NASA TAX

by
DAVID M. HAMMOCK and BRUCE G. JACKSCN MANNED SPACECRAFT CENTER, NASA

$$
\begin{aligned}
& 28 p . \\
& \text { Presented at the } \\
& \text { AMERICAN ASTRONAUTICAL SOCIETY } \\
& \text { []Coif } \frac{\text { SYMPOSIUM ON THe EXPlORATION OF MARS }}{\frac{\text { DENVER, COlORADO }}{\text { JUNE 6-7, } 1963}} \\
& N 65-88833 \\
& \mathbf{X 6 3} 5671
\end{aligned}
$$

This paper briefly describes three modes for accomplishing the Mars landing mission and compares them on a gross basis to indicate their probable order of merit and to identify design requirements placed on the Mars-excursion module (MEM) by the choice of mode. The paper shows that a flyby-rendezvous mode requiring low weight in earth orbit requires the MEM to enter the Mars atrosphere at velocities ranging From 20,000 to 30,000 ft/sec. The NEM for the flybyrendezvous mode is nct covered in this paper but merits further stuãy.

The NIM for the other modes of mission accomplishment bagins its active operational sequence in Nars orbit and need not be greatly influenced by the method of delivery to Mars orioit.

Parametric studies of the entry problem for two vehicles typiffying a ballistic-type and a lifting-body-type were conaucted to identify the problems associated with design of a MHM to accommodate the extremes of Mars atmospheric density presently predicteā.

This brie? study inaicates that: (a) the presently oredicted änsity extremes of the Mars atmosphere present no serious design problems for a MEM which cen ojecate across the entire band or preãicted censities; (i) details of operational requirements and mission objectives will controi the choice oz configuration rather than entry requirewents; ana (c) the ballistic-type Vind is lighter and soupler but has less operational Ilexibility than a high L/D IEN.

Mars is perhaps the most exciting target for space exploration following Apollo and its definition of the lunar characteristics. Mars is particularly interesting becuuse of the possibility of life on its surface and the ease with which men migitt be supported there. The temperatures of the Mars surface are temperate, when we consider the wide range of temperatures in space; the atmosphere is relatively hospitaile. However, atmospheric pressures are such that some type of pressure suits would have to be worn; and the atmosphere for breathing would have to be supplied. The atmosphere contains water vapor and probably oxygen (. 1% to 2%) which can be concentrated with relatively simple systems to provide the des red concentration of oxygen and to provide water for drinking and various sanitary purposes. Since it appears that with relatively simple equipment all the life support requirements on the Mars surface could be met, with the excepticn of food, the logistics support for a Mars scientific station would be small. In addition, if atmospheric braking is used for landing supplies on Mars, tle energy requirement is less than that required to deliver cargo to the lunar sirface.

Studies indicate that the exploration of Mars is feasible with the present technolcgy. However, certain advances in this technology are highly desirable and wouid reduce considerably the weight in earth orbit required to accomplish this mission. The Apollo guidance and navigation system techniques are adequate for the Mars mission. Nost of the subsystems and equipment of the Apolio command module are adequate for the earth reentry. The greatest advance in technology required is in the area of heat-protection systems for earth reentry for velocities ranging from 45,000 to $60,000 \mathrm{ft} / \mathrm{sec}$.

It appears feasible to accomplish the mission using the Saturn V as the launch vehicle and with chemical propulsion in the spacecraft. Nuclear propulsion for earth-orbit-depart would be highly desirable, but not essential. Nuclear propulsion reduces the number of Saturn V's that would have to rendezvous to provide zarth-depart propulsion. This capability, with the present technology and systems now under development, makes the Mars missions of immediate interest.

MARS MISSION MODES

There are a multitude of modes for accomplishing the Mars mission. However, the mos; attractive modes appear to be variations of three basic modes. Since the modes differ primarily in the use of propulsion or atmospheres for braking and in the place that rendezvous operations occur in the mission, we will refer to thesc: modes as:

1. the flyby-rendezvous mode

- 2. the aerodynamic-braking mode

3. the propulsive-braking mode

Flyby-Rendezvous Mode

The flyby-rendezvous mode is shown in Figure I. This mode involves two spacecrift. One spacecraft, the NEM, is launched, proceeds directly to Mars, decelerctes and lands, using the Mars atmosphere. The other spacecraft flys by Mars without decelerating and returns to earth.

The sequence briefly is:

1. Rendezvous the Saturn V payloads in earth orbit necessary to assemble the flyby spacecraft and accomplish assembly and checkout.
2. Launch the flyby spacecraft into the Mars flyby trajectory. This launca may occur 50 to 100 days prior to launch of the MEM since its transit time to Mars requires about 200 days.
3. Rendezvous the necessary Saturn V payloads to assemble the MEM in earth orbit. Assemble and checkout the MFM.
4. Launch the MEM into a trajectory designed for airect landing on Mars.
5. The MEM proceeds to Mars, decelerates aerodynamically to elliptical orbit velocity and may establish a circular orbit from which the landing site is chosen. If the approach trajectory is such that a desired landing site may be reached without establishing a circular orbit, the landing is accomplished in a continuous maneuver from initial entry.
6. Choices in the launch times and trajectory variables of the two spacecraft are such that stay-times of about 40 days can be provided without undue increases in the required injection velocities. Scientific and engineering research activities are conducted during the stay on the surface.
7. As the flyby spacecraft approaches Mars, the details of its trajectory are transmitted to the MEM and the detailed procedure for rendezvous is developed by the two spacecraft.
8. As the flyby spacecrait passes Mars, the ascent stage of the MEM is launched into a trajectory matching that of the flyby spacecraft. Rendezvous is accomplished on the return trajectory. A launch window of three to four hours can be provided for at the expense of an added $1,000 \mathrm{ft} / \mathrm{sec}$ velocity capability above that required to match spacecraft velocities in the ideal case. The rendezvous would then be accomplished about two days after launch.
9. After rendezvous, the MEM crew transfers to the flyby spacecraft and the return trip is completed.

Aerodynemic-Braking Mode

This mode is shown in Figure 2. The sequence for the mission is:

1. The Saturn V payloads necessary to assemble the spacecraft are launched into earth orbit. The spacecraft is assembled and checked out and the spacecraft is launched into the trans-Mars trajectory.
2. The spacecraft is then deployed to its artificial-gravity configuration anc spun up to produce the artificial gravity for the outbound portion of the flight which will cover approximately 120 days. The crew then settles into its normal routine wherein the activity is divided between the operation of the spacecraft, the conduct of scientific experiments, and the collection of engineering information. Course-correction maneuvers are executed as required.
3. At about five to ten days out from Mars, the vehicle is brought back to its entry configuration and final entry-corridor corrections are made.
4. The vehicle enters the Mars atmosphere at velocity of about $25,000 \mathrm{ft} / \mathrm{s} \equiv c$, which is typical of missions for the early 1970's. Velocities up to $35,000 \mathrm{ft} / \mathrm{sec}$ are typical of missions occurring in the late 1970's. The spacecraft enters the Mars atmosphere and decelerates to orbital velocity, which is about $11,000 \mathrm{ft} / \mathrm{sec}$. The deceleration maneuver is adjusted suck that an elliptical orbit is established which has an apogee near the desired circular-orbit altitude from which landings will be conducted.
5. After the desired orbit is established, the Mars-excursion module is checked out, landing sites are selected, landing operations planned, and the Mars-excursion moulule crew enters the MEM. The MEM is then decelerated from the Mars orbit and descends aerodynamically to the surface.
6. The crew stays on the Mars surface from 10 to 40 days conducting various scientific activities and exploring the surface in the vicinity of the MEM.
7. When the exploration is complete, the launch stage of the MEM is prepared for launch and is injected into a rendezvous trajectory with the earth-return spacecraft.
8. Rendezvous is accomplishec in the Mars orbit. The crew and scientific data are transferred to the spacecraft which then prepares for the return journey.
9. The spacecraft is injected into the trans-earth trajectory and the return-trip operations are similar to those conducted on the outbound trip.
10. As the earth is approached, the crew makes the final terminal corrections, enters the earth-reentry module, checks it out, accomplishes the reentry, ana completes the mission.

Propulsive-Fraking Mode
The propulsive-braking mode is similar to the aerodynamic-braking mode just described except that a propulsion module is used to decelerate the vehicle into a Mars crbit, rather than using the Mars atmosphere for deceleration. Except for this deceleration into the Mars orbit, other phases of the mission are simi... The propulsive-braking schome has the advantage of considerable flexibiility in arrangement of the configuration. There are no requirements that the spacecreft heve any heat protection or any special aerodynamic configuration ITe atmcspheric deceleration to a Mars orbit. Therefore, freedom is allowed in tie manrer in which provisions will be made for packaging the MEM and for proaucing artificial gravity.

Mission Mod Compariso
lakie I is a weight summary for the atmospheric-braking-mode spacecraft in earth orbit. These weights are based on a 40-day laumch window and total 1.47 million pounds. It appears operationally feasible to design for a contingency
time in earth orbit, therefore eliminating the 40-day launch window requirement. With a one-day launch window, the total weight in earth orbit is reduced to 1.2 million pounds.

Figure 3 shows a comparison of the variais modes for accomplishing the Mers mission. It can be seen from the weight requirements for the flyby-rendeavous mode ani the atmospheric-braking mode with a one-day launch window that the atmospheric-braking mode requires only slightly more weight than the flybyrendezvous mode. The all-chemical propulsive-brake into Mars orbit requires a weight in earth orbit which is greater than the atmospheric-braking modes by a factor of about 3. If nuclear propulsion is used for all propulsive phases of the mission, departing earth orbit, braking at Mars and departing Mars, the total weight in earth orbit is reduced to about 1.5 million pounds.

Figure 3 indicates that an all-chemical Mars mission system is feasible, using Seturn V as a basic launch vehicle since rendezvous of six payloads should lie feasible at this time. It also demonstrates the considerable advantage thet might be expected if nuclear propulsion is utilized for the earthdeparture maneuver of the atmospheric-braking mode. The use of nuclear propulsion for departure at Mars would reduce the total weight in earth orbit; however, the liquid hydrogen propellant for nuclear rockets has a very low density (4.2 lbs per cubic foot) and would require large tanks and therefore large weights for heat-protection material and insulation. The gain for using nuclear propulsion departing the Mars orbit would be relatively small.

MARS EXCURSION MODUTE DESIGN CONSIDERATIONS

Mission modes have been described which could result in direct entry of a Mars-excursion module from orbital velocities of $11,000 \mathrm{ft} / \mathrm{sec}$ to hyperizolic velocities of $35,000 \mathrm{ft} / \mathrm{sec}$. Detailed considerations of entry from Mars orbit are given in this section, with emphasis on the effects of atmospheric extrenes and vehicle configuration extremes. Although the higher velocities will have considerable effect on heat-protection-system requirements, it is believed the operaticnal problems and system design problems for terminal flight, landing and laurch are similar.

Figure 4 is a schematic of a ballistic Mars-excursion module. The cylindrisal cone-tipped vehicle in the center is the launch and rendezvous vehicle. The
accommodations and the crev compartment are designed for four men or two men plus 800 lbs of scientific data, Mers surface samples and various specimens that one might desire to return from the Mars surface. Two compartments are constructed on eịther side of the launch vehicle on the basic heat-shield structure. One of these compartments is the scientific station and the other compartment is the living area for the crew during the 10- to 40-day stay-time on the liars surface. Sectors of the heat shield are deployed on shock absorbers to act as landing gear. The heat shield provides an inherent emergency capability if the vehicle lands on soil that has very low bearing strength. The basic deceleration is by atmospheric drag, using the spherical heat shield as the drag device. Terminal deceleration is accomplished with parachutes. Rocket engines provide hover for final touchdown at specific site.

Table II is a detailed weight summary of the major systems and elements of a typicel Mars-excursion module.

Figure 5 shows an arrangement of a lifting-body shape typical of some shapes being investigated by the Langley Research Center. This particular arrangement gives a high ballistic coefficient to the vehicle. The equivalent wing loading. is such that the equilibrium-glide velocity of the vehicle is supersonic. The low terminal descent requirement of the vehicle is most economically accomplished with parachutes unless engines can be developed which utilize the Mars atmosphere, e.g., the air turbo-rocisets. With the development of this type of engine, the vehicle could be decelerated and a hover and landing maneuver accomplished at relatively smail expenditures in fuel weight. The weight of the engine systems is probebly not much greater than the landing system for the baiiistic vehicle if we consider the landing system to include the hover rockets; their fuel as well as the parachutes and their deployment systems. The landing site flexibility and maneuver flexibility of the lifting-body shapes makes them attractive when considering later missions to the Mars surface.

To Jbtain a better feel for the problems associated with designing one vehicle to accommodate the extremes of atmospheric density presently propcead, a parame cric study on two extremes in configurations was chosen. The atrospheric ectremes used for this stuay were taken from Speigel ${ }^{1}$, as nearly all predictions of Mars atmosphere fall within these limits. These predicted density extremes are shown in Figure 6.

The effects of atmospheric extremes on the orbital retro requirement for direct entry are presented in Figure 7 . The ordinate ie the relative velocity at an aibitrarin-chosen altitude, while the abscissa is the direction of spplication of a retro velocity. The parameter is the incremental velocity. The boundar es that define direct entry for the upper and lower density extrems are shown. These curves are based on zero I / D entry. A body using negative lift Wuit require less V for deceleration, but the reduction is not significant. The difterence in atmospheric extremes represents approximately $70 \mathrm{ft} / \mathrm{sec}$ in retro velocity requirements.

The entry load factors and ranges are presented in Figure 8 for each conziguration entering with zero and positive I / D, and show the effect of atmospheric density exturas. The use of lift has a more significant effect on load factor than dersity: extremes, even for the low-lirt-ballistic shape. In any case, the loais are less than two earth g's. The high-lift NEM can easily cornect for cuicnce errors or range errors due to atmospheric differences, whereas the lu. lift of the ballistic shape does not provide this capability. However, the atmosphere should be well determided from the orbiting spacecraft prior to dory from orbit and the general landing area of interest selected. With the wosphere determined from the orbiting spacecraft, landing in the chosen area can be e.ccomplished based on present guidance system errors and an $L / D=.25$.

The stagnation-point convective-heating rates for the two vehicles and atmospheric extremes are shown in Figure 9. The ballistic shape represents relatively rodest heat-protection requirements, whereas those of the lifting vehicle are more severe. However, even the lifting vehicle can probably be designea with a radiation-cooled heat-protection system.

Figure 10 shows the effects of atmospheric density extremes on the terminal fligat conditions at 50,000 feet for the lifting vehicle and the ballistic shape. The Lallistic number $\frac{m}{\mathrm{C}_{\mathrm{D}} \mathrm{A}}$ for the lifting vehicle is approximately 20 , where the $\frac{m}{C_{D} A}$ for the bellistic shape is approximately 1.5 subsonicly. The jallistic vehiole will reach subsonic terminal conditions which are amenable to large-size parachuise deployme.lt. Actually, the diameter of heat shiela was chosen to provide subsonic terminal conditions. The lifting body, however, may have terminal
velocities at from $1,400 \mathrm{ft} / \mathrm{sec}$ to $2,300 \mathrm{ft} / \mathrm{sec}$, denending on aimospheric extremen, and requiring retro propulsion of from $500 \mathrm{It} / \mathrm{sec}$ to $I, 400 \mathrm{It} / \mathrm{see}$ to rrovide for the deployment of large subsonic parachutes. If, however, by increasing the vehicle size the loading can be recuced in half, which is a sizable weigit penalty, retro propulsion of from. $100 \mathrm{ft} / \mathrm{sec}$ to $750 \mathrm{ft} / \mathrm{sec}$ will be required. Superionic drogues appear feasible only for relatively small velocity differentials due to size requirements.

Fisure 11 shows the ratio of retro braking-propellant mass to total vehicle mass fo: various velocity increments as a function of varying specific impulse. For a speciric impulse of 350 sec , the braking velocity increments indicated from the previous slide, propellant mass from one to eleven per cent of the total vehicle mass will be required. The added weight in earth orbit is about three times the wesight of added retro propellant.

Fifure 12 indicates the requirements for a parachute descent system. A parachure system would serve three purposes. It would reduce considerably landing retro-rocket propulsion requirements. It would provide time for surveillance of the interded landing area from close in to further verify landing feasibility. It woulc provide time for checkout of the retro landing propulsion system and checkout of the-surface launch propulsion in the event an abort of the mission is required. An altitude of 50,000 feet was chosen as both vehicles could be assured of reaching subsonic terminal conditions; ballistic shape through natural dras and lifting vehicle through propulsive braking. Assuming five minutes are requireĉ, it can be seen that an $\frac{m}{C_{D} A}$ of 0.1 or a velocity at 50,000 feet of 135 $f t / s e c$ is required for the lower D^{A} density extreme. This would requine a singie chute 175 feet in diameter. To provide redundancy and good pendulum stability, a cluster is more desirable. Assuming a three-chute cluster, zere two chutes ame required to provide the desired descent rate, the single chute diameter is 125 feet. If all three chutes deploy, an additional minute of descent time is obtained.

The time required under parachute descent is ill-defined and will require - extenceả effort to fix a realistic value. The parachute size may be reduced by deployme at at higher altitudes, but wis will result in higher terminal velocities at the surface. Therefore, higher retro landing propulsion system
teight, by approximately one per cent of the landing vehicle gross weight for every $100 \mathrm{ft} / \mathrm{sec}$ of retro velocity, will be required. Minimum weight combiaations have no: been determined.

Figure 13 shows the total characteristic velocity requirement for launch and rendezv us with the spacecraft in orbit. No advantage occurs for injection altitudes below about 450,000 ft, since below this altitude gravitational-loss reduction due to low injection is more than ofiset by high aerodynamic dras losses.

The conclusions drawn from this study are:

1. The presently predicted extremes of the Mars atmosphere present no serious problem of design for a vehicle capable of operation at either extreme of the prediction.
2. Details of operational requirements and mission objectives will be controlling factors in the choice of a MEM configuration rather than special requirements of the atmospheric-braking maneuver.
3. The high-drag, ballistic-type MEN vehicle is the simplest and lightest system.
4. The high-I/D lifting body can accommodate errors in the prediction of the itars atmosphere and provides the option of landing sites out of the initial orbit plane. This flexibility recuires weight increases to increase lifting surface or for added propulsion during the landing maneuver.
5. Joseph M. Spiegel, AFIAS, California Institute of Technology, "Effects of Mars Atmospheric Uncertainties on Entry Vehicle Design," Aerospace Engineering, vol. 21, No. 12, Dec. 1962, p. 62.

NASA

NASA-MSC MARS MISSION SYMPOSIUM D M HAMMOCK 27 MAY 63 S-132-95
MARS ENTRY HIGH DRAG

MARTIAN ATMOSPHERV EXTREMES COPPER DENSITY EXTREME
DENSITY
$\frac{\text { SLUGS }}{\mathrm{FT}^{3}}$
NASA
$\mathrm{S}-63-7901$

NASA-MSC MARS MISSION SYMPOSIUM D M HAMMOCK 6 JUNE 63 j-I32-92

ENTRY LOAD FACTOR,EARTH G'S
LONGITUDINAL RANGE VS RETRO ANGLE

MARS ENTRY HEATING

NNȦSA-NISĊ NARS MISSION SYMPOSIUM D M HAMMOCK 6 JUNE 63 S-132-89

릴
NASA-MIS MARS MISSION SYMPOS:MM D M HAMMOCK GUNE O S.132-91
TASA
-6151
AAA
$<$
 NASAMBS MA: S MISSION SYMPOSIUM DM HAMMOCK 6 JUR © 5 -132-88

96RL－कृ－S
vGYN
－
－

