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Preface

The papers collected in this volume were presented at the Symposium
on Mathematical Optimization Techniques held in the Santa Monica
Civic Auditorium, Santa Monica, California, on October 18~20, 1960.

The objective of the symposium was to bring together, for the pur-
pose of mutual education, mathematicians, scientists, and engineers
interested in modern optimization techniques. Some 250 persons at-
tended. The techniques discussed included recent developments in
linear, integer, convex, and dynamic programming as well as the varia-
tional processes surrounding optimal guidance, flight trajectories,
statistical decisions, structural configurations, and adaptive control
systems.

The symposium was sponsored jointly by the University of Cali-
fornia, with assistance from the National Science Foundation, the
Office of Naval Research, the National Aeronautics and Space Admin-
istration, and The ranp Corporation, through Air Force Project RAND.

Richard Bellman
Santa Monica
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Introduction

RICHARD BELLMAN

One of the self-imposed, and sometimes unappreciated, tasks of the
mathematician is that of providing a choice of firm bases for the quanti-
tative description of natural processes. Among the several motivations
for these Herculean labors, the fact that they are interesting is cer-
tainly paramount. The physical world has been and continues to be
the primary source of intriguing and significant mathematical prob-
lems. Although one would think that the armchair philosopher with
his ability to conjure up countless infinities of universes could easily
create arbitrarily many fascinating fictitious worlds, historically this
has not been the case. The mathematician, from all appearances, needs
the constant infusion of ideas from the outside. Without these stimuli
the pure breed of axiomatics, as pure breeds are wont to do, becomes
sterile and decadent.

The second motivation is pragmatic. The task, if successful, has
many important ramifications. Predicted results, derived from mathe-
matical models of physical phenomena, can be compared with experi-
mental data obtained from a study of the actual physical phenomena,
and thus used to test the validity of the fundamental assumptions of
a physical theory. Mathematics can therefore, if not capable of con-
structing the actual universe by the critique of pure reason, at least
play an essential role in demonstrating what hypotheses should not be
put forth.

Finally, there is the perennial hope that with sufficient under-
standing of a physical system will come the ability to control it. Thus,
celestial mechanics leads to improved calendars, or at least to theories
capable of constructing improved calendars, to more accurate navi-
gation, and to a very profitable and thriving trade in horoscopes;
nuclear physics leads to industrial reactors and cancer cures; and so on.

In view of what has been said, it is perhaps natural to expect that
purely descriptive studies would precede a theory of control processes.

vii



viii Introduction

Historically, this has indeed been the case to a great extent. Yet, even
so, seventeenth-century theology led to the postulation of various eco-
nomical principles of natural behavior that turned out to be of enor-
mous mathematical and physical significance. We know now that there
is no clear-cut line of demarcation between descriptive and control
processes. It is to a great extent a matter of analytic convenience as
to how we propose to derive the basic equations and to conceive of the
various physical images of a particular equation. This “‘as if”’ quality
of mathematics is one of the most powerful aspects of the scientific
method.

One of the most interesting and important classes of optimization
problems of contemporary technology is that connected with the deter-
mination of optimal trajectories for manned and unmanned flights.
Initially, these questions can be formulated in terms of the classical
calculus of variations. A fundamental quantity associated with the
trajectory can be written as a functional,

s = [ o a o

where x = z() is the position vector and ¥ = y(¢) is the control vector,
connected by a vector differential equation,

% =h(z,y), =(0)=c, 2

and generally by some local and global constraints of the form

kiz,y) <0, i=1,2,---,M,
(z,y) ) @)

T
f rix,y)dt<a, j=1,2---,R.
[

Even if the constraints of (3) are not present, the problem of deter-
mining the analytic structure of the optimal trajectory and of the
optimal control policy is a difficult one, and the question of computa-
tional solution is even more complex. When the constraints are present,
we face the delicate juggling act of balancing a set of differential equa-
tions and differential inequalities involving state variables and
Lagrange multipliers.

The first three chapters, by Miele, Dergarabedian and Ten Dyke,
and Breakwell, present the approaches to these matters by means of
the conventional calculus of variations. The fourth chapter, by Dreyfus,
combines these techniques, the method of successive approximations,
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and the theory of dynamic programming to provide a new approach.
Many further references will be found in these chapters.

Another important area of modern life is that concerned with the
communication and interpretation of signals, and with their use in
various multistage decision processes such as radar detection and
equipment replacement. We find a large area of overlap between the by
now classical theory of prediction and filtering of Wiener-Kolmogorov
and the modern statistical theories of estimation of Wald, Girshick,
Blackwell, and others. The fifth and sixth chapters, by Parzen and
Kailath, are devoted to prediction and filtering; the seventh, by
Middleton, is a comprehensive study of the formidable optimization
problems encountered throughout the theory of communication. The
eighth chapter, by Hall, discusses questions of the optimal allocation
of effort in testing and experimentation. The last chapter of part two,
by Derman, presents an application of dynamic programming to the
study of a class of replacement processes.

The third part of the book consists of chapters devoted to geometric
and combinatorial questions directly or indirectly connected with
linear and nonlinear programming, and to applications of these theories.
Linear programming is devoted to the study of ways and means of
maximizing the linear form

N
L(z) = > aw; @
f=e]l
over all z; subject to the constraints
N
Zbijxjsci, 7:=1)2:'°')M° (5)
=1

Geometrically, this forces us to examine the vertices of a simplex de-
fined by the inequalities of (5). The chapter by Kruskal is devoted to
an aspect of this, and the one by Tucker illustrates the applicability of
the simplex method of Dantzig to the systematic exposition of a number
of questions in the field of linear inequalities. Thus a method designed
primarily as a computational tool turns out to be of fundamental
theoretical significance. There is certainly a moral attached to this.

The theory of nonlinear programming is devoted to the study of the
maximization of a general function of N variables,

F((C) = F(xly Toy **, xN); (6)
over all x; subject to the constraints
Gi(xlix‘h"',xh')so; i=1;2:"';M- Q]



x Introduction

The chapter by Wolfe contains an expository account of some of the
principal analytic and computational results concerning this ubiquitous
problem.

In a slightly different vein are the chapters by Elfving and Prager.
The first considers a problem related to that discussed by Hall, using
the ideas of game theory, and the second considers some optimization
problems arising in the design of structures.

The fourth part of the volume contains three chapters on automation
and control and the use of digital computers. The first, by LaSalle, is
a survey of the modern theory of control processes in the Soviet Union,
where some of the leading mathematicians and engineers, such as
Pontryagin and Letov, are devoting their energies to a determined
attack on the theoretical aspects of control theory. The second chapter,
by Kalman, shows how the functional-equation technique of dynamic
programming can be established along the lines of Hamilton-Jacobi
theory and the work of Carathéodory, and discusses some further re-
sults in the theory of optimal control. The last chapter, by Bellman, is
devoted to a formulation of mathematical model making as an adaptive
control process, and thus as a process that can in part be carried out
by digital computers.
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Chapter 1

A Survey of the Problem of Optimizing
Flight Paths of Aircraft and Missiles'

ANGELO MIELE

1. Introduction

This chapter reviews the problems associated with the optimization of
aircraft and missile flight paths. From a physical point of view, these
problems are of two types: problems of quasi-steady flight and problems
of nonsteady flight. The quasi-steady approach, in which the inertia
terms appearing in the dynamical equations are regarded as negligible,
is of considerable interest along a large part of the flight path of an
aircraft powered by air-breathing engines. On the other hand, the
nonsteady approach is indispensable in the analysis of rocket-powered
aircraft, guided missiles, skip vehicles, and hypervelocity gliders; it is
also of interest in the study of the transient behavior of aircraft
powered by air-breathing engines.

Regardless of the steadiness or nonsteadiness of the motion, the
determination of optimum flight programs requires the study of func-
tional forms that depend on the flight path in its entirety. Thus, the
calculus of variations [1]is of primary importance in flight mechanics,
even though there are certain simplified problems of quasi-steady flight
in which it is by no means an indispensable tool. As a matter of fact,
for these simplified problems, the optimization on an integral basis by
the calculus of variations and the optimization on a local basis by the
ordinary theory of maxima and minima yield identical results [2],

[3], [4].

t This paper was presented also at the semiannual meeting of the American
Rocket Society, Los Angeles, California, May 9-12, 1960.
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However, since all optimum problems of the mechanics of flight can
be handled by means of the caleulus of variations, it follows that the
most economical and general theory of the flight paths is a variational
theory. The results relative to quasi-steady flight can be obtained as
a particular case of those relative to nonsteady flight by letting the
acceleration terms appearing in the equations of motion decrease,
tending to zero in the limit.

Historical Sketch

Although the application of the calculus of variations to flight
mechanics is quite recent, it is of interest to notice that Goddard [5]
recognized that the calculus of variations is an important tool in the
performance analysis of rockets in an early paper published about 40
years ago. Hamel [6], on the other hand, formulated the problem of the
optimum burning program for vertical flight about 30 years ago.

Despite these sporadic attempts, however, the need for an entirely
new approach to the problem of optimum aircraft performance was
realized by the Germans only during World War II. Lippisch [7],
designer of the Messerschmitt 163, investigated the most economic
climb for rocket-powered aircraft and shed considerable light on a new
class of problems of the mechanics of flight. In the years following
World War II, the optimum climbing program of turbojet aircraft at-
tracted considerable interest and was investigated in a highly simplified
form by Lush [8] and Miele [9] using techniques other than the in-
direct methods of the calculus of variations.

A short time later, a rigorous variational formulation of the problem
of the optimum flight paths became possible as a result of the work of
Hestenes [10], Garfinkel [11], and Cicala [12], [13] on the formula-
tions of Bolza, Lagrange, and Mayer; subsequently, a general theory
of these problems was formulated by Breakwell [14], Leitmann [15],
Fried [16], and Miele [17]. Incidentally, while the indirect methods of
the calculus of variations are of fundamental importance in solving
extremal problems, several other optimization techniques have been
employed in recent years—more specifically, the theory of dynamic
programming [18], [19], [20], the theory of linear integrals by Green’s
tthec])rem [21], [22], and the gradient theory of optimum flight paths

23 1.

Since most of the recent developments are based on indirect varia-
tional methods and since the results of the quasi-steady theory can
be obtained from the variational procedure, this chapter is organized
as follows. First, the problems of Bolza, Mayer, and Lagrange are
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formulated ; then, the following problems are reviewed: (a) quasi-steady
flight over a flat earth; (b) nonsteady flight over a flat earth; and (¢)
nonsteady flight over a spherical earth.

2. Techniques of the Calculus of Variations

The calculus of variations is a branch of calculus that investigates
minimal problems under more general conditions than those considered
by the ordinary theory of maxima and minima. More specifically, the
calculus of variations is concerned with the maxima and minima of
Sfunctional expressions in which entire functions must be determined.
Thus, the unknown in this case is not a diserete number of points, but
rather the succession or the assembly of an infinite set of points—all
those identifying a curve, a surface, or a hypersurface, depending upon
the nature of the problem.

Applications of the calculus of variations occur in several fields of
science and engineering—for instance, classical geometry, elasticity,
aerolasticity, optics, fluid dynamiecs, and flight mechanics. Neverthe-
less, this branch of mathematies has thus far received little attention
from engineers, the probable reason being that the applications de-
scribed in almost every known textbook (the classical brachistochronic
problem, the curve of minimum distance between two given points, the
isoperimetric problem of the ancient Greeks, etc.) are either obsolete
or susceptible to obvious answers. In the last 15 years, however, the
calculus of variations has experienced a revival in engineering. Two
fields of problems are mainly responsible for this: applied aerodynamics
and the study of the optimum shapes of aircraft components; flight
mechanics and the study of the optimum trajectories of aircraft and
missiles.

The Problem of Bolza

The most general problems of the calculus of variations in one dimen-
sion are the problems of Bolza, Mayer, and Lagrange. Perhaps the
simplest way to approach these problems is to study first the problem
of Bolza, and then to derive the other two problems as particular cases.
Theoretically, however, these three problems are equivalent, since it
is known that any one of them can be transformed into another by a
change of coordinates [1].

The problem of Bolza is now stated as follows: “Consider the class
of functions

yk(x): k= 1’ T, N, (2'1)
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satisfying the constraints

1: RS (22)

Il

éi(@, yr, Pu) =0, i
and involving
f=n—p>0
degrees of freedom. Assume that these functions must be consistent
with the end-conditions
we(Zi, Yriy T, Yur) = 0, r=1-..,8<2n+ 2, 2.3)

where the subscripts ¢ and f designate the initial and final point, re-
spectively. Find that special set for which the functional form

zy
¥ = G, Yri, T, Yoy) + f H(z, yr, 9s) dx (2.4)

is minimized.”

For the particular case H = 0, the problem of Bolza is reduced to the
problem of Mayer. Furthermore, if G = 0, the problem of Bolza is re-
duced to the problem of Lagrange.

Euler-Lagrange equations. The problem formulated above can be
treated in a simple and elegant manner if a set of variable Lagrange
multipliers

Aj(x)y ] =1,:-,p, (25)

is introduced and if the following expression, called the fundamental
Sfunction or augmented function, is formed:

4
F=H+ 3 \oi. (2.6)
=1
It is known [1] that the extremal arc, the special curve extremizing v,
must satisfy not only the set of equations (2.2) but also the following
Euler-Lagrange equations:

d (oF oF
_(_>‘—=0, k=1,-,mn @)
dx \ 0y, Y

The system composed of the constraining equations and the Euler-
Lagrange relations includes n 4 p equations and unknowns; con-
sequently, its solution yields the n dependent variables and the p
Lagrange multipliers simultaneously.

The boundary conditions for this differential system are partly of
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the fixed end-point type and partly of the natural type. The latter
must be determined from the transversality condition

4G + [(F -3 Ey,,) dz+ —adey,,]/ 0, (28

k=l OYk k=1 OYk H

which is to be satisfied identically for all systems of displacements
consistent with the prescribed end-conditions.

Discontinuous solutions. There are problems of the calculus of vari-
ations that are characterized by discontinuous solutions, that is, solu-
tions in which one or more of the derivatives g, experience a jump at a
finite number of points. These points are called corner points; the entire
solution is still called the extremal arc, while each component piece is
called a subare.

When discontinuities occur, a mathematical criterion is needed to
join the different pieces of the extremal arc. This criterion is supplied
by the Erdmann—Weierstrass corner conditions, which are written as

(ﬂ) _ ("’_F_) ©.9)

o/~ \ou/s’ '
n QF " OF

(F -, Z—_yk) = (F - i—y,,> , (2.10)
k-1 Ok /- =1 O J+

where the negative sign denotes conditions immediately before a corner
point and the positive sign denotes conditions immediately after such
a point.

Incidentally, discontinuous solutions are of particular importance in
engineering. In fact, while nature forbids discontinuities on a macro-
scopic scale, not infrequently the very process of idealization that is
intrinsie to all engineering applications leads to a mathematical scheme
that forces a discontinuity into the solution.

First integral. A mathematical consequence of the Euler equation is

d " OF oF
2r-> Z )= 2o, 2.11
dx( E 9 y") Py @.10)

Consequently, for problems in which the augmented function is
formally independent of z, the following first integral occurs:

n. dF
—F+Y —u=C, (2.12)

k=1 OYk
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where C is an integration constant. For the case of a discontinuous
solution this first integral is valid for each component subarc; further-
more, because of the corner conditions, the constant C has the same
value for all the subarcs composing the extremal are.

Legendre—Clebsch condition. After an extremal arc has been deter-
mined, it is necessary to investigate whether the function ¢ attains a
maximum or & minimum value. In this connection, the necessary con-
dition due to Legendre and Clebsch is of considerable assistance. This
condition states that the functional ¥ attains a minimum if the follow-
ing inequality is satisfied at all points of the extremal arc:

n n 2

F
> —— sy > 0, (2.13)
k=1 j=1 OYr0Y;

for all systems of variations &y consistent with the constraining
equations

n a¢ )
Za—g’ayﬁo, i=1,---,p (2.14)
kel k

It is emphasized that condition (2.13) is only a necessary condition. The
development of a complete sufficiency proof requires that several other
conditions be met. For this, the reader is referred to the specialized
literature on the subject [1].

The Problem of Mayer with Separaled End-Conditions

An important subcase of the Mayer problem is that in which the end-
conditions are separated. In this particular problem, the functional to
be extremized takes the form

7
¥ =[G v, (2.15)
while the end-conditions appear as
w (s, Yrd) =0, r=1,---,gq,
w,(x,,y;;,)=0, r=q-4+1,:---,s.

It is worth mentioning that, in the general case, the transversality con-
dition reduces to

!

[(ﬁ -3 _aﬁyk>dx+ i(ﬁ—{—ﬁ)dyk:l‘ =0, (216)

oT  im1 OUk k=1 \0Ux O
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and to

[(% ~C)ds+ z(ﬁ + ﬁ) dyk]f 0 @

=1 \OUr O ]

+

if the fundamental function is formally independent of z.
3. Quasi-Steady Flight over a Flat Earth

Consider an aircraft operating over a flat earth, and assume that the
inertia terms in the equations of motion are negligible. Denote by T the
thrust, D the drag, L the lift, m the mass, g the acceleration of gravity,
X the horizontal distance, & the altitude, V the velocity, v the in-
clination of the velocity with respect to the horizon, and ¢ the inclina-
tion of the thrust with respect to the velocity. Assume that the drag
function has the form

D=D®V, L)
and that the thrust and mass flow of fuel are functions of the following
type:

T= T(h7 v, a))

8= B(h; Vv, a):
where « is a variable controlling the engine performance and is called
the engine-control parameter, the thrust-control parameter, or the
power setting.

With these considerations in mind, we write the equations governing
quasi-steady flight in a vertical plane as

pr=X—Vecosy =0, 3.1)
¢ps=h—Vsiny =0, 3.2
¢3=T(,V,a)cos e — Dh,V,L)y —mgsiny =0, (3.3)
¢a=Tk,V,a)sin e+ L —mg cosy =0, (8.4)
¢s=m+ Bk, V,e) =0, (3.5)

where the dot denotes a derivative with respect to time. These equa-
tions contain one independent variable, the time ¢, and eight dependent
variables, X, h, V, v, m, L, a, e. Consequently, three degrees of freedom
are left, as is logical in view of the possibility of controlling the time
history of the lift, the thrust direction, and the thrust modulus.
Because of the characteristics of the engine, the thrust modulus can-



10 Aircraft, Rockets, and Guidance

not have any arbitrary value but only those values that are bounded
by lower and upper limits. Assuming that the lower limit is ideally zero,
we complete the equations (3.1) through (3.5) by the inequality

0< TV, &) < Tuulh, V),
which can be replaced by the constraints ,
=T, V,a) —£=0, 3.6)
¢1 = Tmax(h, V) — T(h, V,0) — 9* = 0, 3.7

where £ and u are real variables.

Additional Constraints

In many engineering applications it is of interest to study particular
solutions of the equations of motion—more specifically, those solutions
that simultaneously satisfy either one or two additional constraints
having the form

¢s = A(Xy LV, Y, m, L, a, 6) =0, (38)
¢9 = BX,h,V,v,m,L, &, ¢) =0. 3.9

The effect of these additional constraints is to reduce the number of
degrees of freedom of the problem and to modify the Euler-Lagrange
equations. Consequently, the solution of the variational problem is
altered.

The Mayer Problem

In the class of functions X(t), h(f), V (), v(t), m(®), L(t), a(t), ),
£(t), n(t), which are solutions of the system composed of (3.1) through
(3.9), the Mayer problem seeks the particular set extremizing the dif-
ference AG between the final and the initial values of an arbitrarily
specified funetion G=G(X, h, m, ).

The Euler-Lagrange equations associated with this variational prob-
lem are written as follows:

. 34 oB
A = )\sg-l-)\say (310)
A= ks(ﬂcou - a—D> +)\4£sin e+ )\5%+>\.a—T

oh oh oh oh oh

(T, T)+xaA+x %B (3.11)
Ton N on ' an’ '
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0 \ N T (OT 6D)+)\ aT
= —ACOSY — ) — COS € — — — 81
1 Y 28I 7Y 3 aVC € av 48V ne

+xa’3+x (T STy e, 2B
B 6 7a max SaV QaV’

34
0 = V(A1siny — Az cosy) +mg(—Azcosy + Agsiny) + M;—
Y

aB

+)\9-—-:
dy
. ) dA 0B
A = —g\ssiny + Nscosy) + Ag—— F Ag—
am am
0 )\aD+>\ I 6A+>\ oB
ML ML T L
T _ a8 aT 84
= —(Ascos e+ Asine) +As— + e — A7) — + Ag—
da da Jda do
+2Z
? da ’
. 3A 9B
0 =T(—\;sine-+ Aicose) - Ag— + Ag—
de Jde
0 = N,
0 =2Am,

and admit the first integral
V(Arcosy 4+ Aesiny) — A8 =C

11

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
(3.19)

where C is an integration constant, Furthermore, these equations must
be solved for boundary conditions consistent with the transversality

condition, which is rewritten here as

[d6 + M dX + Aedh + Asdm — C di]i = 0.

Problems with Three Degrees of Freedom

If there are no additional constraints, that is, if the two functions
A and B are identically zero, it is possible to obtain several general

results by inspection of equations (3.1) through (3.19).

Concerning the optimization of the thrust direction, (3.15) and (3.17)
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yield the important result that

tan 2 (3.20)
— arctan 22 ,
€ arcran ) ’

which, for flight at subsonic speeds with a low angle of attack and for
a parabolic drag polar, leads to the following conclusion: The flight
performance is extremized when the inclination of the thrust axis is
equal to twice the downwash angle [14].

Concerning the optimization of the thrust modulus, (3.18) and (3.19)
indicate that the extremal arc is discontinuous and is composed of sub-~
arcs of three kinds [17]:

a. &= 0, A= 0,
b. 7 =0, A =0, (3.21)
C. A= 0, A =0.

Subarcs of type (a) are flown by coasting (7'=0); subares of type (b)
are flown with maximum engine output (7 = Tn.); and subarcs of
type (c) are flown with continuously varying thrust. The way in
which these different subares must be combined depends on the nature
of the function ¢ and the boundary conditions of the problem. This
problem is not analyzed here, because of space considerations, but
must be solved with the combined use of the Euler equations, the
corner conditions, the Legendre-Clebsch condition, and the Weierstrass
condition (see, for instance, [15]).

Problems with One Degree of Freedom

By specifying the form of the functions 4 and B for particular cases,
we can obtain a wide variety of engineering information on the nature
of the optimum paths for quasi-steady flight.

Mazximum range at a given altitude. Consider the problem of maxi-
mizing the range (@ = —X) for a given fuel weight, the flight time
being free. If we assume that the trajectory is horizontal and the thrust
and the velocity are parallel, the two additional constraints take the
form

A=vy=0, (3.22)
B=¢=0, (3.23)
and the number of degrees of freedom is reduced to one. After laborious
manipulations, it is possible to eliminate the Lagrange multipliers and




Optimizing Flight Paths ’ 13

to obtain the following result: The optimum path includes subarcs
along which 7 = T and subarcs flown with variable thrust along

which

ViellT T —D

J( /e ) —0, (3.24)
vV a

where ¢ = Bg/T is the specific fuel consumption and J is the Jacobian
determinant of the functions V/¢T and T — D with respect to the
velocity and the power setting. In an explicit form, (3.24) can be re-
written as

—a-V/T aVT
aV( cT) 5(/0)

2 o-p Za-p
1% da

This leads to

aiV (C—VD) =0, (3.25)

if the specific fuel consumption is independent of the power setting.

Now, denote the zero-lift drag by D, and the induced drag by D;. If
it is assumed that the drag polar is parabolic with constant coefficients
and that the specific fuel consumption is independent of the speed
(turbojet aircraft operating at low subsonic speeds), (3.25) leads to
the well-known result (see [7]) that D.;/Dy=1/3. This solution is modi-
fied considerably if compressibility effects are considered [4].

Mazimum endurance at a given altitude. A modification of the previ-
ous problem consists of maximizing the flight time (@ = —t), assuming
that ¥ = ¢ = 0, that the fuel weight is given, and that the range is
free. The optimum path includes subarcs T = Twmay and subarcs along

which

1/¢T T—D

J( /e ) =0. (3.26)
Vv @

This expression reduces to

3
- ) =0, (3.27)
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if the specific fuel consumption is independent of the power setting.
For the particular case in which the specific fuel consumption is inde-
pendent of the flight speed and the drag polar is parabolic with constant
coefficients, (3.27) leads to D;/Dy = 1 (see [24]).

Mazimum range at a given power sefting. Consider the problem of
maximizing the range (G = —X) for a given fuel weight, the flight
time being free. If we assume that the power setting is given and that
the thrust is tangent to the flight path, the additional constraints take
the form

A = a— Const =0, (3.28)
B=¢=0. (3.29)

If the inclination of the trajectory with respect to the horizon is such
that cos v 22 1 and myg sin y < T, the following optimizing condition
is obtained [4]:

J (V/ or T- D) =0 (3.30)

|4 h

Numerical analyses indicate that, as the weight decreases as a result
of the consumption of fuel, the flight altitude resulting from equation
(3.30) increases continuously. The associated flight technique is called
cruise-climb [25] and is characterized by a constant Mach number and
a constant lift coefficient in the following cases:

a. A turbojet-powered aircraft operating at constant rotor speed in
an isothermal stratosphere.

b. A turbojet-powered aircraft operating at a constant corrected rotor
speed in an arbitrary atmosphere.

For the particular case of a turbojet aircraft flying at low subsonic
speeds in the stratosphere [25], the optimum ratio of the induced drag
to the zero-lift drag is D;/D, = 1/2. Compressibility effects cause a
substantial departure from this result [26].

Mazimum endurance at a given power setting. A modification of the
previous problem consists of maximizing the flight time (G = —1),
assuming that the fuel weight is given and the range is free. Retaining
all the foregoing maximum-range hypotheses, we may express the
optimizing condition by

J(l/; T T; D) =0. (3.31)
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In analogy with the maximum-range discussion, numerical analyses
indicate that best endurance is obtained by operating along a cruise-
climb trajectory. For the particular case of a turbojet aircraft flying
at low subsonic speeds in the stratosphere, best endurance is obtained
when D;/D, = 1. Thus, the optimum operating altitude is the in-
stantaneous ceiling of the aircraft [27].

Minimum time to climb. Consider the problem of minimizing the
time employed in climbing from one altitude to another (G = §), re-
taining constraints (3.28) and (3.29). If we neglect the variations in the
weight of the aircraft due to the fuel consumption and consider the
horizontal distance traveled by the aircraft as free, the optimizing con-
dition is given by

Veiny T — D —mgsi L - S
J( in y mg sin vy mg co 7) —0 3.32)
Vv v L

and implies that

3 .
—((TV — DV) — — = 0. 3.33
av ( ) —mg cosy OL ( )

An important particular case occurs when the induced drag is cal-
culated by approximating the lift with the weight, that is,

Di(h, V, L) =2 Di(h, V, mg). (3.34)

In this case, the optimizing condition reduces to subarcs along which
cos v = 0 and subares along which

, .
—7 (V= DV) = 0. (3.35)

Equation (3.35) states that the fastest quasi-steady ascent occurs when
the net power (difference between the available power and the power
required to overcome the aerodynamic drag) is a maximum with respect
to the velocity for a constant altitude.

Most economic climb. Under the hypotheses of the minimum time-
to-climb discussion, the climbing technique for minimum fuel consump-
tion (G = —m) can be investigated. The optimizing condition is ex-
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pressed by

V sin vy .
T—D-—mgsiny L — mgcosy
JV T =0 (3.36)
14 5y L

and implies that
3 (TV — DV) mg sin®y 9D |:1 a log (cT):| —0
14 cT dlogV B

¢T cos vy FL—
If the induced drag is approximated as in equation (3.34), then the
optimizing condition reduces to subarcs along which cos ¥ = 0 and

subares along which

9 (TV - DV

——(——) =0. (3.37)
v cT

Mazimum range for a glider. The problem of maximizing the range
(@ = —X) of a glider (T = 0) is now considered, assuming that the
flight time is free. Simple manipulations yield the result that

aD

— =0.
av

4, Nonsteady Flight over a Flat Earth

The equations governing the nonsteady flight of an aircraft over a flat
earth are written as

¢1=X —Vecosy =0, 4.1)
¢2=h—Vsiny =0, (4.2)
. . D, V,L) — Th,V,a)cos e
¢ps=V +gsiny + ~ =0, (43)
L+4+Th,7V, i
b4 Ei+£cosv Lt ( @) sin e =0, (4.4)
v mV
¢s =m 4B, V,a) =0, 4.5)

and must be completed by the inequality relative to the thrust modulus,
which is equivalent to

bs = T(h: v, a) —£=0, (46)
61 = Tousx(h, V) = T(h, V, @) — 5* = 0. @.7)
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Considering the possibility of having two additional constraints of the
form

¢s= AX,h,V, v,m, L, a, &) =0, (4.8)
¢y = B(X,h,V,v,m, L, a, ) =0, (4.9)

we formulate the Mayer problem as follows: In the class of functions
X@®), k@), V@), v@), m@), L{®), a(), ), £(@{), 2(t) that are solutions
of the system composed of equations (4.1) through (4.9), find that
particular set that extremizes the difference AG = G, — G;, where
G=GX,hV, vmi.

The optimum path is described by the equations of motion in combi-
nation with the following set of Euler-Lagrange equations:

A = xgg+ AQEE, (4.10)

X X
7\2=£(£—6—T-005e>—kgsine+)\5?—ﬁ+>\saT

m \ éh oh mV 8h oh

+>w (Tmax T)+>\8—+>\9%§ (4.11)
A= —Ajcosy — Agsiny + — (Q—ﬂcou)

av oV
+i’)\—:(—gcos'y+——————L+Tsme>—1:—;, %sme+)\5§s
+>\e£ + Mi(Tmnx -1 +>\si’£+>\9i§’ (4.12)
av v v 14

A
A =TV(\1siny — A2 cosvy) + g(ks cos vy — ?‘siny)

dA 0B
+ A —FA— (4.13)
dvy vy

oB
— (4.14)
am

)\5=—(Tcose—

0 1(}\ oD A‘)+ 24 438 (4.15)
T\’ TV oL’ '
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0=— i a—T(Aacose—l-Z‘—‘sine>+>\s§—B+ e — Rv)a—T
m da V da da
94 aB
+ A — A+ N— (4.16)
da da
0 =1()\asine—ﬁcos e)+)\g%+)\g§.: (4.17)
m 14 de de
0 = e, (4.18)
0 = Am. (4.19)

These equations admit the following first integral:

(TcOSe—D

V(A1cosy 4 Azsiny) + Az — g sin 7)

+£<L+Tsine

v —gcos'y>——>\5B=C

and must be solved for boundary conditions consistent with

[4G + A dX + Ao dh + Ay dV + Ao dy + Asdm — C de]i = 0.

If there are no additional constraints, that is, if A = 0 and B = 0,
the conclusions of Section 3 concerning problems with three degrees of
freedom are still valid. Thus, the optimum thrust direction is supplied
by (3.20). Furthermore, the optimum thrust program is described by
(3.21) and, therefore, is generally composed of coasting subarcs, maxi-
mum-thrust subarcs, and variable-thrust subarcs.

On the other hand, if additional constraints are present, the con-
clusions depend to a large degree on the form of the functions A and
B. In this connection, several particular cases are considered below.

Vertical Ascent of a Rocket

For a rocket-powered vehicle in vertical flight with the thrust
parallel to the velocity, the additional constraints are written as

y: |

T

B=e=0. 4.21)

After choosing the control parameter identical to the mass flow, we
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may represent the engine performance by
T = aVp, (4.22)
B =g, (4.23)

where Vg is the equivalent exit velocity (assumed constant). Two par-
ticular cases are now considered: minimum propellant consumption
and minimum time.

Minimum propellant consumption. Consider the problem of mini-
mizing the propellant consumption (G = —m) for given end-values of
the velocity and altitude, the flight time being free. Employing the
Euler-Lagrange equations, the equations of motion, and the trans-
versality condition and eliminating the Lagrange multipliers, we obtain
the following result: The optimum burning program includes coasting
subares, maximum-thrust subarcs, and variable-thrust subares along
which (see [28] and [29])

D(V )+ v 22 =0 (4.24)
) v T '

The way in which these subarcs are to be combined depends on the
boundary conditions of the problem. For example, if both the initial
and final velocities are zero (case of a sounding rocket), the initial sub-
arc is to be flown with maximum thrust; the intermediate subare, with
variable thrust; and the final subare, with zero thrust.

Brachistochronic burning program. The burning program minimiz-
ing the flight time (G = ¢) is now considered. Assume that the end
values for the velocity, the mass, and the altitude are prescribed; then,
the extremal arc is composed of coasting subarecs, maximum-thrust
subares, and variable-thrust subares along which (see [30])

1%4 oD V 4+ gt
- - = . 42
[D (VE’ 1)4+V P mg] exp( va ) Const (4.25)

Level Flight of a Rocket-Powered Aircraft

For a rocket-powered aircraft operating in level flight with the
thrust tangent to the flight path, the additional constraints are written
as

Il
I

(4.26)

A=y=0,
B=¢=0. 4.27)

i
1
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Two particular problems are now considered: maximum range and
maximum endurance.

Mazimum range. If the range is to be maximized (G = —X) for a
given propellant mass and given end-velocities, the flight time being
free, then the optimum burning program includes coasting subares,
maximum-thrust subares, and variable-thrust subares along which (see

(31])

V<D+V and D\ _y.p=0 (4.28)
Eoy ™ aL) S ‘

For a parabolic polar with constant coefficients, (4.28) yields, as a
particular case, the results derived in [32]. :

Mazimum endurance. A modification of the previous problem con-
sists of maximizing the flight time (G = —t¢) for a given propellant
mass and given end-velocities, the range being free. The optimum burn-
ing program includes coasting subarcs, maximum-thrust subares, and
variable-thrust subarcs along which (see [33])

D+ VEB——mg— = 0. (4.29)

Nonlifting Rocket Trajectories

For the class of nonlifting paths flown with the thrust tangent to the
flight path, the additional constraints are written as

A=L=0, (4.30)
B=e=0. (4.31)
The optimum burning program associated with these paths was deter-
mined for problems with no time condition imposed in [34] and for
problems in which a condition is imposed on the flight time in [17].
Simplified Analysis of the Climbing Flight of Turbojet Aircraft

A simplified approach to the problem of the optimum climbing tech-
nique for a turbojet-powered aircraft is now presented. It is assumed
that the power setting is specified and that the thrust is tangent to the
flight path, so that the additional constraints take the form

A = a— Const =0, (4.32)
B=e¢=0. (4.33)
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It is also stipulated that the variations in the weight of the aircraft
due to the fuel consumption are negligible and that the induced drag
is calculated by approximating the lift with the weight, that is,

Di(h, V, L) = Di(h, V, mg). (4.34)

Two particular problems are now considered : minimum time and mini-
mum fuel consumption. S

Brachistochronic climb. Consider the problem of minimizing the
flight time (@ = ¢) for given end-values for the velocity and altitude,
the horizontal distance being free. The extremal arc is composed of sub-
arcs of three kinds: vertical dives, vertical climbs, and subarcs flown
with variable path inclination along which (see [8] and [9])

] V a
— (V- DV)—— —(TV - DV) =0. (4.35)
1% g oh

After defining the energy-height as

2
H=h+-—
+ % ’
and transforming (4.35) from the Vh-domain into the VH-domain, one
obtains the well-known result ([8], [35]) that

d .
[—— (Tv — DV)] =0,
aV H=Const

which is the basis of the energy-height method commonly used by air-
craft manufacturers. This method consists of plotting the net power
as a function of the velocity for constant values of the energy-height
and of finding the point at which the net power is a maximum.

Most economic climb. A modification of the previous problem con-
sists of minimizing the fuel consumed (@ = —m) for the case in which
the time and the horizontal distance are free. The optimum climbing
program includes subarcs of three kinds: vertical dives, vertical climbs,
and variable path-inclination subarcs along which (see [9])

d (TV—DV\ V 8/TV—-D
_(_ ___V)_ _v _<___V) ~ 0. (4.36)
14 cT g oh cT

If the problem is transformed into the velocity-energy height domain,
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this equation can be rewritten as

[ 9 (TV - DV):I _o
14 cT H=Const e

More General Investigations of Climbing Flight

The preceding investigations were carried out under particular hy-
potheses, of which the essential analytical objective was to simplify the
calculation of the part of the drag that depends on the lift, that is, the
induced drag. When we remove the above restrictions, the problem of
the optimum climbing program no longer yields analytical solutions
(see [36]-[40]).

As an example, consider the problem of extremizing the flight time
(@ = t) for given end-values for the velocity, the altitude, and the path
inclination, the horizontal distance being free. If we retain hypotheses
(4.32) and (4.33) and neglect the variation in the weight of the aircraft,
the optimum path is described by the following equations of motion:

h = Vsin vy, 4.37)
. T—D

V= — gsinv, (4.38)

m
y 1 (L ) (4.39)

=—|— —gcosy]), .
v \m g cosy
and by the optimum conditions:
A; O

Ne=——(D-T 4,40
=2 — (D=1, (4.40)

Az = —\;gsi +>\|:1 a(D /i)
3= 2 81N vy 3maV

+ ! 6D<£_ :I (4.41)

. T—D . D /L
)\2Vsm'y+>\3|: - gsmy-l————(——gcos'y):l =1, (4.42)
m oL \m

The system composed of equations (4.37) through (4.42) involves the
six unknown functions h(f), V(£), v(t), L(f), A2(t), Ms(f) and must be inte-
grated with the help of digital computing equipment. An important
complication arises from the fact that this is a boundary-value problem,
that is, a problem with conditions prescribed in part at the initial point
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and in part at the final point. Thus, the use of trial-and-error techniques
is an unavoidable necessity. More specifically, the integration of equa-
tions (4.37) through (4.42) requires that the following initial values be
specified:

k(0) = ks, V) =V,
'Y(O) = Yi L(O) = L,‘,
>‘2(0) = Az;, >\3(O) = Az

Of these, three (h;, V;, v;) are known from the initial conditions of the
problem, two (Aq;, As;) must be guessed, and one (L;) is to be determined
by solving (4.42). As a conclusion, if the multipliers A; and A; are varied
at the initial point, a two-parameter family of extremal solutions can
be generated. The boundary-value problem consists of determining the
particular member of this family that satisfies all the conditions pre-
seribed at the final point. '

Flight in a Vacuum

- The case of a rocket-powered vehicle operating in a vacuum is now

considered. Because of the absence of aerodynamic forces, steering can
be accomplished only by varying the direction of thrust. The equations
of motion and the Euler-Lagrange equations relevant to this problem
are obtained from equations (4.1) through (4.19) by setting 4 = L =0
and D = 0.

Problems with two degrees of freedom. If the second additional con-
straint does not exist (B = 0), several general conclusions can be de-
rived. The optimum thrust direction is supplied by

C:+Cd

where ¢ = 4 4 ¢ is the inclination of the thrust with respect to the
horizon, and C, through C, are integration constants. Thus, the in-
clination of the thrust with respect to the horizon is a bilinear function
of time [41].

Concerning the thrust modulus, the optimum flight program in-
cludes subares of only two kinds: coasting subares and maximum-
thrust subares. No variable-thrust subarc may appear in the compo-
sition of the extremal arc. While this result was independently surmised
for particular cases ([42]-[44]), the conclusive proof can be found in
[15]. In [15], it was also concluded that the extremal path may be com-
posed of no more than three subares. The way in which these subares

tan ¢y = (4.43)
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must be combined depends on the nature of the function G and the
boundary conditions of the problem.

Mazimum range. Consider the problem of maximizing the range
(G = —X), assuming that the propellant mass is given, that the initial
velocity is zero, and that the final altitude is equal to the initial altitude.
Assume, also, that the velocity modulus at the final point, the path in-
clination at the final point, and the time are free. Under these condi-
tions the extremal arc includes only two subares, that is, an initial sub-
arc flown with maximum thrust and a final subare flown by coasting.
During the powered part of the flight trajectory, the thrust is inclined
at a constant angle with respect to the horizon and is perpendicular to
the velocity at the final point [45], [46].

Mazimum burnout velocity. Consider the problem of maximizing
the burnout velocity (G = — V), assuming that the propellant mass is
given, the initial velocity is zero, the final altitude is given, the inclina-
tion of the final velocity is zero, and the range is free. Concerning the
thrust modulus, the trajectory is composed of a maximum-thrust sub-
arc followed by a coasting subarc. Along the maximum-thrust subarc
the thrust direction is to be programmed as follows (see [47]):

tan ¢ = C; 4+ C4l. (4.44)
Vertical flight.  If the flight path is vertical, the additional constraint

B

T =0
72—

is to be considered. Consequently, one degree of freedom remains—
that associated with the optimization of the thrust modulus.

Consider, now, the problem of maximizing the increase in altitude
(G = —h) for given end-velocities and a given propellant mass, the
flight time being free. The extremal are for this problem is composed
of only two subares, that is, an initial subarc flown with maximum
engine output followed by a final subarc flown by coasting,.

An interesting case occurs when the flight time is to be extremized
(G = t) for given end-velocities and a given propellant mass, the in-
crease in altitude being free. This is a degenerate case, insofar as any
arbitrary thrust program g(¢) is a solution of the Euler-Lagrange equa-
tions. Consequently, the flight time is independent of the mode of
propellant expenditure.
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5. Nonsteady Flight over a Spherical Earth

The equations governing the nonsteady flight of an aircraft in a
great circle plane are given by

¢1EX—Rithos'y=0, (5.1)
¢:=h—Vsiny =0, (5.2)
2 —_

=Tt g (Ri h) oy D@, V, L) ::(h, V,a)cose _ 0 3

. Veosy g/ R \? L+Th,V,a)sine
pe=7v— -—( ) cosy —

R+hk V\R+h mV

+ 2wcos ¢ = 0, (5.4)
¢s =m+ Bk, V,a) =0, (5.5)
e =T, V,a) —£2=0, (5.6)
¢71 = Tuax(h, V) — T(h, V,0) — 9> =0 (5.7)
os=AX,hV,y,m,L,a,¢) =0, (5.8)
¢s = B(X,h,V,v,m,L,a, ¢ =0, (5.9)

where g denotes the acceleration of gravity at sea level, R the radius of
the earth, X a curvilinear coordinate measured on the surface of the
earth, h the altitude above sea level, w the angular velocity of the earth,
and ¢ the smaller of the two angles that the polar axis forms with the
perpendicular to the plane of the motion.

For the problem of extremizing the difference AG between the end-
values of an arbitrarily specified function G(X, &, V, v, m, ), the
Euler-Lagrange equations are written as follows:

dA aB

A=A — — 5.10
1 aaX'l-)\oaX (5.10)
Xg:klmVCOS'Y
+>\|:1(6D oT ) 0 R . ]
- — —_ —_—————sin
m\oh ok %) TV mEmp

4 [ sin ¢ 9T " cos ¥y (V 29 R? ):I
‘Lomv ah R+ by V R+h
aﬂ aT a(Tmax - T) aA aB

— —_ _—_— — - Ay—> J1
+Mah+>\o ah-l-)w o +)\sah + Ly (6.11)
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aD aT
A3 = —A1 hcos'y—hzsm'y+ (a—V——WCOSE>
+)\4[L+Tsine_sinea_T__ cos'y<1 9 R? ):I
my? mV V. R-+h V:ER4+h
+ A Eﬁi-l' o——+>\7 2 (T mux—T)+)\si—+7\ga—B-: (5.12)
v av
. R \?
A4=)\1R+ Vs1n'y—)\2Vcos'y+>\3g(R+h) cos vy
N "“’(V—i i )+>\89£+>\9§, (5.13)
R+h V R+h oy Ay
X5=$(Tcose—D>+ —
dB
+ N—> 5.14)
am
0 =i<>\332—->‘—‘>+xsﬂ+>\9£: (5.15)
m aL 'V aL aL
0=—ia—T()\scose+ﬁsine)+)\5ﬁ
m da vV da
dA dB
+ (s —N7) —+ )\s—-l- No— (5.16)
da
0= E(Aa sin e — E.cos e) + )\s% + Mﬁ , (5.17)
m vV de de
0 = Ae, (5.18)
0=2xm. (5.19)

These equations admit the following first integral:

V()\ R L s >+)‘ [Tcose—D ( R )2, ]
0 S — 1n
1 087 T hesiny 3 —~ \agn) 7
L4 Tsine g( R \? V cosy ]
A -2 -2
+ ‘[ mv v R+h) CosY T T Aeene

—)\56 = C
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They must be solved for boundary conditions consistent with

[dG + M dX + Ny dh + N dV + Aady + Asdm — Cdt]i = 0.

For problems with three degrees of freedom (4 = 0, B = 0), the
general conclusions relative to the optimum thrust direction and the
optimum thrust program are identical to those obtained in the flat-
earth case.

Generally speaking, the equations of motion and the Euler-Lagrange
equations must be integrated with the help of digital computing equip-
ment. In a few particular cases, the optimizing condition can be ex-
pressed in an explicit form, that is, in a form not involving multipliers.
Some of these particular cases are discussed below.

Optimum Thrust Program for Vertical Flight

The additional constraints for a vertically ascending rocket with
thrust tangent to the flight path are expressed by (4.20) and (4.21).
For the problem of minimizing the propellant consumption (G = —m)
for given end-values of the velocity and altitude, the burning program
is composed of coasting subarcs, maximum-thrust subares, and vari-
able-thrust subarcs. If the effects due to the earth’s rotation are
neglected, the optimum condition for the variable-thrust subarcs is
written as (see [48]):

D( 14 1) s (—R )2 0 (5.20)
- —_——m = (. .
Va v "I\R+h

Optimum Thrust Program for Level Flight

For a rocket-powered aircraft in level flight with the thrust tangent
to the flight path, the additional constraints are expressed by (4.26)
and (4.27). Consider the problem of maximizing the range (G = —X)
for a given propellant mass and given end-velocities (free flight time);
the burning program includes T'=0 subarc, T = T'n.x subarcs, and vari-
able-thrust subarcs along which (see [46])

oD 14 D
(D —L—)(—— 1) +v 2
oL Ve 1%

- %11—3 [g(RV:L nt (Rf—h)z] =0 (621
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Optimum Flight Program for Equilitbrium Paths

A modification of the previous problem consists of eliminating the
altitude constraint and of simultaneously optimizing the burning pro-
gram and the angle-of-attack program. If the thrust is assumed tangent
to the flight path, the first additional constraint is written as

A=e=0, (5.22)

while the second additional constraint is B = 0. For a hypervelocity
glider boosted by rockets, the following simplifications are permissible:

a. The altitude of the vehicle above sea level is such that

h<<1
) .

b. The slope of the flight path with respect to the local horizon is
such that

cos y =1,
sin vy &2 v,

mg sin vy <K D.

c. Both the Coriolis acceleration and the part of the centripetal ac-
celeration that is due to the time rate of change of the inclination of
the velocity with respect to the horizon are neglected in the equations
of motion on the normal to the flight path.{

For the problem of maximizing the range (@ = —X) with a given
propellant mass and given end-velocity (free time), the angle-of-attack
program is such that [49]

aD

— =0. 5.23
m (5.23)

Therefore, for each instantaneous velocity, the flight altitude is to be
adjusted in such a way that the over-all drag is a minimum. Concerning
the burning program, the optimum path includes only two subares,
that is, a maximum-thrust subarc followed by a coasting subarc. No
variable-thrust subarc appears in the composition of the extremal are.

1 The resulting trajectory is called an equilibrium trajectory, since the weight
is balanced by the aerodynamic lift plus the portion of the centrifugal force
that is due to the curvature of the earth.
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6. Conclusions

It is clear from the present survey that much has been achieved in re-
cent years in the field of terrestrial flight mechanics. Many problems
have been conquered. Nevertheless, an even larger domain is still un-
explored both from a theoretical standpoint and with regard to prac-
tical engineering applications.

There is an immediate need for improved methods for integrating
the system of Euler equations and constraining equations and for solv-
ing the associated boundary-value problems. An extension of the avail-
able closed-form solutions would be of great value for engineering appli-
cations. In view of the rather weak character of the maxima and
minima of the mechanics of flight, the finding of short cuts and simpli-
fications applicable to particular problems would also be valuable.

At the present time, the work in the area of sufficient conditions for
an extremum lags far behind the work accomplished in obtaining
necessary conditions. These sufficiency conditions have given rise to
questions, some with answers still incomplete or unknown, especially
in connection with discontinuous extremal solutions.

In the era of supersonic interceptors, intercontinental missiles, satel-
lites, and interplanetary vehicles, variational methods constitute a
much-needed and important step forward in advance performance cal-
culations. It is the opinion of the writer that, as the industry progresses
toward faster and faster vehicles, the calculus of variations will become
the standard, rather than the specialized, tool for optimum performance
analysis of aireraft and missiles,
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Chapter 2

Estimating Performance Capabilities
of Boost Rockets

P. DERGARABEDIAN
AnDp R. P. TEN DYKE

1. Introduction

Before an optimization problem can be solved, it is necessary to define
an objective function, a cost function, and a set of constraints. This
chapter reports results of a parametric study of boost rockets. The term
boost rocket includes rockets launched from the surface of the earth for
the purpose of achieving near-orbital or greater velocities. The signifi-
cant benefit of this study is the derivation of objective functions for use
in problems of ballistic missile preliminary design. _

The parameters studied can be divided into two categories: vehicle-
design parameters and trajectory parameters. Vehicle-design parame-
ters describe the physical rocket and include such quantities as weights,
thrusts, propellant flow rates, drag coefficients, and the like. A set of
these parameters would serve as a basic set of specifications with which
to design a vehicle. Trajectory parameters include such quantities as
impact range, apogee altitude, and burnout velocity. Trajectory
parameters can also serve, though not uniquely, as specifications for a
missile system. A particular vehicle system can perform many missions,
and any one mission can be performed by many vehicles. We usually
think of missions in terms of trajectory parameters and vehicles in
terms of design parameters, and the problem becomes one of relating
the two.

The simplest relation is found in the well-known equation:

V= I,-g In T3y (11)
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where I; = stage ¢ specificimpulse (thrust divided by flow rate of fuel),
g = gravitational constant = 32.2 ft/sec?,
r; = stage ¢ burnout mass ratio (initial mass divided by burnout

mass),
V: = velocity added during stage 7.
[A list of the symbols used in this chapter is provided in Ap-
pendix C.]

If several stages are used, the total velocity is the sum of the veloci-
ties added during each stage. Certain assumptions used in the deriva-
tion of the rocket equation limit its usefulness for boost rockets. They
are (a) no gravitational acceleration, (b) no drag, and (c¢) constant
specific impulse. When it becomes necessary to include these effects,
the most frequent technique is to solve the differential equations of
motion by use of a computing machine. Since some of the inputs to the
problem are not analytic, such as drag coefficient as a function of
Mach number, the machine uses an integration technique that virtually
“flies” the missile on the computer. In this manner, such variables as
impact range, apogee altitude, burnout velocity, and burnout altitude
can be determined as functions of vehicle-design parameters.

The same vehicle can be flown on many paths, so it is necessary to
provide the machine with some sort of steering program. The most
frequently used program for the atmospheric part of flight is the ‘zero-
lift"’ turn. On the assumption that the rocket-thrust vector is aligned
with the vehicle longitudinal axis, the vehicle attitude is programmed
to coincide with the rocket-velocity vector. For this reason, the zero-
lift trajectory is frequently referred to as the ‘‘gravity turn.” If a
rotating earth is used, the thrust is aligned with the velocity vector as
computed in a rotating coordinate system. Since the missile is launched
with zero initial velocity, a singularity exists for the velocity angle at
the instant of launch. All gravity-turn trajectories, regardless of burn-
out angle, must initiate vertically. For that reason, a mathematical
artifice (an initial “kick” angle) is applied to the velocity vector a few
seconds after launching to start the turn.

Most problems can be solved very quickly by the computer, and the
aceuracy of the results is almost beyond question; but there are also
disadvantages. First, the actual computer time consumed may be small,
but the time required to prepare the input data and arrange for com-
puter time can be quite long in comparison. Second, the degree of
accuracy required of results for preliminary design purposes is quite
different from that required for, let us say, targeting purposes; the high
accuracy offered by the digital machine frequently goes to waste.
Finally, while it may be possible to feed the computer one set of data
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and receive a set of answers, it may at times be preferable to be able
to view an analytic relation or graph and get a “feel” for the system as a
whole. For these reasons, simplified—even if approximate—solutions
to the problem of determining trajectory parameters for boost vehicles
are quite useful.

Two techniques may be employed to determine approximate solu-
tions to the differential equations of motion. One technique uses ap-
proximation before the equations are solved. The original model is
transformed into a simpler one for which the solutions are known. In
this case one must make a priori guesses as to the accuracy lost in
simplification. The digital computer, however, has provided the tool
for making approximations after solution. The model to be simplified
is the solution of the set of differential equations, not the set itself,
and the accuracy of the approximations can be readily observed. The
latter technique has been employed in this study.

The differential equations are helpful in showing which are the im-
portant variables to consider. A short theoretical analysis (Appendix B)
shows that the following missile-design parameters, together with a
burnout velocity angle, determine a trajectory:

I = vacuum specific impulse, i.e., vacuum thrust divided by
flow rate of fuel,
r = burnout mass ratio,
N, = ratio of initial (launch) thrust to liftoff weight,
CouA
W

Il

= drag parameter [Cpy is the maximum value for drag
coefficient (function of Mach number), A is the reference
7 ares, and W, is the liftoff weight of missile],
-2 = ratio of initial (sea-level) specific impulse to vacuum
I specific impulse,
{» = burning time = I,/N (1l — 1/7) for constant-weight flow
rate.
The trajectory parameters studied are the following:
Vs = burnout velocity,
Bs = velocity burnout angle (with respect to local vertical),
hy = burnout altitude from the earth’s surface,
xy = surface range at burnout,
R = impact range.

I

It is clear from the number of parameters studied that it would be
impossible simply to plot the results. Therefore, simplification and
codification of the results have been a significant part of the study.
Results are presented in two forms: (a) a set of general equations for
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determining V5, ks, and z; as functions of 3, for selected ranges of missile-
design parameters, with necessary ‘“‘constants’ used in the equations
presented in graphical form; and (b) a simple equation for maxi-
mum impact range as a function of missile parameters, together with
many of its derivatives.

In addition, a table of equations of several free-flight trajectory
parameters based on the Kepler ellipse is included in Appendix A.
These equations are well known but are included for convenience. The
formulas, together with burnout conditions determined from the com-
puter study, will aid in the solution of a large variety of the problems
frequently encountered in preliminary design.

The free-flight trajectory for a vehicle is defined by the velocity and
position vectors at burnout. The velocity vectort is defined in terms of
its magnitude, Vs, and of the angle, 8;, between it and the local vertical.
The position vector is defined by an altitude % and surface range z,.
The quantities Vs, hs, and x5 are determined as functions of 8, and the
vehicle-design parameters.

2. Velocity versus Burnout Angle

The “theoretical” burnout velocity for a vehicle may be determined
by equation (2.1). We define the quantity V. as being the loss in
velocity caused by gravitation and atmosphere. Then

Vo=V*—=7V,, (2.1)

where
V¥= > Vi= > Ighr. (2.2)

The following empirical equation for V1 in terms of vehicle-design
parameters has been derived by comparing results of several hundred
machine trajectory ecalculations, assuming single-stage vehicles, a
gravity turn, and a spherical, nonrotating earth:

Vi = (gh — Ku) [1 — & (1 - %) (5;)2]

Cpoud
Wo

+ KD + Ka- (23)

t The term velocity will refer to the magnitude of the velocity vector. If the
vector is meant, velocity vector will be used.
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It will be convenient to discuss this equation term by term, so we
shall designate the three components as follows:

V, = gravitational loss

cwomfs (@] e

ComA

0

Vp = dragloss = Kp ’ 2.5)

V. = nozzle-pressure loss = K, (2.6)

Gravitational Loss

The gravitational loss was determined by setting the drag equal to
zero and flying the vehicle to several burnout angles. The term gt is
the gravitational loss to be expected from a vertical flight in a constant
gravitational field. A realistic gravitational field varies as the inverse
square of the distance from the earth’s center, so the term actually
overestimates this loss. For ranges of vehicles using currently available
propellants, the differences between the amount gf, and the correct
gravity loss will be small; and for this equation the difference has been
included as the constant K,,. The term

[1-x(-7) )]

fits a curve as a function of 8;. The constant K, was determined by a
least-squares curve-fitting technique and usually resulted in a curve fit
that was within 30 ft/sec of the machine results. The above form was
found to fit actual results better than a more obvious choice, K cos 8,
which resulted in maximum differences of 300 ft/sec. Curves for K, as
a function of I and N, are found in Figure 1, and a curve for K,, as a
function of I is found in Figure 2.

Drag Velocity Loss

The velocity lost to drag is proportional to the quantity Cpud /W,
in which Cpa has been chosen as a single parameter to define all drag
curves. The reasons for this choice are that (a) most realistic drag
curves have approximately the same form, except for the absolute
magnitudes of the values, and (b) the greater portion of the drag loss
occurs early in powered flight, where Cp attains a maximum. The actual
drag curve used in the machine trajectory calculation is shown in
Figure 3. The empirical constant Kp was obtained by computing the
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Fig. 1. K, as a function of vacuum specific impulse, I, and
initial thrust-to-weight ratio, No.

difference between burnout velocities for similar vehicles with and
without drag. All comparisons were made for identical burnout angles.
The constant was found to be a function of I,/Ny, 8, and N,. The
function Kp was so weakly dependent upon N, however, that this
effect was disregarded for simplicity in presenting the results; Kp is
shown in Figure 4 as a function of I,/N, and 8;.
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Nozzle-Pressure Loss

For the same propellant flow rate, the effective thrust at sea-level
ambient pressure is less than in a vacuum. This may be thought of as
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Fig. 4. Kp as a function of burnout velocity angle, 85, and ratio of sea-level
specific impulse to initial thrust-to-weight ratio, I,/No.
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a change in specific impulse. The ratio of sea-level specific impulse to
vacuum specific impulse is dependent upon the chamber pressure,
nozzle area-expansion ratio, and ratio of specific heats for the com-
bustion products. Thrust coefficient tables are readily available to
provide this information. It was again assumed that the greater portion
of the losses would occur early in flight, and all losses were computed
for vertical trajectories. The results are given in Figure 5, where K, is
plotted as a function of I,/1.

2000
1600 Z,
/
fg‘ 1200 //
s
3 s0o //
400 /) / .
/]
B
o]
1.0 098 08 o7 0.6 05

Is /1

Fig. 5. K, as a function of ratio of sea-level to vacuum specific impulse, I,/I.

Accuracy of Resulls

Accuracies to within 150 ft/sec should be expected with the above
results. Occasionally, cases may occur exceeding these limits. First,
drag curves may not actually be similar to the one selected for this
study. Second, simplification of the results to a form facilitating rapid
computation has necessitated several approximations. It is believed
that the results as presented will be more useful in preliminary design
than extremely accurate results would be. On the assumption that the
typical first stage is designed to achieve about 10,000 ft/sec, the ac-
curacy of 150 ft/sec amounts to 1.5 per cent.

Application to More Than One Stage

All computations were performed for single-stage vehicles, but the

results may be applied to multistage vehicles.
If the first stage can be assumed to burn out at greater than 200,000

ft at a velocity angle less than 75°, the drag losses may be assumed to
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have occurred during first stage. It is important to note that the con-
stant Kp is determined on the basis of the velocity burnout angle for
the first stage. For multistage vehicles, this angle may be 5° to 15° less
than the angle at final-stage burnout; but for 8 less than 75°, the
drag losses are relatively insensitive to 8;, and any reasonable estimate
will probably be satisfactory.

Under almost any circumstances, the nozzle-pressure loss can be
considered to occur during the first stage. Constants applicable to the
first stage should be used.

The most significant velocity loss from succeeding stages is gravita-
tional loss. Since the velocity angle is more constant during succeeding
stages, it is usually satisfactory to assume a constant value between the
assumed burnout of the first stage and the desired final burnout angle.
Then the velocity loss for succeeding stages may be computed as

R, \? -
VL2 = g(R, T ﬁ) p2 COS ﬂ, (27)

where 8 is an intermediate velocity angle, % is an “average’ altitude for
second-stage powered flight, and the subscript 2 refers to succeeding
stages. The difference between burnout angles of the first stage and
that for the final burnout will depend on the thrust pitch program
selected for succeeding stages. Several authors have discussed the opti-
mum piteh program for a variety of missions assuming powered flight in
a vacuum (see [1]-[4]). For a ballistic missile, with impact range the
desired result, holding the thrust vector constant with respect to a sta-
tionary inertial coordinate system has been found to yield greater
ranges than the gravity turn. For this case, the change in 8 from first-
stage burnout to final burnout will be comparatively small. In contrast,
many satellite missions require that burnout angles approach or equal
90°. Under these circumstances, a gravity turn or one in which the
vehicle is pitched downward is a more likely trajectory. The resulting
difference in burnout angles between first and final stages will be quite
large.

In any trajectory in which thrust is not aligned with velocity, some
energy is expended in “turning” the velocity vector. The proportion of
the thrust that goes to increasing the velocity varies as the cosine of
the angle of the attack; hence for small angles of attack the loss is small.

Effect of the Earth’s Rotation

The significant parameter in determining performance is the inertial
velocity. Thus, the velocity of the launch point must be considered in
any realistic calculation. A simple, albeit approximate, correction may
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be made by taking the vector sum of the inertial velocity vector of the
launch point and the vehicle velocity vector at burnout. In several
comparisons between this approximate technique and that of a
machine-determined trajectory for an eastward launch on a rotating
earth, this approximation underestimated the actual burnout velocity.
It has not been determined whether this is generally true; but the few
comparisons indicate that the approximation tends toward conserva-
tive results.

3. Burnout Altitude versus Burnout Angle

The burnout altitude is a particularly important parameter in deter-
mining payload capabilities for low-altitude satellites with circular
orbits. As with the rocket equation, a closed-form expression may be
derived for the distance traversed by an ideal rocket in vertical flight
(constant g, no drag, constant specific impulse), namely

2
Inr ¢
bt = glt, (1 - n—) _. 3.1)

It was found that the above form could be modified to account for
drag, nozzle pressure, and burnout angle as follows:

e[ EEL (Y] e

28
Ki=93+—[1+52—-Ng2], 1<N;<2. (3.3)
r

where

Equation (3.2) assumes that the drag and nozzle-pressure losses are
averaged over the duration of flight. This is not exactly true, but the
approximation has proven to be satisfactory because the correction is
small. The constant K has been determined empirically. Accuracies
for (3.2) have been found to agree with machine calculations to about
20,000 ft.

In calculating values for multistage vehicles, (3.2) yields the altitude
of burnout for the first stage. The additional altitude achieved during
succeeding stages may be calculated by using the first-stage burnout
velocity as computed from (2.3) and the following relation, derived by
integrating Ig In r — gt cos 8 at a constant, average flight path angle, §:

hoe = ho1 + Vialpe cos B

2

1 t _

+ {gl alb2 (1 _ s ) __ glsz cos 3} cos B, (3.4)
ry — 1 2
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where the subseripts 1 and 2 refer to the first and second stage, respec-
tively. The above form may be extended to cover additional stages.
Again, an intermediate value for the flight path angle 8 may be selected
between the estimated first-stage burnout flight path angle and the
desired final burnout angle.

No correction is suggested for use with a rotating earth. In several
comparisons with machine trajectories assuming an eastward launch
on a rotating earth, the altitude value for the nonrotating earth was
approximately equal to that for the rotating earth.

4. Burnout Surface Range

The surface range at burnout may be determined by the following
empirical expression:

= 1.1h*(§(;°). 4.1)

The surface range is the least important of the trajectory parameters
in determining gross vehicle performance. It is important, however, in
that it adds to the impact range of a surface-to-surface ballistic missile.
Again, no correction is offered for the rotating earth because, for reason-
ably short flight duration, the increased inertial velocity of the vehicle
and the velocity of the launch point may be assumed to cancel. Equa-
tion (4.1) has been found to yield surface range at burnout within an
accuracy of about 10 per cent.

For multistage vehicles, the same technique used in determining
altitude may be applied, thus:

Zoz = To1 + (hsz — hey) tan B. (4.2)
5. Free-Flight Trajectory

The calculation of the burnout conditions of a vehicle is only an inter-
mediate step in determining its performance. Performance is usually
measured in terms of impact range, apogee altitude, or some other end
condition. Since all vehicles in free-flight follow a Kepler ellipse, values
for range, apogee altitude, and the like may be determined from the
burnout conditions by using equations yielding these values in closed
form. A number of these equations are listed in the first part of Ap-
pendix A.
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6. Range Equation

Experience in the optimization of performance of medium- and long-
range missiles at Space Technology Laboratories has shown that the
trajectory consisting of a short period of vertical flight, followed by a
gravity turn to staging and a constant attitude (thrust angle with
respect to launch coordinate system) throughout subsequent stages of
flight, yields a near-optimum range trajectory.

In the case of a single-stage missile, the constant-attitude part of
the trajectory is initiated at an altitude of approximately 150,000 ft.
The velocity angle of the missile at burnout is optimized for maximum
range. An examination of the trajectory equations shows that the range
of a missile is determined by specifying the same vehicle-design parame-
ters that were investigated in the previous section. (In determining
the empirical equation, however, only one value of the ratio I,/I was
used, based on a chamber pressure of 500 psi, an expansion ratio of 8,
and a v of 1.24.) This study was performed at a different time from
that in the preceding section, and a slightly different drag curve was
assumed, but it is not expected that the results will be significantly
different for this reason.

Machine calculations were performed to determine maximum range
of vehicles launched from a spherical, nonrotating earth. Here, impact
range is measured from the launch point rather than from the burnout
point. Computer data have been used to plot a curve showing the
quantity V* as a function of missile range. Even with a large variation
in vacuum specific impulse, varying from 200 to 1,000 sec, all of the
data points fall essentially on a single curve for a given N, and
CpuA/W,. For any other values of Ny and CpyA/W, similar results
are obtained. Figure 6 shows the mean curve obtained for Ny = 1.5
and C’DMA/Wo = 0.000265.

The results of Figure 6 have been replotted in Figure 7 on semilog
paper, together with a curve given by

R = D(¢""1Bs — 1). (6.1)

For ranges varying from 400 to 6,000 n mi, it can be seen that (6.1)
quite accurately represents the curve obtained from the machine cal-
culations. We have found that the parameter B is very insensitive to
changes in Ny and CpyA/W,, while the parameter D is fairly sensitive
to such changes. The values of the parameters in Figure 6 are D=280
and B=208.

The parameter B determines the slope of the fitted curve, and the
parameter D determines the displacement. The two constants, how-
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ever, must be treated as a pair. Many curves might be fitted to the
empirical data, giving better accuracies in some ranges and poorer ac-
curacies in others. We have arbitrarily selected the value of 208 sec
for B, and all values of D have been determined on this basis. If another
value for B is selected, new values for D must be derived. Figure 8
shows D as a function of N, for various values of Cpud/W,.
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Fig. 8. D factor as a function of initial thrust-to-weight ratio
for various CpyA/Wo.

The results of (6.1) can be extended for use from 400 to 10,800 n mi
(halfway around the earth) by the following argument. Burnout angles
were selected to maximize range. For ranges beyond 6,000 n mi, the
use of maximum-range trajectories results in very large range misses
for errors in burnout speed. This can be seen by the slope of the curve
in Figure 7. Lofting the trajectories so that the burnout velocity in-
creases as determined by equation (6.1) results in an increase of about
5 per cent above the maximum-range burnout velocity for the 10,800
n mi range. At the same time, the lofting decreases the miss from about
10 n mi to less than 2 n mi for an error in the burnout speed of 1 ft/sec.
For design purposes, deviation from the maximum-range trajectory for
ranges beyond 6,000 n mi i reasonable and, in fact, desirable.

In the case of two-stage missiles we note that

*=TIglnr, 4 Igln r,.
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Thus, for two-stage missiles, (6.1) becomes

R =De""r"" = 1), (6.2)
By differentiating (6.2) one may obtain a number of exchange ratios,
some of which have been derived and are presented in Appendix A.
Equation (6.2) has been checked many times against results of
machine computation. To date, the equation has been accurate to
about 5 per cent of the range. It has been found that the equation is
useful in two ways. First, if the missile under study has no close counter-
part and no machine data are available, a value for D as found in
Figure 8 is used. Frequently, however, a vehicle is studied for which
a small amount of machine data is or can be made available. In this
case, the value of D is derived by solving (6.2) “backward.” Once a
value of D has been determined for the particular missile system, the
calculation of perturbations of this missile system may be made by
using (6.2) and the D value thus derived.

Appendix A: Formulas

Miscellaneous Formulas for Kepler Ellipse

Rc + hb - .
o= R e = +/1—2\sin?B + AZsin? B8
V2
8
= R, = earth radius = 20.9 X 10° ft
gR.,
Conservation of Energy
2
2R,
V2t — 200 _ const
-4

Conservation of Angular Momentum
Vzsin 8 = const

Impact Range Angle from Burnout
1 — Ao sin? 1 — Asin?
P (_B) - (_Ei)
€ €
Velocity Required To Obtain Impact Range

I:gR, 1 — cosy :I”z
Ve = : " :
o osin? B, 4+ sin By sin (¢ — By)
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Apogee Altitude

aR \sin? By
a 1 — ¢ [
Velocity Required To Obtain Apogee Altitude
o 1/2
2R, o R, + ks
Vb = g g ; g =

o L 2
1-— (—— sin Bb)
('}
Period for Complete Elliptic Orbit

3/2
Ty

RCEIVEEPIE
Time to Apogee from Burnout
T

_ 1—
ta = —[\/1 — e cot By + cos™! ( >]
27 e

Ezxchange Ratios for Single-Stage Vehicles
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Ezchange Ratios for Two-Stage Vehiclest
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t Numerical subscripts refer to stages and are in order of burning period.
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Appendix B: Analysis

This appendix describes the theoretical analysis that determined the
selection of missile-design parameters for this study. This analysis also
suggested the use of the V1, concept in reducing the computer output
data to a manageable form.

Equations of Motion

In determining the performance of a rocket, one is confronted with
complicated differential equations of motion. Accurate solutions are
obtained only by using a digital computer. However, without a com-~
puter one can obtain a large amount of information about such factors
as gravitational and atmospheric effects on the performance of boost
rockets by examining the individual terms in the equations. The basic
equation of motion is:

z = nlz, t]x[t] + alz, z, m], (B.1)

where  z = radius vector from earth center to missile,

n = thrust-to-mass ratio = M,
m|t]
{ = time,
m[t] = mass of missile,
% = unit vector in the direction of thrust,
a = o[gravitation] 4 a[drag].
For o, we use

R,
a[gravitation] = — gr. 2, (B.2)
22 2z
1 /pV2CpA (V
drag] = — — (222 (= B.3
aldng] = - =(£=22)(3), (B.3)

where Cp = drag coefficient, a function of Mach number,
R, = radius of earth,
V = vehicle velocity vector relative to the atmosphere,
A = reference area,
p = air density.

Replacing a with the terms for at[gravitation ] and a[drag] and dividing
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by g, we obtain

. 2
F N/Z 1 CoAN\/V
-GGG
g W [i VATAVA 2 wit]/\v
We assume that thrust in a vacuum is proportional to the weight flow

rate. Thrust as a function of altitude is taken as the vacuum thrust
corrected for ambient pressure, as follows:

Flz = w] =F, = IW, (B.5)
F(z) = F., [1 - pp[f] (1 - LI)] (B.6)

where p[z] = ambient pressure,
p. = ambient pressure at sea level,
I,/I = ratio of sea-level thrust to vacuum thrust for identical
flow rates.

Values for I,/I may be calculated from tables showing thrust coefficient
versus expansion-area ratio, ratio of specific heats for exhaust products,
and chamber pressure. Defining N, as ratio of initial thrust to initial
weight and assuming constant W, we can write the equation of motion
in terms of missile-design parameters as follows:

R
z I 1 I. Ds
— =N, N x — N, N ®
g -2 1——¢
I, I,
Rz 1 CoA v
————— oV —. (8.7
22 2 2 No 14
W’o(l — 7 t)

In some cases, flow rate will not be constant, but we assume it to be
so during the first several seconds of flight. Forming the dot product
of V/V with Z, integrating for a gravity turn (thrust aligned with
velocity), and assuming a spherical, nonrotating earth, we obtain

dt — Q, (B.8)

I
v t No(-]_—-—]_)-—z-)-
—"=11nr—f . /P
g 0 N,

1- t
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where

2
R, t 1 pVCpA
Q=f —cosBdt+f it dt.
0o 22 0 ( No

Woell — 7 t)

We define the velocity lost to gravitation, drag, and atmosphere as:

113 RZ
V, = gf — cos 3 dt, (B.9)
o 2
v 1pV:CpA
Vo=g 2p 2 : (B.10)
0 NO
m(i- 20
1,
I
N(—-J)ﬁ
th I, Ds
Vo = gf dt. B.11)
0 N,
1- t
I,
The design velocity is given by
V*=1Iglnr.
Hence the burnout velocity becomes
Ve=V*—=V,—Vp ~ V.. (B.12)

It is apparent that the velocity lost is intimately tied in with the tra-
jectory itself. Forming the dot product of %Z/g with a unit vector normal
to the velocity, and again assuming a gravity turn and nonrotating
earth, we obtain

R: V sin 8
—2smﬁ— .

g
== B.13
b= . (B.13)

For low velocity, the turning rate is large, and the greater portion of
turning is to be expected early in the trajectory. The amount of turning
to be achieved is limited, however, by the desired burnout angle.
Therefore, it is frequently necessary to keep sin 8 (therefore 8) quite
small during the early part of the trajectory to prevent too much
turning. The trajectory can be thought of as consisting of three seg-
ments: (a) a segment during which the vehicle flies steeply, (b) a period
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of turning, and (c) a segment in which the velocity angle remains
relatively constant.
For the early segment of flight, the velocity can be approximated by

V= (No— gt (B.14)

For a given burnout angle, the start of the period of turning depends
primarily on the initial thrust-to-weight ratio, No. Thus, for low values
of Ny (near 1.0), the initial segment of flight is at lower velocity and
the turning rate is increased. To achieve the same burnout angle as
that for a higher value of Ny, the initial segment of the trajectory must
be steeper (smaller 8).

The turning rate for a gravity turn is zero when the vehicle velocity
equals that required for a circular satellite orbit at the same altitude.

Gravity Loss

We can use the foregoing to gain insight into the behavior of the
velocity lost to gravitation and atmosphere. In vertical flight the
gravity loss should be proportional to &. For a missile burning out in its
trajectory at angle 8, the gravity loss is some fraction of that lost in
purely vertical flight; and we would expect that fraction to depend on
N, and the proportion of total mass consumed as propellant (1 — 1/7).

It is sometimes proposed that the velocity lost to gravitation is not
really lost at all but converted into potential energy. It may be ob-
served, however, that a vehicle in powered flight is not a conversative
system. A ballistic missile does not burn impulsively (i.e., all the propel-
lant is not burned on the ground). Some of the fuel is used to lift the
unburned fuel, so that the vehicle always ends up at some altitude.
Energy is imparted to the expended propellant by raising the unburned
propellant to some finite altitude.

One way to see what happens is to consider the following comparison
of two single-stage vehicles that are identical in all respects except
thrust. Figure 9 compares vertical trajectories for the two vehicles.
With vehicle (1) we assume an infinite thrust (impulsive burning) and
with vehicle (2) a finite thrust. Vehicle (1) burns out all its propellants
at the surface of the earth, achieves a theoretical velocity V*, rises,
returns to earth, and impacts at the same velocity. For vehicle (2),
at height hs, we have

Vo = V* — gts, (B.15)

Vimploe = V* ~ gtb + gt; (B16)
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t;
Vimpnct =V*— gtb (1 - 7,‘), (B. 17)
b
where , = burning time for vehicle (2),
t; = time from burnout altitude to impact on reéntry.

The time ¢ is less than £;, for it takes a time # to get from a velocity of
0 to Vy, whereas it takes a time ¢; to get from a velocity of V310 Vimpaet,
where Vimpaet™ Vs. The kinetic energy of vehicle (1) at impact is
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Fig. 9. Comparison of impulsive and finite thrust for vertical trajectory
(constant gravitational field and no atmosphere).

essentially proportional to the square of its impact velocity, V*. The
kinetic energy of vehicle (2) is essentially proportional to the square
of its impact velocity, and Vimpsct is smaller than the theoretical veloeity
of vehicle (1). As the thrust-to-weight ratio of vehicle (2) increases,
Vimpsct gets closer to V*, and hence gravity losses decrease. In actual
missiles the thrust-to-weight ratio is closer to 1 than to infinity because
the weights of engines and structural components increase with in-
creased thrust. We reach a point where the advantage of higher thrust
in terms of velocity losses is offset by increase in burnout weight.

We see that not all of the velocity loss goes into gaining altitude;
some is lost to the expended propellants. By substituting the appropri-
ate numerical values for an existing vehicle in these equations, it was
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determined that approximately 25 per cent of the velocity loss went
into gaining altitude; 75 per cent was lost as equivalent energy to the
expended propellants. This calculation presents a good argument for
holding the burnout altitude as low as possible. It is true that low burn-
out altitudes mean larger drag effects, but these are relatively small
when compared with gravity losses. Aerodynamic effects, of course,
lead to heating, and heating often means an increase in structural
weight, but gravitational losses are still a prime concern.

Drag Loss

The drag loss (B.10) is dependent on the ratio CpA/W,, p, and V2
The air density p is dependent on altitude and, for qualitative purposes,
can be considered to decay exponentially with altitude according to
the following equation:

p(2) = p,e~k=Ra, (B.18)

The dependency of the drag losses on V? is significant during late seg-
ments of flight if the trajectory is flat (low) and if high velocities are
achieved below, say, 150,000 ft. The effect of V* for most “normal”
trajectories is not important, because these values occur when the
vehicle is beyond the atmosphere. The greatest erosion of velocity oc-
curs when Cp is near its peak and early in flight when p is of the same
magnitude as p,. In a typical trajectory with an initial thrust-to-weight
ratio of 1.2, the vehicle achieves Mach 1 in 80 sec at about 30,000 ft,
where the density is approximately 0.37 times that at the earth’s
surface.

It would be expected that for equivalent trajectories the velocity
loss due to drag would be sensitive to Ny. There are two effects, how-
ever: for high Ny, higher velocities are achieved at lower altitudes, and
hence the density for Mach 1 velocity is large; but for high N,, the
duration of time through which the drag forces are acting is reduced,
and the effects tend to cancel. Thus, drag losses are very insensitive
to N 0.

For the most part, Vp depends on Cpyd/W,o, No/I,, and B at burn-
out. Because the trajectory changes little with variation in Cpxd/W,,
the losses can be expected to be proportional to this quantity. The
Cpa (the maximum Cp) is the single parameter selected to be char-
acteristic of all drag curves, for reasons stated elsewhere in this chapter.
The term I,/N, is equivalent to Wo/W, which determines the change
in CpaA/W [t] with time. For the same initial weight, the missile with
lower I,/N, has less weight at the time when the drag forces become
most important. The burnout angle 8 is a measure of the proportion
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of the total trajectory contained in the atmosphere. As 8 is increased,
the density associated with each velocity is increased, and the resulting
velocity loss is greater.

As the trajectory becomes very flat and high velocities are achieved
at low altitudes, the effect of V2 and the long duration of the drag force
combine to increase the drag loss to very high values. It is not expected
that such trajectories are realistic, as aerodynamic heating may pre-
clude extremely flat burnout angles. Flat burnout angles may be
achieved if the thrust is reduced to increase the total time of powered
flight. Usually, thrust levels that are sufficient to boost the vehicle at
launch yield comparatively short over-all burning times. Thrust may
be reduced by throttling a single-stage vehicle or, more profitably, by
staging. If either of these techniques is not sufficient, and if flat burn-
out velocities are required, a coasting period may be inserted between
burning periods. If restart capabilities are not available or not desirable,
the remaining alternative is to fly the vehicle steeply during an early
segment of flight and pitch down after sufficient altitude has been
achieved, yielding a negative angle of attack. In this type of trajectory,
considerable velocity (and payload) is lost in turning the velocity
vector when the magnitude of the velocity is high. To date, no approxi-
mation has been found to determine these “turning losses”; the only
realistic approach has been to use a computing machine.

Nozzle-Pressure Loss

The term V, results from the fact that thrust is lost when the nozzle
pressure in the exit plane is less than the ambient pressure. This loss is
frequently thought of in terms of a reduction in specific impulse. The
amount of the thrust loss as a function of trajectory parameters is de-
pendent only on the ambient pressure; hence the total velocity loss
occurs early in powered flight.

The integral in equation (B.11) shows that the nozzle-pressure loss
should also be proportional to No. An increase in N, increases the rate
at which altitude is achieved, however, and reduces the duration of
flight time at high ambient pressure by an amount also dependent on
No; the two effects tend to cancel. The effect of I,/N,, or the change
in vehicle weight with time, is less significant with the nozzle-pressure
loss than with the drag loss because the largest percentage of nozzle-
pressure loss occurs early in powered flight.

Appendix C: Symbols

A vehicle reference area for drag calculations
B empirical parameter in simplified range equation
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Co

Com

Vim pact
V,
Vi

drag coefficient, function of Mach number

maximum drag coefficient

empirical parameter in simplified range equation

thrust (1b)

gravitational constant, 32.2 ft/sec?

burnout altitude measured from earth’s surface

intermediate altitude between first-stage burnout and final
burnout, used in computingvelocity loss in succeeding stages

burnout altitude for vertical trajectory, neglecting atmos-
pheric effects

index denoting stage measured from launch

vacuum specific impulse, i.e., vacuum thrust divided by flow
rate of fuel

sea-level specific impulse, i.e., sea-level thrust divided by flow
rate of fuel

empirical constant used to determine V,

empirical constant used to determine Vp

empirical constant used to determine ¥V,

empirical constant used to determine V,

natural logarithm

mass of vehicle

initial thrust-to-weight ratio, i.e., launch thrust divided by
launch weight

thrust-to-mass ratio, a function of time

atmospheric pressure, a function of altitude

atmospheric pressure at sea level

impact range

radius of earth = 20.9 X 10° {t

burnout mass ratio = stage initial weight (mass) divided by
stage burnout weight (mass)

total period of elliptic orbit

time

time from selected trajectory conditions to apogee

burning time

time from reaching burnout altitude to impact on reéntry

vehicle velocity vector

magnitude of velocity as function of time

velocity lost to nozzle pressure

magnitude of burnout velocity

velocity lost to drag

velocity at impact

velocity lost to gravitation

total velocity lost = Vo + Vp + V,
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theoretical velocity as determined by rocket equation

weight of vehicle, a function of time

vehicle initial weight

vehicle final (burnout) weight

weight jettisoned between stages of two-stage vehicle

weight of payload (includes guidance and other weights that
do not vary with last-stage size)

surface range at burnout

radius vector from earth center to vehicle

magnitude of z

angle between vehicle velocity vector at burnout and local
vertical

selected 8 between those for first-stage and final-stage burn-
out to be used in determining velocity losses and altitude
gains

eccentricity of free-flight ellipse

unit vector aligned with thrust

nondimensional parameter = Vi2o/gR,

ratio of specific heats of combustion products

atmospheric density, function of altitude

brackets indicate functional notation

nondimensional parameter = R, + hs/R,

impact range angle

partial derivative of u with respect to v with w held constant
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Chapter 3

The Optimum Spacing of Corrective Thrusts
in Interplanetary Navigation™

J. V. BREAKWELL

1. The Problem of Corrective Thrusts

Suppose that a spaceship is in free (i.e., unpowered) flight on its way
from Earth to Mars. Except in the immediate vicinity of Earth and
Mars, its trajectory is essentially a heliocentric ellipse. Let us pretend
that the orbits of Earth and Mars and the “transfer ellipse” are co-
planar. Now, the actual transfer trajectory, if uncorrected beyond some
point P,, will miss the destination planet Mars by a distance D,_,, to
which we may attach a sign (e.g., +) according to whether the space-
ship passes to the left or to the right of Mars (see Fig. 1). Suppose that
a corrective velocity impulse v is to be applied at the point P, on
the transfer trajectory. This, of course, effectively includes the appli-
cation of a finite thrust over a duration very much smaller than the
flight duration. The amount of velocity correction v¢? is computed as
follows: (a) Make an estimate D,_; of D,_; based on measurements
(probably angular) determining present and past positions; (b) Com-
pute v so that, in a linearized error theory,

oD .
— () Vs = = Du_y. (1.1)

It should be mentioned here that errors in the estimate D,_; may
include biases in the subsequent trajectory calculation due, for example,
to oversimplifying the computation. Our main concern, however, will

1 A version of this paper appears as Chapter 12 in George Leitmann (ed.),

Optimization Techniques with Applications to Aerospace Systems, Academic Press,
New York, 1962,
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Fig. 1. Earth-Mars trajectory.

be with random errors in D,_; due to random measurement errors.

The “control effectiveness” aD(t)/0v certainly decreases toward zero
as the spaceship moves from Earth to Mars. Consequently if D,y were
estimated correctly, the economical practice in terms of fuel expended
on velocity correction would be to correct as soon as possible. On the
average, however, D,_, is not estimated correctly. This means that a
correction at P, still leaves us with a miss-distance D, which may have
to be reduced by further corrections. This supposedly reduced miss-
distance is

aD )
Dn = Dn-—l - Dn—l + 3“; (tn) *Vn,y (1-2)

where the last term is due to a possible velocity mechanization error
v,. Moreover, we may expect that the error in estimating D, like
the control effectiveness, decreases toward zero as we approach the
target planet. The problem we face is that of choosing the correction
points Py, Py, - - -, Py so as to achieve in some average sense a re-
quired terminal accuracy with a minimum total velocity correction and
hence a minimum expenditure of fuel for corrective thrusts.

2. Discussion
The problem as we have described it so far is two-dimensional. Actually,

the true situation is three-dimensional, even if the “nominal” transfer
trajectory is coplanar with the orbit of Mars, since it will be necessary
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to consider an “out-of-plane” miss-distance component related to out-
of-plane position and velocity components. The out-of-plane one-
dimensional correction problem is independent of the “in-plane” cor-
rection problem, except that both kinds of correction are made simul-
taneously so as to economize on

Y (e)
X lw |
Nl

Mention should be made at this point of a related problem treated in
one dimension by Arnold Rosenbloom [1]. Instead of considering an
average expenditure of fuel, Rosenbloom sets an upper limit on fuel
available and inquires as to what to do to minimize some average .
terminal error. Mathematically this is a more difficult problem and
one that will not be discussed further here.

Returning to our two-dimensional problem, we note that the velocity
correction v is not uniquely determined by the relation (1.1).
Naturally we resolve this choice by minimizing the individual velocity
correction magnitude |v®|. It is easy to see that this amounts to
choosing v either parallel or antiparallel to the vector dD(t)/dv, de-
pending on the sign of D,_;. It then follows that

lva” | _ADeal @.1)

e (ta)

The control-effectiveness vector dD/adv(f) is to be evaluated along the
nominal correction-free transfer orbit. Its magnitude and direction are
indicated in Figure 2 for the case of a “Hohmann transfer” from Earth
to Mars, that is, a 180° transfer along an ellipse cotangential to the
Earth and Mars orbits, treated as coplanar heliocentric circles. The
gravitational fields of Earth and Mars themselves were ignored in the
calculation of 3D(t)/dv. The abscissa in Figure 2, the so-called mean
anomaly, increases uniformly with time from 0° to 180°. It appears,
then, that the effectiveness magnitude |dD(¢)/dv| decreases to zero
essentially linearly with time, while the direction of dD(¢)/dv, measured
from the “transverse” direction perpendicular to the radius from the
Sun, increases essentially linearly with time from 0° to 90°. Thus, as
might be anticipated, an early correction is made forward or backward
along the transfer orbit and the last correction is made perpendicular
to the motion.

We may use (2.1) with n increased by 1, together with (1.2) to ex-
press |v,(,‘11| in terms of errors at P, and P,.;. In particular, if we
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Fig. 2. Guidance chart for Earth-Mars Hohmann transfer,

neglect the mechanization errors v/, we obtain:

|veh| =——— | (Ds= D) — Do — Do) | . (22)
‘_' (tn+1)

This tells us, for example, that if the latest miss-distance is correctly
estimated (D, = D,), the corrective velocity depends only on the
last previous error in miss-distance estimation, regardless of how many
corrections have been made. On the other hand, if the last previous
miss-distance estimate were correct, the new correction would be due
only to an incorrect new estimate of a miss-distance that is really zero.
If we now disregard any biases in the estimates D, we may assume
that the differences (D — D) are normally distributed with zero mean
and with variances and covariances that may be obtained in a straight-
forward manner from assumed variances in the various independent
angular measurements involved, the errors of which are presumably
normal with zero bias. The in-plane velocity correction magnitude
|vf,°3r,| is thus expressed by means of (2.2) as the absolute value of a
normal random variable with zero mean and computable variance.
Meanwhile we may use (1.2) to establish a time ¢y for the last cor-
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rection such that any earlier time would lead to an expected miss
E{|Dx|} in excess of some allowed terminal error. The “launching”
error D, before the first correction may be presumed to be, on the
average, far greater in absolute value than the allowed terminal error.
What we would like to do, given iy and a root-mean-square (rms)
launching error op,, is to choose & sequence of times #, &3, « - -, ty, wWith
the integer N not specified, so that the 90 percentile, say, of the dis-
tribution of

@

2w

Nl
is as small as possible. This, however, is an awkward quantity to com-
pute because of the correlation between successive terms in the sum.
A more workable, and closely related, criterion is the minimization of
the sum

N
Sy = 2 E{| %] ). (2.3)

n=1

We may take advantage here of the fact that the expected magnitude
E{|z|} of a normal random variable z with zero mean and variance
a2 is just e2v/2/7.

3. The Three-Dimensional Problem

The three-dimensional situation has been discussed by the author [2],
[3]. If we denote the out-of-plane miss by D’ and choose the z-direction
perpendicular to the plane of motion, the out-of-plane velocity cor-
rection at P,y is

I .(e) Dn' - Dnl .
ag| = || ———— — &l
aD’
Y (tagr)

2y
33 (tn rD,.'_l— a—1

aD'(t )I- aD'(t)
oz o "

where small mechanization errors 2/ are now included. The in-plane
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velocity correction becomes

4/(1_:(6) 2 J(e) 2 Dn - Dn

wt+1) + Gng)) = 0 Wiy
— (tas1)
oD )
av " Dn_1 —_ D,._]_ ’
- 3D — Wn ’ (3-2)

where dD/dv(t) denotes

4/FDmT+[”Wﬂ2

o oy ’

and where w’ denotes the component of the mechanization error v’ in
the direction of the in-plane vector (8D/d%, dD/dy). Since

.(e) 2 L(e) 2 RO
4/($n+1) + @ng1) + Gazr)
no longer has a simple statistical distribution, in spite of the assumed
normality of the mechanization errors as well as the measurement

errors, the criterion (2.3) is replaced by a related criterion, namely,
that of minimizing

Sy =5V EWET +0TH + G2,

na=l (3'3)

which is more easily computable.
4. Examples

To carry out a minimization of Sy without a digital computer, we must
make some simplifying assumptions relative to the miss-distance esti-
mates D. We shall consider two examples. As our first example, in two
dimensions, let us suppose the estimate D,_, is based on measurements
rather close to the position P, so that they effectively measure position
and velocity at P, with an uncertainty in velocity that has a substan-
tially greater effect on miss-distance than has the uncertainty in posi-
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tion. In this case, we have
aD
0h,_y =2 —— (ta)as, 4.1)
v

where ¢, is the rms velocity measurement uncertainty in the direction
of dD/3v(t,). We shall further suppose that this uncertainty is inde-
pendent of time, as is the rms value ¢’ of w’.

The sum Sy now simplifies to

/ (tn—l) 2
+ 1/a,+a'22 Y2 P 4.2)

% E(‘”)

It was shown in [3] that for sufficiently large rms launching error, in
fact if

ano>3—(0)1/a.,+o ,

the optimum choice of correction times ¢, must be such that =0
(or as soon as feasible) and

oD ()
v nt

=P

aD
—(t,
™ (&)

a value independent of n, and that the optimum integer N is deter-
mined approximately by the condition p = 3.0. In the case of the
Hohmann transfer from Earth to Mars, the approximate linearity of
dD/dv as a function of time leads to the following rough description of
the optimum spacing of corrections: Make the first correction as soon
as feasible; after any correction proceed two-thirds of the way to the
target (i.e., wait for two-thirds of the remaining time) before the next
correction. A similar result was given by Lawden [4]. Figure 3 shows
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Fig. 3. Fuel expenditure versus spacing ratio (Example 1).

that the behavior of Sy as a function of p is not very sensitive to
changes in “spacing ratio” from the optimum value 3. This “cascading”
of corrections is surprisingly effective in reducing errors. Indeed, it was
shown in [2], [5] that if we restrict our terminal error by the stringent
requirement that in aiming to “bounce off” Mars in a particular direc-
tion (e.g., en route to Venus) along the “other asymptote” (see Fig. 4),
our error in the subsequent velocity vector will be no greater than the
velocity errors incurred at the correction points on the way to Mars;
then 8 corrections suffice for the Earth-Mars leg, the last correction
occurring about 3% hr before passing Mars.

D Planet

0,
Fig. 4. Trajectory near planet.
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The weak assumption in this first example is that D,_, is estimated
on the basis of observations close to P,. It is certainly more plausible
to assume that D,_; is estimated on measurements at least as far back
as P,_y, if not all the way back to the start—the estimation in the latter
case taking account of the previous corrective velocities.

To see the effect this might have on the optimum spacing, we choose
for our second example a rather different “one-dimensional” situation
(see Fig. 5). Suppose that a vehicle has a nominal straight-line motion

A ve ISV (I-7) —=
Iz

—’
-

2

Fig. 5. Position determination by subtended angle.

from A to B with constant speed V in unit time, but that its actual
position at time ¢ has a small lateral component z perpendicular to
AB in a fixed plane. Suppose further that lateral position z at any time
is measured by means of the exterior subtended angle 6 of which the
standard deviation ¢ is assumed to be independent of time. It is then
easy to show that the standard deviation of lateral position determi-
nation z is

o, = Vi(l — t)as,

which is, of course, largest midway from A to B. Perfectly mechanized
corrective thrusts are to be applied perpendicular to AB. The author
has shown [3], [5] that if the miss-distance is estimated at any time
from closely spaced measurements of z all the way back to A, the
optimum choice of correction times £, is such that

1- tu—l

—262 as l,—1.

n

Figure 6, which is analogous to Figure 3, shows again that the ex-
pected fuel consumption for corrections is not very sensitive to a change
of the spacing ratio p from the optimum value, in this case 2.62. Also
included in Figure 6 is a curve representing the relative fuel expendi-
ture, computed for a general constant spacing ratio p, for the case in
which miss-distance is estimated only on the basis of closely spaced
measurements since the last correction.

It is interesting to note here that because of the closeness of the last
observations, and in spite of the assumed improvement in measure-
ment as we approach B, the neglect of position information prior to the
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Fig. 6. Fuel expenditure versus spacing ratio (Example 2).

previous correction is costly. It is also interesting that the optimum
spacing is not substantially different from that in the first example.
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Chapter 4

The Analysis and Solution of
Optimum Trajectory Problems

STUART E. DREYFUS

1. Introduction

There are extremely attractive alternatives to both the customary
analytic approach (see [1]) and the method of numerical solution
(see [2]) usually adopted in the analysis of trajectory problems. This
chapter will indicate the nature of these alternatives and provide some
references to fuller discussions.

2. Analytic Approach

Although the conventional variational approach characterizes opti-
mality globally by means of comparison functions, it leads to a local
theory consisting of the Euler-Lagrange differential equations and
other local conditions.

On the other hand, dynamic programming [3] and the theory of
Carathéodory [4] begin with a local characterization of optimality.
It is shown in reference [5] how the classical results follow easily and
intuitively from this approach.

The fundamental difference in approaches stems from the definition
of an optimal solution. In the classical approach an optimal solution
is a control function (or set of functions) of an independent variable,
usually time, that yields a trajectory starting in a specified initial state
configuration and satisfying certain terminal conditions.

In dynamic programming a solution is a mapping from state (that is,
configuration, phase) space to a control space, so that each possible
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physical state has associated with it an optimal control action. This
space of controls is so constructed that the trajectory thus determined
from any feasible tnitial point satisfies any specified terminal conditions.

This new approach also allows a simple characterization of a relative
extremal for the synthesis problem when the domain of the solution
function is bounded and the solution consists of Euler curves and
boundary curves [6].

3. Numerical Solution

An attractive method of numerical solution stems from the technique
of successive approximations, where a nominal curve is guessed and
then successively improved via a linearized theory. This idea is not new,
of course, but it has recently found a number of successful applications
[7], [8], [9]. Experimentation seems to indicate that this approach
avoids the instabilities inherent in straightforward integration of the
Euler equations.

The ordinary differential equations furnished by the Euler equation
can be thought of as characteristics of the Hamilton—-Jacobi partial
differential equation derived directly via dynamic programming. Use
of these equations in the approximation method mentioned above is
preferable to the direct solution of the partial differential equation, or
recurrence relation, of dynamie programming. The dynamie-program-
ming method of solution, however, though time and space consuming,
does guarantee the determination of the absolute extremum, and also
finds applications in the study of stochastic and adaptive variational
problems, where, as yet, no other general methods exist.

4. Optimal Guidance

Deviation from a preprogrammed optimal trajectory often occurs
during flight, due to unpredictable forces such as wind, and occasionally
as a result of mechanical malfunctions. Much attention has recently
been concentrated on this problem. Earlier guidance schemesattempted
to return to the old trajectory in the event of deviation, or to match
the old terminal conditions. Current research recognizes that after de-
viation, particularly one of some magnitude, some new trajectory is
optimal for the new problem at hand. If the optimal decision were
known as a function of the coordinate in state space—rather than as
a function of time as in the classical theory—optimal decisions could be
easily rendered, despite disturbances, no matter how large.

Theories are currently being developed that determine the optimal
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decision in the state-space neighborhood of the optimal trajectory. These
involve second-order analyses, including, in the classical case, the
second variation [10], [11], and in the dynamic-programming ap-
proach, second partial derivatives [12].

5. Stochastic and Adaptive Variational Problems

Optimal guidance theories recognize that deviations may occur, but
do not consider the probability of these deviations in advance. Stochas-
tic variational theory seeks an optimal trajectory, usually in an ex-
pected-value sense, taking account of probable disturbances, the
statistics of which are assumed known. Either the current state or the
future forces may be statistical [13], [14].

If, initially, even the statistical description of the unknown forces,
or of components of the state vector, is lacking, then the problem is
called adaptive [15].

6. Conclusion

New problems, approaches, and results are appearing in the optimal-
trajectory and control area. It is becoming obvious that a complete
solution of a variational problem should consist of a mapping from
state-variable space to the control space, so that each possible physical
state has associated with it an optimal control action. If such a mapping
can be found, both the optimal guidance and stochastic control prob-
lems are solved.

This mapping can generally be characterized as the solution of a
partial differential equation. Since computation of the solution is often
made prohibitive by the dimension of the state description, successive-
approximation techniques are necessary. These schemes, often called
gradient techniques, exist for deterministic systems.

While some analytic results exist for special stochastic problems, a
practical method of numerical solution for general stochastic problems
is yet to be developed.
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Chapter 5

A New Approach to the Synthesis of Optimal
Smoothing and Prediction Systems”

EMANUEL PARZEN

1. Introduction

This chapter describes a new approach to a wide class of smoothing
and prediction problems. The method can be applied to either station-
ary or nonstationary time series, with discrete or continuous parame-
ters. It can easily be extended to time series observed in space-time and
also to multiple time series, that is, those for which the observed value
at each point of space-time is not a real number but a vector of real
numbers.

Over the past few years I have been studying relationships between
the theory of second-order stationary random functions, time series
analysis, the theory of optimum design of communications and control
systems, and classical regression analysis and analysis of variance. In
the spring of 1957 I observed that reproducing-kernel Hilbert spaces
provide a unified framework for these varied problems. The results
obtained in 1957-1958 were theoretical elaborations of this idea, and
were stated in a lengthy Stanford technical report [1] completed in the
fall of 1958. Since then I have been concerned with developing examples
and applications, well aware that the reproducing-kernel Hilbert space
approach would be of no value unless it could provide new answers as
well as old ones. It is hoped that the results presented here provide
evidence that this approach is of value- .

It may be of interest to relate this approach to one that is being

1 Prepared with partial support of the Office of Naval Research.
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developed in the Soviet Union by V. 8. Pugachev ([2]~[5]). Pugachev
has in recent years advanced a point of view that he calls the method
of canonic representations of random functions, for which in a recent
article [5] he makes the following claim: “The results of this article,
together with the results of [previous] papers, permit us to state that
the method of canonic representations of random functions is the
foundation of the modern statistical theory of optimum systems.” The
methods to be presented in this chapter appear to provide a more
powerful and elegant means of achieving in a unified manner the results
that Pugachev has sought to unify by the method of canonic repre-
sentations.

It may also be of interest to describe the standard approach to pre-
diction and smoothing problems. The pioneering work of Wiener [6]
and Kolmogorov [7] on prediction theory was concerned with a station-
ary time series observed over a semi-infinite interval of time, and
sought predictors having minimum mean square over all possible linear
predictors. Wiener showed how the solution of the prediction problem
could be reduced to the solution of the so-called Wiener—Hopf integral
equation, and gave a method (spectral factorization) for the solution
of this integral equation. Simplified methods for solution of this equa~
tion in the practically important, special case of rational spectral
density functions were given by Zadeh and Ragazzini [8] and Bode and
Shannon [9]. Zadeh and Ragazzini [10] also treated the problem of
regression analysis of time series with stationary fluctuation function
by reducing the problem to one involving the solution of a Wiener-
Hopf equation. There then developed an extensive literature treating
prediction and smoothing problems involving a finite time of observa-
tion and nonstationary time series. The methods employed were either
to reduce the solution of the problem to the solution of a suitable
integral equation (generalization of the Wiener-Hopf equation) or to
employ expansions (of Karhunen-Loéve type) of the time series in-
volved. In this chapter, we describe an approach to smoothing and
prediction problems that may be called coordinate free, which, by the
introduction of suitable coordinate systems, contains these previous
approaches as special cases.

Finally, let us briefly outline the class of problems for which we shall
give a unified, rigorous, and general treatment. A wide variety of prob-
lems concerning communication and control, or both (involving such
diverse problems as the automatic tracking of moving objects, the
reception of radio signals in the presence of natural and artificial dis-
turbances, the reproduction of sound and images, the design of guidance
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systems, the design of control systems for industrial processes, fore-
casting, the analysis of economic fluctuations, and the analysis of any
kind of record representing observation over time), may be regarded
as special cases of the following problem:

Let T denote a set of points on a time axis such that at each point
tin T an observation has been made of a random variable X(¢). Given
the observations { X(¢), t € T'}, and a quantity Z related to the obser-
vation in a manner to be specified, one desires to form in an optimum
manner estimates and tests of hypotheses about Z and various func-
tions ¢(Z2).

This imprecisely formulated problem provides the general context
in which to pose the following usual problems of communication and
control.

Prediction or extrapolation: Observe the stochastic process X (¢) over
the interval s — T < ¢t < s; then predict X(s + «) for any « > 0. The
length T of interval of observation may be finite or infinite. The opti-
mum system yielding the predicted value of X(s -+ «) is referred to
as an optimum dynamic system if it provides estimates of X (s + @)
foralla > 0.

Smoothing or filtering: Over the interval s — T' < ¢ < s, observe the
sum X(¢) = S(t) 4+ N(¢) of two stochastic processes or time series S(t)
and N(f), representing signal and noise respectively; then estimate
S(t) forany valueof tins — T < ¢ < s. The terminology “smoothing”
derives from the fact that often the noise N(f) consists of very high-
frequency components compared with the signal S(¢); predicting S(f)
can then be regarded as attempting to pass a smooth curve through a
very wiggly record. ‘

Smoothing and prediction: Observe S(t) + N() overs — T <t <L s;
then predict S(s + ) for any ¢ > 0.

Parameter estimation: Over an interval 0 < ¢ < T, observe
S() + N(), where S(¢f) represents the trajectory (given by
S(t) = zo + vt + at?/2, say) of a moving object and N(¢) represents
errors of measurement; then estimate the velocity v and acceleration
a of the object. More generally, estimate such quantities as S(¢) and
dS(t)/dt at any time ¢ in 0 < ¢t £ T, when the signal is of the form
S(t) = Blwl(t) + -+ quq(t)-

Signal extraction and detection: Observe X () = A cos w(t — 7) + N(t)
over an interval 0 < ¢ < T; then estimate the parameters A and r,
or test the hypothesis that A = 0 against the hypothesis that 4 > 0.
This problem is not explicitly treated in this chapter, although it could
be handled by means of the tools described here.
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2. A New Approach to Prediction Problems

Let us consider a stochastic process or time series { X(f), ¢ € T'}, which
is a family of random variables indexed by a parameter ¢ varying in
some index set 7'. Assume that each random variable has a finite second

moment. Let
K(s, t) = E[X(9X®)] @.1)

be the covariance kernel of the time series. It might be thought more
logical to call the function defined by (2.1) the product moment kernel,
and reserve the name covariance kernel for the function defined by

K(s,1) = Cov [X(9), X(®)] = EIX(©X®)] — E[X®)]EIX®)]. (22)

This terminology seems cumbersome, however, and is not adopted. We
shall call the function defined by (2.2) the proper covariance kernel.

Let Z be a random variable with finite second moment for which one
knows the cross-covariance function pz(-), defined by

pz(t) = E[ZX(®)], tinT. (2.3)

A basic problem in statistical communication theory—which, as we
shall see, is also basic to the study of the structure of time series—is
that of minimum mean-square error linear prediction: Given a random
variable Z with finite second moment, and a time series { X(t),t € T},
find that random variable, linear in the observations, with smallest
mean-square distance from Z. In other words, if we desire to predict
the value of Z on the basis of having observed the values of the time
series { X (8),t € T}, one method might be to take that linear functional
in the observations, denoted by E*[Z| X (t),t € T, of which the mean-~
square error as a predictor is least.f

The existence and uniqueness of, and conditions characterizing, the
best linear predictor are provided by the projection theorem of abstract
Hilbert-space theory. (For proofs of the following assertions concerning
Hilbert-space theory, see any suitable text, such as Halmos [13].)

By an abstract Hilbert space is meant a set H (with members u,
v, » - -, that are usually called vectors or points) that possesses the fol-
lowing properties:

i. H is a linear space. Roughly speaking, this means that for any
vector u and v in H, and real numbers a, there exist vectors, denoted by

t The symbol E* is used to denote a predictor because, in the case of
jointly normally distributed random variables, the least linear predictor
E*[Z|X(t), t € T] coincides with the conditional expectation E[Z|X (), t & T].
For an elementary discussion of this fact, see Parzen [11], p. 387, or [12],
Chap. 2.
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u + v and au, respectively, that satisfy the usual algebraic properties
of addition and multiplication; also there exists a zero vector 0 with
the usual properties under addition.

ii. H is an inner product space. That is, to every pair of points, u and
v, in H there corresponds a real number, written (u, v) and called the
inner product of u and v, possessing the following properties: for all
points u, v, and w in H, and for every real number g,

a. (au, v) = a(y, v)

b. (u + v, w) = (u, w) + (v, w),
c. (U, u) = (uy 1)),

d. (u, u) > 0if u 0.

iii. H is a complete metric space under the norm ||u|| = (u, w)'2.
That is, if {u.} is a sequence of points such that ||um — u.|| = 0 as
m, n—> o, then there is a vector w in H such that ||u, — «|2— 0
asn — o,

The Hilbert space spanned by a time series {X w,teT } is denoted
by L:(X(t), t € T) and is defined as consisting of all random variables
U that are either finite linear combinations of the random variables
{X(t), t € T}, or are limits of such finite linear combinations in the
norm corresponding to the inner product defined on the space of square-
integrable random variables by

(U, V) = E[UV]. (2.4)

In words, L:(X(t), t & T) consists of all linear functionals in the time
series.

We next state without proof the projection theorem for an abstract
Hilbert space.

ProsecTioN THEOREM. Let H be an absiract Hilbert space, let M be
a Hilbert subspace of H, let v be a vector in H, and let v* be a vector in M.
A necessary and sufficient condition that v* be the unique vector in M
satisfying

[lo* = ¢]| = min [Ju — || (2.5)
ueM
1s that
v*, u) = (v, u) for every u in M. (2.6)

The vector v* satisfying (2.5) is called the projection of v onto M, and
is also written E*[v| M].
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In the case that M is the Hilbert space spanned by a family of
vectors {z(f), t € T} in H, we write E*[v]z(f), ¢t € T] to denote the
projection of v onto M. In this case, a necessary and sufficient condition
that v* satisfy (2.5) is that

@*, z(t)) = (v, z(t)) for every t S T. 2.7)

We are now in a position to solve the problem of obtaining an explicit
expression for the minimum mean-square error linear prediction
E*[Z | X(t), t € T]. From (2.7) it follows that the optimum linear pre-
dictor is the unique random variable in L,(X(t), ¢t € T) satisfying,
forall¢in T,

E[E*Z| X(@), t € TIX(®)] = E[ZX®)]. (2.8)

Equation (2.8) may look more familiar if we consider the special case
of an interval T = {¢: a < ¢ < b}. If one writes, heuristically,

f&@wms 2.9)

to represent a random variable in L,(X(¢), ¢ € T), then (2.8) states
that the weighting function w*(¢) of the best linear predictor

b
FMM@JEﬂ=fw%W®%, (2.10)
must satisfy the generalized Wiener—Hopf equation
b
f w*(s)K(s,t)ds = pz(1), a<t=Zh. 2.11)

There is an extensive literature [14], [15], [16] concerning the
solution of the integral equation in (2.11). However, this literature is
concerned with an unnecessarily difficult problem—one in which the
very formulation of the problem makes it difficult to be rigorous. The
integral equation in (2.11) has a solution only if one interprets w*(s)
as a generalized function including terms that are Dirac delta functions
and derivatives of delta functions.

A simple reinterpretation of (2.11) avoids all of these difficulties. Let
us not regard (2.11) as an integral equation for the weighting function
w*(s); rather, let us compare (2.10) and (2.11). These equations say
that if one can find a representation for the function pz(t) in terms of
linear operations on the functions {K(s, -), s € T } , then the minimum
mean-square error linear predictor E*[Z| X (t), t € T] can be written in
terms of the corresponding Ulinear operalions on the time series
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{X(s),s € T}.It should be emphasized that the most important linear
operations are integration and differentiation. Consequently, the prob-
lem of finding the best linear predictor is not one of solving an integral
equation but rather one of hunting for a linear representation of pz(t)
in terms of the covariance kernel K(s, t). A general method of finding
such representations will be discussed in the following sections. In this
section we illustrate the ideas involved by considering several examples.

Ezample 2A. Consider a stationary time series X(¢), with covariance

kernel
K(s, t) = CeFli—el, (2.12)

which we have observed over a finite interval of time, a <t < b.

Suppose that we desire to predict X(b 4 ¢) for ¢ > 0. Now, for
a <t <b we have

p(t) = E[X®X (D + ¢)] = Ceplete=t = ¢=8<K (b, §). (2.13)

In view of (2.13), by the interpretation of (2.10) and (2.11) just stated,

it follows that

E*[X(®b +c)| X(@®), a <t < b] = e X (). (2.14)

The present methods yield a simple proof of a widely quoted fact.

Define a stationary time series X(f) with a continuous covariance

function R(s — t) = E[X(s)X(t)] to be Markov if, for any real numbers

a < b and ¢ > 0, the least linear predictor of X(b + ¢), given X(¢)

over the interval ¢ < ¢ < b, is a linear function of the most recent
value X (b); in symbols, X(¢) is Markov if

E*X(®+¢)| X1, a <t <b] = A()X(b) (2.15)
for some constant A(c) depending only on c.

Let us now establish the following result:

Doos’s Tarorem: Equation (2.15) holds if and only if, for some
constants C and B,

R(u) = Ce 1, (2.16)
Proor: From the fact that
p(t) = E[X(b + ¢)X(#)] = RO — t +¢),

it follows by the projection theorem that (2.15) holds if and only if,
foreverya < b,¢ > 0,andtina < ¢t < b, we have

Rb—t+c) = AQR®D — ). (2.17)
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By (2.17) it follows that for every d > 0 and ¢ = 0 we have
R(d + ¢) = A(c)R(@d). (2.18)

Letting d = 0, we obtain A(c) = R(c); consequently, for every ¢ > 0
and d > 0, R(u) satisfies the equation

R@ + ¢) = R@)R(). (2.19)

It is well known (see Parzen [11], p. 263) that a continuous even
function R (u) satisfying (2.19) is of the form of (2.16).

Ezample 2B. (Reinterpretation of the Karhunen—Loéve expansion.)
Many writers on statistical communication theory (see [17], pp. 96,
244, 338-352, [18], and [19]) have made use of what is often called
the Karhunen—Logve representation of a random function X(f) of
second order. The results obtained are clarified when looked at from
the present point of view.

The fundamental fact underlying the Karhunen—-Lo&ve expansion
may be stated as follows:

MERCER’S THEOREM. If {oa(f),n = 1,2, - - - } denotes the sequence
of normalized eigenfunctions and {A,,n =1,2, + - - } the sequence of
corresponding nonnegative eigenvalues satisfying the relations

f bK(S, Den(s) ds = Mpn(l), a<1<}, (2:20)

[ on@on® dt = s0m,m, (2.21)

where 6(m, n) is the Kronecker delta function, equal to 1 or 0 depending
on whether m = n or m # n, then the kernel K(s, t) may be represented
by the series

K(s, 1) = 22 Men(s)en(), (2.22)
n==l
and this series converges absolutely and uniformly fora < s,t < b.
If we wish to predict the value of a random variable Z on the basis
of the observed values X(¢), @ < ¢ < b, we may write an explicit ex-
pression for the minimum mean-square error linear predictor as follows:

) 1 b
EXZ|X(®),a<t<b] = 3] ) pOe®
n=] nY a

. (2.23)
X f X (s)en(s) ds.
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In order to prove the validity of (2.23), we need to prove that the
infinite series is well defined and that it satisfies (2.8). Now

E l: f“ bX (8)em(s) ds j;bX O ea(t) dt]

= f ' f bK(s, ) em(8)on(l) ds dt = And(m, n). (2.24)

Therefore the mean square of the infinite series in (2.23) is equal to

]

1

n=1 kn

2

b
[ oo a (2.25)

Consequently, a necessary and sufficient condition that the infinite
series in (2.23) be well defined is that the infinite series in (2.25) be
finite, which may be shown always to be the case. Next, we can show
that (2.8) is satisfied by verifying that, for any {ina <t < b,

Blx0 {3 % ) *pa(S)en(s) ds ) ' X ()enta) ast |

= i ea(f) pz(8)ea(s) ds = pz(t). (2.26)

n=1 a

If it is permissible to interchange the processes of summation and
integration in (2.23), then we may write

E*[Zl X@),a<t< b] = f bw*(s)X(s) ds, (2.27)
where
0 1 b
W) = Zenlo) - f p2(€)gn(l) dt. (2.28)

The condition for the infinite series in (2.28) to be well defined is that

) 2

L

2
ne=l )\,,

< o, (2.29)

[ eatrenty a

It can be shown that if (2.29) holds, then (2.27) is valid. Although
(2.25) is always finite, however, (2.29) rarely holds. The optimal pre-
dictor is not usually of the form of (2.27). Thus we again see that it
is not desirable to reduce prediction problems to the solution of the
integral equation in (2.11).
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Ezxample 2C. (The method of shaping filters.) Another technique em-
ployed in statistical communication theory is the method of shaping
filters (see Lanning and Battin [14]). Let X(¢) be a stochastic process
with covariance kernel K (s, ¢). Let n(t) be a white-noise process, and
let W (¢, s) be a weighting function such that for every ¢ we have

X@) = f "W, s)n(s) ds. (2.30)

In words, the time series X (¢) is represented as the response to a white-
noise input of a system (“filter”) described by a time-varying impulse-
response function W(¢, s). If (2.30) holds, then W(i, s) is called a
shaping filter for the time series X (). We now show how to use shaping
filters to solve the prediction problem, given a time series X (¢) that has
been observed over a semi-infinite range, — o <t <b.

If (2.30) holds, and if the cross-covariance function pz(¢f) may be
written, for a square-integrable function 7(s), as

H
pz(t) =f W, s)r(s) ds, —w <t <D, (2.31)
then

E*[Z| X(t), —o <t<b] = f br(s)n(s) ds. (2.32)

-0

To prove (2.32), note that, for —o <t < b, we have

E[ f_;W(t, 8)n(s) dsf ' r(s)n(s) ds]

-f W, () ds = pa).  (233)

The expression given by (2.32) can be further simplified if we make
the following reasonable assumptions about the shaping filter. Let
L, and M, be differential operators of orders n and m respectively:

n dk
L= £) —
¢ E?ak()dtk’

(2.34)

m dk
My= Y bi(t) — -
¢ gk()dtk

Let H.(t, s) and H (¢, s) be the respective one-sided Green’s functions
characterized by the property that any sufficiently differentiable func-
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tion f is given by

(1) =ftHL(t, 8)L.f(s) ds

= f ‘ Hau(t, s)M.f(s) ds. (2.35)
Suppose that the covariance kernel of X(¢) may be written
K@, s) = fmin (",)M¢HL(t, wM,H 1(s, u) du, (2.36)
or, equivalently, that
X = f‘ M. H (2, s)n(s) ds. 2.37)

For an interesting discussion of how to find differential operators satis-
fying (2.36), see Batkov [20]. It may be shown that if (2.36) holds,
then the right-hand side of (2.32) may be written in the form

b ¢ t
f dt f LeHn(t, u)p2() dus f LoHu(t, )X (u) du.  (2.38)
In the particular case 3, = 1, (2.38) reduces to

f dt{ Loz () { LX) 2.39)

For the sake of rigor, it should be noted that in (2.38) and (2.39) the
highest-order derivative of the observed time series X (f) may not exist,
and we must then write dX = (¢) for X™ (1) dt.

3. General Solution of the Problems of Linear Prediction

It is possible to give a treatment of problems of prediction and smooth-
ing that distinguishes between the statistical and analytical aspects of
the problem. Such methods as that of expansions in eigenfunctions
used in example 2B and that of shaping filters used in example 2C are
merely analytical means of evaluating certain abstract quantities that
can be defined without reference to these methods. The statistical prob-
lems of prediction and smoothing may be solved in terms of these ab-
stract quantities once and for all. Indeed, the theory we shall now
describe underlies the solution of many optimization problems; for
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example, it includes as a special case the theory of generalized inverses
of matrices (see Greville [21] for references to the history of the notion).

The basic tool in our theory is the notion of the reproducing-kernel
space corresponding to a covariance kernel K.

TaEOREM 3.1. (Existence and uniqueness of the reproducing-kernel
Hilbert space corresponding to a covariance function.) Let {X ®,teT }
be a time series with covariance kernel K(s, t) given by (2.1). Let H(K)
consist of all functions h(-) defined on T and of the form, for some U in
L2(X(t>; te T):

k() = E[X(®)U], foralltE T. 3.1
On H(K) define an tnner product by
(h, Wx = E| U~ (3.2)

Then H(K) is a Hilbert space. Further, H(K) possesses the following two
properties: (a) foreveryt & T,

K(-, 1 belongs to H(K), 3.3)

where K(-, t) is the function defined on T with value at s equal to K (s, §);
(b) for every t in T and h(-) in H(K),

h() = (b, K(-, D)x. 3.4

One calls (3.4) the reproducing property of the kernel K(s, t). Since
(3.4) holds, we call H(K) a reproducing-kernel Hilbert space, with re-
producing kernel K (for the theory of such spaces, see [22]). The re-
producing-kernel Hilbert space H(K) is uniquely determined by the
conditions (3.3) and (3.4).

Intuitively, a reproducing-kernel Hilbert space is a Hilbert space
that contains a function playing the role of the Dirac delta function
3(?). It should be recalled that, for square-integrable functions f(-),

fwf(s)a(s — 1) ds = f(t). (3.5)

Consequently, the kernel K(s, t) = 8(s — t) satisfies (3.4). It does not
satisfy (3.3), however, and therefore it is not truly a reproducing kernel.

TueoreEM 3.2. (General solution of the prediction problem.) Let
{X (1), t € T} be a time series with covariance kernel K (s, t), and let
H(K) be the corresponding reproducing-kernel Hilbert space. Belween
Ly(X(t), t € T) and H(K) there exists a one-to-one inner product pre-
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serving linear mapping under which X(f) and K(-, {) are mapped into
one another. Denote by (h, X)x the random variable in Ly(X(t), t € T)
that corresponds under the mapping to the function h(:) in H(K). Then
the general solution to the prediction problem may be written as follows. If
Z is a random variable with finite second moment, and if

pz(t) = E[ZX(1)],
then
E*[Z| X(t),t € T] = (pz, X, (3.6)
with mean-square error of prediction given by
E[|Z - E*z|X®),t€T]|?) = E| Z|* = (o2, p2)x. (3.7)

Proor. The validity of Theorem 3.2 follows immediately from the
definition of the concepts involved. However, it may be instructive to
give a proof of the theorem, using the following properties of the
mapping (k, X)x. For any functions g and 4 in H(X) and random vari-
ables Z with finite second moment, we have

E[(, X)x(9, X)x] = (h, 9)x, 3.8)
E[Z(h, X)x] = (pz, W)z, 3.9

where pz(t) = E[ZX(t)]. Now a random variable in Ly(X(¢), t € T)
may be written (h, X)x for some % in H(K). Consequently, the mean-
square error between any linear functional (h, X)x and Z may be
written thus:

El| &, X)x — Z|*] = El(h, X)z] + E[2?] — 2E[Z(h, X)x]
= E[22] + (b, W& — 2 (pz, W)
= E[Z?] — (pz, p2)x + (h — pz,h — p2)x. (3.10)

From (3.10) it is immediately seen that (pz, X)x is the minimum mean-
square error linear predictor of Z, with mean-square prediction error
equal to E[Z?] — (pz, pz)x. The proof of Theorem 3.2 is thus complete.

Theorem 3.2 represents a coordinate-free solution of the prediction
problem. The usual methods of explicitly writing optimum predictors,
using either eigenfunction expansions, Green’s functions (impulse re-
sponse functions), or (power) spectral density functions, are merely
methods of writing down the reproducing-kernel inner product cor-
responding to the covariance kernel K(s, ) of the observed time series.

Ezample 3A. (Eigenfunction expansions.) Let X(8), a <t <D, be a
time series of which the covariance kernel K(s, f) has the eigenfunction
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expansion (2.22). The corresponding reproducing-kernel Hilbert space
consists of all square-integrable functions A (¢) on the intervala < ¢ < b
such that

b -] b 2
[C1m0ka =3 [ hoeoa
and
| b 2
T f RO enlt) dt| < . 3.11)

The reproducing-kernel inner product between two such functions is
given by

) 1 b b

tox=3 = [ 10n0d [ a0 d @12
Nl n a a

The random variable (h, X)z in L,(X(t), a £ t < b) corresponding to

h(-) in H(K) under the mapping described in Theorem 3.2 is given by

(3.12) with g replaced by X.

Ezxample 3B. (Autoregressive schemes.) The reproducing-kernel
Hilbert space and inner product corresponding to time series of the
type described in example 2C can be determined; the reader may
easily infer them from (2.32) and (2.38). Here let us consider a station-
ary time series X (t), observed over a finite interval a < ¢ < b, of the
type that statisticians call an autoregressive scheme.

A continuous-parameter stationary time series X (f) is said to be an
autoregressive scheme of order m if its covariance function may be
written (see Doob [23], p. 542) as

gil—te

R(s—t) = E[X(8)X(®)] = f ) - -dw, (3.13)
® 2r Z ai(fw)™*

Km0

where the polynomial

Z akzm—k

k=0
has no zeros in the right-hand half of the complex z-plane. It can be
shown that, given observations of such a time series over a finite inter-
val a £t £ b, the corresponding reproducing-kernel Hilbert space
containg all functions A(f) on ¢ <t < b that are continuously dif-
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ferentiable of order n. The reproducing-kernel inner product is given by

tox = [ EHTo dt+ 3 G @@, 618

7m0
where
L = 3 ahmh(y), (3.15)
n Jith—2
{djn}—1 = {WRG —u) ‘_m_a} . (3.16)
The first- and second-order autoregressive schemes are of particular
importance.

A time series X (¢) is said to satisfy a first-order autoregressive scheme
if it 13 the solution of a first-order linear differential equation with input
a white noise #'(t) (the symbolic derivative of a process #(f) with in-
dependent stationary increments):

dX
o THX= 7 (®). (3.17)

It should be remarked that, from a mathematical point of view, (3.17)
should be written as

dX () + 8X (@) dt = dq(?). (3.18)

Even then, in saying that X (f) satisfies (3.17) or (3.18) we mean that
t

X@) = f H(t — §) dn(s), (3.19)

where H(t — s) = ¢#¢~* is the one-sided Green’s function of the dif-

ferential operator
Lif = f'(8) + 6/(0).

The covariance function of the time series X (¢) is
1
Rt — u) = — e~Flutl, 3.20
t—w 2 (3.20)

The corresponding reproducing-kernel Hilbert space H(K) contains all
differentiable functions. The inner product is given by

G0 = [ G +80 + 80 &+ 2W@e@.  B.2D)
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More generally, corresponding to the covariance function
K(s, t) = Cepla—tl, (3.22)

the reproducing-kernel inner product is

s = ——{ [ o+ @ + 0 -+ 2800010000}

= 555 [ W+ s - o @@ +h). 629

The random variable (k, X)g in Ly(X(#), a £ t £ b), corresponding to
h(:) in H(K), may be written as

(h, X)x = 23—0{52 f ROX () dt + f w0 dX(t)}

+ % {h(@)X (@) + LHB)X®)}. (3.24)

Note that X’(f) does not exist in any rigorous sense; consequently, we
write dX () where X'(¢) dt seems to be called for. It can be shown that
(3.24) makes sense. In the case that i(-) is twice differentiable, one
may integrate by parts and write

f bh’ @) dX() = (B X()) — h'(a)X(a) — f bX @r"@® dt.  (3.25)

A time series X () is said to satisfy a second-order autoregressive
scheme if it is the solution of a second-order linear differential equation
with input a white noise %’(f):

a:X
di?

aX
+ 2a y + X = 7'(). (3.26)

If w*=4%—a?>0, the covariance function of the time series is

—a|u—¢|

R(t—u) = {cosw u—t)+—s1nw|u—t|}. (3.27)

The corresponding reproducing-kernel Hilbert space contains all twice-
differentiable functions on the interval ¢ < ¢ < b with inner product

b
*, ) = f (K" + 2l + vh)(g" + 2ag’ + 1) dt

+ 4av’h(a)g(a) + 4ok’ (@)g'(a). (3.28)
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To write (h, X)x, we use the same considerations as those in (3.24).

4. General Solution of the Problem of Linear Smoothing (Regression
Analysis)

Let { X@),teT } be a time series of which the proper covariance
kernel

K(s, t) = Cov [X(s), X(8)] 4.1)
is known. The mean-value function,
m(t) = E[X(@®)], (4.2)

is only assumed to belong to a known class M. One case of particular
importance is that in which M consists of all finite linear combinations
of ¢ known functions w(?), - - -, w,(?), so that the mean-value function
is of the form

m(t) = Buwa(t) + -+ -+ + Bawy(?) (4.3)

for unknowns 8y, - - -, 8, that are to be estimated.

In this section we consider the problem of estimating various func-
tionals of the true mean-value function m(-); in statistical theory, this
is known as the problem of regression analysis of time series (see
Parzen [24]). We seek estimates that (a) are linear in the observations
{X(t), t € T} in the sense that they belong to Lx(X(t), ¢t € T), (b) are
unbiased, in a sense to be defined, and (¢) have minimum variance
among 2all linear unbiased estimates.

THEOREM 4.1, (General solution of the problem of minimum variance
unbiased linear estimation.) Let {X (), tE€ T } be a time series with
known proper covariance kernel K (s, t), and unknown mean-value function
m(t) belonging to a known class M of functions. Let H(K) be the cor-
responding reproducing-kernel Hilbert space, and assume that M is a
subset of H(K).

i. Between Lo(X(t), t € T) and H(K) there exists a one-to-one linear
mapping with the following properties: for every t in T, and h and g in
H(K),

(K(') t)) X)K = X(t)y (4'4)
E.[(h, X)k] = (h,m)x  for allm in M, (4.5)
Cov [(hr X)K’ (gr X)K] = (h: g)K) (4-6)

where (h, X)x denotes the random variable in Lo(X(t), t € T) that cor-
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responds under the mapping to the function h(-) in H(K). The subscript
m on an expectation operator is written to indicate that the expectation ¢s
computed under the assumption that m(-) is the true mean-value function.

ii. A random variable (h, X)g itn Ly(X (), t € T) 1s said to be an un-
biased linear estimate of the value m(t) at a particular time ¢ of the mean-
value function m(.) if

E.[(h, X)k] = (h,m)g =m(t)  for allm in M. 4.7

The uniformly minimum variance unbiased linear estimate m*(t) of m(t)
1s given by

m*(t) = (B*[K(-, 9 | H], X)x, (4.8)

in which M is the smallest Hilbert subspace of H(K) containing M, and
E*[K(-, t)| M| is the projection onto M of K(-, t).

iii. In the special case that M is finite dimensional and is spanned by
g funcltions wy, - - -, w, that are linearly independent as functions in
H(K), we can write explicitly

(wla:wl)K tee (wly :wq)K (X; :wl)K
Wm0 = = oy - - - o wx x|’ )
w ) - we(d) 0
(wy, _wl)K e (wy, .wq)x wx.(t)
WVarw®l= = o wdx - wowdx wie |© &0

wit) - we(?) 0
where

(wlr:wl)K ttt (wly.wq)K
w=| - C (4.11)

(’wq;:wl)K cet (’wm:wq)K

More generally, for any linear function ¢ (B) of the parameters B, + - - , Bq,

V(B =¥iBr+ - - - + ¥oBy (4.12)
where the conslants ¥, « - + , ¥, are known, the minimum variance un-
biased linear estimate of Y(-) is

LA 273 e S o 21 (4.13)



Smoothing and Prediction Systems 93

where B1*, - « +, B;* are any solution of the set of normal equations

(w;, _'wl)K oo (wy, :wq)K 5.1* (wl;.X)K
= . . (4.14)
(wg, w1k -+ + (Wo, wIrILBSF (wg, X)x

In particular, if the true mean-value function m(-) ts of the form

m(t) = pw(®), (4.15)
where w(-) s known and B is a constant to be estimated, then
y X
) = B, B = L, (4.16)
(w’ w)K
1
Var [m*(t)] = (4.17)
(w: w)K

If the true mean-value function is of the form
m(t) = Bwi(t) + Baw(t), (4.18)

where wi(+) are known functions and By and B: are constants to be esti-
mated, then

m*(t) = B*wi(t) + Bs*w:(t), 4.19)
Var im*())] = W wi(t) + 2W wi@wa() + W wa(t).  (4.20)
In (4.19), we have
Br* = Wi (wy, X)k + W'i(ws, X)k,

4.21
B* = W2 (wy, X)k + W2 (w3, X)k, (-21)
where
W“ — (’l.l)z, w2)K
w
L
w (4.22)
Wi = W = — _(ME)_K R
w
W = (w1, w)g(ws, w)x — | (w1, wo)r |%

To establish Theorem 4.1 there is no need to employ the method of
Lagrange multipliers as so many writers do (see, for example, Lanning
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and Battin [14], pp. 300-302); rather, we use the projection theorem.
The minimum-variance unbiased linear estimate of m(¢) may be char-
acterized as the linear functional (h, X)g that, among all linear func-
tionals satisfying

Enl(h, X)x] = (h;m) = m(t) = (K(-,?),m)x (4.23)

for all m in M, has minimum norm square

|4z = Var [(&, X)&]. (4.24)

By the projection theorem, the function in H(X) having minimum
norm among all functions satisfying the restraints (4.23) is
E*[K(-, t)] M ]. Consequently, (4.8) has been proved. For a complete
proof of Theorem 4.1, the reader is referred to [24].

Ezample 4A. To illustrate the use of the foregoing formulas, let us
consider an example that has been treated by many authors. The
statement of this problem is given by Lanning and Battin ([14], pp.
294, 303, 307): “Consider the problem of predicting a future position
of a moving target by a system which receives target data, in the
presence of noise, starting at t = 0.” Its position S(¢) is an unknown
linear function of time ¢,

S(t) = g1+ B, (4.25)

where 8; and 8: are unknown constants; in Section 6 we consider the
case in which 8, and B: are random variables. The observed X (¢) is
assumed to be the sum of S() and a stationary random noise N (%),
with covariance function

R(w) = EINON( + u)] = Ce-t, (4.26)

It is desired to use observations X (), 0 £ ¢t < T, to estimate the parti-
cle’s position S(¢) at any given time ¢. Since S(t) = E[X(f)], the prob-
lem of estimating S(f) is equivalent to the problem of estimating the
mean-value function of an observed time series. Consequently, the
minimum-variance unbiased linear estimate S*(¢) of the value of S(¢)
at a particular time ¢ is given by the right-hand side of (4.19), with
wy(t) = 1 and wy(f) = ¢. The inner products appearing in (4.22) are
explicitly given by means of (3.23) as follows:

BT + 2
1, g = 50 ’

Tz 4 28T
1, g = T 281

4Cp
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33T - 38212 + 38T
(t: t)K = 60[’32 ) (4:.27)
_ 2 (BT)* + 8(BT)* + 24(BT)* + 24(8T)
W=(@,D0@¢0r— (1,0 = B8O .

The variance of the estimate S*(¢) is given by the right-hand side of
(4.20).

If the time series X (¢) is assumed to be normal (or Gaussian), or if
linear functionals (A, X)x may be assumed to be approximately nor-
mally distributed, then one may state a confidence band for the entire
mean-value function m(t) as follows. Given a confidence level «, let
K ,(a) denote the « percentile of the x2 distribution with ¢ degrees of
freedom; in symbols,

Plxs > Ko(@)] = e (4.28)

In particular, for ¢ = 2 and a = 95 per cent, K, () is approximately 6.
It can be shown that if the space M of possible mean-value functions
has finite dimension ¢, then the interval

m*(t) — VEq(@) ofm*(®)] < m(p)
< m*®) + VEq(a) oclm*®)], (4.29)

for all tin —® <t < o, is a simultaneous confidence band for all
values of the mean-value function with a level of significance not less
than «; that is, if m(-) is the true mean-value function, then (4.29)
holds with a probability greater than or equal to a.

5. Iterative Evaluation of Reproducing-Kernel Inner Products

In this section we give an iterative method of evaluating the re-
producing-kernel inner product (k, ) x and corresponding random vari-
able (h, X)x that makes possible the approximate synthesis of an opti-
mum linear communication or control system in the presence of noise
for which the covariance kernel K can be of any form and can be
known either analytically or numerically. The method to be described
is a gradient method related to the method of steepest descent. For a
general discussion of the role of such methods in solving integral equa-
tions, see Kantorovich ([25], Chap. III), and in solving partial dif-
ferential equations and algebraic linear equations, see Forsythe and
Wasow ([26], Sec. 2).
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Let K(s, t) be a covariance kernel, defined for a <'s, t £ b. Let
H(K) be the corresponding reproducing-kernel Hilbert space. Let
C(a, b) be the space of continuous functions on the interval a to b.

For a given function % in H(K), it is of interest to develop methods
of generating sequences { H,} of functions in C(g, b) having the proper-
ties that

lim E[] (X, h)x — f bH,.(t)X(t) dt|’] = o, (5.1)
(h, Bk = lim f ' f bH,.(s)K(s, t)H,(t) ds dt. (5.2)

It is easily shown that sequences {H,.} satisfying (5.1) and (5.2)
exist. As in example 2B, let values A\, be the eigenvalues (arranged in
decreasing order, Ay > A2 > - - -) and let ¢,(-) be the corresponding
eigenfunctions of the kernel K(s, t). Then a function A belongs to
H(K) if and only if

b ) ] 2
S 1ror = Z| [ 10e0
and
-] 1 b 2
1) = 3 f hen® dt| < co. .3)
Consequently, define
n 1 b
00 = 3 o) - f h(s)ex(s) ds. (5.4)

Clearly H,(-) belongs to C(a, b).
It may be verified that

f hoaod| 6.5

1
E=1 Ak

fbfb Ho(s)K(s, t)H,(t) dsdt = i
and

b " 1 . .

f H,()X(t) dt = kz; x h(s)ew(s) ds f XW)e(t)dt.  (5.6)

Therefore the sequence defined by (5.4) satisfies (5.1) and (5.2). It is
not computationally convenient, however, to use (5.4), inasmuch as it
involves the calculation of eigenvalues and eigenfunctions.




Smoothing and Prediction Systems 97

Define a transformation 7 on functions H in C(e, b) as follows:

TH() = f HOK@ ds, a<i<b. .7)

It can be proved that
[ rox©a=mns, )
f bf bH(s)K(s, OH(!) dsdt = (TH, TH)k. (5.9)

Next, define a sequence of functions H, as follows: Let « be a con-
stant to be specified. Let Ho(t) = 1, or some other function in C(a, b).
Forn > 1, lett

Hopy =H, — o(TH, — h). (5.10)

We claim that if « is chosen in an interval specified by (5.18) or (5.21),
then the sequence H, defined by (5.10) satisfies (5.1) and (5.2). To
prove this assertion it suffices to show that
E[| (b, X)x — (TH., X)&|'] =||(h — TH.)||x >0 asn— . (5.11)
From (5.10) we may write
THupy — h=(TH, — h) — «T(TH, — h)
= (I —al)(TH. — h), (5.12)

where I is the identity operator, Ih(t) = h(f). From (5.12) it follows
that, forn > 0,

TH, — h=({I — aT)"(THy, — h). (5.13)
We next note that for any function g in H(K),
0 b
10 = Zead [ a0 (5.14)
fnml a
© b
T90 = 3 ex0hn [ 005 s, (5.15)

2 0 1 b 2
1T = oD% = )\—{f on(9)9(5) ds} {1—ah)2  (5.16)

n=1 n

t Leonov gives an iterative procedure similar to the one given here in his very
interesting paper [27], which he correctly describes as the first application of the
methods of functional analysis to the problem of determining the weight function
of an optimal system. Although he mentions the problem of establishing the
convergence of the procedure, the proof he sketches does not seem to be satis-
factory.
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Defining ¢ = THo — h and v, = [ ¢a(s)g(s) ds, from (5.13) and
(5.16) we have

© 1 n
\TH. — |z = > )\—72{1—%}” : (5.17)

m=1 N\m
Let o be chosen so that, for every integer m,
If (5.18) holds, then for any integer M

M o1 n 1
|TH. = H|x < X )\—7,’"{1 —aa" Y —vm (5.19)
M=l

m n>M >\m

which tends to 0 as we first let n tend to «, and then let M tend to «
[note that the last term in (5.19) is the remainder term of a convergent
series]. We have thus shown that if (5.18) is satisfied, then (5.11) holds.
Further, the procedure converges monotonically, in the sense that

| THasr — b < || TH. — Bl (5.20)

If M is a constant such that max, N\, < M, then (5.18) is satisfied
if we choose « so that

0<axl2/M. (5.21)
A convenient choice for M is
L b
M= =| K(1iad. (5.22)
M=l a

It should be remarked that (5.19) implies that
'}iﬂ ' | (TH, — R)(t) |2dt = 0, (5.23)
since, for any ¢ in H(K),
| "< oK, ),

[T1e00 <l [ k6,0

The iterative method given by (5.10) undoubtedly does not converge
very quickly. Other iterative methods (such as an analogue of the con-
jugate gradient method [28]) can be developed and should be studied.

(5.24)
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6. Random Regression Coefficients

Let {X(¢), t € T} be a time series of the form
X)) =m@ + Y(@). (6.1)

It is assumed that Y(¢) is a time series with known mean-value and
covariance functions:

E[Y®)] =0, E[Y(S)Y(#)] = Ry(s, ?). (6.2)
It is assumed that m(t) is of the form
m(t) = guwi(t) + - - - + Baw (D), (6.3)
where the functions w,, - - -, w, are known, and By, - - -, B, are
random variables independent of {Y(f), t € T} with known means
wi=ERl, Ji=1---,¢q (6.4)
and covariance matrix I' = {I';;}, where, fori,j =1,---,¢q,
T;; = Cov [B;, B;]. (6.5)

We call the foregoing set of assumptions the case of random regression
coefficients.

The problem of estimating (or predicting) the value of m(¢) under
the assumption of random regression coefficients has been considered
by Lanning and Battin ([14], pp. 305-309) and Bendat ([29], Chap. 9).
We here consider the more general problem of estimating a parametric
function

‘P(B) = "l/lﬁl IR \l’qﬁq- (6-6)

Strictly speaking, the problem before us is one of pure prediction. The
minimum mean-square error predictor of the random variable ¢(B),
given the observations X(¢), ¢ € T, is the projection E* [v,b(ﬂ)lX ®,
t € T]. Consequently, our aim in this section is to give an explicit
formula for the projection.

One answer to this problem was given in Section 2, namely

E<[y@) | X(t), t ET] = (b, X)z,, (6.7)
where

Rx(s, t) = E[X(5)X (), p(9) = E[v(B)X(®)]. (6.8)
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We easily verify that
Rx(s, t) = E[m(s)m(®)] + E[Y (5) Y (1)]

= 2 wi(s)(Tn + pa)wn(®) + Rr(s, 1), (6.9)

q
7 k=1

o)) = Ep(®X ()] = Zq: ¥i(Ta + pime)wi (). (6.10)

Fok=1

We now propose to obtain an expression for the best estimate of
¥(B) in terms of the reproducing-kernel inner product corresponding to
Ry, and the matrices

r={ry}, K={Ks}, Ki=@wsw)e,. (611

THEOREM 6.1. The minimum mean-square error linear predictor of

¥(B) = ¢¥iBr+ - - - + ¥iby (6.12)
gien the observations {X W,teT }, 8

VB = vl + - - -+ vaBl, (6.13)
where
61 (w1, X, m
= (! + K)—t . + 1y - |l (6.14)
B (wo X)r, Hq

The estimates Br*, - - -, B* have covariance matrix

{Cov [6], 8]} = TK(X™ +K) 7, (6.15)

and mean-square error matriz

(B[ = BB =80} = @+ K. (6.16)

Application. To understand the meaning of Theorem 6.1, let us con-
sider the case ¢ = 1. We then observe that X(¢) = sw() + Y (0,
where Y (f) satisfies (6.2), w(f) is a known function, and 8 is a random
variable (independent of Y(f), { € T) with mean p and variance ¢
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The minimum mean-square error linear predictor of g8 is

= + (@, Xz
g
fr = 6.17)
—2' + (w; w)R
ag
2
Var [8%] = _1"_("’&_, (6.18)

Py + (w, w)r
c

E[| g*—8 |’] = Var [8] — Var [8*] = {;1-—4— (w, w)R} _l. (6.19)

2

On the other hand, if 8 is assumed to be an unknown constant rather
than a random variable, then the minimum mean-square error unbiased
linear estimate of 8 is

B* (w) X)R

- (w: w)R

’ (6.20)

Ep| g* — B|* = Var, [8*] = (6.21)

(w: w)R

One sees that for p = 0 and ¢ very large, (6.17) and (6.20) yield ap-
proximately the same expression for g*. This result was previously ob-
tained by Lanning and Battin ([14], p. 309).

Proor or THeorEM 6.1. Let us write tr to denote franspose, and
define vectors p, B, 8*, w() in the obvious manner; for example,
Y = Yy, - - -, ¥y). To prove (6.13), it suffices to prove that for every
tin T we have

E[sX(®)] = E[s*X(1)]. (6.22)

Let A be the second-moment matrix of 8, defined by 4 = T + upt.
Clearly we have

E[BX ()] = Aw(®).
To evaluate the right-hand side of (6.22), let us write
p* = (' + E)"W + 4,
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where V¢ = (Vy, + - -, V), Vi = (wj, X — E[X]r,), and E[X] is the
function of ¢ defined by E[X](t) = ptw(t). It may be verified that

E[VX@®)] = (KT 4+ Dw(t) = (I~ + K)Tw(t),
E[B*X(®)] = Tw(®) + putw(t) = Aw().
The proof of (6.22) is complete. To prove (6.15), verify that

{Cov [6;, Bt} = (* + K)E[VV'](r + k),
E[vV"] = (KT + DK = (I’ + K)TK.

To prove (6.16), verify that

VE[(8] — B) (Bt — 8]} = {Cov [8;, ]} — {Cov [8], &1}
=TI — TK(I' + K)-1
= {r(r-'+ K) — TK}(r-' + K)
= (Tt + K)-.

7. Minimum-Variance Linear Unbiased Prediction

Let {X(t), t € T} be a time series of which the proper covariance
function,

K(s, t) = Cov [X(s), X(®], (7.1)
is known. The mean-value function m(t) = E[X(#)] is known only to
be a member of a class M of possible mean-value functions, where M is
a subset of the reproducing-kernel Hilbert space H(K) corresponding

to K. To make the discussion concrete we assume that M consists of
all functions m(f) of the form

m@) = Bwi(®) + - -+ + Baw,(t), (7.2)

where the functions wy, « + -, w, are known.
Let Z be a random variable for which we know the variance Var [Z]

and the covariance
pz(t) = Cov [Z, X(1)]. (7.3)
The mean of Z depends on the true mean-value function as follows:

E[Z] = (b, m)x  for everym in M, (7.4)
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for some hin H(K). If M consists of all functions of the form (7.2), then
EglZ] = ¥iBi+ - - - + ¥abe (7.5)

for some known constants ¥y, * -+, ¥,.

One case of particular importance is Z = X (¢), where ¢, does not
belong to T'; then y; = w;(¢) forj =1, .-+, q.

It is desired to predict Z, given the observations {X(f), t € T}.
Now if the means E[X(¢)] and E{Z] were known, then the minimum
variance linear predictor Z* of Z would satisfy

Z* — E[Z] = (PZ; X - m)K; (706)
from which it follows that
q q
Z* = (pz, X)g + 2 Babi — 2, Biloz, wx- 7.7
=1 [ g

One might think it plausible in the case of unknown means that the
minimum-variance unbiased linear predictor is given by

A (oz, X)x + i: B:{xbe — (oz, w))x}, (7.8)

te=1

where 8%, - -+, 8% are any solution of the “normal equations” given
in (4.14). We now show that this conjecture is correct.

TaeoreM 7.1. Let {X(t),t € T} have known proper covariance kernel
K, and unknown mean-value function m belonging to a subspace M of
H(K). Let Z be a random variable with cross-covariance funclion
pz(t) = Cov [Z, X()]; and let its mean, for each m in M, be given by
En[Z] = (h, m)x, where h belongs to H(K). The minimum-variance
linear unbiased predictor Z* of Z, given the observations {X(f),t € T } , 18

Z* = (X, p2)x + (X, E*[h — pz| M])g, (7.9)

with mean-square error of prediction

B|Z" - 2|" = Var[2] — ||odlx + | E"[h — oz| M]|lx. (7.10)

REMARK. A linear estimate (X, g)x is said to be an unbiased linear
predictor of Z, if for all m in M we have

Enl(X, 9x] = (m, 9)x = (m, B)x = Ea[Z]. (7.11)

The notion of unbiased linear prediction was first considered by Dolph
and Woodbury [30].
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Proor. The mean-square error of prediction of an unbiased linear
estimate of Z is given, independently of m, by

E|Z — (X, 9)x |’ = Var [Z — (X, 9)x]

= Var [Z] + Var [(X, g)x]
—2Cov [Z, (X, 9)x]. (7.12)
It may be shown that pz belongs to H(X) and that
Cov [Z, (X, 9)x] = (pz, 9)x. (7.13)

In view of (7.13), we can write
E|Z — (X, g)x|" = Var [Z] + (9, )k — 2(pz, 9)x
2
= Var [2] — [locl|x +llg — oz (7.14)

Letting ¢ = pz + f, we see that the best predictor is given by
Z* = (X, pz + f)&, where f is the function of minimum norm ”f”x
satisfying the constraints

m,Ng = (m, h — p2)x for all m in M. (7.15)
It is clear that f = E*[k — pz| M]. The proof of Theorem 7.1 is now

complete.

Let us now exhibit an explicit formula for the best predictor X*(¢) of
X(t), for t not in T. From Theorem 7.1, it follows that if m(f) is of
the form of (7.2), then

(w, }UI)K e (wy, .wq)K X, }Ul)x

WEO =" yodr - - wowds Ewix P O

di(t) --- d) (X, K(-,0)x

(wy, .wl)x - - - (wyy :wq)K dl.(t)

* — 2 — . . .

WE| X0 - XO)|* = (g, w)x -+ - (We,wdx  do(®) |’ @17

di(t) -+ do(® d(?)

where
d;i(t) = w;(t) — (wj, K(-, ))&, (7.18)
d(t) = K(t, t) — (K(-, &), K(+, D)z, (7.19)
(wy, :wl)K o (wr, WYk

W= : : . (7.20)

(wg, wi)x + * + (g, WK
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8. Decision Theoretic Extensions

The problems considered in the foregoing discussion have all in-
volved linear estimates chosen according to a criterion expressed in
terms of mean-square error. Nevertheless the mathematical tools de-
veloped continue to play an important role if one desires to develop
communication theory from the viewpoint of statistical decision theory
or any other theory of statistical inference (see [31], [32], [33]). All
modern theories of statistical inference take as their starting point the
idea of the probability density function of the observations. Thus in
order to apply any principle of statistical inference to communication
problems, it is first necessary to develop the notion of the probability
density function (or functional) of a stochastic process. In this section
we state a result showing how one can write a formula for the prob-
ability density functional of a stochastic process that is normal
(Gaussian).

Given a normal time series {X(t), ¢ € T} with known covariance
function

K(s, t) = Cov [X(s), X(t)] (8.1)

and mean-value function m(f) = E[X(¢)], let P, be the probability
measure induced on the space of sample functions of the time series.
Next, let m; and m. be two functions, and let P, and P; be the prob-
ability measure induced by normal time series with the same covariance
kernel K and with mean-value functions equal to m, and m., respec-
tively. By the Lebesgue decomposition theorem it follows that there is
a set N of P;-measure 0 and a nonnegative P-integrable function,
denoted by dP, /dP,, such that, for every measurable set B of sample
functions,

dP,
Py(B) = fB T dPs+ Pa(BN). 8.2)

If Py(N) = 0, then P, is absolutely continuous with respect to P,
and dP,/dP, is called the probability density function of P, with respect
to P,. Two measures that are absolutely continuous with respect to
one another are called equivalent. Two measures P, and P are said to
be orthogonal if there is a set N such that P;(N) = 0 and Py(N) = 1.
It has been proved, independently by various authors under various
hypotheses (for references, see [24], Sec. 6), that two normal prob-
ability measures are either equivalent or orthogonal. From the point
of view of obtaining an explicit formula for the probability density
function, the following formulation of this theorem is useful.
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TaroreM (Parzen [24]). Let P, be the probability measure induced on
the space of sample functions of a time series {X(t), t € T } with covari-
ance kernel K and mean-value function m. Assume that either (a) T is
countable or (b) T i3 a separable metric space, K is continuous, and the
stochastic process {X w,te’T } 1s separable. Let Pq be the probability
measure corresponding to the normal process with covariance kernel K
and mean-value function m(t) = 0. Then P,, and P, are equivalent or
orthogonal, depending on whether m does or does not belong to the re-
producing-kernel Hilbert space H(K). If m & H(K), then the probability
denstty functional of P, with respect to Pg is given by

dP,, 1
f(X, m) = = exp {(X, m)x — 5 (m, m)x}. (8.3)

dP,

Using the concrete formula for the probability density functional of
a normal process provided by (8.3), we have no difficulty in applying
the concepts of classical statistical methodology to problems of in-
ference on normal time series.
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Chapter 6

Adaptive Matched Filters'

THOMAS KAILATH

1. Introduction

There has been a considerable interest in the field of adaptive systems
in the past few years [1], [2]. Since the subject is still relatively new,
few optimally adaptive systems have been found. In fact, there is still
discussion [3] of the characteristics and properties that entitle a system
to be called “adaptive.”

We have encountered, as a result of some studies in communication
through randomly varying media, an “optimum” receiver that we feel
qualifies as an adaptive system. The adaptive features of this system
materialized from direct calculation of the optimum receiver and
were not inserted on the basis of any intuitive or heuristic arguments.
Nevertheless, our directly, if somewhat fortuitously, obtained adaptive
receiver enables us to compare some of its characteristics with intuitive
ideas and guesses regarding its detailed adaptive and optimal nature.
This leads us to some interesting conclusions; not surprisingly, we
find that intuitive extrapolations and guesses about optimal adaptive
procedures are not always confirmed mathematically.

The problem we shall examine is depicted in Figure 1, where one of a
set of known signals ®(f) of finite duration is transmitted through a
random linear time-variant channel operator, or filter, A. The result
is a waveform, 2® (t), which is further corrupted by additive noise, n(f),

t This work was sponsored in part by the U.S. Army Signal Corps, the Air
Force Office of Scientific Research, and the Office of Naval Research. The paper
is based on work being done in partial fulfillment of the requirements for the
degree of Doctor of Science in the Department of Electrical Engineering at the
Massachusetts Institute of Technology. The author wishes to express his grati-
tude to Dr. R. Price of Lincoln Laboratory, M.I.T., and to Professors J. M.

Wozencraft and W. M. Siebert of the Department of Electrical Engineering,
M.I.T., for helpful discussions.



110 Communication, Prediction, and Decision

before becoming available to the receiver. The final received signal is
called y(¢). Let T denote the duration, or the interval of observation,
of y(t). Wethen define the optimum receiver, in the sense of Woodward
[4], as being one that computes the set of a posteriori probabilities
[p(z® (t)ly(t)) ], or functions that are monotonically related to these
probabilities.

The term “optimum” merits some explanation. Woodward has shown
that all the information concerning the transmitted signals that is
present in the received signal y(¢) is contained in the set of a posteriori
probabilities [p(z® (2) | y(?)) ]. These probabilities can then be weighted
and combined according to different criteria [5], [6]—for example,
Neyman-Pearson, ideal observer, and minimum average risk—to make
the final decision as to which signal z*®)(f) was actually present. In
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Fig. 1. The communication system.

Figure 1, the box marked D denotes this latter processing. We shall
consider only how to obtain a posteriori probabilities, and this will de-
fine our optimum receiver.

Our first task in the following discussion will be to set up a model for
the channel and signals. After setting up this model, we are able to
state our assumptions more definitely and then to proceed to the com-
putation of the optimum receiver. A discussion of some of the adaptive
features of this receiver is given in Section 4. This leads to the deriva-~
tion of the “Rake” system, which employs a practically demonstrated
adaptive receiver that is designed on the basis of the previous mathe-
matical theory, tempered by some heuristic ideas combined with
engineering balance and judgment. In Sections 1 through 5, we are
concerned only with detection in a single time interval. In Section 6
we shall discuss some questions connected with the step-by-step de-
tection of successive signals transmitted through a channel having a
long memory, that is, a channel with statistical dependencies extended
in time for periods considerably greater than a single-waveform dura-
tion. In the concluding Section 7 we give a detailed summary of the
paper. This section may profitably be read before beginning Section 2.
Finally, in Appendix A we derive the Wiener minimum-variance esti-
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mator, and in Appendix B we give results for a threshold or weak
(defined more precisely by Equation (5.4)) signal case.

Because of the general nature of this symposium, most of the par-
ticipants not being communication theorists, we have included much
tutorial material, which has had to be drawn from previously pub-
lished papers by the author. However, the material in the latter half
of Section 4, in Sections 5 and 6, and in Appendix B is largely new.

2. A Model for the Channel

The channel operator 4 is assumed to be a linear time-variant filter.
No restriction is placed on its memory or rate of variation. We shall
replace the continuous channel by a discrete approximation, thus
converting it into a sampled-data channel. This is done chiefly for
convenience in analysis and interpretation; the same results can be
obtained by using Grenander’s method of observable coordinates [7],
[8], as has already been done to some extent by Davis [9] and
Helstrom [10]. We might also point out that in these days of increasing
digital-computer usage, not only are such sampled-data channels be-
coming increasingly important but it is often almost mandatory to re-
place continuous channels by their discrete approximations, The solu-
tion for the continuous case, which we shall not discuss here, can
usually be found as the limit in the mean, as the sampling density
becomes infinite, of the finite discrete solution. A discussion of some
of the mathematical problems involved is given in [7] and [8].

In setting up the discrete model, the first step is to obtain a discrete
analogue of the convolution integral

2() = f ‘att = 7, 2(s) dr, @.1)

where a(r, t) is the impulse response of the filter, that is, the response of
the filter measured at time ¢ to an impulse input = seconds ago. We
shall assume that a(r, {) = 0 for 7 < 0, so that the filter can be physi-
cally realized. The input to the filter is z(f), with z(¢f) = 0 for ¢ < 0.
A discrete approximation to (2.1) can be written

m

z(m) = g a(m — k, m)z(k), 2.2)

where we choose the samples on a suitable time scale, one unit apart.
A convenient interpretation of (2.2) is given by the sampled-data
delay line filter shown in Figure 2. This “multipath” model serves as
a convenient discrete approximation to the actual channel. We should
note that this model, with its uniform tap arrangement, does not need
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Fig. 2. A simple delay-line channe] model,

to bear any direct structural relationship to the actual channel con-
figuration, though in some cases—for example, channels with paths at
known delays—it is convenient to make them coincide.

We now introduce matrix notation and rewrite (2.2) in the form

z = Ax, (2.3)

where x and z are column matrices of the sample values of z(f) and
2(?), and A represents the channel. (Boldface symbols will be used
throughout this chapter to denote matrices.) As an illustration, let us
consider a three-tap channel. Then we have

[4) ao(O) 0
| ai(1)  ao(1) [xo]
P2 ax(2) a:(2) )
0 02(3)
We shall write ax(m) = a(m, k) as aw» for convenience. Notice that
the matrix has all zeros above the main diagonal. This reflects the
realizability condition: no output before an input.

We can rewrite (2.4) with the roles of channel and signal inter-
changed [11],

2.4
T

Qoo
Qo1
20 Zo 0 00 00O
0 0 00
21 _ Z1 Zo a11 ’ (2.5)
22 0 00 T1 Zo 0 aig

0 0000 x

221
L d23
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z = Xa, (2.6)

where X is a matrix in which the elements are sample values of z(z),
and z is a matrix in which the sample values belonging to each tap are
arranged sequentially in a column. The advantage of rewriting the
convolution formula in this way is that it enables us to compute the
covariance matrix of z, ®,,, in a straightforward fashion. Thus, if we
assume that the tap functions are composed of 2 mean component a(t)
and a zero mean random component a’(f), then we can write, with an
obvious notation,

z=12,+7=Ax+ Ax = Xar + Xa. 2.7

Now the covariance matrix of z is given by

®,=0Z—2)(z—2): = @)(2): (2.8)

= xaTa—:Xg = X‘DAAX;. (2.9)

The bar denotes an ensemble average over the random processes con-
trolling the taps, and ¢ denotes the transpose of the matrix. To illustrate
again, using for notational simplicity only two taps and deleting the
superscript r, we have

Y
(£ GooGo1  Qool11  Gooli2
20 0 0 O 2
a01Q00 (2751 ao1011  QA01012
P, = 0 Z1 To 0 T
G100 G180 a G103
(0 0 0 2 u  fun
2
| G12000 C12G01 (12011 0y |
_270 0 0
0 X 0
(2.10)
0 Lo 0
|0 0 =z

Notice that ®44 can be conveniently partitioned, as shown, into
blocks representing the self- and crossvariances of the sample values
of the different tap functions. Thus, if the tap functions were statis-
tically independent, all “off-diagonal” blocks would be zero. The co-
variance matrices ®44 and @, are either positive semidefinite or
positive definite. If they are positive semidefinite, we have singular
covariance matrices; examples are provided by random time-invar-
iant channels [11].
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A more detailed discussion of the channel model—including a dis-
cussion of time-invariant channels, narrow-band channels, multi-link
(for example, diversity) and/or multidimensional (for example,
optical) channels is given in [11] and [12].

3. Assumptions for the Problem

Using the discrete model and the matrix notation, we can write (see
Fig. 1)

y=z® 4+ n=Ax® 4 n = Ax® + Ax® 4 n, (3.1)

where x® represents the kth transmitted signal and y represents the
received signal. Qur major assumptions will be the following: (a) The
output signal z® has a Gaussian distribution for each k. (b) The noise
n is also Gaussian, not necessarily white for the present discussion.f
(¢) The noise has zero mean and a nonsingular covariance matrix ®,n.
(d) The noise n and the output signal z® are statistically independent
for all k. (e) The statistics of z*) and n are known a priori.

Under our assumptions, for each x®, y is a Gaussian signal with
mean Z® = Ax® and covariance matrix ®% = ®® 4 ®... Since
the sum of a positive definite and a positive semidefinite quadratic
form is always positive, the covariance matrix d),(,f,) is nonsingular

even when ®® is singular. We may therefore (see [13]) write

po1x) = ()

o) oG

-exp [——;— (0 -2 fen] "6 -2}], 62

where N, the number of samples in the vector y, is related to the dura-
tion, say T seconds, of the observation y(¢). I(D,,,,] denotes the deter-
minant of ®,,. Thus far, no assumptions as to the channel or the noise
being stationary are required. These specifications cover a wide variety
of channels, particularly in scatter-multipath communications. Of
course, our assumptions also exclude several types of channels, espe-
cially those with paths for which the delays fluctuate randomly, be-
cause then the z® no longer have Gaussian statistics. We can show,
however, that for threshold conditions our results hold for arbitrary
channel statistics, provided the noise is Gaussian [11], [14]. (See also

T In the present discrete formulation, noise will be called “white’ if samples
of it have equal variance and are uncorrelated.
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Appendix B.) We should also mention that many of the results ob-
tained apply to the detection of Gaussian signals in Gaussian noise.

In fact, for these results the filter A need not be linear as long as it
yields a Gaussian random function z® when x® ig the input. However,
the assumption of linearity enables us to obtain more explicit results
for communication channels (see the following and [11]).

4. The Optimum Receiver

In [11] a fairly comprehensive discussion of optimum receiver struc-
tures obtained directly by using (3.2) has been given. Here we are inter-
ested only in one particular structure, namely, that having the
estimator-correlator property mentioned in Section 1. We shall there-
fore give the estimator-correlator derivation here only for the re-
stricted case of additive white Gaussian noise,t and for variety we shall
use a different method of proof from that given earlier [15].

Computation of A Posteriori Probabilities

As stated in Section 1, the optimum receiver essentially computes the
set of a posteriori probabilities [p(x® I y) ]. We shall show how to obtain
one of these, say p(x"‘)ly). If we use Bayes’ rule and assume that the
a priori probabilities p(x®) are known, then what we essentially have
to compute is the “forward” probability p(y]x""). For this we have}

2610 = [ 56| Xap(a da @1

Since y = Xa + n, where a has a Gaussian distribution with mean a
and covariance matrix ® 44, and where n has zero mean and covariance
matrix NoI (I is the identity matrix), (4.1) can be rewritten

1

X) =
POIX) = G Gl e

Q| X),

where

06|%) = [ o (-5 {o- T - — - - xw)

-0

+ a;@}iar} > dar. (4.2)

t The colored-noise case may be reduced easily to the white-noise case by
means of whitening filters [15].

t The superscript k& has been dropped for convenience but will be restored
whenever necessary to avoid confusion.
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The letters N and M denote the number of samples in the y and a
vectors, respectively. We have here assumed that ®44 is nonsingular;
we shall show later how to handle the situation in which @44 is singular.
The integral can be evaluated using a result given in Cramér [13], and
we finally get

p5] 0 = Keexp {~ ( ;Xa)}

XX
No

-exp {2;73 (y — Xa).X (‘PZ;. + )“‘X‘(y - Xi)} (4.3)

i ()

-1
*€Xp {272 [(y - Xﬁ);X(I)AA(I +
0

XX,y

R

0

where
{ vy +aXXa 1 [(No'I+ XX ”2}
K, =exp <— .
2N, @2m)Mi2 No
This can be further rewritten as
1 —Y:Y:I )
K, = ex K 4.5
LT mpn P [ oN, 7 (*5)

where the superscript has been reintroduced to show that K, depends
on (k). Now, restoring superscripts everywhere, we have

k)
<® vy = p(y| X )pX ) .
&1 o[ XP)p(E®)

®
(4.6)

In comparing the a posteriori probabilities, it is convenient first to
take logarithms of these quantities, so that we have
®) (k)

! [ ! y — X®3) X®D <I+ ¢ X o ) '
— (- a
2N, LV, y t AA No AA

AR =

(k)

Xy —x%) + 2y.Xa]

+ [InK: +IpE*) +m (S - -). @7

The first term on the right-hand side gives the receiver structure; that
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is, it determines the operations to be performed on the received data
in testing the kth hypotheses. We shall henceforth denote this term by
A®, The second term is a “bias,” or weighting, term. The last term is
the same for all hypotheses and can be omitted in comparisons of
the A’®,

Before proceeding to examine the receiver structure, we must clarify
the question of the singularity of ®44. Clearly in (4.3) and (4.4) the
proof is based on a nonsingularity of ®44; in (4.4), however, ®7; does
not appear, and we might therefore suspect that this equation is valid
even when ®44 is singular. This is in fact so, and can be proved in
several ways. Two methods are given in [15] and [16]; here we shall
indicate another argument. Since the sum of a positive definite matrix
and a positive semidefinite matrix is always a positive definite (and
therefore nonsingular) matrix, the matrix [®44 -+ €I], where ¢ > 0, is
positive definite. We can use this perturbed matrix in all the steps of
our preceding proof, and at the end—in (4.4)—we may let ¢ — 0. This
sort of “continuity” argument is often used in matrix analysis [17].

The Recetver Structure

Let us now return to the study of the receiver, for which we have

k)

X, X(k)(I)AA )_

No

1
*) 1

N

y— X(k)ﬁ)tx(k)‘l’AA (I -+

2y,X(k)i

0

X"y - xVa) +

(4.8)

It is instructive first to consider the case in which the random com-
ponent of the channel, a7, is zero and in which the channel is therefore
completely known to the receiver as a. In this case, we have

NoA® = 2y,Xa = 2y,(Ax®) = 2y,z®, (4.9)

Thus the essential receiver operation is the formation of the dot, or
inner, product of y and Z®; this is equivalent, for continuous signals,
to the crosscorrelation of y and z®, and therefore the A® computer
can be represented by the block diagram of Figure 3. This conclusion is
of course a trivial extension of the well-known result for the detection
of known signals x® in white Gaussian noise. The presence of the
known channel A is taken into account by modifying x® by A to
produce Z® at the receiver, which treats the Z® as known signals in
additive Gaussian noise.
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Now, however, suppose that channel A is purely random; in this
case, the z® (= Arx®) are still signals corrupted by additive noise,
but the receiver cannot reconstruct the z® since the channel Ar is
random and not completely known at the receiver. It is not easy to
say offhand what the optimum operation in such a situation should be.
One suggestion might be to use a known sounding signal to estimate
the channel, and then, if we assume that the channel is not varying
too rapidly, to use this estimate of the channel as the actual channel
during the transmission of a succeeding information-bearing signal
[18]. Another suggestion might be first to consider the signal being
tested as having actually been sent, then to make a maximum-like-
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Fig. 3. An element of the optimum receiver for the case of a signal
perturbed by a known channel A.

lihoodt estimate of the unknown channel parameters, and finally to
use these estimated values as the actual parameter values in computing
the likelihood function [8], [19]. A third suggestion might be to form
an “average” estimate of the channel and use this average channel to
generate signals z® at the receiver, to be correlated with the received
waveform y.

All of these suggestions seem reasonable and in fact are often used
in adaptive systems of many kinds [1], [2] that operate in the face of
changing and incompletely known system parameters. In our case of
Gaussian statistics, however, we can find the ideal receiver explicitly
and thereby rigorously test those intuitive notions in at least one
concrete case.

For the purely random channel, with & = 0, from (4.8) we have

NoA® = 5 X®4(Nol + X XPaa)~'Xyy. (4.10)

This may be rewritten as

Nor® =y H"y =ya2.”, (4.11)

1+ By maximum likelihood estimator, we mean here the value of a® that
maximizes p(y| X®a); see [13].
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where

2 = By = X0, (VoI + X Xbs4) Xy (4.12)

A block diagram for the receiver structure implied by (4.11) is
shown in Figure 4.

(k)
2,11} r

To
i H(” X f Oar F— decision
o box

Estimating
filter

Fig. 4. An element of the optimum receiver for a purely random
channel 4 for white Gaussian noise.

Equation (4.11) is of the same form as (4.9); that is, the optimum re-
ceiver crosscorrelates the received signal y against a waveform z®,
In this case, however, z is not known a priori at the receiver but is
computed from the received data y by means of the operations repre-
sented by H®, and H® depends on the channel and noise covariances
@44 and NI, and also on the signal X®. On closer examination it is
found that the series of operations (4.12) on y that give z are equiv-
alent to the optimum extraction of z*® from y = z* -} n on a mini-
mum-error-variance criterion. This is perhaps more easily seen (cf.
Appendix A) if we recast (4.12), with the aid of some matrix algebra,
in the form

z® = X%, P W + X% 0., xP) 7Yy

* ®), 1
=@, (NI+®,,) ¥y (4.13)
_ H(k)y.
The expression for H® is reminiscent of the formula for the unrealizable
Wiener filter in the frequency domain [20], namely,

H(w) = ¢:2(0) [No + ¢ea(e) ] (4.14)

A proof that H® jis indeed the minimum-variance estimator is given
in Appendix A. We should also note that since we are dealing with
Gaussian statistics, this estimator is also optimum for a fairly general
class of criteria [21]. We should point out that H® is a symmetric
matrix, and therefore represents an unrealizable filter. By a simple
artifice [22], [15], however, it can be replaced by a realizable filter if
desired; such a filter is obtained by deleting all terms in H® above the
main diagonal and by doubling all terms below it. Although z® is then
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no longer a minimum-variance estimate, receiver output is unchanged.

This interpretation of z® fits quite happily with our intuition.
With the knowledge of the solution in the deterministic case, in
which z® can be computed exactly at the receiver, it seems eminently
reasonable that in the random-channel case, in which z® cannot be
computed exactly, we should say that z® should be estimated from the
received data and this estimate z® should be used in place of the un-
available exact z®. This interpretation was first recognized by Price
[22] for the single-path channel and at low signal-to-noise ratios for a
more general channel, and was later extended by Kailath [15].

This rather satisfying interpretation of the receiver action leads us
to believe that this form of receiver, which may be described as an
estimator-correlator receiver (see Fig. 4), is effective even in situations
that do not conform exactly to our assumption of Gaussian statistics.
This interpretation also enables us to make engineering approximations
to the operations demanded by (4.11). Thus the Wiener—-Hopf equation
for H® can be solved only in a few special cases, but in our equipment
we may for convenience use simpler estimating filters, for example,
narrow-band RC filters, and simpler estimating operations, for example,
crosscorrelation. In fact, such simplifications were made in constructing
the Rake antimultipath receiver [23] that grew out of the above
interpretation.

We should also point out that this estimator-correlator can be re-
garded as an “adaptive” matched filter. This point of view depends on

the fact that the crosscorrelation
T
yal o [ g0l a
0

can be alternatively performed by a filter matched to 2 (f), that is,
by a filter with impulse response 2 (—¢). In our case, however, the
specification of the matched filter is not completely determined a priori,
but its impulse response is calculated from the received data. The re-
ceiver may therefore be regarded as adapting, or matching, itself to
the state of the channel. Figure 5 is a block diagram reflecting this
point of view.

Finally, let us study the receiver for the case where random and
deterministic components are both present. For physical reasons, in
communication channels the deterministic (or mean value) component
is often called the specular component. The receiver formula is (4.8),
which through (4.9), (4.11), and (4.12) can be rewritten

Noa® = 2y2® 4 (y- 2"l (4.15)
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Fig. 5. The estimator-correlator receiver as an
adaptive matched filter.

where z® = H® (y — Z®) = the minimum variance estimate of
the random component of Z. A block diagram for (4.15) is shown
in Figure 6. This receiver will reappear in Section 6, where the
specular component will arise by extrapolation from previous data and
decisions.

Discusston of the Receiver Operation

Having now determined the general structure of the optimum re-
ceiver, we can compare it with our earlier intuitive ideas of what the
receiver should do.

We see that the optimum receiver does not first use the received
signal to make a maximum-likelihood estimate of a that is then used
as if it were exact. This type of operation was suggested by Root and
Pitcher [19], [8] for the case in which the statistics of the channel
were not known. It is readily shown that this type of test—called a
generalized mazximum-likelihood test by Davenport and Root [8]—
also leads to an estimator-correlator receiver. The estimator, however,
turns out to be a maximum-likelihood, or least-squares, estimator.
Such estimators do not take advantage of any a priori knowledge of
the channel statistics and hence lead to a relatively weaker type of
receiver than the one we have found. As a matter of fact, we can show
that the least-squares estimate of z in our case of additive Gaussian
noise is also a minimax [6] estimate. It is therefore based on the most
pessimistic view of the channel statistics; if we can obtain any infor-
mation about the actual channel statisties, it is worth trying to do so.
We might mention, however, that the generalized maximum-likelihood
test has often been suggested and has been used to advantage in
statistics [10].

Whether we use & minimum-variance or a minimax estimator, how-
ever, we see that the receiver does adjust its parameters to take account
of the channel conditions as they are reflected in the received signal.

It is important to note that, contrary to intuition, the mathematics
shows that the optimum receiver for Gaussian statistics does not di-
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rectly estimate the channel; that is, the receiver does not somehow
obtain an estimate, say a., averaged over all possible transmitted sig-
nals, of the channel, from which it obtains the z’ by the operation
z® = X®a, Consequently, from (4.11) we see that z® may be
written

x) *) &)
z, =X a,,

where
(k) (k) () —1,, (k) ®) o (&)
a, = (I)AA(NOI + X, X (I)AA) X, y= F X y, say.T (4.16)
Therefore a® may be regarded as an estimate of the channel vector a
under the hypothesis that the signal x® was sent. The last clause is
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Fig. 6. An element of the optimum receiver for a channel A having a
specular and a random component and white Gaussian noise.

important: al® is not an estimate of the channel a itself, unless x® was
the signal actually transmitted.

Equation (4.14) shows, moreover, that it is impossible to have an
optimum receiver consisting of a single filter matched to the channel,
followed by a bank of filters matched to the transmitted signals X®,
Such a receiver is possible (see (4.9)) only when the channel is known
to the receiver. We should point out, however, that this does not mean
that such receivers should not be considered. Although they do not
conform to the a posteriori probability criterion, they might still be
valuable in practice and, in fact, in theory also. Thus, using this re-
ceiver, Green gives a provocative discussion of a communication system

1 We should remark that a® as given by (4.15) is the discrete version (for
time-variant or time-invariant channels) of Turin’s [24] frequency domain esti-
mate of time-invariant channels. We have already noticed such similarity—
(4.13) and (4.14)—for the Wiener filter. Our remark suggests, in view of the close
relation between a, and z,, that Turin’s result can be directly obtained from

(4.14).



Adaptive Matched Filters 123

in which the transmitter, but not the receiver, knows the instantaneous
channel behavior [25].

As our last point in this section, let us study more closely the
estimator-correlator feature for the receiver of (4.8), where we consider
random as well as specular components. We see that (4.15) may be
rewritten

NoA® = (y —z ) 200 +2y2"
= Vizve +2) + 7 — 22 2®. (4.17)

The first term on the right-hand side may be regarded as the cross-
correlation of y, and a total estimate of z®, viz., the sum of the known
mean component of Z*) and the estimated random component of z®.
This term corresponds to an estimator-correlator operation. This, how-
ever, does not completely describe the receiver because of the term
(v — z®)z®. Therefore, in the case of a channel with specular as
well as random components, the receiver cannot be considered an
estimator-correlator receiver and in this sense is not a natural ex-
tension of the deterministic-channel case. The factor 2 for the specular
component intervenes and prevents such an interpretation. Hence, care
must be exercised in using the estimator-correlator concept. However,
even though the general receiver of Equation (4.15) or Figure 6 does
not directly correspond to an estimator-correlator receiver, the form
shown—which handles specular and random components separately—
is in fact entirely satisfactory.

5. The Rake Receiver

We have shown in Section 4 that we cannot have an optimum receiver
comprised of a single filter matched in some sense to an “estimated”
channel, followed by a bank of filters matched to the signals X®,
From (4.15) we see that the closest we can approach this type of re-
ceiver is to arrange for X’ X® to be the same for all k. This condition
requires that the X® differ by the orthogonal matrices U®; that is,
we have X® = U®X, where UPU® = I, so that XPX® is a constant.
For a channel with a single time-variant path, this condition (see
Sec. 2) is equivalent to the requirement that all signals have identical
envelopes. This condition is met, for example, in frequency-shift keying.
For a single time-invariant path, the condition implies that the signals
have equal energies. For more general channels, the conditions are more
complicated but are of the same nature as those above. With the con-
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dition that X"X® be the same for all k, the filter F®, given (see
(4.15)) by

FO = @44(No + X:k)x(k)‘l’AA)—l,
will be the same for all hypotheses.

For the binary case, decision is based on the difference of the func-
tions A®; that is, the important operation is given by

1)

= A — AT = A — A2 2
A=A A A A® 4 <ln Km)' (5.1)
2

As before, A® — A® determines the receiver operations and the other

term is a biasing, or weighting, term. Using (4.10) and (4.15),1 we have
AD @ y,X(l)FX,my _ y,XmFsz)y

(D) g (1

= yXFXy + 3.XFX "y — 7. X VFxPy)
+ y;X(z)FX§2)y
=y [x” + x®IF[x” - x%y. (5.2)

The two terms inside the parentheses in the middle equality are trans-
poses of each other; since they are scalars, they are equal and thus
cancel each other out.

A block diagram for the receiver implied by (5.2) is shown in Figure
7. In the single-path channel case, X® represents a multiplication

{1

X

(2}

Fig. 7. The general Rake receiver,

operation, and this block diagram of Figure 7 is almost exactly that of
the Price~Green Rake receiver (see Fig. 3 of [23]). The difference arises
because—except in the case of a single time-invariant channel path—
F is an unrealizable operator. To overcome this difficulty, we can
either use a delay or break up F into two filters, F. and F_. Fy (F_)
is F with the diagonal elements halved and the elements above (below)
the diagonal set equal to zero.

At this point, a host of speculations may be raised by the realization

+ This technique was suggested by some unpublished work of Professor Siebert.
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that we can regard the signals X® and X® as being composed of a
common part, (X® 4 X®)/2, and an information-bearing part,
+ (X® — X®)/2, for example,
o X 4 X@® X0 — X@

X p + P (5.3)
Thus, we might ask whether, in (5.2), y[X® 4 X®]F provides an
estimate of the channel by the known sounding signal (X® 4 X®)/2,
which is then multiplied by the information-bearing signal
+ (X — X®)/2 to provide z". The answer is no. This is disappoint-
ing, but, in view of the previous discussions of Section 4, not surprising.
This is not to say, however, that receivers constructed on the above
philosophy will not work; it just means that they will not be optimum
from a decision-theory point of view. In practice, it might even be pref-
erable to build a receiver based on the “erroneous” philosophy. It
would be interesting to study how far from optimum such a receiver is.

But one conclusion must be drawn that is of relevance to studies in
adaptive and learning systems: The intuitive choice is not always con-
sistent with the requirements of some theoretically powerful concept
such as the computation of a posteriori probabilities.

To return to the Rake structure, for the multipath case, the filters
X® perform multiplications of the received signal with shifted replicas
of the stored signal x®, The filter F® does not break down in any
simple way, except in the threshold case. The threshold case is defined
by the condition (see Appendix B) that

Amaz(‘pu) < NO, (54)

where Amqx is the largest eigenvalue of ®,,. This is a necessary and suf-
ficient condition [26] for a Neumann series expansion of F in (5.2).
If we retain only the first term in the expansion, even though retaining
additional terms is not particularly troublesome, we get (see Ap-
pendix B)

No(A® — A®) = y,[XD 4 X®[@ 4 [XD — Xy, 5.5)

Let us also assume that the channel tap functions are uncorrelated,
50 that only the diagonal blocks, say ®;, of ®44 are nonzero. The co-
variance matrix for the 7th tap is ®,. Now, closer study of (5.5) shows
that it can be implemented as shown in Figure 8. The receiver is a
cascade of units, one for each channel tap, strung out on the delay
line. Notice that the units are arranged on the receiver delay line in
the opposite order to their arrangement on the delay line, thus pro-
viding a generalized type of matched filter, matched both to the channel
and to the transmitted signals. Figure 8 is identical with the receiver
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Fig. 8. The original Rake receiver.

originally obtained by Price and Green [23] by a brilliant combination
of theoretical and physical ideas. Our derivation above is more compact
and leads to the final result much more directly than in [23]. (For
those more interested in the details of Rake, we remark that here we
obtain the Type II Rake directly as the optimum system.) It shows
under what conditions the Price-Green Rake is optimum and also
yields the receiver structure (5.2) for the general case. However, this
more complete theoretical analysis was only done long after the original
Rake had been built and proved successful. It is a tribute to the deep
theoretical understanding and fine engineering judgment of Price and
Green that they converged exactly on the optimum system. One of the
explanations they gave for the action of each unit on the receiver delay
line is of interest:

Suppose x was transmitted. The received signal y should be mul-
tiplied by x® to provide a preliminary weighting against the noise
(suppressing portions of y where the signal x is weak and reinforcing
portions where x is high). The product should then be smoothed in a
filter ®; whose bandwidth is equal to the fluctuation rate of the cor-
responding tap to get an approximate estimate of the tap-gain function.
This estimate can then be used to perturb the stored signals before the
final correlation with y. We would not know, of course, whether x(
was actually transmitted. But since either xV or x® was transmitted,
the sum y,(x® 4+ x®) can be used in lieu of the proper but unknown
y:x®. Thus the structure of each unit in Figure 8 is obtained. However,
we should notice again that this intuitively very reasonable explanation
of the adaptive features of Rake is not optimal in general from a
decision-theoretic point of view.

Price and Green went a step further and took advantage of the fact
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that the communication extends over several time intervals in each
of which either x(¥) or x® is transmitted. They allow the filters ®, to
ring (that is, have a memory) over several time intervals. This longer
ring time provides a more accurate channel estimate than can be ob-
tained by restricting the filter memory to a single interval. This has
been a simple and reasonably successful method of accounting for
channel memory. However, no attempts seem to have been made to
justify it on a decision-theoretic basis. We shall turn now to such an
attempt.

6. Sequential Operation

In the preceding pages, we have studied the optimum structure for
the reception of signals in just a single time interval, namely, the ob-
servation time 7. In a communication system, however, we would be
sending a sequence of signals. For continuous operation, we could
operate on an interval-to-interval basis, treating each interval inde-
pendently of the others. If the channel has a statistical memory that is
greater than the duration of the interval, such a procedure clearly
throws away information. One method of compensating for this loss
of information is to form longer intervals—perhaps sentences or para-
graphs long—so that the channel is now essentially independent from
interval to interval, though this procedure enlarges the set of possible
messages and the bank of receiver filters by a prohibitive factor.
Another method is to retain the original interval length but attempt
to use information from other intervals in making a decision in any
particular interval. We shall discuss some aspects of this latter pro-
cedure, particularly those dealing with the learning or adaptive nature
of the scheme.

In the rest of this section, we discuss an approach to using interval-
to-interval information; we show how to obtain the conditional prob-
abilities required in any sequential scheme and also discuss the physical
interpretation of the operations involved; and finally we give a more
explicit formula for the computation of the conditional probabilities,
which is obtained simply by partitioning the matrix formulas of (4.8)
and (4.14). We also show how the formulas simplify in the threshold
case and how in a simple case they provide a rationale for the Rake
operation mentioned above.

Some Methods of Operation

Numerical subscripts will be used for values of corresponding quanti-
ties in the specified time intervals: Zero will refer to the interval about
which a decision is being made; the negative integers, to previous inter-
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vals; the positive integers, to later intervals. We shall assume a sequen-
tial decoding scheme such that when a decision is to be made about a
given interval (denoted by the subscript zero), all previous intervals
(denoted by negative subscripts) are assumed to have been correctly
decoded. Now all the relevant information pertaining to the decision
in interval zero is contained in the a posteriori probability

*) O O 0] (m)
p(o lYo, V-1, X1, Y2, X2, - * *, ¥, X1 , Y5, X2 , -+ )

We leave the parentheses ( ) for x_;, x_, - - - unfilled to indicate that
these have been decided upon and are known without error. If we as-
sume that the channel memory extends over M intervals, clearly the
terms y—ar—1, X—ar—1, Y—ar—2, X219, + - - can be omitted. This is not true,
however, for Yiar+1, Xart1, Yass, Xase, - - ¢, €ven though it appears
plausible at first glance. Clearly, y1, X1, * * * , ¥ar, Xar will also contribute
information about the channel behavior in interval zero; if we had
better information about ¥y, X1, we could make a better decision in this
interval. But ye, X3, * « +, Yar41, Xar41 all contribute information about
interval one, and therefore also aid the decision in interval zero. Simi-
larly, we can argue that Yarie, Xarss, + + - all provide useful information
about interval zero. Thus, theoretically, an infinite delay is required if
we are to conserve all the information. In practice, however, one might
be content with looking only M intervals ahead. In any case, for a
decision in interval zero, we would pick on a maximum a posteriori
probability criterion (which corresponds to minimum probability of
error), say the x’ that maximizes the sum

’ (k) @] (@] ({  (m)
E p(Xo |Y—m: Y-, Xy X, Yo, Yy 0 X1, X2, )’

where the prime denotes the sum over all [, m, - - - . If we assume that
the x® are equally likely and are picked independently in each interval,
this reduces to the maximum-likelihood criterion: Pick x{” to maximize
, *) 0]
Z p(yolxo PIVAS PRSI O /S 4 TR S S T )
In practice, even when we drop Yarg1, * - +, X4, - - -, these schemes
involve too much computation, and it is profitable to search for simpler
nonoptimum methods. The convolutional-enceding and sequential-
decoding concept developed by J. M. Wozencraft [27] is, as far as we
know, the only feasible technique suggested so far. However, we shall
not enter upon a discussion of this method here; since we observe that
a necessary step in all methods is the computation of a posteriori prob-
abilities and likelihood functions, we shall study this calculation more
closely.
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Calculation of Probabilities and Interpretation of Receiver

Dropping all superscripts for convenience, let us consider

T =p(Yo|Y-M, Ce eV YN Xeay v, X1, X0y X1yt t ¢, XN
Now

T =K'p(Yo,Y1, .. .,ley_M, s Y1, X a0 0, Xp, ot ‘,XN),

where K is a constant, since we are assuming that a particular set
Xo - -+ Xyvand yo - - - Yy is given. Now we define two new matrices,

Yur = [Yor, Vet * - -, ywe] and Vo = [yoare, - - -, Yol
Similarly defining x, and x4, we have
= Kp(Yul Yd) X4, xu)- (61)

The subscripts » and d are chosen to represent the undecided intervals
and decided intervals, respectively. Thus T tells us in what way our
knowledge of the previously transmitted symbols affects our impres-
sions of later intervals. We would expect that, from the previous inter-
vals and ¥4, X3, we should be able to form an estimate, reliable to within
the factor of uncertainty due to the additive noise, of the channel be-
havior in the past. Now, since there is a correlation between successive
channel values, this knowledge should help to reduce our uncertainty
about the present and future behavior of the channel. We would expect
that, based on the past, we could make a prediction about the channel
behavior in the future, thus reducing the randomness of future values.
For our Gaussian channel, this is in fact so: If the covariance matrix

|
LUFT) lI Dy,

V= | =1 6.2)
Dyy | Puy
|

is known (note that this matrix depends on x4 and the assumed x.),
and we assume a purely random channel (i.e., A = 0),} then we have

INT ~ (Ju — Busra¥a)t(@us — Pus®ii®s) " (Vu — ua®zaya). (6.3)1

t To avoid complications, we shall assume for the present discussion that we
have no intersymbol interference from interval to interval. This will be the
situation if we have a single-path channel or if we allow sufficient ‘‘dead-time’’
between symbols for the channel response to one signal to die out before the
next signal is transmitted.

1 The symbol ~ is used to denote that In I'is directly related to the right-hand
side.
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Thus we now have a mean component, §, = ®.®z's, which is the
minimum-variance prediction, or extrapolation, of y. given yi, for
assumed x,. This is evident because the conditional mean is the opti-
mum predictor for the minimum-variance criterion [13].

The presence of the new mean component, ¥,, reduces the variance
of yu from ®u., = NoI + @, to

e = 50 Fu = Tt = Pus — Pusaia
= N + @,,,,, say. 6.4)
After some algebra (using the identity
[NoI + B]! = N¢! — Ny 'B[N,I + B]Y),

an element of a receiver implementing (6.3) can be written

0) ) PN () A (k)
NoA™" =2¥ui§u + (Fu — Fu)H (Fu — ¥ ), (6.5)
NOA(k) = 2Yut§'15k) + (Yu - Yu) tilil:l; (6'6)
say, where
ORI ) o (B
Zure = H (yu = Yu ); (6-7)

~ (k) A (k) A (k) ]—1

H = (I)’u'u[Nol + d)‘u'u (6°8)

We see that (6.6) is similar to (4.15) for the single interval specular
plus random component case. The difference is that in sequential
operation we replace the single interval mean value ¥ = Z (assumed to
be zero here for convenience) and covariance NoI + ®,, by the con~
ditional mean and covariance f',. and NI + (f),u,u.

The previous data ¥4, Xa are used to make a minimum-error-variance
extrapolation of the observed waveform in the present interval, and
this prediction helps reduce the “randomness” in the present interval.
Now the usual single interval estimator-correlator receiver can be used.
This interesting generalization of the estimator-correlator receiver is
what we would intuitively expect and it is satisfying to see the theoreti-
cal analysis bear this out.

We should notice that this solution applies not only to communi-
cation problems but also to Bayesian learning and pattern recognition
problems [28] where the y4 are completely identified (as to source)
observations that are used to classify a new observation y.. Thus the
problem studied in [29] and [30] can be considered a special case of
(6.5). We have pointed out there [30] that our interpretation of (6.5)
as a generalized estimator-correlator receiver also applies to the pattern
recognition problem. In [29] and [30] we have ys = z& + n, where
the z is drawn from a Gaussian distribution with mean zero and co-
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variance ®% and the z{?, d = —1, =2, - - -, — M, are all identical.
That is, the “pattern” z® remains invariant during the learning and
observation period. With this constancy assumption, the conditional
mean and variance simplify to

Yu = @ [«b., + No I]—ls, (6.9)
M

br,s, = T — @, [mz, e I]_l@,,. (6.10)

wFu %

where
S =Y-1+Y—2+ IR A
M

= sample mean of learning observations. (6.11)

(Equations (6.9), (6.10), and (6.11) can be obtained by using the matrix
identity
[I+ aa,]-'=1I-—a[I+aala,

where a is a column vector whose elements may again be column
vectors.)

In this case the sample mean is a simple sufficient statistic [13] for
the learning observations. We expect that this result, first obtained in
a much different way by Braverman [29], can be applied to the Rake
system as follows. Consider a simple time-invariant single-path channel
and let the signalling waveforms x® and x® be orthogonal. Then the
yar &P + xP) provides a completely identified learning observation
for the channel tap gains. Averaging of these learning observations to
obtain the mean according to (6.11) can be done by a narrow-band
(integrating) filter, which is actually what is used in Rake [23]. This
simple argument needs to be more completely examined and general-
ized. We have not yet done this. However, in conclusion we shall pre-
sent a more explicit solution in terms of the signals x and the channel
covariance.

More Explicit Formulas

Thusi we have

'~ P(Yul ¥, Xq, xu) ~ p(Yuy ydl Xy, xd) = p(Yl x)) (6-12)

where . .
Ye = [Yuc:YdtJ, X = [Xut:th]-

This, however, looks again like the one-shot problem, so we can im-
mediately write, by (4.8),
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. XX
ln T~ y;X‘DAA <I + N

-1
‘I’AA) ng. (613)
0
Moreover, in a threshold situation (see Appendix B), by choosing the
first term in the Neumann series expansion for the term in parentheses,
we have

InT ~yX®4Xiy
= Yutxuq)auauXMLYM + 2Yutxuq)a“adxdtyu + chxdq)adadthy. (6.14)

This expression has also been obtained by Wozencraft [31]. The
first term on the right-hand side corresponds to the normal opera-
tions in interval u; the second term represents the information con-
tributed by the data and decisions of interval d, and it depends on the
correlation of the channel ®,,4,; the last term is a constant that has
already been computed in interval d. Equation (6.14) provides a form
that is convenient for realization, but we shall not discuss this here,
since our chief purpose was to illustrate the adaptive features of this
type of receiver.

7. Concluding Remarks

The application of adaptive concepts to the design of a communication
system receiver offers attractive possibilities, just as it does in other
areas in which random processes are encountered, such as in control
systems. The incorporation of adaptive capability into any system is
for the most part likely to remain based on intuition and heuristic argu-
ment, as well as on trial-and-error procedures, because a strictly mathe-
matical approach usually fails to take proper account of engineering
considerations. It is nonetheless important to seek guidelines from
mathematical analysis wherever possible, if only to establish standards
by which practical systems may be judged and expedient improvement
sought.

There is already established a firm mathematical discipline in the
field of communications, known as statistical detection (or decision)
theory. This theory may be applied to optimize signal reception,
virtually without invoking any preconceived notions of receiver struc-
ture such as that adaptivity is a “good thing” to have. In the applica-
tion of this theory to the particular reception problem considered here,
an adaptive network has materialized from the mathematics used to
specify the optimum receiver, thus giving reassuring confirmation of
the basic soundness of the idea of adaptivity. At the same time, how-
ever, close examination of this abstractly synthesized adaptive behavior
—which can, in such an instance, justifiably be called optimal adaptive
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behavior—has provided the opportunity to see where intuition may
perhaps go astray. This observation serves to indicate that adaptive
system design should not be approached too dogmatically.

This evaluation of adaptivity has been based on a particular recep-
tion problem: that of deciding—from observation of a received wave-
form and complete knowledge of the statistical characteristics of a
particular channel—which one of a finite set of possible transmitted
waveforms (that are also known to the receiver) has actually been sent
over the channel. For simplicity, the waveforms have been considered
to be of a sampled-data type and the channel to consist of a time-
varying, linear, sampled-data filter, followed by stationary, zero-mean
additive Gaussian noise that is independent from sample to sample as
well as independent of the transmitted waveform and of the channel-
filter variations. The channel filter has been represented as a tapped
delay line with tap outputs summed through time-varying gaincontrols.

From this model it has been shown that if the instantaneous time-
varying filter behavior is at all times exactly known to the receiver,
then on the basis of detection theory, the optimum receiver operation
is to crosscorrelate, or form inner produets of, the received data and
the various possible waveforms that could exist at the channel-filter
output just ahead of the noise. One way of performing the crosscorre-
lation is to pass the received signal into a set of special time-invariant
linear filters called matched filters. Since we lack any direct knowledge,
however, of the instantaneous channel-filter behavior, such operations
cannot be performed. It would then seem plausible to estimate, from
the received data and other available knowledge, the possible wave-
forms that could exist just ahead of the noise, and then to cross-
correlate the received data against these estimates. Thus the notion
of an estimator-correlator has been introduced, or equivalently, an
adaptive matched filter that is governed by a prenoise waveform
estimate. It has been shown that such a conjectured mode of operation
is precisely what detection theory specifies for the optimum receiver
(or for its mathematical equivalent, since the structure of the optimum
receiver is not unique), provided the set of channel-filter-tap gain
variations—which can be negative as well as positive—form a zero
mean, multidimensional, Gaussian random process with parameters
known to the receiver. More general gain variations are allowed if the
noise is large. The prenoise waveform estimates have been shown to
be of the minimum-error-variance type.

To serve as a warning that intuition does not necessarily lead to the
mathematically best adaptive systems, although it certainly must be
used when encountering practical difficulties, two illustrations have
been given that use the communication system model already de-
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scribed. In the first example, it has been shown that the reasonable
idea of first forming a single estimate of the channel-filter behavior,
using it to modify transmitted waveform replicas in the same way that
the channel filter modifies the actual transmitted waveforms, and then
of crosscorrelating the received signal against the modified replicas, is
nonoptimal, although doubtlessly effective. The second contradiction of
intuition occurs when the apparently slight modification is made of
letting the Gaussian filter gain variations have nonzero mean—the
optimum receiver is then no longer a pure estimator-correlator, al-
though many of its basic features remain unchanged.

The Rake receiver has been cited as an example of a practical com-~
munications application of the adaptive-matched-filter concept. This
development is based largely on detection theory but also includes
heuristic concessions to practical requirements. However, some of the
originally heuristic modifications have recently been shown to be sup-
ported by detection theory.

An important problem in communication systems is the proper use
of previously received data and previously made decisions in improving
the reliability of the current decision. This problem has been formu-
lated as a Bayesian learning problem, and thus applies also to Bayesian
pattern recognition schemes. Some general results have been obtained,
but much work still remains to be done.

Appendix A: The Minimum-Variance Estimator

It is a well-known result [13] that for Gaussian signals in Gaussian
noise the conditional mean provides the best estimate of the signal for
a minimum-variance criterion. In fact, for Gaussian signals this esti-
mate is optimum for a wide class of criteria [21]. In our problem,
we have

y=z-+n
and wish to find an estimate z, such that
€& = (2; — 2)? (A.1)
is minimized for each 7. Now

p(z|y) = p(v| 2)p@)/p()

= Kexp (—%{z, [cp,'.‘ + NLO:I z— zz,y/No}), (A.2)

where K is a constant that is independent of z. From (A.2) we see that
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z has a Gaussian distribution. By comparison with the standard
equation,

p(x) = K’ exp (—3{(x — Do x — D)), (A.3)
p(x) = K exp (—}{ (xeberx — 2x,02.%}), (A.4)
we see that
e (A.5)
— =z|®,, +— z, .
Ny f Ny
and therefore
! [¢“+ I]—l ®,.[®,. + NI (A.6)
Z, = —— zs —_ = Pg; 22 —Y. .
N Mo y y

This is (4.11) of the text. We have assumed ®,, to be nonsingular in
this proof; by a continuity argument similar to that used in Section 4,
however, we see that (A.6) is valid also for singular ®,,.

We notice also, from (A.2), that the z that maximizes p(zl y) is the
one making the argument of the exponent zero. Therefore, the maxi-
mum a posteriori probability estimate of z is also given by

fora]
Ze = —— 22 e
N N y,

as in (A.6), for the minimum-variance estimate. Other proofs can be
found in [15] and [16].
From the identity

[N + X X®44]X; = X,[X®4X, + NI,
assuming all inverses exist, we would obtain
X® 04X [XP 14X+ NI = @,,[®,, + NJI]?
= X®44[Nol + X, X®44]"'X,, (A7)

thus proving the equivalence of (4.12) and (4.13) of the text. Now
[NI+4+X®,44X,|=®,, is always nonsingular and so is [N+ X X®..].
In fact, its inverse is given by

[NoI + X‘Xq)AA]—l =Nt — No_1X¢(NoI + X‘I’AAXg)—"X‘DAA.
Appendix B: The Threshold Case; More General Channel Statistics

In the threshold case, the matrix equations can be solved by iteration.
Let us consider the formula

A=yi—7, (Bl)
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where
(pll -1
NH=ao,, (1 + > . (B.2)
N,
We can make a Neumann series expansion [26] for the term in paren-
theses,
(1+3) == & ®3)
No/ T Ne ' No ‘ '

This expansion is valid if the norm of ®,,, regarded as a linear trans-
formation, is less than N,.

The norm |[|®..] is defined by |®.] = min K such that
(®..x, ®..x) < K(x, x), where ( , ) stands for the inner, or scalar,
product. This definition is equivalent to

“(I)‘z“2 = mxax (xl[d)zz]td);gx; XX = 1)’

which is the largest eigenvalue of

[q)u]tq)u = [(I)"]Z’
because ®,, is symmetric. Since an eigenvalue of [®.,]? is the square
of an eigenvalue of ®,., we have ||®,.]| = Amex(®..), the largest eigen-

value of ®,,. Since ®,, is positive semidefinite, Anax is always positive.
Therefore the condition for the validity of (B.3) is that

)\max((pu) < NO- (B4:)
Using this expansion, we have
1 1 2
A= — |y @y — — {y®..y]+ - - -. B.5
N [ye®..y] N [ye@..y] (B.5)

A simple iterative scheme can be set up to compute as many terms of
the right-hand side as desired.

There is another instructive way of deriving this result in our par-
ticular case. Since ®,, is a positive semidefinite matrix, it can be di-
agonalized by pre- and postmultiplication by a suitable orthogonal
matrix and its transpose. Thus @,, = PI'P;, where P is an orthogonal
matrix and I'is a diagonal matrix with the eigenvalues, \;, of ®., on
the diagonal. Then it is easily seen that

q)u((pu + NOI)_l = PP(F + NOI)—IPI- (B6)
Now our receiver formula is
NOA = Yt(pu((bzl + NOI)—ly jY:PF(I‘ + NOI)—IPty

= y,[(T+ Ny = i B.7
v I'(T+No) y gks+Noy (B.7)
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where y; is the 7th component of y/ = P,;y. (We note that y; is the
inner product of the ¢th eigenvector of ®., and y.) If now the largest
eigenvalue, say M, is less than Ny, we can expand each term A;/A; + N
in a geometric series. If we do this and collect terms suitably, we get

A‘l 12
NoA = h § e e, B.8
0 E TR Z T + (B.8)
This can now be rewritten as
®,, [@..]2
N0A=y‘Noy—Yt_E§_y+ (B.9)

which is the result we would have got from the Neumann series ex-
pansion. (Note that a parallel argument holds in the continuous
case in which Mercer's theorem [8] can be directly used to expand
the continuous analogue of the kernel @,,.)

This method not only gives the same condition as before,
Mmax(P.:) < Ny, but also reveals some other interesting facts. First,
we need not appeal to the theory of the Neumann series to obtain the
result (B.9) that we desire. Second, from (B.8) we see that since \; is
less than N, for all £, each term on the right-hand side of the equation
is smaller in magnitude than all the preceding terms. This method also
suggests a very simple means of finding an upper bound on the norm
of the error for a truncated Neumann series. Thus the error is

ne (o) - BGY 26 o

=0 ND t=N NO
and
i (I)" 2 O\max/NO)N
E < - — B.11
“ N” _§N (N0> 1 —kmax/NO ( )

In some cases, it is sufficient to take only the first term of the ex-
pansion (B.3), so that

NiA = y..y. (B.12)

This is usually known as the threshold receiver and is a form often used
to simplify (error probability) calculations. We repeat, however, that
by a simple iterative arrangement—though at the cost of a greater
delay in obtaining the final answer—we can compute as many terms
of the series for NoA as desired. We should point out that condition
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(B.4) s not synonymous with low detectability. The detectability has to
do with sums of powers of eigenvalues (often, only squares of eigenvalues)
and may be quite large, even if the largest eigenvalue is less than N,.

Various bounds on Am.x can be found in the literature [26], [17].
A particularly suggestive one is due to Szegd [32]: If z is stationary,
Amax i8 less than the peak value of the power spectrum of z.

Arbitrary Signal Statistics

In this situation, we obtain, for large N, a receiver structure cor-
responding to (B.12), above. Thus we have

y=2z® 4n,

where the noise is white Gaussian. Then, for hypothesis k, we have
A ~f p(v| 2)p(z) dz = Py — 2),

where the bar denotes averaging over the random variable z, whence

A= K-exp{—é—(y - z)‘Nio(y_ Z)}

1 1 —_ —_—
= K-exp — —Yy¥- [1 + N, (2zZy — z:z) + ZzZ,;y + 0(z3):|
0

2N,

0
KI[H_I- +1 D +0(3)]
= . —2Z, —_— st .
Ny v Nf,y‘ v z

Keeping only the first three terms, we get

1 1
In p(y| X) = —Zy + —y:®..y + “bias” term (In K’). (B.13)
N, N

This agrees with (B.12), where the specular term is not included, as we
had set out to show. This result has recently been obtained also by
Rudnick [14].
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Chapter 7

Optimization Problems in Statistical
Communication Theory

DAVID MIDDLETON

1. Introduction

The purpose of this chapter is to outline some of the principal opti-
mization problems of current interest in the field of statistical com-
munication theory, to describe briefly their formulation and techniques
of treatment, and to emphasize the role and raison d’éire of optimality,
including such important features as optimum structure and optimum
performance. Inasmuch as results achieved to date by these approaches
have been described in detail elsewhere [1], the present discussion is
intended to be mainly expository, taking as its focal point the con-
cept of optimization and referring the reader to standard works for
specific applications [1], [2]. More precisely, our aims are as follows:
(a) to discuss optimization procedures in which the dominant physical
features of the communication environment are incorporated into the
decision process; (b) to point out some of the technical problems in-
volved in their application; and (c) to suggest some continuing prob-
lems of importance in this context. Both stochastic and deterministic
signals in noise backgrounds are permitted, and while the general for-
mulation quite naturally includes multilink systems (i.e., those with
more than one message source and sink), attention is directed here for
the most part to the basic single-link cases. These may be compactly
described [1] by the relation

{0} = TR T4 T {u}, (1.1)

where {u} represents a set or ensemble of possible messages at the
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source (or transmitting end) that result in a corresponding set {v} of
received messages, or decisions consequent thereto. The T's are trans-
formations embodying, respectively, the operations of encoding (T"),
the effects of the channel or medium of propagation (T§"), and the
action of the receiver (T%"). The superscripts () refer to the possible,
and usual, injection of noise into the system at the various stages of
transmission and reception. Optimization problems of various types
accordingly arise when these transformations T§", etc., are con-
strained or left open to adjustment under one or more criteria of ex-
pected performance.

In statistical communication theory we may say that the aims of
an adequate theory of system performances and design should include
the ability to describe optimum systems. Although such systems are
never strictly attainable in practice, they provide limits on attainable
performance and guides as to suitable suboptimum structures that can
be constructed within the “economy” of the desired application. Thus,
we seek optimum structure, that is, optimum modes of processing
the information-bearing data at our disposal, and the evaluation of
the system’s operation. The latter is necessarily statistical, since one
deals always with the ensemble of possible signals and interfering
noise processes in any meaningful communication situation, where the
results are necessarily expressed in terms of various appropriate sta-
tistical properties (e.g., error probabilities and moments) of these en-
sembles. In addition, the comparison of suboptimum systems, which
are the ones used in practice, with the corresponding optima provides
the required link between the theoretical limits and the actual practice
—an essential product of an effective theory.

Optimum structure, optimum performance, and the comparison
with suboptimum systems for similar purposes are thus the principal
aims of the theory. Among the main applications of optimization
methods in communication theory are those that lie in the following
areas: (a) signal detection, in which the basic problem is to determine
the presence or absence of a signal in noise; (b) signal extraction, in
which some information-bearing feature of the signal, including possi-
bly the signal itself, is to be extracted, that is, measured, from signals
corrupted by noise; (¢) cost coding, in which both operations T§" and
T are simultaneously adjusted for possible further optimization of
the reception process by the further choice of signal alphabets or wave-
forms; (d) data processing, as nondecision examples of processing tech-
niques required for decision-making systems; (e) coding techniques,
using the methods of information theory; (f) combinations of the
analytical procedures required in (a), (b), and (c), together with
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coding methods. We shall consider here mainly the decision-theory
approach, as developed by Middleton and Van Meter [2] for problems
of types (a), (b), and (c), to illustrate the present questions of optimi-
zation. In Section 2 a concise formulation of the basic single-link com-
munication system is given in decision-theoretic terms, and in Section 3
various principal optimization problems are considered in a general
way within this framework. In Sections 4 and 5, optimum signal de-
tection and extraction are examined in more detail, and in Section 6
some of the auxiliary results arising in the optimization procedures
are considered briefly. Section 7 concludes the chapter with comments
on present approaches and some current problems.

2. Formulation

Let us now construct a concise model of the communication process in
the single-link case in which definite decisions in the face of uncertainty
are required. The model is naturally based on the methods of statistical
decision theory as noted above.t

We begin with abstract signal and data spaces, @ and T, respectively,
and consider sampled signal and data processes on a finite interval

(to, to + T):
S=1[8@), --,8t)] =[Sy ---,8al,
V=[V@, -, V)] =[Vy -+, V)
Gttt L - St ST+, 2.1)

where S and V are accordingly n-component vectors in € and T space.

Fig. 1. A signal waveform, with sampled values S;.

Figures 1 and 2 show typical signal and data waveforms. The times &
indicated in Figure 2 refer to instants, usually different from sampling
times #, at which some estimate of the signal imbedded in the accom-

t See [1], Chap. 18, and [2] for a much fuller discussion.
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panying noise is desired. Thus, if &, > ¢ + T we have a case of pre-
diction, while if £, < & < to + T, we speak of ¢nlerpolation; in general,
iftn < foorix > &, + T we have an example of extrapolation. The quan-
tity ein Figure 1 is an epoch, referring the observer’s time scale to that
of the signal structure, with e measured from some distinguishing point
on the signal waveform. The degree of the observer’s knowledge of e
strongly influences the type of optimum (and suboptimum) structure
for both signal detection and extraction.} If e is known precisely, we
have coherent receplion with coherent sampling; if ¢ is not known and
in fact is uncertain over a period comparable to, or larger than, an

V(1)
v ¥,
[

i
i
|
!
Fig. 2. A data waveform, with sampled values Vy, V.

average fluctuation period of the signal, we have incoherent reception
with a corresponding sample uncertainty. The former is distinguished
in the eritical situation of threshold or weak-signal reception by a de-
pendence on the square root of the input signal-to-noise (power) ratio,
whereas the latter depends on the first power of this ratio—in both
instances quite apart from the structure of the signal itself.

The decision situation, where either a detection or estimation re-
garding the signal is now required, is illustrated in Figure 3. Besides

v=s@N A
X @ 3(riv) Decision
e (S) £VIs) Decision  Decision
(8) WHN)  opeervation rule spoce
Signal or data space
space (M
Noise

space

Fig. 3. The decision situation in general terms.

data and signal spaces, we introduce also a noise space () and a
decision space A. The vector ¥ = [y1, - - -, Y= represents a set of m
decisions about S, based on V, the received data process. Here 6(7, V)
is the decision rule, governing the decisions ¥ and based on the data V;

t See [1], Sec. 19.4-3.
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diseither a probability (0 < 6 < 1), asin detection, where the decisions
are of the “yes” or “no” type, or § is a probability density (0 < § < «),
as in extraction problems, where the decisions are now measured values
of an appropriate kind. The quantities o(S) or ¢(0), F,.(Vl S), and
W, (N) are, respectively, the a priori distribution densities of the follow-
ing variables: S or the random parameters 8 of S when S = S(0) is
deterministic; the data process V, given S; and the accompanying
noise process N, which is combined with S according to the operation
® to form V, as indicated in Figure 3. The usual combination of noise
with signal is additive, so that ® = -, but frequently one encounters
multiplicative processes, where V = § X N in some suitable sense.
Scatter communications, multipath, and ground and sea clutter are
important physical examples.

Having constructed the decision situation in terms of the relevant
a priori information, as suggested by Figure 3, we must now introduce
an evaluation function whereby we can evaluate performance, not only
for particular decisions but also for the ensemble of possible decisions
consequent upon the ensemble of received data V and the signal process
S. In other words, we seek some statistic of the performance by which
to describe the system’s behavior. For this purpose we employ the cost
or loss function F(S, ¥), which assigns to each signal or signal class
(S), and to the decision associated with it, a quantitative value judg-
ment or “cost.” Then we can write for the average cost or loss asso-
ciated with the decision process in our communication model of
Section 1,

£(0,8) = Ey s{5(@S, v())}
=fds o'(S)f Fa(V|S) dea(-,lV)s;(s, Ydy
Q r A
(2.2)
= W(V v )
Es{frF( |s)d fAd-fB('rlv)ﬁf(S v)}

= ES{EV{EF(S’ ‘Y(V))} })

where the expression Ey{F(S, v(V))} is the conditional cost. When
S = S(0), (2.2) is modified directly to

£(°’: 6) = EV-G{E;(S} Y (V))} or EV,O{EF(O, Y (V))}, (23)

which is appropriate in some estimation or signal-extraction cases.
Two cost functions of particular importance in communication appli-
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cations are the simple cost or loss function,
F1(S, v) = C(S, 'Y); (2.4)

where &, (that is, C) is independent of the decision rule § and associates
a preassigned set of fixed costs to the various possible decisions about

S, and
Fy(S, v) = — log pS| ¥), (2.5)

where p is the a posteriori probability of S, given y. Unlike C(S, v),
%, depends (implicitly) on the decision rule é and therefore cannot be
preassigned independently of it. For this reason we may expect the
theory of optimum and suboptimum systems based on F, to be more
complex than that for %, which has indeed been found to be the case
to date. A motivation for choosing F. according to (2.5) above follows
from the fact that —log p(Sl +v) is a measure of uncertainty or equiv-
ocation in the information-theory sense.t Accordingly, the average
risks for &, and ., with (2.4) and (2.5) in (2.3), become

21 = R(s, §) = fna(S) ds frF,.(VIS) v an(-fl V)OGS, v) dy (2.6)

average cost,

_fna(s) dsfrF”(VIS) dV_an(-er)

-log p(S| v) dy 2.7
= average information loss.

]

Ly = H(o‘, 5)

We remark again that the decision rule 8 in detection situations is a
probability and that the integral representation over decision space A
is in effect a sum over the discrete and distinct points that in this ab-
stract space represent the decisions vy, * * -, ¥m. In extraction problems,
which are characteristically measurement operations, the decision rule
6 takes the form of a probability density, for example,

3(r| V) = 85 — 1.(V)). (2.8)

The right-hand member of (2.8) is the Dirac delta function and
v.(V) = 'y,(Sl V) is the estzmator (here of S) based on the received data
V and subject to the distribution density (d.d.) ¢ of S. Prediction and
extrapolation, as well as simple estimation (h =&, k=1,---,n),
are readily included in the present formalism. We write for (2.6) the
somewhat extended form

R(o, 8) = f (S, 8)) dS dS) f PF,.(V|S)C(S,SX; v) dV, (2.9)

t See [1], Sec. 18.4-1.
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where, for example, S, is the predicted value of S at txi—here for all
possible ensemble representations.

Thus, with (2.6) and (2.7), for both detection and extraction we have
now a measure of performance for the class of single-link systems em-
bodied in (2.1), above. Our next step in the discussion of optimization
problems and procedures is to seek appropriate extrema of £; and £,
with and without constraints, by suitable choices of the decision rules,
and, where possible, to find the various distribution densities o, Fa,
ete., governing the average cost or information loss.

3. Optimization and Extrema in General Terms

Let us now consider the central subject of the present chapter: the
optimization of communication systems in which definite decisions are
required, either in the “yes-no” form characteristic of the signal-
detection situation, or as measurements characteristic of signal-
extraction operations. Here we outline some of the major classes of
questions according to the two principal classes of detection and ex~-
traction situations noted above. These questions will be described in
somewhat greater detail in Sections 4 and 5. For the basic single-link
system (2.1), we may state our problem symbolically as

op {o} = op {7 'Tu'Tz {ul},

where optimization, when possible and meaningful, is to be achieved
by selection of the transformations representing reception (T§"),
transmission (or encoding) (T$), or both. Since in physical applica-
tions we do not have control of the properties of the medium through
which the communication process is propagated, we cannot expect to
adjust T . From the receiver’s viewpoint, often the case in practice,
the transmitted processes y = T{’ TP {u} are specified, so that the
only possibilities of optimizing performance lie in suitable choices
of T§". This is, of course, 2 nontrivial problem because of the in-
evitable and unavoidable presence of interfering noise, which in effect
guarantees that T¢" # T"~!. From the point of view of decision-
theory methods, the question of optimum reception, either as detection
or as extraction, is also a natural point of application—in particular,
in cases for which the decision itself has primary significance [1], [2].
If, however, the interests of the communication process are more
naturally focused on maximum use of channel eapacity rather than on
the significance of the messages sent and received, that is, on their
outcomes, the principal concern in optimization is then with the en-
coding process, T{", as illustrated in the usual applications of infor-
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mation theory. If both interests are naturally combined, we may seek
some sort of simultaneous adjustment of 7" and T%". Even when spe-
cific encoding procedures over a span of many individual decisions at
the receiver concerning transmitted symbols are not themselves directly
incorporated into T3, we may still seek simultaneous adjustments of
T and TP for possible further optimization of performance, a pro-
cedure we have called cost coding. f

Among the first and most important optimization procedures is the
minimization of the average risk or cost R(q, 8) [see (2.6) ] by suitable
choice of decision rule §. Thus, we have

min R(c, 8) = R*(s, 8%),  &—5%, (3.1)
)

and R* is called the Bayes risk, while 6* is known as the Bayes decision
rule, for which R is a minimum. Accordingly, here

op {v} = gp{TfeN)Tif’Tgv’{u}}
R

(3.2)
yields R* through suitable choice of T§",, = 8*. A corresponding situa-
tion occurs for the average information loss, £; = H, although under
more restricted circumstances. We can similarly write

min H(o, 8) = H (s, 6n), & — on, (3.3)
]

where 8% in general is different from &* above, as is H* from R*.
Equation (3.2) is still representative, with T{",, = &}; H* is called
the Bayes equivocaiion, or minimum average information loss.

A third class of extremal systems of considerable importance is pro-
vided by the so-called minimax systems. These are defined for cost
functions of type 1, that is, § = C(S, v), as the least unfavorable of
the worst average costs, the latter being obtained for the “most un-
favorable” a priori d.d. a¢ of the signal process S, that is,

Rat(o, 83) = min max R(c, 3), (3.4)
] L'

in which 8} = T®,, is the minimax decision rule, § — 8%. We may
symbolically write (3.2) now as

-1 (V) (N) (W)

op {v} =op op {Tr Tu Tr {u}} = min-max {s}, (3.5)
Tr Tr

t See [1], Sec. 23.2.
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with

% -1
op = du; op = max (3.5a)
Tr Tr 4

in this case. Minimax systems are, of course, more complicated than
the simple Bayes systems 6* that minimize average risk or cost, since
a double extremizing process is now required. Under conditions readily
met in physical applications, T it is also true that

min max R(c, 8) = max min R(s, 8), (3.6)
é 4 o é

so that in the language of game theory we have a strictly determined,
zero-sum, two-person game. Here the game is between the observer
(i.e., the receiver) and nature,{ with the characteristic saddle-point
condition represented by (3.6). In a similar way, although under more
restricted conditions, we may expect minimax equivocatzion, that is,

Hot(oom, onz) = min max H(s, 8) = max min H(s, ),  (3.7)
] o o 3

this latter in the strictly determined cases. Hence § — 8}y 5% 83y for
the minimax average risk, and also, in general, gor ¥ ¢o. Equation
(3.5) applies once more, but now with

op = ﬂm, and op_1 = max (3.72)
Tr Tr I'4

[see (3.5a)], since the cost function here is §» = —log p(S|¥) [see
(2.5)] instead of the simpler cost assignment (2.4). The criteria of
optimization represented by the Bayes risk and minimax average risks,
(3.1), (3.4), (3.6), were first proposed and examined in their general
forms by Wald [3] in his original construction of statistical decision
theory, along with the principal theorems upon which are based the
extremal operations formally presented above.

Until recently, attention has been directed principally to optimiza-
tion on the basis of the simple cost function, &, and to some examples
employing F;—in both instances without additional constraints other
than those necessarily imposed through the probabilistic nature of the
decision rules and a priori probabilities o, FN(VI S), ete. Other extremal
situations of importance to communication theory applications occur,

t See [1], Sec. 18.5-3, for statements of some of the principal theorems and Sec.

18.4-4 for a more detailed discussion.
t See [1], Sec. 23.3-1; also see [2], Chap. 6, Sec. 1.
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however, in which additional constraints naturally arise. Cost coding,
mentioned above, is a typical example. Here we seek a possible further
minimization of the average risk E(s, §) by suitable choice of waveform
S subject, say, to the constraint of fixed signal power. This can be
expressed as

Re = ext {B'(0, 8") € £(S)} = Re(o, oc), (3.8)
where {C denotes the constraint; for fixed power this is
T
f8) = Icf S@)? dt.
0

In terms of the transformations T$", etc., this becomes alternatively
[see (3.2), (3.5)]
(N), (V) (N){
ul},

op {v} = op op {TR Ty Tr
Tr Tr

(3.9)

where op/Tr = 6§ — §*. Then op/Tr applied to this, subject to the con-
straint f(S), yields 8* — 6§, with the “best” receiver for the “best”
transmitted waveform. One thus adjusts T and T8 to achieve R, a
further minimization of an already Bayes risk. In general, this is not
unique;nor is it always possible, as some of the results to date indicate.}

Still other, and more elaborate, extremal situations may arise: For
instance, we may wish to minimize average risk for a class of sub-
optimum systems (6 # %) by proper choice of waveform, subject to
fixed signal power, for example,

Ee = min {R(5, & Cf(9)}. (3.10)

Another possibility is the mazimization of Bayes risk by choice of
noise statistics, again subject to the constraint of fixed noise power,
for example,

Ry = max {R'(s, 8) ¢ F(V)}. (3.11)
W(N)

We may also wish to combine cost coding and maximization of Bayes
risk; for example,

* .
Rexy = min max
5 WM

{R*(s, 8" ¢ 1(8) € F}, (3.12)

t See the examples in [1}, Sec. 23.2-1.
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a situation characteristic of communication in the presence of inter-
ference, where best operation of the communication link is desired on
the one hand in the face of interference on the other. This may be
selected to render transmission (or reception) as ineffective as possible
—a type of minimax situation in which the constraints on both signal
and noise processes now play a key role.

Not much is as yet known about the general solutions to problems
of the above kind. The customary attack is that of the calculus of varia-~
tions—which is not usually sufficient to guarantee a solution in each
case, although inspection of the special problem frequently permits us
to decide on a2 maximum or minimum result or to determine whether
the extremum in question is the desired maximum or minimum. In the
next two sections, we shall illustrate some of these remarks with exam-
ples of two classes of optimization situations: Bayes signal detection
and Bayes signal extraction.

4. Optimum Detection}

Let us begin by considering the general binary (i.e., two-alternative)
situation of detecting the presence of a signal of type S; in noise versus
that of a signal of type Sy, also in noise, which may occur alternatively.
The hypotheses accordingly are H;:S; ® N and H;:8; ® N. We shall
construct the Bayes, that is, minimum average risk, test of H. versus
H, on the basis of fixed data samples on (O, T). For this purpose, we
have

4 + 2, = Q, where 2, and Q, are signal spaces appropriate to
S; and S;, and are disjoint, that is, nonover-lap-

ping (see Fig. 3); (4.1a)
wi(S), we(S) = d.d.’sof S = (8;, S;), where wi(S) = w,(Sy),
that is, for S € &, and w(S) = wu(Ss),

S € Q,; S, of course, embodies all signals,
as indicated; (4.1b)

f wy(S) dS = w;(S1) dS; = 1, etc.; (4.1¢)
0

1 1Y

p1, P2 = a priori probabilities that the data sample V comes
from an ensemble V=8, ® N, or V=8, ® N,
respectively. (4.1d)

1 This section presents a generalization of some of tile results of Chap. 19 of
[1], especially Secs. 19.1-19.3.
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Consequently, we have
o(8) = prwi(S1) + paw(S;) and f a(S)dS =1, 4.2)
Q

since p1 + p: = 1. For the two possible decisions here, that is,
11:H:8: @ N, v::H,:8; ® N, we write

8(v1| V) + 8(r2| V) = 1, (4.3)

inasmuch as a definite decision is always made, and 0 < 68,2 < 1, since
the &’s are probabilities in this case. Finally, let us represent the cost
assignments in the form of a cost matrix C(S, v), with rows represent-
ing the hypotheses H;, H; and columns the decisions 71, 7vs,

TRt

1 02

CS, v) = [ @ 0(2)]- (4.4)
1 2

The superscripts refer to the hypothesis state and the subseripts to
the decisions actually made. Consistent with the meaning of “success”
and “failure,” or “correct” and “incorrect,” with respect to the possible
decisions, we require that

(1) 1) (2)
€, <C;, C:

<c; (4.42)
that is, “failure” costs more than “success.” Note that the costs are
assigned vis-a-vis the possible hypothesis states and not with respect
to any one signal in a signal class (which may contain an infinite
number of members).

With the above consideration in mind, we compute next the average
risk according to (2.6) by integrating over the two points in the decision
space A, for vy, vs. The result is
)]

R = [ L[Sl + TS0 palitn | V)

+ [(FalV | SONpiCs” + (FulV | SINCs pals(r2| V)} 4V, (4.5)

where

PFA(V | S)): = f o(S)FA(V] ) ds

= p1f ‘wx(S1)F,.(V| Sl) dS;, ete. (4.6)
8

1
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If the signal processes owe their statistical character to a set of random
parameters 0 alone, that is, are deterministic, then (4.6) is equivalently
expressed as

pl(Fn(vI Sl))l = pl‘l‘0 w(Ol)F,.(VI S,(O;)) d01, ete. (463,)

At this point, it is convenient to introduce the conditional and total
error probabilities associated with the decisions vi, v2. These are

g = B"(H,y|Hy) = conditional probability of incorrectly
deciding that a signal of class 2 is pres-
ent when actually a signal of type 1

oceurs, (4.712)
P = gAH 1| H,) = the same as (4.7a) except that S; and S,
are interchanged. (4.7b)

The corresponding total error probabilities are therefore the following:

miBY = total probability of incorrectly deciding H, when
Hj is the true state, (4.83)

1262 = the same as (4.8a), with H and H, interchanged. (4.8b)
In expanded form, we have
8" = [ | so)ien| v av,
r (4.9)
67 = [ E.[stn| M av,
r
so that, alternatively, the conditional probabilities of correct deci-
sions are

B =g H | HY) =1—8; = f (Fa(V]S))5(r1| V) dV,  (4.102)
r

Bs) =B (H, | Hy) =1 -8 = f (Fa(V| S2))a8(y2| V) dV.  (4.10b)
r

Using the above results in (4.5) we can now rewrite the average risk
more compactly in terms of the error probabilities as

R(s, 8) = {piCs" + 22050} + pa(CsY — CiDygs”

+ p2(Cy — €81 (4.11)



154 Communication, Prediction, and Decision

Optimization is next accomplished, according to (3.2), by suitable
choice of decision rule §, so as to minimize the average risk R(o, 9).
Eliminating 6(72] V) with the aid of (4.3), we can express (4.5) as

(2)

R(a’, 5) = Ry + p1(01 o

—C, )fra('yll V) [Azl(V) - 5(’.12]

“(Fa(V|S1)) dV, 4.12)
where

P2 (Fa(V]S9)e
V) =— ——M — 4.13
AV = EV S (*.13)

is a generalized likelthood ratio, and

1) (1)
c; —C,
X2 = '61(—2)—_-_—02(2—) >0 (4.14)

is a threshold, with ®, = p,C{Y + p.C? the irreducible risk. Since
8(F.,), C® — CP, p,, ete., are all positive, it is at once clear that we
minimize K by choosing 5(71| V)—o* (71[ V) to be unity when Ay < X2
and zero when Ay > .. In other words, we decide

vitHy  if An(V) <Xy; that is, we choose §*(y1[V) = 1 for
any V such that this inequality applies, and take
5*(y2| V) =0; (4.15)

or

va:Hy if An(V) > Xu; that is, we choose 8*(yz| V) = 1 for
any V satisfying this inequality (and equality),
and take 5*(y,| V) = 0.

Note that the 8f; are nonrandomized decision rules, automatically
arrived at here in the minimization process. The error probabilities
(4.9) are accordingly

min g — g = f (FOV|S))s (v | V) dV, ete.,  (4.16)
s r
with B"* obtained explicitly by evaluating the integral above over
that portion of the data space T for which 6*(72] V) = 1, with a similar
procedure for obtaining g*.
For actual applications, it is much more convenient to use as the
representation of the optimum system log Ag, in place of As. This in
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no way changes the optimization results because the logarithm is
monotonic (and Az > 0); (4.15) is simply rewritten as

yi:Hy: if log Az < log &g, (4.17)
or
vo:Hs: if log As 2> log Kia.
The Bayes risk is now
X
R = qo+pa(C” = C2) (— B+ Bi”*), pa = ? ©(418)
Ha1 1

Besides the optimum system structure embodied in log Az, we need
the error probabilities 8{"*, 8?* to evaluate the system’s performance.
Letting

z = log An(V), ' (4.19)
we see that these error probabilities are given by
[ log %
g = PP de, and BY = f PO (@) dr, (4.20)
log X —c0

where P$@(z) are the d.d.’s of z, respectively under H,, H,. For
example,

1)

@
P,

(x) = EF-I{ EVIHl{eisz} } ; P,. (x) = ‘:F_l{ EV|H,{0"E3 }, (4.21)

in which ! denotes the inverse Fourier transform and the expecta-~
tions are the two characteristic functions of z, which are determined
from

¢ log Aoy (V)

FPGg) = f AV(F.(V|S) e . ete. (4.22)
r

In terms of these characteristic functions, the error probabilities (4.20)
may be alternatively expressed as

—i¢ log X
6 = [ T rPa
c

=
_‘E":‘ix (4.23)
#0 = f FPu
C(+,‘ -—zmg

where C) and C, respectively, are contours extending from — « to
=+ o along the real axis and indented downward and upward about any
singularities on this axis, usually at £ = 0. The optimum detection situ-
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ation of H, versus H, is schematically illustrated in Figure 4, while the
relationship of the corresponding Bayes error probabilities is sketched
in Figure 5. The essential problems at this stage are technical: how to
evaluate (4.21)—-(4.23). This is by no means a simple task; it requires
considerable skill and insight. In the most important and critical case
—threshold, or weak signal operation (where the input signal is less
than the background noise, power-wise)—a fairly comprehensive bi-
nary theory has nevertheless been developed.f

()
8=t AR y
tog 4, i
Threshold 7, .‘-ll 7, Hz
or A
N xslogh,,
‘Tog £y :

()
330

Fig. 4. Optimum detection.

P“’,P(z’

o 1og K, x

Fig. 5. The Bayes error probabilities.

Finally, in the common case of a signal in noise versus noise alone, we
have Hi: N:H;:S ® N, and the preceding results can be immediately
reduced by inspection to the familiar expressions discussed in earlier
work.]

Various special cases of the general Bayes detection systems de-
scribed above deserve attention. Among those belonging to the opti-
mum class—that is, minimum average risk class in some sense—are
the so-called Neyman—Pearson detectors, wherein the average risk
associated with one or the other of the error probabilities P or % is
held fixed, thereby determining a threshold &’, while the average risk

t See [1], Chap. 19, and especially Chap. 20, Secs. 20.1-20.3, with illustrative
examples in Sec. 20.4.
1 See in particular [1], Secs. 19.1-19.3.
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associated with the other (8% or g{") is minimized; for example,

B (o, 8")wp = Colmin (p:81) + ApsBs ). (4.24)
3

The result is readily shown to be a Bayes, that is, likelihood ratio test
of the type (4.15) or (4.17), where A = X/, a threshold determined by

B;I) = f P,(.l)(x) dzx = constant (<1), (4.25a)
log '

with

log 3’
gt = f PY (z) dz, (4.25b)
for the minimized error probability.

Another optimum class of binary detection systems within the Bayes
group is that of the Ideal Observer, where both g and g are jointly
minimized; for example,

-

R'(s, 8" = Co min (085" + paBiD), (4.26)

for which it is found that the decision procedure requires a threshold
%r = 1. [See (4.15), (4.17).] Still another class, also Bayes, is the Mini-
max detector [see (3.4) et seq.], where the a priori probabilities py, p:
are unknown or unspecified. Again, the optimum system is embodied
in a generalized likelihood ratio (4.13). The actual evaluation of such
systems, however, may be quite involved, particularly if other a priori
probabilities or probability densities are open to adjustment—for
example, o(S), (0), F,.(V[ S). In Section 19.2 of [1] these three types
of systems are discussed in more detail and other possible Bayes
situations are presented in which other subcriteria for optimization
may be employed to deal with the ever-present question of partially
or totally unspecified a priori probabilities.

Finally, we mention extensions of the Bayes theory sketched here.
An important case is that of variable sample, or sequential procedures,
for signal detection [4]. Here sample size is the random variable, and
optimization is achieved by minimizing the average cost of experi-
mentation, proportional to sample size. For example, we have

Rueg = min R(v, 8)aeq = Comin f(n, 5,8), f=n(,8), (4.27)
] ]

and in the more general cases f is a nonlinear function of sample size n,
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or of T, if continuous sampling is employed. Adaptive systems, which
adjust themselves on the basis of successive stages of incoming data to
be optimal at later stages, provide other more sophisticated examples
of optimum systems, of which the general character is still inthe
process of formulation,

5. Optimum Signal Extraction

As we have noted previously (Sec. 2), the broad class of problems in-
volving the estimation of signal waveform or signal parameters, either
in an interpolatory or in a predictive sense, is naturally included within
the decision-theory framework. Equally naturally, this class of prob-
lems suggests a spectrum of optimization questions wherein minimi-
zation of average risk or average equivocation are two important cri-
teria. For our summary discussion here, we shall consider only simple
estimation, where f, coincides with one or more of the sampling instants
L, + + +, t, on a typical interval (0, T). Here, also, suitable classes of
cost functions (i.e., convex cost functionst) lead to the desirable non-
randomized decision rules, which are of the form

3| V) = 8(y — v.(V)), (5.1)

where v,(V) = T#(V) is the functional operation performed by the
receiving system T on the received data V and thus embodies the
estimation structure. For particular V, 4,(V) is an esfzmate; for the
process V, ¥,(V) is called the estimator, based on the a priori signal
information embodied statistically (as well as deterministically) in
a(S) or o(0), where 8 = (64, * « -, 0) is a set of M different parameters.
The left-hand member of (5.1) is a probability density for the usual
case of continuous values of Vand of either S or 6 under estimation; the
right-hand member is the Dirac delta function [see (2.8)].

When v, is given, that is, the system is specified, the average risk
may be computed according to (2.9) above, which for simple estimation
becomes directly

R(s, 8)s = f o(S) dS f F.(V|S)CES, v) dV,  (5.2a)
Q r
or often in deterministic cases for which S = S(0),
R(o, 8)s =f a(6) def W.(V|6)C(, v.) dV. (5.2b)
0y Iy

The average risk depends, of course, on our choice of cost function, and
here we may expect a considerably wider range of possibilities, since

t See [1], p. 961.
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the number of reasonable and acceptable cost functions is now much
expanded, at least potentially, over those available in detection.

As in detection, we may expect a variety of optima, depending on
the choice of cost function and on possible constraints. In the uncon-
strained case—the deterministic case, for example—we seek optima
from the solution of

aC (0; Tﬂ)
oR = f a(0) Ao Wa(V| 0) ————— =0, (5.3)
a dy =t

whenever C possesses the required derivatives; the ¥* that is the solu-
tion of (5.3) ean usually be shown to be the desired optimum, either
by inspection or by a direct demonstration that 62R| + > 0, for mini-
mum average risk. The most common and familiar example occurs for
a quadratic cost function,

C(o, ‘Y) = Col 0 — 'fulzy (5.4)

for which it is easily shown that the Bayes risk is

Ry =Comin [0— 2" =CJO = (0] V) |*>» (5.5)
YU

where the optimum estimator is determined from the set of equations

|V = fn 60(8)W(V | 0) do / fn (O WA(V]0)do  (5.6)

- fn owa(V, 6) do / fn wa(V, 6) do, (5.68)
8 (]

in which w,(V, 0) is the joint d.d. of V and 0. Note that in general the
Bayes estimator y* here is a nonlinear operator on the received data
V; the optimum receiver for estimating 0 is a nonlinear system. In fact,
for this cost function it is the conditional expectation of 6, given V—
a well-known result.t

As an example in which a direct variational procedure is not possible,
that is, in which dC/d+y does not exist but nonetheless optimum systems
may exist and be obtained, we have the important case of the simple
cost funetion (in extraction),

C(8, vo) = 2 [Crdi — (Cx — Co)d(ve — 61)]. (5.7)

Here the A} are positive constants, chosen so that the resulting average
risk is positive or zero for each %, Cg is the cost associated with an error,

t See [1], Sec. 21.2-2.
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and Cc is the cost of a correct estimate of each 6;. More compactly,

(5.7) becomes .

C(6, v,) = Co Z [4x — 8(v — 6], (5.7a)
k=1
with appropriate definitions of Co and A. Thus, in this simple cost as-
signment, errors of all sizes exact the same cost Cr, while all correct
decisions (i.e., estimates) cost C¢ < Cg. The average risk, or cost, here
is found to be

M
R(c, 8)s = Cy EI:A;, '—f D(V; 0, 8) dV], (5.8)
k=1 T
where
D(V;0,8) = fA c(Y)Wa(V | v)8(vi | V) dvs (5.8a)

and ¢ is now a probability density. Minimization of average risk leads
directly to the condition

Sve| V) = 8(v — (0] V), v=6, k=1,---,M, (5.9

where the components v¥ (k = 1, - - -, M) of the Bayes estimator,
here +*, are determined from the relations

() WalV | 1) = o (@) Wal(V | 62), (5.10)

for each k and for all 6, in Q. But this is precisely the condition
that determines the wunconditional mazimum likelihood estimators
(UMLE’s) of 6, that is, vf. Thus, equivalently, the v} are determined

by
(i)
—a—o—log (e @) Wa(V | 6)] |spmtrmst = 0. (5.10a)
k

For a more detailed discussion, see [1], Sections 21.2-2 and 21.2-1 and
equation (21.82).

Although the quadratic cost function (QCF) and simple cost function
(SCF) are analytically and historically the most familiar, many other
cost functions, more reasonable in special applications, can be con-
structed. Even if they bear the expected difference form F(0 — v),
however, explicit optimization is not readily achieved for general sta-
tistics of V and 0, and little appears to be known as yet in a systematic
way about the Bayes extractors in these cases. Under certain condi-
tions, we can escape from the sometimes too restrictive and inappro-
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priate nature of the QCF and SCF with the help of the following result:
Let cost functions of the type C(8 — v.) have the property that for
|0 = v)1 | < | (@ = 72)s|, we have

CO—v) =Clys—0); C[O—7v)1] <ClO — 7)) (5.11)

Then the Bayes estimator (v¥)qcr for the quadratic cost function
(8 — v.)? also minimizes the average risk for these other cost functions
(5.11), provided the conditional d.d. of 6, given V—that is, w(ol V)—
is unimodal and symmetric about this mode (8 = «¥). Typical cost
functions obeying (5.11) and satisfying this condition, and conse-
quently for which (v))qcr is the optimum estimator, are

Crl0— 7o) = |0 —ve|;
* * *
0, [0 =7 <4 (vo = (vo)aow), (5.12)

Gl = 70) = {1, lo6—v.| >4 (>0).

The resulting Bayes risks for (5.12) are different from (B*)qcr, of
course, although v¥ = (y¥)qcr here.

Still other cost functions may have desirable properties in applica-~
tions; when 8(0) is uniform, v§cr may have minimax properties,t and
if w.(V, 6) possesses certain symmetry properties, then the Bayes
estimator often may be directly determined from the symmetry
structure. Not only Bayes extraction, but also those minimizing
average equivocation—as in detection—are possible. Also, as in de-
tection, we may consider more sophisticated extraction procedures,
for example, sequential estimation and adaptive systems employing
dynamic-programming techniques. In all these areas, as far as com-
munication systems are concerned, the search for optimality has just
begun. This is particularly so in those cases in which it is meaningful
to include constraints. For example, in cost coding it may often be
profitable to minimize further the average risk, associated now with
signal extraction. Equations (3.8), (3.9) apply here also, as do (3.10)-
(3.12), for the more elaborate situations in which the communication
link—both transmitter and receiver—is in effect playing a game against
the medium, represented by either natural or man-made disturbances.

6. Some Consequences of Optimality

As we have indicated above, a direct and important by-product of each
optimization procedure—whether in signal detection or extraction—

t For further comments, see [1], Secs. 21.2-1, 21.2-3, 4, and Sec. 21.2-5.



162 Communication, Prediction, and Decision

is optimum structure, which is embodied in the appropriate decision
rule 5. In binary detection, this is expressed in terms of the generalized
likelihood ratio or its logarithm [see (4.17)],

)

TropiV} = log An(V). (6.1)

In extraction one has a variety of structures, embodied in the esti-
mators

o

Tr iV} = 72 (6] V). (6.2)

For threshold operation various canonical forms of optimum structure
are possible. In detection of a signal in noise—for example, Hi:N
alone, H,:S + N, the “on-off” case—these can be expressed as

1)

log Ax = Bo + BFCV(8) + BIC Vv + O(ag; 5750, 0,0, - - -), (6.3)

where the constants By, Bi, B: depend of course on the signal and
noise statistics and are respectively O(ad, ao, @2, - - +), By = O(ao),
B, = 0(a?), with a? defined as an input signal-to-noise power ratio,
s is a normalized signal wave form, and v is a normalized data process.
In reception processes for which there is sample certainty, for example,
in coherent reception (see Sec. 2), (s) does not vanish, and the pre-
dominant threshold structure is that of an averaged, generalized cross-
correlationt of the received data with a known signal waveform,

10g An|eon = Bb + aoBI7CV(s),  ap<1, (6.4)

dependent on the square root of the input signal-to-noise power ratio.
On the other hand, when the observer does not know the epoch ¢
(see Fig. 1), and e is so distributed that (s) = 0—a usual condition in
this state of tncoherent observation—we have an example characterized
by an averaged, generalized autocorrelationf of the received data (v)
with itself:

10g An |ineon = Bo + a:By5C?v. (6.5)
Unlike the coherent case, this is now a nonlinear operation on the data.
Moreover, the structure depends on the first power of the signal-to-
noise power ratio:

t See [1], Sec. 19.4.
t See [1], Sec. 19.4.
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From a design viewpoint, we must next interpret these generalized
averaged cross- and autocorrelations in terms of ordered sequences of
realizable elements, both linear and nonlinear. This has recently been
done [5],1 and typical structures consist of a linear time-invariant,
realizable Bayes matched filter of the first kind, and similar to the
older type of matched filter [6] for maximizing S/N in the coherent
cases. With incoherent reception the structure may consist of time-
varying linear and realizable Bayes matched filters of the second and
third kinds, followed by zero-memory quadratic or multiplicative
devices and terminating in an ideal (i.e., uniformly weighting) post-
rectification filter [5]. The details are considered in [5]. Similar struc-
tures may also occur in signal extraction. In addition to a threshold
structure similar to and sometimes identical with that arising in detec-
tion, one often has a further mathematical operation on data so
processed, represented by some transcendental function, for example,
a Bessel or hypergeometric function, of which the processed data are
the argument.}

Finally, it should be pointed out that the above procedures are not
confined to such discrete structures, although they are necessarily
formulated in a probabilistic sense in discrete terms, that is, with
sample values at discrete times ¢, - - -, {, on an interval (0, T). One
can quite naturally consider continuous sampling on (0, T') in which
the various matrix forms above go over into corresponding integral
expressions. The generalized likelihood ratios characteristic of optimum
binary detection become generalized likelihood ratio functionals, and
the various quadratic forms in the threshold development of structure
[see (6.3)-(6.5)] likewise become linear or quadratic functionals of
V (t), the received data on the interval (0, 7). In such instances, also,
the technical problems of inverting matrices [the C®, C® in (6.3)
et seq. contain one or more inverse matrices] transform into the cor-
responding problems of solving linear integral equations of the homo-
geneous and inhomogeneous varieties. In system structure a similar
transformation from the discrete sampling filters to the continuous
analogue devices occurs without conceptual change, although, of course,
the actual realization of the various optimized circuit elements requires
different techniques. Section 19.4-2 of [1] considers some of the con-
ditions under which the passage from the discrete to the continuous
state of operation may be analytically performed.

t See also [1], Sec. 20.1, 2.

1 See [1], Sec. 21.3-2, in the case of the incoherent estimation of signal am-
plitude with a quadratic cost function and narrow-band signal processes. Still
other examples may be found in {1], Secs. 21.1 and 21.3, and in [7].
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7. Concluding Remarks

In the preceding sections we have described formally and rather in de-
tail some of the roles of optimization in statistical communication
theory. The principal applications of optimization techniques here lie
in the areas of signal detection, signal extraction, and cost coding,
with their concomitant by-products of optimum system structure and
comparison with suboptimum systems for these and similar purposes.
In its simplest forms, optimization is carried out with respect to the
criterion of minimizing an average loss of some sort, whether
measured in simple units of cost or in the more intricate units of
equivocation, and without constraints. More sophisticated models,
appropriate to a variety of special communication situations, introduce
one or more constraints, with a resulting increase in the complexity of
the analysis. Cost coding offers an important class of such problems.
The basic technique for finding solutions is the familiar variational one,
which of course is not always adequate for this purpose, since it fre-
quently provides minima when maxima are needed, and vice versa.
This difficulty is sometimes overcome by an inspection of the physical
model, which often reveals the desired extremum, but in general there
appear to be no consistently reliable methods for discovering solutions.

Although our attention has been specifically directed to the single-
link communication situations, the fundamental ideas and techniques
are by no means restricted to such cases. Frequently a more realistic
description of a communication environment requires an extension of
fixed-sample models to the variable-sample ones (e.g., sequential
detection and estimation). Often, too, simple binary decisions are in-
adequate: A selection between many alternatives may be required, and
we are then confronted with a multiple-alternative detection situation.
Moreover, the cost functions in common analytic use (the SCF and
QCF of Sec. 5, above) may prove unrealistic, and other, more involved
cost assignments must be introduced, with a consequent increase in
the technical problems of finding optimum structures (decision rules)
in these cases. Extensions to adaptive systems, which in various ways
adjust themselves to their changing data environment, put a heavy
burden on our optimization methods and require of us new approaches
and techniques, as yet only hinted at. One central problem here is that
of “reduction of dimensionality,” whereby a very large number of raw
data elements are to be combined (and in part eliminated) in such a
way that nearly all of the pertinent information upon which a decision
is to be based may be preserved, with the result that a comparatively
small number of effective data elements are then needed to obtain an
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efficient decision. Simple examples of this are shown above in binary
detection, where for optimum performance an explicit operation on
the received data V is indicated by the likelihood ratio function or
functional. But when we attempt to extend this procedure to multiple
decisions under an over-all optimality program, as in dynamic pro-
gramming, the dimensionality question rapidly reaches a prohibitive
state. Hence, other as yet undiscovered techniques for reducing the
computational demands on the system must be introduced. Accord-
ingly, it is clear that new optimization methods are required if we are
to extend the basic notions and models of an adequate statistical theory
of communication to many of the pressing problems of the present and
future. Here, then, we have described a framework of approach, suc-
cessful in its basic aims. The extensions lie before us, with optimization
inevitably a central aim, so that not only can we refer actual achieve-
ments to their theoretical limiting forms, but with these results to
guide us, approach them more closely in practice.

References

1. Middleton, D., Introduction to Statistical Communtcation Theory, Part
IV, McGraw-Hill Book Company, Inc., New York, 1960.

2. Middleton, D., and D. Van Meter, “Detection and Extraction of Sig-
nals in Noise from Point of View of Statistical Decision Theory,” J.
Soc. Indust. Appl. Math., Part I, Vol. 3, 1955, pp. 192-253; Part II,
Vol. 4, 1956, pp. 86-119.

3. Wald, A., Statistical Deciston Functions, John Wiley & Sons, Inc., New
York, 1950.

4. Bussgang, J. J., and D. Middleton, “Optimum Sequential Detection of
Signals in Noise,” Trans. IRE, PGIT-1, No. 3, December, 1955, p. 1.

5. Middleton, D., “On New Classes of Matched Filters and Generaliza-
tions of the Matched Filter Concept,” Trans. IRE, PGIT-6, No. 3,
June, 1960, pp. 349-360.

6. Van Vleck, J. H., and D. Middleton, “A Theoretical Comparison of the
Visual, Aural, and Meter Reception of Pulsed Signals in the Presence
of Noise,” J. Appl. Phys., Vol. 17, 1946, pp. 940-971.

7. Middleton, D., “A Note on the Estimation of Signal Waveform,”
Trans. IRE, PGIT-5, No. 2, June, 1959, p. 86.






Chapter 8

Estimators with Minimum Bias'
WILLIAM JACKSON HALL

1. Introduction

In statistical decision theory—and, in particular, in estimation theory
—the criterion of optimization is minimum risk. An estimator is so
chosen that the risk when using it is minimized in some sense—for
example, the maximum risk or the average (Bayes) risk may be
minimized. On the other hand, some other criterion may be imposed
prior to minimization of risk. A requirement of unbiasedness frequently
plays such a role.

The thesis set forth in the present chapter is that this popular re-
quirement of unbiasedness—more generally, of minimization of the
bias—is a completely separate optimization criterion, alternative to
minimization of risk, and that optimization by one of these criteria
essentially precludes consideration of the other. Because uniqueness of
minimum-bias estimators (in particular, unbiased estimators) is so
common, secondary consideration of risk is seldom possible, contrary
to usual claims.

An advantage of a minimum-bias criterion is that it may enable
determination of estimators without complete specification of a prob-
ability model, such as in linear estimation theory, much of which is
distribution-free—and loss-function-free as well. Here, a minimum-
risk criterion may not be feasible. Our attention will be directed, how-

1 This research was supported in part by the U.S. Air Force through the Air
Force Office of Scientific Research of the Air Research and Development Com-
mand under Contract No. AF 49(638)-261. The author appreciates the assistance
of Wassily Hoeffding and Walter L. Smith, who made several helpful suggestions.

The author is also grateful for use of the computing facilities of the Research
Computing Center of the University of North Carolina.
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ever, to problems in which a choice between these criteria is possible.

Although a theory for obtaining and characterizing minimum-risk
estimators has been available since the classic papers of Wald, a theory
for minimizing bias has not been explicitly set forth except when uni-
form minimization is possible (which does cover most applications).
It is thus a second purpose of this chapter to present a theory of
minimum-bias estimation, completely parallel to the minimum-risk
theory and with possible applicability whenever unbiased estimators
do not exist.

A third purpose of this exposition is to emphasize how strong and
perhaps unreasonable a requirement of minimization of bias may some-
times be. Not only does it usually produce a unique estimator, leaving
no opportunity for secondary consideration of risk, but such an esti-
mator may have some unappealing properties unless care is taken to
impose additional restrictions. High risk may well accompany low
bias, and conversely. These points are made primarily with reference
to an example in which minimum-risk and minimum-bias estimators
are compared.

-Since these two criteria of minimum bias and minimum risk may
be at such cross purposes and yet both have strong intuitive appeal,
the final conclusion of this chapter is that some new criterion, heeding
both bias and risk but minimizing neither, should be pursued. It is
suspected that less stringent requirements on bias would satisfactorily
meet, all practical needs. A minimum-bias theory is presented at some
length to provide a background or a basis for some compromise; it may
be desirable to know the extent to which bias can be reduced even
though we decide to use some other optimization criterion.

We shall first review minimum-risk theory, for the benefit of non-
statisticians, and reinterpret the role of bias therein (Sec. 2). We then
introduce a minimum-bias theory (Sec. 3), paralleling the risk theory,
with the role of risk function replaced by a bias function (absolute,
squared, or percentage of absolute bias, for example). We thus intro-
duce estimators that minimize the average or maximum of the bias
function. Such estimators are obtained by choosing an unbiased esti-
mator of a suitable approximation to the function to be estimated.
Relevant aspects of the theory of approximation, in the Chebyshevt
and least-squares senses, are therefore reviewed (Sec. 4). Results bear-
ing considerable conceptual similarity to Wald’s results on minimax

t It is of interest that Chapter 14 of this book also discusses Chebyshev
approximation, used by Kiefer and Wolfowitz in the problem of optimal alloca-
tion; to the author’s knowledge, Chebyshev approximation has not appeared
elsewhere in the statistical literature.
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and Bayes estimators are thereby derived (Secs. 4 and 5). Finally, an
example is treated (Secs. 6-8), and a variety of minimum-bias and
minimum-risk estimators are derived and compared.

2. A Review of Minimum-Risk Estimation

We are concerned with data generated by a probability distribution of
which the form is completely known except for specification of a
parameter 8 lying in a space ©. We denote the data simply by =z,
a point in a space &. It is desired to estimate the value assumed by a
numerical function v of ¢; that is, we are to choose an estimator §, a
numerical function on X, and identify the value §(z) of & at the ob-
served value z with the unknown value y(6) of the parametric function
v. We shall not consider here randomized estimators, nonparametric
estimation, or sequential experimentation. The Neyman—Pearson
theory of testing the null hypothesis that ¢isin ©, versus §in ® — ©,
can be considered as the special case in which y(6) is zero in &, and
unity elsewhere, and §(z) = 0 is equivalent to acceptance of the null
hypothesis; our primary concern, however, will be genuine estimation
problems.

Let L(8(x), v(6)) represent the monetary loss incurred by estimating
v(6) by 8(x). The expression L is usually taken to be a nonnegative
function of the error of estimate § — yv—for example, squared error, per-
centage of absolute error, or simple loss—that is, zero if the error is
small and unity otherwise. Since the loss is a function of z, it has a
probability distribution, the mean value of which we denote by
R(5, 6). This is called risk when we use the estimator 6 and when 6 is
the true parameter value.

What we shall refer to as minimum-risk theory consists of those
various approaches to estimation theory, developed by A. Wald and
his followers (see [1], [2], [3], or [4]), but with foundations in the
works of Bayes, Gauss, and Laplace, which evaluate an estimator
primarily on the basis of its associated risk, and which consider esti-
mators with small risk (in some sense) to be good estimators. Since the
risk is a function of 6, its minimization must take this into account.
Moreover, since uniform minimization is possible only in trivial prob-
lems, either some other type of minimization is required, or some
conditions must first be imposed to reduce the class of estimators under
consideration, or both. In any case, attention is frequently restricted
to admissible estimators—estimators that cannot be uniformly im-
proved upon in terms of a small or smaller risk.

The two types of minimization commonly considered are given
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below. Either of these criteria frequently yields unique admissible
estimators.

Minimization of average risk. This criterion leads to Bayes esti-
mators—estimators chosen so that a weighted average (over the
parameter space) of the risk function is a minimum. This is particularly
appropriate if the parameter itself is a random variable with a known
a priori probability distribution, in which case the expected risk is
thereby minimized. Alternatively, justification may be made in terms
of rational degrees of belief or concern about the parameter (see [5]).

Minimization of maximum risk. This criterion leads to minimazx
estimators—estimators chosen so that the maximum (over the parame-
ter space) of the risk function is a minimum. This may be considered a
conservative approach whereby, in the absence of specific knowledge
about the parameter, one guards against the least favorable eventuality.
Minimax estimators frequently are Bayes estimators relative to a least
favorable weight function (prior distribution), as proved by an appli-
cation of the fundamental theorem of the theory of games.

Other possible criteria are these: Subject to the prior distribution
belonging to some specified class, minimize the average risk; or, subject
perhaps to some global bounds on the risk, minimize the risk in some
sense in some particular locality. Neither of these criteria has been
developed here to any extent, except for the latter in the case of
hypothesis testing,.

Four kinds of restrictions, one or more of which are sometimes im-
posed to reduce the class of estimators under consideration, are given
below; subject to such conditions, the risk may be minimized uni-
formly or otherwise.

a. Restriction to linear estimators, the rationale usually being one of
simplicity. Its use is generally restricted to problems of estimating
parameters in linear models, in which case a normality assumption
further justifies a linearity restriction.

b. Restriction to invariant (or symmelric) estimators. For example,
the restriction might be that two statisticians using different units of
measurement should obtain equivalent estimates, or that estimators
should be symmetric functions of independent and identically dis-
tributed observations.

¢. Restriction to estimators that are functions only of a sufficient
statistic—in fact, a necessary and sufficient statistic (if existent). From
the risk point of view, nothing is lost by this restriction provided L is
convex in & (and this is not required if randomized estimators are
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allowed). Restriction to sufficient estimators is consistent with the
Fisherian concept that a sufficient statistic contains all the relevant
information.

d. Restriction to unbiased estimators—estimators for which the ex-
pected value of the error of estimate is everywhere zero. Such a restric-
tion is usually offered in the guise of preliminary reduction of the class
of estimators under consideration, as here, after which risk is mini-
mized. As was shown by Lehmann and Scheffé [6], however, in a wide
class of problems there is a unique unbiased estimator depending only
on a necessary and sufficient statistic. (P. R. Halmos [7] showed that
a symmetry requirement may also lead to unique unbiased estimators.)
This condition prevails whenever there are no nontrivial unbiased
estimators of zero depending only on a necessary and sufficient statistic
[8], [9], in which case the statistic is said to be complete [6]. Appar-
ently, few practical (nonsequential) problems fall outside this class.
Thus, the condition of unbiasedness is a strong one; its imposition
really implies that risk is not even considered, not merely that it is
put in a position of secondary importance. To claim that an unbiased
estimator has minimum risk (or minimum variance) is usually an empty
claim except in comparison with ¢nsufficient estimators. Thus, restric-
tion to unbiased estimators can be thought of as being outside the
minimum-risk theory.

It may be noted that it is unusual for minimax or Bayes estimators
to be unbiased. In particular, for squared-error loss, Bayes estimators
necessarily are biased [3]. Sometimes no unbiased estimator is even
admissible; for example, this is true in the estimation of the variance
of a normal distribution with unknown mean and squared-error loss
(dividing the sum of squared deviations by n 4+ 1 rather thann — 1
uniformly reduces the risk). Thus the criteria of unbiasedness and
minimum risk frequently are incompatible.

3. An Introduction to Minimum-Bias Estimation

An approach to estimation theory paralleling the minimum-risk theory,
with the role of the risk function filled by a bias function, is here de-
veloped. The bias function is some nonnegative function of the bias,
the expected error of estimate. Thus, the operations of taking expected
value and of applying a nonnegative function are interchanged: In-
stead of minimizing the expected value of a nonnegative function of the
error of estimate as in risk theory, we minimize some nonnegative func-
tion of the expected value of the error of estimate. A number of con-~
cepts and theorems completely analogous to those in risk theory can
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be stated for the bias theory, but the mechanics of obtaining minimum-
bias estimators are quite different.

In minimum-bias theory, in contrast to minimum-risk theory, uni-
form minimization is frequently possible, leading to unbiased esti-
mators. The theory of unbiased estimation is well established [2], [4],
[6]. We shall be concerned with a minimum-bias theory applicable to
situations in which no unbiased estimator is available. As one example,
in nonsequential binomial problems only polynomials of limited degree
in the success probability admit unbiased estimators. As another, if
the restriction is made that the range of the estimator be within the
range of the function to be estimated, then unbiased estimators are
less frequently available (for example, see the second paragraph below
and also [2], pp. 3-13). If one desires the simplicity of linear estimators,
then some bias may be unavoidable. In the hypothesis-testing case,
in which the range of v is only 0 and 1, unbiased estimators are not
available. Thus, four situations can be delineated in which bias is
frequently unavoidable: (a) The sample space is finite. (b) The range
of the estimator is restricted. (¢) The functional form of the estimator
is specified. (d) The parametric function to be estimated is dis-
continuous.

When uniform minimization of bias is not possible, we might look for
estimators whose maximum bias (absolute, squared, or relative) or
average bias is a minimum, or for estimators with locally small bias in
some sense. Such minimum-bias estimators will be considered in the
sequel. A. Bhattacharyya [10], in discussing binomial estimation prob-
lems, considered estimators with minimum average squared bias and
estimators with locally small bias in the sense that all derivatives of the
bias vanish at a specified parameter point. A. N. Kolmogorov [11] con-
sidered a somewhat different approach to minimum-bias estimation; he
suggested finding upper and lower estimators, the bias of the former
being everywhere nonnegative and of the latter nonpositive. Thus, one
obtains two estimators rather than one, but thereby obtains bounds on
the bias of any estimator between the two. No theory was offered,
however, for obtaining such estimators in any optimal way. S. H.
SiraZdinov [12] treated the problem of estimating a polynomial of
degree n 4 1 in the binomial parameter with minimum bias in what
we shall call the minimax sense; as noted below, such estimators are
unbiased estimators of the Chebyshev approximation of the polynomial
to be estimated. SiraZdinov noted also that if a constant (the maximum
error of approximation) is added to and subtracted from the estimator,
one obtains upper and lower estimators as defined by Kolmogorov.

Why should one be concerned with bias? The connotations of the
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words “bias” and “expected error of estimate” certainly make it appear
undesirable to the practitioner. In the sense that the distribution of the
error of estimate is centered at zero, an unbiased estimator does allow
the sample to “speak for itself”; no prior knowledge or opinion of the
experimenter is allowed to influence the estimate. (Other definitions of
unbiasedness—for example, in terms of medians rather than expecta-
tions—would have similar justifications.) In contrast, minimum-risk
(Bayes) estimators may be considered as combinations (sometimes
linear) of the best a priori guess and the best information based solely
on the sample data. Unbiased estimation thus seems to fit more nat-
urally in a theory of statistical inference in which there may be more
reason to consider the estimator as a descriptive statistic, than in a
theory of statistical decision in which all prior information and the
consequences of the decision taken cannot easily be ignored. It is note-
worthy in this regard that if the statistician wishes to limit the parame-
ter space to some subset of its natural range and to limit the range of
the estimator accordingly, then no unbiased estimator may be avail-
able. For example, the success probability in n Bernoulli trials, if
limited to any subset of the unit interval, does not admit an unbiased
estimator with range similarly restricted.

When making repeated estimations, another justification for re-
quiring small bias is available; namely, that the average error of esti-
mate should be small, with high probability if repetitions are sufficiently
numerous. It may be some consolation to know that the overestimates
in some trials tend to be compensated for by underestimates in other
trials. T If some consumer loses because of the statistician’s overestimate
on one trial, however, he is not likely to be consoled by knowing that
his losses are compensated for by some other consumer’sgain on another
trial; such consumers might be more concerned with small risk. The
justification for requiring small risk is also founded largely on a long-
run interpretation of expectation, applied to loss rather than error, and
its justification other than in repeated experimentation is not com-
pletely satisfactory. The hypothetical example above illustrates the
possible inadequacy of a theory based only on the expected error and
not on its variability, as is the case with minimum-bias theory. A slight
rewording of the illustration would point out the inadequacy of a
theory based only on expected loss (risk).

An additional justification for requiring unbiasedness may be that it
usually eliminates the need for specifying a loss function, since it
frequently leads to unique sufficient estimators; if unbiased estimators

t In a series of election polls, for example, a consistent tendency to over-
estimate the strength of any one candidate would seem undesirable.
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do not exist, however, then specification of some function analogous to
loss (a bias function) will be required in the theory developed here.

Whether or not satisfactory justification is available, it is a fact that
statisticians frequently spend great efforts in “correcting for bias,” and
there seems to be only limited acceptance of any minimum-risk esti-
mators with large biases. For example, suppose z denotes the number
of successes in n Bernoulli trials. Then the minimax estimator (squared-
error loss) of the success probability 0 is (z + % v/n)/(n + v/n), and
although for small samples its risk, (2v/n + 2)~2, is less than that of the
unbiased estimator z/n over a wide range of parameter values, it is
apparently difficult to persuade the experimenter of its superiority;
this may be due to its large bias, (1 — 26)/(2v/n + 2), for probabilities
near 0 and 1 (or perhaps to the inappropriateness of squared-error loss).

As another example, division of a sum of squared deviations by
n — 1 gives an unbiased estimator of ¢% but, for normal variables,
division by n 4+ 1 uniformly reduces the risk (squared-error loss) at
the expense of introducing a bias of —2¢%2/(n + 1). Yet how many
pages in textbooks have been allocated to justifying division by n — 1?
(Questions of whether one really wishes to estimate o or o2 and of the
choice of loss function also need to be considered, of course.)

Perhaps some compromise between the risk and the bias approach
would be more readily accepted by the practitioners—estimators with
risk minimized subject to the bias being within bounds, or, conversely,
with bias minimized subject to the risk being within bounds. Such an
approach is not new in sample-survey theory (for example, see [13]),
where it is sometimes suggested that a small bias may be tolerable if
reduction in the mean-square error (risk) is achieved. The minimum-
bias theory developed herein is offered as a preliminary step toward
such developments. Only an example of such compromise approaches
is offered.

Suppose it is desired to obtain a linear minimum-risk (squared-error
loss) estimator in the minimax sense of the binomial success probability
6, subject to the absolute bias being everywhere bounded by p. We
shall assume that p < (2v/n -+ 2)~, the maximum absolute bias of the
unrestricted minimax estimator. Because of symmetry, it is easy to
show that we need only to consider estimators of the form
(z + a)/(n 4+ 2a) where a > 0 (which, incidentally, includes all Bayes
estimators relative to a symmetric beta prior distribution). For
a = np/(l — 2p), the maximum absolute bias is p and the maximum
risk is (1 — 2p)?/4n, which cannot be further reduced. Thus
3 = z(1 — 2p)/n + p is the desired estimator.

Before considering minimum-bias estimation in further detail, let
us review some relevant aspects of the theory of approximation.
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4, Some Aspects of the Theory of Approximation

Let ®represent a specified system of n+1 (finite or infinite) linearlyinde-
pendent bounded and continuous functions ¢, ¢1, * - -, ¢, of & where
6 € O, a subset of the real line or of some other metric space. Let
P = P(®) denote the class of all linear combinations

P =2 aib;
=0
where the a/’s are real constants. We call such functions p generalized
polynomials of the system ®, For example, suppose O is a finite interval
and ¢;(6) = 6%; then P is the class of polynomials of degree n on the
interval. Let v be a bounded and continuous function on © but not in
P, and let X be a nonnegative bounded and continuous function on 0.}

DeriniTION 1. A function py € P is a best approzimation to v in the
minimaz (Chebyshev or uniform norm) sense if

sup)\lpo-—'yl =infsup)\|p—-y|. “.1)
e P ®

We shall assume in what follows that A = 1; if not, transform the
problem by multiplying all other functions defined above by X before
proceeding.

Suppose now that @ is a closed finite or infinite interval and that any
generalized polynomial other than the zero polynomial of the system &
has at most n rootsin @ (n finite), where a root at which the polynomial
does not change sign is counted twice. Then ® is said to be a Chebyshev
system of functions. An alternative characterization of a Chebyshev
system is that the determinant

$0(8) - - - ¢a(0)
$0(61) « + * $a(61)

..........

¢0(0n) cc ¢n(0n)

vanishes only at » distinct points @, « « -, 8, in ©® and that D changes
sign in passing through successive 6,’s.

S. Bernstein [14] proved the following result as a generalization of
Chebyshev’s original work on polynomial approximation: If & 7s a
Chebyshev system, then there exists a best approximation to v in the
minimaz sense; moreover, Po ts unique, and a necessary and sufficient

D@ =

t Some of the above restrictions can be relaxed in certain parts of the sequel.
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condition for p = po is that the number of points where p — v attains
its extremum, with alternating signs, be at least n -+ 2.

Various extensions of this result and upper bounds on (4.1) are given
by Bernstein, by C. de la Vallée Poussin [15], and by others in more
recent publications. Many such results appear in [16], [17], [18], and
[19], for example, and in current publications by G. G. Lorentz, J. L.
Walsh, and T. S. Motzkin. For the polynomial case, the fundamental
theorem of Weierstrass should be mentioned; it states that by choosing
n sufficiently large, (4.1) can be made arbitrarily small.

If the various functions are differentiable, the function po may be
obtained as follows, though this method may be untractable
analytically:

Letb = p — yandletp = supelbl when p = po. Let 0o, 61, « « - , 041
be n + 2 successive points in @ at which p is achieved with alternating
signs by b, and let po = X a;¢,;. Then with b’ = db/d0, the system

b(6:) = £ p(—1)}, b6, =0, i=0,1,---,n+41, (42)

gives 2n 4+ 4 equations in the 2n 4 4 unknowns 6y, * « +, Ouu1,
@y, * * *, @, and p. [If 8 or 0,41 is an endpoint of ©, then (4.2) need
not hold at ¢ = 0 or n 4 1; also, more than n 4 2 points may be
required. ]

In particular, if ¢;(0) =60, (:=0,1,:--,n) and v(§ = 1, it
can be shown that Chebyshev polynomials can readily be used to obtain
the best approximation to ¥ in the minimax sense (see, for example,
[20]). If, instead, « is any function with a series expansion throughout
©, the expansion of v in Chebyshev polynomials, truncated after n + 1
terms, will yield “almost” the best polynomial approximation to 7.
Even if v has no valid expansion, the tau-method of C. Lanczos [20]
may lead to an approximate solution, again using Chebyshev poly-
nomials.

A generalization of Bernstein’s theorem for more general parameter
spaces has been given by J. Bram [21]. He assumes that © is a locally
compact space. Then a necessary and sufficient condition that sup ]bl
be a minimum is that, for some r < n, there exist r -+ 2 points 6y,
61, + * *, 61 in O such that the (n -+ 1) X (r 4 2) matrix [¢:(0;)] has
rank r 4 1 and such that if the subscripts are assigned so that the
first » 4 1 rows are independent, and a; is the sign of the cofactor
of a; in

o - Qrpa

$0(00) - - - 0(0rs1)

) d’r(aO) ¢t ¢r(0r+1)
then b(8;) = + a.p for all ¢ with a; % 0.
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DEerintTIiON 2. Let £ be a probability measure on the Borel sets
{w} of @ and assume v and the ¢,’s to be square-integrable. A function
P& P is said to be a best approximation fo v in the least squares sense
relative to ¢ if

N© = [ Netpe = 2 de = int [ 20 — 2z

Again, we shall assume for simplicity that A = 1. Analogous develop-
ments, using powers other than two, are also possible.

Let po, - - -, p. constitute an orthonormal set in P w.r.t. the measure
£ (see Szegd [22] or Achieser [16], for example); i.e.,

f pip; d& = 8;; (Kronecker §;;).

Such a set always exists and can be constructed from ®. Denoting
¢; = [piy d, then it is well known that p; = D _c.p; is a best approxi-
mation to v in the least-squares sense, and, moreover, that

N () =f72d£—20?.

As a special case, suppose ¢;(f) = 6. Then po, -+ +, p, are the
orthonormal polynomials associated with £ and p; is the best poly-
nomial approximation to v (in the sense of least squares).

At this point, we note the analogy in Definitions 1 and 2 with the
minimax and Bayes solutions to problems in the theory of games, as
treated, for example, by Wald [1] and Blackwell and Girshick [3].
We need only to replace the role of the risk function or the expected
payoff in decision or game theory by >\| p — | or its square.

DEerFiNiTION 3. A probability measure & on {w } , the Borel sets of G,
is said to be least favorable if N(&) = sup N (%), where the supremum is
over all probability measures on {w}.

Moreover, the fundamental theorem of the theory of games is ap-
plicable, so that, with suitable compactness assumptions [1], it readily
follows that po = pg, that is, that any best approximation in the
minimax sense is also a best approximation in the least-squares sense
relative to a least favorable distribution. We need only to note that the
operations of squaring and taking sup’s (or inf’s) can be interchanged
when applied to the function A|p — v|. Thus there exists a norm
JN(p — v)?d% minimized by the same p, that minimizes the norm
sup M p — 7.

Other decision-theory or game-theory results also carry over. For
example, a sufficient condition for ¢ to be least favorable is that it
assign probability 1 to a subset of ® throughout which
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Mp—v| =swp[p—1].

Also, with weaker compactness assumptions, a sequence of least-
squares approximations relative, respectively, to a sequence of dis-
tributions having certain limit properties will yield a minimax approxi-
mation, analogous to Bayes solutions in the wide sense. Precise theo-
rems have not been stated here because of the perfect analogy with
those published elsewhere.

The possible relevance of the fundamental theorem here, analogous
to its other applications, is that constructive methods for finding best
approximations in the least-squares sense are quite generally available
whereas approximation in the minimax sense usually is more difficult.
There seems, however, to be no constructive, or even intuitive, way of
finding least favorable distributions.

As indicated by Bernstein’s theorem, &, will frequently assign prob-
ability 1 to a finite point set. In this case a result somewhat similar to
the one given above was stated by De la Vallée Poussin [15] and also by
J. L. Walsh [23] for the case of polynomial approximation. Consider
a set E in O consisting of » -4 2 points and let pg denote the minimax
polynomial approximation on EF with maximum absolute error pg.
Call E, least favorable if px, is a maximum over all possible E. De la
Vallée Poussin proved that po = pr,, that is, that the minimax ap-
proximation is the minimax approximation on a least favorable point set.
It is simple to obtain pz, once E, has been found. Only some iterative
techniques, however, seem to be available for finding E,.

Other definitions of best approximation are possible; for example,
one might choose p so that )\I p— ’YI is minimized in some sense in the
neighborhood of 8y. For example, if ¥ possesses a valid series expansion
in © at 6o, and P is the class of nth-degree polynomials, then one might
approximate v by a truncated expansion at 8, lying in P. Alternatively,
one may limit consideration to certain classes of polynomials having
relevance in the particular problem and look for approximation within
this class. Examples of each of these will be mentioned below.

5. Theory of Minimum-Bias Estimation

The problem we consider is that of estimating a numerical function vy
of a parameter 0 that indexes the family of probability distributions
assumed to generate the sample point z. Extensions to more general
situations are possible.

We say a numerical parametric function is estimable if there exists
an unbiased estimator of it. (Since we are concerned with situations
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in which no unbiased estimator is available, our subject is the anoma-
lous one of estimating nonestimable functions!) Our approach is to
approximate ¥ by an estimable function and then estimate ¥ by an
unbiased estimator of its approximating function. Bounds on the error
of approximation, derived in approximation theory, yield bounds on
the bias of estimators. As noted in Section 3, if the maximum error of
approximation is added to and subtracted from the estimator, one
obtains upper and lower estimators of v in the Kolmogorov sense.

Since all functions that are estimable are also estimable by functions
of sufficient statistics, restriction to estimators depending only on suf-
ficient statistics may be made, if desired, with no resultant increase
in bias. _

We consider a system & of estimable functions generating a class
P(®) of functions that clearly are also estimable. Let D = D(®) be the
class of unbiased estimators of functions p in P(®). For § € D, we
denote

895 = p;(e) E P.

Then ps; — v is the bias b of § as an estimator of v.

An estimator §, is said to be a minimum-bias estimator of « in the
minimax sense if its expectation ps, is the best approximation to v in
the minimax sense. For example, with A identically unity, §, minimizes
the maximum absolute bias; for A = |’y| -1 if finite, §, minimizes the
maximum relative or percentage bias. The methods of the previous
section are available for finding such estimators or approximations to
them.

An estimator §; is said to be a minimum-bias estimator of v in the
least-squares sense relative to £ if p; is the best approximation to ¥ in
the least-squares sense relative to £ Thus, §; minimizes the expected
quadratic bias A?(p — v)? relative to an a priori distribution over the
parameter space. Averaging of other bias functions could be considered
analogously.

If po, p1, * * -, Dn constitute an orthonormal basis for P, then §; is
equal to Z ¢:0;, where the ¢;’s were defined previously and the é,’s are
unbiased estimators of the py’s. In the case of orthonormal polynomials
associated with £, & is an unbiased estimator of the best polynomial
approximation to v in the least-squares sense.

As in risk theory, minimum-bias estimators in the minimax sense
are also (under appropriate compactness assumptions) minimum-bias
estimators in the least-squares sense relative to a least favorable prior
distribution. It is yet to be demonstrated, however, that this result is
of any practical significance in minimum-bias theory.
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As noted previously, best approximations frequently are unique,
and—if confined to functions of a necessary and sufficient statistic—
the corresponding estimators of these approximations also often are
unique (whenever the said statistic is complete). Thus, minimum-bias
estimators will frequently be unique, and, as in the case of unbiased
estimators, there is no further room for minimization of risk. Again,
such estimators need not be admissible in the risk sense.

Estimators with small local bias might also be considered. In bi-
nomial estimation problems, Bhattacharyya [10] suggests the un-
biased estimation of the truncated Taylor expansion of vy at a point 6,
as such an estimator. Thus v and the expected values of the estimator
coincide at 6, as do a maximal number of their derivatives at 6,.
C. R. Blyth [24] presented such an estimator for the information
measure in a multinomial distribution, though he chose 8, outside ©
except in the binomial case. He expanded about the point with all
probabilities equal to %, whereas in fact all probabilities should add to
unity. He compared this “low bias” estimator with the minimax and
maximum-likelihood estimators.

As exemplified in Section 6, fitting so many derivatives at 6, may
lead to a very poor fit elsewhere; perhaps a better criterion would be
to fit one or two derivatives at 8, and use any remaining indeterminacy
to ensure a satisfactory fit elsewhere.

For reasons of convenience, one might restrict attention to certain
types of polynomial approximations to v and use unbiased estimators
of the approximating function. It is interesting to note that if z is
binomially distributed with parameters n and 6, then restriction to
Bernstein polynomial approximations (G. G. Lorentz [25]) of the
function v leads to maximum-likelihood estimation of +v; that is, the
maximum-likelihood estimator of v is the unbiased estimator of the
Bernstein approximation to vy. Results concerning the error of approxi-
mation by Bernstein polynomials thus apply to the bias of maximum-
likelihood estimators.

Admissibility, in terms of bias rather than of risk, could also be
considered and various complete class theorems derived just as with
corresponding theorems in risk theory. Some asymptotic results also
are possible. For example, if for samples of size n, polynomials of degree
n are estimable, then the maximum absolute bias in estimating a con-
tinuous function can be made arbitrarily small by choosing n sufficiently
large—a rewording of Weierstrass’ theorem. It should be noted, how-
ever, that bias is reduced with increasing sample size only if the class of
estimable functions is increased correspondingly. If the class of estima-
ble functions remains the class of polynomials of degree m, then no
increase in sample size can affect the bias.
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6. Estimation of a Root of the Binomial Parameter

To exemplify the foregoing theory, we consider the estimation of an
integral root r of a binomial parameter 6; thus, y(6) = 6'r, © is the
unit interval, and r is an integer >1. Such a problem may arise, for
example, in one of the following ways:

(2) Independently, r shots are fired at a target, each having a prob-
ability 1 — v of hitting it. If one or more shots hit the target, it is
destroyed, so all that is observed is whether or not the target is de-
stroyed. Thus the target is destroyed with a probability (1 — ¥*).
In n repetitions, let  represent the number of targets not destroyed;
then z is binomially distributed with parameters n and 8 = 4. It is
necessary to estimate vy = 67, which is the probability of an individual
miss.

(b) Each of a series of independent specimens has probability
1 — v of being “positive” (e.g., tests of blood samples for the presence
of an antigen). Specimens are pooled into batches and a single test
performed for each of n batches of r specimens. The number of negative
tests is then binomially distributed with parameters n and 6 = 4".
It is required to estimate y = 67, the probability of a “negative”
specimen. (Such a testing procedure may be recommended if the tests
are expensive and « is close to unity.)

Extensions to cases with varying batch sizes are also of interest, but
they are considerably more complicated and therefore will not be
considered here.

Only polynomials in 6 of degree n or less are estimable.f We thus
seek a polynomial approximation to 67 and use the unique (since the
binomial family is complete) unbiased estimator of it. Reference should
be made to Bhattacharyya [10], who considered binomial estimation
problems in general (also Lehmann [2]).

Any function é(z), defined forz = 0, 1, - - - , n, can be expressed in

the form
Z(2) T(n)

8(z) =ao+a1%+a2_+ oo toa,

() N(n)

) (6.1)

where z¢;, denotes z(zx — 1) - - - (x — ¢ + 1), and similarly for ng.
This form is convenient for finding the expectation of the function,
since 8z /N =60° (£ =1,2, - - -, n). By standard finite-difference
methods [10], the coefficients in (6.1) may be obtained as

4 = (:L) A%(0),

t The value y can be estimated without bias by inverse sampling; see [26].

where
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A50) = 3 (—1)*‘-1'(2)&01

J=0
More conveniently, in matrix form with
5 = (8(0), 8(1), - - -, 8(m))’,
the coefficient vector a = (ao, @4, * * +, @a)’ may be found from
a = Aj, (6.2)

where @ has coordinates a;/(f) and A is a square matrix of order n + 1
with elements a;; = ( —1)%7(j) for ¢>j and O for ¢ < j. Inversely
A-1 = (a¥), where a/ = (}) for ¢ > j and O for { < j, so that the
values of §(x) corresponding to a specified coefficient vector a may be
found from

5= A, (6.3)

a formula equivalent to (6.1). This relation defines the unbiased esti-
mator of the polynomial
p() = 2 ad’.
1=0

Thus, any estimator () is a polynomial in = of degree at most n.
Unless some other convenient functional form is available, as is the
case with the maximum-likelihood estimator and certain Bayes esti-
mators, the expression for the estimator will be ponderous if n is not
small. Thus it is of interest to consider polynomial estimators of small
degree m(< n) in z; their expectations are then polynomials of degree
m in 6.

In the following section, we illustrate the techniques of obtaining
various kinds of minimum-bias estimators of ¥y = 6'/r; the maximum-
likelihood estimator and various minimum-risk estimators are also
considered for comparison. Wherever appropriate and possible, we
consider linear, quadratic, and nth-degree estimation (m = 1, 2, n)
for general n and r—in particular, for r = 2 or 5, and n = 5. The
usual approach is to derive p(6), the expectation of the estimator
(which frequently is independent of ) ; the corresponding & can then be
obtained from (6.3). The coefficients in p and the values of § appear in
Tables 1 (r =2, n =35)and 2 (r = n = 5).

We thus take @ as the powers of 8 from 0 through m(< n) and P(®)
as polynomials § in = of degree < m. We restrict attention to absolute
bias lp - 'YI and quadratic bias (p — ¥)? as bias functions, always
taking A = 1.

The variance of estimators é can be found directly by using the values



TABLE 1. ESTIMATION OF v8 FROM A SAMPLEf OF 5 (r=2, n=5)

Value of §(z) at z = Value of a; for p = 85 = Za;6*
Criterion Type of estimation
0 l 1 | 2 | 3 I 4 | 5 ao | ax | ar | as | a4 as
Linear Estimators .
minimax bias 0.125 | 0.325 | 0.525 | 0.725 | 0.925 | 1.125 | 0.1250
r-method approximate 0.333 | 0.467 | 0.600 | 0.733 | 0.867 1 0.3333 | 0.6667
Minimum bias | least squares (uniform ¢) | 0.267 | 0.427 | 0.587 | 0.747 | 0.907 | 1.067 | 0.2667 | 0.8000
local at § =1 0.5 |06 |07 |0.8 0.9 1 0.5000 | 0.5000
local at 8 = } 0.354 | 0.495 | 0.636 | 0.778 | 0.919 | 1.061 | 0.3536 | 0.7071
Mini (s | minimax risk 0.206 | 0.372 | 0.538 | 0.704 | 0.870 | 1.035 | 0.2060 | 0.8294
inimum ris Bayes (uniform ) 0.381 | 0.495 | 0.610 | 0.724 | 0.838 | 0.952 | 0.3810 | 0.5714
Quadratic Estimators
minimax bias 0.068 | 0.454 | 0.733 | 0.906 } 0.972 | 0.932 | 0.0676 | 1.9303 | —1.0656
r~method approximate 0.158 | 0.411 | 0.621 | 0.789 | 0.916 1 0.1579 | 1.2632 | —0.4211
Minimum bias least squares (uniform £) 0.171 | 0.446 | 0.663 | 0.823 | 0.926 | 0.971 | 0.1714 | 1.3714 | —0.5714
local at 6 =1 0.375 { 0.525 | 0.663 | 0.788 | 0.900 1 0.3750 | 0.7500 | —0.1250
localat & = % 0.265 | 0.477 | 0.654 | 0.705 | 0.902 | 0.972 | 0.2652 | 1.0607 | —0.3536
Minimum risk | Bayes (uniform £) 0.347 | 0.502 | 0.637 | 0.751 | 0.845 | 0.918 | 0.3469 | 0.7755 | —0.2041
nth-Degree Estimators
Maximum likelibood 0 |o0.447 [ 0.632 | 0.775 | 0.894 1 0 2.2361 | —2.6197 | 2.1887 | ~—0.9904 | 0.1853
r-method approximate 0.064 | 0.701 | 0.488 | 0.854 | 0.891 1 0.0637 | 3.1850 | —8.4934 | 14.2690 | —11.8481 | 3.6239
least squares (uniform ¢&) | 0.084 | 0.671 | 0.476 | 0.906 | 0.856 | 1.007 | 0.0839 | 2.9371 | —7.8322 | 14.0979 | —12.5874 | 4.3077
Minimum bias | localat 6 =1 0.246 | 0.492 | 0.656 | 0.788 | 0.900 1 0.2461 | 1.2305 [ —0.8203 [ 0.4922 | —0.1758 | 0.0273
lowerat 8 = 1 0 }0.492 | 0.656 | 0.788 | 0.900 1 0 2.4609 | —3.2813 | 2.9531 | —1.4063 | 0.2734
local at 6 = } 0.174 | 0.522 | 0.638 | 0.800 | 0.890 | 1.008 | 0.1740 | 1.7401 | —2.3202 | 2.7842 | —1.9887 | 0.6187
Mini sk | Beves (uniform §) 0.341 | 0.511 | 0.639 | 0.746 | 0.839 | 0.923 | 0.3410 | 0.8525 | ~0.4262 | 0.2131 | —0.0666 | 0.0093
inimum ris Bayes (beta &, @ = 8 =2) | 0.449 | 0.562 | 0.655 | 0.737 | 0.811 | 0.878 | 0.4493 | 0.5616 | —0.1872 | 0.0702 | —0.0176 | 0.0020

t For the minimum-bias estimators, only the values of 6(z) and the MSE’s (mean-square errors) depend on n (RMSE is root-
mean-square error).
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TABLE 2. ESTIMATION OF 6% FROM A SAMPLEf OF 5 (r=5, n=25)

Value of i(z) at z =

Value of a; where p = 85 = Za;0°

Criterion Type of estimation
0 l 1 I 2 | 3 l 4 | b ao I a I a a | a as
Linear Estimators
minimax bias 0.267 | 0.467 | 0.667 | 0.867 1.067 { 1.267 | 0.2875 1
r-method approximate 0.667 | 0.733 | 0.800 | 0.867 | 0.933 1 0.6667 | 0.3333
Minimum bias | least squares (uniform &) 0.606 | 0.697 | 0.788 | 0.879 0.970 | 1.061 | 0.6061 { 0.4545
localat ¢ =1 0.800 | 0.840 | 0.880 | 0.920 0.960 1 0.8000 | 0.2000
localat 0 =} 0.580 | 0.725 | 0.870 ) 1.015 1.160 | 1.305 | 0.5798 | 0.7248
Mini isk minimax risk 0.293 | 0.493 | 0.693 | 0.893 1.093 | 1.293 | 0.2929 1
inimum Tisk | Bayes (uniform §) 0.671 | 0.736 | 0.801 | 0.866 | 0.931 | 0.996 | 0.6710 | 0.3247
Quadratic Estimators
minimax bias 0.207 | 0.781 | 1.126 | 1.243 | 1.132 | 0.793 | 0.2071 | 2.8686 | —2.2828
r-method approximate 0.474 | 0.663 | 0.811 | 0.916 | 0.979 | 1 | 0.4737 | 0.9474 | —0.4211
Minimum bias | least squares (uniform &) | 0.511 | 0.716 | 0.864 | 0.955 | 0.989 | 0.966 | 0.5114 | 1.0227 | ~0.5682
localat =1 0.720 { 0.792 | 0.856 | 0.912 0.960 1 0.7200 | 0.3600 [ —0.0800
localat 4 = ¢ 0.522 | 0.783 | 0.899 | 0.870 0.696 | 0.377 | 0.5218 | 1.3046 | —1.4496
Minimum risk | Bayes (uniform §) 0.637 { 0.743 | 0.828 { 0.893 0.938 { 0.962 { 0.6372 | 0.5276 | —0.2029
nth-Degree Estimators
Maximum likelihood 0 0.725 | 0.833 | 0.903 0.956 1 0 3.6239 | ~6.1701 5.7957 —2.7950 | 0.5455
r-method approximate 0.331 | 1.159 | 0.515 | 1.048 0.947 1 0.3311 | 4.1384 |—14.7144 | 26.4860 | —22,3040 | 7.0629
least squares (uniform £) 0.386 | 1.061 | 0.536 | 1.125 0.880 | 1.013 | 0.3857 | 3.3753 [—12.0009 | 23.1466 | —21.3174 | 7.4256
Minimum bias | localat § =1 0.613 } 0.766 | 0.851 ] 0.912 0.960 1 0.6129 | 0.7661 | —0.6810 0.4378 —0.1613 | 0.0255
lowerat 9 =1 0 0.766 | 0.851 | 0.912 0.960 1 0 3.8304 | —6.8096 6.5664 —3.2256 | 0.6384
localat e = ¢ 0.444 | 0.999 | 0.321 | 2.374 | —3.486 |15.321 0 2.7762 | —12.3386 | 39.6599 | —73.0578 |57.8374
Minimum risk Bayes (uniform £) 0.629 | 0.755 | 0.831 ] 0.886 0.931 | 0.968 | 0.6294 | 0.6294 | —0.5035 0.3021 -0.1057 | 0.0161
oimum NS Bayea (beta £, @ =8 =2) | 0.716 | 0.788 | 0.841 | 0.883 |- 0.920 | 0.949 | 0.7164 | 0.3582 | —0.1910 | 0.0860 | —0.0241 | 0.0030

t For the minimum-bias estimators, only the values of §(z) and the MSE’s (mean-square errors) depend on
mean-square error).

n (RMSE is root-
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of & and tables of the binomial probability distribution, or alter-
natively by using a formula given by Bhattacharyya:

i(@)ﬂ 06 — 0)°

dos iln [O)

where the ith derivative of p is > ., ja6/%. The mean-square error
(risk for squared-error loss) is obtained by adding the square of the
bias to the variance.

Summary comparisons of the biases and risks of the various esti-
mators can be made from Tables 3 and 4, which show the zeros of the
bias b(8), the signs of the values assumed by b, the maximum absolute
bias p and the é-value(s) at which the maximum occurs, the square
root of the average squared bias, the maximum value of the root-mean-
square error v/E(6) and the f-value(s) at which the maximum occurs,
and the square root of the average mean-square error. Figures 1, 2, and

f=l

04
Blas function 6(8,8)

03k
13

0.2 \

\ \‘ Minimax bias
Leost-squares sense

-
’}‘-—-—.—-—7—

o.l

-0l - Bayes
—(-Minimcx-rlsk
.0.2 1 1 ! ! 1 1 | ] 18
0O oI 02 03 04 05 06 07 08 09 1O
0.4
Root-mean-square error V7 (6, 3)
03 Minimax bias

—
Least-squares sense  ~ 3]

ol 1 F 1 ! 1 1 ] 18
O of 02 03 04 05 06 07 08 09 10

Fig. 1. Bias and risk (RMS error) functions for minimum-bias and minimum-
risk linear estimators of /8 (n=5).

3 present the bias function and the root-mean-square (RMS) error
function for some of the estimators.f

t The tables and figures were prepared with the assistance of students learning
to program the Univac 1105.



TABLE 3. ESTIMATION OF /8 FROM A SAMPLE{} OF 5 (r=2, n=5)

Sign p = max|bias] Square Max RMS error \ Square
Criterion Type of estimation Biag =0atf = of root of root of f
biss | occursatd = | biss= | (iss)ids | ato= | RMSE | (MSE)as
Linear Estimators
minimax bias 0.021,0.729 + 0,0.25,1 +0.125% 0.085 0.391 0.244 0.202
r-method approximate 0.25, 1 + 0 +0.333 0.061 0 0.333 0.136
Minimum bias | least squares (uniform ¢) | 0.149,0.747 + 0 +0.267 0.047% 0 0.267 0.153
localat 8 =1 1 + 0 +-0.500 0.129 0 0.500 0.158
local at 0 = } 0.5 + 0 +0.354 0.068 0 0.354 0.146
Minimum risk | minimax risk 0.070,0.887 + 0 -+40.208 0.066 0,0.446 0.206% 0.165
Bayes (uniform §) 0.314 + 1] +0.381 0.081 0 0.381 0.1323%
Quadratic Estimators
minimax bias 0.008, 0.292, 0,886 + 0,0.081,0.604,1 +0.068% 0.047 0.236 0.279 0.198
rmethod approximate 0.047,0.718,1 + 0 +0.158 0.031 0.305 0.215 0.162
Minimum bias | least squares (uniform §) { 0.070,0.432, 0.866 E 0 +0.171 0.0203% 0.283 0.215 0.158
localat & =1 1 + 0 +0.375 0.076 0 0.373 0.138
localat § = § 0.5 + 0 +0.285 0.039 0 0.265 0.139
Minimum risk | Bayes (uniform £) 0.358 + 0 +0.347 0.074 0 0.347 0.130%
nth-Degree Estimators
Mazimum likelihood 0,1 - 0.069 —0.120 0.057 0.165 0.284 0.196
r-method approximate 0.008,0.122,0.379, o 0 +0.0684 0.007 0.129 0.305 0.207
0.669,0.947,1
least squares 0.018,0.127,0.330,( + 0 +0.084 0.005% 0.136 0.284 0.205
Minimum bias 0.579,0.810,0.962
localat§ =1 1 + 0 +40.246 0.034 0 0.246 0.142
lower at 6§ =1 0,1 - 0.055 —0.109 0.045 0.154 0.292 0.195
localat 0 =} 0.5 + 0 +0.174 0.017 0.197 0.205 0.154
Minimum risk | Bayes (uniform £) 0.367 + 0 +0.341 0.074 0 0.341 0.130%
Bayes (betat,a =8 = 2) 0.447 + 0 +0.449 0.116 0 0.449 0.140

or the minimum-bias estimators, only the values of §(z) and the 8 (mean-square errors) depend on n is root-
t For the mini bi i ly the val f 8(z) and the MSE’s ( ) d d (RMSE i

mean-gquare €rror).
1 Minimum value among all estimators of the same degree.
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TABLE 4. ESTIMATION OF 6's FROM A SAMPLE{ OF 5 (r=5, n=5)

=
Sign p = max |bias| Square Max RMS error Square =8
Criterion Type of estimation Biag =0atf = of root of root of E
biss | occursatd= | biss= | (bise)tds | ato= | RMSE | MSE)& &
o~
o
Linear Estimators =
minimax bias 0.001,0.650 + 0,0.134,1 +0.267¢ 0.178 0.188 0.314 0.255 §_
r~method approximate 0.224,1 + ] +40.667 0.082 0 0.667 0.087 =
Minimum bias | least squares (uniform ¢) | 0.130,0.736 + 0 -+0.606 0.051% 0 0.606 0.098 g
localat 6§ =1 1 -+ 0 +0.800 0.112 0 0.800 0.117 =
local at 6 = } 0.2 -+ 0 +0.580 0.143 0 0.580 0.195 =8
Minimum risk | minimax risk 0.002,0.614 + 0,1 +40.293 0.170 | 0,0.195,1 | 0.203¢ 0.255 E
Bayes (uniform £) 0.231 + 0 +0.671 0.063 1] 0.671 0.087% B
Quadratic Estimators g
w
minimax biag 0.001,0.229,0.872 + 0,0.039,0.558,1 +0.207% 0.144 0.151 0.374 0.290
r-method approximate 0.033,0.707, 1 + 0 +0.474 0.045 0 0.474 0.114
Minimum bias | least squares (uniform §) | 0.061, 0.420, 0.862 + 0 +0.511 0.029% 0 0.511 0.105
local at 6 =1 1 -+ 0 +0.720 0.079 0 0.720 0.095
localat 6 = 0.2 + 1 -0.623 0.235 1 0.623 0.278
Minimum risk | Bayes (uniform ) 0.242 + 0 40.637 0.055 0 0.637 0.083%
nth-Degree Estimators
Maximum likelihood 0,1 - 0.030 —~0.393 0.155 0.072 0.498 0.271
rmethod approximate 0.008,0.115,0.375, + 0 +40.331 0.018 0.135 0.389 0.265
0.664,0.947,1
least squares 0.016,0.123,0.325, + 0 +0.386 0.011% 0 0.386 0.239
Minimum bias 0.576,0.808,0.961
localat 8 =1 1 + ] +0.613 0.046 0 0.613 0.086
lowerat§ =1 0,1 - 0.028 -0.387 0.146 0.072 0.502 0.271
localat 6 = } 0.2 + 1 14.3 3.77 1 14.3 0.617
Minimurm risk | Bayes (uniform §) 0.260 + 1] +0.629 0.054 0 0.629 0.083¢
Bayes (beta t,a = 8 = 2) 0.409 + 0 +0.718 0.081 0 0.716 0.092

t For the minimum-bias estimators, only the values of 5(z) and the MSE’s (mean-square errors) depend on n (RMSE is root- §
mean-square error).
1 Minimum value among all estimators of the same degree.



188 - Communication, Prediction, and Decision

04

Bias function 6(8,3)
03

P a

0-2 \\

[\ '\ Local ot 81
[oX] \\ [\~

~ s
0 o T——

A
""‘hr-upproximfe

Bayes (uniform) ]
Minimum locol estimator (m. l.e.)
1 1 !

.02 ! | I NS | 8
"0 01 02 03 04 05 06 07 08 09 10

Root-mean-square error V7 (8, 8)
_[t-opproxlmote

o

1 P [ 1 11 ) [ 8
O 0l 02 03 04 05 06 07 08 09 10

Fig. 2. Bias and risk (RMS error) functions for various nth-degree
estimators of +/& (n=>5).

Upper (lower) estimators can be obtained from any one of the esti-
mators given by subtracting from it the minimum (maximum) bias,
or —(+)p. For example, the minimax-bias upper linear estimator of
v0 is z/n + %; and the lower linear estimator is z/n (since p = 3);
each has maximum absolute bias of . Any other upper or lower linear
estimator would have a greater maximum absolute bias.

7. Various Estimators of a Root of p

Mazximum-Likelihood Estimators

The maximum-likelihood estimator 8(z) of v = 6/ is (x/n) !/, which,
for r = 2, n = 5, yields, by (6.2),

e ] 1 0 0 0 0 o O]
ai/5 -1 1 0 o0 o0 ofl~-2
@10 [ 1 -2 1 0 0 0 \/E 1)
as/10 -1 38 -3 1 0 ol|lvs
a./5 1 —4 6 —4 1 o0]|l+8
e ] L-1 5-10 10 =5 olL 1
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Therefore p(6) = &3(z) = Y aft = 2.240 — 2.620? + 2.19¢°* — 0.99¢*
+ 0.19¢% Forr = 5,n = 5, we obtain, substituting ¥ powers for square
roots in (7.1), p(f) = 3.620 — 6.176* + 5.806° — 2.806* + 0.55¢%, It
should be borne in mind that these polynomials are Bernstein approxi-
mations to v.

In all instances, the bias is zero at the extremes and negative else-
where (see Figs. 2 and 3 and the tables). The absolute bias, of course,
would decrease with increasing 7, as would the RMS error.
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Fig. 3. Bias and risk (RMS error) functions for various nth-degree
estimators of 6% (n=>5).
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Minimaz-Bias Estimators

The minimum-bias estimator in the minimax sense, (), is the un-
biased estimator of the minimax polynomial approximation to 6'/r. As
indicated earlier, 2m -+ 2 nonlinear equations in 2m 4 2 unknowns
(6o = 0 and 8,4+, = 1 in addition) can be written down, the solution of
which provides the minimax mth-degree approximation p,, as well as
the maximum error of approximation and the m 4 2 points at which
this error obtains. These equations are amenable to solution, however,
only in the simplest cases; other cases would apparently require itera-
tive techniques using a computer. »

The minimax linear approximation to 67 is simple enough, since
there are but four equations; one finds

po = }(r — Drre— 4,

and the minimax-bias linear estimator is obtained by replacing 6 by
z/n. The maximum absolute bias, or maximum error of approximation
p is given by the constant term in p,, and it is attained at ¢ = 0,
=1 and 1.

Minimax quadratic approximation to 8 / leads to the following equa-
tions, after a considerable amount of algebraic manipulation:

Do = a0 + aif + a.6?,
where
a; = — (r — 1rlp?1, ay = (2r — )rpr,
a=p=(1—a—a)/2, 0 =vr, 01 = 6287,
and ¢ and v are solutions (readily obtainable by iteration) of
2r — Ditr — 2r — Dir 4+t = 0,
r—D@r—47) — 2r— D@ —t)+r@v—1t) =0,

satisfying 0 < ¢ < 1 < ». The solutions for r = 2 and r = 5 appear in
the tables (see Fig. 1).

These approximations, of course, do not depend on n(> 1), and thus
the biases of their unbiased estimators do not depend on 7, as would
be the case if nth-degree approximations were used. It should be noted
that these quadratic approximations are not monotone in 6 near 8 = 1;
therefore, we cannot expect 8, necessarily to be monotone in z. More-
over, for small n, the range of §, is not necessarily confined to the unit
interval. Thus, these estimators are of questionable use.

Consideration of these estimators as least-squares estimators relative
to a least favorable distribution or minimax-bias estimators on a least
favorable point set appears in a later section.
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Approximate Minimax-Bias Esttmators

Since vy does not have a valid series expansion throughout ©,
minimax approximation by expansion in Chebyshev polynomials is not
possible; nevertheless, the “7-method” of Lanczos may be employed,
still using Chebyshev polynomials.

We note that the function y = 6V satisfies the differential equation
r0y’ — ¥ = 0, where the prime denotes differentiation. Letting p, de-
note an nth-degree polynomial approximation to ¥ and r a real number,
we choose p, and 7 so that

repﬁ, — D = -rT:,

where T is the nth Chebyshev polynomial shifted to (0, 1) (see [20]).
Since we cannot require that ry’ — ¥ equal zero after substitution of
D= for v, we set it equal to an nth-degree approximation to zero. Equat-
ing coeflicients, we have n 4 1 equations in n 4 2 unknowns (r and
the coefficients in p,). An additional equation is obtained by imposing
the boundary condition p,(1) = v(1) = 1. It follows also that the
maximum error of approximation is | 7|.

When we introduce the canonical polynomials @Q.(0), (m =0,
1, - « -, n), defined by

0Qn — Qu =16, (7.2)
it follows readily that @. = (mr — 1)~ and
L -1 o— ™ -1
Pn=T2.CnQm, T =2 Calmr—1),
Ma=0 m=0

where
n
* m m
T, = Z cal .
m=0

The Q.’s can be found successively from (7.2).
For v = +/8, r = 2, we find from Table 3 of the National Bureau of

Standards Tables of Chebyshev Polynomials that
p1=(1+4+20)/3, p:= (3 240 — 86?/19,
and for y = 6%, r = 5, that
pr=@2+6)/3, p:=(9+ 189 — 86%)/19;

the coefficients in ps appear in the tables.
The unbiased estimators of these approximations have zero bias at
6 = 1 and maximum absolute bias at § = 0 (given by the constant
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terms in the p.'s). Again, the estimators are not necessarily monotone
in z, nor necessarily confined to the unit interval for small n. The cor-
responding bias and RMS error appear in Figure 2 for r = 2;forr = 5,
these functions are similar to those for the least-squares sense estimator
shown in Figure 3.

The maximum absolute biases for the quadratic cases are substan-
tially larger than those of the exact minimax quadratic approximations
(see tables) ; higher-order approximations are feasible, however, by the
r-method but not by the exact method. For m = n = 5, it is found
that, although the maximum absolute bias is not low, the bias is ex-
ceedingly close to zero (< 0.025 for r = 5) for most §-values (¢ > 0.1).
An erratic estimator (8 > 1 at z = 1, 3, and 5) is required to achieve
this low bias, however.

Minimum-Bias Estimators in the Least-Squares Sense

We shall derive the mth-degree approximation of vy = 61/ in the least-
squares sense relative to the uniform distribution £ on (0, 1). Sub-
sequently, we shall consider a case in which £ is a three-point distribu-
tion. Such approximation relative to other distributions £ could be de-
rived analogously. Unbiased estimators §; of these approximations are
readily obtained from (6.3).

The orthogonal polynomials p,,(8) relative to the uniform distribution
£ (Legendre polynomials on the unit interval) are readily constructed
successively from the relations

fp,,.(o)a"d0=0, 1=01---,m—1,

where p. is an mth-degree polynomial, and then normalized by re-
quiring that fp% d9 = 1 and that the coefficient of 6™ in p. be positive.
These polynomials may be expressed as

Pall) = 3 cu

=0

where

m —

Then we have

Cm f 01 pn(6) d8 = D Cmi f geriFDITdl = 1Y Cm o/ (1T + 1 + 1).
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The least-squares mth-degree approximation to §Ur is accordingly
®) e
Prm = 22 cpil0);
=0
the average squared error of approximation (squared bias of &;) is
r 2
- Z Cs.
(r+2)

Using an (m + 1)th-order approximation decreases N(&) by cZ ..
Explicitly, the least-squares linear and quadratic approximations are

N =

2r(r — 14 36)
P£,1(0) = copo(8) + cipi(6) = m ’
0 = 3r[(r — 1)(2r — 1) + 8(2r — 1)8 — 10(r — 1)6?]
Pt = r+ D@+ DG+ 1) ‘

See tables and figures for r = 2, 5§ and m = 1, 2, 5; the approximations
are similar to those by the r-method.

Recall that a minimax approximation is a least-squares approxima-
tion relative to a least favorable distribution &;; moreover, £, assigns
probability 1 to the set of points at which the maximum error of ap-
proximation is attained. For the minimax-bias linear estimator given
previously, we shall solve for the corresponding least favorable dis-
tribution &,.

The minimax linear approximation attains its maximum error p at
three points, denoted (6, 61, 02). Thus, £, assigns probability 1 to this
set of three points; denote the corresponding probabilities, the com-
ponents of £, by (£, &, £).

The orthogonal polynomials pe(f) and p.1(6) relative to any distri-
bution £ are found to be

6 — &

(4]

po(6) = 1, 76 =

where & denotes integration relative to £ and o2 is the variance of @
relative to £ Thus

co = 86Y/r, ¢ = (8¢ — £01I7E0) gy,

and the least-squares linear approximation is pg, = copo + c11.
Evaluating pg, for a three-point distribution on (0, r—7/¢—9, 1), that

is, for the values of the 8;’s given previously, and equating it with po (the

minimax linear approximation given previously), we can solve for the
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components of £. We thus find

0 1 — r—r/(i—l) 1 1 2 r—r/(r-—l)
b = — b= 3 fo = g
Forr = 2, we have & = (£, 1, ), and for r = 5, we have £ = (0.4331,
0.5, 0.0669).

In addition, p, is the minimax linear approximation to v on the
point set E consisting of the three points 8o, 61, 6:; thus, ¥ is a least
favorable point set. T'o show that p, is minimax (linear) on FE, we follow
the method given by De la Vallée Poussin [15]:

Ag=0,— 0, =1—grit=D, Ay =0,—8 =1,
Ay =0 — Oy =rriD;  y(g) =y =0, VD, 1,
respectively;
‘ _Awo— Am+ A

1
p= = — (r — Dr—ritr0),
Ao+ A1+ 4. 2( )

Then, setting y; = (—1)+1p + ao -+ ai0; and solving, we find ao = p,
a; = 1; that is, the minimax linear approximation on E is ao + a0
= p 4 6 = pq, obtained earlier.

Minimum Local-Bias Estimaitors at 8 = 1

The minimum local-bias estimator of order m at 8 = 1 is the unbiased
estimator of the truncated Taylor series approximation to v at 8 = 1,
pE(B) = DT, ab; that is, the a’s are chosen so that pi(1) and (1)
coincide, as to their first m derivatives, at 6 = 1.

Using superscripts to denote derivatives and af = ¢la;, we find

(i) —~ *,.
Pn (1) = X 0;/(G—9)!
jomi
and
YA =¢; = (1) Y—ir—1)2r—1)---[(G— )r —1].

Define the (m + 1)th-order matrix D = (d;j)) by di;; = 1/(j — D! if
1 < j and by §;; = 0 otherwise; then D—! = (d¥), where

dii = (—1)+1/(G — D! if1 <j, and di = 0 otherwise.
The vector of a}’s must satisfy ¢ = Da* or a* = D¢, from which the
coefficients a; in p) may be obtained.

The unbiased estimators of these approximations turn out to be
upper estimators of v. Lower estimators can be obtained by fitting only
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the first m — 1 derivatives, rather than m, at ¢ = 1, and imposing the
additional restriction that p,(0) = ¥(0) = 0. Analogous equations can
be established to solve for the coefficients as,, or a;; the inversion of
the analogue of the D matrix is not so trivial. The estimator obtained
for m = n = 5 is almost identical with the minimum local-bias
estimator (see tables and figures).

Minimum Local-Bias Estimators at§ = 1/r

Let p%(6) be the Taylor expansion of v at 8 = 1/r, truncated to
terms through the mth power. Using notation analogous to that in the
previous section, we find

co = (1/n)r, ci= (=) rr—1)@r—1) - - [ —Dr—1],
/@G —g) i<,
i {0 otherwise,
g = {(—7‘)"_"/(’5 —-N! if £ <y,
0 otherwise,
ax = D¢ and a; = axi/7l.
The solutions for r = 2 and 5, n = m = 5, appear in the tables. For

the case r = n = 5, to obtain such a good fit (small bias) near § = ,
the é-values must range from —3.5 to 15,

Bayes Estimators

We shall first derive Bayes linear and quadratic estimators relative
to a uniform distribution on the unit interval with squared-error loss.
We obtain these estimators by finding the average-risk function for an
estimator and choosing the coefficients in the estimator to minimize the
average risk. We then derive unrestricted (i.e., of nth-degree) Bayes
estimators relative to a beta distribution by standard techniques and
consider in particular the special case of a uniform distribution.

For the linear case, we have

3(z) = a0+ ax/n and R(3, 0) = &(6 — 91/n)2;
the average risk relative to a uniform distribution is [ R(s, 6) df, from
which minimizing values of a, and a; are found by differentiation:
2r[(r — )n + 2r + 1] 6rn
T wtocrDer+) U @i+ Der D)

Thus, the Bayes linear estimator for r = 2, n = 5 is the unbiased
estimator of 4(2 4 36)/21 and for r = 5, n = 5, of 5(31 4 156)/231.

0
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Analogous results for the case of quadratic estimation were obtained
in a similar fashion (see tables).

The maximum bias of these estimators (see tables) is greater than
for some of the linear and quadratic minimum-bias estimators, but the
average mean-square error is reduced. Note that the expectation of
these linear and quadratic estimators depends on n, in contrast to the
analogous minimum-bias estimators. The quadratic estimators have
the unreasonable property of not being monotone in z.

We now derive Bayes estimators relative to a beta distribution. We
let ¢ denote a beta distribution on the unit interval with density
given by

B-3(a, £)0(1 — 05,

where B(a, 8) is the beta function and « and B are positive numbers.
For @« = 8 = 1, £is a uniform distribution.

The posterior distribution of ¢ (the conditional distribution of ,
given z) when z is binomial is readily found to be a beta distribution
with a and B replaced by z + « and n — z - 8, respectively (see
[2], for example). The Bayes estimator of ¥ with squared-error loss is
the expected value of v relative to the posterior distribution of 4; this
estimator is here found to be

1
I‘(x+a+T)I‘(n+a+l3)

8:(x) = T
r(n+a)r(n+a+ﬁ+—r—>

which, if 8 is integral, reduces to

" ntat+p—1
bz = 11 -

e '
n+¢x+B+7—'L

Otherwise, tables of the log gamma function or, if »r = 2, the National
Bureau of Standards Tables of n! and T'(n + 1) (see [27]) can be used
to calculate values of §;. Alternatively, Stirling’s formula could be used
to derive adequate approximations to §;. The range of é; (and therefore
of its expectation) is confined to the unit interval, and it is monotone
in 8. For the cases r = 2 and 5, n = 5, see the tables and figures.
It is noteworthy that use of a fifth-degree Bayes estimator gives very
little reduction in average risk compared with a quadratic, and in fact
a linear, Bayes estimator (Tables 2 and 4). The average risk is only
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slightly smaller than that for the minimum local-bias estimator at
6 = 1, but the maximum and average squared bias are increased
(considerably so for r = 2).

Minimaz-Risk Estimators

General expression for minimax-risk estimators could not be ob-
tained. Linear estimators (m = 1, n = 5, r = 2 and 5), for which the
maximum risk is a minimum, were found by trial and error and then
iteration (Newton’s method) by means of a Univac 1105; such primi-
tive techniques are not feasible for approximations of higher degree.

As seen in the tables and Figure 1, some reduction in maximum risk
was achieved as compared with other linear estimators, with a corre-
sponding increase in maximum bias. Whether this reduction can be
considered worth the extensive effort required is a matter of opinion!

8. Conclusion

Maximum-likelihood estimators are readily available, for arbitrary »
and n, but the bias and risk may be large unless » is large.

Among minimum-risk estimators, Bayes estimators relative to the
beta family are readily available, but their biases are large, especially
near # = 0and 1, compared with other methods of estimation, including
maximum likelihood. Minimax-risk estimators are not generally
available.

Among minimum-biag estimators, a variety are fairly readily avail-
able (minimax not so readily). All are expressed, however, as poly-
nomials in z and are thus ponderous unless the degree is a priori limited.
Moreover, efforts to reduce bias may result in (a) é-values greater than
unity (and perhaps negative values also), and (b) lack of monotonicity
of §, as well as increased risk, suggesting that too much emphasis has
been placed on the bias. In particular, the use of unbiased estimators of
Taylor expansions seems especially perilous without additional re-
strictions, since negligible bias is achieved locally at the possible ex-
pense of all other reasonable properties.
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Chapter 9

On Optimal Replacement Rules When
Changes of State Are Markovian'

C. DERMAN

1. Introduction

A common industrial and military activity is the periodic inspection
of some system, or one of its components, as part of a procedure for
keeping it operative. After each inspection, a decision must be made
as to whether or not to alter the system at that time. If the inspection
procedure and the ways of modifying the system are fixed, an important
problem is that of determining, according to some cost criterion, the
optimal rule for making the appropriate decision. This chapter is an
outgrowth of a problem considered by Derman and Sacks [1] and is
concerned with a problem such that the only possible way to alter the
system is to replace it.

Suppose a unit (a system, a component of a system, a piece of oper-
ating equipment, ete.) is inspected at equally spaced points in time and
that after each inspection it is classified into one of L + 1 states,
0,1, - - -, L. A unit isin state 0(L) if and only if it is new (inoperative).
Let the times of inspection be ¢ =0, 1, - - -, and let X; denote the
observed state of the unit in use at time ¢&. We assume that {X,} isa
Markov chain with stationary transition probabilities,

0is = P(Xe1 = j| X¢ = 1),

for all 7, 7, and ¢. The actual values of the ¢;;/s are functions of the nature
of the unit and the replacement rule in force. For example, if replace-
ment of an inoperative unit is compulsory, then gro = 1; otherwise

t Research sponsored by the Office of Naval Research.
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gio = 1, if and only if j is a state at which the unit is also replaced.

We suppose that the costs are as follows: A cost of amount ¢(c > 0)
is incurred if the unit is replaced before it becomes inoperative; a cost
of amount ¢ + 4 (4 > 0) is incurred if the unit is replaced after be-
coming inoperative; otherwise, no cost is incurred. The criterion for
comparing replacement rules is the average cost per unit time averaged
over a large (infinite) interval of time.

The problem is, then, to determine in the sense of the above cost
criterion, the optimal replacement rule, that is, an optimal partitioning
of the state space into two categories: states at which the unit is re-
placed and states at which it is not replaced.f

Since there are at most a finite number (22! — 1) of possible parti-
tionings, an optimal one exists. For small values of L, it is a matter of
enumerating and computing in order to select the optimal partitioning.
When L is even moderately large, however, solution by enumeration
becomes impracticable. Thus it is of interest to know conditions under
which a certain relatively small (small enough for enumeration) sub-
class of rules contains the optimal one.

Let p;; denote the transition probabilities associated with the rule:
Replace only when the unit is inoperative. Since these transition prob-
abilities {p.—;} usually are not precisely known, it is important that the
conditions for reducing the problem to manageable size be relatively
indifferent to the precise values of the p;;’s. The principal result of this
chapter is in this direction; namely, conditions are given on the tran-
sition probabilities {p;;} guaranteeing that the optimal replacement
rule is of the simple form: Replace the item if and only if the observed
state s one of the states 2,7 + 1, - - - +, L for some 7. Henceforth, such
rules will be referred to as control-limit rules and the above state ¢, the
control limit.

When the p,;’s are not precisely known, empirical methods are neces-
sary in order to arrive at the optimal replacement rule. A method is
suggested in Section 4.

2. Statement of Problem

Let {pij} denote the transition probabilities of a Markov chain with
states 0, 1, - - -, L. The transition probabilities satisfy, in addition
to the usual conditions, the further conditions

t We restrict our attention to nonrandomized stationary rules. We have shown
in [2] that an optimal rule over all possible rules is & member of this restricted
class of rules.
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pio =0 for j <L,
pip >0 forsome ¢{>1 foreach j <L,

and

Pro =1,

where p{) denotes the t-step transition probability from j to L.

We can conceive of modifying the chain by setting pj = 1 for one
or more (but not all) of the j’s for 0 < j < L. Such a modification cor-
responds, in the replacement context, to replacing the item if it is ob-
served to be in state j. Thus there are 22-1 — 1 such possible modi-
fications, each corresponding to a possible replacement rule. Let € de-
note the class of such rules. For each rule R in €, let g;; (we suppress
the letter R for typographical convenience) denote the resulting set of
transition probabilities and consider the cost function

=0 if go=20
9(7) Tqu }’ i<I;
g =¢ if go=1
g(j)=c+A; .7=L

That is, g(j) denotes the cost incurred at any given time { when the
Markov chain is in state j.
It is well known from Markov-chain theory that

1.z L
ér = 11'im — 20 9(Xs) = 20 mi9(3), 2.1

— 0 T =] =0

with probability one, where the quantities r; (steady-state probabilities)
satisfy the equations

L
Tp= 2 Ty, §=0,+-,L

=0
L
E T = 1)
=0
and the inequalities
0<r<1, 4j=0,---,L.

The limit ¢z is the average cost per unit time, the criterion of interest,
using the rule R.

We can evaluate ¢g in another way. Let N denote the kth recurrence
time to state 0 (i.e., the length of the kth replacement cycle) and C:
the cost (either ¢ or ¢ -+ A) associated with the kth replacement cycle.
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Then {N:} and {C:} (k=1,2, - --) are sequences of independent
and identically distributed random variables. It can be shown by a
straightforward application of the law of large numbers that

P 22
T EN '
Expression (2.1) or (2.2) for ¢r can be rewritten, depending on R,
as a function of the original transition probabilities {p;,-}, and can be
evaluated, at least theoretically, for each R in @. Neither of the repre-
sentations (2.1) nor (2.2) seems, however, to be informative enough to
allow us to arrive at reasonable conditions on the p;;’s in order to imply
that an optimal rule will have a simple structure.f
If the p;i’s are of the form

piy=0 for |j—1i| >1,
that is, if transitions are possible only to adjacent states, then it is
obvious that an optimal rule will be a control-limit rule such that
gio = 0, J<L-2
and
gr-10=1 or O,

according to the values of ¢, 4, and the p;/s. For more general chains,
however, where states can be skipped in the transitions, the situation
is not so transparent. To arrive at workable conditions for reducing the
problem, we use the method of functional equations [4].

3. Functional Equation Approach

Suppose that P(X, = 7) = 1; that is, suppose that at time ¢ = 0 the
unit is in state ¢ with probability 1. As an intermediate step in our
argument, consider the function

or(t, ) = E E atg(X,), 0<a<l,
1m0

for any R in €. Later we shall use, in the way suggested by Arrow,
Karlin, and Scarf (see [5], p. 35), the fact that

lim (1 — &)¢z(%, @) = ¢r.
a—1

t Linear programming and dynamic programming methods are available [2],
[3] for computing an optimal rule.
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The factor « can be considered, as in inventory theory, to be a discount
factor; ¢z(Z, ) is then a meaningful cost criterion.
Suppose that R¥ in € is such that for all 7 we have
¢(i, ) = ¢r,(%, @) = min ¢z(, a);
Re@
that is, that RY is the optimal replacement rule when ¢z(¢, @) is the

cost criterion. Then by standard arguments it can be shown that ¢(z, «)
must satisfy the functional equations,

L L
$(7, a) = min {a 2 P, @), ¢ + @ 22 pus(, a)} for i L, (3.1)

=0 =0
L

¢(L) a) = c + A+ a E p0.1¢(j, a)r

§m=0

where the relationship between (3.1) and R} is apparent. Also, the
recursively defined functions (method of successive approximations),

6(1,0,0) =0 if 1#1L,
6, a,0) =c+ A if 1=1L,
and

L L
¢(‘t, a, N) = min {a Z pifd’(j) a, N - 1); cta E p0i¢(j) a, N - 1)}

=0 Ju=0
ifi#L,
L
¢G, o0, N) =c+ A+a X pus(G, e, N = 1) if i=1L,
j=0
for N > 1, can be shown (see [4]) to converge to ¢(7, @); that is,
lim ¢(7, @, N) = ¢(¢, @), t=0,1,---,L

N—ow
We shall impose, to some advantage, the following monotonicity-
preserving condition on the transition probabilities {p.;}.

Condition A. For every nondecreasing function h(j),j = 0,1, - - -, L,
the function

L
k@) = 2 pih(), ¢=0,1,--+,L—1,
J=0

is also nondecreasing.
We now state and prove the following result:
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TraeorEM 1. If Condition A holds, then there exists a control-limit rule
R* such that

¢r* = min ¢r.
" ReC "

Proor: The proof proceeds in three steps. First we prove that, for
each N > 1, there is an ¢y such that

L
(i, o, N) = a 3 pisp(f, &, N — 1), i < i,
=0
L
=0+°¢Epo;‘¢(j,a,N—1), iwn<i<L, (32)
J=0
L
=°+A+azpo;'¢(j:a,N—1), t=0L.
=0

By definition ¢(%, «, 0) is 2 nondecreasing function. From the definition
of ¢(¢, @, 1) we can easily deduce, using Condition A, that ¢(, e, 1) is
of the form (3.2) and that ¢(7, «, 1) is also nondecreasing. The argument
then proceeds by induction, establishing (3.2).

Secondly, since

#(t, @) = lim ¢(7, a, N),
Now

it also follows that ¢(Z, «) is nondecreasing. Hence, using this fact,
Condition A, the functional equation (3.1), and its interpretation in
terms of R, we can establish that R} is a control-limit rule.

Finally, let 7, denote the control limit of R¥. Let {a,}, with

lim e, =1,

| Sadl ]

be a sequence such that ¢,, = ¢* for all ». Since there is at most a finite
number of possible states, such a sequence and 7* exist. Now let R be
any rule that is not a control-limit rule. Let R* denote the control-
limit rule with ¢* as its control limit (i.e., B* = R} for all v). Then

¢r(1, @) = ¢(3, av): v=12-.-,
and hence

¢r = lim (1 — a,)¢r{, ) = lim (1 — @,)¢(%, &) = ¢re,

o= 00 | A

which proves the theorem.
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Condition A as stated is not verifiable. The following condition is
more satisfactory from this point of view.
Condition B: For each k = 0, 1, - - -, L, the function

L
rk(i)=z:pii: i=0;1;"'yL—1:
J=k

is nondecreasing.
We have the following lemma:

LemMa. Conditions A and B are equivalent.

Proor: Assume Condition A. Then in particular the function
0, j<k
h(j) =
w={ 3y

is nondecreasing. But then we have
L L
k@) = 20 pila(l) = 20 py = 1d),
=0 =k

and hence Condition B holds.
Assume Condition B. Any nondecreasing function h{j) can be ex-
pressed in the form

L
hG) = 2 cihi(d),
f=0
where ¢; > 0fort =20, .-+, L, and
0, Jj<i1,
hi(f) =
@ {1, iz

Then

L L L L L
K@) = 2 psh() = 20 py 2o au(l) = 2 & 2 pihu(d)

j=0 j=0 k=0 k=0  j=0
L L
= Z Cx 2 Dij-
k=0 =k

Since ¢z > 0 and, by Condition B, Y, L .p;; is nondecreasing for
each k, it follows that K(7) is also nondecreasing. This proves the
lemma.,

The equivalence of the two conditions allows us to restate Theorem 1:
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TrEOREM 2. If Condition B holds, then the conclusion of Theorem 1
holds.

As an application of Theorem 2, consider the following example in
which the transitions from state to state are generated by cumulative
sums of identically distributed lattice variables. More precisely, let
{a,,}, v= ---—1,0,1, - - -, be a sequence of nonnegative numbers

such that

> a,=1.

We define
P = pro = 1,
and otherwise
Dio = 0,
Dii = Qj—i, 1<j<L,
P = Zl: Ay—iy

Vm—00

0
DiL = E Go—1.

vl
Then
ro(®) =1, t =0, ,L—1,
r(@) =1, 1 =0, ,L—1,
r(0) =0, k22,
(i) = an k22, t =2, y L—1;
vmk—1

therefore, Condition B is satisfied and the conclusion of Theorem 2
holds.

4. Empirical Method

Frequently, when the p;/s cannot be assumed to be known, it may still
be reasonable to assume that Condition A holds. If so, then we know
by Theorem 1 that a control-limit rule is optimal. One approach to
obtaining the optimal rule is to estimate the p,;’s from observations
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taken on units in operation and then, using (2.1), compute the optimal
rule from these estimates. Because of (2.2), however, it is not necessary
to estimate the p;;’s; we need only estimate ¢z = EC/EN for each R
in the class @’ of control-limit rules and select the rule that appears to
have the smallest ¢z.

We conceive of the process of observation and replacement going on
indefinitely and, in fact, the cost criterion is calculated on this basis;
this suggests the existence of a rule R (not in @) that uses the past
history of observations in such a way that it converges rapidly enough
to be equivalent (in accordance with the cost criterion) to R*. (See [1]
for a similar result.) Many such rules are possible. We mention one as
an example of this approach.

Let B; (¢ =2, - - -, L) denote the control-limit rule that has 7 for
its control limit. We now define R. On the kth replacement cycle,
k=1 -+, L —1, use Ri1 as the replacement rule. Thereafter
(k > L), choose R; randomly such that

1
P(R; is used during the kth cycle) = 1 — "

ift
$R.-k—1 = min(é\nzk-x, ety tﬁRLk-l),

and otherwise

P(R;is used during the kth cycle) = m ’

where

ks
2. C,

va=1

ki
2N,

v=1

PR = H

the expression
ki ks
Se ()
pm=1 v=1

is to be interpreted as being the summation of costs (lengths) of those
of the first k cycles during which R; is used.
It is easily seen that each of the L — 1 control-limit rules will be

t If the minimum is achieved by more than one R;, choose one arbitrarily.
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used infinitely often as k — « with probability 1;further, by the strong
law of large numbers, we have

lim d;R;k = (i;R.-

k=
with probability 1. Hence, with probability 1,

lim min (‘ﬁRzkr ) éRLk) = min (¢zy, * * *, ér) = ¢r*.

koo

It now follows (essentially, as shown in [5]) that ¢z = ¢z* with prob-
ability 1.
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Chapter 10

Simplex Method and Theory

A. W. TUCKER

1. Introduction

The simplex method (1947) of G. B. Dantzig [1] is much more than
the basic computational tool of linear programming. It is a combina-
torial algorithm that provides constructive means of establishing
fundamental theorems of linear programming [2]—as well as like
theorems in cognate areas, such as von Neumann’s minimax theorem
for matrix games [3] and Farkas’ theorem for linear inequalities. Its
characteristic pivot transformations are related in an essential way to
Gauss—Jordan elimination [4] and to a combinatorial equivalence of
matrices [5].

This chapter discusses the simplex method in a format designed to
exhibit over-all structure rather than specific operational details. The
various terminal possibilities are represented schematically and geo-
metrically. Also, it is shown that transposition-duality theorems [6],
such as the classical ones of Gordan, Farkas, Stiemke, and Motzkin,
can be regarded as corollaries of the duality theorem for a “homo-
geneous linear program.”

The schemata and block-pivot transformations used in this chapter
seem to be important methodological devices. They follow closely
along lines developed by 'the author in a previous paper concerned with
solutions of matrix games by linear programming [7].

2. Dual Linear Systems

This section and the next develop underlying concepts and format for
use in later sections.
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The schema

_yl —y2 . s e —y”.

filen G2 - G | =21
3.‘:2 T B (2.1)
ém a:nl a;nZ e a;nn = i;im

=g = ccc =1

is a convenient device for the joint presentation of two systems of linear
equations: a column system

£101n + Sann 4 -0 FEnGm =M
511}12 -+ Ezl_lzz S I Em?mZ =M

El(;rln + 82‘;2n+ e + Em(.lmn = 7;»

and a row system

—G1Y1 — A1Yz2 — * ¢ * — AQulYn = 11
—Q —_qa _...—a”"=x

T Gt mhER LAY =% @3
=C0miY1 — QmzlY2 — * * * — Qmplin = T;m

These two systems are dual in the sense that
X
A H][Y] =EX+HY = E(—AY) + (EA)Y =0 (2.4)

for any =, H satisfying the column system (2.2) and any X, Y satis-
fying the row system (2.3). .

The column system (2.2) consists of » linear equations in m + n vari-
ables; these n equations are linearly independent because each 4 occurs
with nonzero coeflicient in just one equation. The row system (2.3)
consists of m linear equations in n + m variables; these m equations
are linearly independent because each z occurs with nonzero coefficient
in just one equation. If the Greek variables E, H are regarded as (row)
coordinates in a space of m + n dimensions and the Latin variables X,
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Y as (column) coordinates in the same space, then the solution sets of
(2.2) and (2.3) are linear subspaces of complementary dimensions m
and n, respectively, in the space of m -+ n dimensions. Because of
(2.4), these are complementary orthogonal linear subspaces. Thus the
“duality” of linear systems has the geometric interpretation of “orthog-
onal complementarity.”

3. Block-Pivot Transformation

Let Ay be a nonsingular square submatrix of 4, and Ay, An, 4, the
remaining submatrices of A. Then the schema (2.1) can be rewritten as

-y, =Y,
1| An A (=X,
3.1)
By | Anm A | =X,

=H, =H
Since Aj! exists, the subsystems
EidAn+ E2dn=H; and —A4AuY,— AV, =X,
can be solved for =, and Y, to obtain
Ei= WAL — B2sdndn, and Y= —AnX:— AndnY..
Substitution for =, and ¥ in the subsystems
E1Ar + E2de=Hy; and —A42Y,— A4V, =X,
yields
HiAn Ass + Ea(dss — AndAr) = Hy
and
AnAn Xy — (An— AndiAn) Vs = Xa.

These results are exhibited by the column and row systems of the
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schema,
-X, -Y,

-1

H | An An A =Y,

(3.2)
2| —AnAn | Aw— AndniAp | = X,

IxY

]

1 = H,

The schema (3.2) is equivalent to the schema (3.1) in the sense that the
column equation systems of (3.1) and (3.2) have the same solutions =,
H and the row equation systems of (3.1) and (3.2) have the same solu-
tions X, Y.

Let r be the order of the nonsingular square submatrix Aj, the
choice of which determines uniquely the transformation from the
schema (3.1) to the equivalent schema (3.2). Then the transformation
from (3.1) to (3.2) is called a block-pivot transformation of order r, the
nonsingular square submatrix Ay of order r being called the block pivot.
It can readily be verified that the inverse of the block-pivot trans-
formation from (3.1) to (3.2) is a block-pivot transformation from (3.2)
to (3.1), the block pivot being A%

Any nonzero entry of the matrix A determines a block pivot Ay of
order one; the corresponding pivot transformation of order one is called
an elementary pivot transformation. Elementary pivoting, utilized so
effectively in the simplex method, has its roots in the classical process
of Gauss-Jordan (complete) elimination.

Note that the block-pivot transformation of order » from (3.1) to
(3.2) exchanges r of the individual marginal labels at the left with r
labels at the bottom and r parallel labels at the right with r parallel
labels at the top, signs being reversed in the latter exchange. Such a
block-pivot transformation can always be decomposed into a succession
of elementary pivot transformations, exchanging just one label on a
margin at a time; conversely, any finite succession of elementary pivot
transformations is summarized by a single block-pivot transformation
(as explained in [5] and illustrated in [7]).

The m by » matrices in (3.1) and (3.2), or any row and/or column
permutations thereof, are combinatorially equivalent in a sense discussed
by the author in [5]. In fact, the relationship between (3.1) and (3.2)
can be taken as defining combinatorial equivalence.
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4, Dual Linear Programs
Here the format developed in the two previous sections will be used,

with some change of symbols, to discuss dual linear programs.
The schema

_zl —.xz “ s ® —xN 1
|
A1 | an az - aw | b =0
|
Az | Qa1 G v Gav : ba =0
|
: 4.1)
|
Ax| a1 am2 - - amy :bM =0
1 o Ca cee ey |1 d =w
=£1 =$2"'=$N = @
exhibits row and column equation systems
—AX+B=0} {AA+C=E,’
and ,
X +d=w AB4d=uw
which pertain to the following pair of linear programs:
Primal program: To maximize w =d — CX
4.2
constrained by AX = B, X=0. (4.2)
Dual program: 'To minimize w = d 4+ AB “3)

constrained by AA 4 C =E = 0.

(In this chapter only, vector inequalities are used. The inequality
X > 0 means that each of the components x;, s, - + -, zy of X is non-
negative and at least one of them is positive. The inequality X = 0
means merely that each component is nonnegative. For conformity,
we shall also use the symbol = rather than > for scalar inequalities.)
The “parameters”

(xl,x2"°';>‘M)=A

in the dual program are unrestricted in sign.
Let Ay be a nonsingular square submatrix of the matrix 4 above.
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Then the schema (4.1) can be recast as

-X, -X. 1
|
A | An Ay l B, |=0
Asj du  An | B | =0 (4.9)
1 Cy C. | d = W
= El = Ez =w

(Of course, the Ar-headed row in (4.4) will be vacuous if the submatrix
Ay omits no row of A, and the Xy,headed column in (4.4) will be
vacuous if Ay omits no column of A.) Define

An=  4An, dn= AnAn, Bi= AuB,
Zu = —A21A;11, Ay = Az — A21A;11A12, -Ez =B — A21A-1—1131,
Ex = —CIAIll, -Cz = Cz - ClA:xlAlz, & =d — CIA;IIBI.-
Then the schema

0 —X, 1
| =
a1 Ay A : B, =X,
Az | An Aa { B, 0 4.5)
1 C C. 1 d = w
= A = 5, = o

results from the schema (4.4) by the block-pivot transformation having
Ay as block pivot.

The new schema (4.5) is equivalent to the old schema (4.4). That is,
the row equation system of one schema is satisfied by any X, w satis-
fying the row equation system of the other schema, and the column
equation system of one schema is satisfied by any A, =, o satisfying the
column equation system of the other schema. Hence the primal pro-
gram (4.2) calls now for maximizing w subject to the row equation
system of (4.5) and the inequalities

X, 20, X,z 0,

and the dual program (4.3) calls now for minimizing w subject to the
column equation system of (4.5) and the inequalities

B.20, E,=0.
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If the schema (4.5) is such that
A2 =0, B;=0 (4.6)
(or are vacuous) and

B,z0, C,=z0, 4.7

then optimal (basic) solutions of the primal and dual programs, (4.2)
and (4.3), can be read directly from (4.5) by setting variables at top
and left marging equal to zero. These optimal solutions are

X, = By(20), X:=0;, w=d
and
A = G, Ar=0; Ei1=0, E=Ci20); ow=d.
That d is the maximal w follows from C: = 0, because
w=d—CX; <d forall X,=0;
and that d is the minimal w follows from B; = 0, because

w=d+4 5B =d forall E =0.

The Dantzig simplex method, starting from an initial “presentation”
of the pair of linear programs (4.2) and (4.3), employs a finite succession
of elementary pivot transformations to achieve, if possible, a terminal
“re-presentation” corresponding to a schema (4.5) for which (4.6) and
(4.7) hold.

5. Canonical Representation

A canonical representation (“re-presentation”) of the pair of linear pro-
grams (4.2) and (4.3) is provided by any schema

0 -X, 1
1| An A B | =X,

|
|
|
i
Ag Aq 0 | 0 =0 (5.1)
|
|
|
1
|
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for which (4.6) holds. To have

222 = A22 - A21A;11A12 = O,
it is necessary and sufficient that the order of the block pivot Ay be
equal to the rank m of the matrix 4, since then

1421, Azz] = A21A.1-11[A11, An]-

If A = 0, then B; = 0 also, unless AX = B is an inconsistent system
of linear equations.
A partly reduced canonical schema

0 -X, 1
—_ — | I—
Ei1| An | Axn : B =X,
—_——— ———}——— (56.2)
1 -61 62 | & =w
|

results from (5.1) through deletion of the Ar-headed row in (5.1). The
schema (5.2) contains the same information as (5.1) with redundant
parameters A, set equal to zero.

A fully reduced canonical schema

-X, 1
_ | —
21| A Il B; =X,
S (5.3)
1 C. | d =w
|
=5 =w

results through further deletion of the 0-headed column of (5.2). The
schema (5.3) contains all the parameter-free information in (5.1) or
(5.2). This corresponds to the “canonical form” in which dual linear
programs were originally studied.

If B, = 0 in the above schemata, the canonical representatlon is
primal feasible with X, = By( 2 0), X, = 0 yielding a feasible (basic)
solution of the primal program (4.2). If C; = 0 in the above schemata,
the canonical representation is dual feasible with A; = C;, A, = 0 and
1 =0, E2 = Ca( = 0) yielding a feasible (basic) solution of the dual
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program (4.3). If both B; = 0and C; 2 0, the canonical representation
is optimal with the above-stated feasible (basic) solutions as optimal
(basic) solutions of the primal and dual programs.

6. Geometric Interpretation

Let the matrix A in schema (4.1) have rank m and let the number of
columns of A be N = m - n. Let [A, B] also have rank m, so that
AX = Bis a consistent system of linear equations. Let S be a space of
N = m 4 n dimensions with a specified coordinate system, so that
there is a one-to-one correspondence between points (or vectors) of S
and ordered coordinate N-tuples, written as &, &, - - -, & for row
usage and as 1, X3, * * +, Ly for column usage. Then the solution sets

P={E|E=AA+C, allA} and Q= {X|AX = B}

are linear manifolds of complementary dimensions m and #n in the
space S. Let £ = AA + Cand &' = A’A + C be any two points of P,
and X and X’ any two points of @. Then the equation
DX -X)=W0WA-AM)X' -X)
= (A= A(AX' - A4X)=0

shows that P and Q are complementary orthogonal linear manifolds in S.
Let

R={z|2z0} ={X|X =0}
be the nonnegative orthant in S. Then the feasible-solution sets
{E|E=AA+C, 220} and {X|AX =B, X = 0}

of the dual and primal programs (4.3) and (4.2) are polyhedral convex
sets P M R and @ N R, respectively.

In a canonical schema (5.3), the complementary orthogonal linear
manifolds P and @ are represented by equation systems in the “slope-
intercept” form,

P: 2 = E4d1 + Ca (6.1)

Ix]

and

-7 —T
Q: Ei=Ey(—Awn) + By, 6.2)
the latter being obtained by transposing
X, = ‘—leXz + _-El
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and substituting =; and =; for X7 and X7. In (6.1) the m by n matrix
Ay, is the “Ep:E;-slope” of P (with E; as “rise” and E; as “run”) and
C; is the “Zy-intercept” of P. In (6.2) the negative-transpose matrix
— A7 is the “=,:Erslope” of @ (with &, as “rise” and =, as “run”) and
Bl is the “Ej-intercept” of Q. This canonical “slope-intercept” repre-
sentation of P and Q, introduced by the author in [8], generalizes
the relation between the equationsy = mz + bandx = — my + aof
orthogonal straight lines in plane analytic geometry.
Let p and § be the intercept points (vectors),

- T
E1=0, E;=C; and E; =B,, Ey=0

determined by (6.1) and (6.2). Note that the inner (scalar) product
of P and § satisfies the equation
_ ~ [ B
pe=bal[ ] -0
As canonically represented in schema (5.3), the dual program is to
minimize
] - 7 e = El 37 -
w=d+ EB=d+ [::1,,:2][0] =d+p-g

for p in P N\ R, and the primal program is to maximize

R, - — X -
w=d—-C2Xz=d—[0,C2][ ]=d—1’1-q
X,

for ¢in @ N R. If p belongs to P M R and § belongs to @ M R, then
p-d =0 for every pin PN R,and p- ¢ = 0 for every gin QN R
(since any two vectors in R have a nonnegative inner product). Hence,
since § + § = 0, it is clear that

w=d+pg=d+p-g=d foreverypin PNR,
and that
w=d—p-qSd—p-Gg=d foreverygin QN R.

That is, the desired minimum and maximum are attained at p = $ and
q = ¢ if these points both belong to R. (The intercept points $ or ¢
belonging to R are the extreme points of the polyhedral convex set
PNRorQNR)

In summary, this geometric interpretation of a pair of linear pro-
grams (4.2) and (4.3) involves complementary orthogonal linear mani-
folds P and @ in a space S with nonnegative orthant R. If PN\ R is
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nonvacuous, the dual program is feasible; if @ M R is nonvacuous, the
primal program is feasible. A canonical representation of these pro-
grams involves a joint “slope-intercept” representation of P and Q.
The resulting intercept points 7 and § yield optimal solutions if they
both belong to R.

7. Simplex Method; Terminal Possibilities

Let AX = B have a solution X = 0; that is, suppose @ M R is non-
vacuous and the primal program (4.2) is feasible. Then a proof of the
validity of the simplex method, such as the one given in [9], demon-
strates the existence of a finite succession of elementary pivot trans-
formations that terminates in a canonical representation for which the
matrix

[
Az : B,
—-_— I —_—— 7.1)
az | &
|
of the schema (5.3) has either the schematic form

[}

I .

I .

L
: . (7.2)

[ .

:@

D oo D | *

or the schematic form

S : @

. l -

; B
: ! . (7.3)

. l .

S] :69

- |
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where each @ denotes a positive or zero entry, each © a negative or
zero entry, and — a negative entry. The @ row and @ column in (7.2)
determine optimal extreme points of PN\ R and @ M R, the corner
entry * being the common minimum and maximum value. In (7.3) the
@ column determines an extreme point ¢ of @ M R and the © column
determines the direction of an extreme ray of @M E issuing
from G, along which the objective function w satisfies w — 4 o« be-
cause of the corresponding minus entry at the bottom. At the same
time the (©, —) column in (7.3) shows that P M R is vacuous and
the dual program is infeasible.

If AX = B isa consistent system having no solution X = 0, so that
Q exists but @ M R is vacuous and the primal program (4.2) is infeasi-
ble, then it can be shown that there exists a finite succession of ele-
mentary pivot transformations terminating in a canonical representa-
tion for which the matrix (7.1) of the schema (5.3) has either the form

|
I
|
@ ....... @ | =
} (7.4)
|
_________ |
@ ....... ®|
or the form
(] |
. |
: i
9...0...@:_ (7.5)
. |
. |
e
- |

In (7.4) the @ row at the bottom determines an extreme point 7 of
P N R and the other ® row determines the direction of an extreme
ray of P M R issuing from $, along which the objective function w
satisfies w — — o because of the corresponding minus entry at the right.
In (7.5) the nonpositive column with negative entry at bottom shows
that P N R is vacuous and the dual program is infeasible. The (&, —)
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row in (7.4) and (7.5) confirms that @ M R is vacuous and the primal
program is infeasible.

In summary, the terminal possibilities for the simplex method are,
in the format of this chapter:

Form (7.2)—primal feasible (@ N R = ¢),

dual feasible (P N\ R # ¢);
Form (7.3)—primal feasible (Q N\ R = ¢),

dual infeasible (P N\ R = ¢);
Form (7.4)—primal infeasible (Q N\ R = ¢),

dual feasible (P N\ B # ¢);
Form (7.5)—primal infeasible (Q N\ R = ¢),

dual infeasible (P N\ B = ¢).

From any initial presentation (4.1) of the pair of linear programs (4.2)
and (4.3), provided AX = B is a consistent system of linear equations
(so that Q exists), it is possible through a finite succession of elementary
pivot transformations to reach a terminal canonical representation for
which the matrix (7.1) of the schema (5.3) has one of the above four
forms (7.2), (7.3), (7.4), (7.5).

8. Homogeneous Linear Programs and Transposition-Duality
Theorems

In the pair of linear programs (4.2) and (4.3), take B=0and d =0
to get a homogeneous linear program,

Minimize CX constrained by AX =0, (X = 0), 8.1)

and its dual program,

Solve UA + C = 0. 8.2)
(Here it seems convenient to minimize CX = —w rather than to maxi-
mize w = —CX, to replace the parametric A by U, and to omit Z.)
The programs (8.1) and (8.2) are jointly exhibited by the schema
X (20
Ul 4 [=0
_ (8.3)
1 C | = min
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The homogeneous linear program (8.1) is clearly feasible, since X = 0
satisfies AX = 0. There are just two possibilities (corresponding to the
two cases set forth in the first paragraph of Sec. 7): either CX has a
zero minimum and (8.2) is feasible or CX is unbounded below for
feasible X and (8.2) is infeasible. These two possibilities establish a
“theorem of alternatives” for a homogeneous linear program (8.1) and
its dual (8.2):

TaroreM 1. Either UA + C = 0 for some U or CX < 0 for some
X = 0 such that AX = 0 (but not both).

This theorem can be regarded as a fundamental existence theorem
for an arbitrary system UA + C = 0 of nonhomogeneous linear in-
equalities:

THEOREM 2. The tnequality UA + C = 0 holds for some U if and only
if thereismo X = 0 for which AX = 0and CX < 0.

Take C < 0. Then UA 4 C = 0 implies U4A = —C > 0. Also,
CX < 0for X = 0if and only if X £ 0. Hence Theorem 1 yields the
following classical theorem of Gordan (and later Stiemke), which seems
to have been the earliest known transposition-duality theorem (see [6]):

TaEOREM 3. The equality AX = 0 holds for some X > 0 (ie., X =0
and # 0) if and only if UA > 0 for no U.

Now form the schema
Zo X’ (% 0)

Ul =B 4 |=0
—————— (8.4)

where A is a matrix and —B an additional column. Clearly the in-
equality —UB — 1 = 0 implies UB £ —1 <0, and the equality
—Bry+ AX' =0 for >0, X’'=0 implies AX = B for
X = (X’/x0) = 0. Hence the alternatives of Theorem 1, applied to
(8.4), establish the following classical theorem of Farkas concerning
“convex-linear dependence”:
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THEOREM 4. If UB 2 0 for all U such that UA = 0, then B = AX

for some X = 0 (and conversely).

Next form the schema

___________ (8.5)

where —1 denotes a row of —1’s. Observe that U4, = 1 implies
UA; >0 and that U4; 20, —UA; =0 imply UAd; = 0. Let
X; = X — X;. Then Theorem 1, applied to (8.5), establishes the
general transposition theorem of T. S. Motzkin: '

THEOREM 5. Either UA1 > 0, UA; = 0, UA; = 0 for some U or
A1 X1+ A2 X+ A3X3=0 for some X120, X.=0, X; unrestricted.

9. Theorems for Skew and Dual Linear Systems
Let K be a skew-symmetric (square) matrix, that is, let KT = —K,

and let I be the identity matrix of equal order. Form the homogeneous
linear program and its dual: ’

X Y Z (20

U|K+I K I|=0
—————————— ©.1)

z0 20 =20

where —1 denotes a row of —1’s. Premultiply
(K+DX+KY+1IZ=0

by (X+Y)T to get
X+ DDNKX+N+ X+ NIXA+2Z)=0.
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Then since
X+ NKX+7Y)=0,
it follows that
XX 4+ XTZ 4 YTX + YTZ = 0.

However, this holdsfor X = 0, ¥ = 0, Z = 0 if and only if each term
is zero; and X7X = 0 if and only if X = 0. Hence the homogeneous
linear program specified by the rows of (9.1) has a zero minimum, and
the dual program specified by the columns of (9.1) is feasible. That is,
there exists some U* satisfying the column inequalities of (9.1):

UK+IDz1>0, UKz0, UIZO.

This establishes the following “skew-symmetric matrix theorem”
(see [6], Theorem 5):

THEOREM 6. The system UK = 0 of homogeneous linear inequalities,
where KT = — K, possesses a solution U* = 0 such that U* 4- U*K > 0.

Apply Theorem 6 to the matrix

-0 A"
K= .
| —AT 0
Then the inequality
-0 A7
=, Y7] =0
| —AT 0

possesses & solution =* = 0, Y* = 0 such that
0 A
[2*, Y*T] 4 [=%, Y*7] [—A" O:I >0.

This establishes the following theorem (see [6], Theorem 3) concerning
the dual linear systems of schema (2.1) in Section 2:

THEOREM 7. The column and row equation systems of the schema
-Y

4 |=X

I

=H
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possess solutions

E*>0, H*20 and X*20, Y*20

such that
¥4 X*T >0 and H*4+ Y*T > 0.
Apply Theorem 7 to
-Y, -Y; -Y;
o An Ay —A4p |=X,
E-; Az A —Ap | = X;- 9.2)
E; _A2l _A22 A22 = X;

where Ay is an arbitrary submatrix of a matrix 4 and Ay, Ay, A are
the remaining submatrices. Then there exist nonnegative solutions
(starred) of the column and row equation systems of (9.2) such that

+¥ _—* 4% T —*T

25, 53 5+ X1, Xa 0, X, 1> 0
and

+4T _ —kT
Y

[m:, 1Y, 5] + [Yr, LY > 0.

Since the sum of the last two columns of (9.2) is zero, and also the sum
of the last two rows, it follows that

48, =0 and X'+ x7"=0.

Hence Hf*, H;* and X7*, X;*, being nonnegative, are all zero. Now
set

+ - + -
2 H2=H2—H2

1
]
Il
I

~

and
Xe=Xs—Xs, VYi=Ysi—VY;

to obtain the following general transposition-duality theorem for dual
linear systems (see [6], Theorem 6):
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TuroreM 8. The column and row equation systems of the schema

-Y, -7,
E1| An 4, | =X,
o) A21 Azz =X,
=H, =H
possess solutions
>
5 20, E’Jzo, H 20, H;=0

and
Xiz0, X;=0  Yiz0, Y?Eo
such that
Ef+X17>0 and Hf + Y >0.
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Chapter 11

The Present Status
of Nonlinear Programming+

P. WOLFE

1. Introduction

This chapter is devoted to a survey of certain computational procedures
for the solution of the “convex nondiscrete” mathematical pro-
gramming problem. By a mathematical programming problem we
shall mean the problem of minimizing a function f(z) of n variables,
(z1, + + -, Za) = z, subject to the constraints g;(x) <0 (¢ =1, - - -, n).
We shall impose the restriction that the function f and all the functions
g: be convex. The point of this restriction, to which we shall later re-
turn, is that it seems to define the largest class of functions for which
efficient general computational methods can be devised. From now on,
when we refer to a nonlinear programming problem, we shall mean one
in which the functions involved are so restricted.

In Figure 1 we have illustrated three principal types of computational
problems. The functions defining the consiraints of the problem—the
g—may be linear or not; and the so-called objective funciion, f, may
also be linear or not. If both f and the g; are linear, we have the most
well-known case—that of linear programming. This problem is labeled
A in Figure 1. In the next case, which is as close to linear programming
as possible, the constraints are linear, while f is not. This case we have
labeled B. It is a more difficult type of problem to solve than A, of
course; yet, we shall see that some of the techniques used in completely
linear problems may be carried over to problems of this type. This does

t An early version of this chapter has appeared as “Computational Tech-

niques for Non-linear Programs,” privately printed for members of the Prince-
ton University Conference on Linear Programming, March 13-15, 1957.
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not seem to be the case with the class of problems C, those in which
the constraints are not linear. We have not distinguished here between
linearity or nonlinearity of the objective function, because if the con-
straints of a problem are not linear, linearity of the objective function
is not of help. Nevertheless there are methods, although less efficient
than those for problems A and B, for dealing with problems of this
class.

Figure 2 indicates several types of computational methods that can
be used for these problems. One basic distinction is that between
primal and Lagrangian methods.

A primal computing method uses only the variables z and directly
related quantities, such as the gradient of f, in the course of a compu-

Objective Constraint Method

function [Linear {Nonlinear | Type of step Primat} Lograngian
Linear] A walk] A | B (quodramatic)
Cc Hop] B
Nonlinear| B
Creep] C C
Fig. 1. (left). Types of com- Fig. 2. (right). Types of com-
putational problems. putational methods.

tation. A Lagrangian method uses, in addition to these quantities, the
generalized Lagrange multipliers to be discussed below.

These various methods may also be distinguished according to the
nature of the steps used in proceeding to a solution. The steps may be
large ones, with only a finite and possibly small number of them needed
to arrive at an exact solution of the problem; such a method we call a
“walk.” Another method can be said to “hop”; although it takes fairly
large steps most of the way, one does not know how many steps will
be required to arrive sufficiently close to a solution. Finally there is the
type we call “creep,” which is characteristic of most gradient methods
and involves taking a large number of very small steps. Figure 2 shows
the type of problem—A, B, or C—to which the indicated computa-
tional style seems best suited.

2. Linear Programming

We shall begin our discussion with a primal walking method. As in-
dicated by Figure 2, the class of linear programming problems is nearly
the largest that can be tackled by this method. (Actually, the exact
class seems to be the one for which the objective function has the
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property that, for any k, the set of x such that f(x) = kisa hyperplane.
This class includes not only linear functions but also, as pointed out
by John Isbell, quotients of linear functions.)

In Figure 3 we have given a geometric visualization of a linear pro-
gramming problem. There are seven constraints effective in this
particular problem: Three constraints, z; > 0, z: > 0, and z; > 0,
which we have not written out explicitly in terms of functions of z
(programming problems are conventionally taken to deal with non-
negative variables of this kind, although it is a simple matter to trans-
form a problem having unrestricted variables to ome having non-
negative variables, or vice versa), and the remaining four constraints,

3

X2

L)

x)

Fig. 3. Linear programming “walking.”

illustrated geometrically by the four skew faces of the polyhedron.
The whole polyhedron represents the constraint set—the set of all
points for whichz > O0andallg:{(z) <0 (=1, .- -,4). Since these
constraints are linear, the faces of the polyhedron are planes. The
planes are as follows: The plane 7, associated with the constraint
gi(z) £ 0, is the set of points = for which g.(z) = 0. In the diagram
the faces have been identified by showing which of the seven functions
is equal to zero on each face. The vertices of the polyhedron are identi-
fiable by listing the faces that meet in them; for example, the vertex
P, can be identified as lying on the planes z; = 0, g. = 0, and g5 = 0.
Such a point of the constraint set, for which as many of the z’s and ¢’s
vanish as possible, is called a basic feasible point. Actually, it is cus-
tomary to refer to such a point by specifying the complementary
functions as a minimal set of nonvanishing variables.

The linear programming problem, and Dantzig’s simplex method for
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solving it, can be visualized in this way: Let f(z) = >_;¢;z;. Then the
gradient of f, Vf = c, is constant. Since the gradient points in the direc-
tion of maximum 7ncrease of f, a solution to the problem of minimizing
f will be a point located as far in the constraint set as possible in the
direction opposite to the vector c. Take any vertex of the constraint
set. The direction numbers of all the edges leading out of the point
may be calculated, so we can determine which edges make an obtuse
angle with ¢. Following such an edge, we arrive at another extreme
point yielding a lower value of f. The process is repeated until we reach
a point at which all edges make acute angles with ¢; that point is the
solution of the problem.

The foregoing process is sketched in Figure 3. Beginning at 0, we
find the path OP;P.P; around the constraint set, terminating in a
solution point for the problem. The simplex method gives the means
of performing the numerical processes corresponding to this de-
seription [1].

3. Nonlinear Programming with Linear Constraints

For the problem-type B—the problem of minimizing a nonlinear func-
tion subject to linear constraints—a picture can be drawn very much
like that of Figure 3. The linear constraints for this problem are the
same as for the linear programming problem; see Figure 4. Since the
objective function is not linear, however, the gradient vector of the
objective function is no longer constant, and at each point a local

‘Xf

*%

Fig. 4. Minimum-distance problem,
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objective vector must be drawn. The fact that there is no single direc-
tion of fastest decrease of f(x) makes it impossible to use a simple walk-
ing method for the problem; indeed, the solution no longer needs to be
a vertex of the constraint set. Figure 4 illustrates the problem of finding
the closest point in the constraint polyhedron to an outside point P,
Suppose that we attempted to use the gradient Vf(z) at each vertex z
to establish a direction of motion; we would eventually just circulate
among some set of vertices—say P, and P; To make progress, we
must be able to enter a proper face of the constraint set, where the
solution point @ lies.

A difficulty of a more general type is that, at the current stage of
development, any efficient computational method for attacking a
large-scale problem must work almost entirely in terms of local in-
formation: It must be possible to decide whether to stop the compu-
tation, or to continue with it, on the basis of knowledge concerning
only the immediate vicinity of the point we have reached, because
knowledge of conditions everywhere in the constraint set will generally
demand more information than can be stored. Hence a condition such
as the following must be imposed on the function f: If a point x gives a
minimum of f in some region—no matter how small—surrounding =
(i.e., z is a local minimum), then z is a solution of the entire problem
(i.e., z is a global mintmum). The most convenient assumption about f
that will ensure this is that f must be convex, that is, f must satisfy the
inequality

flax + (1 — &)y) < af (@) + (1 — &)f(¥)
for any z, ¥, and 0 £ « < 1. That this condition is sufficient follows
from the fact that if z is not the minimum sought, all points on the
line segment oz + (1 — )y joining it to some lower point y lying in
the constraint set give lower values. Figure 5 illustrates the convexity

N\

flax+(l-a)y) af{x)+(1=a)F(»)

ar+(t-aly

Fig. 5. Convexity.
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of a function along a line segment; we require similar behavior along
every line segment in the constraint set. (Any linear function is convex.
The sum of squares of linear functions is also convex, so that the least-
distance problem of Fig. 4 can be solved with local information.)

One method for minimizing a convex function under linear con-
straints is one that hops. It operates as follows [2]: We will generate
a sequence 2% 2z, - - - of points of the constraint set that will converge
to a solution and, for use in the calculation, an auxiliary sequence z°,

] Vf(:o 20340

Fig. 6. “Hopping” to a minimum,

zl, - - - of extreme points. Initially, let z° be any extreme point of the
constraint set and let 2° = z°% Now suppose that n steps have been
taken, and a point 2” and extreme point z» are at hand (see Fig. 6).
Perform the following operations:

(a) Calculate Vf(z").

(b) Using Vf(z") as objective vector and z» as initial extreme point,
take one step of the simplex method in the minimization of Vf(z") - z,
to the extreme point zn+1.

(¢) Choose 2! s0 as to minimize f on the segment joining z7*1 to 2z~

(d) Repeat with zt? and g1,

The justification of this process lies in the following result:
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TuaEOREM. There s a constant K such that, if M is the minimum of f as
constrained, then

K
fe)-M<—-
n

Note that step (c) above amounts to solving a one-dimensional
minimization problem, which is easy to do. For modern machine com-
putation, this hopping method has the considerable advantage that
the major part of the computational work—that of performing the
simplex change of basis from one extreme point to another—is one that
is well understood and very likely already coded for the machine one
wants to use. The amount of additional routine that has to be written
for this method is small.

Another, and very successful, type of hopping method for problems
with linear constraints is that of the “projected gradient” [3]. Figure
7 illustrates such a procedure, beginning at the point z° and generating

Fig. 7. Projected-gradient method.

the sequence of points z!, a2, - - - . Starting with the point z*, either
one or two successors of z* are determined by the following steps:

(a) Calculate Vf(z*).

(b) Find the projection of Vf(z*) onto the face of the constraint set
on which the point z* lies. Here “face” is used to denote the intersection
of any collection of bounding hyperplane, so that the face for z° is the
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constraint set itself, the projection of Vf(z*) is Vf(z*) itself, and the
face for z? is the line through z? and z*.
(¢c) Extend a ray from z° in the direction of the projection of Vf(z*).
Define z**! to be the farthest point of the constraint set along this ray.
(d) If f(z*+1) < f(z*), then the cyecle is complete. Otherwise, choose
z¥+2 g0 as to minimize the function f on the segment z*z*+!; this com-
pletes the cycle.

As with the gradient-corrected simplex method, it is assumed here
that the one-dimensional minimization problem that may have to be
solved in step (d) is not a difficult one; this is indeed the case. In
Figure 7, the points 24 and 2% have been obtained as the result of mini-
mizing on the segments z%* and z%%; at these minima, V7 is, of course,
perpendicular to the segment in question.

Convergence of the procedure to a solution of the nonlinear problem
is not difficult to establish. Unlike the previous gradient methods, this
procedure does not completely reduce to the simplex method for a
linear problem, but it does so reduce if the points z* are vertices of the
constraint set.

4. Nonlinear Programming with Nonlinear Constraints: Primal

Figure 8 adds the final complication we want to introduce into pro-
gramming problems: Besides a nonlinear objective function, we now
have nonlinear constraints g;(x) < 0. We have said that in general the
g: must be taken to be convex functions. Actually, it is only in such a
case that the constraint set is convex, that is, a set that contains the
entire line segment joining any two of its points. The nonplanar faces
of this constraint set will bulge outward. The necessity for this require-
ment is implied in our earlier discussion of the convex objective func-
tion: To show that any local minimum was global, we made use of the
fact that the segment joining two points was in the set. That argument
now applies to this more general case, so that the local methods we
discuss will solve the global problem.

Most methods for this type of problem are of the creeping kind (the
nonlinear boundaries of the constraint set prevent us from taking any
bold steps) and use the following general scheme: At any point z of
the constraint set, calculate Vf. Start moving z in the direction — Vf(z),
modifying this as necessary as = changes. We shall set up a computa-
tional scheme that does this, attempting at the same time to satisfy
the constraints of the problem. The gradient method has a continuous
flavor that may perhaps best be illustrated by setting up a differential
equation. This equation will not be solved explicitly, but it can be used
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[\ g

73 ' - V7

92

Fig. 8. Very nonlinear problem.

either to indicate analog methods of solution for the problem or to
yield difference equations for digital computation.
By simply proceeding in the direction of fastest decrease, we get

dz . dzx f(x)
dt —vi@), He dti z;

If we think of the motion of z as taking place in time, the velocity of
the point z is the negative of the gradient. This equation, of course,
ignores the constraints. Under these differential equations, z would
soon leave the constraint set. To inhibit this, we shall try to send =
back into the constraint set whenever it touches the boundary, that is,
whenever one of the functions g;(z) becomes positive. In that case, the
direction in which to send z is given by the inward normal to the
boundary, —Vg.(x). Our prescription, then, is as follows: If the point
is at ¢g;(x) = 0, send it ¢n by adding a vector proportional to — Vg,(x)
at that point. We have done this for each g; by means of the second
term on the right-hand side of the equation below, in which we define
3:(x) to vanish if z satisfies the constraint g;(x) < 0, 5;(z) = 1 other-
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wise, and K is a constant of proportionality:

d.
.5 = —Vf@@) — 2 Ks:(2) Vgi(a),
or
dz; of (z) 9g:(z)
E:—G—%—K;al(‘x) axl :

One further condition must be noted, however. Since we have the con-
straints z; > 0, we must add the following requirement to the differ-
ential equations: If the indicated rate of change of z; is negative, but
z; is already zero, we must not change z;. Thus we have

dz; {same as above, if the above expression or z; is positive,
dt

0 otherwise.

It can be shown that any trajectory yielded by these differential
equations converges to a solution of the minimization problem if K is
so large that at any boundary point z the sum of the inward-pointing
vectors, —Vg,(z), is greater than Vf(z). Accordingly, any system we
can set up that obeys these differential equations will lead to a solution
of this type of problem.

The digital means of handling these equations is very simple. It con-
sists of replacing dz;/dt above by Az;/At, and choosing ¢ to be a fixed,
sufficiently small number. Then one begins with arbitrary z;/s and
uses the equation to calculate the amounts Az; by which the /s must
be increased in each time period. After the solution has been found
ag well as possible using a given value of A¢, it will then be necessary to
use a smaller value to obtain more accurate results.

These equations also prompt one to attempt an analog method for
solving this problem. It is particularly easy to see how this is done in
the linear programming problem. If

f@) = 2 cm; and giz) = D aa;— b:; <0,
7 7

then the system of differential equations becomes

—c; — K X, 8:(x)ay; if this expression or z; is positive,

—_— 1

0 otherwise.

These equations can be set up in this form on conventional electronic
differential-analyzer equipment. This has been done by Pyne [4] for
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small-scale problems and works with relatively good accuracy and sur-
prisingly high speed. One can view the trajectories of several z; on
oscilloscopes and see the solution of a linear programrhing problem
traced out from an arbitrary initial point in a matter of seconds. In
addition to giving a satisfying graphic account of a solution of the
problem, the analog method has the notable feature that the parameters
occurring in the problem can be varied with a great deal of ease. One
can explore large areas of parameter values quite quickly by this
means; thus it provides a good method for rough sensitivity analysis
in linear problems. It is also possible to wire nonlinearities into the
problem in accordance with the general differential equations, but this
is not easy to do with conventional equipment.

5. Nonlinear Programming with Nonlinear Constraints; Lagrange
Multipliers

The remaining methods to be described are those that use the “general-
ized Lagrange multipliers” of Kuhn and Tucker [5], as well as the
variables z;, in the computational process. These multipliers u; are
introduced, as in the classical case, through the Lagrange function

L(z,u) = f(z) + 2 uigi(®).

Also as in the classical case, a necessary condition that z solve the
given extremum problem is that z and some u = (uy, * + +, ua) solve
an extremum problem involving the Lagrangian. In programming,
however, the new problem has a novel formulation:

If z solves the programming problem, then there exists u so that
(x, u) solves the problem

min max L(z, u).
20 420

This says that simultaneously z must minimize L and % maximize it,
or that (x, u) is a saddle-point of L. (In the classical problem, which
involves only setting derivatives equal to zero, it is irrelevant whether
the extrema of the Lagrangian are maxima or minima.)

Under the convexity assumptions of our programming problems,
the necessary condition given above proves to be sufficient. Hence a
method that will enable one to find the saddle-point of a function
having nonnegative variables can be used to solve such problems. A
method along the lines of the primal method can be devised; namely,
differential equations can be set up that will cause z to move so as to
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decrease L, and cause u to move so as to increase L, as follows:

oL . .. C
dz; ———if this or z; is positive,
2 = 9z
dt )

0 otherwise;

du.-
—_— = us

dt

if this or u; is positive,

0 otherwise.

As before, we interdict the decreasing of a zero variable.

The foregoing approach is associated primarily with the work of
Arrow and Hurwicz, which has appeared in a series of papers. Uzawa
[6] has shown that if the objective function f is strictly convex, then a
solution of the above equations starting from any initial (z, u) exists,
and that the z/s obtained converge to the solution of the program.
Kose [7] has also obtained graphical solutions of these equations on an
electronic differential analyzer.

An interesting feature of these equations is that, suitably interpreted,
they yield a model for the attainment of efficient production in a com-
petitive economy. Let the constraints be linear again:

g:x) = X aix; — b; < 0.
i

The differential equations above then become

dz; of (x) S wiay du;
1417y

—_— i - W:

dt ax,- B

2 aim; — by,
F

with “zero” conditions. As usual, z; is viewed as the level of some pro-
duction activity. Then df(z)/dz; is a marginal cost, since we are mini-
mizing, Each 7 denotes a resource needed in production, and b; is the
average amount of resource ¢ available in the market. The coefficient
a;; is the amount of resource ¢ that is consumed by carrying on activity
7 at unit level. Finally, u; is the market price the producer must pay
per unit of the resource ¢ he uses.

The terms on the right-hand side of the first equation can be inter-
preted in this way: —af(z)/dz; is the profit accruing to the producer
for increasing the jth activity level one unit, and the summation is the
payment he must make for the additional resources thus consumed.
The first equation then says: If a net profit can be made by increasing
z;, then do so; if increasing z; would make a net loss, then decrease it
unless it is already zero. The second equation says simply: If the total
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amount of resource ¢ consumed in all the activities exceeds the average
supply, then its price will rise; and if the amount is less than the supply,
then its price will fall unless the price is already zero.

The theorem on the convergence of the solution of the differential
equations to a solution of the programming problem thus says, in
economic terms, that the behavior of the market prices will force the
producer into the optimum production program. It is interesting to
note that the usefulness of this kind of interpretation has led to the
adoption of the term “price” for “generalized Lagrange multiplier” in
the programming literature.

6. Lagrange Multipliers in General

It should be pointed out that these multipliers are present, although
concealed, in the primal methods with which we have dealt. For exam-
ple, a valuable feature of the simplex method for linear programming
is that in the last step of the simplex calculation one obtains as a by-
product the solution of the “dual problem,” that is, the Lagrange multi-
pliers for the extremum.

The multipliers can also be found in the primal creeping process.
After a sufficient length of time, the z; that solve the equation

& 4 s
e~ IO

with nonnegativity condition, will be essentlally stationary, and their
average value during an extended time period will be zero. The point
z will, in fact, be tracing out small loops, being kicked back and forth
by the discontinuous terms é;(z)g:(z). The only quantities on the right-
hand side that vary much will be K§;(z). Denoting their time-average
values by u., which is then proportional to the amount of time the con-
straint g;(z) < 0 is called into action, we have

_A@) 5, f0a)

dx; : ax;

0= 6.1)
(unless the right-hand side of this equation is negative and z; = 0).
It is easy to see that these u; are indeed the multipliers, because this is
precisely the condition under which the Lagrangian L(z, u) eannot
be decreased by changing z;.

The discussion above constitutes the outline of a proof of the Kuhn-
Tucker saddle-point theorem. Through another line of ideas we can
obtain another type of proof, and also suggestions for another compu-
tational scheme. In the above equation (6.1), the right-hand side may
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be negative, but never positive; in vector notation, if we let

v = Vf(x) + Z u:Vgi(x),

we need
v 2> 0.

Now the condition in parentheses following equation (6.1) has a simple
paraphrase:

Ifv; >0, thenz; =0.
Since the variables are all nonnegative, this can be written as

vz = D, vix;=0.
7

We shall now make a (surprisingly slight) modification of our pro-
gramming problem. Replace the constraints g;(z) < 0 by equalities,

gi(z) = 0.

The original constraints could be rewritten in this form without loss
of generality, if one new variable were added for each constraint, thus:

gi'(x) + Y = 0: Y Z 0.
Then the saddle-point problem becomes simply

min max L(z, u);
z20 u
we no longer require ¥ > 0. The above analysis regarding minimizing
L in z is unchanged, but maximizing it in % is now simpler: We need
only require that all dL(z, w)/du; = 0, which is precisely the same as
requiring that all g;(x) = 0. In other words, £ must satisfy the
constraints,
The final result is the following:
The point z solves the modified programming problem if and only if
there exist v; > 0 and u; such that

Vi(®) + 20 uiVgi(z) = v

and
ve = 0.

This version of the saddle-point theorem can be justified geometri-
cally (Fig. 9). Letting e; be the jth coordinate vector, we have
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X3

x

{x,>0, x,>0, hence ineffective)

Fig. 9. Geometric representation of saddle-point theorem.

Vf(z) = E vie; + Z (—u) Vgi(z),

with Vf expressed as 2 linear combination of normals to the boundaries
of the constraint set. We have v; > 0 because Vf must not point out-
ward across the boundaries z; > 0. If, however, one of these boundaries
is ineffective (i.e., z; > 0), then its normal is also ineffective (i.e.,
v; = 0), and hence vz = 0. This point of view is developed in more de-
tail by Tucker [8].

7. Quadratic Programming

The version of the saddle-point theorem given above yields, rather
surprisingly, a walking method [9] for the solution of an important
class of nonlinear problems: those in which the constraints are linear
and the objective function quadratic. The method is almost exactly
the simplex method, although the presence of the multipliers in our
formulation of the problem enlarges its size.

The quadratic problem is the following:

Minimize f(z) = pz + 27Cz = 2 piz; + 2 #;Cn,
j ik

subjecttox >0 and Az =1b (i.e., E a;x; = b.-).
i
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The index ¢ ranges from 1 to m, and j and % range from 1 to n. The
superseript 7' denotes matrix transposition.

Our general requirement that f be a convex function means that the
matrix C must be positive semidefinite; that is, that 27Cz > 0 for all «.
The method we shall describe requires further a special sort of “non-
degeneracy” condition, namely, that whenever pz = 0, we have
27Cz > 0.

For this problem, Vf(z) is just the vector p + 2Cz, and each Vg;(z)
is the constant vector (a., ¢ - -, a:x). The saddle-point result thus be-
comes, in matrix notation: .

The point x solves the quadratic programming problem if and only if
there exist v > 0 and u such that p + 2Cx + uAT = v and vz = 0.

The feature that allows us to devise a walking method for quadratic
programming is precisely the linearity of Vf; the only nonlinear con-
dition in the above formulation is vz = 0, and it is of a very special
form.

The process is begun with an extreme point z° of the constraints
x 2 0, Az = b. Initially use v = 0 and u® = 0; the condition vz = 0
will then be satisfied but, of course, the other condition will not be.
We can turn to the device of “artificial variables” to work with this
last condition: Let 2} = p,; + 2(Cz%;, and let ¢; = +1 be chosen so
that

2(Cz"); + €21 = —ps.

We have now chosen an initial feasible simplex basis consisting of part
of =% u° and 2° for the problem:
Minimize »_,z; under the constraints z >0, v >0, z > 0,

2 aim; = by,
7
2 20Tk + 2 uiai; — vj + ez = —pj,
k %

E vix; = 0.
i

We shall employ the simplex method in this minimization, with one
difference in order to handle the last restriction: In considering any of
the variables z; or v; as candidates for the new basis (i.e., to be made
positive), do not allow z; > 0 unless »; = 0, and do not allow v; > 0
unless z; = 0.

It can be shown that this routine will terminate in a finite number
of steps, just as in linear programming, with a zero of the objective
i 2;. Then the conditions of the theorem above are satisfied, and the
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z part of the solution of this problem solves the quadratic programming
problem. It is of interest that the simplex solution is usually achieved
more quickly for an m X n quadratic problem than for an (m - n)-
equation linear problem.
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Chapter 12

The Number of Simplices in a Complex™
JOSEPH B. KRUSKAL

1. Introduction

A familiar puzzle for children poses the following question: Given six
sticks all the same size, how can you put them together to make four
triangles all of the same size? The answer, of course, is a tetrahedron.
Similarly we may ask: Given n edges, how many triangles can we make?
More generally, suppose that a complex has exactly n r-dimensional
simplices. Then we may ask: What is the maximum number of r’-
dimensional simplices (r’ > r) that the complex can have? In this
chapter we give an elegant answer to this question.

Since we are concerned here with abstract complexes not embedded
in any space, a simplex consists merely of a set of vertices. It will be
more convenient for us to label a simplex by the number of its vertices
than by its dimension. We speak of an r-set rather than an (r — 1)-
dimensional simplex. For us a complex is simply a finite set of vertices
together with a class of subsets with the subset closure property; that
is, if any subset belongs to the complex then all its subsets also belong
to the complex.

By (%) we denote the general binomial coefficient. As k increases, this
binomial coeflicient increases. If n is any nonnegative integer, we define
its r-canonical representation to be

= () () )

where we first choose n, to be as large as possible without having the

t The problem treated in this chapter was suggested by D. Slepian. The
author wishes to thank him and 8. Lloyd for many helpful suggestions.
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initial binomial coefficient exceed n, and then we choose n,_, as large
as possible without having the first two terms exceed n, and so on
until we finally obtain equality. We can always obtain equality, for
if we do not obtain it before we get to the binomial coefficient with
the denominator 1, then n; can always be chosen to ensure equality.
Furthermore it is clear from our construction that this r-canonical
representation is unique. As an illustration we give the 5-canonical
representations of several numbers:

).

0+(+0)+0+0:
().

2=(5)+()+()

It is not difficult to show that a set of integers n,, + - -, n, is associ-
ated with the canonical representation of some integer if and only if
the following conditions are satisfied:

Il

5

Ne> o >ni 2 1L

If r < 7/, we define f(n; r, r') to be the greatest number of r’-sets that
oceur in any complex having precisely n r-sets. If r > r’, we define
f(n;r, r") to be the smallest number of r’-sets that occur in any complex
having precisely n r-sets. The following theorem answers not only the
question posed at the beginning of this chapter but a natural dual
question as well.

Tueorem 1. If

Ny ng
n = ( )+ “e +(.)canom’cal,
r 1
then

fln;r, 1) = (7::) + (T,n::ll) +ooeF (,' —nri+ 1>°

As usual, we take 0 as the value of any binomial coeflicients in which
either the numerator or the denominator is negative, or in which the
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numerator is strictly less than the denominator. Contrary to usual
practice, however, we also let the binomial coefficient (§) equal 0.
If n,, - - -, n; is any sequence of integers, we let

S o P

We call this expression, and also the sequence of integers (n,, - - -, ny),
r-canonical if the above expression is the r-canonical expression for the
integer it equals. We may sometimes omit the qualifying r if its value
is clear from context. Note that the void sequence is canonical, and
that it corresponds to the representation of 0.

We define a fractional pseudopower nt’'i as follows: If

n = [n,., Tty Ti]r canonical,
then we let
n(r’ll‘) = [nr, e, n'.]r,.

To illustrate this concept we have the accompanying table of (4/3)

SOME (4/3) PSEUDOPOWERS

n 3-canonical representation of n n{/)
0 [ 1s 0
1 3]s 0
2 (3, 2]s 0
3 3, 2, 1] 0
4 [4]s 1
5 [4, 2]5 1
6 [4, 2, 1], 1
7 [4, 3]s 2
8 [4, 3, 1 2
9 [4, 3, 2], 3
10 [5]s 5
11 (5, 2s 5
12 [5, 2, 115 5
13 [5, 3]s 6
14 [5, 8, 1] 6
15 [5, 8, 2]s 7
16 (5, 4]s 9
17 [5, 4, 1], 9
18 (5, 4, 2] 10
19 [5, 4, 3]s 12
20 [6]s 15
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pseudopowers. In the pseudopower terminology our theorem becomes
the following:

TraroreM 1’. Under the hypothesis of Theorem 1, we have
f(n; r, v’} = nt'in,

We remark that our fractional pseudopowers depend separately on
the numerator and the denominator, that is, the (4) and (§) fractional
powers are different. Our notation is perhaps justified by the fact that,
ag n increases, the fractional pseudopower is asymptotically propor-
tional to the ordinary fractional power, and by other properties that
we shall demonstrate later.

2. Application to Sequences of 0’s and 1’s

Let a binary word of length n be a sequence of n 0’s and 1's. Write
Q1 -y by - b,

if a; £ b; for all 7. Let a binary complex C be a set of binary words,
all of the same length, with the property that if b is in C and a < b,
then a is in C. (Such a set C is sometimes called a “lower” set.) We say
that a binary word has weight r if it has r ’s in it.

Let C be a binary complex of words of length n. Let vy, - - -, v, be
abstract vertices. Let v; correspond to the ¢th position in a binary word.
If b = b - - - b, has r U’s, let it be associated with the set R of those
r vertices corresponding to the positions with 1’s in them. That is, let

R(®) = {v:] b; = 1}.

Then C corresponds to a class of sets. We easily see that C is a binary
complex if and only if this class of sets is an ordinary complex.

Therefore our theorem can be restated thus in terms of binary
complexes:

THEOREM 2. If a binary complex C has exactly n words of weight r,
and if r' > r [r' < r), then the maximum [minimum)] number of words
of weight r' that it can have is nt'I",

It is hoped that this theorem will have an application to the prob-
ability-of-error calculations of group codes (see for example [1]); in-
deed, this was the source of the problem solved here.
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3. Some Lemmas and Definitions

We remind the reader that

)=+ o i
<11L>=(n:1)+(3) if =1

We need to distinguish the case ¢ = 1, because for n = 1, the top line
would then yield (}) = () + (); this is false because of our convention
that () = 0. From the above we see that

[nr, R ni]f

_ {[n,.— 1, cee, Ny — 1]f+ [n,—l, cer, Ny — 1],-_1, if 771,

[ne—1, - =1, +[n, =1, - - ,ne— 1,m]py, if ¢=1.
We call a sequence (n,, - - -, n;) r-semicanonical if either
(nf: . ':ni) or (nry sty Ny, Ny — 1)

is r-canonical. We call a representation n = [n,, - - -, n;], r-semi-
canonical if the (n,, - - -, n;) is r-semicanonical. We note that if
(n,, - - -, n;) is r-semicanonical, then it is r-canonical if and only if
Ny & Ny

While an integer n has a unique r-canonical representation, it may
have several r-semicanonical representations. For example, suppose
that

n = [n,, - + -, n;], canonical

and suppose that n; > 7. Then all the semicanonical representations
of n consist of the canonical representation and the following:

[nn R (255 P (7 1, ng — 1]")

[n,, e, N, N — 1, ng — 2, n; — 2],’

[n,, e N, N — 1, ng— 2 - - -,n,-—i+1,n.-—i+1],.
Suppose we have a semicanonical representation for n, that is,
n = [n,, - -+, n], semicanonical.

Then to find its canonical representation we may proceed as follows:
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If this representation is already canonical, we have finished; if not,
then n;y = n, s0
n = [n, +++, N, Nipa + 1], semicanonical.
If thisis already canonical, we have finished; if not, then 7,42 = n.y, so
n = [n,, - - -, Nips, Niys + 1), semicanonical.

If this is canonical, we have finished; if not, we continue in the same
manner until we finally reach the canonical representation for n.
Note that if n = [n,, - - -, n;], semicanonical, then

nir'in = [nr’ cee, n‘]r,’

even though in the definition of pseudopowers we used canonical repre-
sentations. We leave the proof of this to the reader.

Let us order finite sequences of positive integers lexicographically;
that is, one sequence precedes another if and only if it would come
earlier than the other in a “dictionary” of such sequences. Using ele-
mentary facts about binomial coefficients, we can prove that if
[#,, « - -, n:]- and [m,, + - -, m;], are canonical, then

o+ 0l {5} i

according as
<
(Mg« + -y M3) {;} (me, - - -, my)

in the lexicographical sense. Also if [n,, - - -, n:l, and [m,, - - -, mi],
are semicanonical, then

[n,, - - .,n‘.],{ }[m,, -

IV IA

according as

(my, - - -, mu).

IV IA
N’

(n,;---,n;){

It now follows easily that

n <m implies n¢'/"N < mi'in,

b

LemMa 1. The respective relations

(nr'ie))trie’) {

IANIV
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hold according as r/r' {2} 1; further,
[(n(r’lr))(r/r')](r'/r) = plr'in,
The second result follows easily from two applications of the first. We

prove the first only in the case that r/r’ < 1.Supposen = [n,, - - -, n¢];
canonical. Then n¢’!? = [n,, - - -, ni],.. This expression is canonical

unless, for some j,
n; <r —r+4j.

If this inequality holds for some 7, then it also holds for all smaller
values. Now let j + 1 be the smallest value for which this does not
hold. Then we have

a1 = [n, -+ -, nj]e canonical,

so that

eI eir) = n,, o« njp]s < .
This proves Lemma 1.

Lemma 2. If r < 1, then nI™ 4s the smallest integer k such that
k¢ > n, and n'" is the largest integer k such that k™) < n.

Proor. Consider n'*). By Lemma 1, it is a member of the class of
integers k such that k¢'/? > n. Suppose it were not the smallest
member of this class. Then n/*) — 1 would be in this class also. We
would then have

(ntiry — 1) > n,
so that
(rlr’) — ' 1eN(rlr?) > plrir’)
((n 1) >n .
From the preceding lemma we then would have
niris) — 1 > n(rlr’)’

which obviously is a contradiction. The other half of Lemma 2 may be

proved similarly.
Suppose that (n,, + - -, n;) is a sequence of integers with the property

that
Ne> - >nqa2n; 2 1.

Then we define a cascade of type (n,, - - -, n;) to consist (see Fig. 1)
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Fig. 1. A cascade of type (n,, + - -, n).

of a set A, of vertices, of distinguished subsets
Ay -+, Ay

and of distinguished vertices
Uy o+ ) Vipy,

with the following properties:

(a) A,y contains n, 4 1 vertices if » > ¢, and n, vertices if r = 7
(b) A; contains n; vertices for r > j 2 1;

(C) Ar+lDArD st DAt;

(d) vjisinA,-H —AijI'TZj 2 1,+ 1;

(e) all the distinguished vertices are distinct.

We say that the following sets are naturally associaled with the cascade:

(0) every subset of 4,;
(1) v, 4+ each subset of 4, ,;
(2) v, + v,-1 + each subset of 4,_;

(r—1) v,+ - -- 4 vi1 + each subset of 4.

In other words, suppose R is any subset of A,,;. Let us define its degree
j, where r > j > 1%, to be the smallest integer j such that v,, - - -, v;11
belong to E. Then »; does not belong to R. A set R of degree j is naturally
associated with the cascade if and only if

R—{v,, -, 00} C 4,

Lemma 3. The class of all sets naturally associated with o cascade
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forms a complez. If the cascade is of type (n., - - « , n;), then the complex
kas [n,, - - -, n)s s-sets for any s. Suppose that for some s, (ny, - - -, 1;)
is s-semicanonical, and let n = [n,, - - -, n;),. Then for any s’ the com-
plex has n®'/? g'-sets,

We leave the proof of this simple lemma to the reader. We remark
that (n,, < - -, n,) is s-semicanonical exactly for those values of s
such that

n;+r— 1
and s2r—i+1,

N1 +r—it—1

We call any complex like that in Lemma 3 a cascade complez.
Using cascade complexes, we easily find an inequality for f(n;r, r').
LemMA 4. If ' > 7, then

fln;r, r') > ntr'in,
The proof of Lemma 4 is very simple. Let
n = [n,, -+ -, n;], canonical.

Consider the complex associated with a cascade of type (n., - - -, n,).
By our lemma this complex has n r-sets and n¢’/? r’-sets. This proves
the lemma.

If C is any complex and v is any vertex in C, then by definition the
complement of v consists of all sets in C that do not contain ». It is
easy to see that the complement of » is a subcomplex of C. The star of
v consists of all sets in C that do contain ». Of course, the star is not a
subcomplex. The star boundary of v consists of all sets obtained by
taking each set in the star and deleting » from it. It is easy to prove
that the star boundary of v is a subcomplex of the complement of v.

4. Proof of the Theorem

We wish to prove that f(n; r, ') = n®'/” foralln > 1, r > 1, and
r > 1.
LemwMa 5. If
fn 1) = ne'in

for all n and fized r and r’, then
fm; v, 1) = merir)

for all m and the same r and r’.
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CoroLLARY. If the theorem holds for all triples (n; r, r') with r < ¢/,
then 1t holds for all triples whatsoever.

The corollary follows trivially from the lemma. The lemma is trivial
if » = r’. Suppose next that r < r’. By definition, f(m; r’, r) is the
minimum integer n such that a complex with m r’-sets can have exactly
n r-sets. But a complex with n r-sets must have no more than
fn;r, ") = n¢'I” p'-gets. Therefore, we have m < n'/9, Furthermore,
if it were true that m < (n — 1)¢'/?, then there would exist a complex
with m r’-sets and only n — 1 r-sets, which contradicts the definition
of n. Thus we see that = is the least integer such that n¢'/? > m. By
Lemma 2 we then find that n = m@/r), so that f(m; r’, r) = mt/™),
as desired. The case in which r > »’ may be proved similarly.

Henceforth we consider only the case r < r’/. The theorem (in this
case) is trivial if n = 1, for we find by use of the various definitions that

0 if r<v,

. N —
f;nr) {1 if r=r
and

1 = [r]. canonical,
so that
0 if r<r

1 if r=r.

10 = [r], = {

Our proof is by induction on n.

Because of the inequality we proved in Section 3 for f(n; r, »'), it is
sufficient for us to prove the following inductive step: Assume that ¢
is a complex with exactly » r-sets and exactly f(n; r, r’) r’-sets; assume
that f(@; 7, #') = a%'/" whenever 7 < n and 7 < #'; from these as-
sumptions, prove that C has < n¢'/? r'-gsets. We may assume that
n > 1, for if n = 1 we are in the initial case; and we may assume that
r < v’ for if r = r’ then we trivially have

fn; r, v) = n = ntrin,
Furthermore, we may assume that every vertex in C occurs in at least

one r-set in C, for otherwise without changing C in any essential way
we could drop all vertices that do not occur in r-sets.

LeMMA 6. If n > 1, then any complex that has exactly n r-sets contains
at least one vertex v with the following property: The number § of r-sets
in the star of v satisfies the tnequality

PO L)
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Since the proof of this lemma is long and technical, we defer it until
Section 5.

Using Lemma 6, we pick a vertex # in C with star having exactly 5
r-sets, where

j S (n — j) (hl/r).
We also have
0<j<n.

The left-hand inequality holds because every vertex lies in at least one
r-set. The right-hand inequality holds because (since n > 1) not every
vertex can belong to every r-set.

Let Co be the complement of 7, let C; be the star of 7, and let CF be
the star boundary of 3. Then

Co has n—j r-sets,
C: has j r-sets, and
CT has j (r — 1)-sets.
Let do and d; be the number of r’-sets in C and C), respectively. Then
Co has do r'-sets,
Cy has d, r'-sets, and
C: has d; (' — 1)-sets.
We see that
do + dy = f(n; 1, 1').
Using the induction hypothesis on Co, we find that
d < fn— i, ™) = (n — I,
Using the induction hypothesis on Cf, we find that
d < fGsr— 1,7 = 1) = je=timD,

Because Cf is a subcomplex of Cy, it has no more (r' — 1)-sets than
Cy. Thus by using the induction hypothesis on Cy, we find that

d<fln—j;r, v —1) = (n —fr-un,
Now write
n—j=|pn -+, canonical,

J = [a—1, -+ +, q&],—1 canonical.
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We easily see that
(. — f)e=1in = {[pr, « -+, pi}s—1 canonical, if i>1,
[pr, - - -, D3, P2 + 1]r—1 semicanonical, if 7= 1.
Since j < (n — 7)—U9, we have
Dry + * +, P3) if 1>1,
Bry++ P2+ 1) if i=1

We now make an important distinction between the following two
cases: In the normal case, we have

(@r-y+ -y @) < {

@r-1, -+ 5 g6} < (Dry + -+, PO);
in the spectal case, we have
@r-1*+ -, 00 2 @ry -+ -, D).
Let us first consider the special case. Here we have

(pf:"')pc'); if 'i>1,

o) S 0 <
(P; )p) qr-1, ;QI:) (pf,"',ps,pz-l-l), if =1

If # > 1, we clearly have k = ¢ — 1 and

(qf-—lr ) qi'—l) = (Pn MR p");
so that
j= (= jeun,
If 7 = 1, we clearly have
(qf—l) v ',92) = (pr; "',ps) and pz<Q1Sp2+1-

(Of course we must have k = 1.) Thus ¢ = ps -+ 1. It is now easy
to see that for 7 = 1 we also have

j=(n—j)yetn,

so that this equation always holds in the special case.
Now we show that in the special case ¢ has no more than n'/"
r’-sets. First we remark that

n=m—j+j=®—3+ @—je1
=P - ')ps']r"l' |Dry - » ';pi]r—l
=[p,+1,---,p:i+ 1.
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It is easy to see that this representation is canonical, so that we have
ntrin = [pf + 1,00, 004 1
Using the inequalities for do and d, established above, we see that C has
tnir, ) = do+ di < (n— )01 + (0 — =400
= [pf’ R pi]" + [pf’ ) pi]f’—l
=[p,4+1,---, pit 1]y =ntin

r’-sets. This completes the proof of the inductive step in the special
case.

Let us consider the normal case. From the assumption characterizing
this case, we see that there is a number y with r > u > 1 such that

Pr = Qr—1, * * 5 Dutr = Qs Du > Qu-ay

where we interpret ¢,—1 as 0 if g,y does not exist, that is, if k = p.
We observe that

n=m—5+i=[py -, 0+ g - -, @l
=[pe+1, -, P+ Ll
4 [Pumr, + + oy Pt + (G, + + o5 @ilume
Using the inequalities established above for do and di, we see that C has
fln;r, 1) =do+di < (n — 5) 0 A =11
=[or -y pile Mgy - - -, @]
=P+ 1, Puat 1 pule
+ [Buyy - - o Pileeriur F [y, - 0 @)emrran

r’-sets. To simplify our discussion of these complex expressions,
let us make the following definitions. Suppose for the moment
that p = (p,, - -+, ps) i8s any r-canonical sequence, and that
g = (¢, * * *, @) is any (r — 1)-canonical sequence, and suppose
that p > q. Then let x = u(p, g) be the integer such that

Pr=qr-1y * * 5 Put1 = Quy Pu > Qu-1.
For any s > r, let us define
Fp,@) =[p:+1, -, put L, p)e+ [Pumyy » o, Dilemrtun
+ [QM—I; Tty qk]a—r+n—1-
Then it follows that
n = F.(p, q)
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and
fln; r, ") < Fu(p, 9).

LemMma 7. If p s an r-canonical sequence, if q is an (r — 1)-canonical
sequence, and if we constrain p and q by p > q and by the equation
F.(p, q) = n,then F.(p, q) achieves its mazrimum whenn = [p,, - - -, p: ],
and g ts the void sequence. The value of this maximum is n¢'in,

As the proof of Lemma 7 is long and technical, we defer it until the
end of Section 6. This lemma enables us to complete the proof of our
theorem, since we see that

f(n; 7, ) < n0r'In,

The proof of the inductive step in the normal case, and thereby the
proof of the whole theorem, is thus completed.

5. The Number of r-Sets That Contain a Vertex

This entire section leads up to the proof of Lemma 13, which states

that under certain circumstances, a complex with n r-sets must contain

a vertex v lying in only j r-sets, where j satisfies j < (n — 7)), This

is one of the two results that we have already used but have not proved.
Let k.(n) be defined as the largest integer k such that

k< (n— k)e1m,

LemMma 8. If
n—1=[n, -+, n;], semicanonical,
then
e —1, -« mi— 1], i i>1,
k() = {[ ’ b
[ne—1, -, na— 1,4,y if <=1,

Proor. First suppose that the representation given above forn — 1
is canonical. Let k be the expression above. Let j be the largest in-
teger such that n; < j, and let § = ¢ — 1 if this never happens. We
have j 4+ 1 > 4. Using a formula for square-bracket expressions that
we noted earlier, we have

{[n,, coone 1= =1, - mi— 1], if i>1,
n—k= P
[, « o ynds 1 =[ne =1, -« - e = Lmy)ey if i=1,

=fn,—1,-.+,n:,=1],+1 forany i,
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whence

n—k=[n—1,---,n—1],+1
3 {[n, —1,--+,n1—1,5], canonical, if >0,
[n,—1, -+ ,ns— 1,0, semicanonical, if j=0,

so that

o=ty = fl = = bl 70,

[rr—1, -, n0—1,m],y if j=0.
We see directly that £ < (n — k)*—1", Now consider k + 1. As above,
we have

n—((&+1) =[n—1,---,n51 — 1], canonical.
Thus,
= k41 =[n, =1, -+, 0 — 1pen.

We see directly that (k + 1) £ (n — (k 4 1)), Thus if the repre-
sentation for » — 1 is canonical, the lemma is proved. But it is easy
to see that the formula for &, gives the same value when applied to a
semicanonical representation for n — 1 as when applied to the canoni-
cal representation.

We need the following simple lemma:

LemMA 9. Let g be a positive-valued convex function of a real variable.
Let the domain of definition of g be any compact subset of the nonnegative
real numbers. Then the radial vector from the origin to any point of the
graph of g attains its mintmum slope at an endpoint of the domain of
definition.

We leave the proof of this simple lemma to the reader. We shall use
it only with finite domains.

We say that the r-canonical sequence (n,, - - -, n;) has degree 7, and
that the integer [n,, - - -, n;], to which it corresponds has degree ¢ or
r-degree 7. We say that two r-canonical sequences [or two integers] with
a certain property are adjacent with that property if there are no other
r-canonical sequences [or integers] between them. By a run of degree i,
if ¢ < r, we mean an increasing sequence of adjacent r-canonical se-
quences of degree > ¢ with interior sequences having degree exactly ¢
and first and last sequences having degree > 7. For example,
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Py« Pit1),

(®ry + -+ 5 Diy, 9),

®ry -+ ¢y P, 1+ 1),
Pry + s Piry 1+ 2),

(Dry * + + 5 Diryy Piyr — 1),

(p': ° ':pi+1+1)
is a run of degree ¢ if the last sequence happens to be canonical. (If the
last sequence is only semicanonical, then by substituting in its place
the canonical sequence corresponding to the same integer, we obtain
a run of degree 7.) We also use the word “run” to refer to the run of
integers corresponding to the sequences in a run of sequences. For
example,

[pf; ct p"+1]f;

[pn * oty Dityy i]ﬂ

I.pf: * 0y Py i + 1]"1

[pn * oty Py 1+ 2]':

[pf: * 0ty Pity Pipr — 1]")
[Pry « =+ Pisr + 1]+

is a run of degree <. By a run of degree r we mean any finite increasing
sequence of adjacent canonical sequences of degree r, or any finite in-
creasing sequence of adjacent integers of degree r. For example,

(pf)’ (p' + 1)7 (p' + 2): Tty (pf + k)
and

[pr]r; [p" + l]n [pr + 2]" ) [pr + k],.

are runs of degree r. For any canonical sequence of degree 7, where
7 > 1, we form the augmented sequence by adjoining a new last term
that is smaller by 1 than the old last term. Thus the augmented
sequence of (pr, + + +, p:) is (P, * * +, Pi, s — 1). By an augmented run
we mean a sequence of sequences each of which comes from the pre-
ceding one by augmentation; for example,
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(pf; ] p;),
(ph ety Di P — 1),
(pn : ",Pi;Pc—lyps'—2),

(pr;"';ps‘,pi_l;pi—z,"'-p;—i+1).

We also refer to augmented integers and augmented runs of integers
with the obvious meaning. Finally, we define a mizxed run, either of
canonical sequences or of integers, to be a run that can be split into
two segments sharing precisely one term (the middle term), such that
the initial segment is a consecutive interval from some run of some
degree 7, the middle term has degree 7, and the terminal segment is an
augmented run; for example,

®r -+ + 5 Divny P2,
Pry *+ + 5y P, P+ 1),
initial segment
(Pry + * + 5 Piry, P — 1),
(P, -+ * Dityy Di), }middle term

®ry « + +  Pivs, Dy Bi — 1), .
terminal segment

(pf’ c "pl'+1)ﬁi:ﬁi_1; M ',i’i"’i""l).

LemMa 10. If the values of n are restricted so that n — 1 runs through
all terms of some run of constant degree, or of some augmented run, or of
some mizxed run, then k. is convex for this domain of definition.

Proor. We remark that if a function is defined on a finite set, then
to prove convexity it is sufficient to prove that, for every three adjacent
points on the graph of the function, the slope of the line connecting
the first two points is greater than or equal to the slope of the line con-
necting the last two points. What sort of segments of length 3 can the
values of n — 1 take on? We classify these segments of length 3 as
follows: (a) an initial segment from a run of degree 7; (b) an interior
segment from a run of degree 7; (¢) a terminal segment from a run of
degree ¢; (d) a segment from an augmented run; (e) the “middle”
segment from a mixed run, that is, a segment of which the first two
terms are adjacent of degree > 7, the middle term has degree ¢, and
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the last term is the augmented sequence of the middle term. In case
(a), n — 1 takes on the values
[nf) Tty ni—l-l];
[nf: c 0ty Mgy 2],
[nf: M) nH-l:i+ 1]
The slopes of the two lines are found by direct calculation to be 1/1
and (¢ — 1)/4. In case (b), the values of n — 1 are
[nr; te oty iy, ni];
[n") Cr oy Ny, N + 1];
[nn sy Mgy, N + 2]'
By direct calculation the slopes of the two lines are found to be
(#— 1)/n; and (Z — 1)/(n; + 1). The calculation for case (b) also
covers case (c) if we note that the formula for k,(n) is also valid when
used with a semicanonical representation of n. In case (d), n — 1 takes
on the following values:
[72ry ¢ 2 - n"]’
[nf: RN (775 (7 St 1]:
[’ﬂ,-, c e, NG N — 1,7’&;—2].
By direct calculation the slopes are found to be (¢ — 1)/(n; — 1) and
(z — 2)/(n; — 2). Since n; > i, the former slope is > the latter slope.
In case (e), the values of » — 1 are
[nﬁ Tty Ny, n,-],
[nf: cety iy N + 1]:
[nn SRR TSI (TR o ni]'
In this case both slopes by direct calculation are found to be (¢ — 1)/n,.

This proves the lemma.
Using the last two lemmas, we obtain the following lemma:

LemMa 11, For either of the following two domains of definition, k.(n) /n
achieves its minimum at one or the other endpoint of the domain: (a) n is
resiricted so that n — 1 takes on all integer values between and including
two adjacent integers of degree > ©; (b) n is restricted so that n — 1
takes on all values between and including r 4 1 and (}) — 1, where
v>r-4 2.
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Proor. We first prove part (a) by an induction on 7. The initial case
is ¢ = 2. In this case the values of n — 1 form a run of degree 1
(namely a sequence of consecutive integers), so that, by the preceding
Lemma 10, %, is convex over this domain of definition. Hence, by
Lemma 9, the radius vector to the graph of k. achieves its minimum
slope at one end or the other of this domain. The slope of the radius
vector, however, is k.(n)/n. Now we proceed to the inductive step.
Suppose n — 1 takes on all values between two adjacent numbers of
degree > 7. If these two numbers of degree > 7 happen to have the
forms

[nf: c ni'+1] and [nf: tcy Mgy, i];

then our domain has only two points, so our result is trivial. If not, the
two numbers must be of the form

[nr, ey Ny, n.‘] and [n,, sty Ny, N 4+ 1].

This interval is broken up into subintervals by points of degree exactly
7 — 1. In each of these subintervals, k.(n)/n achieves its minimum at
one or the other of the endpoints of the subinterval. Thus the possible
places where the minimum might occur are restricted to values in a
run of degree 7 — 1. Now restricting n — 1 to these values, we see that
k. becomes convex and thus k.(n)/n will achieve its minimum at one
of the two endpoints. This proves part (a).

We prove part (b), using part (a), by a similar method. First break
up the interval of values for n — 1 by all numbers of degree r. These
numbers are [r + 1], [r 4 2],, - - -, [v — 1].. Call the resulting sub-
intervals, except for the last one, intervals of the first kind. Further
break up the last interval, which starts with [v — 1],, by the values
of the augmented sequence starting with [v — 1],, that is, the values

w—1, w=Lv=2], -, b=1,0—-2,---,0—r1],.

Let these resulting subintervals be termed intervals of the second kind.
Now break up each interval of the second kind as follows: If the interval
ends in a number of degree exactly 7, then break up the interval by all
numbers of degree exactly 7 — 1; call the resulting subintervals inter-
vals of the third kind. Each interval of the third kind is the type of
interval considered in part (a), so that k.(n)/n achieves its minimum
value on each interval of the third kind at one endpoint of the interval.
Within each interval of the second kind, however, the endpoints of the
intervals of the third kind form a run of constant degree. Therefore,
by the same argument we used earlier, k.(n)/n must achieve its mini-
mum within each interval of the second kind at one endpoint of the
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interval. Each interval of the first kind is the type of interval con-
sidered in part (a). Therefore, k.(n)/n achieves its minimum within
each interval of the first kind at one endpoint of the interval. Thus
within the whole large interval under consideration, k.(n)/n achieves
its minimum at one of the endpoints of the intervals of either the first
or second kind. These particular endpoints form a mixed run in the
sense of our preceding lemma. Hence, on this domain of definition, %,
is convex. Therefore, k.(n)/n achieves its minimum on the whole large
interval when n — 1 takes on one of the values at either end of the
large interval. This proves Lemma 11.

Lemma 12. If v > r 2> 1, n > 1, if C is a complex with v vertices and
n r-sets, and if j is the minimum, over all vertices, of the number of r-sets
that contain a fixed vertex, then 7 < k.(n).

Proor. Case I: n — 1 < r. In this case we easily calculate that
k.(n) = n — 1. If n = 1 then there is only one r-set in the complex.
But as we assumed v > r, there is some vertex that is not in this r-set,
s0 j = 0 and our result holds. On the other hand, if » > 2 we note
that two distinet r-sets cannot have exactly the same vertices in them.
Thus not every vertex can belong to every r-set. Consequently
some one vertex belongs to at most (n — 1) r-sets. Therefore
i<n—1=k(n).

Case II: n — 1 2 r + 1. Recall that v > r. If v = r 4+ 1, we have

1
s()=( 1)
T r

which contradicts the case II assumption. Thus we have v > r 4- 2.
Now as n — 1 ranges from r 4 1 to

(v>—1=[v—l,v—2,---,v-—r+1],,

T

k,(n)/n achieves its minimum at one of the endpoints by the preceding
lemma. Thus k,(n)/n > the smaller of

RO+ Fr ((:)) .
r+4 2 (v)
.
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By direct calculation these valuesare r/(r 4- 2) and r/v;since v > r + 2,
we find that k,(n)/n > r/v. Thus we have

k.(n) = m/v.

On the other hand, rn/v is obviously the average, over all vertices,
of the number of r-sets that contain a fixed vertex. Therefore
J L rn/v < kJ(n). This proves Lemma 12.

LemMa 13. If r 2 1, n > 1, and C is a complex with n r-sets, then C
contains a vertex such that the number j of r-sets containing this vertex
satisfies

i< = e,

The proof of this lemma is now almost trivial. Since n > 1, we have
v > r. Therefore Lemma 12 applies. Suppose that the vertex that lies
in the smallest number of r-sets lies in j r-sets. Then we have j < k.(n).
By the definition of k., it follows that 7 < (n — 7)™V,

6. The Function F,(p, q)

This section is devoted to proving the final corollary in it. This corollary
is the same as Lemma 7 about the function F,(p, ¢), which was used
earlier but not proved. We repeat here the definition of u(p, ¢) and
F.(p, q). Throughout this section, p will always represent an r-semi-
canonical sequence (p,, - - -+, p:) and g will always represent an (r — 1)-
semicanonical sequence (g,—3, - * *, qx). We shall always assume that
P> q.

Let us define 4 = u(p, q) to be the integer such that p, = ¢y, - - -,
Dut1 = Qu, Du > u—- In this definition we interpret ¢; to be 0 if ¢; does
not exist; this remark is needed only if p = k. We notice that u exists
because we have p > ¢. Notice that r > p, u > 7, and x > k. We define

F.(p,q) = [pr + 1, D+ 1, pn]c + [pu—l; Tty pi]u-—l+n—r
+ [Qn—lf ) qk]n—l+|—-r-

We claim that the next larger r-semicanonical sequence than p
(in the lexicographical ordering, of course) is given by:

a. (Pr, * oty Dy t - 1) if Pit1 # Ds and i > 1,
b. e,y P 1+ 1) if ppa=p; and i=1,
C. (Pry** ) Disg, Pin+ 1) i pir = ps
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We claim that the next smaller (» — 1)-semicanonical sequence than
qis given by:

a’s (@1, 0y Qo) if g =k,
b’ (gryy + -y @ 1 — 1) if >k and k=1,
. @1,y G, Ge— 1, e —1) if g>k and k> 1.

Notice that if p represents n, then the next larger sequence than p
represents = -+ 1 in cases (a) and (b) but represents n in case (c).
Similarly, if ¢ represents n, then the next smaller sequence than ¢
represents n — 1 in cases (a’) and (b’) but represents n in case (¢’).
The act of changing a sequence to the next larger or next smaller se-
quence will be called a strong change in cases (a), (b), (a’), and (b’),
and will be called a weak change in cases (c) and (¢’).

LemMA 14. Let p’ be the next larger sequence than p and let ' be the
next smaller sequence than q.

1. If the change from p to p’ is weak, then F,(p’, q) = F.(p, q).

I1. If the change from q to q’ is weak, then F,(p, q¢") = F,(p, q).

IT1. If the change from p to p’ is strong, then F.(p’, q) = F.(p, ¢) + 1.

IV. If the change from q to g’ is strong, then F.(p, ¢') = F.(p, ¢) — 1.

Proor. We prove the four parts of this lemma one by one.

I. We have piy1 = pi. Let o’ = u(p’, @). f p > 7 4 1, then p’ = p,
and it is easy to see F,(p’, @) = F,(p,@).If p = i, then p’ = p + 1 and
we have

Fl(p’) q) = [pf + 17 tt pﬂ+2 + l) pu+l]'
+ [pn]u+t—r+ [q,., ety Qk]p+._'.
Canceling like terms, we see that

) B Dut1 _ Put1+ 1
Fn(p7q)—F‘(p7q)_(”+1+8.—-r) (y+1+s—r)

Qu
=0
+(#+s—r) ’

by using g, = p,+1 and a familiar binomial identity.

II. We have g >k and k> 1. Let p’' = u(p, ¢'). f 2 k41,
then p’ = g, and it is easy to see that F.(p, ¢') = F.(p, q). If u = kK,
then we see that u’ = u -+ 1 and

Fc(p: q,) = [pr +1,- Dt 1, pu+1]a

+ [pm Tty pi‘]#+t—r + [QM —1,q— 1]u+n—r-
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Canceling the like terms, we see that

Pu+1 Purr+ 1
F. ,,—Fa ’ = -
(», ) (,9) (“+1+8_,.) +1+s—r)

=1 ) -1 )
=0
+(;z+s—r+ +s—r—1
by first using the binomial identity on the g, terms, then using
Qs = Pu+1, and finally using the binomial identity again.
IT1. Let p' = p(p’, q). The sequence p must fall into either case

(a) or case (b), above. In each case it is clear that 4’ = u. In case (a),
we have

i — 1
F.(p',9) = Filp, Q) + (: _ ) =F.(p, 9) +1.

1

In case (b), we have

F.(p',q) = F.(p,9) — (T) + (plf_ 1> =F.(p, q) + 1.

IV. Let ' = u(p, ¢’). The sequence ¢ must fall into either case (a’)
or case (b"). In case (a’), if u > k + 1, then we have u’ = u and

Qx

F.p,q)=F.(p,q) — (k) =F.p,9— 1

In case (a’), if p = k, then p’ = u + 1 and we find that
Fr(p1 q,) = [pf + 1) * 0y Puge + 1: pn+1]f + [pm Ty pi]u*

Canceling like terms, we find that

Pus1 Put1 + 1) (pu+l)
F' , 4 _Fr S = — = —
®,7) ®9 <u+1) (u+1 B

)-)-
I k
In case (b'), if u = 2, we have p’ = uand

g1

F@Av=mm®+(m;§_<l

)=mm@—L

In case (b’), if u = 1, we find '’ = 2 and
Fop,d) =[p-+1,-+,ps+ 1, plr + [pa]s + [0 — 1]
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Canceling like terms, we obtain

F.p,q") — Fu(p,q) = (1;2) - (”’;' 1) + (q1 1— 1)

==—p+qa-—-1=-L
This proves the lemma.
Suppose that

=D D, @Gyt W)y
q, = (qf—b c ik, Pyttt pi)-

We say that p’ and ¢’ are obtained from p and g by interchange of tails
at j. We call this interchange admissible if

Piv1 > Q;
Ditz > Di+1 and or and ¢; > p;
Din1 = Qi1 = ¢
We agree that g; > p; for this purpose if ¢; exists and p; does not.
LemwMma 15. If p’ and q’ are formed from p and q by an admissible inter-
change, then p’ is r-semicanonical and q’ is (r — 1)-semicanonical. Also,

wehave u — 12521, p" > p, ¢ <q, and p' > q'. Finally, we have
F,(p', ¢) = F.(p, 9).

Proor. To prove this lemma, first write p’ = (p, - - -, 2},
¢ = (g1, -+ +, ¢). It is obvious that p} > h and ¢} > h for all A.
Suppose the interchange occurred at j. Since

Gr1 = Qi1 > ¢ > D = @)y
we easily see that '
Gr1> Groa > + 0+ > gir > g

Thus we see that ¢’ is (r — 1)-semicanonical. If p,4; > ¢;, then we see
that

Pi+1 = Di1 > ¢ = Dj, -
and also, by admissibility, that
Ditz > Dinr
(even if p; should fail to exist), so that

Dr > Proy > --->P1,c+12171:-
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Thus in this case we see that p’ is r-semicanonical. On the other hand,
if pip1 = gjy1 = ¢; then ¢;—; does not exist, so we see that 7 = k. In
this case we have

' = (pr, * * -, Disy, Dis1),

80 p’ is r-semicanonical. (Again we have p;y2 > pj1 by admissibility
even if p; does not exist.)

Now suppose for the moment that j > p. By the admissibility con-
dition, we have either

Pi+1 > @i OF  Djy2 > Piy1 = Qiy1.
The definition of x implies both
Piv1=¢ and Dj = iy

This contradicts the preceding statement, and shows thatj > uisfalse.
Thusu — 1 2>452> 1.
Now it is easy to see that p’ > p because we have

? 7 !
Dr = Dry * * *y Dit1 = Piyy, Di = g; > Dj

and that ¢’ < ¢ because we have

! I4 !’
Gr-1 = Gr-1, * * *, Qi41 = Gty q; > pi = ¢j.

Now we have p’ > p > ¢ > ¢ from which p’ > ¢’ follows. From the
fact that p — 1 > j it follows that u(p’, ¢’) = u, and hence easily that
F.(p', ¢') = Fi(p, 9.

We define the standard transforms of p and ¢ to be p* and ¢*, which
are defined as follows:

1. If p satisfies case (c), then p* is the next larger sequence than p
and ¢* = g¢;

il. If (i) does not apply and if ¢ falls into case (¢’), then p* = p and
¢* is the next smaller sequence than ¢;

iii. If neither (i) nor (ii) applies, and if forsome jwithpy — 1 27> 1
we have p; < ¢;, then p* and ¢* are formed by interchanging the tails
of p and q at the largest such j;

iv. If neither (i) nor (ii) nor (iii) applies, then p* is the next larger
sequence than p and ¢* is the next smaller sequence than g.

LeMMA 16. Let p* and q* be the standard transforms of p and q.
Let u* = u(p*, q*). Then the following statements are true:

I. If case (iii) of the standard transform definition applies to p and g,
then the interchange involved is admissible.



276 Programming, Combinatorics, and Design

II. The transform p* is r-semicanonical, the transform ¢* is (r — 1)-
semicanonical, and p* > q*.

II1. The transforms p* and ¢* satisfy p* > p and ¢* < g.

IV. We have F.(p*, ¢*) = F.(p, q).

V. For s > r, we have F,(p*, ¢*) = F\(p, @).

CoroLLARY. If ' > r, if p is a variable r-semicanonical sequence, if q
is a variable (r — 1)-semicanonical sequence, and if p and q are con-
strained by the requirements p > qand F.(p, Q) = n, then F,(p, q) reaches
its mazimum value when n = [p,, + - -, p:], and q ¢s the void sequence.
The value of this maximum is n"'I",

Proovr. First we prove that the corollary follows from the lemma.
If p and q are any pair satisfying the constraints, then according to the
lemma the standard transforms of p and ¢ also satisfy the constraints
and furthermore yield at least as large a value for F,.. Now let us take
standard transforms repeatedly. Each time we do so, the value of F,
will not decrease and may perhaps increase. Let p and ¢ now be the
final pair of sequences we obtain for which it is not possible to form
standard transforms. Clearly ¢ is the void sequence. Then u(p, ¢) = r
and

n = Fr(py Q) = [pf]f + [pf—ly Tty p"]f—l = [pr, ] pi]ﬂ
Thus we find that the pair p and ¢ such that
[Ds, -+ -, pilr=n and gqvoid

yields at least as large a value for F, as any pair of sequences satisfying
the constraints. Thus the maximum value for F,. does indeed occur at
p and ¢, and the value of this maximum is

F"’(p) Q) = [pr, Tttty piJr’ = plr'in,

Thus the corollary follows from the lemma.

Now we proceed with the proof of Lemma 16. We prove the five
parts of it one by one.

I. Since this part is concerned with case (iii), we know that p does
not fall into case (c) nor ¢ into case {(¢’). Thus we have p;y1 # p; and
hence p, > - -+ > pi1 > pi. Now let j be the largest integer with
g — 1 > 7 2 1such that p; < ¢;. We know that such an integer exists
because we are considering case (iii). We claim that if 4 > j7 + 1 then

Dit2 > Dir1 = Qi1 = G5 > D

The first inequality follows from our remark above. The second follows
(because p > j + 1) from the definition of j. The third inequality is
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trivial and the fourth follows from the definition of j. Clearly we must
have either p;11 > gjorelse pj11 = g1 = ¢;, and in either case we find
that the interchange is admissible. This settles the case u > j + 1.
If u =75+ 1, we claim that

Dit+z > Dj+1 > @i > Dj-

The first inequality follows as before. The second inequality simply
states that p, > gu—1, which follows from the definition of u. The third
inequality is trivial. Thus in this case also, the interchange is
admissible.

II. In cases (i), (ii), and (iv) the results are all trivial. In the case
(iii) the results follow because we now know that the interchange is
admissible,

ITI. This is trivial in all cases.

IV and V. In case (iii) the standard transforms are formed by an
admissible interchange. Therefore, by an earlier lemma we know that
F.(p*, ¢*) = F.(p, 9. In cases (i) and (ii), respectively, parts (I) and
(IT) of Lemma 14 yield that F,(p*, ¢*) = F.(p, q). In case (iv), parts
(I1I) and (IV) of that same lemma yield that

F(p* ¢*) = F,(p*, @) —1=Fi(p,9 +1 - L

It remains to prove (V) in case (iv). Clearly we may assume that
s > r. First suppose that g falls into case (b”). Then ¢, > 1. Since we
are dealing with case (iv), we have p; 2> ¢, whence p; > 1. Thus p
must fall into either case (b) or case (¢). Since this is case (iv), however,
p must actually fall into case (b). Therefore, we have

p*=(pr, -, 0,1+ 1),
and
q* = (qf—ly Q2 Q1 — 1)

As we have p; > p1 2> ¢, we find that ¢ > 2 and hence u* = u. Then,
canceling like terms, we obtain

F.0*%q") = Fu(p,9) = (s le :—-: 1) B (s —I;I+ 1)

a-—1 0
+(s—r+1>—(s—r+l)
=( P )_(q1—1>20,
S§s—7 S—7

which gives us the desired inequality.
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Next suppose that ¢ falls into case (a’), so that ¢ = k. We claim
that p > k. Thus, we know that x > k, and if we had p = k, then we
would have pi1 = ¢« = k, which violates the basic requirement
Pry1 2 k 4+ 1. From p > k it follows that p* = p, for we have

* * * *
Dr =Pr=Gqr—1= Qr-1y * * 5 Ppt1 = D1 = s = Qs
* %*

Ds = Du > Qu1 2 Qe

Now if p falls into case (a), we have

i1 —1 k
F.(p* q¢*) — F.(p, q) = - =0-0.
®* ) @9 (s—r+i—-1> (s—r+k)

On the other hand, if p falls into case (b), then we have

. B P+ 1 _ Y4 _ k
F,(p* g% F'(p’Q)—<s—r+ 1) (s—-r-l—].) (8—T+k)

=( P )—020.
S—T

This proves Lemma 16.
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Chapter 13

Optimization in Structural Design
WILLIAM PRAGER

1. Introduction

To explain some fundamental concepts of the plastic analysis of struc-
tures, let us consider a thick-walled circular tube that consists of a
ductile material and is subjected to internal pressure. When this pres-
sure is gradually increased, starting from zero, the tube at first behaves
in a purely elastic manner; that is, all deformations are reversible and
disappear completely when the internal pressure is reduced to zero.
The first permanent deformations occur at the interior surface of the
tube, when the internal pressure reaches a critical value that depends
on the ratio of the interior and exterior radii of the tube. As the pressure
continues to increase, the plastic region—the region in which perma-
nent deformations are occurring—grows in diameter; but as long as
it remains surrounded by an elastic region in which all deformations
are reversible, the permanent deformations in the plastic region remain
of the same order of magnitude as the reversible deformations in the
elastic region. Plastic flow—that is, the rapid increase of permanent
deformations under substantially constant internal pressure—becomes
possible only when the interface between plastic and elastic regions
reaches the exterior surface of the tube. For practical purposes, the
corresponding value of the internal pressure represents the load-
carrying capacity of the tube.

These three successive stages of purely elastic deformation, contained
elastic-plastic deformation, and plastic flow can be observed in any
statically indeterminate structure that is made of a ductile material.
Since the load-carrying capacity is reached only well beyond the elastic
range, the rational design of such a structure must be based on the
theory of plasticity.
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f-—- q ———L-— oq —d

Fig, 1. Stress and strain in a perfectly plastic solid under simple
tension or compression.

2. Rigid, Perfectly Plastic Behavior

Figure 1 shows the stress-strain diagram of a rigid, perfectly plastic
solid in simple tension or compression: the intensity o of the uniaxial
stress is used as ordinate and the corresponding unit extension ¢ as
abscissa. The absolute value of ¢ cannot exceed the yield limit oy. As
long as [ o| < oo, the specimen remains rigid; that is, the strain rate éis
zero. When IaI = ¢y, the specimen is free to assume any rate of ex-
tension é that has the same sign as the stress o. Since only the sign
and not the magnitude of the strain rate depends on the stress, the
material is inviseid. This absence of viscosity is typical for structural
metals at moderate temperatures and strain rates.

When the specimen flows plastically with the strain rate ¢, the
mechanical energy that is dissipated in a unit volume per unit of time
—that is, the specific power of dissipation—is given by

o€ = aolél. (2.1)

It is worth noting that this relation contains the complete specification
of the considered mechanical behavior. In fact, it follows from this re-
lation that ¢ = oo when é > 0,and ¢ = —oowhené < 0,andé =0
when —oy < ¢ < oo.

In the one-dimensional stress space with Cartesian coordinate o, the
convex domain —ay < o < oy represents the set of uniaxial states of
stress that can be attained in the considered material. The specific
power of dissipation D(¢) = o'ol é| may be regarded as the supporting
function of this convex domain of attainable states of stress. Note
that this function is homogeneous of the first order and convex.
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For an isofropic material, the following hypotheses yield an accept-
able generalization of this rigid, perfectly plastic behavior under uni-
axial stress:

a. The stress tensor and the strain-rate tensor have a common sys-
tem of principal axes.

b. The specific power of dissipation is a single-valued function of the
principal strain rates é, é, &; this dissipation function is homogeneous
of the first order and convex.

The state of stress specified by the principal stresses o1, o2, a3 will
be called compatible with the strain rate specified by the principal
values él, 6'2, és if

0'1@1 + 0'262 + 0363 = D(é1, éz, és), (22)

where the right-hand side is the dissipation function.

In applications, this dissipation function is often piecewise linear.
For example, for plane states of stress with the principal values ¢y, o,
and o; = 0, the yield condition of Tresca [1]is widely used, correspond-
ing to the specific power of dissipation

0’16'1+0'2€'2=%00(l€'1| + &) + |a+e&]) (23)

This relation contains the complete specification of the mechanical
behavior of the considered material under plane states of stress. If, for
instance, é > 0 and é& < 0, a comparison of the coefficients of ¢ and
€& on the two sides of (2.3) yields o1 = o0, 2 = 0. In the two-dimensional
stress space with rectangular Cartesian coordinates oy and o, this state
of stress is represented by the point A in Figure 2. On the other hand,

%
A
%
| 4
} —
%
| 5
- O, —]e— 0, —»

Fig. 2. Two-dimensional stress space.
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if & >0, but é <0and é + é& <0, one finds in a similar way that
01 =0, o; = —og, (point B in Fig. 2). It then follows by continuity
that all states of stress represented by the points of the segment AB,
that is, the states of stress satisfying o1 — 02 = oo Wwith oy > 0 and
o2 < 0, are compatible with the same type of strain rate satisfying
é >0, & <0, and é 4+ é = 0. A complete discussion of all possible
combinations of the signs of &, é, and & + é in (2.3) furnishes the
hexagon in Figure 2 as the boundary of the region of attainable states
of plane stress. We shall say that this hexagon represents Tresca’s
yteld limit for plane states of stress.

3. Plastic Analysis

In the fundamental problem of plastic analysis, one considers a body
consisting of a perfectly plastic material and assumes that the points
of the part Sy of its surface are not allowed to move, that is, have
vanishing velocity, while the remainder Sz of the surface of the body
is subjected to given surface tractions. One wishes to know whether
plastic flow will or will not occur under these conditions.

In the discussion of this problem the following concepts prove useful:

a. A stress field that is defined throughout the volume V of the
considered body is called statically admissible if the stress components
are continuously differentiable functions of position that satisfy the
equilibrium conditions in V and on Sr.

b. A velocity field that is defined throughout the volume V is called
kinematically admissible if the velocity components are continuously
differentiable functions of position that vanish on Sy.

As a matter of fact, the condition that these fields should be con-
tinuously differentiable can be relaxed to some extent, but a detailed
discussion of this possibility would exceed the scope of this chapter.

The load-carrying capacity of the body is characterized by the fol-
lowing results:

TueoreM 1. The given surface {ractions represent the load-carrying
capacity of the body if there exists a statically admissible stress field,
the stresses of which are at or below the yield limit and compatible with
the strain rales of a kinematically admissible velocity field that does not
represent a rigid-body motion of the entire body.

THEOREM 2. The given surface lractions exceed the load-carrying
capacity if there exists a kinematically admissible velocity field with strain
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rates such that the integral of the dissipation function extended over the
volume V is smaller than the power of the given surface tractions on the
velocities of the points of Sy.

The proof of these theorems must be omitted for lack of space, but
the following immediate consequences should be noted. In the circum-
stances of Theorem 1, quasi-static plastic flow will oceur, in which the
power P of the given surface tractions must equal the integral of the
dissipation function extended over the volume V'

P = f D dv. 3.1
On the other hand, in the circumstances of Theorem 2 we have

P> f Dav. (3.2)

4. Plastic Design

In the fundamental problem of plastic design, one considers a region
Vo of space, each surface element of which belongs to one of the follow-
ing three classes: at a loaded surface element of dSr, a nonvanishing
surface traction is prescribed; at a supported surface element dSy, the
velocity vanishes; and at a free surface element dS,, the surface traction
vanishes. A region V is to be determined that is contained in ¥V, and
satisfies the following conditions:

a. The surface of V consists of the loaded surface Sr, the supported
surface Sy, and a third surface S.

b. If V is completely filled with the considered rigid, perfectly plastic
material, a body is obtained for which the given surface tractions on
Sz represent the load-carrying capacity when it is supported on Sy and
free from surface tractions on S.

¢. The volume of V has the smallest value that is compatible with
the preceding conditions.

We shall distinguish three types of plastic design. A body will be
said to represent an optimal, an admissible, or an excessive design ac-
cording as conditions (a), (b), and (c¢) are fulfilled, or only conditions
(a) and (b), or only condition (a) and a modified form of condition (b)
that is obtained by specifying that the given surface tractions should
be below the load-carrying capacity of the body.
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Denoting the dissipation function of the considered material by D,
let C be a body that represents an admissible or an optimal design. In
either case, quasi-static plastic flow will take place under the given
surface tractions. If the volume of C is denoted by V¢, by (3.1) we
therefore have

P =fDdVa. (4.1)

It will he shown that C represents an optimal design if the velocity
field of the considered quasi-static plastic flow can be so continued in
Vo — V¢ that the dissipation function has a constant value through-
out Vo.

Let the body C* that occupies the region V§ & V, represent an
excessive design. The extended velocity field of the quasi-static flow of
C is a kinematically admissible velocity field. Since the surfaces of both
C and C* contain the entire loaded surface Sr, the power of the given
surface tractions on the considered velocity field has the same value
for these two bodies. If this power were to exceed the integral of the
dissipation function over V§, the second fundamental theorem of
plastic analysis would indicate that the given surface tractions exceed
the load-carrying capacity of C*. However, since this body is to repre-
sent an excessive design, we must have

f DdVe> P. 4.2)

If, now, the considered velocity field yields a constant value of the
dissipation function throughout the region V,, which contains both V¢
and Vg, it follows from (4.1) and (4.2) that

f Ve < f ave. (4.3)

In other words, the volume of C is not greater than the volume of an
arbitrary body C* of excessive design that is contained in V', no matter
how close this body may be to plastic flow.

5. Example

To illustrate the discussion of Section 4, consider a thin plane disc of
variable thickness attached to a rigid foundation along a given are,
the foundation arc. Loads that are applied to the edge of the disec and
act in its plane produce a plane state of stress for which the dissipation
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function of the rigid, perfectly plastic material of the disc is supposed
to be given by the right-hand side of equation (2.3).

We shall assume that the principal stresses in the plane of the disc
are such that ¢; > 0and o < 0 throughout the disc. The state of stress
at an arbitrary point of the disc is then represented by an interior point
of the segment AB in Figure 2. From what has been seen above, the
principal strain rates then satisfy the condition

él + éz = 0, (51)

with ¢ > 0. In these circumstances, the dissipation function on the
right-hand side of equation (2.3) can be written as D = g¢é;, and the
optimality condition of Section 4 reduces to

é1 = const. (5.2)

We choose rectangular axes z, y in the plane of the disc and denote
the velocity components with respect to these axes by « and v, respec-
tively. The condition (5.1) is then equivalent to

Uz + vy =0, (5.3)

where the subscripts indicate differentiation with respect to the co-
ordinates, and (5.2) yields

4uv, — (v - u,,)2 = é: = const. 5.4)
To satisfy (5.3), introduce a stream function ¥(z, y) so that
u =y, v = —¢,. (5.5)
According to (5.4), this stream function must satisfy

8y + (Pos — ¥y)" = — 461 = const. (5.6)

On the foundation are, we have u = » = 0; that is, the function ¢ is
constant and its normal derivative vanishes. Since the velocity field
determines the stream function only to within an additive constant,
we may set ¢ = 0 on the foundation are.

The partial differential equation (5.6) is of hyperbolic type. In the
neighborhood of the foundation are, the function ¥ may therefore be
determined by the method of characteristics from the initial conditions
on this arc. A graphical method for this has been described in an earlier
paper [2].

If, in particular, the foundation arc is circular, the characteristics—
which incidentally are the lines of principal stress in the disc—are
logarithmic spirals which intersect the radii at 45°. Let us assume that
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Fig. 3. Optimal design for a single force on a disc with
circular foundation are.

the single force F shown in Figure 3 acts on the disc. The character-
istics through the point of application A of this force then form the
edges of the dise, which must be reinforced by ribs along these edges.
Since each rib follows a line of principal stress, the forces transmitted
by the disc to the rib are normal to the latter. Accordingly, the axial
forces in the ribs have constant intensities, which are readily found by
decomposing the force F in the directions of the ribs at A. These in-
tensities and the curvatures of the ribs determine the forces trans-
mitted by the ribs on the edges of the dise. These edge forces set
boundary conditions of Riemann type for the principal forces N; and
N in the dise. These principal forces must satisfy the equilibrium
conditions

Ny, N;— N,
B 931 p2 -
5.7
0N, N:— N,
— =0,
asz p1

where p;, p2 are the radii of curvature and s, s, the arc lengths of the
characteristics. Finally, the variable thickness h of the disc is obtained
from the equation of the side AB of the hexagon in Figure 2, namely,

Ny — N; = ooh. (5.8)
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8

Fig. 4. Modification of optimal design for foundation arc with end point.

Figure 4 shows how the optimal design is modified when the founda-
tion arc ends at B. In the region BCD the characteristics are con-
structed as before from the conditions on the foundation arc. This set
of characteristics is then continued beyond BD by using the already-
known conditions on BD and the fact that B must be an intersection
of characteristics.

6. Historical Remarks

The mechanical behavior of a rigid, perfectly plastic solid is usually
specified by its yield condition and flow rule (see, for instance [3]).
The first characterizes the states of stress under which plastic flow is
possible, and the second indicates the type of plastic flow that occurs
under each of these states of stress. The possibility of specifying the
mechanical behavior of a rigid, perfectly plastic solid by its dissipation
function was pointed out by Prager [4].

The fundamental theorems of plastic analysis were developed by
Greenberg, Drucker, and Prager in a series of papers ([5]-[8]). For
typical applications of these theorems see [9]-[11], where numerous
further references will be found.

The problem of plastic design for minimum weight was first treated
for continuous beams and frames by Heyman [12] and Foulkes [13],
[14]. Although isolated problems of optimal plastic design of plates
[15], [16] and shells [17]-[19] had been treated before, the general
principle presented in Section 4 is due to Drucker and Shield [20].
For a more detailed discussion of the example in Section 5 and related
problems, see Te Chiang Hu [21].



288 Programming, Combinatorics, and Design

Procedures for optimal structural design that are not based on the
concepts of plastic analysis have been discussed by Michell [22], Cox
[23], [24], and Hemp [25].
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Chapter 14

Geometric and Game-Theoretic Methods
in Experimental Design
G. ELFVING

1. Introduction

The purpose of this chapter is to draw attention to certain relatively
recent developments in the theory of experimental design. The em-
phasis here is on ideas and connections rather than on actual
techniques. '

We shall throughout be concerned with linear experiments, that is,
experiments composed of independent observations of form

Yy = ara + 1, v=1---,n, (1.1)
where a = (ou, * + *, ax)’ is an unknown parameter vector, the
a, = (an, *+ * +, ax)’ are known coefficient vectors, and the independent

error terms 7, have mean 0 and a common variance, which we may, for
convenience, take to be 1. In matrix notation, the equation (1.1) may
be written ¥ = Aa -+ 7. Provided A is of full rank %, it is well known
that the least-squares estimator vector 4 is given by

Q= (A"A) 1Ay = a+ (A’A)1A" (1.2)
and has covariance matrix cov @ = (A4’A)~. The matrix
M=A'A=23 aa, (1.3)
p=1 .

is termed the information matriz of the experiment; it essentially deter-
mines its estimatory properties.

t This work was supported by an Office of Naval Research contract at Stan-
ford University.
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Thus far we have been concerned with a given experiment. On the
design level, of course, the experiment has to be composed of observa-
tions chosen from a set of potentially available ones. Since an obser-
vation, in our setup, is described by the corresponding coeflicient
vector a,, we shall assume that there is given a bounded and closed set
@ in k-space from which the observations a, have to be selected, each
one being independently repeatable any number of times. It is no re-
striction to assume that @ is symmetric about the origin, since the
observation —y is automatically available along with y. The set @ may
be finite (as is usually the case in analysis of variance, the coefficients
being 0 or 1), or it may be described, for example, by means of a con-
tinuous parameter z (as in polynomial or trigonometric regression
models).

An actual experiment, then, is described by its spect