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ABSTRACT 

A general and rigorous treatment is given of the photometric method 
for deriving lunar surface elevation information from pictures of the 
surface. In the course of the derivation certain shortcomings inherent 
in the method are pointed out. The resulting equations are then 
applied to the Ranger pictures as part of a digital processing proce- 
dure and examples are given. 

1. INTRODUCTION 

Pictures of the lunar surface taken from spacecraft 
such as Ranger and Orbiter have two major purposes. 
The first is simply the presentation of a visual rec- 
ord of the surface for qualitative interpretation by an 
observer. 

The second purpose, which is of greater interest here, 
is the extraction of quantitative surface data. In particu- 
lar, elevation information is sought. 

I 

Quantitative elevation data can be found bpth by 
stereoscopic and by photometric methods. The photo- 
metric method, first suggested by van Diggelen (Ref. l), 
uses the surface reflectance properties to interpret the 
surface shape in terms of the picture data. A rigorous 
derivation of the necessary equations and a discussion of 
the ,shortcomings of the photometric method are pre- 
sented. The equations are then used to analyze the Ranger 
television pictures, and typical results are shown. 

II. CALCULATION OF ELEVATIONS IN TERMS OF A LENS-CENTERED 
COORDINATE SYSTEM 

The problem to be considered is the derivation of geo- 
metric information about a lunar scene from a picture 
using photometric considerations. Utilizing the imaging 
geometry, the facsimile system transfer characteristics, 
and the scene photometric properties, it is desired to 
reconstruct quantitatively the shape of the surface being 
viewed. Here it will be assumed that the surface pos- 

sesses homogeneous photometric properties, at least over 
the local area being viewed. 

A summary of the observed lunar photometry for mare 
regions is given in Ref. 2 using the following notation, 
which will be adopted here (see Fig. 1). The incidence 
angle i (angle between the direction of incident light and 

1 
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SURFACE 
NORMAL 

DIRECTION OF 
EMITTED LIGHT 

DIRECTION OF 
INCIDENT LIGHT 

Fig. 1.  Surface photometric geometry 

the surface normal), the emission angle e (angle between 
the direction of emitted light and the surface normal), 
and the phase angle g (angle between the directions of 
incident and emitted light) completely define the photo- 
metric geometry, so that the scene luminance b can be 
written 

where p,, is the normal albedo of the surface, E ,  is the 
solar constant at the surface, and + (i, e, g)  is the surface 
photometric function. The normalization of 4 is such that 

It is observed that a degeneracy exists in the lunar photo- 
metric function, so that it is completely defined by two 
angles only. These are taken to be g and a new angle a, 
which is the projection of the emission angle e in the 
plane containing g (see Fig. 1). Thus, in what follows, it 
will be assumed that 

Consider now an enumeration of the information known 
about the output scene reproduction and the geometry of 
its formation. The output reproduction may be a photo- 
graphic print or transparency, or simply a magnetic tape 
recording of video information from which, of course, it is 
assumed that the proper two-dimensional geometric rela- 
tionship of the signals can be derived. It is assumed that 
the static or uniform field transfer function of the facsimile 
system is known, so that an output signal, be it the print 
reflectance, the transparency transmittance, or the tape 

voltage output, is directly relatable to the object scene 
luminance. This relationship is not quite so simple since 
the reproduction process is not perfect, Le., the input 
scene image is degraded by the facsimile system, so that 
an output signal is not truly related to the input luminance 
through the static transfer function. This is particularly 
true for steep luminance gradients, e.g., in small surface 
features. For the present, however, it is assumed that these 
degradations have been corrected by digital processing 
methods or by spatial filtering, so that the reproduction 
system may be considered perfect and the static transfer 
characteristic indeed applies. In this case, the output can 
just as well be considered as a two-dimensional array of 
luminances corresponding to the input scene. 

To be more specific, let a right-handed Cartesian co- 
ordinate system be located with its origin at the center 
of the image-forming lens and with the lens in the xy- 
plane (see Fig. 2). With the convention that primed 
coordinates refer to points in image space and unprimed 
coordinates refer to points in  object space, the output 
facsimile can be considered as an array of luminances 
b(x’, y’). From the image-forming process and the known 
coordinat%s of points in the image plane, one knows the 
direction r’ from every object sccnc point to its image.’ 
This follows since for a simple lens, the position vector 
r’ of the image of an object point with position vector r 
is given by (assuming distant objects) 

Here F is the focal length of the lens, 2 is a unit vector 
along the optical axis normal to the image plane, and the 
distant object assumption is formally written 

r.; >> F 
A 

One furthermore knows a unit vector R,, along the 
line from the center of the Moon to the center of the Sun, 
which is opposite to the direction of the incident illumi- 
nation on the scene. Thus, the phase angle g is known 
for every point in the image since 

A 

g = cos-’ (3 .  RMs), 0 L g L ?r (3 )  

Then from Eq. (I), given the luminance b and the phase 
angle g for some image point, one can calculate the 
proper auxiliary angle a. 

‘A bold-face letter indicates a vector of, in general, nonunit length. 
A caret over a bold-face letter indicates a unit vector. 

2 
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X 

-PLANE OF LENS WITH A FOCAL LENGTH F 

OPTICAL AXIS 

Fig. 2. Spacecraft viewing geometry in a lens-centered coordinate system 

Therefore, the totality of geometric information avail- 
able in the image may be summarized as follows: 

F = the lens focal length 

z = the direction of the optical axis 

Rdls = the incident illumination direction 

r’(x’, y’) = the direction from an object point to its 

g(x’, y’) = the phase angle as a function of position in 

~(x’, y’) = the auxiliary photometric angle as a func- 

A 

A 

A 

image 

the image plane 

tion of position in the image facsimile 

Consider now a representation of the object scene from 
which one can write down the necessary analysis. Since 
the lens-centered coordinate system is already available 
and is of particular pertinence to this part of the problem, 
a representation in terms of it will be used. A Moon- 
centered coordinate system of perhaps more interest for 
surface interpretation will be introduced later. In the 
lens-centered coordinate system, an equation for the ob- 
ject scene can be written (see Fig. 2) 

where, of course, the functional form of the expression is 
to be determined. From the picture, lateral (x,y) geo- 
metric information can be derived about the scene. It 
remains to determine the distance z and ultimately the 

length T of the position vector to the object surface. Thus, 
the problem can be stated as trying to find some path 
S’ with a path length variable s’ along it in the output 
picture such that the derivative dz/ds‘ can be written 
as a function h only of the known picture information, 

(5)  

Then, since the position vector r to an object point can be 
written in terms of z and r’, an expression for dr/ds‘ can 
be determined, where r is the length of r. So if one knows 
the,length r, of an object position vector for some point 
on the path, this differential equation can be integrated 
to find T ,  and finally r, everywhere along the path there- 
by reconstructing a portion of the object surface. What 
follows is aimed at this goal. 

Let the path S’ in the image have a parametric repre- 
sentation 

x’ = x’(s’) 

y’ = y’(s’) 

From Eq. (2), one can write 

F x’=-- 
4% Y) 

(7) 

3 
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and for completeness 

$ = - F  

may be solved using Gamer’s rule of determinants pro- 
vided the Jacobian of the transformation is different from 
zero. Thus, one has 

Thus 

= -- 1 
A 

dy’ - V’ z(x, y) . s:. U‘ J ’ 
dz dx’ 
ds’ = ($)u,z + ($)x, ds’ - 

(8) 

where V‘ is the nabla or gradient operator with respect 
to the primed coordinates, 

where J is the Jacobian 

I =  

A 

v’ = (+) u‘ z‘ ^x + (+) z’ z’ 2 + (+)z, El, 

(9) 

x, y ,  and a a r e  unit vectors along the principal Cartesian 
A A  

axes; and $, is a unit vector tangent to the path S’, By a similar process, one can show 

Now the quantities (az/ax’),, and (az/ay’),, must be 
calculated. Since z is a function of x and y, using the 
chain rule, one has 

The derivatives (ax/ax’ ) , , . ,  (ay/ax’),., (ax/ay’),, and 
(ay/ay’),. are calculated using Eq. (7). Let 

Fx 
x’ = ((x, y) = - - 

z (x, Y) 

I’ (3) x ’ = 

Using the definitions of [(x, y) and 11 (x, y) in Eq. (ll),  
one has 

and one can show that 

Now, from the calculus of three dimensions, if a surface Then differentiating these with respect to x’, one has 

since x’ and y’ are independent variables. These are then 
simultaneous equations for (ax/ax’),. and (ay/a~’)~, . They I 

has a representation 

G (x, y, z )  = 0 
A 

a unit normal N to the surface at the point (x, y, z )  is given 
by 
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In the present case, then, with the surface represented by and using Eq. (13), one has 

2 - z (x, y) = 0 

the unit normal becomes 

A 
A z -  Vz(x,y) 

v 1 + (VZy 
N =  

or, since 

1 
N * z  = v 1 + (Vz)z 

onehas A A 

N = (Ne;) [i - VZ(X,Y)] 

And noting that, by definition, 

A A  
r = x x + y y + z ( x , y ) i  

it follows from Eq. (12) that 
A 

- Nor -z-x($)Y -Y($) 
rG-2 

so that the expression for the Jacobian becomes 

~2 k*r 
23 A.2 ]=-  

Thus, one has finally 

2 (icr 4) (%) Y’  = -*[z-y($)2] 

Then, from Eqs. (9) and (lo), 

A 

V’z(x,y) = - n 
F ( N * r )  

or 

A 

From Eq. (12), Vz (x, y) can be written in terms of N as 

A h  
Vz(x,y) = z - (R 4) 

(12) so that from Eq. (14), 

Then the desired expression for dz/ds‘ is, using Eq. (8), 

A A 
where the substitution r = -r’ has been made. 

A What remains now is to calculate the surface normal 
N in terms of the photometric geometry. For this pur- 
pose, the standard angles i, e, and g, will not be used 
but rather a more useful trio. These are taken to be (Y, 

p, and g, Yhere (Y and g are as before and p is the angle 
between N and the normal to the plane containing g 
(see Fig. 3). 

(13) 

Fig. 3. Decomposition of the surface normal in terms 
of photometric angles 

5 
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A 
It is easy to decompose N into components along the 

three axes shown, noting that they are not all mutually 
orthogonal. In terms of the photometric angles, 

A s inps in(a+g)I r  sinpsina A N -  r’ - RdfS sin g sin g 

cosp Ir A + - (RM8 X r’) sin g 

where the sign convention for (Y used in Ref. 1 has been 
adopted, i.e., CY is positive if it does not overlap g and 
is negative i f i t  does, as is the case in Fig. 3. Then, sub- 
stituting for N in Eq. (15), one has 

(17) 
A h  A A h  

- sin a (RYS S;) + cot p (RIS X r’) $1 

where it is assumed that the angle p is not zero. 

Now to reconstruct the object scene, one needs to know 
the length r of the position vector to each of its points. 
From the picture geometry, the direction from an object 
point to its image point is> so that the position vector r of 
the object point can be written (assuming z is known) 

and its length can be written simply 

z r = - -  
A h  r’ z 

remembering that ̂ r, *z < 0. Thus, a differential equation 
for T can be written 

and it is easy to show that 

Thus, one has 

dr 

6 

or 

2:g[ds’ -(r’ F A z) (r’ * S;) ] (19) 
dz - dr 

ds’ 

where Eq. (2) has been used. Then, substituting Eq. (15) 
in Eq. (19), one has 

or 

and, using Eq. (16), this can be written in terms of the 
photometric angles, 

A A  dr r (r’*z) A h  
[sin (Y cos g (r’ Sk) - - _ -  

ds’ F cosasing 
A A  A A 

- sina(Rls*S’,) + cotj?(RlsXI\r’)*S’r] (21) 

where again it is assumed that p # 0. 

Along any path S’, nothing is known about the angle p 
since the photometric function is degenerate in that direc- 
tion. Thus, to derive exact elevation information, the 
path S’ must be chosen such that (assuming p # 0) 

This represents a differential equation for the path S’, 
and it is easy to see that the solutions are a family of 
straight line2 all passing through the image point for 
which 2 = R,, or the zero phase point. These paths 
correspond to the intersections of the family of planes 
containing the zero phase point and the center of the 
lens with the image plane z = - F .  

Consider a member of this family of plazes with unit 
%orma1 No and with corresponding path S’ (No) (note that 
No is defined except for its sign). Choosing this sign, one 
can write 

A A 
A RMS X r’ 
No sin g 
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A h 
where rr corresponds to any poin: a$ng S'(N,) excext 
the zero phase point. Then, since FT (yo) is normal to No 
by condition (22) and also since Sl,(No) is normal to 2, 

A A  A 

where the direction of $(No) is along the path S'(N,) 
and away from the zero phase point (see Fig. 4). Then, 
sub;tituting Eq. (23) in Eq. (21), one has for the path 
s'(Nn) 

(24) 

This is a p2rticularly simple differential equation. Since 
F,  2, and N, are constants along the path and and a 
are known as functions of s', the solution is simply 

where s' is measured positive away from the zero phase 
point, and P and P ,  are points along the path of inte- 
gration. 

It may be useful at this point to list the symbols found 
in Eq. (25) and their definitions. For some integration 
path, a straight line in the image plane passing through 
the zero phase point (the image point for which the 

photometric geometry gives a phase angle of zero), the 
symbols mean: 

P ,  P ,  = points along the integration path; Po is 

r ( P ) ,  r ( P o )  = the lengths of the position vectors to the 
object points corresponding to the image 
points P and P ,  

the reference point for the integral 

F = the imaging lens focal length 

z = a unit vector along the optical axis A 

A 

No = a unit normal to the plane containing the 
integration path and the center of the 
lens 

r - a unit vector from the center of the lens - 

to a point on the integration path 

(Y = the auxiliary photometric angle deter- 
mined from the object scene luminance 
and the phase angle g through the sur- 
face photometric function 

s' = a path length variable along the integra- 
tion path and measured positive away 
from the zero phase point 

To summarize the results obtained so far, it has been 
shown that exact elevation data can be derived only along 
straight line paths in the image plane which pass through 
the zero phase point. Along each of these paths, then, 
an integral can be evaluated which depends on the photo- 
metric angle a derived from the scene luminances, the 
geometry of the imaging process, and the particular 
path geometry. This integral, Eq. (25), relates the lengths 

ZERO PHASE A POINT 

Fig. 4. Integration path vector conventions 
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of position vectors of points on the object surface, cor- 
responding to image points along the path, to the pre- 
sumably known length of one of these position vectors. 
It is apparent from the above that if the zero phase point 
lies in the picture, then all the position vector lengths 
can be related to the one for that point. Unfortunately, 
the zero phase point is undesirable to photograph from 
satellites since only details due to nonuniformities in the 

surface albedo are visible (assumed nonexistent in the 
present treatment) because of the lunar photometric 
properties, and the zero phase point cannot be photo- 
graphed from Earth. Thus, in practical applications of 
this method of extracting surface elevation data, one can 
relate elevations only along disconnected lines through 
the image and one has no photometric way of relating 
elevations from one line to the other. 

111. CALCULATION OF ELEVATIONS IN TERMS OF A MOON-CENTERED 
COORDINATE SYSTEM 

Now as mentioned earlier, surface interpretations are 
far simpler in terms of a Moon-centered coordinate sys- 
tem rather than one centered at the camera lens. That is, 
one would like to have the surface represented in terms 
of elevation changes above some reference spherical 
datum about the Moon’s center. Let ry be the position 
vector of the center of the Moon in the lens-centered 
coordinate system (see Fig. 5) .  Then, if an object point 

has position vector r ( P )  in the lens-centered coordinate 
system ( P  is the corresponding point in the image plane), 
and R ( P )  in a Moon-centered coordinate system, 

(26) R(P)  = r (P)  - rM 

Now it will be assumed that the field of view of the 
camera system covers a small enough area that locally 

TANGENT PLANE 

SPHERICAL DATUM 

CENTER 
OF MOON 

Fig. 5. Geometry for calculating surface heights above the spherical datum 
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the spherical datum approximates a plane. This means 
that the vector R has essentially the same direction (nor- 
mal to the tangent plane) over the area covered. The 
direction is taken to be the normal to the spherical datum 
at the point corresponding to the center of the output 
picture. Note that the center of the picture need not be 
where the optical axis intersects the image plane, e.g., in 
television systems where the raster can be displaced. So 
let the center of the picture be located at a direction 2 
from the lens center. Then the length rc of the position 
vector to the corresponding point on the spherical datum 
of radius Ro is 

h A r ,  = -(r:*rM) - [RZ + (r,'. ry)' - mi]% 

and the normal R, to the datum at this point is (see 
Fig. 5) 

A 

(27) 
h 1 A  R, = - - (rcrc' + rM) 

R,, 

Then, over the area covered by the field of view 
A 

R = RR, 

where R is the length of R and from Eq. (26) 
A A 

R ( P )  =: r ( P )  R,. - rl R,. 

Similarly for the tangent point one can write 
A A 

R, = re R,. - rdf R,. 

Thus, the height h ( P )  above the datum of the object point 
at r ( P )  is given by 

A A 

h(P)=:R(P)-  R,=:r(P)-R,.-r ,*R,.  

Now P falls on some integration path S' described earlier 
SO that only the quantity r ( P ) / r ( P o )  is known from 
Eq. (25) where Po is a reference point along the path. 
The reference position vector length r ( P , )  is not accu- 
rately known except that it corresponds to an object point 
assumed close to the reference datum, so that 

A A 

r ( P o )  R, z r c .  R,. 

Then, if 3 ( P )  and :' (P , , )  are the directions from the lens 
center to the image points P and PI,, one has 

or 

For visual spacecraft approaching or orbiting the Moon, 
pictures are taken high above the surface datum com- 
pared to the surfac: fluctuatioy about the datum. Thus, 
the factor [r(P)*R,]/[r(Pn).R,] in Eq. (28) can be 
written as 

A 

where 
h 

is the relative surface height fluctuation between the 
object points corresponding to the image points P and P, ,  
and is small compared to unity, from the above. Similarly, 

A 

Ah ( P o )  = [r ( P o )  - r,.] R, 

is the absolute height of the object point corresponding 
to the reference point PI, above the lunar datum and is 
assumed to be small compared to the height of the space- 
craft above the datum. Thus, one can write Eq. (28) as 

+ ah(P,) [l + 6h(P)] 

or to lowest order in small quantities 

(29) 

So, consistent with the previous result, since Ah(€',,) 
involves the unknown r (P , , )  for an integration path, only 
a relative height h,.,, ( P )  above the lunar datum can be 
found for each object point corresponding to an image 
point P along the integration path where 

9 
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Due to the linearization procedure inherent in the above 
approximations, however, the present relative elevations 
along a given integration path differ from the actual 
values by an additive constant Ah ( P o )  which depends 
only on the path. This is in contrast to the ratios of values 
obtained in the analysis resulting in Eq. (25). 

It is perhaps helpful to summarize the symbols appear- 
ing in Eq. (30): 

P ,  P ,  = points along a given integration path in 
the image plane as defined for Eq. (25). 
P ,  is the reference point for the inte- 
gration 

hre, ( P )  = the relative height of the object point 
corresponding to the image point P 

above a spherical lunar datum (approxi- 
mated by a plane over the field of view) 

rc = the position vector of the point on the 
spherical datum imaged at the center of 
the picture 

R, = the unit normal to the spherical datum 
and hence to the tangent plane at the 
point at position r(, 

r ( P ) / r ( P , )  = the ratio of position vector lengths to 
the object points corresponding to P 
and P,.  This ratio is determined from 

A 

Eq. (25) 
A A  
r’ ( P ) ,  r’ (Po)  = the unit vectors giving the directions 

from the center of the lens to the image 
points P and Po 

IV. APPLICATION TO THE RANGER PICTURES 

The underlying purpose of the above analysis is to 
extract quantitative topographic information about the 
lunar surface from pictures such as those Ranger took. 

The necessary calculations lend themselves quite nicely 
to digital computation and were incorporated in the digi- 
tal picture processing program currently being developed 
at JPL. Since the zero phase point never appcars in the 
Ranger pictures for reasons discussed above, and since 
no stereoscopic data exists, an assumption to relate rela- 
tive elevations across the integration paths is needed. For 
a complex picture with much detail, short of manipulat- 
ing the relative elevations by hand, this assumption must 
be statistical in nature. The simplest assumption, and one 
difficult to improve upon without extreme complication, 
is that the average elevations along the respective inte- 
gration paths are all equal. This assumption obviously 
relies for accuracy on the existence of many random ele- 
vation fluctuations along cach path and neglects any 
general slope of the surface in a direction normal to the 
paths. Such a slope is not detectable by these methods 
due to the lunar photometric properties and must be 
measured by stereoscopy. Using this assumption to relate 
relative elevations across the integration paths, a topo- 

1 0  

graphic map of the area covered by a picture can be 
calculated. Examples of the results of this procedure are 
shown in Figs. 6 through 8. Figure 6 shows the last P-3 
frame from Ranger VZll in an unrectified form with cer- 
tain noises removed and with the sine-wave response 
falloff of the camera corrected. Below the picture is an 
elevation profile along the line shown in the picture, 
depicted at  10 times vertical exaggeration and at true 
scale. It can be seen that the profile follows the picture 
shadings very well. Analysis of the profile, taking into 
account the lighting direction when the picture was 
taken, gives good agreement with the shadow areas actu- 
ally found in the picture. Figure 7 shows a rectified pic- 
ture of the second from the last Ranger VlII frame with 
the same noises removed but with no sine-wave response 
correction applied. Figure 8 then shows the same frame 
as Fig. 7 in the form of a complete contoured elevation 
map. The horizontal scale is the same as in Fig. 7 and 
the contour interval is 65 cm. The shading between the 
contours is to be interpreted as elevations with the con- 
vention that the darker the area the higher the surface. 
It will be noted that the contours are quite consistent 
with a subjective interpretation of the brightness picture 
in Fig. 7 in terms of elevations. 
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Fig. 6. Elevation profile through the last P-3 picture from Ranger Vl l l  
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Fig. 7. Corrected and rectified P-3 picture from Ranger vlll 
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Fig. 8. Rectified contour-map of the same P-3 picture from Ranger Vlll (Shading across the frame represents 
elevation changes, with the convention that, the darker the area, the higher the surface.) 
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V. CONCLUSIONS 

In conclusion, a solution has been found to the original 
problem set forth; namely, the derivation of quantitative 
geometric information about an object scene using a pic- 
ture of it and a knowledge of the surface photometry. It 
has been shown that for the lunar photometric properties, 
there exist straight line paths through the image picture 
along which an integral (Eq. 25) can be evaluated to 
relate the lengths of the position vectors of object points 
corresponding to image points on the path. These posi- 
tion vectors originate from the imaging lens center. The 
relationship between their lengths is in the form of a 
ratio, i.e., the integral gives the ratio of the length of the 
object position vector at the end point of the integration 
interval to that at  the beginning of the interval. If the 
integration interval always starts at the same point, all 
of the ratios are with respect to a single reference posi- 
tion vector length. Furthermore, since all of the inte- 
gration paths pass through the image point for which the 
photometric phase angle is zero, if this point is contained 
in the picture, it may be used as the reference for all of 
the integration paths thereby completely and consistently 
reconstructing the object surface. Unfortunately, ex- 
tremely low contrast pictures result from photographing 
the zero phase point, making it undesirable from the 
standpoint of visual interpretation. Thus, with the zero 
phase point not in the picture, the integration paths have 
no point in common so that each has a separate reference 
length. There is no photometric method for connecting 
the various integration path reference lengths, so that 
some other information or assumption about the surface 
must be imposed. 

It has further been shown that these relative position 
vector lengths can be converted to relative heights above 
a spherical lunar datum. This calculation assumed that 
the field of view of the camera covers a small enough 
portion of the surface so that the datum is well approxi- 
mated by a tangent plane. A further assumption was that 
the camera is very distant above the datum compared to 
surface elevation fluctuations about the datum. For a 
given integration path, then, and the corresponding ob- 
ject points, the calculation yields relative heights above 
the datum differing from the actual values only by a 
single additive constant for the path. Again, if the zero 
phase point lies in the picture, this constant can be 
chosen common to all of the integration paths. If it does 
not, though, each path will have a separate constant; all 
of these constants must be related by nonphotometric 
information. 

The above results were applied to the Ranger partial- 
scan photographs of the Moon as part of the digital 
processing analysis currently under way at JPL. Using 
the simple assumption that the average elevation along 
any integration path is a constant for the picture to relate 
the elevation data across the paths, elevation maps of the 
pictures were produced. These resulting maps are ex- 
tremely useful in studies of the lunar surface and in 
statistical analyses of safe-landing probabilities for space- 
craft such as Surveyor and Apollo. They provide truly 
quantitative topographic information in regions where 
shadows are nonexistent. 
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NOMENCLATURE 

b 

e 

EO 

F 

6 

h 

i 

J 
N 
A 

P ,  Po 

T 

T’ 

Tc 

r 

A 
r 

r’ 

A 

r’ 

r c  

surface luminance 

emission angle for surface photometric ge- 
ometry 

solar constant at Moon 

focal length of lens 

phase angle for surface photometric ge- 
ometry 

height of point in object space above spheri- 
cal lunar datum which is assumed to locally 
approximate a plane 

relative height of point in object space above 
spherical lunar datum which is assumed to 
locally approximate a plane 

incidence angle for surface photometric ge- 
ometry 

Jacobian of imaging transformation 

unit vector normal to object surface 

unit vector normal to plane containing zero 
phase point and center of lens 

points on path S’ in image plane 

length of position vector r 

length of position vector r’ 

length of rc 

position vector from center of lens to point 
in object space 

unit vector from center of lens toward point 
in object space 

position vector from center of lens to point 
in image space 

unit vector from center of lens toward point 
in image space 

position vector from center of lens to object 
point on spherical lunar datum which is 
imaged at center of output format 

unit vector along rc 

position vector from center of lens to center 
of Moon 

length of R 

radius of spherical lunar datum 

position vector from center of Moon to 
point in object space 

unit vector normal to spherical lunar datum 
at object point which is imaged at center of 
output format 

unit vector from center of Moon toward 
center of Sun 

path length variable along path S‘ 

path in image plane 

unit vector tangent to path S‘ 

coordinates of point in object space with 
respect to lens-centered coordinate system 

coordinates of point in image space with 
respect to lens-centered coordinate system 

unit vectors along principal axes of right- 
handed Cartesian lens-centered coordinate 
system; z is along optical axis 

projection of emission angle e in plane con- 
taining g for surface photometric geometry 

colatitude of surface normal with respect to 
plane containing g 

surface normal albedo 

lunar surface photometric function 

nabla or gradient operator with respect to 
unprimed coordinates 

nabla or gradient operator with respect to 
primed coordinates 
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