. This observation serves to indicate that adaptive 
system design should not be approached too dogmatically. 

This evaluation of adaptivity has been based on a particular recep­
tion problem: that of deciding-from observation of a received wave­
form and complete knowledge of the statistical characteristics of a 
particular channel-which one of a finite set of possible transmitted 
waveforms (that are also known to the receiver) has actually been sent 
over the channel. For simplicity, the waveforms have been considered 
to be of a sampled-data type and the channel to consist of a time­
varying, linear, sampled-data filter, followed by stationary, zero-mean 
additive Gaussian noise that is independent from sample to sample as 
well as independent of the transmitted waveform and of the channel­
filter variations. The channel filter has been represented as a tapped 
delay line with tap outputs summed through time-varying gain controls. 

From this model it has been shown that if the instantaneous time­
varying filter behavior is at all times exactly known to the receiver, 
then on the basis of detection theory, the optimum receiver operation 
is to crosscorrelate, or form inner products of, the received data and 
the various possible waveforms that could exist at the channel-filter 
output just ahead of the noise. One way of performing the crosscorre­
lation is to pass the received signal into a set of special time-invariant 
linear filters called matched filters. Since we lack any direct knowledge, 
however, of the instantaneous channel-filter behavior, such operations 
cannot be performed. It would then seem plausible to estimate, from 
the received data and other available knowledge, the possible wave­
forms that could exist just ahead of the noise, and then to cross­
correlate the received data against these estimates. Thus the notion 
of an estimator-correlator has been introduced, or equivalently, an 
adaptive matched filter that is governed by a prenoise waveform 
estimate. It has been shown that such a conjectured mode of operation 
is precisely what detection theory specifies for the optimum receiver 
(or for its mathematical equivalent, since the structure of the optimum 
receiver is not unique), provided the set of channel-filter-tap gain 
variations-which can be negative as well as positive-form a zero 
mean, multidimensional, Gaussian random process with parameters 
known to the receiver. More general gain variations are allowed if the 
noise is large. The prenoise waveform estimates have been shown to 
be of the minimum-error-variance type. 

To serve as a warning that intuition does not necessarily lead to the 
mathematically best adaptive systems, although it certainly must be 
used when encountering practical difficulties, two illustrations have 
been given that use the communication system model already de-
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scribed. In the first example, it has been shown that the reasonable 
idea of first forming a single estimate of the channel-filter behavior, 
using it to modify transmitted waveform replicas in the same way that 
the channel filter modifies the actual transmitted waveforms, and then 
of crosscorrelating the received signal against the modified replicas, is 
non optimal, although doubtlessly effective. The second contradiction of 
intuition occurs when the apparently slight modification is made of 
letting the Gaussian filter gain variations have nonzero mean-the 
optimum receiver is then no longer a pure estimator-correlator, al­
though many of its basic features remain unchanged. 

The Rake receiver has been cited as an example of a practical com­
munications application of the adaptive-matched-filter concept. This 
development is based largely on detection theory but also includes 
heuristic concessions to practical requirements. However, some of the 
originally heuristic modifications have recently been shown to be sup­
ported by detection theory. 

An important problem in communication systems is the proper use 
of previously received data and previously made decisions in improving 
the reliability of the current decision. This problem has been formu­
lated as a Bayesian learning problem, and thus applies also to Bayesian 
pattern recognition schemes. Some general results have been obtained, 
but much work still remains to be done. 

Appendix A: The Minimum-Variance Estimator 

It is a well-known result [13] that for Gaussian signals in Gaussian 
noise the conditional mean provides the best estimate of the signal for 
a minimum-variance criterion. In fact, for Gaussian signals this esti­
mate is optimum for a wide class of criteria [21]. In our problem, 
we have 

y=z+n 

and wish to find an estimate z. such that 

E. = (z. - Z •• )2 

is minimized for each i. Now 

p(z I y) = pcr I z)p(z)/p(y) 

(A.I) 

= K exp ( - ~ {z{ tP-:.l + ~o ] z - 2ZtY/No} ), (A.2) 

where K is a constant that is independent of z. From (A.2) we see that 
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z has a Gaussian distribution. By comparison with the standard 
equation, 

p(x) = K' exp (-!{ (x - x) ,ell;: (x - x)}), (A.3) 

p(x) = K" exp (-!{ (X,eIl~,,1X - 2x,eIl;,,~}), (A.4) 

we see that 

and therefore 

z,y [-1 I ]-1 
- = z, ell .. + - z., 
No No 

Z. = - ell •• +- Y = ell .. [ell .. + NoI]-ly. 1 [-1 I J-1 
No No 

(A.5) 

(A.6) 

This is (4.11) of the text. We have assumed «1» .. to be nonsingular in 
this proof; by a continuity argument similar to that used in Section 4, 
however, we see that (A.6) is valid also for singular ell ... 

We notice also, from (A.2), that the z that maximizes p(z I y) is the 
one making the argument of the exponent zero. Therefore, the maxi­
mum a posteriori probability estimate of z is also given by 

1 [-1 I J-1 
Z. = No ell •• + No y, 

as in (A.6), for the minimum-variance estimate. Other proofs can be 
found in [15] and [16]. 

From the identity 

[Nol + X,XeIlAA]X, = X,[XeIlAAX, + NoI], 

assuming all inverses exist, we would obtain 

XeIlAAX,[XeIlAAX, + NoI]-1 = ell .. [ell •• + NoI]-1 

= XeIlAA[NoI + X,XeIlAA]-IX" (A.7) 

thus proving the equivalence of (4.12) and (4.13) of the text. Now 
[Nol+XeIlAAXel =eIllIlI is always nonsingular and so is [NoI+X,XeIlaa ]. 

In fact, its inverse is given by 

[Nol + X,XeIlAA]-1 = N o-l - No-IX/(Nol + XeIlAA X,)-IXeIlAA • 

Appendix B: The Threshold Case; More General Channel Statistics 

In the threshold case, the matrix equations can be solved by iteration. 
Let us consider the formula 

(B.l) 
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where 

( 
«I» )-1 

NoH = «1» •• 1 + N:' . (B.2) 

We can make a Neumann series expansion [26] for the term in paren­
theses, 

( 
«1» .. )-1 «1».. (<<1» •• )2 

I + - = I - - + -- . . . . (B.3) 
No No No 

This expansion is valid if the norm of «1» •• , regarded as a linear trans­
formation, is less than No. 

The norm 11«1» •• 11 is defined by 11«1» .. 11 = min K such that 
(<<I» •• x, «I» .. x) ~ K(x, x), where ( , ) stands for the inner, or scalar, 
product. This definition is equivalent to 

11«1» •• 1/2 = max (x,[«I» •• ],«I» •• x; x,x = 1), 
z 

which is the largest eigenvalue of 

[«1» •• ],«1» •• = [«1» •• ]2, 
because «1» .. is symmetric. Since an eigenvalue of [«1» .. ]2 is the square 
of an eigenvalue of «1» •• , we have 11«1» •• 11 = ~max(<<I» •• ), the largest eigen­
value of «1» ••• Since «1» •• is positive semidefinite, ~max is always positive. 

Therefore the condition for the validity of (B.3) is that 

~max(<<I» •• ) < No. (B.4) 

Using this expansion, we have 

1 1 2 
A = m [y,«I» .. y] - N~ [y,«I» •• y] + . . . . (B.5) 

A simple iterative scheme can be set up to compute as many terms of 
the right-hand side as desired. 

There is another instructive way of deriving this result in our par­
ticular case. Since «1» •• is a positive semidefinite matrix, it can be di­
agonalized by pre- and post multiplication by a suitable orthogonal 
matrix and its transpose. Thus «1» •• = prp" where P is an orthogonal 
matrix and r is a diagonal matrix with the eigenvalues, ~i, of «1» .. on 
the diagonal. Then it is easily seen that 

«1» •• (<<1» •• + N 01)-1 = pr(r + N oI)-IP,. (B.6) 

Now our receiver formula is 

NoA = y,«I» .. (<<I» •• + NoI)-ly = y,pr(r + N oI)-IP,y 
, -1, ~ ~i ,2 

=y,r(r+NoI) y = £.J Yi, 
i_I ~i + No 

(B.7) 
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where y; is the ith component of y' = P,Y. (We note that y; is the 
inner product of the ith eigenvector of fIlu and y.) If now the largest 
eigenvalue, say hI, is less than No, we can expand each term hdh. + No 
in a geometric series. If we do this and collect terms suitably, we get 

2 

" hi ,2 "hi ,2 
N oA = LJ - Yi - LJ - Y' + .... 

i No • m (B.8) 

This can now be rewritten as 

fIl.. [cIJ •• ] 2 

NoA = y,-y - Yl--y+", 
No N~ 

(B.9) 

which is the result we would have got from the Neumann series ex­
pansion. (Note that a parallel argument holds in the continuous 
case in which Mercer's theorem [8] can be directly used to expand 
the continuous analogue of the kernel c1J ... ) 

This method not only gives the same condition as before, 
hmax(cIJ .. ) < No, but also reveals some other interesting facts. First, 
we need not appeal to the theory of the Neumann series to obtain the 
result (B.9) that we desire. Second, from (B.8) we see that since h. is 
less than No for all i, each term on the right-hand side of the equation 
is smaller in magnitude than all the preceding terms. This method also 
suggests a very simple means of finding an upper bound on the norm 
of the error for a truncated Neumann series. Thus the error is 

EN= 1+- -E - =E - , ( c1Ju)-1 N-l (cIJu)2 00 (cIJ .. ) 2 
No i-O No i-N No 

(B.lO) 

and 

(B.ll) 

In some cases, it is sufficient to take only the first term of the ex­
pansion (B.3), so that 

2 
NoA = y,cIJ .. y. (B.12) 

This is usually known as the threshold receiver and is a form often used 
to simplify (error probability) calculations. We repeat, however, that 
by a simple iterative arrangement-though at the cost of a greater 
delay in obtaining the final answer-we can compute as many terms 
of the series for N oA as desired. We should point out that condition 
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(BA) is not synonymous with low detectability. The detectability has to 
do with sums of powers of eigenvalues (often, only squares of eigenvalues) 
and may be quite large, even if the largest eigenvalue is less than No. 

Various bounds on >'max can be found in the literature [26], [17]. 
A particularly suggestive one is due to Szego [32]: If z is stationary, 
>'max is less than the peak value of the power spectrum of z. 

Arbitrary Signal Statistics 

In this situation, we obtain, for large No, a receiver structure cor­
responding to (B.12), above. Thus we have 

y = Z{k) + n, 

where the noise is white Gaussian. Then, for hypothesis k, we have 

A,...., f p(y I z)p(z) dz = p,,(y - z), 

where the bar denotes averaging over the random variable z, whence 

A = K 'exp {-.: (y - z)t_
1
_ (y - Z)} 

2 No 

1 [1 - 4 _] 
= K·exp - -yty· 1 + -- (27.tY - z,z) + -- ZZtY + O(Z3) 

2No 2No ~ 

[
1 1 _] 

= K'· 1 + No ity + m YtfIJ .. y + O(Z3) . 

Keeping only the first three terms, we get 

1 1 
In p(y I x) = - ity + u2 YtfIJ •• y + "bias" term (In K'). (B.13) 

No iVo 

This agrees with (B.12) , where the specular term is not included, as we 
had set out to show. This result has recently been obtained also by 
Rudnick [14]. 
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Chapter 7 

Optimization Problems in Statistical 
Communication Theory 

DAVID MIDDLETON 

1. Introduction 

The purpose of this chapter is to outline some of the principal opti­
mization problems of current interest in the field of statistical com­
munication theory, to describe briefly their formulation and techniques 
of treatment, and to emphasize the role and raison d'etre of optimality, 
including such important features as optimum structure and optimum 
performance. Inasmuch as results achieved to date by these approaches 
have been described in detail elsewhere [1], the present discussion is 
intended to be mainly expository, taking as its focal point the con­
cept of optimization and referring the reader to standard works for 
specific applications [1], [2]. More precisely, our aims are as follows: 
(a) to discuss optimization procedures in which the dominant physical 
features of the communication environment are incorporated into the 
decision process; (b) to point out some of the technical problems in­
volved in their application; and (c) to suggest some continuing prob­
lems of importance in this context. Both stochastic and deterministic 
signals in noise backgrounds are permitted, and while the general for­
mulation quite naturally includes multilink systems (Le., those with 
more than one message source and sink), attention is directed here for 
the most part to the basic single-link cases. These may be compactly 
described [1] by the relation 

{} T
{N) T{N) T{N) { } 

V = R M T U, (1.1) 

where {u} represents a set or ensemble of possible messages at the 
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source (or transmitting end) that result in a corresponding set {v} of 
received messages, or decisions consequent thereto. The T's are trans­
formations embodying, respectively, the operations of encoding (TCfl), 
the effects of the channel or medium of propagation (TW'), and the 
action of the receiver (Tlfl). The superscripts (N) refer to the possible, 
and usual, injection of noise into the system at the various stages of 
transmission and reception. Optimization problems of various types 
accordingly arise when these transformations T~N), etc., are con­
strained or left open to adjustment under one or more criteria of ex­
pected performance. 

In statistical communication theory we may say that the aims of 
an adequate theory of system performances and design should include 
the ability to describe optimum systems. Although such systems are 
never strictly attainable in practice, they provide limits on attainable 
performance and guides as to suitable suboptimum structures that can 
be constructed within the "economy" of the desired application. Thus, 
we seek optimum structure, that is, optimum modes of processing 
the information-bearing data at our disposal, and the evaluation of 
the system's operation. The latter is necessarily statistical, since one 
deals always with the ensemble of possible signals and interfering 
noise processes in any meaningful communication situation, where the 
results are necessarily expressed in terms of various appropriate sta­
tistical properties (e.g., error probabilities and moments) of these en­
sembles. In addition, the comparison of suboptimum systems, which 
are the ones used in practice, with the corresponding optima provides 
the required link between the theoretical limits and the actual practice 
-an essential product of an effective theory. 

Optimum structure, optimum performance, and the comparison 
with suboptimum systems for similar purposes are thus the principal 
aims of the theory. Among the main applications of optimization 
methods in communication theory are those that lie in the following 
areas: (a) signal detection, in which the basic problem is to determine 
the presence or absence of a signal in noise; (b) signal extraction, in 
which some information-bearing feature of the signal, including possi­
bly the signal itself, is to be extracted, that is, measured, from signals 
corrupted by noise; (c) cost coding, in which both operations TkN) and 
T<fl are simultaneously adjusted for possible further optimization of 
the reception process by the further choice of signal alphabets or wave­
forms; (d) data processing, as nondecision examples of processing tech­
niques required for decision-making systems; (e) coding techniques, 
using the methods of information theory; (f) combinations of the 
analytical procedures required in (a), (b), and (c), together with 
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coding methods. We shall consider here mainly the decision-theory 
approach, as developed by Middleton and Van Meter [2] for problems 
of types (a), (b), and (c), to illustrate the present questions of optimi­
zation. In Section 2 a concise formulation of the basic single-link com­
munication system is given in decision-theoretic terms, and in Section 3 
various principal optimization problems are considered in a general 
way within this framework. In Sections 4 and 5, optimum signal de­
tection and extraction are examined in more detail, and in Section 6 
some of the auxiliary results arising in the optimization procedures 
are considered briefly. Section 7 concludes the chapter with comments 
on present approaches and some current problems. 

2. Formulation 

Let us now construct a concise model of the communication process in 
the single-link case in which definite decisions in the face of uncertainty 
are required. The model is naturally based on the methods of statistical 
decision theory as noted above. t 

We begin with abstract signal and data spaces, nand r, respectively, 
and consider sampled signal and data processes on a finite interval 
(to, to + T): 

S = [S(lt), ... , S(tn)] = [Sl, ... , Sn], 

V = [V(tl), ... , V(tn)] = [VI, ... , Vn) 

(to ::; tl ::; t2 ::; • • • ::; tn ::; T + to), (2.1) 

where S and V are accordingly n-component vectors in nand r space. 

I S(I) I' I 
I - I 

~i\]) 
IV~VI\ 
I , \......r 
I I 
I I 

Fig. 1. A signal waveform, with sampled values S". 

Figures 1 and 2 show typical signal and data waveforms. The times tx 
indicated in Figure 2 refer to instants, usually different from sampling 
times tk, at which some estimate of the signal imbedded in the accom-

t See [1], Chap. 18, and [2] for a much fuller discussion. 
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panying noise is desired. Thus, if t" > to + T we have a case of pre­
diction, while if to < t" < to + T, we speak of interpolation; in general, 
if h < to or t" > to + T we have an example of extrapolation. The quan­
tity E in Figure 1 is an epoch, referring the observer's time scale to that 
of the signal structure, with E measured from some distinguishing point 
on the signal waveform. The degree of the observer's knowledge of E 

strongly influences the type of optimum (and suboptimum) structure 
for both signal detection and extraction. t If E is known precisely, we 
have coherent reception with coherent sampling; if E is not known and 
in fact is uncertain over a period comparable to, or larger than, an 

I VIt ) 
I 
I 
I 
I 

Fig. 2. A data waveform, with sampled values Vn , Vk. 

average fluctuation period of the signal, we have incoherent reception 
with a corresponding sample uncertainty. The former is distinguished 
in the critical situation of threshold or weak-signal reception by a de­
pendence on the square root of the input signal-to-noise (power) ratio, 
whereas the latter depends on the first power of this ratio-in both 
instances quite apart from the structure of the signal itself. 

The decision situation, where either a detection or estimation re­
garding the signal is now required, is illustrated in Figure 3. Besides 

Signal 
space eN) 

Noise 
space 

Observation 
or data space 

t:. 

Decision 

Fig. 3. The decision situation in general terms. 

data and signal spaces, we introduce also a noise space (N) and a 
decision space d. The vector y = ['Y1, •.• , 'Ym] represents a set of m 
decisions about S, based on V, the received data process. Here c5( y/ V) 
is the decision rule, governing the decisions y and based on the data V; 

t See [1], Sec. 19.4-3. 
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8 is either a probability (0 ::; 8 ::; 1), as in detection, where the decisions 
are of the "yes" or "no" type, or 0 is a probability density (0 ::; 0 ::; <Xl), 
as in extraction problems, where the decisions are now measured values 
of an appropriate kind. The quantities 0-(5) or 0-(6), Fn (VI5), and 
Wn(N) are, respectively, the a priori distribution densities of the follow­
ing variables: 5 or the random parameters 0 of 8 when 8 = 8(0) is 
deterministic; the data process V, given 5; and the accompanying 
noise process N, which is combined with 8 according to the operation 
® to form V, as indicated in Figure 3. The usual combination of noise 
with signal is additive, so that ® = +, but frequently one encounters 
multiplicative processes, where V = S X N in some suitable sense. 
Scatter communications, multi path, and ground and sea clutter are 
important physical examples. 

Having constructed the decision situation in terms of the relevant 
a priori information, as suggested by Figure 3, we must now introduce 
an evaluation function whereby we can evaluate performance, not only 
for particular decisions but also for the ensemble of possible decisions 
consequent upon the ensemble of received data V and the signal process 
5. In other words, we seek some statistic of the performance by which 
to describe the system's behavior. For this purpose we employ the cost 
or loss function rr:(8, "(), which assigns to each signal or signal class 
(8), and to the decision associated with it, a quantitative value judg­
ment or "cost." Then we can write for the average cost or loss asso­
ciated with the decision process in our communication model of 
Section 1, 

£(0-,8) = Ev .s { rr:(5, "(V))} 

= Io d5 0-(5) Ir Fn(V I 5) dV It. 8( "( I V)5'(5, "() d"( 

(2.2) 

= Es {I/ n(V I 5) dV It. d"( 8( "( I V)rr:(5, "()} 

= Es{ Ev{ rr:(8, "(V))} }, 

where the expression Ev {rr:(8, "(V))} is the conditional cost. When 
5 = 5(0), (2.2) is modified directly to 

£(0-,8) = EV.8{5'(5, "( (V))l or EV.8{5'(O, "( (V))}, (2.3) 

which is appropriate in some estimation or signal-extraction cases. 
Two cost functions of particular importance in communication appli-
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cations are the simple cost or loss function, 

5'l(S, 1') = C(S, 1'), (2.4) 

where 5'1 (that is, C) is independent of the decision rule 0 and associates 
a preassigned set of fixed costs to the various possible decisions about 
S,and 

(12(S, r) = - log peS I 1'), (2.5) 

where p is the a posteriori probability of S, given y. Unlike C(S, 1'), 
5'2 depends (implicitly) on the decision rule 0 and therefore cannot be 
preassigned independently of it. For this reason we may expect the 
theory of optimum and sUboptimum systems based on 5'2 to be more 
complex than that for 5'1, which has indeed been found to be the case 
to date. A motivation for choosing 5'2 according to (2.5) above follows 
from the fact that -log peS / 1') is a measure of uncertainty or equiv­
ocation in the information-theory sense. t Accordingly, the average 
risks for 5'1 and 5'2, with (2.4) and (2.5) in (2.3), become 

£1 == R(u, 0) = Ia u(S) dS Ir F,,(V / S) dV IA a( 1'/ V)C(S, 1') dy (2.6) 

= average cost, 

£2 == H(rr, 0) = - Iarr(S) dS Ir Fn(V / S) dV IA o( 1'/ V) 

·log peS / 1') dy 

= average information loss. 

(2.7) 

We remark again that the decision rule 0 in detection situations is a 
probability and that the integral representation over decision space A 
is in effect a sum over the discrete and distinct points that in this ab­
stract space represent the decisions 1'1, .• " 'Ym. In extraction problems, 
which are characteristically measurement operations, the decision rule 
a takes the form of a probability density, for example, 

a( 1'/ V) = o(S - Ya(V». (2.8) 

The right-hand member of (2.8) is the Dirac delta function and 
Ya(V) == 'Ya(S/ V) is the estimator (here of S) based on the received data 
V and subject to the distribution density (d.d.) u of S. Prediction and 
extrapolation, as well as simple estimation (tx = tk, k = 1, ... , n), 
are readily included in the present formalism. We write for (2.6) the 
somewhat extended form 

R(u, a) = Iau(S, Sx) dS dSx Ir Fn(V / S)C(S, SA; Ya) dV, (2.9) 

-----
t See [1], Sec. 18.4-1. 
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where, for example, SA is the predicted value of S at tA-here for all 
possible ensemble representations. 

Thus, with (2.6) and (2.7), for both detection and extraction we have 
now a measure of performance for the class of single-link systems em­
bodied in (2.1), above. Our next step in the discussion of optimization 
problems and procedures is to seek appropriate extrema of £1 and £2, 
with and without constraints, by suitable choices of the decision rules, 
and, where possible, to find the various distribution densities u, F,., 
etc., governing the average cost or information loss. 

3. Optimization and Extrema in General Terms 

Let us now consider the central subject of the present chapter: the 
optimization of communication systems in which definite decisions are 
required, either in the "yes-no" form characteristic of the signal­
detection situation, or as measurements characteristic of signal­
extraction operations. Here we outline some of the major classes of 
questions according to the two principal classes of detection and ex­
traction situations noted above. These questions will be described in 
somewhat greater detail in Sections 4 and 5. For the basic single-link 
system (2.1), we may state our problem symbolically as 

op {v} = op {T~N)T~:)T~N){U}}, 
TR. TT 

where optimization, when possible and meaningful, is to be achieved 
by selection of the transformations representing reception (Tt»), 
transmission (or encoding) (Tf»), or both. Since in physical applica­
tions we do not have control of the properties of the medium through 
which the communication process is propagated, we cannot expect to 
adjust Tcg>. From the receiver's viewpoint, often the case in practice, 
the transmitted processes y = T~ Tf) { u} are specified, so that the 
only possibilities of optimizing performance lie in suitable choices 
of T1NJ. This is, of course, a nontrivial problem because of the in­
evitable and unavoidable presence of interfering noise, which in effect 
guarantees that T1N) ~ T~N)-I. From the point of view of decision­
theory methods, the question of optimum reception, either as detection 
or as extraction, is also a natural point of application-in particular, 
in cases for which the decision itself has primary significance [1], [2]. 
If, however, the interests of the communication process are more 
naturally focused on maximum use of channel capacity rather than on 
the significance of the messages sent and received, that is, on their 
outcomes, the principal concern in optimization is then with the en­
coding process, Tt,f>, as illustrated in the usual applications of infor-
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mation theory. If both interests are naturally combined, we may seek 
some sort of simultaneous adjustment of TkN

) and T!.f). Even when spe­
cific encoding procedures over a span of many individual decisions at 
the receiver concerning transmitted symbols are not themselves directly 
incorporated into T!.fJ, we may still seek simultaneous adjustments of 
TW> and T!.fJ for possible further optimization of performance, a pro­
cedure we have called cost coding. t 

Among the first and most important optimization procedures is the 
minimization of the average risk or cost R(u, ~) [see (2.6)] by suitable 
choice of decision rule ~. Thus, we have 

min R(u, ~) = R*(u, ~*), (3.1) 

and R* is called the Bayes risk, while ~* is known as the Bayes decision 
rule, for which R is a minimum. Accordingly, here 

{ } { 
(N) (N) (N) { }} op v = op Tn TM TT u (3.2) 

TR 

yields R* through suitable choice of T1~op == ~*. A corresponding situa­
tion occurs for the average information loss, £2 = H, although under 
more restricted circumstances. We can similarly write 

min H(u, ~) = H* (u, ~~), 
6 

(3.3) 

where ~1i in general is different from ~* above, as is H* from R*. 
Equation (3.2) is still representative, with Tk~op == ~1i; H* is called 
the Bayes equivocation, or minimum average information loss. 

A third class of extremal systems of considerable importance is pro­
vided by the so-called minimax systems. These are defined for cost 
functions of type 1, that is, 5"1 = C(8, "(), as the least unfavorable of 
the worst average costs, the latter being obtained for the "most un­
favorable" a priori d.d. Uo of the signal process 8, that is, 

R~(uo, ~~) = min max R(u, ~), (3.4) 
6 <T 

in which ~!r == TW20p is the minimax decision rule, ~ ~ ~!r. We may 
symbolically write (3.2) now as 

op {v} = op Op-1 {T~N)TC;)T~N){U}} = min-max {v}, (3.5) 
TR TT 

t See [1], Sec. 23.2. 
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with 

-1 
Op == max (3.5a) 

TT " 

in this case. Minimax systems are, of course, more complicated than 
the simple Bayes systems <5* that minimize average risk or cost, since 
a double extremizing process is now required. Under conditions readily 
met in physical applications, t it is also true that 

min maxR(u, <5) = max min R(u, <5), (3.6) 
a" "a 

so that in the language of game theory we have a strictly determined, 
zero-sum, two-person game. Here the game is between the observer 
(i.e., the receiver) and nature,t with the characteristic saddle-point 
condition represented by (3.6). In a similar way, although under more 
restricted conditions, we may expect minimax equivocation, that is, 

H~(UOH' <5~H) = min max H(u, <5) = max min H(u, <5), (3.7) 
a " " a 

this latter in the strictly determined cases. Hence <5 ~ <5!rH ~ <5!r for 
the minimax average risk, and also, in general, UOH ~ uo. Equation 
(3.5) applies once more, but now with 

-1 
op == max (3.7a) 

TT " 
[see (3.5a)], since the cost function here is 112 = -log p(SI "() [see 
(2.5)] instead of the simpler cost assignment (2.4). The criteria of 
optimization represented by the Bayes risk and minimax average risks, 
(3.1), (3.4), (3.6), were first proposed and examined in their general 
forms by Wald [3] in his original construction of statistical decision 
theory, along with the principal theorems upon which are based the 
extremal operations formally presented above. 

Until recently, attention has been directed principally to optimiza­
tion on the basis of the simple cost function, 111, and to some examples 
employing 112-in both instances without additional constraints other 
than those necessarily imposed through the probabilistic nature of the 
decision rules and a priori probabilities u, F N(V I S), etc. Other extremal 
situations of importance to communication theory applications occur, 

t See [1], Sec. 18.5-3, for statements of some of the principal theorems and Sec. 
18.4-4 for a more detailed discussion. 

t See [1], Sec. 23.3-1; also see [2], Chap. 6, Sec. 1. 
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however, in which additional constraints naturally arise. Cost coding, 
mentioned above, is a typical example. Here we seek a possible further 
minimization of the average risk R(u, 0) by suitable choice of waveform 
8 subject, say, to the constraint of fixed signal power. This can be 
expressed as 

* {* * } * * Rc = ext R (u, 0 ) ct: f(8) = Rc(u, oc), 
s 

where ct denotes the constraint; for fixed power this is 

f(8) = k fo T 8(t) 2 dt. 

(3.8) 

In terms of the transformations T'fl, etc., this becomes alternatively 
[see (3.2), (3.5)] 

{ } { 
(N) (N) (N) { }} op v = op op T R T M T T U , 

TT TR 
(3.9) 

where OpjTR =:; 0 ~ 0*. Then OpjTT applied to this, subject to the con­
straint f(8), yields 0* ~ o~, with the "best" receiver for the "best" 
transmitted waveform. One thus adjusts TCf> and TW) to achieve R~, a 
further minimization of an already Bayes risk. In general, this is not 
unique; nor is it always possible, as some of the results to date indicate. t 

Still other, and more elaborate, extremal situations may arise: For 
instance, we may wish to minimize average risk for a class of sub­
optimum systems (0 ~ 0*) by proper choice of waveform, subject to 
fixed signal power, for example, 

Rc =:; min {R(u, 0) ct: f(8)}. (3.10) 
s 

Another possibility is the maximization of Bayes risk by choice of 
noise statistics, again subject to the constraint of fixed noise power, 
for example, 

R~ =:; max {R* (u, 0*) ct: F(N)}. (3.11) 
W(N) 

We may also wish to combine cost coding and maximization of Bayes 
risk; for example, 

R~N == min max {R*cu, r/) ct: f(8) ct: F(N)}, 
S WeN) 

(3.12) 

t See the examples in [11, Sec. 23.2-1. 
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a situation characteristic of communication in the presence of inter­
ference, where best operation of the communication link is desired on 
the one hand in the face of interference on the other. This may be 
selected to render transmission (or reception) as ineffective as possible 
-a type of minimax situation in which the constraints on both signal 
and noise processes now playa key role. 

Not much is as yet known about the general solutions to problems 
of the above kind. The customary attack is that of the calculus of varia­
tions-which is not usually sufficient to guarantee a solution in each 
case, although inspection of the special problem frequently permits us 
to decide on a maximum or minimum result or to determine whether 
the extremum in question is the desired maximum or minimum. In the 
next two sections, we shall illustrate some of these remarks with exam­
ples of two classes of optimization situations: Bayes signal detection 
and Bayes signal extraction. 

4. Optimum Detection t 

Let us begin by considering the general binary (i.e., two-alternative) 
situation of detecting the presence of a signal of type 82 in noise versus 
that of a signal of type 81, also in noise, which may occur alternatively. 
The hypotheses accordingly are H2:82 ® Nand H l :81 ® N. We shall 
construct the Bayes, that is, minimum average risk, test of H2 versus 
HI on the basis of fixed data samples on (0, T). For this purpose, we 
have 

fh + n2 = n, where nl and n2 are signal spaces appropriate to 
8 1 and 8 2, and are disjoint, that is, nonover-Iap-
ping (see Fig. 3); (4.Ia) 

Wl(S), W2(S) = d.d.'sofS = (SI, S2), wherewl(S) = Wl(SI), 
that is, for S E nl, and W2(S) = W2(S2), 
S E n2; S, of course, embodies all signals, 
as indicated; (4.Ib) 

f Wl(S) dS = f Wl(SI) dSI = 1, etc.; (4. Ie) 
III III 

PI, P2 = a priori probabilities that the data sample V comes 
from an ensemble V = 81 ® N, or V = 8 2 ® N, 
respectively. (4.Id) 

t This section presents a generalization of some of the results of Chap. 19 of 
[1], especially Sees. 19.1-19.3. 
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Consequently, we have 

since PI + P2 = 1. For the two possible decisions here, that is, 
'Yl:H:Sl 0 N, 'Y2:H2:S2 0 N, we write 

(4.3) 

inasmuch as a definite decision is always made, and 0 ~ 01,2 ~ 1, since 
the o's are probabilities in this case. Finally, let us represent the cost 
assignments in the form of a cost matrix C(S, "(), with rows represent­
ing the hypotheses HI, H2 and columns the decisions 'Yl, 'Y2, 

[
0<1) O<I)J 

C(S, "() = d2) d2) . (4.4) 

The superscripts refer to the hypothesis state and the subscripts to 
the decisions actually made. Consistent with the meaning of "success" 
and "failure," or "correct" and "incorrect," with respect to the possible 
decisions, we require that 

C
(I) C(I) 
1 < 2, C

(2) C(2). 
2 < 1 , (4.4a) 

that is, "failure" costs more than "success." Note that the costs are 
assigned vis-a.-vis the possible hypothesis states and not with respect 
to anyone signal in a signal class (which may contain an infinite 
number of members). 

With the above consideration in mind, we compute next the average 
risk according to (2.6) by integrating over the two points in the decision 
space A, for 'Yl, 'Y2. The result is 

f I 
(1) I (2) I R(u, 0) = r t[(Fn(V SI»IP1C1 + (Fn(V S2)hC1 P2]0('Y1 V) 

+ [(Fn(V I SI)IP1C:1) + (Fn(V I S2)2C?)P2]0('Y21 V)} dV, (4.5) 

where 

Pl(Fn(VIS)h= f u(S)Fn(VIS)dS 
III 
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If the signal processes owe their statistical character to a set of random 
parameters a alone, that is, are deterministic, then (4.6) is equivalently 
expressed as 

P1(F .. 011 5 1»1 = PI r w(Ol)F .. (V 151(01» dOl, etc. (4.6a) J01 

At this point, it is convenient to introduce the conditional and total 
error probabilities associated with the decisions 'Yl, 'Y2. These are 

(j~1) == (j~1)(H21 HI) = conditional probability of incorrectly 
deciding that a signal of class 2 is pres-
ent when actually a signal of type 1 
occurs, 

(ji2) == (ji2) (HI I H 2) = the same as (4.7a) except that 81 and 82 

(4.7a) 

are interchanged. (4. 7b) 

The corresponding total error probabilities are therefore the following: 

Pl{3~l) = total probability of incorrectly deciding H2 when 
HI is the true state, 

P2{ji2) = the same as (4.8a), with H2 and HI interchanged. 

In expanded form, we have 

(3~1) = Ir (F .. (V I 5 1»ro('Y21 V) dV, 

(j~2) = Ir (F .. (V I 5 2)ho('Y11 V) dV, 

(4.8a) 

(4.8b) 

(4.9) 

so that, alternatively, the conditional probabilities of correct deci-
sions are 

(4. lOa) 

(4. lOb) 

Using the above results in (4.5) we can now rewrite the average risk 
more compactly in terms of the error probabilities as 

{ 
(1) (2)} (I) (1) (1) 

R(u, 0) = P101 + P202 + Pl(02 - 0 1 )(32 

+ (0
(2) 0(2»{3(2) 

P2 1 - 2 1. (4.11) 
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Optimization is next accomplished, according to (3.2), by suitable 
choice of decision rule 0, so as to minimize the average risk R(u, 0). 
Eliminating o( 'Y21 V) with the aid of (4.3), we can express (4.5) as 

(2) (2) f I [ ] R(u, 0) = eRa + Pl(CI - C2 ) r 0('Y1 V) A21 (V) - X12 

. (Fn(V 181) h dV, (4.12) 

where 

(4.13) 

is a generalized likelihood ratio, and 

C
(I) C(I) 
2 - 1 

X12 = C?) _ Ci2) > 0 (4.14) 

is a threshold, with eRo = PIC~I) + P2C~2) the irreducible risk. Since 
ol(Fn ), C~2) - C~2), PI, etc., are all positive, it is at once clear that we 
minimize R by choosing o('Yll V)-to*('Yll V) to be unity when A21 < Xu 
and zero when Au > Xu. In other words, we decide 

or 

'Yl : HI if A2l (V) < X 12 ; that is, we choose 0* ('Yll V) = 1 for 
any V such that this inequality applies, and take 
0*('Y2Iv) =0; (4.15) 

'Y2:H2 if A21 (V) ;::::: X 12 ; that is, we choose 0*('Y21 V) = 1 for 
any V satisfying this inequality (and equality), 
and take o*('Yll V) = o. 

Note that the 0:'2 are nonrandomized decision rules, automatically 
arrived at here in the minimization process. The error probabilities 
(4.9) are accordingly 

min .a~I) -t .a~l)* = f (F(V 181) h5\'Y21 V) dV, etc., 
8 r 

(4.16) 

with .a~I)* obtained explicitly by evaluating the integral above over 
that portion of the data space r for which 5*('Y2/ V) = 1, with a similar 
procedure for obtaining .ai2)*. 

For actual applications, it is much more convenient to use as the 
representation of the optimum system log A 21, in place of A21. This in 
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no way changes the optimization results because the logarithm is 
monotonic (and A2l ;;:: 0); (4.15) is simply rewritten as 

or 

'Y2:H2: if log A21 ;;:: log Xu. 

The Bayes risk is now 

P2 
J.l21 == -. 

PI 

(4.17) 

(4.18) 

Besides the optimum system structure embodied in log A2l, we need 
the error probabilities (:J~l)*, (:Ji2)* to evaluate the system's performance. 
Letting 

x = log A21(V), (4.19) 

we see that these error probabilities are given by 

(1)* f 00 (I) (2)* f !OIlX (2) 
{:J2 = Pn (x) dx, and (:JI = Pn (x) dx, (4.20) 

!ogX -00 

where p~I),(2)(X) are the d.d.'s of x, respectively under HI, H 2• For 
example, 

(I) -I{ { i!:r:}} Pn (x) = g: EVJHl e ; (2) -I{ { i!:r:}} Pn (x) = g: EVJHs e , (4.21) 

in which g:-I denotes the inverse Fourier transform and the expecta­
tions are the two characteristic functions of x, which are determined 
from 

(4.22) 

In terms of these characteristic functions, the error probabilities (4.20) 
may be alternatively expressed as 

e-i~ 1011 X (2) 

--.- F:r: (i~) d~, 
-2m~ 

(4.23) 

where CH and CC+), respectively, are contours extending from - 00 to 
+ 00 along the real axis and indented downward and upward about any 
singularities on this axis, usually at ~ = o. The optimum detection situ-
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ation of H2 versus HI is schematically illustrated in Figure 4, while the 
relationship of the corresponding Bayes error probabilities is sketched 
in Figure 5. The essential problems at this stage are technical: how to 
evaluate (4.21)-(4.23). This is by no means a simple task; it requires 
considerable skill and insight. In the most important and critical case 
-threshold, or weak signal operation (where the input signal is less 
than the background noise, power-wise)-a fairly comprehensive bi­
nary theory has nevertheless been developed. t 

or 

Fig. 4. Optimum detection. 

Fig. 5. The Bayes error probabilities. 

Finally, in the common case of a signal in noise versus noise alone, we 
have H 1 :N:H2 :S 0 N, and the preceding results can be immediately 
reduced by inspection to the familiar expressions discussed in earlier 
work.t 

Various special cases of the general Bayes detection systems de­
scribed above deserve attention. Among those belonging to the opti­
mum class-that is, minimum average risk class in some sense-are 
the so-called Neyman-Pearson detectors, wherein the average risk 
associated with one or the other of the error probabilities f1~1) or f1i2) is 
held fixed, thereby determining a threshold X', while the average risk 

t See [1], Chap. 19, and especially Chap. 20, Secs. 20.1-20.3, with illustrative 
examples in Sec. 20.4. 

:I: See in particular [1], Secs. 19.1-19.3. 
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associated with the other (Pi2) or p~I» is minimized; for example, 

R*(u, r/)NP = Co{min (p21J~2» + APIIJ~I)}. 
& 
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(4.24) 

The result is readily shown to be a Bayes, that is, likelihood ratio test 
of the type (4.15) or (4.17), where A = X', a threshold determined by 

(I) f co (I) P2 = P n (x) dx = constant «1), 
log X' 

(4.25a) 

with 

(2)* f logX' (2) 
PI = P n (x) dx, 

-co 

(4.25b) 

for the minimized error probability. 
Another optimum class of binary detection systems within the Bayes 

group is that of the Ideal Observer, where both p~l) and p~2) are jointly 
minimized; for example, 

* * . (1) (2) 
R (u, 0 )r = Co mm (PIIJ2 + P2P1 ), 

& 
(4.26) 

for which it is found that the decision procedure requires a threshold 
XI = 1. [See (4.15), (4.17).] Still another class, also Bayes, is the Mini­
max detector [see (3.4) et seq.], where the a priori probabilities PI, P2 
are unknown or unspecified. Again, the optimum system is embodied 
in a generalized likelihood ratio (4.13). The actual evaluation of such 
systems, however, may be quite involved, particularly if other a priori 
probabilities or probability densities are open to adjustment-for 
example, u(S), u(6), Fn(V/ S). In Section 19.2 of [1] these three types 
of systems are discussed in more detail and other possible Bayes 
situations are presented in which other subcriteria for optimization 
may be employed to deal with the ever-present question of partially 
or totally unspecified a priori probabilities. 

Finally, we mention extensions of the Bayes theory sketched here. 
An important case is that of variable sample, or sequential procedures, 
for signal detection [4]. Here sample size is the random variable, and 
optimization is achieved by minimizing the average cost of experi­
mentation, proportional to sample size. For example, we have 

R:eQ = min R(u, o).eq = Co min I(n, 0, S), 1= nCo, S), (4.27) 
& & 

and in the more general cases I is a nonlinear function of sample size n, 
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or of T, if continuous sampling is employed. Adaptive systems, which 
adjust themselves on the basis of successive stages of incoming data to 
be optimal at later stages, provide other more sophisticated examples 
of optimum systems, of which the general character is still in the 
process of formulation. 

5. Optimum 8ignal Extraction 

As we have noted previously (Sec. 2), the broad class of problems in­
volving the estimation of signal waveform or signal parameters, either 
in an interpolatory or in a predictive sense, is naturally included within 
the decision-theory framework. Equally naturally, this class of prob­
lems suggests a spectrum of optimization questions wherein minimi­
zation of average risk or average equivocation are two important cri­
teria. For our summary discussion here, we shall consider only simple 
estimation, where t" coincides with one or more of the sampling instants 
tl , ••• , tn on a typical interval (0, T). Here, also, suitable classes of 
cost functions (Le., convex cost functionst) lead to the desirable non­
randomized decision rules, which are of the form 

O("f I V) = o("f - "fa(V», (5.1) 

where "fa(V) = Trl(V) is the functional operation performed by the 
receiving system Tr) on the received data V and thus embodies the 
estimation structure. For particular V, "fa(V) is an estimate; for the 
process V, "fa(V) is called the estimator, based on the a priori signal 
information embodied statistically (as well as deterministically) in 
u(8) or u(6), where 6 = (01, ••. , OM) is a set of M different parameters. 
The left-hand member of (5.1) is a probability density for the usual 
case of continuous values of V and of either S or 6 under estimation; the 
right-hand member is the Dirac delta function [see (2.8)]. 

When "fa is given, that is, the system is specified, the average risk 
may be computed according to (2.9) above, which for simple estimation 
becomes directly 

R(u, 0)8 = In u(8) dS Ir Fn{V I 8)C(8, "fa) dV, (5.2a) 

or often in deterministic cases for which 8 = 8(6), 

R(u, O)e = f u(6) d6 f Wn{V I 6)C(6, "f.,) dV. 
ne r 

(5.2b) 

The average risk depends, of course, on our choice of cost function, and 
here we may expect a considerably wider range of possibilities, since 

t See [1], p. 96l. 
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the number of reasonable and acceptable cost functions is now much 
expanded, at least potentially, over those available in detection. 

As in detection, we may expect a variety of optima, depending on 
the choice of cost function and on possible constraints. In the uncon­
strained case-the deterministic case, for example-we seek optima 
from the solution of 

8R = f u(O) dO W .. (V 10) ac (0, "(tt)/ = 0, (5.3) 
11 a"( y_y. 

whenever C possesses the required derivatives; the "(* that is the solu­
tion of (5.3) can usually be shown to be the desired optimum, either 
by inspection or by a direct demonstration that 82RI y. > 0, for mini­
mum average risk. The most common and familiar example occurs for 
a quadratic cost function, 

(5.4) 

for which it is easily shown that the Bayes risk is 

R: = Comin 10- "(ttI 2s
•
N 

= Co 10 - "(:(01 V) 12v, (5.5) 
y" 

where the optimum estimator is determined from the set of equations 

= f Ow .. (V, 0) dO / f w .. (V, 0) dO, (5.6a) 
118 118 

in which wn(V, 0) is the joint d.d. of V and o. Note that in general the 
Bayes estimator "(* here is a nonlinear operator on the received data 
V; the optimum receiver for estimating 0 is a nonlinear system. In fact, 
for this cost function it is the conditional expectation of 0, given V­
a well-known result.t 

As an example in which a direct variational procedure is not possible, 
that is, in which ac / a"( does not exist but nonetheless optimum systems 
may exist and be obtained, we have the important case of the simple 
cost function (in extraction), 

J.f 

C(O, "(tt) = L [CEA~ - (Cs - CC)8('Yk - 8k)]. (5.7) 
k-l 

Here the A~ are positive constants, chosen so that the resulting average 
risk is positive or zero for each k, C E is the cost associated with an error, 

t See [I). Sec. 21.2-2. 
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and Co is the cost of a correct estimate of each (JTc. More compactly, 
(5.7) becomes 

M 

C(O, "(IT) = Co E [ATe - c5('YTe - (J,,)], (5.7a) 
Te-l 

with appropriate definitions of Co and ATe. Thus, in this simple cost as­
signment, errors of all sizes exact the same cost CE , while all correct 
decisions (i.e., estimates) cost Co < CEo The average risk, or cost, here 
is found to be 

R(u, c5)s = Co t [Ak - f :Dk(V; u, c5) dV], (5.8) 
k-l r 

where 

(5.8a) 

and c5 is now a probability density. Minimization of average risk leads 
directly to the condition 

'rio = (A, k = 1, ... ,M, (5.9) 

where the components 'Y: (k = 1, ... , M) of the Bayes estimator, 
here "(*, are determined from the relations 

(5.10) 

for each k and for all (JTc in nel:. But this is precisely the condition 
that determines the unconditional maximum likelihood estimators 
(UMLE's) of (JTc, that is, 'Y:. Thus, equivalently, the 'Y: are determined 
by 

a 
-log [U«(Jk)Wn(V 1 (Jk)] 161:-61-..,. = o. 
a(Jk J: 

(5. lOa) 

For a more detailed discussion, see [1], Sections 21.2-2 and 21.2-1 and 
equation (21.82). 

Although the quadratic cost function (QCF) and simple cost function 
(SCF) are analytically and historically the most familiar, many other 
cost functions, more reasonable in special applications, can be con­
structed. Even if they bear the expected difference form F«(J - 'Y), 
however, explicit optimization is not readily achieved for general sta­
tistics of V and 0, and little appears to be known as yet in a systematic 
way about the Bayes extractors in these cases. Under certain condi­
tions, we can escape from the sometimes too restrictive and inappro-
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priate nature of the QCF and SCF with the help of the following result: 
Let cost functions of the type C(O - 'Y.) have the property that for 

1 (8 - 'Yah 1 < 1 (8 - 'Y.)21 , we have 

C(8 - 'Ya) = C('Y" - 8); C[(8 - 'Y"h] < C[(8 - 'Y"h]. (5.11) 

Then the Bayes estimator ('Y:)QCF for the quadratic cost function 
(8 - 'Y.)2 also minimizes the average risk for these other cost functions 
(5.11), provided the conditional d.d. of 8, given V-that is, w(81 V)­
is unimodal and symmetric about this mode (8 = 'Y:). Typical cost 
functions obeying (5.11) and satisfying this condition, and conse­
quently for which ('Y:)QCF is the optimum estimator, are 

CI (8 - 'Y:) = 1 8 - 'Y: 1 ; 

18 - 'Y,,*I 

1 8 - 'Y: 1 

<A 
>A 

* * ('Y" = ('Y,,)QCF), (5.12) 

(>0). 

The resulting Bayes risks for (5.12) are different from (R*)QCF, of 
course, although 'Y: = ('Y:)QCF here. 

Still other cost functions may have desirable properties in applica­
tions; when 0(0) is uniform, 'YQCF may have minimax properties,t and 
if wn(V, 0) possesses certain symmetry properties, then the Bayes 
estimator often may be directly determined from the symmetry 
structure. Not only Bayes extraction, but also those minimizing 
average equivocation-as in detection-are possible. Also, as in de­
tection, we may consider more sophisticated extraction procedures, 
for example, sequential estimation and adaptive systems employing 
dynamic-programming techniques. In all these areas, as far as com­
munication systems are concerned, the search for optimality has just 
begun. This is particularly so in those cases in which it is meaningful 
to include constraints. For example, in cost coding it may often be 
profitable to minimize further the average risk, associated now with 
signal extraction. Equations (3.8), (3.9) apply here also, as do (3.10)­
(3.12), for the more elaborate situations in which the communication 
link-both transmitter and receiver-is in effect playing a game against 
the medium, represented by either natural or man-made disturbances. 

6. Some Consequences of Optimality 

As we have indicated above, a direct and important by-product of each 
optimization procedure-whether in signal detection or extraction-

t For further comments, see [I], Secs. 21.2-1, 21.2-3, 4, and Sec. 21.2-5. 
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is optimum structure, which is embodied in the appropriate decision 
rule 8. In binary detection, this is expressed in terms of the generalized 
likelihood ratio or its logarithm [see (4.17)], 

(N) { } 
TR-op V = log An(V). (6.1) 

In extraction one has a variety of structures, embodied in the esti­
mators 

(N) {} • I 
TR-op V = "(v(e V). (6.2) 

For threshold operation various canonical forms of optimum structure 
are possible. In detection of a signal in noise-for example, HI: N 
alone, H 2 :S + N, the "on-off" case-these can be expressed as 

_ (1) _ (2) 3 3 2 3 
log An = Bo + B1vC (s) + B2vC V + O(ao; s ; v, V , V , ••• ), (6.3) 

where the constants Bo, B1, B2 depend of course on the signal and 
noise statistics and are respectively o (ag, ao, a~, ... ), B1 = O(ao), 
B2 = O(a~), with a~ defined as an input signal-to-noise power ratio, 
s is a normalized signal wave form, and v is a normalized data process. 
In reception processes for which there is sample certainty, for example, 
in coherent reception (see Sec. 2), (s) does not vanish, and the pre­
dominant threshold structure is that of an averaged, generalized cross­
correlationt of the received data with a known signal waveform, 

I ' ,- (1) 
log An coh = Bo + aOBIvC (s), 

2 
aO < 1, (6.4) 

dependent on the square root of the input signal-to-noise power ratio. 
On the other hand, when the observer does not know the epoch E 

(see Fig. 1), and E is so distributed that (s) = O-a usual condition in 
this state of incoherent observation-we have an example characterized 
by an averaged, generalized autocorrelationt of the received data (v) 
with itself: 

I ,,2 ,,- (2) 
log An incoh = Bo + aOB2 vC v. (6.5) 

Unlike the coherent case, this is now a nonlinear operation on the data. 
Moreover, the structure depends on the first power of the signal-to­
noise power ratio: 

t See [1], Sec. 19.4. 
t See [1], Sec. 19.4. 
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From a design viewpoint, we must next interpret these generalized 
averaged cross- and autocorrelations in terms of ordered sequences of 
realizable elements, both linear and nonlinear. This has recently been 
done [5], t and typical structures consist of a linear time-invariant, 
realizable Bayes matched filter of the first kind, and similar to the 
older type of matched filter [6] for maximizing SIN in the coherent 
cases. With incoherent reception the structure may consist of time­
varying linear and realizable Bayes matched filters of the second and 
third kinds, followed by zero-memory quadratic or multiplicative 
devices and terminating in an ideal (i.e., uniformly weighting) post­
rectification filter [5]. The details are considered in [5]. Similar struc­
tures may also occur in signal extraction. In addition to a threshold 
structure similar to and sometimes identical with that arising in detec­
tion, one often has a further mathematical operation on data so 
processed, represented by some transcendental function, for example, 
a Bessel or hypergeometric function, of which the processed data are 
the argument.t 

Finally, it should be pointed out that the above procedures are not 
confined to such discrete structures, although they are necessarily 
formulated in a probabilistic sense in discrete terms, that is, with 
sample values at discrete times tl , ••• , tn on an interval (0, T). One 
can quite naturally consider continuous sampling on (0, T) in which 
the various matrix forms above go over into corresponding integral 
expressions. The generalized likelihood ratios characteristic of optimum 
binary detection become generalized likelihood ratio functionals, and 
the various quadratic forms in the threshold development of structure 
[see (6.3)-(6.5)] likewise become linear or quadratic functionals of 
V(t), the received data on the interval (0, T). In such instances, also, 
the technical problems of inverting matrices [the C(1), C(2) in (6.3) 
et seq. contain one or more inverse matrices] transform into the cor­
responding problems of solving linear integral equations of the homo­
geneous and inhomogeneous varieties. In system structure a similar 
transformation from the discrete sampling filters to the continuous 
analogue devices occurs without conceptual change, although, of course, 
the actual realization of the various optimized circuit elements requires 
different techniques. Section 19.4-2 of [1] considers some of the con­
ditions under which the passage from the discrete to the continuous 
state of operation may be analytically performed. 

t See also [1], Sec. 20.1, 2. 
t See [1], Sec. 21.3-2, in the case of the incoherent estimation of signal am­

plitude with a quadratic cost function and narrow-band signal processes. Still 
other examples may be found in [1], Secs. 21.1 and 21.3, and in [7]. 
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7. Concluding Remarks 

In the preceding sections we have described formally and rather in de­
tail some of the roles of optimization in statistical communication 
theory. The principal applications of optimization techniques here lie 
in the areas of signal detection, signal extraction, and cost coding, 
with their concomitant by-products of optimum system structure and 
comparison with suboptimum systems for these and similar purposes. 
In its simplest forms, optimization is carried out with respect to the 
criterion of minimizing an average loss of some sort, whether 
measured in simple units of cost or in the more intricate units of 
equivocation, and without constraints. More sophisticated -models, 
appropriate to a variety of special communication situations, introduce 
one or more constraints, with a resulting increase in the complexity of 
the analysis. Cost coding offers an important class of such problems. 
The basic technique for finding solutions is the familiar variational one, 
which of course is not always adequate for this purpose, since it fre­
quently provides minima when maxima are needed, and vice versa. 
This difficulty is sometimes overcome by an inspection of the physical 
model, which often reveals the desired extremum, but in general there 
appear to be no consistently reliable methods for discovering solutions. 

Although our attention has been specifically directed to the single­
link communication situations, the fundamental ideas and techniques 
are by no means restricted to such cases. Frequently a more realistic 
description of a communication environment requires an extension of 
fixed-sample models to the variable-sample ones (e.g., sequential 
detection and estimation). Often, too, simple binary decisions are in­
adequate: A selection between many alternatives may be required, and 
we are then confronted with a multiple-alternative detection situation. 
Moreover, the cost functions in common analytic use (the SCF and 
QCF of Sec. 5, above) may prove unrealistic, and other, more involved 
cost assignments must be introduced, with a consequent increase in 
the technical problems of finding optimum structures (decision rules) 
in these cases. Extensions to adaptive systems, which in various ways 
adjust themselves to their changing data environment, put a heavy 
burden on our optimization methods and require of us new approaches 
and techniques, as yet only hinted at. One central problem here is that 
of "reduction of dimensionality," whereby a very large number of raw 
data elements are to be combined (and in part eliminated) in such a 
way that nearly all of the pertinent information upon which a decision 
is to be based may be preserved, with the result that a comparatively 
small number of effective data elements are then needed to obtain an 
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efficient decision. Simple examples of this are shown above in binary 
detection, where for optimum performance an explicit operation on 
the received data V is indicated by the likelihood ratio function or 
functional. But when we attempt to extend this procedure to multiple 
decisions under an over-all optimality program, as in dynamic pro­
gramming, the dimensionality question rapidly reaches a prohibitive 
state. Hence, other as yet undiscovered techniques for reducing the 
computational demands on the system must be introduced. Accord­
ingly, it is clear that new optimization methods are required if we are 
to extend the basic notions and models of an adequate statistical theory 
of communication to many of the pressing problems of the present and 
future. Here, then, we have described a framework of approach, suc­
cessful in its basic aims. The extensions lie before us, with optimization 
inevitably a central aim, so that not only can we refer actual achieve­
ments to their theoretical limiting forms, but with these results to 
guide us, approach them more closely in practice. 
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Chapter 8 

Estimators with Minimum Biast 

WILLIAM JACKSON HALL 

1. Introduction 

In statistical decision theory-and, in particular, in estimation theory 
-the criterion of optimization is minimum risk. An estimator is so 
chosen that the risk when using it is minimized in some sense-for 
example, the maximum risk or the average (Bayes) risk may be 
minimized. On the other hand, some other criterion may be imposed 
prior to minimization of risk. A requirement of unbiased ness frequently 
plays such a role. 

The thesis set forth in the present chapter is that this popular re­
quirement of unbiasedness-more generally, of minimization of the 
bias-is a completely separate optimization criterion, alternative to 
minimization of risk, and that optimization by one of these criteria 
essentially precludes consideration of the other. Because uniqueness of 
minimum-bias estimators (in particular, unbiased estimators) is so 
common, secondary consideration of risk is seldom possible, contrary 
to usual claims. 

An advantage of a minimum-bias criterion is that it may enable 
determination of estimators without complete specification of a prob­
ability model, such as in linear estimation theory, much of which is 
distribution-free-and loss-function-free as well. Here, a minimum­
risk criterion may not be feasible. Our attention will be directed, how-

t This research was supported in part by the U.S. Air Force through the Air 
Force Office of Scientific Research of the Air Research and Development Com­
mand under Contract No. AF 49(638)-261. The author appreciates the assistance 
of Wassily Hoeffding and Walter L. Smith, who made several helpful suggestions. 
The author is also grateful for use of the computing facilities of the Research 
Computing Center of the University of North Carolina. 
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ever, to problems in which a choice between these criteria is possible. 
Although a theory for obtaining and characterizing minimum-risk 

estimators has been available since the classic papers of Wald, a theory 
for minimizing bias has not been explicitly set forth except when uni­
form minimization is possible (which does cover most applications). 
It is thus a second purpose of this chapter to present a theory of 
minimum-bias estimation, completely parallel to the minimum-risk 
theory and with possible applicability whenever unbiased estimators 
do not exist. 

A third purpose of this exposition is to emphasize how strong and 
perhaps unreasonable a requirement of minimization of bias may some­
times be. Not only does it usually produce a unique estimator, leaving 
no opportunity for secondary consideration of risk, but such an esti­
mator may have some unappealing properties unless care is taken to 
impose additional restrictions. High risk may well accompany low 
bias, and conversely. These points are made primarily with reference 
to an example in which minimum-risk and minimum-bias estimators 
are compared. 

Since these two criteria of minimum bias and minimum risk may 
be at such cross purposes and yet both have strong intuitive appeal, 
the final conclusion of this chapter is that some new criterion, heeding 
both bias and risk but minimizing neither, should be pursued. It is 
suspected that less stringent requirements on bias would satisfactorily 
meet all practical needs. A minimum-bias theory is presented at some 
length to provide a background or a basis for some compromise; it may 
be desirable to know the extent to which bias can be reduced even 
though we decide to use some other optimization criterion. 

We shall first review minimum-risk theory, for the benefit of non­
statisticians, and reinterpret the role of bias therein (Sec. 2). We then 
introduce a minimum-bias theory (Sec. 3), paralleling the risk theory, 
with the role of risk function replaced by a bias function (absolute, 
squared, or percentage of absolute bias, for example). We thus intro­
duce estimators that minimize the average or maximum of the bias 
function. Such estimators are obtained by choosing an unbiased esti­
mator of a suitable approximation to the function to be estimated. 
Relevant aspects of the theory of approximation, in the Chebyshevt 
and least-squares senses, are therefore reviewed (Sec. 4). Results bear­
ing considerable conceptual.similarity to Wald's results on minimax 

t It is of interest that Chapter 14 of this book also discusses Chebyshev 
approximation, used by Kiefer and Wolfowitz in the problem of optimal alloca­
tion; to the author's knowledge, Chebyshev approximation has not appeared 
elsewhere in the statistical literature. 
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and Bayes estimators are thereby derived (Secs. 4 and 5). Finally, an 
example is treated (Secs. 6-8), and a variety of minimum-bias and 
minimum-risk estimators are derived and compared. 

2. A Review of Minimum-Risk Estimation 

We are concerned with data generated by a probability distribution of 
which the form is completely known except for specification of a 
parameter 8 lying in a space e. We denote the data simply by x, 
a point in a space ~. It is desired to estimate the value assumed by a 
numerical function 'Y of 8; that is, we are to choose an estimator 8, a 
numerical function on ~, and identify the value 8(x) of 8 at the ob­
served value x with the unknown value 'Y(8) of the parametric function 
'Y. We shall not consider here randomized estimators, nonparametric 
estimation, or sequential experimentation. The Neyman-Pearson 
theory of testing the null hypothesis that 8 is in eo versus 8 in e - eo 
can be considered as the special case in which 'Y(8) is zero in eo and 
unity elsewhere, and 8(x) = 0 is equivalent to acceptance of the null 
hypothesis; our primary concern, however, will be genuine estimation 
problems. 

Let L(8(x), 'Y(8» represent the monetary loss incurred by estimating 
'Y(8) by 8(x). The expression L is usually taken to be a nonnegative 
function of the error of estimate 8 - 'Y-for example, squared error, per­
centage of absolute error, or simple loss-that is, zero if the error is 
small and unity otherwise. Since the loss is a function of x, it has a 
probability distribution, the mean value of which we denote by 
R(8, 8). This is called risk when we use the estimator 8 and when 8 is 
the true parameter value. 

What we shall refer to as minimum-risk theory consists of those 
various approaches to estimation theory, developed by A. Wald and 
his followers (see [1], [2], [3], or [4]), but with foundations in the 
works of Bayes, Gauss, and Laplace, which evaluate an estimator 
primarily on the basis of its associated risk, and which consider esti­
mators with small risk (in some sense) to be good estimators. Since the 
risk is a function of 8, its minimization must take this into account. 
Moreover, since uniform minimization is possible only in trivial prob­
lems, either some other type of minimization is required, or some 
conditions must first be imposed to reduce the class of estimators under 
consideration, or both. In any case, attention is frequently restricted 
to admissible estimators-estimators that cannot be uniformly im­
proved upon in terms of a small or smaller risk. 

The two types of minimization commonly considered are given 
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below. Either of these criteria frequently yields unique admissible 
estimators. 

Minimization of average risk. This criterion leads to Bayes esti­
mators-estimators chosen so that a weighted average (over the 
parameter space) of the risk function is a minimum. This is particularly 
appropriate if the parameter itself is a random variable with a known 
a priori probability distribution, in which case the expected risk is 
thereby minimized. Alternatively, justification may be made in terms 
of rational degrees of belief or concern about the parameter (see [5]). 

Minimization of maximum risk. This criterion leads to minimax 
estimators-estimators chosen so that the maximum (over the parame­
ter space) of the risk function is a minimum. This may be considered a 
conservative approach whereby, in the absence of specific knowledge 
about the parameter, one guards against the least favorable eventuality. 
Minimax estimators frequently are Bayes estimators relative to a least 
favorable weight function (prior distribution), as proved by an appli­
cation of the fundamental theorem of the theory of games. 

Other possible criteria are these: Subject to the prior distribution 
belonging to some specified class, minimize the average risk; or, subject 
perhaps to some global bounds on the risk, minimize the risk in some 
sense in some particular locality. Neither of these criteria has been 
developed here to any extent, except for the latter in the case of 
hypothesis testing. 

Four kinds of restrictions, one or more of which are sometimes im­
posed to reduce the class of estimators under consideration, are given 
below; subject to such conditions, the risk may be minimized uni­
formly or otherwise. 

a. Restriction to linear estimators, the rationale usually being one of 
simplicity. Its use is generally restricted to problems of estimating 
parameters in linear models, in which case a normality assumption 
further justifies a linearity restriction. 

b. Restriction to invariant (or symmetric) estimators. For example, 
the restriction might be that two statisticians using different units of 
measurement should obtain equivalent estimates, or that estimators 
should be symmetric functions of independent and identically dis­
tributed observations. 

c. Restriction to estimators that are functions only of a sufficient 
statistic-in fact, a necessary and sufficient statistic (if existent). From 
the risk point of view, nothing is lost by this restriction provided L is 
convex in 0 (and this is not required if randomized estimators are 
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allowed). Restriction to sufficient estimators is consistent with the 
Fisherian concept that a sufficient statistic contains all the relevant 
information. 

d. Restriction to unbiased estimators-estimators for which the ex­
pected value of the error of estimate is everywhere zero. Such a restric­
tion is usually offered in the guise of preliminary reduction of the class 
of estimators under consideration, as here, after which risk is mini­
mized. As was shown by Lehmann and Scheffe [6], however, in a wide 
class of problems there is a unique unbiased estimator depending only 
on a necessary and sufficient statistic. (P. R. Halmos [7] showed that 
a symmetry requirement may also lead to unique unbiased estimators.) 
This condition prevails whenever there are no nontrivial unbiased 
estimators of zero depending only on a necessary and sufficient statistic 
[8], [9], in which case the statistic is said to be complete [6]. Appar­
ently, few practical (nonsequential) problems fall outside this class. 
Thus, the condition of unbiasedness is a strong one; its imposition 
really implies that risk is not even considered, not merely that it is 
put in a position of secondary importance. To claim that an unbiased 
estimator has minimum risk (or minimum variance) is usually an empty 
claim except in comparison with insufficient estimators. Thus, restric­
tion to unbiased estimators can be thought of as being outside the 
minimum-risk theory. 

It may be noted that it is unusual for minimax or Bayes estimators 
to be unbiased. In particular, for squared-error loss, Bayes estimators 
necessarily are biased [3]. Sometimes no unbiased estimator is even 
admissible; for example, this is true in the estimation of the variance 
of a normal distribution with unknown mean and squared-error loss 
(dividing the sum of squared deviations by n + 1 rather than n - 1 
uniformly reduces the risk). Thus the criteria of unbiasedness and 
minimum risk frequently are incompatible. 

3. An Introduction to Minimum-Bias Estimation 

An approach to estimation theory paralleling the minimum-risk theory, 
with the role of the risk function filled by a bias function, is here de­
veloped. The bias function is some nonnegative function of the bias, 
the expected error of estimate. Thus, the operations of taking expected 
value and of applying a nonnegative function are interchanged: In­
stead of minimizing the expected value of a nonnegative function of the 
error of estimate as in risk theory, we minimize some nonnegative func­
tion of the expected value of the error of estimate. A number of con­
cepts and theorems completely analogous to those in risk theory can 
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be stated for the bias theory, but the mechanics of obtaining minimum­
bias estimators are quite different. 

In minimum-bias theory, in contrast to minimum-risk theory, uni­
form minimization is frequently possible, leading to unbiased esti­
mators. The theory of unbiased estimation is well established [2], [4], 
[6]. We shall be concerned with a minimum-bias theory applicable to 
situations in which no unbiased estimator is available. As one example, 
in nonsequential binomial problems only polynomials of limited degree 
in the success probability admit unbiased estimators. As another, if 
the restriction is made that the range of the estimator be within the 
range of the function to be estimated, then unbiased estimators are 
less frequently available (for example, see the second paragraph below 
and also [2], pp. 3-13). If one desires the simplicity of linear estimators, 
then some bias may be unavoidable. In the hypothesis-testing case, 
in which the range of 'Y is only 0 and 1, unbiased estimators are not 
available. Thus, four situations can be delineated in which bias is 
frequently unavoidable: (a) The sample space is finite. (b) The range 
of the estimator is restricted. (c) The functional form of the estimator 
is specified. (d) The parametric function to be estimated is dis­
continuous. 

When uniform minimization of bias is not possible, we might look for 
estimators whose maximum bias (absolute, squared, or relative) or 
average bias is a minimum, or for estimators with locally small bias in 
some sense. Such minimum-bias estimators will be considered in the 
sequel. A. Bhattacharyya [10], in discussing binomial estimation prob­
lems, considered estimators with minimum average squared b~as and 
estimators with locally small bias in the sense that all derivatives of the 
bias vanish at a specified parameter point. A. N. Kolmogorov [11] con­
sidered a somewhat different approach to minimum-bias estimation; he 
suggested finding upper and lower estimators, the bias of the former 
being everywhere nonnegative and of the latter nonpositive. Thus, one 
obtains two estimators rather than one, but thereby obtains bounds on 
the bias of any estimator between the two. No theory was offered, 
however, for obtaining such estimators in any optimal way. S. H. 
Sirazdinov [12] treated the problem of estimating a polynomial of 
degree n + 1 in the binomial parameter with minimum bias in what 
we shall call the minimax sense; as noted below, such estimators are 
unbiased estimators of the Chebyshev approximation of the polynomial 
to be estimated. Sirazdinov noted also that if a constant (the maximum 
error of approximation) is added to and subtracted from the estimator, 
one obtains upper and lower estimators as defined by Kolmogorov. 

Why should one be concerned with bias? The connotations of the 
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words "bias" and "expected error of estimate" certainly make it appear 
undesirable to the practitioner. In the sense that the distribution of the 
error of estimate is centered at zero, an unbiased estimator does allow 
the sample to "speak for itself"; no prior knowledge or opinion of the 
experimenter is allowed to influence the estimate. (Other definitions of 
unbiasedness-for example, in terms of medians rather than expecta­
tions-would have similar justifications.) In contrast, minimum-risk 
(Bayes) estimators may be considered as combinations (sometimes 
linear) of the best a priori guess and the best information based solely 
on the sample data. Unbiased estimation thus seems to fit more nat­
urally in a theory of statistical inference in which there may be more 
reason to consider the estimator as a descriptive statistic, than in a 
theory of statistical decision in which all prior information and the 
consequences of the decision taken cannot easily be ignored. It is note­
worthy in this regard that if the statistician wishes to limit the parame­
ter space to some subset of its natural range and to limit the range of 
the estimator accordingly, then no unbiased estimator may be avail­
able. For example, the success probability in n Bernoulli trials, if 
limited to any subset of the unit interval, does not admit an unbiased 
estimator with range similarly restricted. 

When making repeated estimations, another justification for re­
quiring small bias is available; namely, that the average error of esti­
mate should be small, with high probability if repetitions are sufficiently 
numerous. It may be some consolation to know that the overestimates 
in some trials tend to be compensated for by underestimates in other 
trials. t If some consumer loses because of the statistician's overestimate 
on one trial, however, he is not likely to be consoled by knowing that 
his losses are compensated for by some other consumer's gain on another 
trial; such consumers might be more concerned with small risk. The 
justification for requiring small risk is also founded largely on a long­
run interpretation of expectation, applied to loss rather than error, and 
its justification other than in repeated experimentation is not com­
pletely satisfactory. The hypothetical example above illustrates the 
possible inadequacy of a theory based only on the expected error and 
not on its variability, as is the case with minimum-bias theory. A slight 
rewording of the illustration would point out the inadequacy of a 
theory based only on expected loss (risk). 

An additional justification for requiring unbiasedness may be that it 
usually eliminates the need for specifying a loss function, since it 
frequently leads to unique sufficient estimators; if unbiased estimators 

t In a series of election polls, for example, a consistent tendency to over­
estimate the strength of anyone candidate would seem undesirable. 
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do not exist, however, then specification of some function analogous to 
loss (a bias function) will be required in the theory developed here. 

Whether or not satisfactory justification is available, it is a fact that 
statisticians frequently spend great efforts in "correcting for bias," and 
there seems to be only limited acceptance of any minimum-risk esti­
mators with large biases. For example, suppose x denotes the number 
of successes in n Bernoulli trials. Then the minimax estimator (squared­
error loss) of the success probability 8 is (x + ! vn)/(n + vii), and 
although for small samples its risk, (2vn + 2)-2, is less than that of the 
unbiased estimator x/n over a wide range of parameter values, it is 
apparently difficult to persuade the experimenter of its superiority; 
this may be due to its large bias, (1 - 20)/(2vn + 2), for probabilities 
near 0 and 1 (or perhaps to the inappropriateness of squared-error loss). 

As another example, division of a sum of squared deviations by 
n - 1 gives an unbiased estimator of u 2, but, for normal variables, 
division by n + 1 uniformly reduces the risk (squared-error loss) at 
the expense of introducing a bias of -2u2/(n + 1). Yet how many 
pages in textbooks have been allocated to justifying division by n - I? 
(Questions of whether one really wishes to estimate u or u2 and of the 
choice of loss function also need to be considered, of course.) 

Perhaps some compromise between the risk and the bias approach 
would be more readily accepted by the practitioners-estimators with 
risk minimized subject to the bias being within bounds, or, conversely, 
with bias minimized subject to the risk being within bounds. Such an 
approach is not new in sample-survey theory (for example, see [13]), 
where it is sometimes suggested that a small bias may be tolerable if 
reduction in the mean-square error (risk) is achieved. The minimum­
bias theory developed herein is offered as a preliminary step toward 
such developments. Only an example of such compromise approaches 
is offered. 

Suppose it is desired to obtain a linear minimum-risk (squared-error 
loss) estimator in the minimax sense of the binomial success probability 
0, subject to the absolute bias being everywhere bounded by p. We 
shall assume that p < (2vn + 2)-1, the maximum absolute bias of the 
unrestricted minimax estimator. Because of symmetry, it is easy to 
show that we need only to consider estimators of the form 
(x + ex)/(n + 2ex) where ex ~ 0 (which, incidentally, includes all Bayes 
estimators relative to a symmetric beta prior distribution). For 
ex = np/(1 - 2p), the maximum absolute bias is p and the maximum 
risk is (1 - 2p)2/4n, which cannot be further reduced. Thus 
~ = x(1 - 2p)/n + p is the desired estimator. 

Before considering minimum-bias estimation in further detail, let 
us review some relevant aspects of the theory of approximation. 
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4. Some Aspects of the Theory of Approximation 

Let cI> represent a specified system of n+ 1 (finite or infinite) linearlyinde­
pendent bounded and continuous functions CPo, CPl, • • • , CPn of 8 where 
8 E e, a subset of the real line or of some other metric space. Let 
p = P(cI» denote the class of all linear combinations 

11 

P = E aiifJi, .-0 
where the a/s are real constants. We call such functions p generalized 
polynomials of the system cI>. For example, suppose e is a finite interval 
and cp.(8) = 8'; then P is the class of polynomials of degree n on the 
interval. Let 'Y be a bounded and continuous function on e but not in 
P, and let h be a nonnegative bounded and continuous function on e. t 

DEFINITION 1. A function po E P is a best approximation to 'Y in the 
minimax (Chebyshev or uniform norm) sense if 

sup h I Po - 'Y I = inf sup hlp - 'Y I . 
e p e 

(4.1) 

We shall assume in what follows that h = 1; if not, transform the 
problem by multiplying all other functions defined above by h before 
proceeding. 

Suppose now that e is a closed finite or infinite interval and that any 
generalized polynomial other than the zero polynomial of the system cI> 
has at most n roots in e (n finite), where a root at which the polynomial 
does not change sign is counted twice. Then cI> is said to be a Chebyshev 
system of functions. An alternative characterization of a Chebyshev 
system is that the determinant 

ifJ 0 (8) ... CPn(8) 

ifJo(8l ) ••• CPn(8l) 
D(8) == 

vanishes only at n distinct points 80, ••• , 8n in e and that D changes 
sign in passing through successive 80's. 

S. Bernstein [14] proved the following result as a generalization of 
Chebyshev's original work on polynomial approximation: If cI> is a 
Chebyshev system, then there exists a best approximation to 'Y in the 
minimax sense; moreover, po is unique, and a necessary and sufficient 

t Some of the above restrictions can be relaxed in certain parts of the sequel. 
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condition for p Po is that the number of points where p - 7 attains 
its extremum, with alternating signs, be at least n + 2. 

Various extensions of this result and upper bounds on (4.1) are given 
by Bernstein, by C. de la Vallee Poussin [15], and by others in more 
recent publications. Many such results appear in [16], [17], [18], and 
[19], for example, and in current publications by G. G. Lorentz, J. L. 
Walsh, and T. S. Motzkin. For the polynomial case, the fundamental 
theorem of Weierstrass should be mentioned; it states that by choosing 
n sufficiently large, (4.1) can be made arbitrarily small. 

If the various functions are differentiable, the function Po may be 
obtained as follows, though this method may be untractable 
analytically: 

Let b = p - 7 and let p = supel bl when p = po. Let 00, 01, ••• ,On+l 

be n + 2 successive points in 8 at which p is achieved with alternating 
signs by b, and let po = Laicf>i. Then with b' = db/dO, the system 

b(O,) = ± p( -I)', b'(O;) = 0, i = 0, I, ... , n + I, (4.2) 

gives 2n + 4 equations in the 2n + 4 unknowns 00, ••• , On+l, 

ao, ... , an, and p. [If 00 or On+l is an endpoint of 8, then (4.2) need 
not hold at i = 0 or n + 1; also, more than n + 2 points may be 
required.] 

In particular, if cf>i(O) = 0', (i = 0, I, ... , n) and 7(0) = on+l, it 
can be shown that Chebyshev polynomials can readily be used to obtain 
the best approximation to 7 in the minimax sense (see, for example, 
[20]). If, instead, 7 is any function with a series expansion throughout 
8, the expansion of 7 in Chebyshev polynomials, truncated after n + 1 
terms, will yield "almost" the best polynomial approximation to 7. 
Even if 7 has no valid expansion, the tau-method of C. Lanczos [20] 
may lead to an approximate solution, again using Chebyshev poly­
nomials. 

A generalization of Bernstein's theorem for more general parameter 
spaces has been given by J. Bram [21]. He assumes that 8 is a locally 
compact space. Then a necessary and sufficient condition that sup I bl 
be a minimum is that, for some r ~ n, there exist r + 2 points 00, 

01, ••• , Or+! in 8 such that the (n + 1) X (r + 2) matrix [cf>,(Oj)] has 
rank r + 1 and such that if the subscripts are assigned so that the 
first r + 1 rows are independent, and a, is the sign of the cofactor 
of ai in 

cf>r(OO) ... cf>r(Or+l) 

then b(Oi) = ± aiP for all i with ai ¢ O. 
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DEFINITION 2. Let ~ be a probability measure on the Borel sets 
{CAl} of 12 and assume 'Y and the cp/s to be square-integrable. A function 
p~EP is said to be a best approximation to 'Y in the least squares sense 
relative to ~ if 

Again, we shall assume for simplicity that A == 1. Analogous develop­
ments, using powers other than two, are also possible. 

Let po, •.• ,pn constitute an orthonormal set in P w.r.t. the measure 
~ (see Szego [22] or Achieser [16], for example); i.e., 

f P,Pj d~ = 5ij (Kronecker 5ij). 

Such a set always exists and can be constructed from <I>. Denoting 
Ci = Jp;'Y d~, then it is well known that p~ = LC;P; is a best approxi­
mation to 'Y in the least-squares sense, and, moreover, that 

As a special case, suppose cp;(() = ();. Then Po, •.• , pn are the 
orthonormal polynomials associated with ~, and p~ is the best poly­
nomial approximation to 'Y (in the sense of least squares). 

At this point, we note the analogy in Definitions 1 and 2 with the 
minimax and Bayes solutions to problems in the theory of games, as 
treated, for example, by Wald [1] and Blackwell and Girshick [3]. 
We need only to replace the role of the risk function or the expected 
payoff in decision or game theory by X I p - 'Y I or its square. 

DEFINITION 3. A probability measure ~o on {w}, the Borel sets of e, 
is said to be least favorable if N(~o) = sup N(~), where the supremum is 
over all probability measures on {w}. 

Moreover, the fundamental theorem of the theory of games is ap­
plicable, so that, with suitable compactness assumptions [1], it readily 
follows that po = p~o, that is, that any best approximation in the 
minimax sense is also a best approximation in the least-squares sense 
relative to a least favorable distribution. We need only to note that the 
operations of squaring and taking sup's (or inf's) can be interchanged 
when applied to the function xl p - 'YI. Thus there exists a norm 
JX2(p - 'Y)2d~o minimized by the same po that minimizes the norm 
sup xlp - 'YI· 

Other decision-theory or game-theory results also carryover. For 
example, a sufficient condition for ~ to be least favorable is that it 
assign probability 1 to a subset of e throughout which 
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Also, with weaker compactness assumptions, a sequence of least­
squares approximations relative, respectively, to a sequence of dis­
tributions having certain limit properties will yield a minimax approxi­
mation, analogous to Bayes solutions in the wide sense. Precise theo­
rems have not been stated here because of the perfect analogy with 
those published elsewhere. 

The possible relevance of the fundamental theorem here, analogous 
to its other applications, is that constructive methods for finding best 
approximations in the least-squares sense are quite generally available 
whereas approximation in the minimax sense usually is more difficult. 
There seems, however, to be no constructive, or even intuitive, way of 
finding least favorable distributions. 

As indicated by Bernstein's theorem, ~o will frequently assign prob­
ability 1 to a finite point set. In this case a result somewhat similar to 
the one given above was stated by De la Vallee Poussin [15] and also by 
J. L. Walsh [23] for the case of polynomial approximation. Consider 
a set E in e consisting of n + 2 points and let PE denote the minimax 
polynomial approximation on E with maximum absolute error Ps. 

Call Eo least favorable if PEo is a maximum over all possible E. De la 
Vallee Poussin proved that po = PEo, that is, that the minimax ap­
proximation is the minimax approximation on a least favorable point set. 
It is simple to obtain PEG once Eo has been found. Only some iterative 
techniques, however, seem to be available for finding Eo. 

Other definitions of best approximation are possible; for example, 
one might choose P so that X I P - 'Y I is minimized in some sense in the 
neighborhood of (Jo. For example, if 'Y possesses a valid series expansion 
in e at (Jo, and P is the class of nth-degree polynomials, then one might 
approximate 'Y by a truncated expansion at (Jo lying in P. Alternatively, 
one may limit consideration to certain classes of polynomials having 
relevance in the particular problem and look for approximation within 
this class. Examples of each of these will be mentioned below. 

5. Theory of Minimum-Bias Estimation 

The problem we consider is that of estimating a numerical function 'Y 
of a parameter (J that indexes the family of probability distributions 
assumed to generate the sample point x. Extensions to more general 
situations are possible. 

We say a numerical parametric function is estimable if there exists 
an unbiased estimator of it. (Since we are concerned with situations 
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in which no unbiased estimator is available, our subject is the anoma­
lous one of estimating nonestimable functions!) Our approach is to 
approximate 'Y by an estimable function and then estimate 'Y by an 
unbiased estimator of its approximating function. Bounds on the error 
of approximation, derived in approximation theory, yield bounds on 
the bias of estimators. As noted in Section 3, if the maximum error of 
approximation is added to and subtracted from the estimator, one 
obtains upper and lower estimators of 'Y in the Kolmogorov sense. 

Since all functions that are estimable are also estimable by functions 
of sufficient statistics, restriction to estimators depending only on suf­
ficient statistics may be made, if desired, with no resultant increase 
in bias. 

We consider a system ep of estimable functions generating a class 
peep) of functions that clearly are also estimable. Let :D = :D(ep) be the 
class of unbiased estimators of functions P in peep). For 0 E :D, we 
denote 

880 = Pa(O) E P. 

Then pa - 'Y is the bias b of 0 as an estimator of 'Y. 

An estimator 00 is said to be a minimum-bias estimator of 'Y in the 
minimax sense if its expectation pao is the best approximation to 'Y in 
the minimax sense. For example, with X identically unity, 00 minimizes 
the maximum absolute bias; for X = I 'Y I-I, if finite, 00 minimizes the 
maximum relative or percentage bias. The methods of the previous 
section are available for finding such estimators or approximations to 
them. 

An estimator OE is said to be a minimum-bias estimator of 'Y in the 
least-squares sense relative to ~ if PE is the best approximation to 'Y in 
the least-squares sense relative to ~. Thus, oE minimizes the expected 
quadratic bias X2(p - 'Y)2 relative to an a priori distribution over the 
parameter space. Averaging of other bias functions could be considered 
analogously. 

If po, PI, ... , pn constitute an orthonormal basis for P, then OE is 
equal to :L: CiOi, where the c/s were defined previously and the o/s are 
unbiased estimators of the PI's. In the case of orthonormal polynomials 
associated with ~, 0 is an unbiased estimator of the best polynomial 
approximation to 'Y in the least-squares sense. 

As in risk theory, minimum-bias estimators in the minimax sense 
are also (under appropriate compactness assumptions) minimum-bias 
estimators in the least-squares sense relative to a least favorable prior 
distribution. It is yet to be demonstrated, however, that this result is 
of any practical significance in minimum-bias theory. 
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As noted previously, best approximations frequently are unique, 
and-if confined to functions of a necessary and sufficient statistic­
the corresponding estimators of these approximations also often are 
unique (whenever the said statistic is complete). Thus, minimum-bias 
estimators will frequently be unique, and, as in the case of unbiased 
estimators, there is no further room for minimization of risk. Again, 
such estimators need not be admissible in the risk sense. 

Estimators with small local bias might also be considered. In bi­
nomial estimation problems, Bhattacharyya [10] suggests the un­
biased estimation of the truncated Taylor expansion of 'Y at a point 00 

as such an estimator. Thus 'Y and the expected values of the estimator 
coincide at 00, as do a maximal number of their derivatives at 00• 

c. R. Blyth [24] presented such an estimator for the information 
measure in a multinomial distribution, though he chose 00 outside e 
except in the binomial case. He expanded about the point with all 
probabilities equal to t, whereas in fact all probabilities should add to 
unity. He compared this "low bias" estimator with the minimax and 
maximum-likelihood estimators. 

As exemplified in Section 6, fitting so many derivatives at 00 may 
lead to a very poor fit elsewhere; perhaps a better criterion would be 
to fit one or two derivatives at 00 and use any remaining indeterminacy 
to ensure a satisfactory fit elsewhere. 

For reasons of convenience, one might restrict attention to certain 
types of polynomial approximations to 'Y and use unbiased estimators 
of the approximating function. It is interesting to note that if x is 
binomially distributed with parameters nand 0, then restriction to 
Bernstein polynomial approximations (G. G. Lorentz [25]) of the 
function 'Y leads to maximum-likelihood estimation of 'Y; that is, the 
maximum-likelihood estimator of 'Y is the unbiased estimator of the 
Bernstein approximation to 'Y. Results concerning the error of approxi­
mation by Bernstein polynomials thus apply to the bias of maximum­
likelihood estimators. 

Admissibility, in terms of bias rather than of risk, could also be 
considered and various complete class theorems derived just as with 
corresponding theorems in risk theory. Some asymptotic results also 
are possible. For example, if for samples of size n, polynomials of degree 
n are estimable, then the maximum absolute bias in estimating a con­
tinuous function can be made arbitrarily small by choosing n sufficiently 
large-a rewording of Weierstrass' theorem. It should be noted, how­
ever, that bias is reduced with increasing sample size only if the class of 
estimable functions is increased correspondingly. If the class of estima­
ble functions remains the class of polynomials of degree m, then no 
increase in sample size can affect the bias. 
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6. Estimation of a Root of the Binomial Parameter 

To exemplify the foregoing theory, we consider the estimation of an 
integral root r of a binomial parameter (J; thus, 'Y«(J) = (Jl/r, e is the 
unit interval, and r is an integer > 1. Such a problem may arise, for 
example, in one of the following ways: 

(a) Independently, r shots are fired at a target, each having a prob­
ability 1 - 'Y of hitting it. If one or more shots hit the target, it is 
destroyed, so all that is observed is whether or not the target is de­
stroyed. Thus the target is destroyed with a probability (1 - 'Yr). 

In n repetitions, let x represent the number of targets not destroyed; 
then x is binomially distributed with parameters nand (J = 'Yr. It is 
necessary to estimate 'Y = (plr, which is the probability of an individual 
miss. 

(b) Each of a series of independent specimens has probability 
1 - 'Y of being "positive" (e.g., tests of blood samples for the presence 
of an antigen). Specimens are pooled into batches and a single test 
performed for each of n batches of r specimens. The number of negative 
tests is then binomially distributed with parameters nand (J = 'Yr. 

It is required to estimate 'Y = (Jl/r, the probability of a "negative" 
specimen. (Such a testing procedure may be recommended if the tests 
are expensive and 'Y is close to unity.) 

Extensions to cases with varying batch sizes are also of interest, but 
they are considerably more complicated and therefore wiII not be 
considered here. 

Only polynomials in (J of degree n or less are estimable. t We thus 
seek a polynomial approximation to (Jl/r and use the unique (since the 
binomial family is complete) unbiased estimator of it. Reference should 
be made to Bhattacharyya [10], who considered binomial estimation 
problems in general (also Lehmann [2]). 

Any function o(x), defined for x = 0,1, ... ,n, can be expressed in 
the form 

x X(2) X(n) 
o(x) = ao + al - + a2 - + ... + an - , (6.1) 

n n(2) n(n) 

where X(i) denotes x(x - 1) ... (x - i + 1), and similarly for n(i). 
This form is convenient for finding the expectation of the function, 
since Bx(,)jn(i) = (J' (i = 1, 2, ... , n). By standard finite-difference 
methods [10], the coefficients in (6.1) may be obtained as 

a, = (:) l1'o(O), 

where 

t The value 'Y can be estimated without bias by inverse sampling; Bee [26]. 
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A'c5(O) = ± (-I)H(~)c5(;). 
i-o J 

More conveniently, in matrix form with 

o = (15(0), 15(1), ... , c5(n»', 

the coefficient vector a = (ao, ai, ... , an)' may be found from 

a = Ao, (6.2) 

where a has coordinates a,l m and A is a square matrix of order n + 1 
with elements aij = ( -1) HG~ for i,?= j and 0 for i < j. Inversely 
A -I = (ail), where a'j = (~) for i '?= j and 0 for i < j, so that the 
values of c5(x) corresponding to a specified coefficient vector a may be 
found from 

0= A-la, (6.3) 

a formula equivalent to (6.1). This relation defines the unbiased esti­
mator of the polynomial 

n 

p(O) = L: all'. 
,=0 

Thus, any estimator c5(x) is a polynomial in x of degree at most n. 
Unless some other convenient functional form is available, as is the 
case with the maximum-likelihood estimator and certain Bayes esti­
mators, the expression for the estimator will be ponderous if n is not 
small. Thus it is of interest to consider polynomial estimators of small 
degree m(~ n) in x; their expectations are then polynomials of degree 
min o. 

In the following section, we illustrate the techniques of obtaining 
various kinds of minimum-bias estimators of 'Y = Ol/r; the maximum­
likelihood estimator and various minimum-risk estimators are also 
considered for comparison. Wherever appropriate and possible, we 
consider linear, quadratic, and nth-degree estimation (m = 1, 2, n) 
for general nand r-in particular, for r = 2 or 5, and n = 5. The 
usual approach is to derive p(O), the expectation of the estimator 
(which frequently is independent of n); the corresponding 15 can then be 
obtained from (6.3). The coefficients in p and the values of 15 appear in 
Tables 1 (r = 2, n = 5) and 2 (r = n = 5). 

We thus take I!> as the powers of () from 0 through m(~ n) and P(I!» 
as polynomials 15 in x of degree ~ m. We restrict attention to absolute 
bias I p - 'YI and quadratic bias (p - 'Y)2 as bias functions, always 
taking X = 1. 

The variance of estimators 15 can be found directly by using the values 



TABLE 1. ESTIMATION OF vO FROM A SAMPLEt OF 5 (r=2, n=5) 

Criterion Type of estimation 
Value of Sex) at x := Value of a. for p ~ 8a = ~a;e' 

o 2 3 4 5 ao a, a. a. a, a, 

Linear Estimators 

minimax bias 0.125 0.325 0.525 0.725 0.925 1.125 0.1250 
,.-method approximate 0.333 0.467 0.600 0.733 0.867 1 0.3333 0.6667 

Minimum bias least squares (uniform ~) 0.267 0.427 0.587 0.747 0.907 1.067 0.2667 0.8000 
local at 8 = 1 0.5 0.6 0.7 0.8 0.9 1 0.5000 0.5000 
local at 6 = ! 0.354 0.495 0.636 0.778 0.919 1.061 0.3536 0.7071 

---------------------
Minimum risk 

minimax risk 0.206 0.372 0.538 0.704 0.870 1.035 0.2060 0.8294 
Bayes (uniform U 0.381 0.495 0.610 0.724 0.838 0.952 0.3810 0.5714 

Quadratic Estimators 

minimax bias 0.068 0.454 0.733 0.906 0.972 0.932 0.0676 1.9303 -1.0656 
",method approximate 0.158 0.411 0.621 0.789 0.916 1 0.1579 1.2632 -0.4211 

Minimum bias least squares (uniform ~) 0.171 0.446 0.663 0.823 0.926 0.971 0.1714 1.3714 -0.5714 
local at 6 = 1 0.375 0.525 0.663 0.788 0.900 1 0.3750 0.7500 -0.1250 
local at 6 = i 0.265 0.477 0.654 0.795 0.902 0.972 0.2652 1.0607 -0.3536 

------------------
Minimum risk Bayes (uniform ~) 0.347 0.502 0.637 0.751 0.845 0.918 0.3469 0.7755 -0.2041 

-

nth-Degree Estimators 

Maximum likelihood 0 0.447 0.632 0.775 0.894 1 0 2.2361 -2.6197 2.1887 -0.9904 0.1853 
------------------

.... method approximate 0.064 0.701 0.488 0.854 0.891 1 0.0637 3.1850 -8.4934 14.2690 -11.6481 3.6239 
least squares (uniform ~) 0.084 0.671 0.476 0.906 0.856 1.007 0.0839 2.9371 -7.8322 14.0979 -12.5874 4.3077 

Minimum bias local at 6 = 1 0.246 0.492 0.656 0.788 0.900 1 0.2461 1.2305 -0.8203 0.4922 -0.1758 0.0273 
lower at 6 - 1 0 0.492 0.656 0.788 0.900 1 0 2.4609 -3.2813 2.9531 -1.4063 0.2734 
local at 6 - i 0.174 0.522 0.638 0.800 0.890 1.008 0.1740 1.7401 -2.3202 2.7842 -1.9887 0.6187 

------------------
Minimum risk 

Bayes (uniform ~) 0.341 0.511 0.639 0.746 0.839 0.923 0.3410 0.8525 -0.4262 0.2131 -0.0666 0.0093 
Bayes (beta ~. a = (J = 2) 0.449 0.562 0.655 0.737 0.811 0.878 0.4493 0.5616 -0.1872 0.0702 -0.0176 0.0020 

- - ----

t For the minimum-bias estimators, only the values of 8(x) and the MSE's (mean-square errors) depend on n (RMSE is root­
mean-square error). 
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TABLE 2. ESTIMATION OF 61/S FROM A SAMPLEt OF 5 (r=5, n=5) 

Value of a(%) at % ~ Value of a, where p = 86 = ~a,8' 
Criterion Type of estimation 

o 2 3 4 5 ao a, a. a. a. a, 

Linear Estimators 

minimax biss 0.267 0.467 0.667 0.867 1.067 1.267 0.26711 1 
.... method approximate 0.667 0.733 0.800 0.867 0.933 1 0.6667 0.3333 

Minimum bias least squares (uniform E) 0.606 0.697 0.788 0.879 0.970 1.061 0.6061 0.4545 
local at 8 = 1 0.800 0.840 0.880 0.920 0.960 1 0.8000 0.2000 
local at 8 = t 0.580 0.725 0.870 1.015 1.160 1.305 0.5798 0.7248 

---------------------
Minimum risk 

minimax risk 0.293 0.493 0.693 0.893 1.093 1.293 0.2929 1 
Bayes (uniform El 0.671 0.736 0.801 0.866 0.931 0.996 0.6710 0.3247 

-- - - -- --- ----- --- --

Quadratio Estimators 

minimax bias 0.207 0.781 1.126 1.243 1.132 0.793 0.2071 2.8686 -2.2828 
.... method approximate 0.474 0.663 0.811 0.916 0.979 1 0.4737 0.9474 -0.4211 

Minimum bias least squares (uniform E) 0.511 0.716 0.864 0.955 0.989 0.966 0.5114 1.0227 -0.5682 ! 

local at 8 = 1 0.720 0.792 0.856 0.912 0.960 1 0.7200 0.3600 -0.0800 
local at 8 = t 0.522 0.783 0.899 0.870 0.696 0.377 0.5218 1.3046 -1.4496 

------------------
Minimum risk Bayes (uniform E) 0.637 0.743 0.828 0.893 0.938 0.962 0.6372 0.5276 -0.2029 

-------- --- --- --

nth-Degree Estimators 

Maximum likelihood 0 0.725 0.833 0.903 0.956 1 0 3.6239 -6.1701 5.7957 -2.7950 0.5455 
---------------------

T-method approximate 0.331 1.159 0.515 1.048 0.947 1 0.3311 4.1384 -14.7144 26.4860 -22.3040 7.0629 
least squares (uniform E) 0.386 1.061 0.536 1.125 0.880 1.013 0.3857 3.3753 -12.0009 23.1466 -21.3174 7.4256 

Minimum bias local at 8 = 1 0.613 0.766 0.851 0.912 0.960 1 0.6129 0.7661 -0.6810 0.4378 -0.1613 0.0255 
lower at 8 = 1 0 0.766 0.851 0.912 0.960 1 0 3.8304 -6.8096 6.5664 -3.2256 0.6384 
local at 8 = I 0.444 0.999 0.321 2.374 -3.486 15.321 0 2.7762 -12.3386 39.6599 -73.0578 57.8374 

------------------
Minimum risk Bayes (uniform El 0.629 0.755 0.831 0.886 0.931 0.968 0.6294 0.6294 -0.5035 0.3021 -0.1057 0.0161 

Bayes (beta E. a = fJ = 2) 0.716 0.788 0.841 0.883 - 0.920 0.949 0.7164 0.3582 -0.1910 0.0860 -0.0241 0.0030 
--- --- -- -

t For the minimum-bias estimators, only the values of o(x) and the MSE's (mean-square errors) depend on n (RMSE is root­
mean-square error). 
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of 0 and tables of the binomial probability distribution, or alter­
natively by using a formula given by Bhattacharyya: 

±(d'P)2 O'(i - 0)', 
'-1 dO' i!n(i) 

where the ith derivative of P isL7_d<i)aiOi-i. The mean-square error 
(risk for squared-error loss) is obtained by adding the square of the 
bias to the variance. 

Summary comparisons of the biases and risks of the various esti­
mators can be made from Tables 3 and 4, which show the zeros of the 
bias b(O), the signs of the values assumed by b, the maximum absolute 
bias p and the O-value(s) at which the maximum occurs, the square 
root of the average squared bias, the maximum value of the root-mean­
square error v'R,(O) and the O-value(s) at which the maximum occurs, 
and the square root of the average mean-square error. Figures 1,2, and 

0.4 r-------------------, 
Slas function b1B,8) 

0.3 

0.2 \ " , , .. 
0.1 ... " , .... ...... , '- . o , '... ~... ,.. .. -.. ......,.".,. 

.............. ....... ... -.... .--- ..... --- ..... 
-oj ' ...... .:..-.------~ .;:----------s:v:sT 

LMinimax-rlsk 

0.4 r-----------=-------, 
Root-mean-square error ./R(B, S) 

Minimax bias 

0.1 

..:;::-=;:"·::=-:=-S': == ==."::':.""--
.... ":..--.- -----~---------' ...... , 

't:eoyes Least-squares $e;s"8' ........... ~ 
. Minimax risk 

O~~-~~~~~ __ ~~~-L __ ~~ 
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Fig. 1. Bias and risk (RMS error) functions for minimum-bias and minimum· 
risk linear estimators of "';6 (n=5). 

3 present the bias function and the root-mean-square (RMS) error 
function for some of the estimators. t 

t The tables and figures were prepared with the assistance of students learning 
to program the Univac 1105. 



TABLE 3. ESTIMATION OF v8 FROM A SAMPLEt OF 5 (r=2, n=5) 

Criterion Type of estimation I Biss = 0 atO ~ I 
Sign I p = max I bias I Square Max RMS error 

of root off 
biss occurs at 0 = bias = (biss)' dO at 8 - RMSE 

Linear Estimators 

minimal< bias 0.021, 0.729 ± 0,0.25,1 ±0.125t 0.OS5 0.391 0.244 
T-method approximate 0.25, 1 ± 0 +0.333 0.061 0 0.333 

Minimum bias least squares (uniform U 0.149, 0.747 ± 0 +0.267 0.047t 0 0.267 
local at 8 = 1 1 + 0 +0.500 0.129 0 0.500 
local at 8 = I 0.5 + 0 +0.354 0.068 0 0.354 

Minimum risk minimax risk 0.070,0.887 ± 0 +0.206 0.066 0,0.446 0.206t 
Bayes (uniform ~) 0.314 ± 0 +0.381 O.OSl 0 0.3S1 

-~ 

Quadratio Estimators 

minimax bias 0.006,0.292,0.886 ± 0, o. 081, 0.604,1 ±0.06St 0.047 0.236 0.279 
.-method approximate 0.047, 0.718,1 ± 0 +0.158 0.031 0.305 0.215 

Minimum bias least squares (uniform e) 0.070,0.432, 0.866 ± 0 +0.171 0.020: 0.283 0.215 
local at 8 = 1 1 + 0 +0.375 0.076 0 0.375 
local at 8 = I 0.5 ± 0 +0.265 0.039 0 0.265 

Minimum risk Bayes (uniform e) 0.358 ± 0 +0.347 0.074 0 0.347 
--

nth-Degree Estimators 

Maximum likelihood 0,1 - 0.069 -0.120 0.057 0.165 0.284 

.-method approximate 0.008, 0.122,0.379, ± 0 +0.064 0.007 0.129 0.305 
0.669,0.947,1 

least squares 0.018,0.127,0.330, ± 0 +0.084 0.005: 0.136 0.284 
Minimum biss 0.579, O.SIO, 0.962 

local at 8 = 1 1 + 0 +0.246 0.034 0 0.246 
lower at 8 = 1 0,1 - 0.055 -0.109 0.045 0.154 0.292 
local at 8 = I 0.5 ± 0 +0.174 0.017 0.197 0.205 

Minimum risk Bayes (uniform e) 0.367 ± 0 +0.341 0.074 0 0.341 
Bayes (beta~, a = fJ = 2) 0.447 ± 0 +0.449 0.116 0 0.449 

-

Square 
root off 
(MSE)d8 

0.202 
0.136 
0.153 
0.158 
0.146 

0.165 
0.132: 

0.196 
0.162 
0.158 
0.138 
0.139 

0.130: 

0.196 

0.207 

0.205 

0.142 
0.195 
0.154 

0.130: 
0.140 

t For the minimum-bias estimators, only the values of 8(x) and the MSE's (mean-square errors) depend on n (RMSE is root­
mean-square error). 

t Minimum value among all estimators of the same degree. 
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TABLE 4. ESTIMATION OF 01/ 5 FROM A SAMPLEt OF 5 (r=5, n=5) 

Criterion I 
Sign I p = max I bias I Square Max RMS error 

of root off 
bias occurs at 8 - bias - (bias)' d8 at 8 = RMSE 

Type of estimation Bias = Oat8 -

Linear Estimators 

minimax bias 0.001,0.650 ± 0,0.134,1 ±0.267; 0.178 0.188 0.314 
,...method approximate 0.224,1 ± 0 +0.667 0.062 0 0.667 

Minimum bias least squares (uniform n 0.130,0.736 ± 0 +0.606 0.051: 0 0.606 
local at 8 = 1 1 + 0 +0.800 0.112 0 0.800 
local at 8 = 1 0.2 + 0 +0.580 0.143 0 0.580 

Minimum risk minimax risk 0.002,0.614 ± 0,1 +0.293 0.170 0,0.195,1 0.293: 
Bayes (uniform E) 0.231 ± 0 +0.671 0.063 0 0.671 

Quadratic Estimators 

minimax bias 0.001,0.229,0.872 ± 0,0.039,0.558,1 ±0.207; 0.144 0.151 0.374 
,...method approximate 0.033, 0.707,1 ± 0 +0.474 0.045 0 0.474 

Minimum bias least squares (uniform n 0.061, 0.420,0.862 ± 0 +0.511 0.029: 0 0.511 
local at 8 = 1 1 + 0 +0.720 0.079 0 0.720 
local at 8 - t 0.2 ± 1 -0.623 0.235 1 0.623 

Minimum risk Bayes (uniform tl 0.242 ± 0 +0.637 0.055 0 0.637 

nth-Degree Estimators 

Maximum likelihood 0,1 - 0.030 -0.393 0.155 0.072 0.498 

,...method approximate 0.006,0.115,0.375, ± 0 +0.331 0.016 0.135 0.389 
0.664,0.947,1 

least squares 0.016,0.123,0.325, ± 0 +0.386 0.011: 0 0.386 
Minimum bias 0.576,0.808,0.961 

local at 8 - 1 1 + 0 +0.613 0.046 0 0.613 
lower at 8 - 1 0,1 - 0.028 -0.387 0.146 0.072 0.502 
local at 8 = 1 0.2 + 1 14.3 3.77 1 14.3 

Minimum risk Bayes (uniform E) 0.260 ± 0 +0.629 0.054 0 0.629 
Bayes (betaE,a = fJ - 2) 0.409 ± 0 +0.716 0.081 0 0.716 

- ---- --- --- '--- - -- ----- --- ------ -- ----

Square 
root of f 
(MSE)d8 

0.255 
0.087 
0.098 
0.117 
0.195 

0.255 
0.087; 

-

0.290 
0.114 
0.105 
0.095 
0.278 

0.083: 

0.271 

0.265 

0.239 

0.086 
0.271 
0.617 

0.083: 
0.092 

t For the minimum-bias estimators, only the values of Il(x) and the MSE's (mean-square errors) depend on n (RMSE is root­
mean-square error). 

t Minimum value among all estimators of the same degree. 
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Fig. 2. Bias and risk (RMS error) functions for various nth-degree 
estimators of vii (n = 5). 

Upper (lower) estimators can be obtained from anyone of the esti­
mators given by subtracting from it the minimum (maximum) bias, 
or - (+ )p. For example, the minimax-bias upper linear estimator of 
vO is x/n + !; and the lower linear estimator is x/n (since p = 1); 
each has maximum absolute bias of 1. Any other upper or lower linear 
estimator would have a greater maximum absolute bias. 

7. Various Estimators of a Root of p 

Maximum-Likelihood Estimators 

The maximum-likelihood estimator a(x) of'Y = 81/r is (x/n) l/r, which, 
for r = 2, n = 5, yields, by (6.2), 

ao 1 0 0 0 0 0 0 

at/5 -1 1 0 0 0 0 v:2 
a2/10 1 -2 1 0 0 0 v.4 
a3/10 -1 3 -3 1 0 0 v~ 

(7.1) 

a4/5 1 -4 6 -4 1 0 v-:S 
a, -1 5 -10 10 -5 0 1 
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Therefore p«()) = 8o(x) = E ai()1 = 2.24() - 2.62()2 + 2.19()3 - O.99()4 
+ 0.19(}5. For r = 5, n = 5, we obtain, sUbstituting! powers for square 
roots in (7.1), p«(}) = 3.62(} - 6.17(}2 + 5.80(}3 - 2.80(}4 + O.55(}5. It 
should be borne in mind that these polynomials are Bernstein approxi­
mations to -y. 

In all instances, the bias is zero at the extremes and negative else­
where (see Figs. 2 and 3 and the tables). The absolute bias, of course, 
would decrease with increasing n, as would the RMS error. 
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Fig. 3. Bias and risk (RMS error) functions for various nth-degree 
estimators of 81/ 5 (n=5). 
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Minimax-Bias Estimators 

The minimum-bias estimator in the minimax sense, c5o(x), is the un­
biased estimator of the minimax polynomial approximation to (Jl/r. As 
indicated earlier, 2m + 2 nonlinear equations in 2m + 2 unknowns 
«(Jo = ° and (Jm+l = 1 in addition) can be written down, the solution of 
which provides the minimax mth-degree approximation po, as well as 
the maximum error of approximation and the m + 2 points at which 
this error obtains. These equations are amenable to solution, however, 
only in the simplest cases; other cases would apparently require itera­
tive techniques using a computer. 

The minimax linear approximation to (JIlT is simple enough, since 
there are but four equations; one finds 

Po = Hr - l)rr(r-l) + (J, 

and the minimax-bias linear estimator is obtained by replacing (J by 
x/no The maximum absolute bias, or maximum error of approximation 
p is given by the constant term in po, and it is attained at (J = 0, 
r-T/(T-l), and 1. 

Minimax quadratic approximation to (J IT leads to the following equa­
tions, after a considerable amount of algebraic manipulation: 

po = ao + al(J + a282, 

where 

a2 = - (r - l)rlv2r-l, 

ao = p = (1 - a2 - al)/2, (J = v-r , 

and t and v are solutions (readily obtainable by iteration) of 

2(r - l)t2T - (2r - 1)tr + t = 0, 

(r - 1)(v2r - t2r) - (2r - l)(vr - tr) + r(v - t) = 0, 

satisfying ° < t < 1 < v. The solutions for r = 2 and r = 5 appear in 
the tables (see Fig. 1). 

These approximations, of course, do not depend on n(> 1), and thus 
the biases of their unbiased estimators do not depend on n, as would 
be the case if nth-degree approximations were used. It should be noted 
that these quadratic approximations are not monotone in (J near (J = 1; 
therefore, we cannot expect 150 necessarily to be monotone in x. More­
over, for small n, the range of 15 0 is not necessarily confined to the unit 
interval. Thus, these estimators are of questionable use. 

Consideration of these estimators as least-squares estimators relative 
to a least favorable distribution or minimax-bias estimators on a least 
favorable point set appears in a later section. 
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Approximate Minimax-Bias Estimators 

Since -y does not have a valid series expansion throughout e, 
minimax approximation by expansion in Chebyshev polynomials is not 
possible; nevertheless, the "r-method" of Lanczos may be employed, 
still using Chebyshev polynomials. 

We note that the function -y = 01/r satisfies the differential equation 
rO-y' - -y = 0, where the prime denotes differentiation. Letting p" de­
note an nth-degree polynomial approximation to -y and r a real number, 
we choose p" and r so that 

, * 
rOp" - p" = rT", 

where T! is the nth Chebyshev polynomial shifted to (0, 1) (see [20]). 
Since we cannot require that rO-y' - -y equal zero after substitution of 
p" for -y, we set it equal to an nth-degree approximation to zero. Equat­
ing coefficients, we have n + 1 equations in n + 2 unknowns (r and 
the coefficients in p,,). An additional equation is obtained by imposing 
the boundary condition p,,(I) = -y(I) = 1. It follows also that the 
maximum error of approximation is I rl. 

When we introduce the canonical polynomials Qm(O), (m = 0, 
1, ... , n), defined by 

rOQ~ - Qm = Om, (7.2) 

it follows readily that Qm = (mr - I)-10m and 

-1 "m -1 
r = Lc,,(mr-l) , 

m=O 

where 

* n m m 
Tn = LCnO • 

"...0 

The Qm'S can be found successively from (7.2). 
For -y = vo, r = 2, we find from Table 3 of the National Bureau of 

Standards Tables of Chebyshev Polynomials that 

PI = (1 + 20)/3, P2 = (3 + 240 - 802)/19, 

and for 'Y = 01/5, r = 5, that 

PI = (2 + 0)/3, P2 = (9 + 180 - 802)/19; 

the coefficients in P5 appear in the tables. 
The unbiased estimators of these approximations have zero bias at 

o = 1 and maximum absolute bias at 0 = 0 (given by the constant 
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terms in the pm'S). Again, the estimators are not necessarily monotone 
in x, nor necessarily confined to the unit interval for small n. The cor­
responding bias and RMS error appear in Figure 2 for r = 2; for r = 5, 
these functions are similar to those for the least-squares sense estimator 
shown in Figure 3. 

The maximum absolute biases for the quadratic cases are substan­
tially larger than those of the exact minimax quadratic approximations 
(see tables) ; higher-order approximations are feasible, however, by the 
T-method but not by the exact method. For m = n = 5, it is found 
that, although the maximum absolute bias is not low, the bias is ex­
ceedingly close to zero « 0.025 for r = 5) for most O-values (0 > 0.1). 
An erratic estimator (0 ~ 1 at x = 1, 3, and 5) is required to achieve 
this low bias, however. 

Minimum-Bias Estimators in the Least-Squares Sense 

We shall derive the mth-degree approximation of 'Y = Olfr in the least­
squares sense relative to the uniform distribution ~ on (0, 1). Sub­
sequently, we shall consider a case in which ~ is a three-point distribu­
tion. Such approximation relative to other distributions ~ could be de­
rived analogously. Unbiased estimators oe of these approximations are 
readily obtained from (6.3). 

The orthogonal polynomials Pm(O) relative to the uniform distribution 
~ (Legendre polynomials on the unit interval) are readily constructed 
successively from the relations 

f Pm(O)O' dO = 0, i = 0, 1, ... , m - 1, 

where pm is an mth-degree polynomial, and then normalized by re­
quiring that J p! dO = 1 and that the coefficient of Om in pm be positive. 
These polynomials may be expressed as 

m 

Pm(6) = 2: em, .. O' .-0 
where 

_ (m+~\( m ) em,. = v2m + 1 ( _1)m+i m) m _ i ' 

Then we have 

em f 01/ rpm(0) dO = 2: em,. f O(riH)fr dO = r 2: Cm,i/(ri + 1 + 1). 
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The least-squares mth-degree approximation to fJI/r is accordingly 

the average squared error of approximation (squared bias of a~) is 

r 2 

N W = (r + 2) - L c •. 

Using an (m + 1)th-order approximation decreases NW by C~+l' 
Explicitly, the least-squares linear and quadratic approximations are 

2r(r - 1 + 3fJ) 
Pt.l(fJ) = coPo(fJ) + CiP .. (fJ) = (r + 1)(2r + 1) , 

3r[(r - 1)(2r - 1) + 8(2r - l)fJ - IO(r - 1)02] 

Pt.2(O) = (r + 1) (2r + 1) (3r + 1) . 

See tables and figures for r = 2,5 and m = 1,2,5; the approximations 
are similar to those by the T-method. 

Recall that a minimax approximation is a least-squares approxima­
tion relative to a least favorable distribution ~o; moreover, ~o assigns 
probability 1 to the set of points at which the maximum error of ap­
proximation is attained. For the minimax-bias linear estimator given 
previously, we shall solve for the corresponding least favorable dis­
tribution ~o. 

The minimax linear approximation attains its maximum error p at 
three points, denoted (fJo, Ol, ( 2). Thus, ~o assigns probability 1 to this 
set of three points; denote the corresponding probabilities, the com­
ponents of ~o, by (to, ~~, ~~). 

The orthogonal polynomials Po(fJ) and PI(fJ) relative to any distri­
bution ~ are found to be 

PoCO) = 1, 
fJ - 8fJ 

PI(O) =--
(j9 

where 8 denotes integration relative to ~ and u: is the variance of fJ 
relative to ~. Thus 

Co = 8fJI / r , 

and the least-squares linear approximation is PEo = copo + CIPI. 

Evaluating P~o for a three-point distribution on (0, r-r/(r-l), 1), that 
is, for the values of the fJl's given previously, and equating it with po (the 
minimax linear approximation given previously), we can solve for the 
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components of ~o. We thus find 

o 1 - r-rf(r-l) 
~o=-----

2 

2 rr/(r-l) 
~o = ---

2 

For r = 2, we have ~o = (I, !, i), and for r = 5, we have ~o = (0.4331, 
0.5, 0.0669). 

In addition, po is the minimax linear approximation to 'Y on the 
point set E consisting of the three points 00, 01, O2 ; thus, E is a least 
favorable point set. To show that po is minimax (linear) on E, we follow 
the method given by De la Vallee Poussin [15]: 

Ao = O2 - 01 = 1 - rrf(r-l), Al = O2 - 00 = 1, 

A2 = 01 - 00 = rr/(r-l); ",(0.) == 'Yi = 0, rlf(r-l), 1, 

respectively; 

Then, setting 'Y. = (-1) Hlp + ao + alO. and solving, we find ao = p, 

al = 1; that is, the minimax linear approximation on E is ao + alO 
= p + 0 = po, obtained earlier. 

Minimum Local-Bias Estimators at 0 = 1 

The minimum local-bias estimator of order m at 0 = 1 is the unbiased 
estimator of the truncated Taylor series approximation to 'Y at 0 = 1, 
p!(O) = L: ~-o ail'; that is, the ai's are chosen so that p!(I) and 'Y(I) 
coincide, as to their first m derivatives, at 0 = 1. 

Using superscripts to denote derivatives and a~ = ila" we find 

*(')(1) ~ */(j ')' pm = £..J aj - ~ • 

i-' 
and 

"'((1)(1) == c, = (-I)i-lri(r - 1)(2r - 1) ... [(i - l)r - IJ. 

Define the (m + 1)th-order matrix D = (d,j) by d,j = 1/(j - 1) I if 
i ~ j and by a,j = 0 otherwise; then D-l = (d"), where 

dli = (-I)i-l/(j - 1) I if i ~ j, and dii = 0 otherwise. 

The vector of a~'s must satisfy c = Da* or a* = D-1c, from which the 
coefficients ai in p! may be obtained. 

The unbiased estimators of these approximations turn out to be 
upper estimators of 'Y. Lower estimators can be obtained by fitting only 

----------- -- - - - - --
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the first m - 1 derivatives, rather than m, at (J = 1, and imposing the 
additional restriction that Pm(O) = 'Y(O) = O. Analogous equations can 
be established to solve for the coefficients a*., or a,; the inversion of 
the analogue of the D matrix is not so trivial. The estimator obtained 
for m = n = 5 is almost identical with the minimum local-bias 
estimator (see tables and figures). 

Minimum Local-Bias Estimators at 0 = l/r 

Let p~(O) be the Taylor expansion of 'Y at 0 = l/r, truncated to 
terms through the mth power. Using notation analogous to that in the 
previous section, we find 

Co = (l/r) 1/r, c, = (-I)i-lrl/r(r - 1)(2r - 1) ... [(i - l)r - 1], 

{
rH/(i - j)! 

o otherwise, 

{
( -r)i-i/(i - j)! 

o otherwise, 

if i ~ j, 

ifi ~j, 

a* = D-1c and a; = a*./i!. 

The solutions for r = 2 and 5, n = m = 5, appear in the tables. For 
the case r = n = 5, to obtain such a good fit (small bias) near 0 = t, 
the a-values must range from -3.5 to 15. 

Bayes Estimators 

We shall first derive Bayes linear and quadratic estimators relative 
to a uniform distribution on the unit interval with squared-error loss. 
We obtain these estimators by finding the average-risk function for an 
estimator and choosing the coefficients in the estimator to minimize the 
average risk. We then derive unrestricted (Le., of nth-degree) Bayes 
estimators relative to a beta distribution by standard techniques and 
consider in particular the special case of a uniform distribution. 

For the linear case, we have 

o(x) = ao + alx/n and R(o, (J) = S(o - (JI/r)2; 

the average risk relative to a uniform distribution is J R(o, 0) dO, from 
which minimizing values of ao and al are found by differentiation: 

2r[(r - l)n + 2r + 1] 6rn 
ao = , 

(n + 2)(r + 1)(2r + 1) 
al = . 

(n + 2)(r + 1)(2r + 1) 

Thus, the Bayes linear estimator for r = 2, n = 5 is the unbiased 
estimator of 4(2 + 30)/21 and for r = 5, n = 5, of 5(31 + 150)/231. 
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Analogous results for the case of quadratic estimation were obtained 
in a similar fashion (see tables). 

The maximum bias of these estimators (see tables) is greater than 
for some of the linear and quadratic minimum-bias estimators, but the 
average mean-square error is reduced. Note that the expectation of 
these linear and quadratic estimators depends on n, in contrast to the 
analogous minimum-bias estimators. The quadratic estimators have 
the unreasonable property of not being monotone in x. 

We now derive Bayes estimators relative to a beta distribution. We 
let ~ denote a beta distribution on the unit interval with density 
given by 

B-I(a, (3)8a- I (1 - 8)IH, 

where B(a, (3) is the beta function and a and fJ are positive numbers. 
For a = fJ = 1, ~ is a uniform distribution. 

The posterior distribution of 8 (the conditional distribution of 8, 
given x) when x is binomial is readily found to be a beta distribution 
with a and fJ replaced by x + a and n - x + fJ, respectively (see 
[2], for example). The Bayes estimator of 'Y with squared-error loss is 
the expected value of'Y relative to the posterior distribution of 8j this 
estimator is here found to be 

r (x + a + ~) r(n + a + fJ) 

Ot(x) = -----------

r(n + a) r (n + a + fJ + ~) 
which, if fJ is integral, reduces to 

n-x+1l n+a+fJ-i 
o~(x) = IT ------

i-I 1 
n+a+fJ+- - i 

r 

Otherwise, tables of the log gamma function or, if r = 2, the National 
Bureau of Standards Tables of n! and r(n + t) (see [27]) can be used 
to calculate values of o~. Alternatively, Stirling's formula could be used 
to derive adequate approximations to o~. The range of o~ (and therefore 
of its expectation) is confined to the unit interval, and it is monotone 
in o~. For the cases r = 2 and 5, n = 5, see the tables and figures. 
It is noteworthy that use of a fifth-degree Bayes estimator gives very 
little reduction in average risk compared with a quadratic, and in fact 
a linear, Bayes estimator (Tables 2 and 4). The average risk is only 
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slightly smaller than that for the mInImUm local-bias estimator at 
B = 1, but the maximum and average squared bias are increased 
(considerably so for r = 2). 

Minimax-Risk Estimators 

General expression for minimax-risk estimators could not be ob­
tained. Linear estimators (m = 1, n = 5, r = 2 and 5), for which the 
maximum risk is a minimum, were found by trial and error and then 
iteration (Newton's method) by means of a Univac 1105; such primi­
tive techniques are not feasible for approximations of higher degree. 

As seen in the tables and Figure 1, some reduction in maximum risk 
was achieved as compared with other linear estimators, with a corre­
sponding increase in maximum bias. Whether this reduction can be 
considered worth the extensive effort required is a matter of opinion! 

8. Conclusion 

Maximum-likelihood estimators are readily available, for arbitrary r 
and n, but the bias and risk may be large unless n is large. 

Among minimum-risk estimators, Bayes estimators relative to the 
beta family are readily available, but their biases are large, especially 
near B = 0 and 1, compared with other methods of estimation, including 
maximum likelihood. Minimax-risk estimators are not generally 
available. 

Among minimum-bias estimators, a variety are fairly readily avail­
able (minimax not so readily). All are expressed, however, as poly­
nomials in x and are thus ponderous unless the degree is a priori limited. 
Moreover, efforts to reduce bias may result in (a) a-values greater than 
unity (and perhaps negative values also), and (b) lack of mono tonicity 
of 0, as well as increased risk, suggesting that too much emphasis has 
been placed on the bias. In particular, the use of unbiased estimators of 
Taylor expansions seems especially perilous without additional re­
strictions, since negligible bias is achieved locally at the possible ex­
pense of all other reasonable properties. 
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Chapter 9 

On Optimal Replacement Rules When 
Changes of State Are Markovian t 

C. DERMAN 

1. Introduction 

A common industrial and military activity is the periodic inspection 
of some system, or one of its components, as part of a procedure for 
keeping it operative. After each inspection, a decision must be made 
as to whether or not to alter the system at that time. If the inspection 
procedure and the ways of modifying the system are fixed, an important 
problem is that of determining, according to some cost criterion, the 
optimal rule for making the appropriate decision. This chapter is an 
outgrowth of a problem considered by Derman and Sacks [1] and is 
concerned with a problem such that the only possible way to alter the 
system is to replace it. 

Suppose a unit (a system, a component of a system, a piece of oper­
ating equipment, etc.) is inspected at equally spaced points in time and 
that after each inspection it is classified into one of L + 1 states, 
0, 1, ... , L. A unit is in state O(L) if and only if it is new (inoperative). 
Let the times of inspection be t = 0, 1, ... , and let X, denote the 
observed state of the unit in use at time t. We assume that {X,} is a 
Markov chain with stationary transition probabilities, 

qij = P(X'+l = j I X, = ~), 

for all i, j, and t. The actual values of the q;/s are functions of the nature 
of the unit and the replacement rule in force. For example, if replace­
ment of an inoperative unit is compulsory, then qLO = 1; otherwise 

t Research sponsored by the Office of Naval Research. 



202 Communication, Prediction, and Decision 

qjO = I, if and only if j is a state at which the unit is also replaced. 
We suppose that the costs are as follows: A cost of amount c(c > 0) 

is incurred if the unit is replaced before it becomes inoperative; a cost 
of amount c + A (A > 0) is incurred if the unit is replaced after be­
coming inoperative; otherwise, no cost is incurred. The criterion for 
comparing replacement rules is the average cost per unit time averaged 
over a large (infinite) interval of time. 

The problem is, then, to determine in the sense of the above cost 
criterion, the optimal replacement rule, that is, an optimal partitioning 
of the state space into two categories: states at which the unit is re­
placed and states at which it is not replaced.t 

Since there are at most a finite number (2L-l - 1) of possible parti­
tionings, an optimal one exists. For small values of L, it is a matter of 
enumerating and computing in order to select the optimal partitioning. 
When L is even moderately large, however, solution by enumeration 
becomes impracticable. Thus it is of interest to know conditions under 
which a certain relatively small (small enough for enumeration) sub­
class of rules contains the optimal one. 

Let Pij denote the transition probabilities associated with the rule: 
Replace only when the unit is inoperative. Since these transition prob­
abilities {Pij} usually are not precisely known, it is important that the 
conditions for reducing the problem to manageable size be relatively 
indifferent to the precise values of the pi/so The principal result of this 
chapter is in this direction; namely, conditions are given on the tran­
sition probabilities {Pij} guaranteeing that the optimal replacement 
rule is of the simple form: Replace the item if and only if the observed 
state is one of the states i, i + I, .... , L for some i. Henceforth, such 
rules will be referred to as control-limit rules and the above state i, the 
control limit. 

When the p;/s are not precisely known, empirical methods are neces­
sary in order to arrive at the optimal replacement rule. A method is 
suggested in Section 4. 

2. Statement of Problem 

Let {pij} denote the transition probabilities of a Markov chain with 
states 0, I, ... , L. The transition probabilities satisfy, in addition 
to the usual conditions, the further conditions 

t We restrict our attention to nonrandomized stationary rules. We have shown 
in [2] that an optimal rule over all possible rules is a member of this restricted 
class of rules. 



Optimal Replacement Rules 203 

PjO = 0 for j < L, 

p}2 > 0 for some t ~ 1 for each j < L, 

and 

PLO = 1, 

where pj2 denotes the t-step transition probability from j to L. 
We can conceive of modifying the chain by setting PjO = 1 for one 

or more (but not all) of the j's for 0 < j < L. Such a modification cor­
responds, in the replacement context, to replacing the item if it is ob­
served to be in state j. Thus there are 2 L - I - 1 such possible modi­
fications, each corresponding to a possible replacement rule. Let e de­
note the class of such rules. For each rule R in e, let qij (we suppress 
the letter R for typographical convenience) denote the resulting set of 
transition probabilities and consider the cost function 

g0) = 0 

g0) = c 

g0) = c+ A, 

if qjO = O} 
if qjO = 1 ' 

j<L; 

j=L. 

That is, g(J) denotes the cost incurred at any given time t when the 
Markov chain is in state j. 

It is well known from Markov-chain theory that 

1 T L 

CPR = lim - L: g(X,) = L: 7rjg(j), 
T-.. '" T I-I j-O 

(2.1) 

with probability one, where the quantities 7rj (steady-state probabilities) 
satisfy the equations 

L 

7rj = I: 7riqij, j= 0,"" L, 

L 

I: 7rj = 1, 
i-O 

and the inequalities 

o ~ 7rj ~ 1, j= 0,'" ,L. 

The limit CPR is the average cost per unit time, the criterion of interest, 
using the rule R. 

We can evaluate CPR in another way. Let Nk denote the kth recurrence 
time to state 0 (i.e., the length of the kth replacement cycle) and C" 
the cost (either c or c + A) associated with the kth replacement cycle. 
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Then {Nd and {cd (k= 1, 2, ... ) are sequences of independent 
and identically distributed random variables. It can be shown by a 
straightforward application of the law of large numbers that 

EC 
CPR = EN' (2.2) 

Expression (2.1) or (2.2) for CPR can be rewritten, depending on R, 
as a function of the original transition probabilities {Pij}, and can be 
evaluated, at least theoretically, for each R in e. Neither of the repre­
sentations (2.1) nor (2.2) seems, however, to be informative enough to 
allow us to arrive at reasonable conditions on the p;/s in order to imply 
that an optimal rule will have a simple structure. t 

If the p;/s are of the form 

Pij = 0 for Ii - i I > 1, 

that is, if transitions are possible only to adjacent states, then it is 
obvious that an optimal rule will be a control-limit rule such that 

qjO = 0, j ~ L - 2, 

and 

qL-l.0 = 1 or 0, 

according to the values of c, A, and the pi/so For more general chains, 
however, where states can be skipped in the transitions, the situation 
is not so transparent. To arrive at workable conditions for reducing the 
problem, we use the method of functional equations [4]. 

3. Functional Equation Approach 

Suppose that P(Xo = i) = 1; that is, suppose that at time t = 0 the 
unit is in state i with probability 1. As an intermediate step in our 
argument, consider the function 

00 

CPR(i, a) = E L a'g(X,), 0< a < 1, 
t-O 

for any R in e. Later we shall use, in the way suggested by Arrow, 
Karlin, and Scarf (see [5], p. 35), the fact that 

lim (1 - a)cpR(i, a) = CPR. 
a-+l 

t Linear programming and dynamic programming methods are available [2], 
[3] for computing an optimal rule. 
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The factor ex can be considered, as in inventory theory, to be a discount 
factor; qm(i, ex) is then a meaningful cost criterion. 

Suppose that R! in e is such that for all i we have 

cp(i, ex) = CPR:(i, ex) = min CPR(i, ex); 
nEe 

that is, that R! is the optimal replacement rule when CPR(i, ex) is the 
cost criterion. Then by standard arguments it can be shown that cp(i, ex) 
must satisfy the functional equations, 

cp(i, ex) = min {ex t P,jcP(j, ex), c + ex t POjcp(j, ex)} for i ~ L, (3.1) 
j-O j-O 

L 

cp(L, ex) = c + A + ex 2: POJ-cf>(j, ex), 
j_O 

where the relationship between (3.1) and R! is apparent. Also, the 
recursively defined functions (method of successive approximations), 

cp(i, ex, 0) = 0 if i ~ L, 

cp(i, ex, 0) = C + A if i = L, 

and 

cp(i, ex, N) = min {ex E P,jcP(j, ex, N - 1), c + ex E POjcp(j, ex, N - I)} 

if i ~ L, 
L 

cp(i, ex, N) = c + A + ex ~ POjcp(j, ex, N - 1) if i = L, 
j-O 

for N ~ 1, can be shown (see [4]) to converge to cp(i, ex); that is, 

lim cp(i, ex, N) = cp(i, ex), i = 0, 1, ... , L. 
N-", 

We shall impose, to some advantage, the following monotonicity­
preserving condition on the transition probabilities {p,j}' 

Condition A. For every nondecreasing function hU),j = 0,1, ... ,L, 
the function 

L 

k(i) = ~ p,jh0), i = 0, 1, ... , L - 1, 
j-O 

is also nondecreasing. 
We now state and prove the following result: 
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THEOREM 1. If Condition A holds, then there exists a control-limit rule 
R* such that 

PROOF: The proof proceeds in three steps. First we prove that, for 
each N ~ 1, there is an iN such that 

L 

</J(i, ex, N) = ex E Pi;</JU, ex, N - 1), 
i-O 

L 

= C + ex E Po;</JU, a, N - 1), 
;-0 

L 

= C + A + a E POj</JU, ex, N - 1), 
i-O 

iN ~ i < L, (3.2) 

i =L. 

By definition </J(i, ex, 0) is a nondecreasing function. From the definition 
of </J(i, ex, 1) we can easily deduce, using Condition A, that </J(i, a, 1) is 
of the form (3.2) and that </J(i, ex, 1) is also nondecreasing. The argument 
then proceeds by induction, establishing (3.2). 

Secondly, since 

</J(i, a) = lim </J(i, a, N), 
N-+" 

it also follows that cp(i, ex) is nondecreasing. Hence, using this fact, 
Condition A, the functional equation (3.1), and its interpretation in 
terms of R!, we can establish that R! is a control-limit rule. 

Finally, let ia denote the control limit of R!. Let {ex~}, with 

lim ex~ = 1, 
.-+ .. 

be a sequence such that i a • = i* for all v. Since there is at most a finite 
number of possible states, such a sequence and i* exist. Now let R be 
any rule that is not a control-limit rule. Let R* denote the control­
limit rule with i* as its control limit (Le., R* = R!. for all v). Then 

v = 1,2, ... , 

and hence 

</JR = lim (1 - ex~)</JR(i, ex.) ~ lim (1 - a.)</J(i, a~) = </JRo, 
• -+ .. ,-+ .. 

which proves the theorem. 
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Condition A as stated is not verifiable. The following condition is 
more satisfactory from this point of view. 

Condition B: For each k = 0, 1, ... , L, the function 

L 

Tk(i) = L: Pi;' 
i-k 

i = 0, 1, ... , L - 1, 

is nondecreasing. 
We have the following lemma: 

LEMMA. Conditions A and B are equivalent. 

PROOF: Assume Condition A. Then in particular the function 

hk(j) = {
O, 

1, 

is nondecreasing. But then we have 

j<k, 

i~ k, 

L L 

k(i) = L: pijhk(j) = L: Pii = Tk(i), 
i-O 

and hence Condition B holds. 
Assume Condition B. Any nondecreasing function h(j) can be ex­

pressed in the form 
L 

h(j) = L: cihlJ) , 
i-O 

where Ci ~ ° for i = 0, ... , L, and 

Then 

hi(j) = {
O, 

1, 
j <i, 
j~ i. 

L L L L L 

K(~) = :E Piih0) = L: Pii :E ckhk(j) = :E Ck L: Pijhk 0) 
i-O k-O k-O i-O 

L L 

= L: Ck L: Pij. 
k-O i-k 

Since Ck ~ ° and, by Condition B, L r-tPii is nondecreasing for 
each k, it follows that K(~) is also nondecreasing. This proves the 
lemma. 

The equivalence of the two conditions allows us to restate Theorem 1 : 
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THEOREM 2. If Condition B holds, then the conclusion of Theorem 1 
holds. 

As an application of Theorem 2, consider the following example in 
which the transitions from state to state are generated by cumulative 
sums of identically distributed lattice variables. More precisely, let 
{av }, v = ... -1, 0, 1, ... , be a sequence of nonnegative numbers 
such that 

We define 

and otherwise 

Then 

rO(1,} = 1, 

rl(i) = 1, 

rk(O) = 0, 
00 

00 

~ a. = 1. 

pal = PLO = 1, 

Pia = 0, 

1 <j < L, 
I 

PH = ~ a.-i, 
.-00 

00 

PiL = ~ a.-I· 
.-L 

i = 0, ... , L - 1, 

i = 0, ... , L - 1, 

k ~2, 

rk(i) = ~ a., k ~ 2, i = 2, ... , L - 1; 
.-k-i 

therefore, Condition B is satisfied and the conclusion of Theorem 2 
holds. 

4. Empirical Method 

Frequently, when the pi/s cannot be assumed to be known, it may still 
be reasonable to assume that Condition A holds. If so, then we know 
by Theorem 1 that a control-limit rule is optimal. One approach to 
obtaining the optimal rule is to estimate the pi/s from observations 
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taken on units in operation and then, using (2.1), compute the optimal 
rule from these estimates. Because of (2.2), however, it is not necessary 
to estimate the pols; we need only estimate CPR = EC/EN for each R 
in the class e' of control-limit rules and select the rule that appears to 
have the smallest cpR. 

We conceive of the process of observation and replacement going on 
indefinitely and, in fact, the cost criterion is calculated on this basis; 
this suggests the existence of a rule R (not in e) that uses the past 
history of observations in such a way that it converges rapidly enough 
to be equivalent (in accordance with the cost criterion) to R*. (See [1] 
for a similar result.) Many such rules are possible. We mention one as 
an example of this approach. 

Let R, (i = 2, ... , L) denote the control-limit rule that has i for 
its control limit. We now define R. On the kth replacement cycle, 
k = 1, .. " L - 1, use R k+1 as the replacement rule. Thereafter 
(k ~ L), choose R, randomly such that 

peRi is used during the kth cycle) 

ift 

and otherwise 

1 
1-­

k 

1 
peRi is used during the kth cycle) = , 

(L - l)k 

where 
k, 

Ec. 
.... ,,-1 

CPR.,. = -k-,-- ; 
EN. 

the expression 

is to be interpreted as being the summation of costs (lengths) of those 
of the first k cycles during which R, is used. 

It is easily seen that each of the L - 1 control-limit rules will be 

t If the minimum is achieved by more than one R" choose one arbitrarily. 
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used infinitely often as k ~ 00 with probability 1; further, by the strong 
law of large numbers, we have 

lim cPR,k = cPR, 
1:_00 

with probability 1. Hence, with probability 1, 

lim min (cPR2k, ••• , cPRLk) = min (CPR2I ••• ,CPRL) = CPR" • 
.1:-00 

It now follows (essentially, as shown in [5]) that CPR = CPR" with prob­
ability 1. 
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Chapter 10 

Simplex Method and Theory 
A. W. TUCKER 

1. Introduction 

The simplex method (1947) of G. B. Dantzig [1] is much more than 
the basic computational tool of linear programming. It is a combina­
torial algorithm that provides constructive means of establishing 
fundamental theorems of linear programming [2 ]-as well as like 
theorems in cognate areas, such as von Neumann's minimax theorem 
for matrix games [3] and Farkas' theorem for linear inequalities. Its 
characteristic pivot transformations are related in an essential way to 
Gauss-Jordan elimination [4] and to a combinatorial equivalence of 
matrices [5]. 

This chapter discusses the simplex method in a format designed to 
exhibit over-all structure rather than specific operational details. The 
various terminal possibilities are represented schematically and geo­
metrically. Also, it is shown that transposition-duality theorems [6], 
such as the classical ones of Gordan, Farkas, Stiemke, and Motzkin, 
can be regarded as corollaries of the duality theorem for a "homo­
geneous linear program. " 

The schemata and block-pivot transformations used in this chapter 
seem to be important methodological devices. They follow closely 
along lines developed by'the author in a previous paper concerned with 
solutions of matrix games by linear programming [7]. 

2. Dual Linear Systems 

This section and the next develop underlying concepts and format for 
use in later sections. 
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The schema 

-Yl -Y2 -y,. 

~l au au al,. = Xl 

~2 a21 au a2,. = X2 
(2.1) 

~m ami am2 am,. = Xm 

= '71 = '72 = '7,. 

is a convenient device for the joint presentation of two systems of linear 
equations: a column system 

~laU + ~2a21 + . . . + ~maml = '71 I 
~la12 + ~2a22 + ... + ~mam2 = '112 .. .. :a: A = H, .. .. .. .. 
~lal" + ~2a2" + . . . + ~mam,. = '7,. 

and a row system 

-auYl - a12Y2 -

-a21Yl - a22Y2 -. . 
• • • - alnY,. = Xl I 
• •• - a2,.y,. = X2 · . · . · . 
• •• - amnY,. = Xm 

- AY = X. 

These two systems are dual in the sense that 

(2.2) 

(2.3) 

[:a:, H][~J =:a:X + HY = :a:(-AY) + (ZA)Y = 0 (2.4) 

for any Z, H satisfying the column system (2.2) and any X, Y satis­
fying the row system (2.3). 

The column system (2.2) consists of n linear equations in m + n vari­
ables; these n equations are linearly independent because each '7 occurs 
with nonzero coefficient in just one equation. The row system (2.3) 
consists of m linear equations in n + m variables; these m equations 
are linearly independent because each X occurs with nonzero coefficient 
in just one equation. If the Greek variables Z, H are regarded as (row) 
coordinates in a space of m + n dimensions and the Latin variables X, 
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Yas (column) coordinates in the same space, then the solution sets of 
(2.2) and (2.3) are linear subspaces of complementary dimensions m 
and n, respectively, in the space of m + n dimensions. Because of 
(2.4), these are complementary orthogonal linear subspaces. Thus the 
"duality" of linear systems has the geometric interpretation of "orthog­
onal complementarity." 

3. Block-Pivot Transformation 

Let Au be a nonsingular square submatrix of A, and A12, A2l, A22 the 
remaining submatrices of A. Then the schema (2.1) can be rewritten as 

Zl All 

(3.1) 

-'::'2 

Since Aill exists, the subsystems 

ZlAn + Z2A 21 = HI and -AnYl - A 12 Y 2 = Xl 

can be solved for Zl and Y l to obtain 

Substitution for Zl and Y l in the subsystems 

yields 

and 

-1 -1 
A21AnXl- (A22 - A21AnA12)Y2 = X 2• 

These results are exhibited by the column and row systems of the 
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schema 

-1 
All 

-1 
AllAn 

(3.2) 
-1 

-A21A ll 
-1 

A22 - A21AllAn 

,... 
= a..l 

The schema (3.2) is equivalent to the schema (3.1) in the sense that the 
column equation systems of (3.1) and (3.2) have the same solutions :=:, 
H and the row equation systems of (3.1) and (3.2) have the same solu­
tions X, Y. 

Let r be the order of the nonsingular square submatrix Au, the 
choice of which determines uniquely the transformation from the 
schema (3.1) to the equivalent schema (3.2). Then the transformation 
from (3.1) to (3.2) is called a block-pivot transformation of order r, the 
nonsingular square submatrix Au of order r being called the block pivot. 
It can readily be verified that the inverse of the block-pivot trans­
formation from (3.1) to (3.2) is a block-pivot transformation from (3.2) 
to (3.1), the block pivot being Aii!. 

Any nonzero entry of the matrix A determines a block pivot Au of 
order one; the corresponding pivot transformation of order one is called 
an elementary pivot transformation. Elementary pivoting, utilized so 
effectively in the simplex method, has its roots in the classical process 
of Gauss-Jordan (complete) elimination. 

Note that the block-pivot transformation of order r from (3.1) to 
(3.2) exchanges r of the individual marginal labels at the left with r 
labels at the bottom and r parallel labels at the right with r parallel 
labels at the top, signs being reversed in the latter exchange. Such a 
block-pivot transformation can always be decomposed into a succession 
of elementary pivot transformations, exchanging just one label on a 
margin at a time; conversely, any finite succession of elementary pivot 
transformations is summarized by a single block-pivot transformation 
(as explained in [5] and illustrated in [7]). 

The m by n matrices in (3.1) and (3.2), or any rowand/or column 
permutations thereof, are combinatorially equivalent in a sense discussed 
by the author in [5]. In fact, the relationship between (3.1) and (3.2) 
can be taken as defining combinatorial equivalence. 
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4. Dual Linear Programs 

Here the format developed in the two previous sections will be used, 
with some change of symbols, to discuss dual linear programs. 

The schema 

-Xl -X2 ... -XN 1 

>-1 au a12 a1N b1 =0 
>-2 a2l a22 a2N b2 =0 

>-M aM1 aM2 aMN bM =0 
-----------

1 C1 C2 ... CN d =W 

= ~1 = ~2 ... = ~N =w 

exhibits row and column equation systems 

-AX+B = O} 
-CX+d = w 

and {AA+C=Z, 
AB+d=w 

which pertain to the following pair of linear programs: 

Primal program: To maximize w = d - CX 

constrained by AX = B, X~ o. 
Dual program: To minimize w = d + AB 

constrained by AA + C = :a: ~ o. 

(4.1) 

(4.2) 

(4.3) 

(In this chapter only, vector inequalities are used. The inequality 
X ~ 0 means that each of the components Xl, X2, ••• , XN of X is non­
negative and at least one of them is positive. The inequality X ~ 0 
means merely that each component is nonnegative. For conformity, 
we shall also use the symbol ~ rather than ~ for scalar inequalities.) 
The "parameters" 

(Xl, >-2, ••• , >-M) = A 

in the dual program are unrestricted in sign. 
Let An be a nonsingular square submatrix of the matrix A above. 
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Then the schema (4.1) can be recast as 

-Xl -X2 1 

Al All Au 
1 

B1 1 

A2 A21 A22 
1 

B2 1 

1 
-------1---

C1 C2 1 d 

= ;2:1 = Z2 =w 

=0 

=0 
(4.4) 

=W 

(Of course, the Arheaded row in (4.4) will be vacuous if the submatrix 
Au omits no row of A, and the X2-headed column in (4.4) will be 
vacuous if Au omits no column of A.) Define 

-1 
All = Au, 
- -1 
An = -A21All, 

7'1 -1 
l-1 = -C1A ll , 

Then the schema 

';:;' _1 

A2 

1 

-1 
A12 = All A 12, 

-1 
A22 = A22 - A21AllAl2, 

_ -1 

C2 = O2 - ClAu A l2, 

o 1 

Au A12 
1 

Bl 1 

A21 A22 
1 

B2 1 
-------1---
~l C2 1 il 

= Al = Z2 =w 

-1 
Bl = AuBl' 
_ -1 

B2 = B2 - A21AuBh 
- -1 
d = d - ClAllBl. 

= Xl 

=0 (4.5) 

=w 

results from the schema (4.4) by the block-pivot transformation having 
An as block pivot. 

The new schema (4.5) is equivalent to the old schema (4.4). That is, 
the row equation system of one schema is satisfied by any X, w satis­
fying the row equation system of the other schema, and the column 
equation system of one schema is satisfied by any A, :a:, w satisfying the 
column equation system of the other schema. Hence the primal pro­
gram (4.2) calls now for maximizing w subject to the row equation 
system of (4.5) and the inequalities 

and the dual program (4.3) calls now for minimizing w subject to the 
column equation system of (4.5) and the inequalities 
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If the schema (4.5) is such that 

A22 = 0, 

(or are vacuous) and 

219 

(4.6) 

(4.7) 

then optimal (basic) solutions of the primal and dual programs, (4.2) 
and (4.3), can be read directly from (4.5) by setting variables at top 
and left margins equal to zero. These optimal solutions are 

Xl = B1(~0), X2 = 0; W = a 
and 

A1 = G1, A2 = 0; :=:1 = 0, :=:2 = G2(~0); 

That a is the maximal w follows from G2 ~ 0, because 

w = a - G2X 2 ~ a for all X 2 ~ 0; 

and that a is the minimal w follows from B1 ~ 0, because 

w = a + :=:lB1 ~ a for all :=:1 ~ o. 

w = a. 

The Dantzig simplex method, starting from an initial "presentation" 
of the pair of linear programs (4.2) and (4.3), employs a finite succession 
of elementary pivot transformations to achieve, if possible, a terminal 
"re-presentation" corresponding to a schema (4.5) for which (4.6) and 
(4.7) hold. 

5. Canonical Representation 

A canonical representation ("re-presentation") of the pair of linear pro­
grams (4.2) and (4.3) is provided by any schema 

0 -X2 1 

- Au Al2 
I 

BI = Xl ~l I 
I 
1--

A2 A2l 0 
I 
I 0 =0 (5.1) 
I 

--- ----1---

1 G1 G2 
I a I =W 
I 

= A1 -= ':'2 =w 
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for which (4.6) holds. To have 

-- -1 A22 = A22 - A21AllA12 = 0, 

it is necessary and sufficient that the order of the block pivot All be 
equal to the rank m of the matrix A, since then 

LAu, A 22] = A21A~II[Au, A12]' 

If A22 = 0, then B2 = 0 also, unless AX = B is an inconsistent system 
of linear equations. 

A partly reduced canonical schema 

0 -X2 1 

- Au A12 
1 

BI = Xl ':::'1 1 
1 

(5.2) --- ---1---

1 C\ C2 
1 a 1 =W 
1 

= Al -= ~2 =w 

results from (5.1) through deletion of the Arheaded row in (5.1). The 
schema (5.2) contains the same information as (5.1) with redundant 
parameters A2 set equal to zero. 

A fully reduced canonical schema 

--X2 1 

':! Au 
1 

BI = Xl _1 1 
1 

(5.3) ---\---

1 C2 
1 a 1 =W 
1 

-= ~2 =w 

results through further deletion of the O-headed column of (5.2). The 
schema (5.3) contains all the parameter-free information in (5.1) or 
(5.2). This corresponds to the "canonical form" in which dual linear 
programs were originally studied. 

If BI ~ 0 in the above schemata, the canonical representation is 
primal feasible with Xl = BI ( ~ 0), X2 = 0 yielding a feasible (basic) 
solution of the primal program (4.2). If C2 ~ 0 in the above schemata, 
the canonical representation is dual feasible with Al = Cl , A2 = 0 and 
:::1 = 0, :::2 = C2( ~ 0) yielding a feasible (basic) solution of the dual 
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program (4.3). If both Bl ~ 0 and C2 ~ 0, the canonical representation 
is optimal with the above-stated feasible (basic) solutions as optimal 
(basic) solutions of the primal and dual programs. 

6. Geometric Interpretation 

Let the matrix A in schema (4.1) have rank m and let the number of 
columns of A be N = m + n. Let [A, B] also have rank m, so that 
AX = B is a consistent system of linear equations. Let S be a space of 
N = m + n dimensions with a specified coordinate system, so that 
there is a one-to-one correspondence between points (or vectors) of S 
and ordered coordinate N-tuples, written as ~l, ~2, ••• , ~N for row 
usage and as Xl, X2, • • • , XN for column usage. Then the solution sets 

p = {Z I Z = AA + 0, all A} and Q = {X I AX = B} 

are linear manifolds of complementary dimensions m and n in the 
space S. Let Z = AA + 0 and Z' = A'A + 0 be any two points of P, 
and X and X' any two points of Q. Then the equation 

(Z' - Z)(X' - X) = (A' A - AA)(X' - X) 

= (A' - A)(AX' - AX) = 0 

shows that P and Q are complementary orthogonal linear manifolds in S. 
Let 

R = {Z I g ~ o} = {X I X ~ o} 

be the nonnegative orthant in S. Then the feasible-solution sets 

{Zlg=AA+O,Z~O} and {XIAX=B,X~O} 

of the dual and primal programs (4.3) and (4.2) are polyhedral convex 
sets P (\ Rand Q (\ R, respectively. 

In a canonical schema (5.3), the complementary orthogonal linear 
manifolds P and Q are represented by equation systems in the "slope­
intercept" form, 

(6.1) 

and 

Q: (6.2) 

the latter being obtained by transposing 

Xl = -A12X 2 + Bl 
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and substituting Z1 and Z2 for xi and xf, In (6.1) the m by n matrix 
Al2 is the "Z2:Zl-slope" of P (with Z2 as "rise" and Zl as "run") and 
(;2 is the "Zrintercept" of P. In (6.2) the negative-transpose matrix 
-A~ is the "Zl:Zrslope" of Q (with Zl as "rise" and Z2 as "run") and 
BJ is the "Zl-intercept" of Q. This canonical "slope-intercept" repre­
sentation of P and Q, introduced by the author in [8], generalizes 
the relation between the equations y = mx + b and x = - my + a of 
orthogonal straight lines in plane analytic geometry. 

Let p and ij be the intercept points (vectors), 

determined by (6.1) and (6.2). Note that the inner (scalar) product 
of p and ij satisfies the equation 

p.q = [0, (;2] [!1] = o. 

As canonically represented in schema (5.3), the dual program is to 
minimize 

- - - [ ] [Bl] _ W=d+Z1B1=d+ Zl,Z2 0 =d+p·ij 

for p in P (\ R, and the primal program is to maximize 

- - - [ _] [Xl] _ w = d - C2X 2 = d - 0, C2 X
2 

= d - p.q 

for q in Q (\ R. If P belongs to P (\ Rand q belongs to Q (\ R, then 
p. q ~ 0 for every p in P (\ R, and p . q ~ 0 for every q in Q (\ R 
(since any two vectors in R have a nonnegative inner product). Hence, 
since p . q = 0, it is clear that 

W = d + p.q ~ d + p.ij = d 

and that 

w = d - p.q ~ d - p.ij = d 

for every p in P (\ R, 

for every q in Q (\ R. 

That is, the desired minimum and maximum are attained at p = p and 
q = q if these points both belong to R. (The intercept points p or q 
belonging to R are the extreme points of the polyhedral convex set 
P (\ R or Q (\ R.) 

In summary, this geometric interpretation of a pair of linear pro­
grams (4.2) and (4.3) involves complementary orthogonal linear mani­
folds P and Q in a space S with nonnegative orthant R. If P (\ R is 
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nonvacuous, the dual program is feasible; if Q (\ R is nonvacuous, the 
primal program is feasible. A canonical representation of these pro­
grams involves a joint "slope-intercept" representation of P and Q. 
The resulting intercept points p and it yield optimal solutions if they 
both belong to R. 

7. Simplex Method; Terminal Possibilities 

Let AX = B have a solution X !?; 0; that is, suppose Q (\ R is non­
vacuous and the primal program (4.2) is feasible. Then a proof of the 
validity of the simplex method, such as the one given in [9], demon­
strates the existence of a finite succession of elementary pivot trans­
formations that terminates in a canonical representation for which the 
matrix 

I _ 
Au I Bl 

I 
---1---

71 I -
'-'2 I d 

I 

of the schema (5.3) has either the schematic form 

or the schematic form 

lED 
I' 
I' 
I' 
I' 
I' 
I' 
I' 
lED 

---------1-
ED···········EDI* 

e lED 
I' 
I' 
I' 
I' 
I' 
I' 
I' e lED 

---------1-
I 

(7.1) 

(7.2) 

(7.3) 
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where each EB denotes a positive or zero entry, each e a negative or 
zero entry, and - a negative entry. The EB row and EB column in (7.2) 
determine optimal extreme points of P {\ Rand Q {\ R, the corner 
entry * being the common minimum and maximum value. In (7.3) the 
EB column determines an extreme point ij of Q {\ R and the e column 
determines the direction of an extreme ray of Q {\ R issuing 
from ij, along which the objective function w satisfies w ~ + 00 be­
cause of the corresponding minus entry at the bottom. At the same 
time the (8, -) column in (7.3) shows that P {\ R is vacuous and 
the dual program is infeasible. 

If AX = B is a consistent system having no solution X ;;;; 0, so that 
Q exists but Q {\ R is vacuous and the primal program (4.2) is infeasi­
ble, then it can be shown that there exists a finite succession of ele­
mentary pivot transformations terminating in a canonical representa­
tion for which the matrix (7.1) of the schema (5.3) has either the form 

or the form 

I 
I 
I 
I 

ffi ..... ··ffil-
I 
I 
I 
I 

---------1-
EB ••••••• EB I 

8 I 
I 
I 

• I 
EB···O ·EBI-

I 
I 
I e I 

---------1-
I 

(7.4) 

(7.5) 

In (7.4) the EB row at the bottom determines an extreme point p of 
P {\ R and the other EB row determines the direction of an extreme 
ray of P {\ R issuing from p, along which the objective function w 
satisfies w ~ - 00 because of the corresponding minus entry at the right. 
In (7.5) the nonpositive column with negative entry at bottom shows 
tha t P {\ R is vacuous and the dual program is infeasible. The (EB, -) 
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row in (7.4) and (7.5) copfirms that Q (\ R is vacuous and the primal 
program is infeasible. 

In summary, the terminal possibilities for the simplex method are, 
in the format of this chapter: 

Form (7.2)-primal feasible (Q (\ R ¢ q,), 

dual feasible (P (\ R ¢ q,); 

Form (7.3)-primal feasible (Q (\ R ¢ q,), 

dual infeasible (P (\ R = q,) j 

Form (7.4)-primal infeasible (Q (\ R = q,), 

dual feasible (P (\ R ¢ q,); 

Form (7.5)-primal infeasible (Q (\ R = q,), 

dual infeasible (P (\ R = q,). 

From any initial presentation (4.1) of the pair of linear programs (4.2) 
and (4.3), provided AX = B is a consistent system of linear equations 
(so that Q exists), it is possible through a finite succession of elementary 
pivot transformations to reach a terminal canonical representation for 
which the matrix (7.1) of the schema (5.3) has one of the above four 
forms (7.2), (7.3), (7.4), (7.5). 

8. Homogeneous Linear Programs and Transposition-Duality 
Theorems 

In the pair of linear programs (4.2) and (4.3), take B = 0 and d = 0 
to get a homogeneous linear program, 

Minimize ex constrained by AX = 0, (X ~ 0), (8.1) 

and its dual program, 

Solve U A + e ~ o. (8.2) 

(Here it seems convenient to minimize ex = -w rather than to maxi­
mize w = -ex, to replace the parametric A by U, and to omit :a:.) 
The programs (8.1) and (8.2) are jointly exhibited by the schema 

X (~O) 

U A = 0 

(8.3) 

1 e = min 

~o 
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The homogeneous linear program (8.1) is clearly feasible, since X = 0 
satisfies AX = O. There are just two possibilities (corresponding to the 
two cases set forth in the first paragraph of Sec. 7): either ex has a 
zero minimum and (8.2) is feasible or ex is unbounded below for 
feasible X and (8.2) is infeasible. These two possibilities establish a 
"theorem of alternatives" for a homogeneous linear program (8.1) and 
its dual (8.2): 

THEOREM 1. Either UA + e ~ 0 for some U or ex < 0 for some 
X ~ 0 such that AX = 0 (but not both). 

This theorem can be regarded as a fundamental existence theorem 
for an arbitrary system U A + e ~ 0 of nonhomogeneous linear in­
equalities: 

THEOREM 2. The inequality U A + e ~ 0 holds for some U if and only 
if there is no X ~ 0 for which AX = 0 and ex < o. 

Take e < O. Then UA + e ~ 0 implies UA ~ -C > O. Also, 
ex < 0 for X ~ 0 if and only if X ~ O. Hence Theorem 1 yields the 
following classical theorem of Gordan (and later Stiemke), which seems 
to have been the earliest known transposition-duality theorem (see [6]): 

THEOREM 3. The equality AX = 0 holds for some X ~ 0 (Le., X ~ 0 
and ~ 0) if and only if UA > 0 for no U. 

Now form the schema 

XO X' (~ 0) 

U -B A =0 

------ (8.4) 

1 -1 0 = min 

~O ~O 

where A is a matrix and - B an additional column. Clearly the in­
equality - UB - 1 ~ 0 implies UB ~ -1 < 0, and the equality 
-Bxo + AX' = 0 for Xo > 0, X' ~ 0 implies AX = B for 
X = (X' /xo) ~ O. Hence the alternatives of Theorem 1, applied to 
(8.4), establish the following classical theorem of Farkas concerning 
"convex-linear dependence": 
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THEOREM 4. If UB ~ 0 for all U such that U A ~ 0, then B = AX 
for some X ~ 0 (and conversely). 

Next form the schema 

Xl X2 X; X; (~ 0) 

U Al A2 Aa -Aa =0 

----------- (8.5) 

1 -1 0 0 0 = min 

~O ~O ~O ~O 

where -1 denotes a row of -l's. Observe that U Al ~ 1 implies 
UA I > 0 and that UAa ~ 0, - UAa ~ 0 imply UAs = O. Let 
Xa = xt - X;. Then Theorem 1, applied to (8.5), establishes the 
general transposition theorem of T. S. Motzkin: 

THEOREM 5. Either U Al > 0, U A2 ~ 0, U As = 0 for some U or 
AIXl+A2X2+AaXa=0 for some Xl~O, X2~0, Xs unrestricted. 

9. Theorems for Skew and Dual Linear Systems 

Let K be a skew-symmetric (square) matrix, that is, let KT = -K, 
and let I be the identity matrix of equal order. Form the homogeneous 
linear program and its dual: 

X Y Z (~O) 
,----------------, 

U K+I K I =0 

1 -1 o o = min 

~o ~O ~O 

where -1 denotes a row of -l's. Premultiply 

(K + I)X + KY + IZ = 0 

by (X + Y)T to get 

~+Y)~~+Y)+~+Y)~~+~=Q 

(9.1) 
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Then since 

(X + Y)TK(X + Y) == 0, 

it follows that 

XTX+ XTZ + yTX + YTZ = O. 

However, this holds for X ~ 0, Y ~ 0, Z ~ 0 if and only if each term 
is zero; and XTX = 0 if and only if X = O. Hence the homogeneous 
linear program specified by the rows of (9.1) has a zero minimum, and 
the dual program specified by the columns of (9.1) is feasible. That is, 
there exists some U* satisfying the column inequalities of (9.1): 

U(K + J) ~ 1 > 0, UK ~ 0, UJ ~ O. 

This establishes the following "skew-symmetric matrix theorem" 
(see [6], Theorem 5): 

THEOREM 6. The system UK ~ 0 of homogeneous linear inequalities, 
whereKT = -K,possessesasolution U* ~ o such that U* + U*K> O. 

Apply Theorem 6 to the matrix 

[ 0 A] K= . 
-AT 0 

Then the inequality 

possesses a solution Z:* ~ 0, y* ~ 0 such that 

[Z:*, Y*T] + [Z:*, Y*T] [_~T ~J > o. 

This establishes the following theorem (see [6], Theorem 3) concerning 
the dual linear systems of schema (2.1) in Section 2: 

THEOREM 7. The column and row equation systems of the schema 

-Y 

z: A !=X 
=H 
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possess solutions 

Z* ~ 0, H* ~ 0 and X* ~ 0, 

such that 

Z* + X*T > 0 and H* + Y*T > o. 
Apply Theorem 7 to 

-YI 
+ -Y2 -Y; 

';:1 _1 All Al2 -Al2 = Xl 
-+ 
'::'2 A21 A22 -A22 + = X 2 (9.2) 

--'::'2 -A2l -A22 A22 =X; 

= HI = Ht = H2" 

where All is an arbitrary submatrix of a matrix A and A I2, A 21, A22 are 
the remaining submatrices. Then there exist nonnegative solutions 
(starred) of the column and row equation systems of (9.2) such that 

and 

[ * +* -*] [*T +*T -*T] HI, H2 ,H2 + Y 1 , Y 2 ,Y 2 > O. 

Since the sum of the last two columns of (9.2) is zero, and also the sum 
of the last two rows, it follows that 

+* -* +*-* 
H2 + H2 = 0 and X 2 + X 2 = O. 

Hence Hi*, Hi* and Xi*, Xi*, being nonnegative, are all zero. Now 
set 

and 

to obtain the following general transposition-duality theorem for dual 
linear systems (see [6], Theorem 6): 
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THEOREM 8. The column and row equation systems of the schema 

-YI -Y2 

-,:!.l Au A12 = Xl -,:!.2 Au A22 = X 2 

= HI = H2 

possess solutions 

.... * ° Z: ~ 0, * * ,:!.l ~ , HI ~ 0, H2 = ° < 
and 

* * * .> 
Xl ~ 0, X 2 = 0, Y I ~ 0, Y2 = ° < 

such that 
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Chapter 11 

1. Introduction 

The Present Status 
of Nonlinear Programmingt 

P. WOLFE 

This chapter is devoted to a survey of certain computational procedures 
for the solution of the "convex nondiscrete" mathematical pro­
gramming problem. By a mathematical programming problem we 
shall mean the problem of minimizing a function f(x) of n variables, 
(Xl, ... ,xn) = X, subject to the constraints g.(x) ::; 0 (i = 1, ... , n). 
We shall impose the restriction that the function f and all the functions 
g. be convex. The point of this restriction, to which we shall later re­
turn, is that it seems to define the largest class of functions for which 
efficient general computational methods can be devised. From now on, 
when we refer to a nonlinear programming problem, we shall mean one 
in which the functions involved are so restricted. 

In Figure 1 we have illustrated three principal types of computational 
problems. The functions defining the constraints of the problem-the 
g.-may be linear or not; and the so-called objective function, f, may 
also be linear or not. If both f and the g. are linear, we have the most 
well-known case-that of linear programming. This problem is labeled 
A in Figure 1. In the next case, which is as close to linear programming 
as possible, the constraints are linear, while f is not. This case we have 
labeled B. It is a more difficult type of problem to solve than A, ·of 
course; yet, we shall see that some of the techniques used in completely 
linear problems may be carried over to problems of this type. This does 

t An early version of this chapter has appeared as "Computational Tech­
niques for Non-linear Programs," privately printed for members of the Prince­
ton University Conference on Linear Programming, March 13-15, 1957. 
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not seem to be the case with the class of problems C, those in which 
the constraints are not linear. We have not distinguished here between 
linearity or nonlinearity of the objective function, because if the con­
straints of a problem are not linear, linearity of the objective function 
is not of help. Nevertheless there are methods, although less efficient 
than those for problems A and B, for dealing with problems of this 
class. 

Figure 2 indicates several types of computational methods that can 
be used for these problems. One basic distinction is that between 
primal and Lagrangian methods. 

A primal computing method uses only the variables x and directly 
related quantities, such as the gradient of f, in the course of a compu-

Objective Constraint 
function Linear Nonlineor 

Linear A 
r-- C 

Nonlinear B 

Fig. 1. (left). Types of com­
putational problems. 

Type of'step 
Method 

Primol Lagrangian 

Walk A B (quodramatlc) 

Hop B 

Creep C C 

Fig. 2. (right). Types of com­
putational methods. 

tation. A Lagrangian method uses, in addition to these quantities, the 
generalized Lagrange multipliers to be discussed below. 

These various methods may also be distinguished according to the 
nature of the steps used in proceeding to a solution. The steps may be 
large ones, with only a finite and possibly small number of them needed 
to arrive at an exact solution of the problem; such a method we call a 
"walk." Another method can be said to "hop"; although it takes fairly 
large steps most of the way, one does not know how many steps will 
be required to arrive sufficiently close to a solution. Finally there is the 
type we call "creep," which is characteristic of most gradient methods 
and involves taking a large number of very small steps. Figure 2 shows 
the type of problem-A, B, or G-to which the indicated computa­
tional style seems best suited. 

2. Linear Programming 

We shall begin our discussion with a primal walking method. As in­
dicated by Figure 2, the class of linear programming problems is nearly 
the largest that can be tackled by this method. (Actually, the exact 
class seems to be the one for which the objective function has the 
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property that, for any k, the set of x such thatf(x) = k is a hyperplane. 
This class includes not only linear functions but also, as pointed out 
by John Isbell, quotients of linear functions.) 

In Figure 3 we have given a geometric visualization of a linear pro­
gramming problem. There are seven constraints effective in this 
particular problem: Three constraints, Xl ~ 0, X2 ~ 0, and Xa ~ 0, 
which we have not written out explicitly in terms of functions of X 

(programming problems are conventionally taken to deal with non­
negative variables of this kind, although it is a simple matter to trans­
form a problem having unrestricted variables to one having non­
negative variables, or vice versa), and the remaining four constraints, 

~--~r-r-------~~P'I--~X2 

XI 

Fig. 3. Linear programming "walking.» 

illustrated geometrically by the four skew faces of the polyhedron. 
The whole polyhedron represents the constraint set-the set of all 
points for which X ~ 0 and all g;(x) :::; 0 (i = I, ... ,4). Since these 
constraints are linear, the faces of the polyhedron are planes. The 
planes are as follows: The plane i, associated with the constraint 
g;(x) :::; 0, is the set of points x for which g;(x) = o. In the diagram 
the faces have been identified by showing which of the seven functions 
is equal to zero on each face. The vertices of the polyhedron are identi­
fiable by listing the faces that meet in them; for example, the vertex 
P2 can be identified as lying on the planes Xl = 0, g2 = 0, and g4 = o. 
Such a point of the constraint set, for which as many of the x's and g's 
vanish as possible, is called a basic feasible point. Actually, it is cus­
tomary to refer to such a point by specifying the complementary 
functions as a minimal set of nonvanishing variables. 

The linear programming problem, and Dantzig's simplex method for 
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solving it, can be visualized in this way: Let I(x) = Lj CjXj. Then the 
gradient of I, VI = c, is constant. Since the gradient points in the direc­
tion of maximum increase of I, a solution to the problem of minimizing 
I will be a point located as far in the constraint set as possible in the 
direction opposite to the vector c. Take any vertex of the constraint 
set. The direction numbers of all the edges leading out of the point 
may be calculated, so we can determine which edges make an obtuse 
angle with c. Following such an edge, we arrive at another extreme 
point yielding a lower value of I. The process is repeated until we reach 
a point at which all edges make acute angles with c; that point is the 
solution of the problem. 

The foregoing process is sketched in Figure 3. Beginning at 0, we 
find the path OP1P2Pa around the constraint set, terminating in a 
solution point for the problem. The simplex method gives the means 
of performing the numerical processes corresponding to this de­
scription [1]. 

3. Nonlinear Programming with Linear Constraints 

For the problem-type B-the problem of minimizing a nonlinear func­
tion subject to linear constraints-a picture can be drawn very much 
like that of Figure 3. The linear constraints for this problem are the 
same as for the linear programming problem; see Figure 4. Since the 
objective function is not linear, however, the gradient vector of the 
objective function is no longer constant, and at each point a local 

~, 

p 
• 

Fig. 4. Minimum-distance problem. 
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objective vector must be drawn. The fact that there is no single direc­
tion of fastest decrease of !(x) makes it impossible to use a simple walk­
ing method for the problem; indeed, the solution no longer needs to be 
a vertex of the constraint set. Figure 4 illustrates the problem of finding 
the closest point in the constraint polyhedron to an outside point P. 
Suppose that we attempted to use the gradient V!(x) at each vertex x 
to establish a direction of motion; we would eventually just circulate 
among some set of vertices-say PI and P 2• To make progress, we 
must be able to enter a proper face of the constraint set, where the 
solution point Q lies. 

A difficulty of a more general type is that, at the current stage of 
development, any efficient computational method for attacking a 
large-scale problem must work almost entirely in terms of local in­
formation: It must be possible to decide whether to stop the compu­
tation, or to continue with it, on the basis of knowledge concerning 
only the immediate vicinity of the point we have reached, because 
knowledge of conditions everywhere in the constraint set will generally 
demand more information than can be stored. Hence a condition such 
as the following must be imposed on the function!: If a point x gives a 
minimum of ! in some region-no matter how small-surrounding x 
(i.e., x is a local minimum), then x is a solution of the entire problem 
(i.e., x is a global minimum). The most convenient assumption about! 
that will ensure this is that! must be convex, that is,! must satisfy the 
inequality 

!(ax + (1 - a)y) ~ a!(x) + (1 - a)!(y) 

for any x, y, and 0 ~ a ~ 1. That this condition is sufficient follows 
from the fact that if x is not the minimum sought, all points on the 
line segment aX + (1 - a)y joining it to some lower point y lying in 
the constraint set give lower values. Figure 5 illustrates the convexity 

f 

f(a.r+ (I-a)y) af(x)+(I-a)f(Y) 

x .a.r+ (I-a)y y 

Fig. 5. Convexity. 
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of a function along a line segment; we require similar behavior along 
every line segment in the constraint set. (Any linear function is convex. 
The sum of squares of linear functions is also convex, so that the least­
distance problem of Fig. 4 can be solved with local information.) 

One method for minimizing a convex function under linear con­
straints is one that hops. It operates as follows [2]: We will generate 
a sequence zo, Zl, ••• of points of the constraint set that will converge 
to a solution and, for use in the calculation, an auxiliary sequence xo, 

Fig. 6. "Hopping" to a minimum. 

Xl, ••• of extreme points. Initially, let Xo be any extreme point of the 
constraint set and let Zo = xo. Now suppose that n steps have been 
taken, and a point zn and extreme point xn are at hand (see Fig. 6). 
Perform the following operations: 

(a) Calculate Vf(zn). 
(b) Using Vf(zn) as objective vector and xn as initial extreme point, 

take one step of the simplex method in the minimization of Vf(zn) , x, 
to the extreme point xn+t, 

(c) Choose zn+t so as to minimizef on the segment joining xn+t to zn, 

(d) Repeat with zn+t and xn+t, 

The justification of this process lies in the following result: 
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THEOREM. There is a constant K such that, if M is the minimum of f as 
constrained, then 

K 
f(z") - M ~ -. 

n 

Note that step (c) above amounts to solving a one-dimensional 
minimization problem, which is easy to do. For modern machine com­
putation, this hopping method has the considerable advantage that 
the major part of the computational work-that of performing the 
simplex change of basis from one extreme point to another-is one that 
is well understood and very likely already coded for the machine one 
wants to use. The amount of additional routine that has to be written 
for this method is small. 

Another, and very successful, type of hopping method for problems 
with linear constraints is that of the "projected gradient" [3]. Figure 
7 illustrates such a procedure, beginning at the point XO and generating 

Fig. 7. Projected-gradient method. 

p 
• 

the sequence of points Xl, X2, •••• Starting with the point xk, either 
one or two successors of Xk are determined by the following steps: 

(a) Calculate Vf(xk ). 

(b) Find the projection of Vf(xk) onto the face of the constraint set 
on which the point Xk lies. Here "face" is used to denote the intersection 
of any collection of bounding hyperplane, so that the face for XO is the 
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constraint set itself, the projection of Vf(xk) is Vf(xk) itself, and the 
face for x2 is the line through x2 and x3• 

(c) Extend a ray from XO in the direction of the projection of Vf(xk). 

Define Xk+l to be the farthest point of the constraint set along this ray. 
(d) If f(XH1) < f(xk), then the cycle is complete. Otherwise, choose 

XH2 so as to minimize the function f on the segment XkXH1 ; this com­
pletes the cycle. 

As with the gradient-corrected simplex method, it is assumed here 
that the one-dimensional minimization problem that may have to be 
solved in step (d) is not a difficult one; this is indeed the case. In 
Figure 7, the points X4 and x6 have been obtained as the result of mini­
mizing on the segments X 2X3 and X4X6; at these minima, Vfis, of course, 
perpendicular to the segment in question. 

Convergence of the procedure to a solution of the nonlinear problem 
is not difficult to establish. Unlike the previous gradient methods, this 
procedure does not completely reduce to the simplex method for a 
linear problem, but it does so reduce if the points Xk are vertices of the 
constraint set. 

4. Nonlinear Programming with Nonlinear Constraints: Primal 

Figure 8 adds the final complication we want to introduce into pro­
gramming problems: Besides a nonlinear objective function, we now 
have nonlinear constraints gi(X) .:::; O. We have said that in general the 
gi must be taken to be convex functions. Actually, it is only in such a 
case that the constraint set is convex, that is, a set that contains the 
entire line segment joining any two of its points. The nonplanar faces 
of this constraint set will bulge outward. The necessity for this require­
ment is implied in our earlier discussion of the convex objective func­
tion: To show that any local minimum was global, we made use of the 
fact that the segment joining two points was in the set. That argument 
now applies to this more general case, so that the local methods we 
discuss will solve the global problem. 

Most methods for this type of problem are of the creeping kind (the 
nonlinear boundaries of the constraint set prevent us from taking any 
bold steps) and use the following general scheme: At any point x of 
the constraint set, calculate Vf. Start moving x in the direction - Vf(x) , 
modifying this as necessary as x changes. We shall set up a computa­
tional scheme that does this, attempting at the same time to satisfy 
the constraints of the problem. The gradient method has a continuous 
flavor that may perhaps best be illustrated by setting up a differential 
equation. This equation will not be solved explicitly, but it can be used 
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\ 

"-VI 

~VI 

-

Fig. 8. Very nonlinear problem. 

either to indicate analog methods of solution for the problem or to 
yield difference equations for digital computation. 

By simply proceeding in the direction of fastest decrease, we get 

dx 
- = -vf(x) 
dt ' 

. dx iJf(x) 
l.e.,- = - --. 

dt; iJx; 

If we think of the motion of x as taking place in time, the velocity of 
the point x is the negative of the gradient. This equation, of course, 
ignores the constraints. Under these differential equations, x would 
soon leave the constraint set. To inhibit this, we shall try to send x 
back into the constraint set whenever it touches the boundary, that is, 
whenever one of the functions g.(x) becomes positive. In that case, the 
direction in which to send x is given by the inward normal to the 
boundary, -Vg.(x). Our prescription, then, is as follows: If the point 
is at gi(X) = 0, send it in by adding a vector proportional to - Vg;(x) 
at that point. We have done this for each g. by means of the second 
term on the right-hand side of the equation below, in which we define 
Mx) to vanish if x satisfies the constraint g;(x) ~ 0, Mx) = 1 other-
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wise, and K is a constant of proportionality: 

dx 
- = -Vf(x) - E Ko;(x) Vg;(X) , 
dt i 

or 

dXj ol(x) " og;(x) 
- = - --K £...o;(x)-_· 
dt OXj ; OXj 

One further condition must be noted, however. Since we have the con­
straints Xj ~ 0, we must add the following requirement to t.he differ­
ential equations: If the indicated rate of change of Xj is negative, but 
Xj is already zero, we must not change Xi. Thus we have 

dXj = {same as above, if the above expression or Xi is positive, 

dt ° otherwise. 

It can be shown that any trajectory yielded by these differential 
equations converges to a solution of the minimization problem if K is 
so large that at any boundary point X the sum of the inward-pointing 
vectors, -Vg;(x), is greater than Vf(x). Accordingly, any system we 
can set up that obeys these differential equations will lead to a solution 
of this type of problem. 

The digital means of handling these equations is very simple. It con­
sists of replacing dXj/dt above by ilxj/ ilt, and choosing t to be a fixed, 
sufficiently small number. Then one begins with arbitrary xis and 
uses the equation to calculate the amounts ilxj by which the xis must 
be increased in each time period. After the solution has been found 
as well as possible using a given value of ilt, it will then be necessary to 
use a smaller value to obtain more accurate results. 

These equations also prompt one to attempt an analog method for 
solving this problem. It is particularly easy to see how this is done in 
the linear programming problem. If 

I(x) = E CP;j and g;(x) = E a;,"Xj - b; :::; 0, 
j j 

then the system of differential equations becomes 

dx l-Cj - K E o;(x)a;j if this expression or Xj is positive, 
J • -= , 

dt 0 otherwise. 

These equations can be set up in this form on conventional electronic 
differential-analyzer equipment. This has been done by Pyne [4] for 
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small-scale problems and works with relatively good accuracy and sur­
prisingly high speed. One can view the trajectories of several XJ on 
oscilloscopes and see the solution of a linear programming problem 
traced out from an arbitrary initial point in a matter of seconds. In 
addition to giving a satisfying graphic account of a solution of the 
problem, the analog method has the notable feature that the parameters 
occurring in the problem can be varied with a great deal of ease. One 
can explore large areas of parameter values quite quickly by this 
means; thus it provides a good method for rough sensitivity analysis 
in linear problems. It is also possible to wire nonlinearities into the 
problem in accordance with the general differential equations, but this 
is not easy to do with conventional equipment. 

5. Nonlinear Programming with Nonlinear Constraints; Lagrange 
Multipliers 

The remaining methods to be described are those that use the "general­
ized Lagrange multipliers" of Kuhn and Tucker [5], as well as the 
variables Xil in the computational process. These multipliers u. are 
introduced, as in the classical case, through the Lagrange function 

L(x, u) = f(x) + L Uigi(X). 
i 

Also as in the classical case, a necessary condition that x solve the 
given extremum problem is that x and some U = (Ul' ... , um) solve 
an extremum problem involving the Lagrangian. In programming, 
however, the new problem has a novel formulation: 

If x solves the programming problem, then there exists U so that 
(x, u) solves the problem 

min max L(x, u). 
",;?;o .. ;?;o 

This says that simultaneously x must minimize Land u maximize it, 
or that (x, u) is a saddle-point of L. (In the classical problem, which 
involves only setting derivatives equal to zero, it is irrelevant whether 
the extrema of the Lagrangian are maxima or minima.) 

Under the convexity assumptions of our programming problems, 
the necessary condition given above proves to be sufficient. Hence a 
method that will enable one to find the saddle-point of a function 
having nonnegative variables can be used to solve such problems. A 
method along the lines of the primal method can be devised; namely, 
differential equations can be set up that will cause x to move so as to 
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decrease L, and cause U to move so as to increase L, as follows: 

dXi -- if this or Xi is positive, 
- = ax' j 

aL 

dt J 

o otherwise; 

dUi - if this or Ui is positive, 
-= au· j

aL 

dt • o otherwise. 

As before, we interdict the decreasing of a zero variable. 
The foregoing approach is associated primarily with the work of 

Arrow and Hurwicz, which has appeared in a series of papers. Uzawa 
[6] has shown that if the objective functionfis strictly convex, then a 
solution of the above equations starting from any initial (x, u) exists, 
and that the xis obtained converge to the solution of the program. 
Kose [7] has also obtained graphical solutions of these equations on an 
electronic differential analyzer. 

An interesting feature of these equations is that, suitably interpreted, 
they yield a model for the attainment of efficient production in a com­
petitive economy. Let the constraints be linear again: 

g.(x) = L aijXi - b. ::; o. 
j 

The differential equations above then become 

dXi af(x) 
- = - -- - Lu,a'iI 
dt aXj. 

du. 
-d = L a,jXj - b" 

t j 

with "zero" conditions. As usual, Xj is viewed as the level of some pro­
duction activity. Then iJf(x)/iJxj is a marginal cost, since we are mini­
mizing. Each i denotes a resource needed in production, and b. is the 
average amount of resource i available in the market. The coefficient 
a,j is the amount of resource i that is consumed by carrying on activity 
j at unit level. Finally, u, is the market price the producer must pay 
per unit of the resource i he uses. 

The terms on the right-hand side of the first equation can be inter­
preted in this way: -iJf(x)/iJxj is the profit accruing to the producer 
for increasing the jth activity level one unit, and the summation is the 
payment he must make for the additional resources thus consumed. 
The first equation then says: If a net profit can be made by increasing 
Xii then do so; if increasing Xj would make a net loss, then decrease it 
unless it is already zero. The second equation says simply: If the total 
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amount of resource i consumed in all the activities exceeds the average 
supply, then its price will rise; and if the amount is less than the supply, 
then its price will fall unless the price is already zero. 

The theorem on the convergence of the solution of the differential 
equations to a solution of the programming problem thus says, in 
economic terms, that the behavior of the market prices will force the 
producer into the optimum production program. It is interesting to 
note that the usefulness of this kind of interpretation has led to the 
adoption of the term "price" for "generalized Lagrange multiplier" in 
the programming literature. 

6. Lagrange Multipliers in General 

It should be pointed out that these multipliers are present, although 
concealed, in the primal methods with which we have dealt. For exam­
ple, a valuable feature of the simplex method for linear programming 
is that in the last step of the simplex calculation one obtains as a by­
product the solution of the "dual problem," that is, the Lagrange multi­
pliers for the extremum. 

The multipliers can also be found in the primal creeping process. 
After a sufficient length of time, the Xj that solve the equation 

dXj af(x) " ay,(x) 
- = - -- - £.J K8,(x)--, 
dt aXj, aXj 

with nonnegativity condition, will be essentially stationary, and their 
average value during an extended time period will be zero. The point 
x will, in fact, be tracing out small loops, being kicked back and forth 
by the discontinuous terms 8;(x)y,(x). The only quantities on the right­
hand side that vary much will be K8;(x). Denoting their time-average 
values by Ui, which is then proportional to the amount of time the con­
straint y.(x) ~ 0 is called into action, we have 

o = - af(x) _ :E u, ay.(x) , 
OXj • OXj 

(6.1) 

(unless the right-hand side of this equation is negative and Xj = 0). 
It is easy to see that these Ui are indeed the multipliers, because this is 
precisely the condition under which the Lagrangian L(x, u) cannot 
be decreased by changing Xj. 

The discussion above constitutes the outline of a proof of the Kuhn­
Tucker saddle-point theorem. Through another line of ideas we can 
obtain another type of proof, and also suggestions for another compu­
tational scheme. In the above equation (6.1), the right-hand side may 
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be negative, but never positive; in vector notation, if we let 

v = Vf(x) + l: u.Vg.(x), 
i 

we need 

v;;::: o. 
Now the condition in parentheses following equation (6.1) has a simple 
paraphrase: 

If Vj > 0, then Xj = O. 

Since the variables are all nonnegative, this can be written as 

vx = l: ViXj = O. 
j 

We shall now make a (surprisingly slight) modification of our pro­
gramming problem. Replace the constraints g;(x) ~ 0 by equalities, 

g.(x) = O. 

The original constraints could be rewritten in this form without loss 
of generality, if one new variable were added for each constraint, thus: 

g.(x) + y. = 0, y.;;::: O. 

Then the saddle-point problem becomes simply 

min max L(x, u); 
z~o " 

we no longer require u ;;::: O. The above analysis regarding minimizing 
L in x is unchanged, but maximizing it in u is now simpler: We need 
only require that all aLex, u)/au. = 0, which is precisely the same as 
requiring that all gi(X) = O. In other words, x must satisfy the 
constraints. 

The final result is the following: 
The point x solves the modified programming problem if and only if 

there exist Vj ;;::: 0 and u. such that 

Vf(x) + l: u.Vgi(x) = v 
i 

and 

vx = O. 

This version of the saddle-point theorem can be justified geometri­
cally (Fig. 9). Letting ej be the jth coordinate vector, we have 
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Vf(x) 

/-------~~---------r------7_-----~ 

Fig. 9. Geometric representation of saddle-point theorem. 

Vi(x) = L: vjej + L: (-u.)Vg.(x), 
j • 

with Vi expressed as a linear combination of normals to the boundaries 
of the constraint set. We have Vj ~ 0 because Vi must not point out­
ward across the boundaries Xj ~ O. If, however, one of these boundaries 
is ineffective (i.e., Xj > 0), then its normal is also ineffective (i.e., 
Vj = 0), and hence vx = O. This point of view is developed in more de­
tail by Tucker [8]. 

7. Quadratic Programming 

The version of the saddle-point theorem given above yields, rather 
surprisingly, a walking method [9] for the solution of an important 
class of nonlinear problems: those in which the constraints are linear 
and the objective function quadratic. The method is almost exactly 
the simplex method, although the presence of the mUltipliers in our 
formulation of the problem enlarges its size. 

The quadratic problem is the following: 

Minimizei(x) = px + XTCX = L: pjXj + L: XjCjkXk, 
j j,l< 

subject to x ~ 0 and Ax = b (Le" ~ ai,"Xj = bi). 
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The index i ranges from 1 to m, and j and k range from 1 to n. The 
superscript T denotes matrix transposition. 

Our general requirement that f be a convex function means that the 
matrix C must be positive semidefinite; that is, that XTCX ~ 0 for all x. 
The method we shall describe requires further a special sort of "non­
degeneracy" condition, namely, that whenever px = 0, we have 
XTCX > O. 

For this problem, Vf(x) is just the vector p + 2Cx, and each Vgi(x) 
is the constant vector (a.1, ... , ain). The saddle-point result thus be­
comes, in matrix notation: 

The point x solves the quadratic programming problem if and only if 
there exist v ~ 0 and u such that p + 2Cx + uA T = v and vx = o. 

The feature that allows us to devise a walking method for quadratic 
programming is precisely the linearity of Vf; the only nonlinear con­
dition in the above formulation is vx = 0, and it is of a very special 
form. 

The process is begun with an extreme point XO of the constraints 
x ~ 0, Ax = b. Initially use VO = 0 and UO = 0; the condition vx = 0 
will then be satisfied but, of course, the other condition will not be. 
We can turn to the device of "artificial variables" to work with this 
last condition: Let zJ = PI + 2(CxO)J, and let eJ = ± 1 be chosen so 
that 

° ° 2(Cx ); + e;zJ = -PI. 

We have now chosen an initial feasible simplex basis consisting of part 
of xO, uO, and ZO for the problem: 

Minimize LjZ; under the constraints x ~ 0, v ~ 0, Z ~ 0, 

L ai;X; = b" 
i 

L 2C;kXk + L u,a,; - v; + ejZ; = -PI! 
AI , 

LV/Xi = o. 
; 

We shall employ the simplex method in this minimization, with one 
difference in order to handle the last restriction: In considering any of 
the variables x; or VJ as candidates for the new basis (i.e., to be made 
positive), do not allow XJ > 0 unless vi = 0, and do not allow Vi > 0 
unless Xi = o. 

It can be shown that this routine will terminate in a finite number 
of steps, just as in linear programming, with a zero of the objective 
Lj zi. Then the conditions of the theorem above are satisfied, and the 
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x part of the solution of this problem solves the quadratic programming 
problem. It is of interest that the simplex solution is usually achieved 
more quickly for an m X n quadratic problem than for an (m + n)­
equation linear problem. 
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Chapter 12 

The Number of Simplices in a Complex t 
JOSEPH B. KRUSKAL 

1. Introduction 

A familiar puzzle for children poses the following question: Given six 
sticks all the same size, how can you put them together to make four 
triangles all of the same size? The answer, of course, is a tetrahedron. 
Similarly we may ask: Given n edges, how many triangles can we make? 
More generally, suppose that a complex has exactly n r-dimensional 
simplices. Then we may ask: What is the maximum number of r'­
dimensional simplices (r' > r) that the complex can have? In this 
chapter we give an elegant answer to this question. 

Since we are concerned here with abstract complexes not embedded 
in any space, a simplex consists merely of a set of vertices. It will be 
more convenient for us to label a simplex by the number of its vertices 
than by its dimension. We speak of an r-set rather than an (r - 1)­
dimensional simplex. For us a complex is simply a finite set of vertices 
together with a class of subsets with the subset closure propert.y; that 
is, if any subset belongs to the complex then all its subsets also belong 
to the complex. 

By (~) we denote the general binomial coefficient. As k increases, this 
binomial coefficient increases. If n is any nonnegative integer, we define 
its r-canonical representation to be 

(n,) ( n,-l ) (n,) n= + + ... +., 
r r -1 ~ 

where we first choose n, to be as large as possible without having the 

t The problem treated in this chapter wall suggested by D. Slepian. The 
author wiilhes to thank him and S. Lloyd for many helpful suggestion!!. 
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initial binomial coefficient exceed n, and then we choose nr-l as large 
as possible without having the first two terms exceed n, and so on 
until we finally obtain equality. We can always obtain equality, for 
if we do not obtain it before we get to the binomial coefficient with 
the denominator 1, then nl can always be chosen to ensure equality. 
Furthermore it is clear from our construction that this r-canonical 
representation is unique. As an illustration we give the 5-canonical 
representations of several numbers: 

1 = (:), 

5 = G) + G) + G) + G) + G), 
6 =(:), 

62 = G) + (:) + G)· 
It is not difficult to show that a set of integers n r , ••• , n, is associ­

ated with the canonical representation of some integer if and only if 
the following conditions are satisfied: 

nr > ... > ni ~ 1. 

If r :::; r', we definef(n; r, r') to be the greatest number of r'-sets that 
occur in any complex having precisely n r-sets. If r ~ r', we define 
f(n; r, r') to be the smallest number of r'-sets that occur in any complex 
having precisely n r-sets. The following theorem answers not only the 
question posed at the beginning of this chapter but a natural dual 
question as well. 

THEOREM 1. If 

(nr) (ni) n = r +... + i canonical, 

then 

f(n; r, r') = (nr) + ( nr_l ) + ... + ( ni ). 
r' r' - 1 \r, - r + 1 

As usual, we take 0 as the value of any binomial coefficients in which 
either the numerator or the denominator is negative, or in which the 
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numerator is strictly less than the denominator. Contrary to usual 
practice, however, we also let the binomial coefficient (g) equal O. 

If nr, . . . , ni is any sequence of integers, we let 

( nr) (ni) [nr, . . . , ni]r = T +... + i . 

We call this expression, and also the sequence of integers (n" ... ,n,), 
r-canonical if the above expression is the r-canonical expression for the 
integer it equals. We may sometimes omit the qualifying r if its value 
is clear from context. Note that the void sequence is canonical, and 
that it corresponds to the representation of O. 

We define a fractional pseudopower n (r' Ir) as follows: If 

n = [nr, ... , Ti]r canonical, 

then we let 

n(r'Ir) = [nr, ..• , ni]r" 

To illustrate this concept we have the accompanying table of (4/3) 

SOME (4/3) PSEUDOPOWERS 

n 3-canonical representation of n n(4J3) 

0 [ ]a 0 
1 [3Ja 0 
2 [3, 2]a 0 
3 [3, 2, l]a 0 
4 [41a 1 
5 [4, 2]a 1 
6 [4, 2, l]a 1 
7 [4, 3la 2 
8 [4, 3, l1a 2 
9 [4, 3, 2]a 3 

10 [5]. 5 
11 [5, 21a 5 
12 [5, 2, l]a 5 
13 [5, 3]a 6 
14 [5, 3, l]a 6 
15 [5, 3, 21a 7 
16 [5, 4]3 9 
17 [5, 4, 1], 9 
18 [5, 4, 21a 10 
19 [5, 4, 3]3 12 
20 [6]3 15 
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pseudopowers. In the pseudopower terminology our theorem becomes 
the following: 

THEOREM 1'. Under the hypothesis of Theorem 1, we have 
f(n; r, r') = n(r'lr). 

We remark that our fractional pseudopowers depend separately on 
the numerator and the denominator, that is, the (!) and (I) fractional 
powers are different. Our notation is perhaps justified by the fact that, 
as n increases, the fractional pseudopower is asymptotically propor­
tional to the ordinary fractional power, and by other properties that 
we shall demonstrate later. 

2. Application to Sequences of O's and 1 's 

Let a binary word of length n be a sequence of nO's and l's. Write 

if ai ~ bi for all i. Let a binary complex C be a set of binary words, 
all of the same length, with the property that if b is in C and a ::;; b, 
then a is in C. (Such a set C is sometimes called a "lower" set.) We say 
that a binary word has weight r if it has r l's in it. 

Let C be a binary complex of words of length n. Let vI, ••• , Vn be 
abstract vertices. Let Vi correspond to the ith position in a binary word. 
If b = b1 ••• bn has r l's, let it be associated with the set R of those 
r vertices corresponding to the positions with l's in them. That is, let 

R(b) = {vii bi = I}. 

Then C corresponds to a class of sets. We easily see that C is a binary 
complex if and only if this class of sets is an ordinary complex. 

Therefore our theorem can be restated thus in terms of binary 
complexes: 

THEOREM 2. If a binary complex C has exactly n words of weight r, 
and if r' ~ r rr' ::;; r], then the maximum [minimum] number of words 
of weight r' that it can have is n(r'lr). 

It is hoped that this theorem will have an application to the prob­
ability-of-error calculations of group codes (see for example [11); in­
deed, this was the source of the problem solved here. 
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3. Some Lemmas and Definitions 

We remind the reader that 

(:) = (n ~ 1) + (; =~) if i ¢ 1, 
(:) = (n ~ 1) + (~) if i = 1. 
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We need to distinguish the case i = 1, because for n = 1, the top line 
would then yield <D = (~) + (g); this is false because of our convention 
that (g) = O. From the above we see that 

{ 
[nr - 1, ... , n. - 1]r + [nr - 1, ... , n. - 1]r-l, 

= [nr - 1, ... ,nl - 1]r + [nr - 1, ... ,n2 - 1, nx]r-l, 

We call a sequence en" ... , n;) r-semicanonical if either 

(nr, ... ,n.) or en""" ni+l, n. - 1) 

if i¢1. 

if i = 1. 

is r-canonical. We call a representation n = [n" .. " ndr r-semi­
canonical if the (n" ... , n;) is r-semicanonical. We note that if 
(n" ... , n;) is r-semicanonical, then it is r-canonical if and only if 
niH ~ n;. 

While an integer n has a unique r-canonical representation, it may 
have several r-semicanonical representations. For example, suppose 
that 

n = [n" .•. , n.]r canonical 

and suppose that n; > i. Then all the semicanonical representations 
of n consist of the canonical representation and the following: 

[nr, ... , niH, n. - 1, n. - 1]r, 

[n" ... , ni+l, n. - 1, ni - 2, n; - 2]r, 

[nr, ... , ni+l, ni - 1, ni - 2, ... , n. - i + 1, n. - i + 1]r. 

Suppose we have a semicanonical representation for n, that is, 

n = [n" ... , n.], semicanonical. 

Then to find its canonical representation we may proceed as follows: 
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If this representation is already canonical, we have finished; if not, 
then niH = ni, so 

n = [nr, .•. , ni+2, ni+l + l]r semicanonical. 

If this is already canonical, we have finished; if not, then ni+2 = ni+l, so 

n = [nr, .•. , ni+3, ni+2 + 11. semicanonical. 

If this is canonical, we have finished; if not, we continue in the same 
manner until we finally reach the canonical representation for n. 

Note that if n = [nr, • • . , ni]r semi canonical, then 

n(r"r) = [nr, .•• ,n.]r" 

even though in the definition of pseudopowers we used canonical repre­
sentations. We leave the proof of this to the reader. 

Let us order finite sequences of positive integers lexicographically; 
that is, one sequence precedes another if and only if it would come 
earlier than the other in a "dictionary" of such sequences. Using ele­
mentary facts about binomial coefficients, we can prove that if 
[nr, ... , ni]r and [mr, •.. , mj], are canonical, then 

fnr, ... , nil {;} [mr, ..• , mj] 

according as 

(nr, ..• , ni) {;} (mr, •.. , mj) 

in the lexicographical sense. Also if [n" ... , ndr and [mr, ... , mAo]r 
are semicanonical, then 

[nr, •.• , ni]r {~} [mr, ... , m1c]r 

according as 

(nr, ..• , n;) {~} (mr, .•. ,mk). 

It now follows easily that 

n ::; m implies n (r' 'r) ::; m (r' 'r). 

LEMMA 1. The respective relations 

(n(r' ,r» (r'r') {~} n 
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hold according as r / r' {~} 1; further, 

[(n(r',r»(r,r')](r',r) = n(r"r). 
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The second result follows easily from two applications of the first. We 
prove the first only in the case that r/r' < 1.Supposen = [nr, .•. ,n,]r 
canonical. Then n(r"r) = [nr, ••• , ni]r'. This expression is canonical 
unless, for some j, 

nj < r' - r + j. 
If this inequality holds for some j, then it also holds for all smaller 
values. Now let j + 1 be the smallest value for which this does not 
hold. Then we have 

n(r"r) = [nr, .•• ,ni+l]r' canonical, 

so that 

This proves Lemma 1. 

LEMMA 2. If r :::; r', then n(r/r') is the smallest integer k such that 
k(r'fr) ~ n, and n(r'/r) is the largest integer k such that k(rfr') :::; n. 

PROOF. Consider n(rfr'). By Lemma 1, it is a member of the class of 
integers k such that k(r'f r) ~ n. Suppose it were not the smallest 
member of this class. Then n(r/r') - 1 would be in this class also. We 
would then have 

(n(r'r') - 1)(r'/r) ~ n, 

so that 

«n(r/r') _ 1)(r'/r»)(r/.') ~ n(r/r'). 

From the preceding lemma we then would have 

n(r/r') - 1 ~ n(r/r'), 

which obviously is a contradiction. The other half of Lemma 2 may be 
proved similarly. 

Suppose that (nr, •.. ,n,) is a sequence of integers with the property 
that 

nr > . . . > ni+l ~ n, ~ 1. 

Then we define a cascade of type (nr, ..• , ni) to consist (see Fig. 1) 
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v,. 

Fig. 1. A cascade of type (nr, ••. , n,). 

of a set Ar+l of vertices, of distinguished subsets 

and of distinguished vertices 

Vr , ••• , Vi+l, 

with the following properties: 

(a) Ar+l contains nr + 1 vertices if r > i, and nr vertices if r = ij 
(b) Ai contains nj vertices for r ;::: j ;::: i; 
(c) Ar+1 :::> Ar:::> ... :::> Ai; 
(d) Vj is in Aj+l - Aj for r ;::: j ;::: i + 1; 
(e) all the distinguished vertices are distinct. 

We say that the following sets are naturally associated with the cascade: 

(0) every subset of Ar; 
(1) Vr + each subset of. A r- 1 ; 

(2) Vr + Vr-l + each subset of A r- 2 ; 

(r - i) Vr + ... + Vi+l + each subset of Ai. 

In other words, suppose R is any subset·of ArH• Let us define its degree 
j, where r ;::: j ;::: i, to be the smallest integer j such that Vr, ••• , Vi+l 

belong to R. Then Vj does not belong to R. A set R of degreej is naturally 
associated with the cascade if and only if 

R - {v r , ••• , vi+d C A j • 

LEMMA 3. The class of all sets naturally associated with a cascade 
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forms a complex. If the cascade is of type (n" ... , ni), then the complex 
has [n" ... , ni]. s-sets for any s. Suppose that for some s, (n" ... , ni) 
is s-semicanonical, and let n = [n" ... , nd •. Then for any s' the com­
plex has n(I'!') s'-sets. 

We leave the proof of this simple lemma to the reader. We remark 
that (n" •.. ,ni) is s-semicanonical exactly for those values of 8 

such that 

ni + r - i ) 
and ~s~r-i+1. 

n,+l + r - i-I 

We call any complex like that in Lemma 3 a cascade complex. 
Using cascade complexes, we easily find an inequality for fen; r, r'). 
LEMMA 4. If r'~r, then 

fen; r, r') ~ n("!'). 

The proof of Lemma 4 is very simple. Let 

n = [n" ... , nil. canonical. 

Consider the complex associated with a cascade of type (nT' ... , n,). 
By our lemma this complex has n r-sets and n(T"') r'-sets. This proves 
the lemma. 

If C is any complex and v is any vertex in C, then by definition the 
complement of v consists of all sets in C that do not contain v. It is 
easy to see that the complement of v is a subcomplex of C. The star of 
v consists of all sets in C that do contain v. Of course, the star is not a 
subcomplex. The star boundary of v consists of all sets obtained by 
taking each set in the star and deleting v from it. It is easy to prove 
that the star boundary of v is a subcomplex of the complement of v. 

4. Proof of the Theorem 

We wish to prove that fen; r, r') = n(T'!T) for all n ~ I, r ~ I, and 
r' ~ 1. 

LEMMA 5. If 
fen; r, r') = n("!') 

for all n and fixed rand r', then 

f(m; r', r) = m('!") 

for all m and the same rand r'. 
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COROLLARY. If the theorem holds for all triples (n; r, r') with r ::; r', 
then it holds for all triples whatsoever. 

The corollary follows trivially from the lemma. The lemma is trivial 
if r = r'. Suppose next that r < r'. By definition, f(m; r', r) is the 
minimum integer n such that a complex with m r'-sets can have exactly 
n r-sets. But a complex with n r-sets must have no more than 
f(n; r, r') = n(r'lr) r'-sets. Therefore, we have m ::; n(r'lr). Furthermore, 
if it were true that m ::; (n - 1) (r'/r), then there would exist a complex 
with m r'-sets and only n - 1 r-sets, which contradicts the definition 
of n. Thus we see that n is the least integer such that n(r'lr) ~ m. By 
Lemma 2 we then find that n = m(r/r'), so that f(m; r', r) = m(rlr'), 
as desired. The case in which r > r' may be proved similarly. 

Henceforth we consider only the case r ::; r'. The theorem (in this 
case) is trivial if n = 1, for we find by use of the various definitions that 

and 

so that 

{
o if r < r', 

f(I' r r') = 
" 1 if r=r' , 

1 = [r]r canonical, 

, {O if r < r', 
1 (r Ir) = [rl" = 

1 if r = r'. 

Our proof is by induction on n. 
Because of the inequality we proved in Section 3 for f(n; r, r'), it is 

sufficient for us to prove the following inductive step: Assume that C 
is a complex with exactly n r-sets and exactly f(n; r, r') r'-sets; assume 
that f(n; f, f') = n(r'lr) whenever n < nand f ::; f'; from these as­
sumptions, prove that C has::; n(r'lr) r'-sets. We may assume that 
n > 1, for if n = 1 we are in the initial case; and we may assume that 
r < r', for if r = r' then we trivially have 

f(n; r, r) = n = n(rlr). 

Furthermore, we may assume that every vertex in C occurs in at least 
one r-set in C, for otherwise without changing C in any essential way 
we could drop all vertices that do not occur in r-sets. 

LEMMA 6. If n > 1, then any complex that has exactly n r-sets contains 
at least one vertex v with the following property: The number j of r-sets 
in the star of v satisfies the inequality 

j ::; (n - J) (.--l/ r ). 
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Since the proof of this lemma is long and technical, we defer it until 
Section 5. 

Using Lemma 6, we pick a vertex ii in C with star having exactly j 
r-sets, where 

j ~ (n - J) (r-l/r). 

We also have 

0< j < n. 

The left-hand inequality holds because every vertex lies in at least one 
r-set. The right-hand inequality holds because (since n > 1) not every 
vertex can belong to every r-set. 

Let Co be the complement of ii, let C1 be the star of ii, and let Ci be 
the star boundary of ii. Then 

Co has n - j r-sets, 

C1 has j 

C*l h . as J 

r-sets, and 

(r - I)-sets. 

Let do and d1 be the number of r'-sets in Co and C1, respectively. Then 

Co has do r'-sets, 

We see that 

C1 has d1 r'-sets, and 

C: has d1 (r' - I)-sets. 

do + d1 = f(n; r, r'). 

Using the induction hypothesis on Co, we find that 

do ~ f(n - j; r, r') = (n - j)(r'/r). 

Using the induction hypothesis on Ci, we find that 

d1 ~ f(j; r - 1, r' - 1) = j(r'-l/r-l). 

Because Ci is a subcomplex of Co, it has no more (r' - I)-sets than 
Co. Thus by using the induction hypothesis on Co, we find that 

d1 ~ f(n - j; r, r' - 1) = (n - J)(r'-l/r). 

Now write 

n - j = LPr, . • • , Pi] r canonical, 

j = [qr-l, ••• , qk]r-l canonical. 
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We easily see that 

{
[Pr, ••• , Pi]r-l canonical, 

(n - J) (r-l/r) = 
[Pr, ••• , pa, P2 + l]r-l semicanonical, 

Since j ~ (n - j)(r-lIr), we have 

if i> 1, 

if i=1. 

. . . < {CPr, ••• , Pi) if i> 1, 
(qr-l, , ql<) - ( + 1) if . Pr, • • • , Pa, P2 1. = 1. 

We now make an important distinction between the following two 
cases: In the normal case, we have 

(Qr-l, ••• , q,,) < (Pr, ••• , Pi); 

in the special case, we have 

(qr-h ... , qk) ~ (Pr, ••. , Pi). 

Let us first consider the special case. Here we have 

. .. . < . . . < {CPr, ••• , Pi), 
(pr, ,P.) - (qr-l, ,q,,) - ( + 1) 

pr, ••• , Pa, P2 , 

If i > 1, we clearly have k = i-I and 

(qr-l, ••• , qi-l) = (Pr, ••• , Pi), 

so that 

j = (n - j) (r-1 / r ). 

If i = 1, we clearly have 

if i> 1, 

if i=1. 

(qr-l, •.. , q2) = (Pr, .•• ,P3) and P2 < ql ~ P2 + 1. 

(Of course we must have k = 1.) Thus ql = P2 + 1. It is now easy 
to see that for i = 1 we also have 

j = (n - j) (r-1/r), 

so that this equation always holds in the special case. 
Now we show that in the special case C has no more than n(r'/r) 

r'-sets. First we remark that 

n = (n - J) + j = (n - J) + (n - j) (r-l/r) 

= LPr, ••• , pdr + LPr, ••• , Pi]r-l 

= [Pr + 1, ... , Pi + l1 r • 



The Number of Simplices in a Complex 263 

It is easy to see that this representation is canonical, so that we have 

n(,'I,) = [p, + 1, ... , P. + IJ". 

Using the inequalities for do and d1 established above, we see that C has 

f(n; r, r') = do + d1 ~ (n - j) (,' I,) + (n - J) (,'-11,) 

= [p" ... , Pi]" + [p" ... , Pi],'-1 

= [p, + 1, ... , P' + 1]" = n(,'I,) 

r'-sets. This completes the proof of the inductive step in the special 
case. 

Let us consider the normal case. From the assumption characterizing 
this case, we see that there is a number JJ with r ~ JJ ~ 1 such that 

where we interpret q,,-l as 0 if q,,-l does not exist, that is, if k = p.. 
We observe that 

n = (n - J) + j = [Pr, ... , Pi]' + [q,-l, ... , qk],-1 

= [p, + 1, ... , PI'+! + 1, p,,], 
+ [P,,-I, ... , P.],,-l + [q,,-l, ... , qk],,-l. 

Using the inequalities established above for do and dl , we see that C has 

fen; r, r') = do + d1 ~ (n - j) (,' I,) + j','-I/r-l) 
= [p" ... , Pi]" + [q,-l, ... , qd,'-l 

= LP, + 1, ... , P,,+1 + 1, P"J,' 
+ [P,,-I, ... , Pi],,-,+,,-1 + [q,,-I, ... , qk],,-,+,,-1 

r'-sets. To simplify our discussion of these complex expressions, 
let us make the following definitions. Suppose for the moment 
that P = (p" ••• , Pi) is any r-canonical sequence, and that 
q = (q,-l, ... ,qk) is any (r - I)-canonical sequence, and suppose 
that P > q. Then let p. = p.(p, q) be the integer such that 

For any 8 ~ r, let us define 

F.(p, q) = [p, + 1, ... , PI'+! + 1, p,,]. + [P,,-l, ... , P.],-,+,,-l 

+ [q,,-l, ... , qk],-,+,,-l. 

Then it follows that 
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and 

f(n; r, r') ~ Fr,(p, q). 

LEMMA 7. If p is an r-canonicalsequence, if q is an (r - I)-canonical 
sequence, and if we constrain p and q by p > q and by the equation 
Fr(p,q) = n,thenFr,(p,q) achieves its maximum when n = [Pr,·· ·'P']r 
and q is the void sequence. The value of this maximum is n(r'lr). 

As the proof of Lemma 7 is long and technical, we defer it until the 
end of Section 6. This lemma enables us to complete the proof of our 
theorem, since we see that 

f(n; r, r') ~ n(r'IT). 

The proof of the inductive step in the normal case, and thereby the 
proof of the whole theorem, is thus completed. 

5. The Number of r-Sets That Contain a Vertex 

This entire section leads up to the proof of Lemma 13, which states 
that under certain circumstances, a complex with n r-sets must contain 
a vertex v lying in only j r-sets, wherej satisfiesj ~ (n - j)(r-l{r). This 
is one of the two results that we have already used but have not proved. 

Let kr(n) be defined as the largest integer k such that 

k ~ (n - k) (r-1IT ). 

LEMMA 8. If 

n - 1 = [nr, ... , n.]r semicanonical, 

then 

kr(n) = r , " r { 
[n - 1 ... n· - 1] -1 

[nr - I, ... ,n2 - l,ndr-l 

if i> I, 

if i=1. 

PROOF. First suppose that the representation given above for n - 1 
is canonical. Let k be the expression above. Let j be the largest in­
teger such that nj ~ j, and let j = i-I if this never happens. We 
have j + 1 ~ i. Using a formula for square-bracket expressions that 
we noted earlier, we have 

k {[nr, ... ,ni]r + 1 - [nr - I, ... ,n. - l]r-l 

n - = [nr, ... ,n.]r+ 1- [nr -I, ... ,n2 -I,ndr-l 

= [n r - I, ... , n. - l]r + 1 for any i, 

if i> I, 

if i = 1, 
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whence 

n - k = [nr - 1, ... , ni+1 - l]r + 1 

{
[nr - 1, ... , ni+1 - 1, j]r canonical, 

= [nr - 1, ... ,n2 - 1, ndr semicanonical, 

so that 

if j> 0, 

if j = 0, 

{
Lnr - 1, ... ,ni+1 - l,j]r-1 1.·f J .. > 0, 

(n - k) (r-1/r) = 
[nr - 1, ... , n2 - 1, n1]r-1 If J = O. 

265 

We see directly that k ~ (n - k)(r-l/r). Now consider k + 1. As above, 
we have 

n - (k + 1) = [nr - 1, ... , niH - IJr canonical. 

Thus, 

(n - (k + 1»(r-l/r) = [nr - 1, ... , niH - l]r-1. 

We see directly that (k + 1) ;t (n - (k + 1»(r-l/r). Thus if the repre­
sentation for n - 1 is canonical, the lemma is proved. But it is easy 
to see that the formula for kT gives the same value when applied to a 
semicanonical representation for n - 1 as when applied to the canoni­
cal representation. 

We need the following simple lemma: 

LEMMA 9. Let g be a positive-valued convex function of a real variable. 
Let the domain of definition of g be any compact subset of the nonnegative 
real numbers. Then the radial vector from the origin to any point of the 
graph of g attains its minimum slope at an endpoint of the domain of 
definition. 

We leave the proof of this simple lemma to the reader. We shall use 
it only with finite domains. 

We say that the r-canonical sequence (n,., ... , n;) has degree i, and 
that the integer [nT' ... , ndr to which it corresponds has degree i or 
r-degree i. We say that two r-canonical sequences [or two integers] with 
a certain property are adjacent with that property if there are no other 
r-canonical sequences [or integers] between them. Bya run of degree i, 
if i < r, we mean an increasing sequence of adjacent r-canonical se­
quences of degree;::: i with interior sequences having degree exactly i 
and first and last sequences having degree > i. For example, 
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tPr, •.• , Pi+l), 

(Pr, ••• , Pi+l, 't), 

(Pr, ••• , Pi+l, i + 1), 

(Pr, ••• , Pi+l, i + 2), 

(Pr, ••• , Pi+l, Pi+l - 1), 

(Pr, ••• , Pi+l + 1) 

is a run of degree i if the last sequence happens to be canonical. (If the 
last sequence is only semicanonical, then by sUbstituting in its place 
the canonical sequence corresponding to the same integer, we obtain 
a run of degree i.) We also use the word "run" to refer to the run of 
integers corresponding to the sequences in a run of sequences. For 
example, 

[Pr, ••• , Pi+l] r, 

[Pr, ••• , Pi+l, i]r, 

LPr, ... , Pi+l, i + l]r, 
[Pr, ••• , Pi+l, i + 2]r, 

[Pr, ••• , Pi+l, Pi+l - 1] r, 

LPr, ... , Pi+l + l]r 

is a run of degree i. By a run of degree r we mean any finite increasing 
sequence of adjacent canonical sequences of degree r, or any finite in­
creasing sequence of adjacent integers of degree r. For example, 

(Pr), (Pr + 1), (Pr + 2), ... , (Pr + k) 

and 

[Pr]r, [Pr + l]r, [Pr + 2]r, ... , [Pr + k]r 

are runs of degree r. For any canonical sequence of degree i, where 
i > 1, we form the augmented sequence by adjoining a new last term 
that is smaller by 1 than the old last term. Thus the augmented 
sequence of (pr, . • • , Pi) is (Pr, • . • , Pi, Pi - 1). By an augmented run 
we mean a sequence of sequences each of which comes from the pre­
ceding one by augmentation; for example, 
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(Pr, ••• , Pi), 

(Pr, ••• , pi, Pi - 1), 

(Pr, ••• , pi, Pi - 1, Pi - 2), 

(Pr, ••• , Pi, Pi - 1, Pi - 2, .... Pi - i + 1). 

We also refer to augmented integers and augmented runs of integers 
with the obvious meaning. Finally, we define a mixed run, either of 
canonical sequences or of integers, to be a run that can be split into 
two segments sharing precisely one term (the middle term), such that 
the initial segment is a consecutive interval from some run of some 
degree i, the middle term has degree i, and the terminal segment is an 
augmented run; for example, 

(Pr, • . • , pi+l, Pi), 

(Pr, ••• , pi+l, Pi + 1), 

initial segment 

) 

}middle term 

(Pr, .•• , pi+l, pi, Pi - 1), 
. . . terminal segment 

(Pr, ••• , Pi+l, pi, Pi - 1, ... ,P. - i + 1). 

LEMMA 10. If the values of n are restricted so that n - 1 runs through 
all terms of some run of constant degree, or of some augmented run, or of 
some mixed run, then kr is convex for this domain of definition. 

PROOF. We remark that if a function is defined on a finite set, then 
to prove convexity it is sufficient to prove that, for every three adjacent 
points on the graph of the function, the slope of the line connecting 
the first two points is greater than or equal to the slope of the line con­
necting the last two points. What sort of segments of length 3 can the 
values of n - 1 take on? We classify these segments of length 3 as 
follows: (a) an initial segment from a run of degree i; (b) an interior 
segment from a run of degree i; (c) a terminal segment from a run of 
degree i; (d) a segment from an augmented run; (e) the "middle" 
segment from a mixed run, that is, a segment of which the first two 
terms are adjacent of degree ~ i, the middle term has degree i, and 
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the last term is the augmented sequence of the middle term. In case 
(a), n - 1 takes on the values 

[nr, ... , ni+d, 
[nr, ... , ni+l, i], 

[nr, ... , ni+l, i + 1]. 

The slopes of the two lines are found by direct calculation to be 1/1 
and (i - l)/i. In case (b), the values of n - 1 are 

[nr, ... , ni+l, n;], 

[nr, ... , ni+h ni + 1], 
[nr, ... , ni+l, ni + 2]. 

By direct calculation the slopes of the two lines are found to be 
(i - l)/ni and (i - l)/(ni + 1). The calculation for case (b) also 
covers case (c) if we note that the formula for kr(n) is also valid when 
used with a semicanonical representation of n. In case (d), n - 1 takes 
on the following values: 

Lnr, ... , ni], 

[nr, ... , ni, ni - 1], 

[nr, ... , ni, ni - 1, ni - 2]. 

By direct calculation the slopes are found to be (i - l)/(ni - 1) and 
(i - 2)/(ni - 2). Since ni ~ i, the former slope is ~ the latter slope. 
In case (e), the values of n - 1 are 

[nr, ... , ni+l, ni + 1], 

[nr, ... , ni+l, ni + 1, nil. 

In this case both slopes by direct calculation are found to be (i - l)/ni. 
This proves the lemma. 

Using the last two lemmas, we obtain the following lemma: 

LEMMA 11. For either of the following two domains of definition, kr(n)/n 
achieves its minimum at one or the other endpoint of the domain: (a) n is 
restricted so that n - 1 takes on all integer values between and including 
two adjacent integers of degree ~ i; (b) n i8 restricted so that n - 1 
takes on all values between and including r + 1 and (:) - 1, where 
v ~ r + 2. 
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PROOF. We first prove part (a) by an induction on i. The initial case 
is i = 2. In this case the values of n - 1 form a run of degree 1 
(namely a sequence of consecutive integers), so that, by the preceding 
Lemma 10, k, is convex over this domain of definition. Hence, by 
Lemma 9, the radius vector to the graph of kr achieves its minimum 
slope at one end or the other of this domain. The slope of the radius 
vector, however, is k,(n)/n. Now we proceed to the inductive step. 
Suppose n - 1 takes on all values between two adjacent numbers of 
degree ~ i. If these two numbers of degree ~ i happen to have the 
forms 

[n" ... ,niH] and [n""" ni+l, i], 

then our domain has only two points, so our result is trivial. If not, the 
two numbers must be of the form 

[n" ... , niH, ni] and [nr,···, ni+l, n, + 1]. 

This interval is broken up into subintervals by points of degree exactly 
i - 1. In each of these subintervals, k,(n)/n achieves its minimum at 
one or the other of the endpoints of the subinterval. Thus the possible 
places where the minimum might occur are restricted to values in a 
run of degree i - 1. Now restricting n - 1 to these values, we see that 
k, becomes convex and thus k,(n)/n will achieve its minimum at one 
of the two endpoints. This proves part (a). 

We prove part (b), using part (a), by a similar method. First break 
up the interval of values for n - 1 by all numbers of degree r. These 
numbers are [r + 1 ]" [r + 2 ]" ... , [v - 1 ],. Call the resulting sub­
intervals, except for the last one, intervals of the first kind. Further 
break up the last interval, which starts with [v - 1 ]" by the values 
of the augmented sequence starting with [v - 1 ]" that is, the values 

LV - IJ" LV - 1, v - 2]" ••. , [v - 1, v - 2, ..• , v - r]r. 

Let these resulting subintervals be termed intervals of the second kind. 
Now break up each interval of the second kind as follows: If the interval 
ends in a number of degree exactly i, then break up the interval by all 
numbers of degree exactly i-I; call the resulting subintervals inter­
vals of the third kind. Each interval of the third kind is the type of 
interval considered in part (a), so that kr(n)/n achieves its minimum 
value on each interval of the third kind at one endpoint of the interval. 
Within each interval of the second kind, however, the endpoints of the 
intervals of the third kind form a run of constant degree. Therefore, 
by the same argument we used earlier, k,(n)/n must achieve its mini­
mum within each interval of the second kind at one endpoint of the 
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interval. Each interval of the first kind is the type of interval con­
sidered in part (a). Therefore, k,(n)/n achieves its minimum within 
each interval of the first kind at one endpoint of the interval. Thus 
within the whole large interval under consideration, k,(n)/n achieves 
its minimum at one of the endpoints of the intervals of either the first 
or second kind. These particular endpoints form a mixed run in the 
sense of our preceding lemma. Hence, on this domain of definition, k, 
is convex. Therefore, k,(n)/n achieves its minimum on the whole large 
interval when n - 1 takes on one of the values at either end of the 
large interval. This proves Lemma 11. 

LEMMA 12. If v > r ;::: 1, n ;::: 1, if C is a complex wah v vertices and 
n r-sets, and if j is the minimum, over all vertices, of the number of r-sets 
that contain a fixed vertex, then j ::; k,(n). 

PROOF. Case I: n - 1 ::; r. In this case we easily calculate that 
k,(n) = n - 1. If n = 1 then there is only one r-set in the complex. 
But as we assumed v > r, there is some vertex that is not in this r-set, 
so j = 0 and our result holds. On the other hand, if n ;::: 2 we note 
that two distinct r-sets cannot have exactly the same vertices in them. 
Thus not every vertex can belong to every r-set. Consequently 
some one vertex belongs to at most (n - 1) r-sets. Therefore 
j ::; n - 1 = k,(n). 

Case II: n - 1 ;::: r + 1. Recall that v > r. If v = r + I, we have 

which contradicts the case II assumption. Thus we have v ;::: r + 2. 
Now as n - 1 ranges from r + 1 to 

C) -1 = [v - I, v - 2, ... , v - r + 1]" 

k,(n)/n achieves its minimum at one of the endpoints by the preceding 
lemma. Thus k,(n)/n ;::: the smaller of 

r+2 
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By direct calculation these values are rl(r + 2) and rlv; since v ;::: r + 2, 
we find that kr(n)ln ;::: rlv. Thus we have 

kr(n) ;::: rn/v. 

On the other hand, rnlv is obviously the average, over all vertices, 
of the number of r-sets that contain a fixed vertex. Therefore 
j ~ rn/v ~ kr(n). This proves Lemma 12. 

LEMMA 13. If r ;::: 1, n > 1, and C is a complex with n r-sets, then C 
contains a vertex such that the number j of r-sets containing this vertex 
satisfies 

j ~ (n - J) (r-l/r). 

The proof of this lemma is now almost trivial. Since n > 1, we have 
v > r. Therefore Lemma 12 applies. Suppose that the vertex that lies 
in the smallest number of r-sets lies inj r-sets. Then we havej ~ kr(n). 
By the definition of kr, it follows that i ~ (n - j)r-l/r. 

6. The Function Prep, q) 

This section is devoted to proving the final corollary in it. This corollary 
is the same as Lemma 7 about the function F.(p, q), which was used 
earlier but not proved. We repeat here the definition of p.(p, q) and 
F.(p, q). Throughout this section, P will always represent an r-semi­
canonical sequence (Pr, ••. , Pi) and q will always represent an (r - 1)­
semicanonical sequence (qr-l, ... , qk). We shall always assume that 
p> q. 

Let us define p. = p.(p, q) to be the integer such that pr = qr-l, ... , 
PI'+l = ql" PI' > ql'-l. In this definition we interpret qj to be 0 if qj does 
not exist; this remark is needed only if p. = k. We notice that p. exists 
because we have P > q. Notice that r ;::: p., p. ;::: i, and JI. ;::: k. We define 

F.(p, q) = [Pr + 1, ... , PI'+l + 1, PI']' + [PI'-l, ••• , Pi]I'-I+.-r 

+ [ql'-l, ..• , qk]I'-I+.-r. 

We claim that the next larger r-semicanonical sequence than P 
(in the lexicographical ordering, of course) is given by: 

a. (Pr, ••• , pi, i-I) if PHI ¢ Pi and i > 1, 

b. (Pr, ••• , P2, PI + 1) if PHI ¢ Pi and i = 1, 

c. (Pr, ••• , PH2, PHI + 1) if PHI = Pi. 
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We claim that the next smaller (r - 1)-semicanonical sequence than 
q is given by: 

a'. (qr-l, •.. , qk+l) if qk = k, 

b'. (qr-l, ... , q2, q1 - 1) if qk> k and k = 1, 

c'. (qr-l, ... , qk+1, qk - 1, qk - 1) if qk> k and k> 1. 

Notice that if p represents n, then the next larger sequence than p 
represents n + 1 in cases (a) and (b) but represents n in case (c). 
Similarly, if q represents n, then the next smaller sequence than q 
represents n - 1 in cases (a') and (b') but represents n in case (c'). 
The act of changing a sequence to the next larger or next smaller se­
quence will be called a strong change in cases (a), (b), (a'), and (b'), 
and will be called a weak change in cases ( c) and (c'). 

LEMMA 14. Let p' be the next larger sequence than p and let q' be the 
next smaller sequence than q. 

r. If the change from p to p' is weak, then F.(p', q) = F.(p, q). 
II. If the change from q to q' is weak, then F.(p, q') = F.(p, q). 
III. If the change from p to p' is strong, then Fr(p', q) = Fr(p, q) + 1. 
IV. If the change from q to q' is strong, then Fr(p, q') = Fr(p, q) - 1. 

PROOF. We prove the four parts of this lemma one by one. 
r. We have PHl = Pi. Let p.' = p.(p', q). If p. ~ i + 1, then p.' = p., 

and it is easy to see F.(p', q) = F.(p, q). If p. = i, then p.' = p. + 1 and 
we have 

F,(p', q) = [Pr + 1, ... , PI'+2 + 1, PI'+1], 

+ [PI']I'+.-r + [ql" ••• , qk]I'+.-r. 

Canceling like terms, we see that 

F.(p', q) - F,(p, q) = C + ::1S _ r) -C :I';~+s 1_ r) 
+ ( ql' ) = 0 

p.+s-r ' 
by using qll = PI'+l and a familiar binomial identity. 

II. We have qk > k and k > 1. Let p.' = p.(p, q'). If p. ~ k + 1, 
then p.' = p., and it is easy to see that F.(p, q') = F.(p, q). If p. = k, 
then we see that f./ = p. + 1 and 

F.(p, q') = [Pr + 1, ... , PI'+2 + 1, PI'+d. 

+ [p,., ... , Pi],.H-r + [q,. - 1, q,. - 1],.+.-r. 
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Canceling the like terms, we see that 

F ( ') _ F ( ) _ ( PI'+! ) _ ( PI'+l + 1 ) 
• p, q • p, q - I-' + 1 + 8- r ~ + 1 + 8 - r 

+ I' + I' -0 (q -l) ~ q-l ) 
1-'+8-r +8-r-l 

by first using the binomial identity on the ql' terms, then using 
ql' = Pp+l, and finally using the binomial identity again. 

III. Let 1-" = I-'(p', q). The sequence P must fall into either case 
(a) or case (b), above. In each case it is clear that 1-" = 1-'. In case (a), 
we have 

(
i -1) Fr(p', q) = Fr(p, q) + i-I = Fr(p, q) + 1. 

In case (b), we have 

, (Pl) (Pl + 1) Fr(p, q) = Fr(p, q) - 1 + 1 = Fr(p, q) + 1. 

IV. Let 1-" = I-'(p, q'). The sequence q must fall into either case (a') 
or case (b'). In case (a'), if I-' ~ k + 1, then we have 1-" = I-' and 

Fr(p, q') = Fr(p, q) - (q~) = Fr(p, q) - 1. 

In case (a'), if I-' = k, then 1-" = I-' + 1 and we find that 

Fr(p, q') = [Pr + 1, ... , PI'+2 + 1, PI'+!]r + [PI" •.• , Pi]I" 

Canceling like terms, we find that 

F ( ') _ F ( ) _ ( PI'+l ) _ (PI'+1 + 1) _ (PI'+!) 
r p, q r p, q - ~ + 1 I-' + 1 - - I-' 

In case (b'), if J!. ~ 2, we have 1-" = I-' and 

(ql- 1) (ql) Fr(p, q') = Fr(p, q) + 1 - 1 = Fr(p, q) - 1. 

In case (b'), if I-' = 1, we find 1-" = 2 and 

Fr(p, q') = [Pr + 1, ... , pa + 1, P2]r + [pd1 + [ql - Ih, 
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Canceling like terms, we obtain 

Fr(P, q') _ Fr(P, q) = (~2) _ (P2; 1) + (ql ~ 1) 
= -P2 + ql - 1 = -1. 

This proves the lemma. 
Suppose that 

p' = (Pr, ... , PHI, qj, ... , qk), 

q' = (qr-l, ... , qHI, Ph •.. , Pi). 

We,say that p' and q' are obtained from P and q by interchange of tails 
at j. We call this interchange admissible if 

PH2 > PHI and 
J PHI> qi I 
lPHI = ::+1 = qi 

We agree that qi > Pi for this purpose if qi exists and Pi does not. 

LEMMA 15. If p' and q' are formed from P and q by an admissible inter­
change, then p' is r-semicanonical and q' is (r - 1)-semicanonical. Also, 
we have J.I. - 1 ~ j ~ 1, p' > P, q' < q, and p' > q'. Finally, we have 
F.(p', q') = F.(p, q). 

PROOF. To prove this lemma, first write p' = (p;, ... , p~), 

q' = (q,-11 ••• , q;). It is obvious that p~ ~ h and q~ ~ h for all h. 
Suppose the interchange occurred at j. Since 

we easily see that 
I I I I 

qr-I > qr-2 > ... > qi+1 ~ qi. 

Thus we see that q' is (r - 1)-semicanonical. If PHI > qit then we see 
that 

I . I 

PHI = Pi+1 > qi = Ph • 

and also, by admissibility, that 

Pi+2> PHI 

(even if Pi should fail to exist), so that 

I I I I 
Pr > Pr-I > . . . > Pk+1 ~ Pk. 
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Thus in this case we see that pi is r-semicanonical. On the other hand, 
if PHI = qHI = qj then qj-l does not exist, so we see that j = k. In 
this case we have 

pi = (Pr, . . . , PHI, PHI), 

so pi is r-semicanonical. (Again we have Pi+2 > PHI by admissibility 
even if Pi does not exist.) 

Now suppose for the moment thatj 2:: p.. By the admissibility con­
dition, we have either 

PHI> qi or PH2 > PHI = qi+I. 

The definition of p. implies both 

PHI = qi and PH2 = qi+1' 

This contradicts the preceding statement, and shows thatj 2:: p. is false. 
Thus p. - 1 2:: j 2:: 1. 

Now it is easy to see that pi > P because we have 
I I 

pr = Pr, ... , PHI = Pi+I, 
I 

pj = qi> Pi 

and that q' < q because we have 
I I 

qr-I = qr-I, ... , qHI = qi+1, 
I 

qi> Pi = qj. 

Now we have pi > P > q > q' from which pi > q' follows. From the 
fact that p. - 1 2:: j it follows that p.(p/, q') = p., and hence easily that 
F.(p/, q') = F.(p, q). 

We define the standard transforms of P and q to be P* and q*, which 
are defined as follows: 

i. If P satisfies case (c), then P* is the next larger sequence than P 
and q* = q; 

ii. If (i) does not apply and if q falls into case (c /), then P* = P and 
q* is the next smaller sequence than q; 

iii. If neither (i) nor (ii) applies, and if for some j with p. - 1 2:: j 2:: 1 
we have Pi < q" then P* and q* are formed by interchanging the tails 
of P and qat the largest such j; 

iv. If neither (i) nor (ii) nor (iii) applies, then P* is the next larger 
sequence than P and q* is the next smaller sequence than q. 

LEMMA 16. Let P* and q* be the standard transforms of P and q. 
Let p.* = p.(p*, q*). Then the following statements are true: 

I. If case (iii) of the standard transform definition applies to P and q, 
then the interchange involved is admissible. 
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II. The transform P* is r-semicanonical, the transform q* is (r - 1)-
semicanonical, and P* > q*. 

III. The transforms P* and q* satisfy P* > P and q* < q. 
IV. We have Fr(P*, q*) = Fr(p, q). 
V. For s ~ r, we have F.(p*, q*) ~ F.(p, q). 

COROLLARY. If r' > r, if P is a variable r-semicanonical sequence, if q 
is a variable (r - 1)-semicanonical sequence, and if P and q are con­
strained by the requirements P > q and Fr(p, q) = n, then Fr,(p, q) reaches 
its maximum value when n = [Pr, ... , Pi]r and q is the void sequence. 
The value of this maximum is n(r'Jrl. 

PROOF. First we prove that the corollary follows from the lemma. 
If P and q are any pair satisfying the constraints, then according to the 
lemma the standard transforms of P and q also satisfy the constraints 
and furthermore yield at least as large a value for Fr ,. Now let us take 
standard transforms repeatedly. Each time we do so, the value of Fr , 

will not decrease and may perhaps increase. Let P and q now be the 
final pair of sequences we obtain for which it is not possible to form 
standard transforms. Clearly q is the void sequence. Then p.(p, q) = r 
and 

n = Fr(p, q) = [Pr]r + [Pr-I, ... , Pi]r-I = [Pr, ... , Pi]r. 

Thus we find that the pair P and q such that 

[Pr, ... , Pi]. = nand q void 

yields at least as large a value for Fr, as any pair of sequences satisfying 
the constraints. Thus the maximum value for Fr , does indeed occur at 
P and q, and the value of this maximum is 

Fr,(p, q) = [Pr, ... , Pilr' = n(r'/r). 

Thus the corollary follows from the lemma. 
Now we proceed with the proof of Lemma 16. We prove the five 

parts of it one by one. 
I. Since this part is concerned with case (iii), we know that P does 

not fall into case (c) nor q into case (c'). Thus we have PHI ,.e Pi and 
hence PT > ... > Pi+! > Pi. Now let j be the largest integer with 
p. - 1 ~ j ~ 1 such that pj < qj. We know that such an integer exists 
because we are considering case (iii). We claim that if p. > j + 1 then 

Pj+2 > Pj+I ~ qj+I ~ qj > Pj· 

The first inequality follows from our remark above. The second follows 
(because p. > j + 1) from the definition of j. The third inequality is 
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trivial and the fourth follows from the definition of j. Clearly we must 
have either PHI> qi or else Pitl = qi+1 = q" and in either case we find 
that the interchange is admissible. This settles the case p. > j + 1. 
If p. = j + 1, we claim that 

Pi+2 > Pi+l > qi > Pi· 

The first inequality follows as before. The second inequality simply 
states that pp. > qp.-l, which follows from the definition of p.. The third 
inequality is trivial. Thus in this case also, the interchange is 
admissible. 

II. In cases (i), (ii), and (iv) the results are all trivial. In the case 
(iii) the results follow because we now know that the interchange is 
admissible. 

III. This is trivial in all cases. 
IV and V. In case (iii) the standard transforms are formed by an 

admissible interchange. Therefore, by an earlier lemma we know that 
F.(p*, rf) = F.(p, q). In cases (i) and (ii), respectively, parts (I) and 
(II) of Lemma 14 yield that F.(p*, q*) = F.(p, q). In case (iv), parts 
(III) and (IV) of that same lemma yield that 

Fr(P*, q*) = Fr(P*, q) - 1 = Fr(p, q) + 1 - 1. 

It remains to prove (V) in case (iv). Clearly we may assume that 
8 > r. First suppose that q falls into case (b /). Then ql > 1. Since we 
are dealing with case (iv) , we have PI ~ ql, whence PI > 1. Thus P 
must fall into either case (b) or case (c). Since this is case (iv) , however, 
P must actually fall into case (b). Therefore, we have 

P* = (Pr, ..• , P2, PI + 1), 

and 

q* = (qr-l, ... , q2, ql - 1). 

As we have P2 > PI ~ ql, we find that p. ~ 2 and hence p.* = p.. Then, 
canceling like terms, we obtain 

(
PI + 1) ( PI ) 

F.(p*, q*) - F.(p, q) = 8 _ r + 1 - 8 - r + 1 

( 
ql - 1) ( ql ) 

+ 8-r+1 - 8-r+1 

= ( PI ) _ (ql - 1) ~ 0, 
8-r 8-r 

which gives us the desired inequality. 
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Next suppose that q falls into case (a'), so that qk = k. We claim 
that p. > k. Thus, we know that p. ~ k, and if we had p. = k, then we 
would have Pk+i = qk = k, which violates the basic requirement 
Pk+i ~ k + 1. From p. > k it follows that p.* = p., for we have 

* * * * pr = pr = qr-i = qr-i, .•. , P,.+i = P,.+i = q,. = q,., 

* * p,. = p,. > q,.-i ~ q,.-i. 

Now if P falls into case (a), we have 

F,(p*, q*) - F,(p, q) = ( i - ~ ) _ ( k ) = 0 - o. 
s-r+7,-1 s-r+k 

On the other hand, if P falls into case (b), then we have 

F (* *) _ F ( ) _ ( Pi + 1 ) _ ( Pi ) _ ( k ) 
, p ,q , p, q - s - r + 1 s - r + 1 s - r + k 

= ( Pi ) _ 0 ~ O. 
s-r 

This proves Lemma 16. 
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Chapter 13 

Optimization in Structural Design 
WILLIAM PRAGER 

1. Introduction 

To explain some fundamental concepts of the plastic analysis of struc­
tures, let us consider a thick-walled circular tube that consists of a 
ductile material and is subjected to internal pressure. When this pres­
sure is gradually increased, starting from zero, the tube at first behaves 
in a purely elastic manner; that is, all deformations are reversible and 
disappear completely when the internal pressure is reduced to zero. 
The first permanent deformations occur at the interior surface of the 
tube, when the internal pressure reaches a critical value that depends 
on the ratio of the interior and exterior radii of the tube. As the pressure 
continues to increase, the plastic region-the region in which perma­
nent deformations are occurring-grows in diameter; but as long as 
it remains surrounded by an elastic region in which all deformations 
are reversible, the permanent deformations in the plastic region remain 
of the same order of magnitude as the reversible deformations in the 
elastic region. Plastic flow-that is, the rapid increase of permanent 
deformations under substantially constant internal pressure-becomes 
possible only when the interface between plastic and elastic regions 
reaches the exterior surface of the tube. For practical purposes, the 
corresponding value of the internal pressure represents the load­
carrying capacity of the tube. 

These three successive stages of purely elastic deformation, contained 
elastic-plastic deformation, and plastic flow can be observed in any 
statically indeterminate structure that is made of a ductile material. 
Since the load-carrying capacity is reached only well beyond the elastic 
range, the rational design of such a structure must be based on the 
theory of plasticity. 
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Fig. 1. Stress and strain in a perfectly plastic solid under simple 
tension or compression. 

2. Rigid, Perfectly Plastic Behavior 

Figure 1 shows the stress-strain diagram of a rigid, perfectly plastic 
solid in simple tension or compression: the intensity (T of the uniaxial 
stress is used as ordinate and the corresponding unit extension E as 
abscissa. The absolute value of (T cannot exceed the yield limit (To. As 
long as I (T I < (To, the specimen remains rigid; that is, the strain rate E is 
zero. When I (TI = (To, the specimen is free to assume any rate of ex­
tension E that has the same sign as the stress (T. Since only the sign 
and not the magnitude of the strain rate depends on the stress, the 
material is inviscid. This absence of viscosity is typical for structural 
metals at moderate temperatures and strain rates. 

When the specimen flows plastically with the strain rate E, the 
mechanical energy that is dissipated in a unit volume per unit of time 
-that is, the specific power of dissipation-is given by 

(TE=(ToIEI. (2.1) 

It is worth noting that this relation contains the complete specification 
of the considered mechanical behavior. In fact, it follows from this re­
lation that (T = (To when E > 0, and (T = -(To when E < 0, and E = ° 
when -(To < (T < (To. 

In the one-dimensional stress space with Cartesian coordinate (T, the 
convex domain -(To ~ (T ~ (To represents the set of uniaxial states of 
stress that can be attained in the considered material. The specific 
power of dissipation D(E) = 0"01 EI may be regarded as the supporting 
function of this convex domain of attainable states of stress. Note 
that this function is homogeneous of the first order and convex. 
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For an isotropic material, the following hypotheses yield an accept­
able generalization of this rigid, perfectly plastic behavior under uni­
axial stress: 

a. The stress tensor and the strain-rate tensor have a common sys­
tem of principal axes. 

b. The specific power of dissipation is a single-valued function of the 
principal strain rates fh, E2, E3; this dissipation function is homogeneous 
of the first order and convex. 

The state of stress specified by the principal stresses 0"1, 0"2, O"a will 
be called compatible with the strain rate specified by the principal 
values El, E2, Ea if 

(2.2) 

where the right-hand side is the dissipation function. 
In applications, this dissipation function is often piecewise linear. 

For example, for plane states of stress with the principal values 0"1, 0"2, 

andO"a = 0, the yield condition of Tresca [1] is widely used, correspond­
ing to the specific power of dissipation 

O"IEI + 0"2E2 = !O"o{ I Ell + I E21 + I EI + E21). (2.3) 

This relation contains the complete specification of the mechanical 
behavior of the considered material under plane states of stress. If, for 
instance, El > 0 and E2 < 0, a comparison of the coefficients of EI and 
E2 on the two sides of (2.3) yields 0"1 = 0"0, 0"2 = O. In the two-dimensional 
stress space with rectangular Cartesian coordinates 0"1 and 0"2, this state 
of stress is represented by the point A in Figure 2. On the other hand, 

A 
-r---f~-----+------~~--"~ 

Fig. 2. Two-dimensional stress space. 
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if E1 > 0, but E2 < ° and E1 + E2 < 0, one finds in a similar way that 
111 = 0, 112 = -110 (point B in Fig. 2). It then follows by continuity 
that all states of stress represented by the points of the segment AB, 
that is, the states of stress satisfying 111 - 112 = 110 with 111 > ° and 
112 < 0, are compatible with the same type of strain rate satisfying 
£1 > 0, £2 < 0, and £1 + E2 = O. A complete discussion of all possible 
combinations of the signs of E1, £2, and E1 + £2 in (2.3) furnishes the 
hexagon in Figure 2 as the boundary of the region of attainable states 
of plane stress. We shall say that this hexagon represents Tresca's 
yield limit for plane states of stress. 

3. Plastic Analysis 

In the fundamental problem of plastic analysis, one considers a body 
consisting of a perfectly plastic material and assumes that the points 
of the part Sy of its surface are not allowed to move, that is, have 
vanishing velocity, while the remainder ST of the surface of the body 
is subjected to given surface tractions. One wishes to know whether 
plastic flow will or will not occur under these conditions. 

In the discussion of this problem the following concepts prove useful: 

a. A stress field that is defined throughout the volume V of the 
considered body is called statically admissible if the stress components 
are continuously differentiable functions of position that satisfy the 
equilibrium conditions in V and on ST. 

b. A velocity field that is defined throughout the volume V is called 
kinematically admissible if the velocity components are continuously 
differentiable functions of position that vanish on Sy. 

As a matter of fact, the condition that these fields should be con­
tinuously differentiable can be relaxed to some extent, but a detailed 
discussion of this possibility would exceed the scope of this chapter. 

The load-carrying capacity of the body is characterized by the fol­
lowing results: 

THEOREM 1. The given surface tractions represent the load-carrying 
capacity of the body if there exists a statically admissible stress field, 
the stresses of which are at or below the yield limit and compatible with 
the strain rates of a kinematically admissible velocity field that does not 
represent a rigid-body motion of the entire body. 

THEOREM 2. The given surface tractions exceed the load-carrying 
capacity if there exists a kinematically admissible velocity field with strain 
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rates such that the integral of the dissipation function extended over the 
volume V is smaller than the power of the given surface tractions on the 
velocities of the points of Sv. 

The proof of these theorems must be omitted for lack of space, but 
the following immediate consequences should be noted. In the circum­
stances of Theorem 1, quasi-static plastic flow will occur, in which the 
power P of the given surface tractions must equal the integral of the 
dissipation function extended over the volume V: 

P = f DdV. (3.1) 

On the other hand, in the circumstances of Theorem 2 we have 

P > f DdV. (3.2) 

4. Plastic Design 

In the fundamental problem of plastic design, one considers a region 
Vo of space, each surface element of which belongs to one of the follow­
ing three classes: at a loaded surface element of dST , a nonvanishing 
surface traction is prescribed; at a supported surface element dEy, the 
velocity vanishes; and at a free surface element dSo, the surface traction 
vanishes. A region V is to be determined that is contained in Vo and 
satisfies the following conditions: 

a. The surface of V consists of the loaded surface ST, the supported 
surface Sv, and a third surface S. 

b. If V is completely filled with the considered rigid, perfectly plastic 
material, a body is obtained for which the given surface tractions on 
ST represent the load-carrying capacity when it is supported on Svand 
free from surface tractions on S. 

c. The volume of V has the smallest value that is compatible with 
the preceding conditions. 

We shall distinguish three types of plastic design. A body will be 
said to represent an optimal, an admissible, or an excessive design ac­
cording as conditions (a), (b), and (c) are fulfilled, or only conditions 
(a) and (b), or only condition (a) and a modified form of condition (b) 
that is obtained by specifying that the given surface tractions should 
be below the load-carrying capacity of the body. 
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Denoting the dissipation function of the considered material by D, 
let C be a body that represents an admissible or an optimal design. In 
either case, quasi-static plastic flow will take place under the given 
surface tractions. If the volume of C is denoted by Ve, by (3.1) we 
therefore have 

P = f DdVe. (4.1) 

It will be shown that C represents an optimal design if the velocity 
field of the considered quasi-static plastic flow can be so continued in 
Vo - Ve that the dissipation function has a constant value through­
out Yo. 

Let the body C* that occupies the region V& E Vo represent an 
excessive design. The extended velocity field of the quasi-static flow of 
C is a kinematically admissible velocity field. Since the surfaces of both 
C and C* contain the entire loaded surface ST, the power of the given 
surface tractions on the considered velocity field has the same value 
for these two bodies. If this power were to exceed the integral of the 
dissipation function over Vd, the second fundamental theorem of 
plastic analysis would indicate that the given surface tractions exceed 
the load-carrying capacity of C*. However, since this body is to repre­
sent an excessive design, we must have 

f DdV~~P. (4.2) 

If, now, the considered velocity field yields a constant value of the 
dissipation function throughout the region Yo, which contains both Ve 
and V&, it follows from (4.1) and (4.2) that 

f dVe =:; f dV~. (4.3) 

In other words, the volume of C is not greater than the volume of an 
arbitrary body C* of excessive design that is contained in Yo, no matter 
how close this body may be to plastic flow. 

5. Example 

To illustrate the discussion of Section 4, consider a thin plane disc of 
variable thickness attached to a rigid foundation along a given arc, 
the foundation arc. Loads that are applied to the edge of the disc and 
act in its plane produce a plane state of stress for which the dissipation 
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function of the rigid, perfectly plastic material of the disc is supposed 
to be given by the right-hand side of equation (2.3). 

We shall assume that the principal stresses in the plane of the disc 
are such that UI > 0 and U2 < 0 throughout the disc. The state of stress 
at an arbitrary point of the disc is then represented by an interior point 
of the segment AB in Figure 2. From what has been seen above, the 
principal strain rates then satisfy the condition 

(5.1) 

with Ih > O. In these circumstances, the dissipation function on the 
right-hand side of equation (2.3) can be written as D = UOEI, and the 
optimality condition of Section 4 reduces to 

Ih = const. (5.2) 

We choose rectangular axes x, y in the plane of the disc and denote 
the velocity components with respect to these axes by u and v, respec­

. tively. The condition (5.1) is then equivalent to 

u'" + VII = 0, (5.3) 

where the subscripts indicate differentiation with respect to the co­
ordinates, and (5.2) yields 

2 2 
4u",v lI - (V", + U II) = th = const. (5.4) 

To satisfy (5.3), introduce a stream function 1/I(x, y) so that 

U = 1/111' V = -1/I:t;. (5.5) 

According to (5.4), this stream function must satisfy 

222 
41/;"," + (1/1",,, - 1/11111) = - 4EI = const. (5.6) 

On the foundation arc, we have U = V = 0; that is, the function I/; is 
constant and its normal derivative vanishes. Since the velocity field 
determines the stream function only to within an additive constant, 
we may set 1/1 = 0 on the foundation arc. 

The partial differential equation (5.6) is of hyperbolic type. In the 
neighborhood of the foundation arc, the function 1/1 may therefore be 
determined by the method of characteristics from the initial conditions 
on this arc. A graphical method for this has been described in an earlier 
paper [2]. 

If, in particular, the foundation arc is circular, the characteristics­
which incidentally are the lines of principal stress in the disc-are 
logarithmic spirals which intersect the radii at 45°. Let us assume that 
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Fig. 3. Optimal design for a single force on a disc with 
circular foundation arc. 

the single force F shown in Figure 3 acts on the disc. The character­
istics through the point of application A of this force then form the 
edges of the disc, which must be reinforced by ribs along these edges. 
Since each rib follows a line of principal stress, the forces transmitted 
by the disc to the rib are normal to the latter. Accordingly, the axial 
forces in the ribs have constant intensities, which are readily found by 
decomposing the force F in the directions of the ribs at A. These in­
tensities and the curvatures of the ribs determine the forces trans­
mitted by the ribs on the edges of the disc. These edge forces set 
boundary conditions of Riemann type for the principal forces NI and 
N2 in the disc. These principal forces must satisfy the equilibrium 
conditions 

(5.7) 

where PI, P2 are the radii of curvature and 81, 82 the arc lengths of the 
characteristics. Finally, the variable thickness h of the disc is obtained 
from the equation of the side AB of the hexagon in Figure 2, namely, 

Nt - N2 = uoh. (5.8) 
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Fig. 4. Modification of optimal design for foundation arc with end point. 

Figure 4 shows how the optimal design is modified when the founda­
tion arc ends at B. In the region BCD the characteristics are con­
structed as before from the conditions on the foundation arc. This set 
of characteristics is then continued beyond BD by using the already­
known conditions on BD and the fact that B must be an intersection 
of characteristics. 

6. Historical Remarks 

The mechanical behavior of a rigid, perfectly plastic solid is usually 
specified by its yield condition and How rule (see, for instance [3 ]). 
The first characterizes the states of stress under which plastic How is 
possible, and the second indicates the type of plastic How that occurs 
under each of these states of stress. The possibility of specifying the 
mechanical behavior of a rigid, perfectly plastic solid by its dissipation 
function was pointed out by Prager [4]. 

The fundamental theorems of plastic analysis were developed by 
Greenberg, Drucker, and Prager in a series of papers ([5]-[8]). For 
typical a pplica tions of these theorems see [9]- [11], where numerous 
further references will be found. 

The problem of plastic design for minimum weight was first treated 
for continuous beams and frames by Heyman [12] and Foulkes [13], 
[14]. Although isolated problems of optimal plastic design of plates 
[15], [16] and shells [17]-[19] had been treated before, the general 
principle presented in Section 4 is due to Drucker and Shield [20]. 
For a more detailed discussion of the example in Section 5 and related 
problems, see Te Chiang Hu [21]. 
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Procedures for optimal structural design that are not based on the 
concepts of plastic analysis have been discussed by Michell [22], Cox 
[23], [24], and Hemp [25]. 
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Chapter 14 

Geometric and Game-Theoretic Methods 
in Experimental Design t 

G. ELFVING 

1. Introduction 

The purpose of this chapter is to draw attention to certain relatively 
recent developments in the theory of experimental design. The em­
phasis here is on ideas and connections rather than on actual 
techniques. 

We shall throughout be concerned with linear experiments, that is, 
experiments composed of independent observations of form 

, 
y, = a,a + '1" p = 1, .. " n, (1.1) 

where a = (al' ... ,ak)' is an unknown parameter vector, the 
a, = (a,l, ... , a,k) , are known coefficient vectors, and the independent 
error terms '1, have mean 0 and a common variance, which we may, for 
convenience, take to be 1. In matrix notation, the equation (1.1) may 
be written y = Aa + '1. Provided A is of full rank k, it is well known 
that the least-squares estimator vector d is given by 

d = (A' A)-lA'y = a + (A' A)-lA'71 (1.2) 

and has covariance matrix cov d = (A'A)-l. The matrix 

" M = A' A = :E a,a: (1.3) .-1 
is termed the information matrix of the experiment; it essentially deter­
mines its estimatory properties. 

t This work was supported by an Office of Naval Research contract at Stan­
ford University. 
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Thus far we have been concerned with a given experiment. On the 
design level, of course, the experiment has to be composed of observa­
tions chosen from a set of potentially available ones. Since an obser­
vation, in our setup, is described by the corresponding coefficient 
vector a., we shall assume that there is given a bounded and closed set 
a in k-space from which the observations a, have to be selected, each 
one being independently repeatable any number of times. It is no re­
striction to assume that a is symmetric about the origin, since the 
observation -y is automatically available along with y. The set a may 
be finite (as is usually the case in analysis of variance, the coefficients 
being 0 or 1), or it may be described, for example, by means of a con­
tinuous parameter x (as in polynomial or trigonometric regression 
models). 

An actual experiment, then, is described by its spectrum 
a = (al' ... , aT), aJ E a, indicating the different observations 
selected, and its allocation (nl' ... , nT), indicating the number of times 
that each selected observation is to be repeated. The number r is, of 
course, part of the design. Denoting by n = Lni the total number of 
actual observations, and writing Pi = niln, we may describe the experi­
ment by the pair e = (a, p), where P = (Pl, ... , PT), Pi > 0, LPi = 1. 
The Pi are the relative allocations, to be chosen by the experimental 
designer, whereas n is usually fixed by cost considerations. In practice, 
the Pi run over multiples of lin; in a large sample theory, however, 
we may consider them as continuous. 

The information matrix of an experiment e = (a, p) of size n is, by 
(1.3), 

(1.4) 
a a 

Here M(e) determines the value of any particular goodness criterion, 
such as the variance of the least-squares estimator of a particular 
parameter, the sum of all such variances, the largest variance, or the 
like. The solution of the design problem depends, of course, on what 
criterion we have in mind. 

2. Estimating a Single Parametric Form 

Consider a particular linear form 8 = c' ex in the parameters. The vari­
ance of its least-squares estimator 0 = c'd is 

var 0 = c'M-le; (2.1) 

through M, it depends on the design e. The straightforward minimi-
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zation of (2.1) with respect to the design is difficult because of the 
complex character of e = (a, p). Two indirect methods have been de­
vised and will be briefly presented below, their interrelation being 
pointed out at the same time. Both are based on interchanging 
extremizations. 

Geometric Method 

This approach, suggested by Elfving [1], works primarily in the case 
of two or at most three parameters. 

The information matrix M = n LPjajaj is that of r independent 
observations Yi with means aja and error variances (npj)-1/2 
(j = I, .. " r). The least-squares estimator 0 is a linear combination 

0= L q,y;, 
a 

fulfilling the unbiasedness vector condition 

Q.: L qjai = C, 

°iEa 

and the minimum variance condition 

( 
-) q~ . var L q;Y; = L - = lTIln . 

a npj gEQ. 

(2.2) 

(2.3) 

In our design problem we are thus faced with the double minimization 

" q~ 
mIn mIn L-' 
(a,p) gEQ. a Pi 

(2.4) 

in which the minimizing e = (a, p) is the desired optimal experiment. 
Now we interchange the order of minimization: To an arbitrary 

spectrum a, and an arbitrary corresponding set of nonvanishing co­
efficients qil we find the minimizing p = p(a, q) and the least variance; 
this will, in turn, be minimized by a certain choice a*, q*, from which 
finally p* = p(a*, q*) is obtained. 

Minimizing the sum in (2.4) with respect to p, under the conditions 
Pi > 0, LPi = 1, gives 

a 

min 
p 

(2.5) 

To minimize the latter expression with respect to (a, q) under condition 
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(2.2), we shall write this condition in the form 

I qj I 
:E I q" I :E :E I I sgn qr aj = c, 

" j q" 
(2.6) 

where all sums are taken over the spectrum a. Call the point repre­
sented by the latter sum Cq • For any a and any q, this is a point inside, 
or on the boundary of, the convex polyhedron spanned by the vectors 
± aj E a, and hence within the convex hull a* of the set a of available 
observations. Conversely, choosing the spectrum and the relative size 
of the I qjl appropriately, we may make Cq equal to any vector in a*. 
The condition (2.6) requires that Cq be proportional to C; if this con­
dition is fulfilled, we have 

In order to make the minimum in (2.5) as small as possible, we obvi­
ously have to choose for Cq the intersection point c* between the vector 
C and the boundary of the convex hull a*. The vector c* may be ex­
pressed as a convex combination of r points aj E a, r ::; k. The points 
form the spectrum a of the desired experiment in which the allocations 

I qi I 
pj = :E I q" I 

are the barycentric coordinates of c* with respect to aI, .•. , ar • 

The situation is illustrated in Figure 1, where k = 2, C = (0, 1); 

Fig. 1. Geometric method of allocation determination; here c = (0, 1), 
k = 2, and a consists of three pairs of opposite points. 
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a consists of 6 (pairwise opposite) points, and a* is a hexagon. The 
desired spectrum is a = (a2, a3), and the allocation P2:P3 is given by 
the ratio of the segments c*a3: c*a2. 

Game-Theoretic Method 

In 1959 Kiefer and Wolfowitz [2] suggested a game-theoretic 
approach to the allocation problem. Following these authors, we 
shall show how to find the optimal design for estimating, say, the 
parameter ak. 

Using a convenient transformation of the parameters aI, ... , ak-l, 

we can easily show that, for any design e = (a, p), 

1 
--- = min K(e, b), 
nvar&k b 

(2.7) 

where 

K(e, b) = L pj(ajk - blajl - ••• - bk_laj.k_l)2, (2.8) 

" 
and b = (bl , ••• ,bk _ l ) denotes a vector in (k - I)-space. Since we 
wish var &k to be as small as possible, the design problem consists in 
maximizing the right-hand side of (2.7). 

This formulation suggests the use of game theory. Consider the 
game with pay-off function K(e, b). This function is convex in b. 
If by the convex combination (ql, q2) of two designs et and e2 we 
mean the design with spectrum a = at V a2 and allocation p = {Pj}, 
pj = qtp;<t) + q2PP>' it is obvious that K(e, b) is linear in e. As a con­
sequence, the game is completely determined, and we may interchange 
the extremizations. More precisely, we may adopt the following 
procedure: 

a. For arbitrary b, find e = e(b) so as to maximize K(e, b); let the 
maximum be m2(b) = K(e(b), b). The response e(b) will, in certain 
cases (and notably, in the relevant ones), not be uniquely determined. 

b. Find bO so as to minimize m2(b). 
c. Find eO = e(bO) and (in case of nonuniqueness) such that, con­

versely, bO = b(eO); that is, bO is a response to eO in the sense that 
K(eO, b) = min for b = bOo 

Then, eO, bO constitute a pair of equilibrium strategies, and eO is 
minimax, as desired. 

Let us see how this program operates in our particular situation. 
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The function (2.8) is maximized with respect to e if we include in 
the spectrum a any finite number of observations aj for which 

\ ajk - blajl - ... - bk-laj,k-l\ = max = m(b), (2.9) 
aj 

and if we provide them with weights pj adding up to 1. For most b's, 
the response spectrum will contain one observation. In case k = 2, 
the geometric interpretation of thi5 operation is the following (see 
Fig. 1): Let a straight line of slope bl move parallel to itself, and con­
sider the outermost positions in which it has points in common with 
the symmetric set a. Let B(bl) be the set of these points. For most bl, 
B(bl) contains only two (opposite) elements; when bl is the slope of a 
side in the convex hull a* of a, there will be four or more. 

Next, the maximum in (2.9) has to be minimized by a proper choice 
of b. It is clear geometrically that this occurs when the hyperplane 
determined by b is a supporting plane to a* at the point c* where a* 
is cut by the ak-axis. When a is finite, B(bO) will normally contain 
k points on each side of the origin. 

When B(bO) contains more than one element, as it usually does, it 
remains to determine eO = (aO, pO) such that bO = b(eO). For this to 
hold, we must have 

1 aK 
- 2" abi = ~ pjajl(ajk - blaj; - ... - bk-laj.k-l) = 0, 

'/, = 1, ... , k - 1. (2.10) 

The expressions in parentheses have the same absolute value m(bO) for 
all aj E B(bO); it is no restriction to assume this value to be positive, 
since otherwise we have merely to replace aj by -aj. The conditions 
(2.10) then become 

i = 1, ... , k - 1. (2.11) 

Hence, the spectrum a and the allocation p have to be chosen in such 
a way that the compound vector 'L,pjaj coincides with the ak-axis, 
that is, with the direction of the coefficient vector c = (0, ... , 0, 1) 
of the parametric form 8 = CXk. Thus, we see that the game-theoretic 
approach leads to the same procedure as the geometric one, whenever 
this is practicable. 

It should be noted, however, that Kiefer and Wolfowitz aimed 
primarily at the situation in which a is described by means of a con­
tinuous parameter x, say a = a(x), x E OC. The second step of the 
procedure then consists in minimizing 
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Hence, the b. have to be the Chebyshev coefficients of the function 
ak(x) with respect to the basis al(X) , ... , ak_l(x); for their deter­
mination, ready-made results may often be available. 

3. Minimax Estimation 

For another example of the kind of methods we have in mind, assume 
that we do not know what parameter, or what linear combination of 
parameters, will eventually be relevant. In such a situation, a reason­
able approach seems to be to minimize, with respect to the design e, 
the largest estimator variance of any standardized linear form in the 
parameters; that is, the quantity 

max var e'a = max e'M-Ie, (3.1) 
Doll =1 nen =1 

where lIell denotes the length of the vector e. The quantity (3.1) obvi­
ously depends on e through the function M in accordance with (1.4). 
For this approach to make any sense, one must, of course, have the 
parameters measured on such scales as to make the desired accuracy 
the same for all of them. 

Consider the game-between the statistician and nature-with 
pay-off 

, -1, , 
( )

-1 

K(e, e) = eM e = e ~ pjajaj e. (3.2) 

The statistician's set of strategies is obviously that of all e = (a, p), 
a E <X. The function (3.2) is convex in e; that is, 

K(qle1 + q2e2, e) ~ Q1K(et, e) + Q2K(e2, e), 

where the weighted average of two e's is interpreted as in Section 2. 
Hence no extension of the e-set is necessary. Nature's set of strategies 
is the unit sphere in the k-dimensional e-space. On this set, there can 
be no question of forming linear combinations, so we have to extend 
it by introducing mixed strategies. A general mixed strategy, say 
'Y*, would be a probability distribution on the unit sphere S, and the 
corresponding pay-off would be 

K*(e, 'Y*) = Is e'M-le d'Y*. (3.3) 
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The strategy 'Y*, however, may always be replaced by a discrete dis­
tribution assigning positive probability only to the end points of k 
orthogonal diameters in the sphere. As a matter of fact, if we factorize 
M-l into a sum Lml'm; of matrices of rank 1, we have 

K*(e, 'Y*) = ~ I/'ml'm;cd'Y* = ~m: (Is ee' d'Y*)ml'. (3.4) 

The integral is the expected value of a nonnegative definite matrix with 
trace 1 and hence is itself a matrix of the same kind. It can be written 
as L.'Y.C.C: , where the c, (II = I, ... , k) are the column vectors of an 
orthogonal matrix, and where 'Y. ;::: 0, L'Y, = 1. Inserting this result 
in (3.4), and inverting the order of summation, we find that 

K*(e, 'Y*) = L m; ( L 'Y,c,c:)ml' = L 'Y, L c:ml'm; e, 
II" "" 

= L 'Y,c: M-1c. = K*(e, 'Y), (3.5) 

which shows that we may restrict our attention to the particular set 
of "orthogonal mixed strategies" 'Y. Statistically, the extension of 
nature's strategies means that we use for loss function not simply the 
squared error in the estimate of a single parameter but rather a stand­
ardized quadratic form in the estimation errors, with nonnegative defi­
nite matrix of trace 1. 

After this extension, the fundamental theorem in game theory is 
applicable. Interchanging the extremizations, we are then faced with 
the following program: 

a. For an arbitrary 'Y, find the response e = e('Y) maximizing 
K(e, 'Y). The response may not be unique. 

b. Find 'Yo so as to minimize K(e('Y), 'Y). 
c. Find eO = e( 'YO) and (in case of nonuniqueness) such that, con­

versely, 'Yo = 'Y(eO). 

The implementation of this program may be no less complex than 
that of the original problem. Already the first step involves solving the 
allocation problem for an arbitrary quadratic loss function. It can be 
shown (see [3]) that no more than k(k + 1)/2 different observations 
will ever have to be included in the optimal design for any estimation 
problem within the framework of least squares. Generally, then, one 
will have to test all "promising" spectra with k(k + 1)/2 or less obser­
vations, to solve equally many equations for the optimal p, to pick 

--------- -
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the best spectrum, and finally to find the minimizing "(. We have no 
simple technique to offer in the general case. However, there are 
situations in which short cuts are possible. 

First assume that we are able to find an admissible design eO such 
that M(eO) = "'AI (eO being admissible means that there is no e making 
the difference M(e) - M(eO) nonnegative definite). In practice, this 
can often be achieved by making the design sufficiently symmetric. 
It can be shown that any admissible design is optimal for some quad­
ratic loss problem, that is, a response to some "(0. On the other hand, 
since M = XI, we have 

e'M-Ie = e'e/X = const 

on the unit sphere. Hence any ,,(, and in particular ,,(0, is a response to 
eO. This implies that eO is minimax. 

Another simple situation is the following, representing in a sense the 
opposite of the former one. Assume that there is no e such that the 
smallest eigenvalue "min of M(e) is multiple. Since 

max e'M-Ie = [ min el Me]-1 = ["min(M)]-I, 
neD =1 OeD-l 

it is seen that the maximum on the left-hand side is always attained 
in a single pair of points ± e on the unit sphere. Therefore, in this case 
we do not have to consider mixed strategies but may apply the one­
parameter technique of Section 2 to find e(e). The corresponding pay­
off K(e(e), e) is the inverted and squared distance from the origin to 
the boundary of a* in the direction e. The least favorable direction CO 

is that in which the boundary of a* is closest to the origin. Finally, the 
minimax allocation is obtained as the response to eO through the methods 
of Section 2. It is not trivial, however, to decide whether the minimum 
eigenvalue will always be simple. For the case k = 2, a geometric 
criterion is indicated in [3], Theorem 3.3. 
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Chapter 15 

Automation and Control in the Soviet Union 
J. P. LASALLE 

1. Introduction 

In mathematics the Soviet Union and the United States lead the world 
and are at approximately the same level [1]. In the mathematical 
theory of control and stability, Soviet mathematicians have worked 
longer and harder than we have; moreover, they scrutinize everything 
we do. More of Bellman's and Lefschetz's books have appeared in the 
windows of bookstores in Moscow alone than have been displayed by 
all of the bookstores in the United States, and their sales in Russia are 
correspondingly higher. Lefschetz's book on Differential Equations: 
Geometric Theory (Interscience, New York, 1957) was recently trans­
lated and published in the Soviet Union. A first printing of 10,000 
copies sold out there in two days, whereas in four years the American 
edition has sold only about 2,300 copies. 

2. Pure and Applied Mathematics 

Pure mathematicians in the Soviet Union often are deeply concerned 
with applications and find therein many problems of genuine mathe­
matical interest. By contrast, American pure mathematicians fre­
quently know little about applications and have almost no interest in 
them. Soviet mathematicians make an effort to communicate the 
latest mathematical findings to as wide an audience as possible, and 
they have a receptive audience. Soviet engineers hold mathematicians 
in high regard, are better trained mathematically than our engineers, 
and work harder at keeping up with developments in the mathematical 
world. The Soviet Union has a fine group of mathematical engineers 
who contribute to both mathematics and engineering and who are 
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continually widening the bridge from the one field to the other. In 
American universities this bridge is excessively narrow; too often the 
only interchange is what students carry back and forth. 

At the level of theory, it is doubtful that Soviet mathematicians 
know anything that we do not know, but they are making a greater 
effort to increase and apply basic knowledge. There is little doubt that 
capable mathematicians are at the top echelons of science and that 
they are playing an active role. 

The high level of Soviet mathematics-and of Soviet science in 
general-is not surprising. Russia has a long tradition in the field of 
science. The Soviet Academy of Sciences dates back to the founding 
of the St. Petersburg Academy of Science in 1724. Russian science was 
strong in the prerevolutionary period. The Great Soviet Encyclopedia 
of the year 1957 says of that period: 

The brief survey given of the most important achievements in Russian 
science in the prerevolutionary period shows that in all the realms of natural 
science, scientists of Russia were making major discoveries and doing re­
search on the principles of science, which have since become an essential 
part of the world's treasure house of knowledge .... From the theoretical 
point of view Soviet natural science took as its point of departure the 
achievements of the previous history of science, particularly in questions of 
principle. Of enormous significance for the further development of science in 
our country was the fact that the level of science was very high during the 
period preceding the Great October Socialist Revolution, thanks to such 
scientists as A. M. Lyapunov, A. N. Krylov, V. A. Steklov .... 

As early as April, 1918, which was still a critical period for the Soviet 
republic, Lenin drew up his "Outline of a Plan for Work in Science and 
Technology." Even at that time there was a constant emphasis in the 
Soviet Union on the solution of scientific and technological problems 
"by the united efforts of large groups of scientists consisting of repre­
sentatives of many specialities and directed by the most eminent scien­
tists and technologists." 

3. Automation and Control 

The foregoing statement is equally descriptive of the Soviet effort today 
in the field of automation and control. The Soviets say that their plans 
for work in science and technology 

... have a maximal correspondence to the specific features of the modern 
level of the development of science, which is distinguished on the one hand 
by extreme differentiation and specialization of the separate branches of 
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knowledge, and on the other by the appearance of multiple fields lying 
between these sharply differentiated areas. Under these conditions a pro­
found study of any particular object becomes possible only through a com­
bined effort on the part of many specialized sciences. 

It is quite natural that Soviet mathematicians operate successfully 
in the theory of control. This is an area close to differential equations, 
a field in which Soviet mathematics has profound roots [2]. There 
are a number of groups working on this theory and led by world 
authorities at institutes in Moscow, Kiev, Leningrad, Sverdlovsk, and 
Alma Ata; yet another center is being formed in Novosibirsk. 

In the hierarchy of Soviet institutes there are also some dedicated 
to basic engineering research. The Institute of Automatics and Tele­
mechanics of the Academy of Sciences is "the central academic institu­
tion in the field of automatic control." It has the responsibility not only 
to assemble results in this field of science but also to expound new 
concepts, principles, and methods. The Institute of Automatics and 
Telemechanics is expected to supply other agencies with the basic 
scientific material required for the production and testing of systems 
and instruments. Some of the institutes using this basic knowledge are 
the following: (a) The Central Scientific Institute of Complex Auto­
mation in Moscow, which appears to be concerned with the control 
of plants and processes. This institute was founded in 1957. (b) The 
Central Laboratory for Automation in Moscow, founded in 1940. Its 
chief task is automation of the steel industry. (c) The Institute of 
Automation in Kiev, founded in 1957. In 1959 an expansion of this 
institute was begun, and it is to be a center of automation; by 1963 it 
is expected to have four branches and to employ from 6,000 to 10,000 
people. Its staff works in close cooperation with industry and is con­
cerned with the development, production, and installation of control 
systems for a large variety of industries-chemical, metallurgical, 
electric power, mines, machine tools, etc. Additionally, The Institute 
for Automatics and Electrometry near Novosibirsk, The Institute for 
Electromechanics in Moscow, and many other smaller institutes and 
laboratories have some connection with automation. 

It seems apparent that Soviet scientists have organized themselves 
for an all-out scientific effort in the field of automation and control. 
Their only weakness, if any, may be a lack of practical engineers. A 
group of American engineers who attended the First Congress of the 
International Federation of Automatic Control, held in the summer 
of 1960 in Moscow, visited factories, laboratories, and institutions and 
were quite unimpressed by what they saw. Their opinion was that if 
what they had seen was representative of Soviet capabilities, then the 
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Soviet Union could not have built a jet transport, produced an atomic 
bomb, or put up an earth satellite. This sounds somewhat like the 
reports German scientists gave our government about the Soviet Union 
after they had returned to Germany around 1950. But the American 
engineers who attended the Congress were of course well aware that 
the Soviet Union has nevertheless demonstrated precisely these capa­
bilities; this was simply their way of saying that they could form no 
judgment on the basis of what they had been shown. Visitors to the 
USSR are evidently not shown the most modern factories; perhaps the 
Soviets do not care how unimpressed we are by what they choose to 
show us in their laboratories and factories. However, it may well be 
true that in techniques, instrumentation, and production, Soviet tech­
nology is far behind ours. 

In 1959 a British team of experts on automatic control toured the 
Soviet Union and they concluded that Soviet work on automatic con­
trol was, on the average, not so far advanced as in Britain. On the other 
hand, they admitted that there was considerable activity and that many 
of the institutes they visited were only two or three years old. They 
pointed out that the Soviet effort in engineering education was both 
massive and effective; in 1958, 83,000 students were graduated in 
engineering in the USSR. They observed that the connection between 
teaching, research, and industry in the Soviet Union was strong and 
the research effort on automatic control was much greater there than 
in Britain. 

A considerable amount of talk in the Soviet Union concerns the 
coming of automation and its fruits in the way of increased goods and 
shorter working hours. We also see in a report of the Academic Council 
of the Soviet Academy of Sciences, dated May, 1959, the following 
pointed statement: 

The opinion is sometimes advanced that the new technological revolution in 
the Soviet Union will be the practical use of atomic energy as the most 
powerful source of energy. This is not the case. In fact, it is automation 
moving productive processes under their own power that today plays the 
same decisive role as was played by power machines in the industrial revolu­
tion of the 18th century. 

The principal address at the opening session of the First Congress of 
the International Federation of Automatic Control in Moscow in the 
summer of 1960 was delivered by Academician V. A. Trapenznikov, 
the Chairman of the USSR National Committee of Automatic Control 
and head of the Institute of Automatics and Telemechanics. In his talk, 
entitled "Basic Theoretical and Engineering Problems of Automatic 
Control," he made the following point: 



Automation and Control in the Soviet Union 307 

... not only will automation raise productivity, but it will also radically 
change the very nature of labor .... The full utilization of the benefits 
arising out of automation, however, is only possible in a rationally organized 
society where the manpower made redundant due to automation in one field 
is easily absorbed in others. Our firm conviction-which we do not, of course, 
impose on anybody-is that this possibility is offered only by a socialistic 
state. . 

The Soviets believe that through automation they can achieve a 
rapid acceleration in the rate of their technological progress and at 
the same time they believe that through automation they can demon­
strate the superiority of their system-that only a Communist society 
can carry out automation of industry without a breakdown in its 
economy. They expect that we cannot in our system achieve auto­
mation as rapidly as they can, and that for us it will mean economic 
chaos. There is every reason to believe they can achieve automation and 
achieve it rapidly. 

4. Implications 

The fruitful connections in the USSR between mathematics and its 
applications cannot help but strengthen Soviet science and Soviet 
technology, and in turn strengthen mathematics. The narrow, isolated 
specialist in mathematics does without doubt make a contribution, but 
he is not to be compared with the great mathematicians of history who 
ha,ve always understood and used the empirical sources of mathe­
matical inspiration. Not every application is of genuine mathematical 
interest, but this does not justify the pure mathematician's tendency 
to make a virtue of a lack of interest in mathematical problems arising 
in other sciences. 

Historically, mathematics has always possessed a paradoxical 
duality. On the one hand mathematics reflects upon itself and is the 
most original creation of the human mind; yet there has always existed 
a close relation between mathematics and those empirical sciences that 
have risen above the level of pure description. Regardless of its purity, 
mathematics has the habit of proving to be useful. From a pragmatic 
viewpoint, of course, this justifies mathematics for its own sake and is 
the reason mathematicians should not be compelled-even if they 
could be-to confine themselves to the problems that appear to be of 
immediate practical interest. But in our country today the greater 
danger is from those who wish mathematics to be completely separated 
from its applications. Many mathematics departments in our uni­
versities have no contact with science and engineering, and many of 
our mathematicians engaged in teaching are narrow research specialists 
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intolerant of the interests of others. They and their students are un­
aware of the historical development of their own subject, of its relation 
to other sciences, and often even of its relation to other branches of 
mathematics. The danger is that a mathematical field isolated too long 
from its empirical source may undergo an abstract inbreeding that 
finally results in a sort of killing cancerous growth. The discipline splits 
rapidly into a multitude of subdisciplines and tends to become a dis­
organized mass of detail and complexity. The orderly growth of mathe­
matics is inspired and directed by the realities of the empirical sciences, 
but it remains true that the strength and power of mathematics is its 
own creation. We should force no dichotomy on mathematics. 

Up to now the Soviet Union has managed both to encourage science 
and to use it. They have recently created a new agency, the State Com­
mission for the Coordination of Scientific Research. Its main purposes 
are to strengthen basic theoretical research of great "economic" sig­
nificance, to narrow the gap between research and production, and to 
speed up the introduction of new scientific findings into the Soviet 
economy. Those who feed our complacency will soon tell us that this 
channeling of science will surely weaken and eventually destroy Soviet 
science; but in view of both past history and recent events, there is no 
reason to expect the Soviet Union to pull the colossal blunder of "killing 
the goose." Rather, it is time that we recognize Soviet ability to direct 
science to specific ends without destroying it and that we take steps to 
meet the challenge by mobilizing more effectively our own scientific 
talent. 
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Chapter 16 

The Theory of Optimal Control and the 
Calculus of Variations t 

R. E. KALMAN 

1. Background 

"System theory" today connotes a loose collection of problems and 
methods held together by a central theme: to understand better the 
complex systems created by modern technology. Aside from certain 
combinatorial questions, most of present system theory is concerned 
with problems in automatic control and in statistical estimation and 
prediction, with emphasis on solutions that are optimal in some sense. 
These problems are attacked by a variety of ad hoc methods. 

Recent research has shown how to formulate and resolve these prob­
lems in the spirit of the classical calculus of variations. This provides 
a unifying point of view. Eventually it should be possible to organize 
system theory as a rigorous and well-defined discipline. One example of 
this trend is the author's duality principle (see [1], [2], [3]) relating 
control and estimation. Conversely, problems in system theory are 
stimulating further research in the calculus of variations. 

Let us look first at the historical background of the hamiltonian 
formulation of the calculus of variations. There is a long stream of 
scientific thought concerned with wave propagation and variational 
principles in physics. It begins with Huygens, continues with the work 
of John Bernoulli, and receives maturity at the hands of the great 
masters of the nineteenth century: Hamilton, Jacobi, and Lie. The 
most articulate representative of this tradition in recent times was 
C. Caratheodory (1873-1950). Beginning with his famous dissertation 

t This research was sponsored by the United States Air Force under Contracts 
AF 49(638)-382 and AF 33(616)-6952. 
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of 1904, Caratheodory insisted on the hamiltonian point of view in the 
calculus of variations throughout his lifetime. The evolution of his 
thinking on this subject is carefully integrated in his last major work 
[4]-a book that is hard to obtain and difficult to digest. 

The theory of optimal control, under the assumption that the equa­
tions of motion are known exactly and the state can be measured in­
stantaneously, may be regarded as a generalization of the problem of 
Lagrange in the calculus of variations: minimization of an integral sub­
ject to side conditions, which may be ordinary or differential equations. 
Caratheodory's work on the problem of Lagrange is incomplete, con­
sisting of only two papers [5], [6]; these papers are discussed briefly in 
Chapter 18 of [4]. The problem is one of extreme difficulty and it has 
received little attention until quite recently. 

In [7] the present writer gave a new formulation of the problem of 
optimal control from the hamiltonian point of view. The purpose of 
this chapter is to extend this approach. We shall see that this formula­
tion-which differs from Caratheodory's in essential details-explains 
a number of recent results in the theory of control and provides a very 
general framework for further research. 

2. The Variational Problem in the Theory of Control 

We assume that the control object is a dynamical system governed by 
the differential equation 

dx 
- = j; = !(x, u(t), t). (2.1) 
dt 

Here x is a real n-vector, called the state of the systemj u(t) is a real 
m-vector for each tj! is a real n-vector that is continuously differenti­
able in all arguments. 

To avoid the cumbersome phrase "the state x at time t," we shall 
refer to the couple (x, t) as a phase. The phase space is thus the cartesian 
product of the state space X ( = Rn) with the space T ( = Rl) of all 
values of the time. 

We call the function u(t) in (2.1) an admissible control if (a) it is piece­
wise continuous in tj (b) for each t, its values belong to a given closed 
subset U(t) of Rm. 

For any admissible control u and any initial phase (xo, to), there 
exists a unique absolutely continuous function ¢ of t, denoted by 

¢(t) == ¢ .. (t; Xo, to), 
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that satisfies (2.1) almost everywhere and has the property 

ep(to) = ep.,(to; xo, to) = xo. 

We call epu(t; xo, to) the motion of (2.1) passing through Xo at time to 
under the action of the control u. Sometimes we shall write x(t) = ep(t) 
to emphasize the fact that the value of ep at some fixed t is the state of 
the system at that time. 

We call x* an equilibrium state if there is some control u* such that 
ep.,(t; x*, to) = x* for all t, to, or, equivalently, if f(x*, u*(t), t) = O. 

To state the control problem in its simplest form, it is assumed 
further that physical measurements are available giving the exact 
numerical value of the state at every instant of time, though of course 
this is a gross idealization from the engineering point of view. We want 
to determine u(t) as a function of x(t) so that motions of (2.1) have 
certain extremal properties. The expression of u(t) as a function of x(t) 
is commonly called feedback in engineering. We denote this functional 
relationship by 

u(t) = k(x(t), t), (2.2) 

and refer to the function k as the control law. A control law is admissible 
if k(x, t) E U(t) for all t. 

Let (xo, to) be an arbitrary phase and let S be a surface in the phase 
space. Consider the following scalar functional of motions of (2.1): 

V(xo, to, S; u) = A(ep.,(h; Xo, to), t1) 

+ f 11 L(ep.,(t; Xo, to), u(t), t) dt, 
I. 

(2.3) 

where L, A are scalar functions and t1 is the first instant of time after 
to when the motion enters the set S. Thus it suffices for A to be defined 
only on S. We call t1 the terminal time and assume that L, A are con­
tinuously differentiable in all arguments. 

In terms of these notations, we can now state the 

OPTIMAL CONTROL PROBLEM. Given any initial phase (xo, to), find a 
corresponding admissible control u defined in the interval [to, ttl at which 
the functional (2.3) assumes its infinum (or supremum) with regard to the 
set of all admissible controls. 

Actually, for technological reasons one usually sets a slightly stronger 
objective. 
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OPTIMAL FEEDBACK CONTROL PROBLEM. Find a control law such that 
when (2.2) is substituted in (2.1) the functional (2.3) assumes its infinum 
(or supremum) with regard to the set of all admissible control laws. 

Bellman's principle of optimality shows that we can always define 
an optimal control law along every optimal motion. Hence the two 
foregoing problems are abstractly equivalent. 

If Equation (2.1) depends on stochastic factors, however, then the 
infinum of (2.3) with respect to all admissible control laws will usually 
be lower than with respect to all admissible controls that are uniquely 
determined by the initial phase. This is owing to the fact that the 
control law takes into account not only the initial state but successive 
states as well. The added information so obtained may result in a 
better optimum. 

Before embarking on a detailed analysis of the control problem, let 
us mention a number of typical examples that may be put into this 
formulation. 

Terminal Control 

The problem is to bring the state of the system as close as possible to 
a given terminal state Xl at a given terminal time tl. Then L = 0, 
X(x) is the distance of x from Xl, and S = X X {td. 

Minimal-Time Control 

Suppose we want to reach a state Xl from (xo, to) in the shortest 
possible time. We then set L = 1, X = 0, and S = {xd X T. This 
problem ordinarily has a solution only if U(t) is a bounded set for 
all t ~ to. 

Regulator Problem 

We assume that the system is in some initial phase (xo, to) and we 
wish to return to an equilibrium state x* in such a way that some inte­
gral of the motion is minimized. We then usually take L and X as non­
negative. The dependence of L on u is needed because otherwise the 
problem may not have a solution. The set S is again X X {tl}. 

Pursuit Problem 

We are given a moving target W). The problem is to bring the motion 
to phase (Ht), t) as soon as possible. This is a generalization of the 
minimal-time. problem; we take S = {(W), t); t E T}. 
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Servomechanism Problem 

This is a generalization of the regulator problem. We are given a de­
sired state W), t E T. The problem is to cause the phase of the con­
trolled motion to be as close as possible to (Ht), t) on the interval 
[to, td. The instantaneous distance between (X(t) , t) and (W), t) is 
measured by L. The set S is again as in the regulator problem, above. 

Minimum Energy Control 

We wish to transfer from an initial phase (xo, to) to a final phase 
(Xl, tl ) with the expenditure of a minimal amount of control energy. 
In this case we take L to be a nonnegative function of u, independent 
of cpj S is the set consisting of the single point (Xl, tl) j A is immaterial. 

I soperimetric Problems 

Suppose that the optimal motions must satisfy also the so-called 
isoperimetric constraints 

k = 1, ... , N - n. (2.4) 

These problems reduce immediately to the preceding ones when we 
replace the n-vector X by an N-vector of which the last N - n compo­
nents satisfy the differential equations 

dXn+k 
-- = !n+k(X, u(t), t), k = 1, ... , N - nj (2.5) 

dt 

the initial values are Xn+k(tO) = 0, and the final values Xn+k(tl ) are to 
lie on a surface S for which Xn+k :::; ak. 

3. Relations with the Calculus of Variations 

The classical problem of Lagrange in the calculus of variations is con­
cerned with the minimization of the integral 

f L(x(t), :t(t), t) dt (3.1) 

with respect to any smooth curve x(t) that (a) connects a given point 
(xo, to) with a point (Xl, tl ) lying on a given surface S, and (b) satisfies 
the constraints 

gl(X(t), :t(t), t) == 0, i = 1, ... ,n - m. (3.2) 
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There are two ways in which the optimal control problem discussed 
above differs from the problem of Lagrange. First, the function L de­
pends on u rather than on X; second, the constraints are of a mixed 
type: 

X - !(x, u(t), t) = 0 and u(t) E U(t). (3.3) 

Neither of these differences is essential; inequality constraints such 
as a ~ 0 can be replaced by equality constraints such as (3(a) = 0, 
where (3 is a smooth function that is zero if a ~ 0 and positive other­
wise. Similarly, one can always express u(t) by (3.3) as a function of 
x, x, t by introducing, if necessary, additional equality constraints. 
Hence the optimal control problem is formally identical with the prob­
lem of Lagrange, though the transformations necessary to establish the 
equivalence will be usually rather complicated. Moreover, because of 
difficulties arising from an explicit treatment of the constraints (3.2), 
the theory of the Lagrange problem today is far from adequate. 

We therefore prefer to treat directly the problem of minimizing (2.3), 
subject to the constraints (3.3). This treatment includes the ordinary 
problem of the calculus of variations, obtained by setting !(x, u, t) = u 
and U(t) = Rn, as well as the Lagrange problem after suitable trans­
formation of the type just discussed. 

Using the hamiltonian point of view, we do not need to transform 
the constraints (3.3) but can treat them directly. The principal idea is 
the following. We define a hamiltonian function not with the aid of the 
Legendre transformation, as is usual, but in a more general procedure 
by means of the so-called minimum principle. In this way the optimal 
control problem can be reduced to the solution of the Hamilton-Jacobi 
partial differential equation. The existence of a solution of the 
Hamilton-Jacobi equation is a sufficient condition for the solution 
VO(x, t) of the optimal control problem. If the function VO(x, t) is 
smooth, this condition is also necessary. 

Unfortunately, quite often VO(x, t) does not have continuous partial 
derivatives with respect to x. In that case one cannot state necessary 
and sufficient conditions solely in terms of differential equations. But 
this is hardly the issue. Early in his career, Caratheodory took the 
following position: 

The distinction between necessary and sufficient conditions seems, how­
ever, a little artificial; explicit proof that certain conditions are necessary is 
of interest only in cases in which one cannot resolve a problem at once, and 
it serves, above all, to limit the scope for future investigations. When, on the 
other hand, one has a solution possessing all the properties required by the 
theorem, it suffices to show that this solution is unique in order to have at 
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. - the same time the proof that all the conditions that serve to determine the solu­
tion are necessary. t 

It has unfortunately become very common in physical and engineer­
ing applications to regard the extremals supplied by the Euler equations 
as the "solution" of a variational problem. There are two long-standing 
objections to this: (a) the Euler equations may not exist, as when Lis 
not sufficiently smooth; (b) the solution of the Euler equations may 
cease to define a minimum or maximum after a certain interval of time, 
as when the extremal contains conjugate points. The hamiltonian 
point of view, which aims to obtain sufficient conditions, avoids such 
difficulties at the outset by considering only those initial phases that 
can be connected by optimal motion with a phase on S, and by regard­
ing the function VO = min Vas abstractly defined in advance. 

The dynamic programming method of Bellman proceeds from the 
same fundamental idea, differing only in detail from the hamiltonian 
methods. For a nonrigorous but highly enlightening discussion of the 
relations between the two, see the recent paper of Dreyfus [10]. 

4. The Hamilton-Jacobi Equation; Minimum Principle 

Let us first obtain the sufficient condition. The starting point is the fol­
lowing trivial, well-known, but important observation concerning the 
optimal control problem. 

LEMMA OF CARATHEODORY [4, p. 198]. Suppose there is a function 
k(x, t) continuously differentiable in both its arguments and such that, for 
all (x, t) in some region G of the phase space, 

i. k(x, t) E U(t), 

ii. L(x, k, t) = 0, 

iii. L(x, u, t) > 0 if u ¢ k(x, t). 

Consider motions of (2.1) with control law defined by (2.2), that is, 

dx 
- = f(x, k(x, t), t). 
dt 

(4.1) 

(4.2) 

Let the initial phase (xo, to) belong to G. Let X(x, t) be identically zero on 
some surface S C G of the phase space. Then the following properties hold 
for any motion c/>0 of (4.2) that connects (xo, to) with a phase on Sand 
remains entirely in G: 

t Author's translation from French; author's italics. See [9], Introduction. 
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a. The value of the integral (2.3) is zero. 
b. The motion cf>0 provides the absolute minimum of (2.3) with respect 

to any other motion of (2.1) which connects (xo, to) with S and remains 
entirely in G. 

In short, the hypotheses of the lemma mean that at every point in 
G the integrand L has a unique, absolute minimum U o = k(x, t) with 
respect to all u satisfying the constraint (3.3). Then k is the unique 
optimal control law, and the optimal feedback problem is also solved. 

PROOF. Conclusion (a) is immediate, since for any motion cf>0 of (4.2) 
the integral (2.4) is zero by hypothesis (ii). Now let cf>l be any other 
motion of (2.1) that connects (xo, to) with S without leaving G, and for 
which V = O. Then by hypothesis (iii) and the continuity of L, it is 
clear that along cf>l we must have ul(t) = k(cf>l(tj Xo, to), t) at every 
continuity point of ul(t), since otherwise we would have V > O. We 
would obtain the same motion if we let ul(t) always be defined by this 
relation, that is, cf>.Atj Xo, to) = cf>l(tj Xo, to). But since k is continuously 
differentiable in x, (4.2) defines a unique motion, and the proof of (b) is 
complete. 

It should be noted that there may be phases in G such that the motion 
defined by (4.2) going through these phases is not optimal. This is 
owing to the possibility that a motion may leave G prior to reaching S. 

N ow we try to construct a Lagrange function L* and a corresponding 
function k satisfying the requirements of the lemma. 

Suppose VO(x, t) is a scalar function that is twice continuously dif­
ferentiable in both arguments. Thent 

f 'l 
[VHx, t) + f(x, u(t), t)· n(x, t)] dt = VO(X1, t1) - VO(xo, to) 

to 

(4.3) 

along any motion of (2.1) connecting the phase (xo, to) with the phase 
(Xl, tl) on S. If we let 

VO(X, t) = heX, t) (4.4) 

on S, then the optimal control problem obtained by replacing h with 
:\* = 0 and L with 

L*(x, u, t) = L(x, u, t) + VHx, t) + f(x, u, t)· VHx, t) (4.5) 

will be equivalent to the original problem, because the values of V and 

t The dot denotes the inner product; V, = av lot, V~ = grad V. 
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V* will differ only by VO(xo, to), which does not depend on the control u. 
Let p be a real n-vector, called the costate. 
We define a scalar function H by 

H(x, p, t, u) = L(x, u, t) + lex, u, t) 'p. (4.6) 

We assume that H has a unique absolute minimum for each t with re­
spect to u(t) E U(t) at the point 

UO(t) = c(k, p, t); (4.7) 

moreover, c is continuously differentiable in all arguments. 
The scalar function HO, defined by 

HO(x, p, t) = min H(x, p, t, u) 
U(I)EU(I) (4.8) 

= L(x, c(x, p, t), t) + lex, c(x, p, t), t) 'p, 

is the hamiltonian of the problem. 
Finally, we assume that VO(x, t) satisfies the Hamilton-Jacobi partial 

differential equation 

V~ + HO(x, V~, t) = 0 

with the boundary condition (4.4). 
If these assumptions hold, we let 

1) = VO(x, t). 

Then 

(4.9) 

(4.10) 

L*(x, u, t) = VHx, t) + HO(x, n(x, t), t) (4.11) 

will clearly satisfy the hypotheses of the lemma of Caratheodory, with 
k defined by 

k(x, t) = c(x, V~(x, t), t). 

Moreover, by the lemma, we also have 

along motions ¢o satisfying (4.2). In other words, 

VO(xo, to) = min V(xo, to, S; u) 
u 

(4.12) 

(4.13) 

(4.14) 

is the absolute minimum of the integral (2.3) with respect to admissible 
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controls; (4.12) is the optimal control law, and we have also solved the 
optimal feedback control problem. 

Hence we have established: 

THEOREM 4.1. SUFFICIENT CONDITION. Let HO be the absolute minimum 
of H = L + f . p with respect to u(t) E U(t). Suppose that u O = cis 
unique, that the differentiability hypotheses hold, that VO satisfies the 
H amilton-J acobi partial differential equation V? + HO(x, V~, t) = 0 in 
a region G C S, and that furthermore V = A on S. Then the following 
properties hold: 

a. The function VO(xo, to) is the absolute minimum of (2.3) with respect 
to all motions which connect (xo, to) with a phase on S without leaving G. 

b. The optimal control law is given by (4.12); with this control law any 
motion that eventually reaches S without leaving G is optimal. 

The introduction of the hamiltonian function HO reduces the problem 
to one of ordinary minimization, which defines the optimal value of 
u(t) at each moment through (4.7). To achieve this, we bring in the 
auxiliary variable p. To make sure that the point-by-point optimization 
based on p is consistent, we eliminate p by (4.10); the construction 
succeeds whenever VO is a solution of the Hamilton-Jacobi equation 
defined by HO. 

lt is easy to prove the converse result-in other words, that the opti­
mal value VO of (2.3) must satisfy the Hamilton-Jacobi equation­
provided VO is a sufficiently smooth function of x. 

THEOREM 4.2. NECESSARY CONDITION. Let G be a region in the phase 
space possessing the following properties: 

i. There is an optimal motion from every phase in G to a phase on S 
that never leaves G. 

ll. The minimum value of (2.3), denoted by VO(x, t), is twice continu­
ously differentiable in both arguments. 

iii. Every point in G that is not also on S has a neighborhood lying 
entirely in G. 

iv. t For every phase in G, H(x, V~, t, u) given by (4.6) has an absolute 
minimum HO(x, V~, t) at U O = k(x, t) with respect to u(t) E U(t). 

v. t The function k defining the minimum is differentiable in x and 
continuous in t. 

Then the function VO(x, t) satisfies the Hamilton-Jacobi equation 
V? + HO(x, V~, t) = 0 in the region G. 

t These conditions may be checked from the given form of L, I, and U, that 
is, without solving the variational problem. 
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PROOF. Let (Xo, to) be a phase in G for which the theorem is false. 
There are then two possibilities. We consider first 

(4.15) 

Let NeG be an open neighborhood of (xo, to) that is small enough 
that the inequality (4.15) remains true everywhere in N. It is clear 
that N exists because of (iii) and because the left-hand side of (4.15) 
is continuous in x and t. 

Let cp0(t) be an optimal motion originating at (xo, to), and let UO(t) 
be the corresponding optimal control. Then, because of the definition 
of HO, for all t such that (cpO(t), t) E N we have 

H(cpO(t), V~(cpO(t), t), t, UO(t» ~ HO(cpO(t), V~(cpO(t), t), t). (4.16) 

Combining (4.15) and (4.16), we obtain 

- VHcpO(t), t) - V~(cp°(t), t) .!(cpO(t), UO(t), t) :::; L(cpO(t), UO(t), t) - E(t), 

(4.17) 

with E > 0 as long as (cp0(t) , t) remains in N. Let tl > to such that 
(cpO(t), t) EN for all t E [to, td. Integrating both sides of (4.17), we get 

or, using the definition of VO(Xl, tl) and letting (X2, t2) be the phase on 
S reached by an optimal motion cpo starting at (Xl, t1), 

which contradicts the assumption that cpo is optimal. 
Now we suppose that N is an open neighborhood of (xo, to) through­

out which the inequality (4.15) holds in the opposite sense. Then, by 
the definition of HO, we have 

- V~(x, t) - VHx, t) ·!(x, k(x, t), t) = L(x, k(x, t), t) + E(X,.t), 

where E> 0 throughout N. 
Hence, integrating along the unique motion CPk(t; Xo, to) defined by 
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(4.2), we get 

f 'l 
VO(Xo, to) - VO(Xl, t1) = [L(x, k(x, t), t) + E(X, t)] dt 

10 

f ll 

> L(x, k(x, t), t) dt, 
10 

provided (CPk(tj Xo, to), t) E N for all t E [to, td. This contradicts the 
definition of VO, by the same argument as above, and establishes 
Theorem 4.2. 

The essence of the arguments in this section is to replace the hamil­
tonian H by the hamiltonian HQ by eliminating u with the aid of the 
minimum operation (4.8). We shall call this the minimum principle. 

5. Canonical Differential Equations; Pontryagin's Theorem 

At this stage, the solution of the optimal control problem is reduced 
to the problem of solving the Hamilton-Jacobi partial differential 
equation. Following Caratheodory's program, one can go a step further 
and show that the optimal motions must be solutions of the character­
istics of the Hamilton-Jacobi equation, which are a set of ordinary dif­
ferential equations of order 2n. They are the Euler equations in 
canonical form-or simply the canonical equations-of the problem. 

In this way, the determination of optimal motions reduces to the 
solution of the canonical equations. But in order to show that a given 
motion is really optimal, one must still construct-abstractly or ex­
plicitly-a solution of the Hamilton-Jacobi partial differential equation 
or, what is the same thing in view of Theorem 4.2, the function VO(x, t). 
Moreover, the solution of the canonical equations does not provide the 
optimal control law for which, by (4.12), knowledge of VO is essential. 

Let G be a region in the phase space satisfying the hypotheses (i-v) 
of Theorem 4.2. Let cpO(t) be an optimal motion starting at some phase 
in G and eventually reaching a phase on S without leaving G. We define 

(5.1) 

Differentiating ",O(t) with respect to t, we have 
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Differentiating the Hamilton-Jacobi equation, regarded as an identity 
in VO(x, t), with respect to x yields 

VMx, t) + H~(x, V~(x, t), t) + Hg(x, V~(x, t), t)· V~",(x, t) = 0 (5.3) 

throughout G. Recalling the definition of H, it follows that 

Hg = I + [L .. + p·I • .]cp • (5.4) 

We wish to show that the bracketed term is zero. For technical 
reasons, we assume that the boundary 01 U(t) is smooth in the space 
Rm X T. 

Consider a point (xo, po, t) and the corresponding ug = c(xo, po, t) 
E U(t) at which H assumes its unique absolute minimum. Recall that 
U(t) is closed. The following possibilities arise: 

a. The point ug is interior to U(t). Then the first derivative of H 
with respect to u must vanish at uo: 

L .. (xo, u~, to) + Po·I .. (xo, u~, to) = O. (5.5) 

b. The point u~ is on the boundary of U(t). There are now two sub­
cases. 

i. There is at least one point in every neighborhood of (xo, po, to) 
such that the corresponding U O is in the interior of U(t). Then (5.5) 
holds also at (xo, po, to) since Lu,lu, c are continuous in all arguments. 

ii. There is a neighborhood N of (xo, Po, to) such that every U O cor­
responding to points in N lies on the boundary of U(t). In this case, 
throughout N we must have 

gi(C(X, p, t), t) = 0, i = 1, ... , q ::; m. 

Since the boundary of U(t) is smooth, we assume that the functions gi 
are differentiable in both arguments and also that the determinant 

I 
iJgi( U, t) I 

iJUj 

has rank q at the point (ug, to). Then the well-known Lagrange multi­
plier rule [4, p. 166] implies that 

q 

L .. (xo, u~, to) + Po·/u(xo, ug, to) + 2: Vig~(Ug, to) = 0, (5.6) 
i-I 

with Vi ;$ O. On the other hand, differentiating gi(C(X, p, t), t) = 0 with 
respect to x and p shows that 
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gi.(c(x, p, t), t) ·c.,(x, p, t) = 0, 

gi.(c(x, p, t), t) ·Cp(x, p, t) = 0, i = 1, ... ,q. 

Combining the foregoing two equations, we have 

[Lu(xo, u~, to) + Po-!u(xo, ug, to)]·C.,(xo, po, to) = 0 

[Lu(xo, ug, to) + Po-!u(xo, ug, to)]·cp(xo, po, to) = O. 

Hence we conclude that 

H.,(x, p, t, c(x, p, t» = H~(x, p, t), 

H p(x, p, t, c(x, p, t» = Hg(x, p, t) = f(x, p, t); 

(5.7) 

(5.S) 

these equations follow immediately from (5.7) in case (ii) and from 
(5.6) in the other cases. 

In view of (5.S), utilizing also (5.2) and (5.3), we obtain the canonical 
equations: 

dx 
a. - = Hg(x, p, t) = Hp(x, p, t, c(x, p, t», 

dt 

dp 
h. - = -Hg(x, p, t) = -H.,(x, p, t, c(x, p, t», 

dt 

which could also be written as the identities 

dcpO(t) = Hp(cpO(t), 1/IO(t), t, UO(t», 
dt 

d1/l;t(t) = -H.,(cpO(t),1/IO(t),t,uO(t». 

(5.9) 

(5.10) 

The last equations constitute a special case of the following result. 

PONTRYAGIN'S THEOREM [s]. If the motion cpO(t) is optimal with con­
trol UO(t), then there must exist a function 1/IO(t) such that (5.10) is satisfied 
and in addition the relation 

H(cpO(t), 1/IO(t), t, u) ~ H(cf>°(t), 1/IO(t), t, UO(t» (5.11) 

must hold for all u E U(t). 

Equation (5.11) is Pontryagin's form of the minimum principle. It 
is proved [S], [11] by constructing a special first variation of the func-
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tion UO(t). (In Pontryagin's paper, H is defined, following the standard 
convention, as the negative of the quantity (4.6). For this reason, 
Pontryagin speaks of the "maximum" principle. We feel that the present 
choice of sign, which is motivated by the dynamic programming ap­
proach to the definition of Va, is more natural.) 

Note that Pontryagin's theorem is valid [11] without the strong 
smoothness assumptions concerning Va. But in that case one can­
not identify ",O(t) with ~(cf>°(t), t), and there remains a gap between 
the necessary condition represented by Pontryagin's form (5.10) of the 
Euler equations and the Hamilton-Jacobi-Caratheodory theory that 
we have sketched above. 

Nevertheless, our theory can still be used for the effective solution 
of problems in which VO(x, t) does not have continuous second deriva­
tives throughout the phase space. 

6. Solution of a Minimal-Time Problem 

onsider the linear system (harmonic oscillator), 

dXI 

with 

-=X2 
dt ' 

dX2 
- = -Xl + UI(t), 
dt 

(6.1) 

(6.2) 

Determine a control law taking the state of the system to the origin 
in the shortest possible time. See the minimal-time control problem 
in Section 2. 

This celebrated problem seems to have been first mentioned by Doll 
[12] in 1943 in a U.S. Patent. The first rigorous solution of the problem 
appeared in 1952 in the doctoral dissertation of Bushaw [13]. Bushaw 
states that the problem does not fall within the framework of the classi­
cal calculus of variations, and he solves it by elementary but highly 
intricate direct geometric arguments. 

The hamiltonian theory developed above can be applied quite simply 
to give a rigorous proof of Bushaw's theorem. 

We rewrite Equations (6.1) in matrix form as 

dx 
- = Fx + Gu(t), (6.3) 
dt 
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where 

F = [ 0 1J, 
-1 0 g = G = [~l 

The minimum principle shows that the optimal control must satisfy 
the relation 

(6.4) 

where sgn is the scalar function of the scalar g'p that takes on the 
value 1 when g'p > 0, -1 when g'p < 0, and is undetermined when 
g'p = o. 

Since the problem is invariant under translation in time, we shall 
drop the arguments referring to the initial time, which can be taken 
as 0 for convenience. Instead of considering motions in the phase space 
(Xl, X2, t), we need to consider them only in the state space (Xl, X2). 

First we determine all possible optimal motions passing through the 
origin. There are three of these: Either cJ>0(t) is identically zero, which 
is trivial, or cJ>°(t) is a solution of (6.1) with UO(t) = +1 or -1. 

Let UO(t) = 1. Then the motion of (6.1) passing through the origin 
is a circular arc 'Y+ of radius 1 about the point (1, 0) (see Fig. 1). 
To check whether this motion is really optimal, we must verify first 
of all that we have g''''O(t) < 0 along the entire arc. Now (5.9b) in 
this case is 

dp 
dt = -F'p, (6.5) 

which is independent of x and has the solution 

[

COS (t - to) sin (t - to)] 
",O(t) = "'O(to). 

-sin (t - to) cos (t - to) 
(6.6) 

It is clear that ",O(t) is periodic with period 271"; therefore the largest 
interval over which we have g'1J;°(t) < 0 is at most of length < 71". 
This is actually achieved by choosing "'°(0) = (E, 1), so that 

g'",O(t) < 0 for all 0 ~ t < 71" - E. (6.7) 

Thus the necessary condition provided by the Euler equation (5.10) is 
satisfied along the arc 'Y+ up to the state (2,0). (The remaining portion 
of the arc 'Y+ is shown by a dashed curve in Fig. 1.) 

Now we must establish a sufficiency condition; in other words, we 
must show that the arc 'Y+ is indeed an optimal motion between the 
states (0, 0) and (2, 0). 
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Fig. 1. Solution of minimal-time problem. 

Let us define the set 81 by 

8 1 = {x; -0.1 < Xl < 0.1, X2 = oJ, 
as shown in Figure 1. We consider the problem of reaching 81 in minimal 
time. Since V? = 0, the Hamilton-Jacobi equation for this problem is 

V~· (Fx + g) = -1, (6.8) 

which has the solution 

The value of va for X2 = 0 is defined by its limit as X2 ~ 0 from negative 
values. Then va = 0 on 8 1, as required. Moreover, the region G1, where 
va is to satisfy (6.8), is taken as the semicircular band indicated by 
the crosshatching in Figure 1. 

It follows from the necessary and sufficient conditions given in 
Section 4 that if we connect any state on y+ with 81 by means of a motion 
of (6.1) that is distinct from 'Y+ and remains entirely in G1, then the value 
of V in (2.3) necessarily is greater than VA. 

But if it is not possible to reach 8 1 from 'Y+ faster than by proceeding 
along y+ itself, the same is true a fortiori as concerns reaching the state 
(0,0) on 81• Hence we have proved: 

The motion y+ is optimal relative to the region G1• 

The same construction establishes the local optimality of the motion 
'Y- (see Fig. 1). 
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Now we let S2 = 'Y+, hex) = v~(x), and we consider the minimal­
time problem relative to S2. All optimal motions, denoted by 0- in 
Figure 1, necessarily correspond to Uo = -1. They are circular arcs of 
radius 1 about the point (-1, 0). Applying the Euler equations the 
same way as before, we find that all optimal arcs 0- must terminate 
on the semicircle of radius 1 centered at (-3,0), which is part of the 
curve r in Figure 1. The arcs 0- therefore fill up a region G2 bounded by 
'Y+, 'Y-, and the semicircle centered at (-1, 0) that connects (2, 0) 
with (-4, 0). If we calculate the time needed to reach 'Y+ starting 
from a point to G2 and proceeding along 0-, we get a smooth function 
~(x) satisfying the Hamilton-Jacobi equation (6.8). Details are left 
to the reader. This proves that all motions consisting of an arc of 0-
and an arc of 0+ are optimal. 

The construction can be continued in a similar fashion until it covers 
any point in the plane. The optimal control law is 

j 
below the curve r composed of 

u~(x) = k(x) = + 1 
semicircles of radius 1 and on 'Y+; 

-1 above the curve r and on 'Y-. 

(6.9) 

On r - ('Y+ V 'Y-), the value of Uo is not determined by the minimum 
principle; it is easily verified that the choice of Uo on r - ('Y+ V 'Y-) 
is immaterial as long as I ull ~ 1. 

The control law (6.9) is Bushaw's theorem. 
It should be noted that the function yo, which is determined piece­

wise as V~, vg, etc., is not continuously differentiable at a point P on 
'Y+. The limit of V~ is infinite if we approach P from below 'Y+ along 
points that lie on the continuation of 0-; and the same limit is finite 
if we approach P from above 'Y+ along 0-. 

As a result, the Euler equations (5.9) do not have continuous solu­
tions along optimal motions; the conjugate vector p receives an "im­
pulse" on passing through r. But the more general proof [11] of 
Pontryagin's theorem shows that relations (5.10) remain true, so that 

UO(t) = -sgn [g'ljIO(t; po, to)], (6.10) 

where the initial condition po for the adjoint equation (6.5) may be 
defined by 

po = k(xo), 

in which k is the optimal control law (6.9). Then ljIO(t) vanishes on r, 
which shows that ljIo cannot be interpreted as V~. 

In using Pontryagin's theorem in the form just mentioned as a neces-
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sary condition to determine all possible optimal motions, it is still 
necessary to carry out the explicit construction given above, for (6.10) 
can be interpreted as the optimal control only if an optimal motion is 
known to exist connecting Xo with the origin. In this very special case 
one can prove sufficiency without the Hamilton-Jacobi theory by 
noting that for any (xo, to) there is exactly one UO(t) satisfying (6.10) 
which transfers Xo to o. 

7. General Solution of the Linear Optimal Regulator Problem 

A class of problems that can be completely solved by the hamiltonian 
theory is represented by the functionalt 

(7.1) 

where the motions CPu are defined by the linear differential equation 

dx 
- = F(t)x + G(t)u(t); 
dt 

(7.2) 

there are no constraints on u. 
This is a slight generalization of the regulator problem given in 

Section 2. 
The matrices Q(t), R(t) are taken to be positive definite for all t. 

This assumption on R implies that the equation 

2H(x, p, t, u) = IIH(t)xll~(,) + lIull~(t) + 2p· [F(t)x + G(t)u(t)J (7.3) 

has a unique absolute minimum for every (x, p, t) at 

c(x, p, t) = -R-l(t)G'(t)p, 

so that we have 

2HO(x, p, t) = IIH(t)xll~(t) + 2p·F(t)x -IIG'(t)plI~-l('). (7.4) 

The Hamilton-Jacobi equation corresponding to (7.4) has a unique 
solution, given any nonnegative definite A and any tl > to. To show 
this, we assume that (4.9) has a solution of the form 

(7.5) 

t We use the notation IIxll~ for a quadratic form defined by a symmetric non­
negative definite matrix A. 
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which implies the linear control law 

k (x, t) = -R-l(t)G'(t)P(t)x. (7.6) 

It is easily checked that (4.9) with the hamiltonian defined by (7.4) 
has a solution of the type (7.5) if and only if the symmetric matrix 
P(t) is a solution of the Riccati equation 

dP - dt = F'(t)P + PF(t) - PG(t)R-l(t)G'(t)P + H'(t)Q(t)H(t). (7.7) 

Moreover, the boundary condition 

VO(Xt, tt) = IIxlI!. 

which is the concrete form of (4.4), implies that the solution of (7.7) 
must satisfy the initial condition 

P(h) = 2A. (7.8) 

Since (7.7) is nonlinear, it is not clear at once that P(t) exists outside 
of a small neighborhood of tt. The integral (7.1) may nevertheless be 
bounded from above by the free motions of (7.2), that is, by setting 
u(t) = 0, which in view of (7.5) is equivalent to a bound on IIp(t)II. 
Using the a priori bound so obtained in the standard existence theorem 
for differential equations shows that solutions of (7.7) exist for all 
t ::::; tl. This conclusion is in general no longer valid if A has negative 
eigenvalues or if t > tl. 

Once the existence of solutions of (7.7), and therefore of the Hamil ton­
Jacobi equation, is ensured, the solutions can be expressed [2], [3], [7] 
with the aid of solutions of the canonical differential equations 

[
dX/dt] = [ F(t) -G(t)R-t(t)G'(t)] [X]. 
dp/dt -H'(t)Q(t)H(t) -F'(t) p (7.9) 

Further difficulties arise, however, in studying the stability of (7.7) 
as well as the stability of the optimal motions defined by (7.6). Details 
of these problems may be found particularly in [7]. 

8. General Solution of the Linear Optimal Servomechanism Problem 

The problem considered in the previous section can be generalized in 
several ways. We consider here simultaneously two such generaliza tions. 

First, we assume that the motions, in addition to control, are subject 
to "disturbances" represented by the term w(t) in the equation 
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dx 
- = F(t)x + G(t)u(t) + wet). 
dt 

Second, we assume that the functional to be minimized is 

We call the p-vector, 

yet) = H(t)x(t), 
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(8.1) 

(8.3) 

the output of the system (8.1); by analogy, the vector function 1](t) is 
the desired output. 

This setup is a slight generalization of the servomechanism problem 
of Section 2. A number of formal solutions have appeared in the engi­
neering literature [14], [15]. The hamiltonian theory provides a simple 
rigorous proof of the known formulas. 

Proceeding exactly as in Section 7, we find that the hamiltonian of 
the problem is 

2HO(x, p, t) = 1I'l(t) - H(t)xll~(I) 

+ 2p· [F(t)x + wet)] -IIG'(t)pIl1-1(l). (8.4) 

To solve the corresponding Hamilton-Jacobi equation (4.9), we assume 
that 

2YO(x, t) = Ilxll ;(1) - 2z(t)·x + pet). (8.5) 

Substituting, we obtain the following result: 

THEOREM. The function YO(x, t) given by (8.5) satisfies the H amilton­
Jacobi equation defined by (8.4), with yo (x, t1) = 111](t1) - H(t1)xIlA, if 
and only if 

a. the matrix pet) is the solution of the Riccati equation (7.7) with 
P(t l ) = 2A; 

b. the vector z(t) is the solution of 

dz 
- = - [F(t) - G(t)Jl-I(t)G(t)P(t) ],z + P(t)w(t) - H'(t)Q(t)'l(t), (8.6) 
dt 

with 

(8.7) 
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c. the scalar vet) is the solution of 

dv 2 I I 2 - - = [ii71(t)IiQ(I) - IG'(t)z(t) IR-l(l)] -2z(t)·w(t), 
dt 

(8.8) 

with 

The control law is linear, for it is given by 

UO(t) = - R-l(t)G'(t)p(t) = R-l(t)G'(t) [z(t) - P(t)x(t) J. (8.9) 

This law, however, is unrealizable, because it involves z(t) which, 
according to (8.6) and (8.7), must be computed backward in time and 
requires the knowledge of 1](t) and wet) in the interval [to, ttl and this 
usually is not known at the time to in practical applications. 

It should be noted that the differential equation for z(t), minus the 
forcing terms, is the adjoint of the differential equation of optimal 
motions given in Section 7. 
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Chapter 17 

Mathematical Model Making as an 
Adaptive Process 

RICHARD BELLMAN 

1. Introduction 

A great deal of interest now centers on the topic of "intelligent ma­
chines." Since there is little agreement as to what the term "human 
intelligence" means, and less understanding where these islands of 
unanimity do exist, many feel that hypothetical discussions of capa­
bilities and limitations of machines are not of the immediate essence. 
The feeling is that the proof is in the pudding-or rather in the program. 
Pursuant to this operational philosophy, sustained effort has been 
devoted to the task of duplicating or replicating human achievements 
in diverse intellectual areas. Numerous groups of mathematicians, 
logicians, engineers, and philologists are devoting appreciable amounts 
of time to the construction of devices that will play chess, translate 
Swahili (for the benefit of those who prefer Swahili literature in trans­
lation), compose music, and even produce nonobjective art-activities 
we associate with cognitive behavior, perhaps charitably in the last­
named field of activity. 

There is no a priori reason to suppose that a machine accomplishing 
these tasks performs the intermediate functions along human lines, and 
certainly there is no need for us to desire this similarity in all appli­
cations. It is unquestionably interesting to play this game of duplica­
tion of animate activities, and, often, there can be enormous value to 
this diversion. Thus, for example, if we could riddle the mystery of 
human memories we could construct computers that would help us 
attack truly formidable scientific problems. Even where the simulation 
of human abilities is quite pedestrian, as in the performance of arith-
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metic by digital computers, the result is still remarkable. Freed of the 
drudgery of these calculations, the human mind can contemplate prob­
lems of real conceptual difficulty, problems that transcend any al­
gorithms we now possess, and thus electronic circuits, now and possibly 
forever. 

As pointed out by N. Wiener in the course of conversation, it is not 
necessary to suppose that complex tasks will be carried out by machine 
alone. A man-machine combination, in which the machine performs 
well-defined tasks quickly and accurately, and the man uses the ill­
defined but very real qualities of experience, intuition, and creativity 
to guide the over-all operation, is clearly superior to either man or 
machine alone. 

One of the reasons most often heard in defense of the allocation of 
time, effort, and trained personnel to the study of machine simulation 
of such human attributes as chess-playing or of translation of languages 
is that the solution of these "simple" problems will provide valuable 
clues to the solution of the more important difficult problems. This 
argument has such an appearance of reasonableness that it should be 
examined with great care. 

Probably the principal flaw in this syllogism lies in the adjective 
"simple." The professional mathematician is well aware, after several 
hundred years of fruitless effort devoted to the four-color problem, the 
Goldbach conjecture, and Fermat's last theorem, that a simple verbal 
statement can conceal unbelievable mathematical difficulty. At the 
present time, there is an enormous semantic mismatch between mathe­
maticallanguage and the English language. Estimates of the level of 
difficulty of a problem are seldom reliable, particularly those made 
before a solution is attained. Consequently, as a pragmatic principle, 
if one wishes to obtain significant results, it is better to study significant 
questions from the very beginning. Research in these areas has a higher 
probability of producing worthwhile by-products. Furthermore, 
natural problems necessarily possess natural solutions. Despite appear­
ances of perversity and recalcitrance, nature provides many helpful 
clues. On the other hand, artificial problems, such as chess, poker, and 
translation, need not possess simple or elegant answers. 

In what follows, we wish to sketch a mechanization of the art of 
mathematical model making. This process can be carried quite far by 
digital computer because of its many surprisingly routine aspects. The 
point is that an intellectual activity requiring more training than chess­
playing, and presumably on a higher level, is actually easier to program 
for a computer. This is really not unexpected, since a computer does 
not possess uniform abilities. Consequently, it can carry out some 
processes in a superior fashion, and others in a quite inferior ma,~ner. 

t 
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The advantage in carrying out this activity is as discussed above. 
Freed from the burden of carrying out straightforward and tedious 
calculations, we can devote our time and energy to grappling with the 
unknown. 

Parenthetically, we would like to remark that there are too many 
pressing questions, and digital computers are still far too much in 
demand, for time and energy to be spent upon diversions that are 
simultaneously of great difficulty, of little intrinsic importance, and the 
solution of which would actually diminish the pleasures of mankind. 
Research is more than merely doing things that have not been done 
before. 

2. Mathematical Model Making 

It often comes as a bit of a shock to the young scientist when he realizes 
that the basic problem is more to find the right question than the right 
answer. For example, we have carloads of data in many fields, but we 
usually lack the equations that govern the data. Theories are, after all, 
only mnemonic devices to save us from the impossible task of storing 
all possible information. Given the basic equations and a small amount 
of data, we can generate the original information, and more. 

In the process of constructing a mathematical image of a physical 
process, we go through the phases of problem recognition, problem 
formulation, analytic formulation, numerical calculation, evaluation of 
results, comparison with observation and prediction of behavior, and 
finally reformulation, and so on (see [1] for a detailed discussion). The 
process is further complicated in practice by psychological, esthetic, 
and practical considerations such as availability of computers and con­
straints on time. In simplified form, nonetheless, the process can be 
regarded as a multistage decision process. Since learning is involved, 
in view of the fact that research automatically implies the unknown, 
the methodology of adaptive control processes may prove quite useful. 

At the moment, we are not concerned with optimal procedures, of 
the type occurring in medical diagnosis, in the screening of drugs, or 
in sequential testing in general, but rather in exhibiting the use of 
digital computers in the performance of certain intellectual activities 
which appear superficially to be of high level. The point once again is 
that only a very thorough examination of a process determines whether 
or not it can be discussed by mathematical techniques with the aid of 
computer technology. 

Rather than discuss the whole field of mathematical model making, 
in a program which would involve some useful but tedious enumeration 
of the mathematical schemes available for descriptions of the physical 
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world, we shall discuss a specific problem, that of constructing a mathe­
matical version of the growth of interacting species of cells. 

3. The Biological Problem 

Suppose that two types of cells, type A and type B, exist in the same 
environment and interact. We are given the size of the respective 
groups of cells, x(t) and y(t), as functions of time--results derived from 
experiment-and we are asked to provide possible kinetics of growth 
and interaction. Abstractly, this is equivalent to the problem concern­
ing two species of fish caught off the Italian coast which attracted the 
attention of Volterra and initiated his studies of "la lutte pour la vie." 

4. N oninteraction 

Let us begin with a deterministic view and assume, initially, that there 
is no interaction. The traditional model is then one in which it is as­
sumed that the rate of change of the population at any time depends 
only on the size of the population. Hence, we want to determine func­
tions g(x) and h(y) with the respective properties that the solution of 

dXl de = g(Xl), 

dYl de = h(Yl), 

(4.1) 

fits the observed data, given by the functions x(t) and y(t), as closely 
as possible. 

There are various ways of tackling this problem, depending on what 
we wish to obtain. The standard steps are thus 

dXl 
de = glXl, 

dYl 
- = hlYl 
dt ' 

a linear growth model, and then 

dXl 2 
- = glXl - g2xl, 
dt 

dYl 2 - = hlYl - h2yu 
dt 

a simple self-interaction model. 

(4.2) 

(4.3) 
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In both cases, the determination of the constants that yield, say, 
best quadratic fit over an interval [0, to], 

fo T (Xl - X)2 dt, fo T (Yl - y)2 dt (4.4) 

can be carried out in many different ways (see [2]-[5]). 
Let us suppose that the fit is rather poor, so that more sophisticated 

models are to be employed. 

5. Block Diagram 

So far, a block diagram of the computer program has the form shown 
in Figure 1. We will now add further stages to take account of the 
second, unsatisfactory, contingency. 

Elc. 

Salisfaclory 
according 10 (4.41 

Fig. 1. Block flow diagram for adaptive process. 

6. Interactions 

Having ascertained the fact that a simple version of independence does 
not fit the data, we turn to a set of coupled equations of the form 

dXl 
dt = g(Xl' Yl), 

dYl 
- = h(Xl' Yl), 
dt 

(6.1) 
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and a criterion of fit of the form 

iT [(x - XI)2 + (y - YI)2] dt. (6.2) 

There is no reason, of course, to adhere to this simple measure of error. 
We could use 

if we wanted to. 

max [I x - Xl I + I Y - YI I J 
09:5T 

(6.3) 

Once again we have a curve-fitting problem, and once again the steps 
are standard. We begin with a linear model 

dXl 
dt = gllXl + gl2Y!' 

dYl dt = g21XI + g22YI, 

(6.4) 

and use various known methods to determine the coefficients gij so as 
to minimize the criterion functions of (6.2) or (6.3). If the error is too 
great, we introduce nonlinear interaction terms 

dXl 2 2 dt = gllXl + g12Yl + g13Xl + g14X lYl + gUYl' 

dYl 2 2 dt = g21Xl + g22Yl + g2sXl + g24XIYI + g25YI, 

7. Further Adjustments 

(6.5) 

If the growth curves are unexpectedly obdurate, there are several 
further standard steps we can take, following the lead of Volterra, 
Feller, Harris, and others. We can introduce hereditary effects, in the 
form of time lags or convolution integrals; we can consider a more 
detailed model based on probabilities of population size and branching 
processes; we can introduce random forcing terms representing the 
outside environment; and so on. Each of these models requires some 
sophisticated analysis, but it is known analysis which can be reduced 
to algorithms and programmed for the computer. We can, without any 
difficulty, collect the half-dozen or so different mathematical models 
that have been proposed and apply them sequentially to the particu­
lar problem under discussion. The same holds for many classes of 
processes which have been and are currently being treated in the 
literature. 



Mathematical Model Making 339 

8. Discussion 

The foregoing procedure can be improved in a number of ways. In the 
first place, at each step we can arrange to have several alternative 
models from which to choose, and can make the choice according to the 
kind of unsatisfactory behavior exhibited by the previous model. 

Second, we can apply a man-machine combination, and stop the 
process from time to time to allow an examination of the results ob­
tained to date. On this basis, we can choose the continuation of se­
quences of models. 

Third, we can introduce adaptive and learning features, in which 
calls for new information will be made. 

In this way, we place ourselves in a position to perform a consider­
able amount of mathematical experimentation, an activity for which 
digital computers are ideally suited, and an activity in which they have 
unfortunately not been prominent to date. 
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