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NONADIABATIC PARTICLE LOSSES IN AXISYMMI3RIC AND 

MULTIPOLAR MAGNETIC FIELDS 

by J. Reece Roth 

Lewis Research Center 

SUMMARY 

This report contains an analytical and experimental study of the nonadiabatic behavior 
of a single nonrelativistic charged particle in a magnetic field. Two magnetic field geom­
etries were considered; an axisymmetric magnetic mirror ,  which was investigated by 
both analytical and experimental means, and a minimum-B configuration formed by the 
superposition of a multipolar (Ioffe) magnetic field on an axisymmetric magnetic mirror ,  
which was studied only by analytical means. The nonlinear equations of motion for a 
charged particle in these magnetic field configurations were solved for 105 sets of initial 
conditions on a high-speed computer. A particle was considered to be nonadiabatic if  its 

2"adiabatic invariant" M4 - vL/B varied by more than 5 percent during a single inter­
action with the magnetic mirror  in question. By defining suitable dimensionless simi­
lari ty parameters, it was found possible to summarize the computer results in a single 
analytical expression, which predicts the conditions under which nonadiabatic behavior 
will be observed. This similarity relation is a useful substitute for a closed-form solu­
tion to the nonlinear and nonholonomic mathematical problem, and may be used as a basis 
for correlating experimental data. 

An experiment was devised to detect the enhanced particle losses resulting from non­
adiabatic particle motion in an axisymmetric magnetic mirror.  The results from a wide 
range of experimental conditions were plotted in te rms  of the similarity parameters 
found useful in correlating the analytical results and were found to obey the same simi­
larity relation, but with different values of the constant parameters. This experimentally 
determined similarity relation gives the conditions for the onset of nonadiabatic losses in  
t e rms  of the mir ror  ratio, particle energy, distance between mir rors ,  etc. This rela­
tion may be used as a design criterion to assure  adiabatic confinement in axisymmetric 
magnetic mir rors  of practical interest. 
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INTRODUCTION 

Nature of Problem 

One of the most promising methods of confining charged particles in a localized 
region of space is by trapping them between two "magnetic mirrors" - regions of in­
creasing magnetic field strength. Particles that are confined in this general class of 
configurations are subject to several loss mechanisms that involve interactions among the 
particles, including microscopic and macroscopic plasma instabilities and collisional 
scattering. In this report, particle losses that result from the nonadiabatic interaction 
of a single charged particle with a magnetic mirror  will be investigated. This report is 
motivated by the belief that nonadiabatic single particle losses should be understood well 
enough to be avoided, before one can usefully proceed to study collective loss prqcesses. 

It is helpful to distinguish three types of individual particle loss from magnetic mir­
rors: (1) adiabatic losses, which occur because the velocity vector of the particle lies 
within the escape cone in velocity space, (2) nonadiabatic losses which occur during a 
single interaction with a magnetic mirror,  and are caused by an increase in the size of 

VI Transition energy at wh ich  
nonadiabatic losses start 
to occur 

V2 Energy at wh ich  substantial 
nonadiabatic losses occur 

v3 Energy at  wh ich  v i r tua l ly  
a l l  particles are lost non­

gion of confinement 

VI, 

Figure 1. - Nonadiabatic loss regions in  velocity space. 

the loss cone above its adiabatic value, 
and (3) nonadiabatic losses resulting from 
a random-walk diffusion of the velocity 
vector into the escape cone after many re­
flections of the particle between magnetic 
mirrors.  

These loss mechanisms may be visu­
alized by referring to figure 1, which rep­
resents a cross  section of velocity space. 
v 

I1 
and vI a re ,  respectively, the veloc­

ity components of the particle parallel 
and perpendicular to the local magnetic 
field line. (All symbols a re  defined in 
appendix A. ) If the so-called "adiabatic 
invariant" (refs. 1 and 2) 

is a constant of the motion, i t  can be shown 
that only those particles in the adiabatic 
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loss cone of figure 1 will escape through the magnetic mirror  (see ref. 3). This loss 
cone has a half-angle in velocity space of 

el = sin-' Fm 
where R m --Bmin/Bmax, and Bmin and Bmax are the minimum and maximum mag­
netic fields of the magnetic mirror .  The adiabatic invariant M4,however, is not a 
rigorous constant of the motion except when the ratio of the radius of gyration to  the 
characteristic length of the magnetic field approaches zero. When this ratio is nonzero, 
as it is in all laboratory devices, M4 is not constant, and the escape region in velocity 
space is larger than the adiabatic escape cone. This enlargement of the escape region 
has been documented in numerical computations by Garren, et al. (ref. 4). 

Figure 1is a schematic illustration of the regions of interest in velocity space. The 
regions of confinement and loss are separated by the boundary OABC, which is approxi­
mately a surface of rotational symmetry about the v,, axis. The position of this boundary 
in figure 1is schematic only. Adiabatic particle losses occur when the velocity vector of 
a particle l ies in the adiabatic loss cone, where 8 <- el. Single interaction nonadiabatic 
losses occur when the velocity vector of the particle l ies in the escape region in the upper 
right of the figure. Multiple reflection nonadiabatic losses occur when the velocity vector 
of the particle diffuses across  the boundary OABC into the loss region. 

As will be discussed later, an initially isotropic distribution of particles in velocity 
space whose energy is below point A in figure 1 will suffer only adiabatic losses. A col­
lection of particles whose energy corresponds to  point B will suffer substantially more 
losses than is predicted by the adiabatic theory, since the effective escape cone angle is 
larger than that given by equation (2). At large energies corresponding to point C in fig­
ure  1, virtually all particles will be lost nonadiabatically. The experimental investiga­
tion described later in this report is concerned with determining the critical energy, cor­
responding to point A in figure 1, at which single interaction nonadiabatic losses begin to 
occur. 

Relation of Nonadiabatic Effects to  Economic and Stabil ity Considerations 

It will be shown that one of the similarity parameters appropriate to a discussion of 
nonadiabatic effects is E ,  the ratio of the characteristic radius of gyration of the particle 
in question to zo, the axialdistance over which the magnetic field varies from Bmin to 

Bmax 
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(3) 
=0 eBavZo 

where v is the velocity based on the total energy of the particle in electron volts 

v =  &2eV 

and Bav is the average magnetic field on the axis, 

Designing apparatus to confine particles by magnetic mi r ro r s  usually requires the 
mass and energy of the particles in question to be fixed by the objectives of the experi­
ment. In consequence, the designer can adjust only the average magnetic field Bav or 
the apparatus dimensions zo. In general, the capital costs of the apparatus will increase 
with the dimensions of the magnetic field zo and with the average magnetic field strength 

Bav. These economic considerations will prompt the apparatus designer to make E of a 
given apparatus as large as possible, since an adiabatic bottle with small  E is a much 
more costly container than an adiabatic bottle with large E .  If, however, E is made too 
large, a magnetic bottle will suffer nonadiabatic losses, and not be fully effective in con­
taining charged particles. 

Stability considerations as well as economy play a role in determining the optimum 
value of E .  It has been shown by Kuo, et al. (ref. 5) that the stability of a plasma is en­
hanced if E -> 0. 10 (the so-called finite Larmor radius stabilization), and that this 
stabilizing effect is not present if  E = 0, as the adiabatic theory requires. Finite radius 
of gyration stabilization therefore requires E to be as large as possible. On the other 
hand, if  E is too large, the resulting nonadiabatic losses will enlarge the escape cone, 
and make the velocity distribution of the confined particles more anisotropic than it would 
otherwise be. Harris (ref. 6) has shown that anisotropies in velocity space promote the 
growth of instabilities. Therefore, E should be made small  enough to avoid nonadiabatic 
losses in order to reduce anisotropies in velocity space to an absolute minimum. 

From the preceding discussion, it is evident that both economic and stability consid­
erations dictate that E should be as large as possible, without being so large that non­
adiabatic losses occur. This critical value of E is given, for a particular apparatus, by 
point A in figure 1, and it is the objective of the present report to determine this critical 
value of E as a function of the relevant variables. 
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Previous Investigations 

The equations of motion for a charged particle in a magnetic mirror  are nonlinear, 
and, if  the adiabatic invariant M4 is constrained to vary by less than a specified amount, 
these nonlinear equations of motion are subject to a nonholonomic (inequality) constraint. 
The general mathematical problem has been studied by many investigators, nearly all of 
whom linearize the equations of motion by assuming that E << 1, or they treat E as a 
small  perturbation parameter. The conclusion of these investigations usually is that E 

must be t7small t tif the particle motion is to be adiabatic and the reflection conditions pre­
dictable from the constancy of M4. Many of these analytical investigations are discussed 
in a previous publication by the present author (ref9. 1 and 2 ) .  The requirement that 
E << 1 for particles to be adiabatically confined is of limited value to the apparatus de­
signer, because of its qualitative nature. 

Only a few investigators have relaxed the requirement that E be small  and have 
attempted to predict the magnitude of the variation in M4 for various magnetic field con­
ditions. One such investigation was that of Grad and Van Norton (ref. 7), who have de­
rived an expression for AM4 in an idealized cusp geometry, and derived a loss proba­
bility from this expression, based on a random-walk diffusion of the velocity vector into 
the escape cone. Their results depend on the geometry of the magnetic field assumed as 
a starting point and do not appear to be relevant to the magnetic bottle configurations of 
interest in the present study. 

Yoshikawa (ref. 8) derived an expression for AM4 as a function of E by a pertur­
bation procedure and was able to show that AM4 is proportional to e2  for small  values 
of E .  The geometry he assumed was that of a magnetic mirror ,  and he observed the 
above proportionality when he integrated numerically the equations of motion for a few 
se ts  of initial conditions in the assumed magnetic field. Unfortunately, his results a r e  
not suitable for comparison with the present work, in which a single value of AM4 was 
chosen as a basis for computation. 

In addition to the work of Yoshikawa, computer studies of the exact nonlinear problem 
have been reported by Garren, et  al. (ref. 4), and by the present author (refs. 1 and 2 ) .  
The study by Garren, et al. covered approximately 100 sets  of initial conditions and pro­
duced the important result  that the escape cone for one or a few reflections of the particle 
is larger than that predicted in equation (2) by the adiabatic theory. Not enough sets of 
initial conditions were considered in the study by Garren, et  al. to draw conclusions about 
the systematic trends of all the variables of interest in the problem. The previous com­
puter study by the present author in references 1and 2 covered 5x104 se ts  of initial con­
ditions for a wide range of conditions in an axisymmetric magnetic mir ror  field. The 
results of this study had to be summarized in graphical form, but did give information 
about the systematic trends of the phenomena of interest. 
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Several experiments have been reported in which adiabatic confinement or  nonadia­
batic losses have been observed. These will be discussed subsequently. 

Method of Approach 

In this report, an extension of the method of similarity analysis is applied to the prob­
lem of determining under what conditions nonadiabatic losses will occur from an axisym­
metric magnetic bottle and from a multipolar (Ioffe) field superimposed on an axisym­
metric magnetic bottle. As understood in this report, similarity analysis consists of de­
fining nondimensional variables that characterize the physical system under study and 
then finding analytical expressions, or "similarity relations", among these dimension­
less  variables that describe the behavior of the system. This similarity relation is, or  
should be, a quasi-solution to the equations of motion of the system. This method has 
been successful in describing diverse phenomena in the fields of aerodynamics and heat 
transfer, for example. In these fields the phenomena of interest are either too complex 
to be amenable to rigorous mathematical treatment, o r  they a r e  described by nonlinear 
equations that do not admit of a rigorous and general solution. To provide some rational 
basis for correlating experimental data relating to nonadiabatic losses, an analogous, 
nonlinear, nonholonomic problem is solved on a high-speed computer. It is shown that 
the solution to  this problem can be expressed in te rms  of similarity parameters related 
to one another by a similarity relation. The computer program used is given in appen­
dix C by Paul Swigert. 

An experimental technique was developed that is capable of detecting the conditions 
under which nonadiabatic losses begin to occur, analogous to point A in figure 1 (p. 2). 
These experiments were performed at various radii in an axisymmetric magnetic bottle. 
The experimental results were expressed in te rms  of the same similarity parameters 
found appropriate for the computer results, and the experimentally determined adiabatic­
to-nonadiabatic transition boundary obeyed the same similarity relation as the computer 
results, although with somewhat different values of the constant parameters. 

The present experimental results may be used as a criterion for the design of axi­
symmetric magnetic fields that will not suffer nonadiabatic particle losses. This c r i ­
terion gives a compromise value of E ,  which best satisfies the economic and stability 
constraints. By comparing the experimental results with the computer results (which 
hold for multipolar as well as axisymmetric magnetic mirrors) ,  it is possible to lay down 
tentative design cr i ter ia  for minimum-B magnetic fields that consist of a multipolar mag­
netic field superimposed on an axisymmetric magnetic field. 



NUMERICAL ANALYSIS 

Possible Approaches 

This section describes an extensive ser ies  of numerical computations whose object 
was to simulate a common laboratory magnetic field geometry, and to map out the 
adiabatic-to-nonadiabatic transition region over a range of similarity parameters of prac­
tical interest. 

In simulating particle confinement by magnetic mirrors  on a computer, several al­
ternatives suggest themselves: (1)A particle could be injected at the midplane and the 
equations of motion solved for a very large number of reflections, 106 for example, to 
see whether the particle is lost. (2) A single interaction with a magnetic barrier (a re­
flection or traversal) could be studied, and the boundary of the escape region in velocity 
space mapped out. (3) The fact that an increase in the escape cone angle is identified 
with a variation of M4 could be used to terminate the computation when M4 varies by 
more than a specified amount. 

Practical difficulties forbid the first approach. Numerical e r rors ,  originating in the 
rounding-off of the numbers used in the numerical integration, introduce an er ror  into 
the position and velocity of the particle, which becomes significant after at most a few 
reflections and which rapidly grows in magnitude. In the present ser ies  of computations, 
for example, these numerical round-off e r ro r s  became significant after a single reflec­
tion of a particle, if E <- 0.01. Single precision arithmetic was used. Even if rounding-
off e r ro r s  were not a problem, the time required to integrate numerically over 106 re­
flections would be prohibitive. On the average, the second approach required about 10 
times as much computer time as the third, because i f  M4 varied significantly, the total 
variation usually occurred early in the trajectory, before the particle either reflected 
from o r  passed through the magnetic barrier. In addition to this consideration, more 
particles had to be injected in velocity space to map out accurately the transition region 
if the second approach were used. A large total amount of computer time will be re­
quired in either case, and this total may be regarded as fixed. It is necessary to choose 
between either simulating the laboratory situation quite closely but with relatively few 
particles and over a rather limited range of variables, or using a less direct measure of 
particle confinement that enables one to use a large number of particles and cover a wide 
range of conditions. 

The second approach was used by Garren, et al. (ref. 4), who were able to show that 
a significant variation of M4 is identified with a significant opening-up of the escape cone 
in velocity space. The third approach was chosen in this investigation in order to cover as 
wide a range of conditions as possible. This choice transformed the problem of measur­
ing nonadiabatic losses into the mathematical problem of solving a se t  of three coupled 
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nonlinear equations of motion, subject to the constraint that M4 varies by less than some 
fixed amount over a single interaction of a particle with a magnetic barrier.  

Setting up the Problem 

A suitable magnetic field geometry must be chosen at the beginning of a numerical 
experiment of this nature. The geometry selected is a mathematically simple but nontriv­
ial magnetic field, which is a good approximation to many axisymmetric and minimum-B 
laboratory devices. The basic axisymmetric magnetic field assumed is that used pre­
viously in references 1, 2, and 4. This magnetic field is generated by the current distri­
bution 

c 
c 

E 
L 

v _----­
-v 
.-al 
L 

.-c ::: 2 
0 ZO Z 

(a) Current  distr ibut ion i n  axisymmetric windings as funct ion 
of axial distance. 

‘c) ._ 
- m  
V._ 

gF 
E; v) % i n  
.­

0 ZO Z 

(b) Axial profi le of magnetic field. 
0 0 7 

JZ r0 ZO 
-------_L -Jz 

Multipolar /I 
:., 

@je Main 
windings’ windings 

(c) Geometry of windings. 

- J Z ’  I I I 1 
0 ~ 1 2  71 3 ~ 1 2  27r 9 

(d) Multipolar cur ren t  at r = rv 

Figure 2. - Magnetic field assumed in numerical computations. 
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j e = j1 + j2 c o s 7  (6) 

flowing azimuthally in an infinitely long 
cylindrical current sheet. This config­
uration is illustrated in figure 2; 7 is 
the nondimensiond axialcoordinate, and 
is given by 

7iZ
V F - (7) 

zO 

where zo is the axial distance between 
the points of minimum and maximum 

current. It has been assumed that the 
radius of this current sheet is equal to 
z
0’ The vector potential inside the cur­

rent sheet is (refs. 1and 2) 

where Io, 11, and K1 are the Bessel 
functions of imaginary argument, and the 
constant C1 is given by 

I,(c*l) (Rc+ 1) - Bav 

c1= 2 (Rc - 1) 2p0j27rK1(7r) 
(9) 



- -  

where a! is the nondimensional radius, 

a!=-m 
Z 
0 

and Rc is the mirror  ratio at the radius Z,the radius of the particle when B = Bmh: 

The mirror  ratio defined in equation (11)varies between zero and unity, contrary to some 
definitions that define it as the inverse of equation (11)and/or in te rms  of the magnetic 
field on the axis. The vector potential of equation (8) generates an infinite se r ies  of mag­
netic bottles each of which, for a! <- 0. 75, is a good approximation to the magnetic bot­
tles generated in laboratory apparatus. 

Since minimum-B as well as axisymmetric geometries are to be studied, a multi­
polar field must be added to equation (8). The assumed multipolar field is generated by 
n pairs of infinitely long currents located on an infinitely thin cylindrical current sheet 
of radius ro. This current is assumed to be spread out in azimuthal angle, as shown in 
figure 2, and to flow in the 7-direction. The assumed sinusoidal variation of current 
with azimuthal angle is intended to approximate spread-out multipolar conductors en­
countered in practice. The vector potential of the multipolar field is then equal to 

where Bm is the magnetic field intensity at the multipolar current sheet due to the multi­
polar field alone, and a0 is the nondimensional radius at which the multipolar current 
sheet is located. 

The total vector potential of the assumed magnetic field is then 

The Lagrangian for a single, positive, nonrelativistic charged particle is 

1 02 2.2L = ~ m ( r+ r  8 + z*2) + e ( A .  v) (14) 
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If the time is nondimensionalized with respect to uav, the frequency of gyration based on 
Bav, the nondimensional time is given by 

where Bav is the average magnetic field on the axis, defined by equation (5). If the de­
rivative with respect to  nondimensional time T is denoted by ?, that is, da/dT = &, 
the Lagrangian may be written in the form 

' 2  2 ' 2  + q'2 + a e )  +- 1 aeIl(a)cos q +-L =  (a + a 0 21 ? 

m r  2c1 n- 1 

In te rms  of a nondimensional generalized coordinate X, the Lagrangian equations are 

The dimensionless equations of motion a r e  then 

' 1  
q + c3&an-l q = osin ne + c3dancos ne + ~ ~ a d ~ ~ ( a ) s i n  (20) 

The constant C2 that appears in equations (18) to (20) is related to the magnitude of 
the variation of the main axisymmetric magnetic field and is equal to 

The constant C3 is related to the magnitude of the multipolar magnetic field, to the num­
ber of pairs of conductors, and to the radial position of the multipolar current sheet: 

10 
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c3= Bm -- 2Rm6 

BaVaE-' ?rn-'(l + Rm) 

where Rm is the mir ror  ratio on the axis, 

R =  B(a! = 0 , ~= 0) 
B(a! = 0 , ~ .= a) 

and 6 is given by 

n- 1 
Bminro 

The preceding equations of motion (eqs. (18) to (20)) a r e  intrinsically nonlinear. If 
the field-defining constants C2 and C3 were set  equal to zero, the motion would be that 
of a particle moving in the uniform magnetic field of an infinite solenoid. A perturbation 
approach is not indicated, since it would necessarily restrict  C2 and C3 to  small  val­
ues and exclude those large variations in the magnetic fields that a r e  most effective in 
confining charged particles. Without a general closed-form solution to these nonlinear 
equations, the future position and velocity of a particle cannot be predicted from a 
knowledge of its present position and velocity without numerically integrating the equa­
tions of motion. There is no simple way to tell whether a given particle will be reflected 
o r  not, and the adiabatic invariant M4 is often used in lieu of a closed-form solution to 
the problem to provide this information. The only feasible way of studying the nonadiaba­
tic variations of M4 is to solve equations (18) to (20) on a computer by numerical inte­
gration, pending the unlikely event of a nontrivial, closed-form, general solution of these 
equations. 

Method of Computation 

A particle was considered to be nonadiabatic in these numerical computations if AM4 
was greater than 5 percent while the particle was moving in the volume of space defined 
by 0 < 77 < 'IT and 0 < a < a. The 5-percent criterion was chosen because this degree of 
variation occurred for the same values of E and Rc where early experiments showed 
the adiabatic-to-nonadiabatic transition to occur (refs. 1and 2). 

In the numerical computations, a particle was injected in the direction of positive 

11 



I1 I I l l  I1 I 1  I1 111 l1111l11ll11l111 


at the midplane r )  = 0, and its motion followed until it was reflected, until it escaped 
through the magnetic mir ror  at r )  = T, or until it became nonadiabatic. The positions and 
velocities corresponding to  each trajectory point from the computer solution were used 
to calculate the kinetic energy 

T = @  e 2 2  
(25)

' 2  + a2 ' 2  + G 2 = R E  

and the adiabatic invariant M4 at each trajectory point. The constancy of the kinetic 
energy was used as a check on the round-off e r r o r s  in the computation. If T varied by

5 more than five parts in 10 from one trajectory point to another, the new point was re ­
jected, and the integration interval halved until the variation of T was below that limit. 
In no case was the cumulative e r r o r  as large as a 1-percent drift in T from the initial 
to the final trajectory point. 

The value of M4 was calculated at each trajectory point, and if this was either 
higher o r  lower than all previous values, the previous extreme value was replaced with 
the new extreme value. When the ratio of the extreme values of M4 was 

the particle was considered to  be nonadiabatic, and the computation of that particular 
particle terminated. 

As equations (18) to (20) are written, nine initial conditions a r e  required for the 
T 1 1 

problem. These a r e  a,  8, 77, Q, 8, q, C2, C3, and n. It would require a prohibitive 
amount of computer time to map out the adiabatic-to-nonadiabatic transition surface in 
this nine-dimensional space, so that the required number of initial conditions were re­
duced. The initial condition r )  = 0 was used in all cases,  thereby defining adiabaticity in 
terms of a single interaction with a magnetic mirror.  The three velocity initial condi­
tions were replaced by two variables, E and F, where the relation of E to the velocity 
components is given by equation (25). The symbol F represents the fraction of particles 
distributed over a hemisphere in  velocity space that is adiabatic for given values of a, 8, 
r ) ,  C2, C3, and n. In the present computation, the 20 particles listed in table I were 
used to determine F. These 20 points gave essentially the same results as the 85 more 
evenly distributed points used previously in references 1and 2. 

As will be discussed subsequently, a preliminary set of computations showed that a 
particle was most apt to be nonadiabatic if  it were injected at 8 = 0, the position between 
Ioffe bars. For this reason, and to conserve computer time, the azimuthal angle 8 was 
set equal to zero for all cases. It was deemed desirable to replace the parameters C2 
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and C3 with more familiar parameters, whose physical significance is more easily 
grasped Rc, Rm, and 6 .  The relation among these constants is given by equations (21) 
and (22). The computer program is expressed in terms of the parameters cy, E, F, Rc, 
6, and n. The computer program is discussed in appendix C. 

Correlat ing Results of Numer ica l  Computations 

In the numerical computations, the variables a, E, Rc, 6, and n were treated as 
independent, with F, the fraction of particles adiabatic, as the dependent variable to be 
calculated by following the 20 trajectories whose initial conditions are listed in table I. 
The nondimensional radius a was assigned eight values over the range 0.05 <a<2.50, 
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Figure 3. - Fraction of particles adiabatic as funct ion of mi r ro r  ratio. 
Radial m i r ro r  ratio, 6, 0.25; mult ipolar currents, n, 2; nondimen­
sional radius, CI, 1.50; adiabatic parameter, E, 0.02. 

the adiabatic parameter E assumed s ix  
values over the range 0.01<~<0.06; 
the parameter Rc took on six to twelve 
values over the range 0 .1  <Rc 21.00;-
the parameter 6 assumed six values 
over the range 0<6<1.50; and the 
parameter n took on two values, n =  2 
(quadrupole configuration), and n = 3 
(hexapole configuration). This amounts 
to about 5x103 cases, or, since there 
a re  20 trajectories per case, 105 indi­
vidual particle trajectories. A limited 
number of computations were made for 
n > 3 and e f 0 to assess the influence 
of these variables. 

Clearly, such a mass of data can­
not be properly interpreted without some 
means of correlating it, so that the 
relative importance of the variables 
and their systematic relation to one 
another is evident. The dimensionless 
variables listed in the preceding para­
graph a r e  a set  of similarity parame­
ters for the problem. The correlation 
procedure consists of cross-plotting 
the similarity parameters, and finding 
an analytical expression that best fits 
the cross  plot. A sample series of 
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similarity plots will be discussed to illustrate the method of correlating the data, and 
also to  illustrate the generally excellent f i t  of the data to the similarity relations. Fig­
ure 3 shows a plot of F, the fraction of particles adiabatic, as a function of the mirror  
ratio Re, for the particular values 6 = 0.25, n = 2, a! = 1.50, and E = 0.02. The seven 
data points represent seven different computer runs, each of which used the 20 sets of 
initial conditions listed in table I. 

The value of Rc corresponding to values of F of 0.1, 0.5, and 0.9 adiabatic was 
read from figure 3 and is plotted in figure 4, which also contains data from five other 
plots similar to figure 3, over the range 0.01 < E < 0.06. The data for a given per­
centage adiabatic lie along a straight line, which implies a similarity relation of the form 

RC I(:-
In order to improve the objectivity and precision of the curve fitting of this data, a com­
puter program was devised that fitted a least-squares straight line to the logarithms of E 

and Rc. Figure 4 illustrates the particular values n = 2, 6 = 0. 25, and CY = 1.50. The 
similarity relation of equation (27) held for all values of n, 6, and CY investigated, and 
failed only for E greater than 0.08. In the latter case, the data fell below the curve 
given by equation (27) and became asymptotic to the line Rc = 1. 

The parameter eo is shown in figure 5 plotted as a function of F, the fraction of 
particles adiabatic, for two particle radii, a! = 0.50 and 1.50. These curves can be 
approximated by the sum of two power-law terms: 

I I I I I I I 
Fraction of Exponent of Simi lar i ty 
particles s imi lar i ty  constant, 
adiabatic, parameter, Eo 

F A 

0 	 0. 1 0.3095 0.1651 
0 . 5  .2572 . l a 0  
0 .9 .1879 .0606 

.01 .02 .04  .06 .08 . 1  
Adiabatic parameter, E 

Figure 4. - M i r r o r  ra t io  Rc as funct ion of adiabatic parameter E. Radial 
m i r r o r  ratio, 6, 0.25; multipolar currents,  n, 2; nondimensional radius, 
a, 1. M. 
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A computer program was devised to f i t  all the values of c0 for given values of n, a, 
and 6 to this relation. The �itof the data to the expression in equation (28) was good in 
all cases  investigated. It was not possible to correlate the parameters C4, C5, E l ,  and 
E2 as a function of n, 6, or a; they a r e  given in tabular form in table II. 

The exponent A of the similarity relation of equation (27) is plotted in figure 6 as a 
function of the nondimensional radius a, for the particular case 6 = 0. 25, F = 0.1, and 

n = 2. A straight line was fitted to the data 
. 4  	 with the same computer program used for 

the original similarity relation. The ex­
ponent A is of the form 

+.-	

Ip . 2  
A = A0aK 

(29)m-c 


s -)r where both A. and K a r e  functions of 6,._
L 


._m 	 . 11 n, and F. The scatter of the points in fig-E._
* 	 .08 ure  6 is among the worst of all the data. 

.06' It was possible to correlate the param­
eter A, by plotting it as a function of 

.04 . 2  . 4  .6 . 8  1.0 
1 - F, the fraction of particles which a r e  

Fraction of particles nonadiabatic, 1 - F nonadiabatic. The values of A, for 6 = 0.25 
Figure 5. - Simi lar i ty constant as funct ion of f ract ion and n = 2 a r e  shown in figure 7. Evidently, 

of particles nonadiabatic 1- F. Radial m i r ro r  ratio, 6, 0. 25; m i l a r  l a  i n of the formmultipolar currents,  n, 2. 

r~ = A ~ U K  for = 0.3336, K = -0.2674 
I 

LI1 I I' 

I -­
\
0 \ 

.04 . t  
. 2  . 4  .6 .8 1 6 8 

I 
Nondimensional radius, a 

Figure 6. - Exponent A as funct ion of nondimensional radius a Radial m i r r o r  ratio, 6, 0. 25; multipolar 
currents,  n, 2; f ract ion of particles adiabatic, F, 0. 1. 
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A, = AoA(l - F)'6 

Equation (30) held t rue for the entire range of 6 and n studied. 
The exponent K was also plotted as a function of 1 - F, as shown in figure 8. The 

exponent K is of the form 

K = Ko(l - F)c7  
(31) 

where KO and C7 are functions only of n and 6. The similarity relation in equa­
tion (31) held for the other values of n and 6 investigated. 

If equations (29) to  (31) a r e  combined, it can be seen that the exponent in  equation (27) 
may be written 

(32) 

where the parameters AoA, C6 , KO,and C7 are functions only of n and 6. It was not 
possible to correlate these parameters further; they are listed in table III for the values 
of n and 6 studied. 

If equations (27), (28), and (32) are combined, the master similarity relation that 
describes the results of the computation can be formed: 

':1 . 2  . 3  . 4  . 5  .6 . 7  . 8  . 9  1.0 
Fraction of particles nonadiabatic, 1- F 

Figure 7. - Parameter A, as funct ion of fraction of particles nonadiabatic 1- F. Radial 
m i r r o r  ratio, 6, 0. 25; multipolar currents, n, 2. 

.1 . 2  . 3  . 4  . 5  .6 . 7  . 8  . 9  1.0 
Fraction of particles nonadiabatic, 1- F 

Figure 8. - Parameter K as funct ion of fraction of particles nonadiabatic 1- F. Radial 
m i r r o r  ratio, 6, 0. 25; multipolar currents,  n, 2 
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Equation (33) is the desired similarity relation that, together with the values of the con­
stants listed in tables I1 and III, summarizes the behavior of the approximately 105 parti­
cles that were studied. Equation (33) may be thought of as a particular solution to the 
original nonlinear and nonholonomic mathematical problem. It is, perhaps, worth 
noting that the usual perturbation approach (which consists of linearizing the original 
equations of motion and then trying to derive an expression like eq. (33) from the linear­
ized equation) has been inverted. Instead, a large number of exact solutions to the prob­
lem have been amassed, and equation (33) has been derived from them. 

There is a fundamental difficulty with the conventional perturbation methods that is 
absent - or at least not as severe - in the procedure used here. It is never possible to be 
sure  that the solution to an approximate, linearized problem bears any relation to the 
solution of the exact, nonlinear problem. The procedure used here makes it possible to 
test  how well equation (33) agrees with the exact solutions from which it was derived. 
The agreement of the exact solutions with the value calculated from equation (33) was 
measured by the quantity 

(34) 
Rc, e 

where Rc is the value calculated by substituting the appropriate value of E and the cor­
responding parameters from tables II and 111into equation (33), and R is the mir ror  

c, e
ratio from the exact computation, as taken from the r a w  data charts such as figure 3. 
The number of cases  in each interval of A is shown in figure 9. 

The distribution of e r r o r  in figure 9 is roughly Gaussian, with a standard deviation 
of rt6 percent. It is not possible, in the present investigation, to distinguish between er­
rors caused by interpolating between the computer-derived data points on the raw data 
plots, similar to figure 3, and e r r o r s  that come about because equation (33) is not a gen­
eral solution to the nonlinear and nonholonomic problem. It is probably the case that 
most, if not all, cases near A = 0 arise from interpolation e r ro r s ,  while the small  num­
ber of cases at large values of A probably a r i se  from equation (33) not being a general 
solution to the problem. 
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Figure 9. - Number of cases in each 1percent in terva l  of A .  Total cases, 6503. 

The results of the numerical computation cannot be expected to  correspond exactly to 
the results obtained in real devices for at least two reasons: (1) The definition of adia­
baticity, AM4 <_ 5 percent, is an arbitrary one, and there is no a priori reason to expect 
this particular value of AM4 to be intimately related to whether or not an ensemble of 
particles are adiabatically confined or not. (2) The magnetic fields assumed in the com­
putations were chosen for mathematical simplicity, and, especially for extreme values of 
the parameters defining them, do not correspond exactly to actual devices. 

Equation (33), while of some intrinsic interest as a particular solution to the mathe­
matical problem of adiabatic particle motion, should not be taken literally as a solution 
to the physical problem of determining under what conditions nonadiabatic losses will 
occur. Equation (33) suggests the similarity parameters which will be useful in express­
ing the results of laboratory experiments on nonadiabatic particle motion, and it also sug­
gests the similarity relations useful in reducing such data. Arguments by induction and 
analogy are always suspect without direct proof; however, it will be shown subsequently 
that the experimental results do indeed obey the similarity relations given by equations 
(27) and (29), but with different values of the numerical constants. 
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The magnetic fields assumed in this series of computations resemble closely the 
magnetic fields of axisymmetric devices within the range 0. 10 <- Rc <_ 1.0 and a <- 0. 75. 
If 6 # 0, the assumed multipolar field will cease to resemble closely that of real multi­
polar fields for r > 0. 75 ro. In order to approximate the magnetic fields of specific de­
vices, one must include more te rms  in the expansion of the Ae and AZ components of 
the vector potential. 

RESULTS FROM PREVIOUS EXPERIMENTS 

Several experiments have been reported in the literature that give information about 
nonadiabatic particle losses in actual devices. All the experiments except those de­
scribed in references l and 2 yielded information only about nonadiabatic losses that 
occurred after many reflections between magnetic mirrors.  

An excellent study of particle confinement was reported in reference 9 by Gibson, 
Jordan, and Lauer, who trapped million-electron-volt positrons in the magnetic bottle 
formed between two current loops. Their apparatus and experimental technique was such 
that they could not detect the nonadiabatic losses that occurred after a single interaction 
of the positrons with the magnetic mirrors.  They measured the decay of the positron 
density that resulted from the diffusion of the velocity vectors into the escape region of 
velocity space. They were able to  distinguish between the scattering of the velocity vec­
tors  into the escape cone due to collisions with the residual gas in the confinement volume 
and the faster density decay that resulted from the superposition of nonadiabatic diffu­
sional losses on the losses of collisional origin. Their density decay constants were of 
the order of seconds, so  that the positrons must have made at least 108 reflections be­
tween the magnetic mirrors  of their apparatus before being lost. 

The data reported in reference 9 by Gibson, et al. a r e  plotted in figure 10 in terms 
of the similarity parameters E ,  Rm, and a. The raw data taken from reference 9 a r e  
given in table IV. The investigators observed adiabatic particle motion for the conditions 
represented by solid circles, and nonadiabatic motion for those conditions represented by 
open circles.  It should be emphasized that even the most nonadiabatic case shown refers 
to particles that were confined for several  seconds on the average. Thus multiple re­
flection nonadiabatic diffusion into the loss region is a relatively slow process on the 
time scale of a single reflection between mirrors.  For later reference, the best-fit 
curve for the data of the present experiments is also shown in figure 10. 

An experiment similar to that in reference 9 was reported in reference 10 by 
Rodionov, who also studied the nonadiabatic losses of positrons from a magnetic bottle. 
In these experiments, it was possible to  distinguish between the density decay due to col­
lisions and the faster density decay that resulted when nonadiabatic diffusional losses also 
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Figure 10. - Prior experimental data for several values of nondimensional 
radius, a 

occurred. The mirror  ratio Rm and 
the adiabatic parameter E were varied 
over a relatively wide range of values, 
although all mirror  ratios reported were 
Rm <_ 0.2.  Unfortunately, the nature of 
the apparatus and the experimental tech­
nique severely limited the accuracy with 
which the variables were measured. The 
energy of the positrons was evidently un­
certain by a factor of 3, zo for the ap­
paratus was uncertain by about 25 per­
cent, and the radial position from which 
the positrons were lost was known only 
to be less than the radial position of the 
apparatus walls. The presumed best 
values of the variables are shown in 
table N. The data for adiabatic motion 
lie between the solid squares and for non­
adiabatic motion between the open squares 
in figure lO(c). The experimental tech­
nique used was such that single inter­
action nonadiabatic losses could not be 
detected. 

Adiabatic confinement for the condi­
tions listed in table IV has been reported 
(information received in a private com­
munication with I. Alexeff of the Oak 
Ridge National Laboratory). These con­
ditions are plotted as the solid right tri­
angles in figure 10. This experiment 
consisted of energetic electrons trapped 
between magnetic mirrors.  Presumably 
the only loss mechanism operating in 
this experiment was collisional scatter­
ing into the loss  cone, although the 
method of distinguishing between non­
adiabatic and collisional losses was not 
reported. 
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England and his colleagues (in ref. 11and information received in a private com­
munication) have reported the behavior of microwave heated electrons in the ??EPAtvand 
"PTFft  mirror  machines at Oak Ridge. In both machines, there was a core of ~ 1 0 0 ­
kiloelectron-volt electrons near the axis that appeared to be adiabatically confined, and 
higher energy electrons - in the million-electron-volt energy range - near the outskirts 
of the plasma that appeared to be subject to nonadiabatic losses. In this steady-state ex­
periment, it was not clear whether the electrons were lost nonadiabatically after a single 
interaction with a magnetic mirror ,  o r  whether the losses resulted from nonadiabatic dif­
fusion of the velocity vector over many reflections. Each device was operated at a fixed 
mirror  ratio, and the energy of the energetic electrons, which were subject to nonadia­
batic losses, was uncertain by about a factor of 2. The experimental parameters are 
listed in table IV, and the range of values under which nonadiabatic motion was observed 
is plotted in figure 10, as the open triangles. The solid triangles represent conditions 
under which adiabatic motion was observed. 

The experiments reported in references 1 and 2, unlike the experiments described in 
the preceding paragraphs, were designed to study a single interaction of a particle with a 
magnetic mirror.  The experimental technique used in these experiments was crude, 
since it only attempted to measure the conditions under which nonadiabatic losses became 
large compared with the usual adiabatic losses. The experimental technique was not suf­
ficiently sensitive to measure the onset of nonadiabatic losses, as was done in the ser ies  
of experiments reported subsequently. The data from references 1and 2 a r e  listed in 
table IV and a r e  plotted as diamonds in figure lO(a). These diamonds mark the adiabatic­
to-nonadiabatic transition, and correspond to the point between the solid and open symbols 
in the other experiments. The apparatus used in references 1 and 2 restricted the data to 
radii very close to the axis of the magnetic field. 

It is clear that the previously reported observations on the adiabaticity of particle 
motion a re  not sufficiently in agreement with each other o r  sufficiently complete to test  
the similarity relation discussed earlier in this report, nor a r e  they adequate to establish 
adiabatic design cr i ter ia  over the range of Rm, E ,  and a, of interest in the design of 
axisymmetric magnetic fields. 

EXPERIMENTAL PROGRAM 

Apparatus 

The incompleteness of the previous experimental results makes it desirable to mea­
sure  systematically the E appropriate to the adiabatic-to-nonadiabatic transition as a 
function of the mir ror  ratio R, and the average radius at which the particle moves, a. 
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Such a series of experiments was undertaken, subject to  the constraint that only axisym­
metric geometries could be investigated with the existing apparatus. 

The superconducting magnet facility used in this experiment is described in detail 
in appendix B. The ion source used was a ?'modified Penning source", similar to  that 
described in reference 12 by Meyerand and Brown. This source has the useful property 
that it will provide a beam of ions of any gaseous material and can be reconnected to op­
erate as an electron gun. The elements of this ion source are shown in figure 11. 

About half the data was taken with singly charged helium ions, whose energy was be­
low 100 electron volts when the ions left the source, and the remainder of the data was 
taken with electrons. Two runs were made with singly charged neon ions. The ion col­
lector consisted of a Faraday cup 5 centimeters in diameter and 20.3 centimeters long, 
with a 6.4-millimeter-diameter hole in the end that faced the ion source. A 6.4­
centimeter-diameter grounded disk with a 6.4-millimeter-diameter hole was mounted 
6.4-millimeters away from the end of the Faraday cup to collect ions that would other­
wise impinge on the outer surface of the Faraday cup. The axis of the Faraday cup was 
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coincident with the axis of the ion source during the taking of data, and this common axis 
was parallel to the axis of the magnetic field. The ion source and the Faraday cup were 
mounted on supports that could be positioned at any desired radius in the magnetic field. 
The background neutral gas pressure was no higher than 5 ~ 1 0 - '  t o r r ,  and the particle 
currents were in all cases below 10 microamperes. The charged particle densities were 
too low for collective effects among the particles to have affected the outcome of the ex­
periment. 

Procedu re 

An experimental run was initiated by putting the superconducting coils in the "per­
sistent" mode of operation, in  which the currents closed on themselves over a supercon­
ducting path, and the magnetic field was constant in time. The axial profile of the mag­
netic field was measured with a 1-percent-accuracy rotating-coil gauss meter , which was 
checked against standards both before and after the ser ies  of experiments. This profile 
yielded the experimental parameters zo, B,,, and Rm. The ion source and collector 
were then positioned at the desired value of a, and the ion source energized. A sche­
matic drawing of the electrical connections of the ion source and collector is shown in 
figure 11. The Faraday cup was kept biased at +75 volts (dc) to  suppress secondary 

The ion source could be biased to 18 kilovolts above ground, which provided 
The ion 

electrons. 
an electric field between the ion source and the disk in front of the collector. 
source bias voltage was the effective ion energy, since the ions had energies below 
100 electron volts on leaving the.source. The y-axis-of an X-Y recorder was connected 
to indicate the current flowing to the collector, while the x-axis indicated the bias voltage, 
and hence the ion energy. 

When the ions entered the Faraday cup, they were no longer acted on by electric 
fields and interacted only with the magnetic field. Since the diameter of their orbit was 
in all cases less than the inner diameter of the Faraday cup, and since the length of the 
cup was in all cases longer than zo, the ions did not impinge on the inner walls of the 
Faraday cup unless the velocity vector of the particle happened to lie in the escape cone. 

The adiabatic theory of particle reflection from a magnetic mirror  states that the 
angular opening of the escape cone in velocity space is a function only of the mirror ratio 

e l  = sin-1  
(35) 

the escape cone angle becomes larger than 
In the present series of experiments, all 
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variables except the ion energy were held constant during a given run. Ions were acceler­
ated to a given energy, entered the Faraday cup, interacted with the magnetic field, and a 
certain fraction were reflected back out the same 6.4-millimeter-diameter hole through 
which they entered. In the adiabatic regime of operation, the fraction of particles re­
flecting back out of the collector is independent of the ion energy and hence independent of 
E .  As the energy is increased to the point where nonadiabatic motion begins, the escape 
cone opens up, and fewer particles a r e  reflected back out the hole ir? the collector. The 
indicated ion current to the collector will therefore be a constant up to a critical energy, 
corresponding to point A in figure 1 (p. 2), and will then increase. 

This behavior is illustrated in figure 12, which is one of the X-Y recordings that 
form the r a w  data of this experiment. In the region below about 4 kilovolts, the collected 
ion current is constant, so  that the escape cone angle is not a function of energy. Above 
4 kilovolts, however, the collected ion current is a ramp function, which indicates that 
the escape cone angle was opening up as the particle energy (and hence E )  was increased. 
The energy at which the ion current is no longer a constant is the "critical" energy, 
above which nonadiabatic losses occur. The experimental conditions under which these 
critical energies were measured are listed in table V. If a device is to contain particles 
adiabatically, the particle energy should be below this critical energy. It should be noted 
that this experimental technique gives information about only a single interaction with 
the magnetic barr ier .  

Results 

The r a w  experimental data were converted to the nondimensional similarity param­
eters  E ,  Rm, and Q. The experimentally obtained values of E,  corresponding to the 
critical energy, have been plotted as a function of Rm in figure 13, for eight values of Q, 

0 < Q < 1. 75. The same similarity relation is obtained that was used in correlating the 
numerical results 

3.0 

A1 
2.5 

Rm = (q) 
\Nonadiabatic 

>-l-
\ losses occurt2.0 
LAdiabatic although the correlation involves the mir­

~~ reflection 

1. 5 I I ror ratio Rm rather than Rc, and the 
10x103 values of AI and E a r e  different. The 

Ion energy, eV 
experimental data for each value of (Y

Figure 12. - Raw data from X-Y recorder. Nondimensional 
were substituted into the same curve-radius, a, 1. 75. 
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fitting computer program used to f i t  the analytical results. The straight lines on these 
log-log plots a r e  the least-squares f i t  to the logarithms of the experimental data. The 
constants A1 and cl a re  listed in table VI(a) for each value of Q for which data were 
taken. 

in figure 14. 
The parameter A1 from the experimental curves is shown plotted as a function of CY 

The parameter AI can be correlated by the relation 

A1 = Aloe plQ 
(37) 

where, for the present experiment, Alo = 0.388, and P1 = -0.167. The parameter el 
for the experimental data is shown plotted as a function of Q in figure 15 and can be 
correlated by the relation 
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c l  = Eloe p2a 

where, for the present experiment, clo = 0.348,  and Pa = 0.075. The anomalous point 
at a = 1 . 5 0  was discarded in both correlations, since it was based on many fewer ex­
perimental points than those for which a <- 1.00.  The results of the current se r ies  of ex­
periments can be summarized in analytic form by the statement that single interaction 
nonadiabatic losses will not occur in axisymmetric geometries if  

0.388 e-0 .167 CY 
E 

(39) 
0 .348  e 

where the experimental results are represented by the equality sign. 
Comparison of the experimentally derived similarity relation of equat,an (3 9) with 

equation (33), which was used to correlate the analytical results, requires that the mirror  
ratio Rm be transformed to Rc. Since Rm = Rc when E = 0, one can show, with the 
help of equation (21), that 

Rm - Y
Rc = 

1 - Rmy 
where 

Io(q - 1 
Y =  

Io(&)+ 1 

The experimental values of Rm were transformed according to equation (40), and 
the experimental data obeyed the similarity relation of equation (27). The values of A 
and go from the transformed experimental data curves a r e  listed in table VI(b). The 
parameter A for the experimental curves is plotted as a function of a in figure 16. 

Figure 16. - Parameter A f rom transformed curves of mi r ro r  rat io Rc at nondimensional radius of particle a, as 
it passes through min imum magnetic f ield B, as funct ion of nondimensional radius a 
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These values of A a r e  consistent with the power-law similarity relation of equation (29), 
which was used to correlate the analytical results. 

Within the limitations of the data, one may conclude that the analytical problem con­
sidered in the section NUMERICAL ANALYSIS and the preceding experimental results are 
both correlated by the same similarity parameters and by the similarity relation of equa­
tion (27). It therefore appears from this series of experiments that the similarity rela­
tions and the similarity parameters appropriate to the problem of nonadiabatic particle 
motion have been established, and that the constants have been found for the axisymmet­
ric geometry. The fact that the experimentally determined critical values of E for 
electrons and singly charged helium and neon ions fall along the same similarity relation 
is further evidence in support of this result. 

The measurement of the magnetic field profile yielded values of Rm and Bav that 
could not have had e r r o r s  of more than 3 percent. The e r r o r  in zo may have been as 
great as 5 percent in some cases. The e r ro r  in measuring the particle energy could have 
been as great as 10 percent. These e r r o r s  give r i s e  to e r ro r  limits on E of AE = *15 
percent. The average e r ro r  in the radial position was A a  = &O. 15, a fixed rather than a 
proportional e r ror .  This e r r o r  arose from a 0.31-centimeter uncertainty in the radial 
position of the ion beam, due to the 0. 64-centimeter hole in the ion source and collector, 
and an additional 0. 64-centimeter uncertainty in the position of the ion source and col­
lector axis. The range of the principal experimental variables was 0 < a < 1.75, 
0.175 <-Rm <_ 0.945, 0.059 <- zo <_ 0.241 meter, 1/1837 <- m <- 20 atomic mass units, 
0.029 <- Bav <_ 1.89 webers per square meter, and 1500 < V < 7800 electron volts. 

CONCLUS IONS 

Modes of Nonadiabatic Part icle Loss 

In the INTRODUCTION, nonadiabatic particle losses were divided into two classes: 
(1) nonadiabatic losses due to enlargement of the escape cone, which result after a single 
interaction of a particle with a magnetic barr ier ,  and (2) nonadiabatic losses that occur 
after many reflections, which result from a random-walk diffusion of a particle across  
the boundary of the enlarged escape cone. The first nonadiabatic loss mechanism was 
observed in the numerical computations of Garren, et al. (ref. 4), in the experimental 
results reported in references 1and 2, and in the results of the present se r ies  of experi­
ments, which employ an experimental technique that demonstrates this mode of nonadia­
batic loss. The second mode of nonadiabatic loss was observed in the experiments of 
Gibson, et al. (ref. 9), and of Rodionov (ref. 10). In both experiments, the positrons 
confined in their apparatus were lost after approximately 108 reflections. The division 
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of nonadiabatic losses into single reflection and multiple reflection losses may be re­
garded as experimentally established. 

Comparison of Present Results w i t h  Previous Experiments 

The data of the present experiment map out the critical conditions for which non­
adiabatic losses will start to occur. No other experiment therefore is expected to have 
detected nonadiabatic motion to the upper left of the present experimental curves, nor 
would adiabatic motion be expected to the lower right of these curves. In figure 10, how­
ever, are several  instances of disagreement with the present experiment. These will be 
examined. 

The adiabatic-to-nonadiabatic transitions reported in references 1, 2, 10, and a pri­
vate communication with Alexeff all lie below the transition line determined in the present 
experiment. This discrepancy could be explained in par t  by the inaccuracy with which 
the experimental variables were measured, but the most probable source of the dis­
crepancy is that these experiments measured a somewhat different phenomenon than the 
present experiments. 

In the experiment of Alexeff electrons were heated by microwave energy, and the 
experiment was steady-state. The disagreement with the present results probably arises 
from the fact that the electrons in Alexeff's apparatus possessed velocity components in 
the vicinity of point C in figure 1(p. 2), and the loss cone was actually much larger  than 
the adiabatic loss cone. The electrons with velocity vectors to the left of point C will 
appear to be adiabatically confined, and the large number of nonadiabatic losses would go 
undetected because of an inability to distinguish between electrons escaping in the adia­
batic loss cone, and electrons escaping in the large nonadiabatic loss region. 

The adiabatic-to-nonadiabatic transition region determined in the experiments of 
Rodionov (ref. 10) does not agree with the findings of the present experiment. This dis­
crepancy could be explained on the same basis as that of Alexeff's experiment. This dis­
crepancy could also be explained by the large limits of e r r o r  on the variables of this ex­
periment. 

The experimental technique used in references 1 and 2 did not detect the onset of 
nonadiabatic particle motion, but it did detect instead the energy at which the largest num­
ber of particles became nonadiabatic. The velocity corresponding to this energy l ies in 
the vicinity of point B in figure 1. If @ is the flux of particles escaping as a result of 
nonadiabatic effects and 0 is the escape cone angle, the experimental technique of ref­
erences 1 and 2 was such as to detect 
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rather than the transition measurement of the present experiment 

= nonzero 
OABC 

All but two of the diamonds in figure lO(a), which represent the transition energy deter­
mined in  the experiment of references 1and 2, lie below the transition line of the present 
experiment. This is to be expected, since the E appropriate to point B is larger than 
that appropriate to point A. 

The observations of England (ref. 11and a private communication) are consistent 
with the results of the present experiments, in view of the uncertainty in the energy of the 
nonadiabatic particles. The experiments of Gibson, et  al. (ref. 4) show good general 
agreement with the present se r ies  of experiments, with one interesting and significant 
exception. It should be noted in figures lO(a) and (b) that the adiabatic-to nonadiabatic 
transition, as reported by Gibson, et al. (ref. 9), l ies at slightly smaller values of E 

than the present experimental results. Evidently this experiment was sensitive and accu­
rate  enough to detect the nonadiabatic diffusional losses from points in velocity space only 
slightly above and to the right of point A in figure 1 (p. 2). The small  discrepancy be­
tween the present experiment and the results reported by England and by Gibson, et al. 
(ref. 9) may also be due to relativistic effects, since the particles in these latter experi­
ments were relativistic. 

Comparison of Experimental Results w i t h  Numerical Computations 

Although the numerical and experimental results obey the same similarity relation, 
the numerical constants in the similarity relation a re  different and yield different slopes 
and intercepts. In the particular case Q! = 0, shown in figure 13 (pp. 25 and 26), the 
numerical and experimental curves c ross  in the vicinity of Rm = 0.515 for F = 0.5 
adiabatic and 6 = 0. At this mirror  ratio, at least some particles are lost when their 
adiabatic invariant M4 varies by about 5 percent during a single interaction with the 
magnetic mirror.  In the range 0.515 <-Rm <- 1.0, the experimental points lie to the 
right of the numerical curve, suggesting that, in this region, nonadiabatic losses occur 
only if  M4 varies by more than 5 percent during a single interaction with the magnetic 
mir ror  field. In the range 0 <-Rm <_ 0.515, nonadiabatic losses will occur if M4 varies 
by less than 5 percent during a single interaction with the magnetic mirror .  

SampIe Comp utat io ns  

The implications of the numerical results may be best appreciated by applying them 
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to a specific example. A "reference device??was chosen for purposes of illustration, 
whose characteristics are shown in figure 17 and listed as follows: 

Mult ipolar windings 

winuings -- Uniform f ield region M i r r o r  region 

CD -8165 

Fiqure 17. - Characteristics of reference apparatus. 

Confined particle species, A = 2 . . . . . . . . . . . . . . . . . . . . . . . . .  Deuterium 
Length of uniform field region, cm . . . . . . . . . . . . . . . . . . . . . . . . . . .  100 
Length of mirror  region, zo, c m  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 
Minimum magnetic field, Bmin, kG . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 
Maximum magnetic field, Bmax, kG . . . . . . . . . . . . . . . . . . . . . . . . . .  150 
Reference mirror  ratio, Rm = Bmin/Bmax . . . . . . . . . . . . . . . . . . . . . .  0.50 
Plasma radius (maximum amax=0.50), rp, cm.  . . . . . . . . . . . . . . . . . . . .  5 
Radius of multipolar windings (6 = 0.75), ro, cm . . . . . . . . . . . . . . . . . . . . .  9 
Number of multipolar conductor pairs (quadrupole), n . . . . . . . . . . . . . . . . . .2 
Radial mirror  ratio (6 z 0.75) at r = 2 c m .  . . . . . . . . . . . . . . . . . . . . . .  1.05 

The reference device is intended to be typical of the next technological generation of 
minimum-B controlled fusion research devices, in which the magnetic fields and particle 
energies, but not the dimensions, of eventual fusion reactors are achieved. In the fol­
lowing discussion, the characteristics of the reference device are varied one by one, and 
the effects of these variations on the critical energy are determined. 

Figure 18 is a plot of the critical energy (based on F = 0.5 adiabatic, and a 
5-percent variation of M4) as a function of 6 ,  the radial mirror  ratio. The critical 
energy is a monotonically decreasing function of 6 ,  which implies that the addition of 
multipolar windings to the axisymmetric mirror  configuration causes a particle to become 
less adiabatic, and hence more likely to be lost from the device. This general trend of 
adiabaticity with 6 is true, in general, over the range studied in the numerical computa­
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tions. Adiabatic confinement is therefore apt to  be 
even more of a problem with minimum-B geometries 
than with axisymmetric magnetic bottles. The phys­
ical reasons for this decrease of adiabaticity are 
fairly clear: the addition of multipolar windings in­
creases  the uneveness of the magnetic field. The ef­
fect of small  bumps, or sharp gradients, on non­
adiabatic losses has been illustrated in the experi­
ments of Brevnov and Tomashchuk (ref. 13). 

Figure 19 is a plot of the critical energy as a 
function of the mir ror  ratio of the reference device. 
In this computation, it was assumed that Bmin and 

Bmax were adjusted in such a way that Bav was 
kept constant at 11.25 webers per square meter. The 
dashed line is taken from the numerical computations. 
The solid line is taken from the experimental results, 
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Figure 18. - Crit ical energy V as funct ion of 
radial m i r ro r  ra t io  6 in reference device. 
Mult ipolar currents,  n, 2; nondimensional 
radius, a, 0.50; f ract ion of particles adiabatic, 
F, 0. 5; mi r ro r  ratio, Rc, 0. 50. 

which were for 6 = 0, and is equivalent to operating the reference device with the multi­
polar windings turned off. A change of a factor of 2 in the mirror  ratio of the reference 
device will change the cri t ical  energy by about a factor of 100. Alternatively, a change 
in particle energy of a factor of 2 will cause a change of about 11 percent in the cri t ical  
mir ror  ratio. This suggests that the choice of the maximum energy and/or mir ror  ratio 
should be a matter for careful study. 

Figure 20 is a plot of the cri t ical  energy of the reference device as a function of n, 
the number of pairs of multipolar current-carrying windings. As one can see,  the cri t i­
cal  energy is a monotonically increasing function of n, suggesting that, as the number of 
pairs of windings is increased, the motion of a particle at a given radius will become 

1 I I I I I l l 1  I I l l  I I I I I  I 1 . 1 1 1 1 1 1 1  I I I 
Radial Nondimen- Pairs of mult i - Fraction of I I I f @ � !
m i r r o r  
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6 

_-	 Analytical 0.75 
ExDerimental 0 

102 103 

sional polar currents,  particles 
radius, n adiabatic, 
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0. 50 2 0. 5 _ _ _  _ _ _ _.50 
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Crit ical deuteron energy, V, eV 

Figure 19. - Crit ical deuteron energy V as funct ion of m i r r o r  ra t io  R, o r  Rc for reference device. 
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Figure 20. - Crit ical deuteron energy V as func t ion  of number of pairs of mult i ­
polar cur ren ts  n in  reference device: radial m i r r o r  ratio, 6, 0.75; multipolar 
currents,  n, 2; nondimensional radius, a, 0.50; f ract ion of particles adiabatic, 
F, 0. 50. 
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Figure 21. - Crit ical deuteron energy V as funct ion of nondimensional average particle radius a for 
reference device. 
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more adiabatic. This result is reasonable on physical grounds, since the multipolar 
field increases with radius as 

so that, at a given radius, the multipolar field for. large n is not as great as it is for 
small  n. For large n, the unevenness in the magnetic field at a given radius is relatively 
small, and approaches the characteristics of an axisymmetric field as a limit. For 
small  n, the multipolar field is relatively larger,  and produces a relatively larger per­
turbation in the motion. This trend of adiabaticity with n is a general one and is not 
confined to the reference device. 

Figure 21  is a plot of the critical energy as a function of the average nondimensional 
radius at which the particle moves. The dashed line is based on the numerical computa­
tions; the solid line is a consequence of applying the experimental results to the reference 
device, but with 6 = 0. One may see  that there is a broad region in the vicinity of the 
axis where the critical energy is relatively constant, followed by a monotonic decrease 
with radius. This result is general, and comes about because the magnetic field is rela­
tively constant near the axis and becomes more nonuniform only at larger radii. The 
general behavior shown in figure 21 is in good agreement with the observations of Gibson, 
et al. (ref. 9), who measured nonadiabatic losses at several  radii and reported that they 
observed no significant change in the nonadiabatic losses until relatively large radii were 
investigated. 

Virtually all the numerical computations were made for an azimuthal injection angle 
of 8 = 0, a position between the Ioffe bars.  Table VI1 shows the critical energy for five 
different values of 8 for the reference device. One may see  that the particular angle 
chosen corresponds to the most nonadiabatic behavior, s o  that equation (33) together with 
the constants of tables I1 and III represents the worst o r  most nonadiabatic behavior that 
would be expected in the minimum-B configuration assumed in this investigation. 

Present Experimental Results as Engineering Design Cr i ter ia  

The experimental results given ear l ier  can serve as cr i ter ia  for the design of axisym­
metric magnetic mir rors  that will suffer no nonadiabatic particle losses. In the present 
se r ies  of experiments, the conditions for which nonadiabatic losses start to occur have 
been measured for a single interaction of a particle with a magnetic barr ier .  To confine 
the maximum number of particles that the adiabatic theory allows, the apparatus should 

35 




operate under conditions that lie above and to the left of the lines in figures 13 and 14 
(pp. 25, 26, and 27). If the nonadiabatic losses caused by multiple reflection dif­
fusion of the velocity vector are to be avoided, the data of Gibson, et al. (ref. 9) indi­
cate that the values of Rm should be about 8 percent higher than the value of Rm given 
by the present single reflection experiments. Since large values of E generally imply 
more economical apparatus and better satisfaction of the finite radius of gyration stabili­
zation criterion, the apparatus should be designed as close to this value of E as possible. 

Since the magnetic field is less  uniform away from the magnetic field axis, the value 
of R, defining the critical adiabatic-to-nonadiabatic conditions off axis will be greater 
than the value of Rm for Q = 0. For this reason, a given piece of apparatus should be 
designed to be adiabatic at the maximum anticipated plasma radius, and particles moving 
at smaller radii will automatically be adiabatic. The preceding experimental results 
were obtained in an axisymmetric magnetic field and must be applied with caution to the 
minimum-B fields used in the numerical computations. If these results a r e  used as de­
sign cr i ter ia  for minimum-B geometries, it should be realized that the superposition of 
a multipolar field on an axisymmetric mirror  field will make the combined geometry less  
adiabatic. The experimental results of equation (39) should therefore be regarded as an 
upper bound on E ,  or a lower bound on Rm, the exceeding of which will certainly result 
in nonadiabatic losses from the combined geometry. Since experimental design cr i ter ia  
for minimum-B geometries a r e  not yet available, machines with such geometries should 
be designed to lie as far as possible above and to the left of the curves in figure 13. The 
magnetic field near the axis of a combined geometry is similar to that in an axisymmetric 
field alone, so  that the results of the present experiments for a = 0 should be capable of 
being carried over virtually intact for particles close to the axis of a combined field. As 
larger radii, larger values of n, and larger values of the radial mirror  ratio 6 a r e  
considered, the Rm of the combined field should be designed to be further and further 
above that given by equation (39). The quantitative effects of 6 and n on the adiabatic­
to-nonadiabatic transition line remain to be investigated in a further se r ies  of experi­
ments. 

Implications of Present Results for t h e  Problem of t h e  Self-Sustainabi ity 

of a Fusion Reaction 

It would be most desirable if  eventual fusion reactors were self-sustaining, that is, 
if the charged reaction products could be confined in the reaction volume until they have 
transferred their energy to the fuel ions, thus making external heating and injection of the 
fuel unnecessary. 
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Figure 22. - Cr i t ical  particle energy V as func t ion  of apparatus dimensions for reference device. Non­
dimensional radius, a, 0. 

Two of the difficulties in the way of a self-sustaining fusion reactor are (1)the ener­
getic reaction product may be scattered by collisions into the escape cone before it gives 
up a significant fraction of its energy to the fuel and (2) the reaction product may be lost 
nonadiabatically before it can give up a significant fraction of its energy to the fuel. Only 
the latter question, whether it is reasonable to expect these reaction products to be adia­
batically confined, will be considered. 

The charged reaction products of a thermonuclear reactor include doubly charged 
helium 3 and helium 4 and singly charged hydrogen, which have energies in the range 
1< E < 15 million electron volts. The critical energy is plotted in figure 22 as a func­
tion of zo, the characteristic dimension of the magnetic field, which is predicated on the 
assumptions a = 0, 6 = 0, Rm = 0.5, and Bav = 11.25 webers per square meter. The 
experimental data of figure 13 have been used as design criteria. The three reaction 
products listed are shown in figure 22. It can be seen that, i f  the fusion reactor has a 

1value of zo of more than about 15 meters, the reaction products will be adiabatically 
confined. Since a full-scale fusion reactor would probably have dimensions at least this 
large, it is reasonable to conclude that nonadiabatic losses need not prevent a fusion 
reactor from being self-sustaining. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 1, 1965. 
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APPENDIX A 

SYMBOLS 

Unless otherwise noted, the rationalized mks system of units is used in this report. 

A exponent of similarity relation 

parameter used in eq. (29) 

AoA parameter used in eq. (30) 

AZ 
axial component of magnetic 

vector potential 

Ae theta component of magnetic 
vector potential 

A magnetic vector potential-
A1 parameter used in eq. (37) 

parameter used in eq. (37) 

B magnetic field strength 

Bav average magnetic field, 

"in + Bmax) 

Bm multipolar magnetic field at 
multipolar current sheet 

Bmax maximum magnetic field 
strength on axis 

Brnin minimum magnetic field 
strength on axis 

c1  constant defined by eq. (9) 

c2 constant defined by eq. (21) 

c3 constant defined by eq. (22) 

c4 parameter used in eq. (28) 

c5 parameter used in eq. (28) 

'6 parameter used in eq. (30) 

c7 parameter used in eq. (31) 

E2 
F 


iz-
ie-
j 


K 


KO 


L 


M4 


m 

n 

p1 

p2 

Rc 

RQ 


Rm 

r 

r
0 

parameter used in eq. (28) 

parameter used in eq. (28) 

fraction of particles adiabatic 

unit vector in z-direction 

unit vector in 8-direction 

current per unit length 

parameter used in eq. (29) 

parameter used in eq. (31) 

Lagrangian, given by eq. (14) 

adiabatic invariant, defined by 

eq. (1) 

ion mass 

number of pairs of multipolar 
currents 

parameter used in eq. (37) 

parameter used in eq. (38) 

mirror  ratio at radius Z, 
defined by eq. (11) 

average radius of gyration of 
particle, defined in eq. (3) 

mir ror  ratio, B ~ ~ on ~ / B 
magnetic field axis 

radial position 

radial position of multipolar 
windings 

plasma radius, mr
P 
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T 


t 

V 

V 

vl 

z 

Z
0 

CY 

-
CY 

Y 


A 

dimensionless kinetic energy, 
given by eq. (25) 

time 

particle energy, eV 

total velocity of particle 

particle velocity perpendicular to 
magnetic field 

particle velocity parallel to mag­
netic field 

axial coordinate 

axial distance between Bmin 

and Bmax 
nondimensional radius, m/z0 

nondimensional radial position of 
multipolar windings, aro/zo 

nondimensional radius of a parti­
cle as it passes through Bmin 

parameter defined by eq. (41) 

defined by eq. (34) 

6 radial mirror  ratio, defined by 
eq. (24) 

� adiabatic parameter, defined by 
eq. (3) 

�0 
constant appearing in similarity 

relation 

�1 parameter used in eq. (38) 

�10 parameter used in eq. (38) 

v dimensionless axial coordinate, 
d Z o  

8 escape cone angle 

angle defined by eq. (2) 

P O  
permeability of f ree  space, 47~ 

~ T X ~ O - ~H/m 

7 dimensionless time, defined by 
eq. (15) 

flux of particles lost through 
magnetic mirror  

x dimensionless generalized 
coordinate 

w angular frequency 
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APPENDIX B 

EXPERIMENTAL A PPARATUS 

Superconducting Coils 

The fields of cryogenic engineering and superconductivity have recently matured to 
the point where superconducting magnetic field coils can be built and operated as a facil­
ity for research in other areas .  A split pair of superconducting coils with a maximum 
field of 2.5 webers per  square meter on the axis and an accessible diameter of 17.8 cen­
timeters has recently been placed into service. The coils a r e  operated in a magnetic 
bottle configuration that may be either symmetric or  asymmetric about the midplane. 
The mirror  ratio of a symmetric configuration may be altered by varying the spacing of 
the coils. A normalized plot of the field along the axis with both coils symmetrically 
energized is shown in figure 23. 

Each coil contains approximately 26 kilometers of 0. 25-millimeter-diameter 
niobium - 25 percent zirconium wire plated with 0.025 millimeter of copper on the radius 
and covered with an additional 0.025 millimeter of enamel insulation. 

The critical current of the wire utilized was greater than 28 amperes in a small  test  
coil (850 G/A). The average operating current, however, was set  at 14.7 amperes to 
allow for nonuniform wire quality and collective degradation effects. With this current, 
the maximum field of both coils was just 2.5 webers per  square meter on the axis before 
transition to the normal state. The time required to bring the two coils up to rated field 
when operated in ser ies  is 150 minutes. At the present time, both coils have withstood 
six normal transitions while installed in their respective Dewars. 

Magnet Dewars 

Each of the two superconducting 
coils is enclosed in a multilayer 
Dewar whose outside dimensions a r e  
12  centimeters in thickness along 
the coil axis, and 51.7 centimeters 

\ . by 74.5 centimeters in a plane nor­
c 

mal to the coil axis. Each Dewar 
- -

consists of an inner stainless-steel 
Axial position, cm canister that encloses the supercon-

Figure 23. - Normalized magnetic field prof i le w i th  6-inch spacers between 
ducting coils and a 9.90-liter liquid-coils. Maximum magnetic field strength, 23 kilogauss. 
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Figure 24. - Cutaway drawing of coi l  Dewars. 
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helium reservoir, and an outer aluminum canister that contains a 10. 60-liter-reservoir 

for liquid nitrogen. All seams in the Dewar are vacuum-tight welds. The outer surface 

of the liquid-nitrogen canister is exposed to the vacuum in which the experiment is per­

formed and serves as a liquid-nitrogen cold trap. An isometric cross section of the 

Dewars and coils is shown in figure 24. 

The unobstructed working diameter is 17.8 centimeters in the Dewar and 26.6 centi­

meters in the space between the Dewars. An end view of the Dewar assembly is shown 

in figure 25. The heat leak into the liquid-nitrogen and liquid-helium canisters of each 

Dewar is shown in table VIII along with the operating time between fillings of the canis­

ters. 
Approximately 4 hours are required to cool the coils from room temperature and to 

fill all the canisters. Approximately 130 liters of liquid helium are required to cool the 

two coils from liquid-nitrogen temperature to liquid-helium temperature and to fill both 

canisters. The helium vent bellows of the movable coil is of single-wall construction, 

thereby allowing it to approach the low temperatures of the venting helium gas. This 

cooled surface acts as a cryopump. 

Vacuum System 

The super conducting magnet system described in the preceding section is designed to 

fit into a vacuum tank that forms the outer canister of the super conducting magnet Dewar. 

Figure 25 . - End view of superconducting magnet assembly taken with end plate removed from tank . 
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Liquid-hel ium and l iquid-nitrogen 
transfer and vent l ines 

Figure 26. - Cutaway drawing of vacuum tank and coi l  Dewars. 

A cross-sectional view of the tank with the superconducting magnets in place is shown in 
figure 26. The vacuum tank is 1meter in diameter, 2 meters long, and fabricated of 
0.95-inch-thick 304 nonmagnetic stainless steel. All  bolts and exterior fittings on the 
tank a r e  of stainless steel to avoid perturbing the axial symmetry of the magnetic field. 
All ports a r e  sealed by single neoprene O-rings. The vacuum tank was designed with an 
unusually large number of access ports in order to exploit fully the excellent visual and 
instrumental access to  the working volume afforded by the superconducting coils. 

An air-lock system was attached to the right axial port, shown in figure 26, to reduce 
the number of times that the tank had to be brought up to atmospheric pressure.  Among 
the probes that can be inserted through the air lock are a Langmuir probe, a Faraday 
cup, a hot-wire probe, and an emissive probe. A double Faraday cup and the ion source 
a r e  mounted on sliding seals that permit the two-degree-of-freedom manipulation of both. 

Cryopumping by the liquid-nitrogen and liquid-helium temperature surfaces exposed 
to the tank vacuum resulted in unexpectedly low tank pressures.  The ultimate pressure of 
the vacuum tank with the coil assembly at room temperature is 2X10-6 tor r .  Cryopumping 
on the liquid-nitrogen temperature surfaces of the Dewars results in a pressure of 
1 . 5 ~ 1 0 - ~torr .  With liquid helium in the coil assembly, cryopumping on the liquid-helium 
temperature surfaces reduces the tank pressure to below 3X10-8 tor r .  
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APPENDIX C 

COMPUTER PROGRAM FOR CALCULATION OF NONADIABATIC MOTION 

OF CHARGED PARTICLE IN MULTIPOLAR MAGNETIC BARRIER 

by Paul Swigert 

A computer program to integrate equations (18) to (20) was written in FORTRAN rV 
for the IBM 7094-7044 direct-couple system. This program integrated the three second-
order differential equations, checked for different stopping conditions, and kept track of 
the number of particles at each stopping condition. The FORTRAN listings of the main 
program and related subroutines, flow charts for the main program (fig. 27) and the in­
tegration subroutine (fig. 28), and a step-by-step explanation of the main program a r e  
also presented. 

The functions of other related subroutines a r e  given as follows: Subroutine DIFF 
evaluates the differential equations for the integration subroutine. The three second-
order differential equations were transformed into a set  of six first-order equations so  
that the first-order Runge-Kutta method could be used. Subroutine AD1 computes M4 at 
each integration step and s tores  the largest and smallest over the range of integration so 
that equation (26) can be computed. The listing for subroutine BESI is not included be­
cause a program of this type is available at most computing laboratories. The purpose 
of this subroutine is to compute the Bessel functions Io and I1. The argument of the 
CALL statement is an a r ray  dimensioned by three, the Bessel function argument is the 
first element of this array,  and the functions Io and I1 are returned in the second and 
third elements of the array,  respectively. 

Various methods were used to establish the accuracy of the complete program. Dur­
ing the preliminary running of the program, the differential equations were subjected to 
a time reversal. Time reversal  had no effect on the results of the integration other than 
to produce the mirror  image of the trajectory. It was desirable to include in the program 
a means of making the integration interval proportional to the radius of curvature of the 
trajectory, since otherwise the kinetic energy, which should remain constant, changed 
considerably over the range of integration. With the provision for halving and doubling 
the increment at certain times, the kinetic energy changed by less than 1percent over the 
complete trajectory and was not allowed to vary by more than 0.005 percent for each in­
tegration step. Finally, the results of this program were checked against a similar pro­
gram given in reference 1. 

This program was used to investigate the trajectories of 101 520 particles. With the 
initial conditions given in table I these particles were divided into 5076 cases of 20 parti­
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cles each. The average computer time for each case was 1.24 minutes with extreme run­
ming times of 0.2 minute and 3.5 minutes. The wide spread in computer t imes occurred 
because the calculation of an individual particle was stopped when it became nonadiabatic, 
that is, when M4 varied by more than 5 percent along the trajectory. 

Description of Flow Char t  for Ma in  Program 

The numbers in this section refer to the flow chart box numbers and the statement 
numbers in the FORTRAN listing. 

(1)The 20 initial conditions given in table I are read into the computer at this point. 
These input cards  should be arranged as follows: The first card contains the number of 
particles in fixed point notation ending in card column 5. The following cards  contain the 

? ? ? 

initial velocities in floating-point notation. These initial conditions q,  a, and (YE must 
end in card columns 10, 20, and 30, respectively. There must be one of these cards for 
each particle. (See sample data on the FORTRAN listing of the main program. ) 

(2) The other initial conditions for the differential equations, the tes t  for the kinetic 
energy constant, and a check to indicate i f  the program is to stop computing when a parti­
cle becomes nonadiabatic, are read in. This information is contained on one card and 
determines the conditions for one case. KTR and N a r e  fixed-point numbers and must 
end in card columns 5 and 10, respectively. The other data take 10 card columns each 
and a r e  in floating-point notation. Many of these cards may be placed at the end of the 
deck to  allow running consecutive cases.  (See sample data. ) 

(3) The quantities that will remain constant for the 20 initial conditions a re  computed 
and the counter a r ray  is initialized. 

(4) The initial conditions a r e  set  up for the differential equations, and the kinetic 
energy at these initial conditions is evaluated. 

(5) The integration subroutine is called for initialization. This call  does not advance 
the solution. 

(6) The values of the differential equations a re  stGsed so  that the increment of the 
independent variable may be halved if  necessary. 

(7) The integration subroutine is called to advance the solution one increment. 
(8) The kinetic energy is computed for this new step. 
(9) If the kinetic energy has not changed by more than 0.005 percent, step (11) is 

performed. 
(10) The independent variable is backed up one increment, and a new point is computed 

by integrating with a halved increment using the previously stored values of the differen­
tial equations as initial conditions. 

(11)If six or more points have been computed with one increment and the kinetic 
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energy of the last calculation did not change by more than 0.0005 percent, the process is 
continued and the increment is doubled. If the increment is more than 0.0005 percent, 
step (13) is performed. 

(12) The increment is doubled. 
(13) If any of the following stopping conditions have been met, step (14) is performed. 

If these conditions have not been met, step (6) is performed. 
Stopping conditions : 
(a) The particle became nonadiabatic and the proper test was read in. 
(b) 0 > 7 ~ .  
(c) rlr 77. 


(d) q <- 0, and at least 16 points have been computed. 

(e) The kinetic energy has changed by more than 1percent over the trajectory. 
(f) More than 2500 points have been computed for one trajectory. 
(g)  The increment became less than 2-24. 

(14) At this point the program keeps track of the number of particles stopped by each 
of the preceding conditions. 

(15) If there are more particles to process, step (4) is performed. 
(16)The counters are normalized in this step. 
(17) The output is printed, and more data a r e  read into the computer for the next case. 
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Main Program 

C 
C 

1 

2 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

3 

3 1  
h 

N O N A D I A B A T I C  M O T I O N  OF A CHARGED P A R T I C L E  I N  A M U L T I P O L A R  
M A G N E T I C  B A R R I E R  
E X T E R N A L  D I F F  

COMMON N , R N , C l Z , C l 3 , C O E T A , S I E T A , C O N T H , S I N T H , A L F N l ~ Z  

COMMON / C O M 1 /  N l , N 2 , V l , V Z , V 3 , V 4 , V 5 , V 6 , V 7  
D I M E N S I O N  E T A P ( 1 0 0 ) r A L P H A P ( 1 0 0 ) ~ T H E T A P ( l O) , Z ( 3 ) r Y ( 6 ) , D Y ( 6 ) , K ( 8 ) ,  

* X K ( 8 ) , Y P ( 6 ) , D Y P ( 6 )  
R E A D  (5,501) N U M , ( E T A P ( I ) , A L P H A P ( I ) , T H E T A P ( I ) , I = l r N U M )  
R E A D  ( 5 , 5 0 2 )  KTR,N,ALPHA,THETA,DELTA,RM,EPS,TEST,CHECK 
NUM = NUMBER GF P A R T I C L E S  TO B E  PROCESSED 
E T A P  = N O N D I M E N S I O N A L  A X I A L  V E L O C I T Y  - E T A  P R I M E  
A L P A H P  = N O N D I M E N S I O N A L  R A D I A L  V E L O C I T Y  - A L D H A  P R I M E  
T H E T A P  = N O N D I M E N S I O N A L  ANGULAR V E L O C I T Y  - A L P H A * T H E T A  P R I M E  
K T R  = 0 THE P A R T I C L E S  A R E  N O T  S T O P P E D  WHEN T H E Y  BECOME N O N A D I A B A T I C  

1 T H E  P A R T I C L E S  ARE S T O P P E D  WHFN THEY BFCOME N O N A D I A B A T I C  
N = NUMBER OF P A I R S  OF M U L T I P O L A R  C U R F E N T S  
A L P H A  = N O M D I Y E N S I O N A L  R A D I A L  P n S I T I n V  E Q U A T I O N  10 
T H E T A  = ANGULAR C O O R D I N A T E  
D E L T A  = R A D I A L  M I R R O R  R A T I O  E Q U A T I O N  2 4  
RM = M I R R O R  R A T I O  E Q U A T I O N  1 1  
E P S  = A D I A B A T I C  PARAMETER E Q U A T I O N  3 - E P S I L ' l N  

T E S T  = A T E S T  ON THE R E L A T I V E  CHANGE OF T H E  K I N E T I C  ENERGY CONSTANT 


FROM ONE S T E P  TO T H F  N E X T  
CHECK = A T E S T  ON THE A D I A B A T I C Y  OF T H F  P A R T I C L E S  = M 4 ( M A X ) / M 4 ( M I N )  
C A L L  T I M E l ( C L 1 )  
RNUM = NUM 
T E S T 1  = T E S T / 1 0 . 0  
R N  = N 
N l = N - l  
N 2  = Z * N 1  
S C A L E  = 3 . 1 4 1 5 9 2 6 " E P S  
Z ( 1 )  = A L P H A  
C A L L  B E S I ( Z )  
C 1 3  = -(l.O-RM)/(Z(Z)"(l.O+RM)) 
C 1 2  = D E L T A + ( C 1 3 + 1 . 0 ) / ( 3 . 1 4 1 5 9 2 6 * * ~ 1 )  
V 1  = 2 . 0 * C 1 3  
V 2  = C 1 3 * C 1 3  
v 3  = c12*c12 
v4 = c 1 2 * v 1  
v 5  = 2 . 0 * c 1 2  
V 6  = 2 . 0 * V 2  
V 7  = 2 0 * V 3  
DO 3 1  J = 1 9 8  
K ( J )  = 0 
DO 1 5  I = l g N U V  
XMH = 0.0 
XML = l * O E + 3 7  
K T R l  = 0 
K T R Z  = 0 
K T R 3  = 0 
K T R 4  = 0 

H = 0 . 0 0 7 8 1 2 5  

x = 0.0 
Y ( 1 )  = A L P H A p ( I ) * S C A L F  
Y ( 2 )  = T Y E T A P ( I ) " S C A L F / A L P H A  
Y ( 3 )  = E T A P (  I l * S C A L F  

Y ( 4 )  = A L P H A  

Y ( 5 )  = T H E T A  

Y ( 6 )  = 0.  

TO = Y ( 3 ) * * 2  + Y ( 4 ) * * 2 * Y ( 2 ) + * 2  + Y ( l ) * * Z  

T 1  = TO 
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5 C A L L  R U N G E ( 6 , H * X , Y , D Y  , O , D I F F )  

5 1  DO 6 J=1,4  


D Y P ( J )  = D Y ( J )  

6 Y P ( J )  = Y ( J )  

7 C A L L  R U N G E ( ~ , H , X , Y , D Y I ~ , D I F F )  
8 T 2  = Y ( 3 ) * * 2  + ‘ f ( 4 ) * * 2 * Y ( 2 ) * * 2  + Y ( 1 ) * * 2  

A = A B S ( T 2 / T 1 - 1 . 0 )  
9 IF(A.GT.TEST) G O  T O  i n  


11 I F ( A . L T o T E S T l . A N D . K T R 3 . G T . 5 )  GO T O  1 2  

1 3  K T R Z  = K T R 2  + 1 


K T R 3  = K T R 3  + 1 

T 1  = T 2  

I F ( K . T R 4 . E Q . O )  C A L L  A D I ( Y , D Y , X V H , X M L )  

I F ( X V H / X V L . G E . C H E C K )  Y T R 4  = 1 

I F ( K T R 4 o E O . l . A N D o K T R . E Q . 1 )  C f l  T O  146 

I F ( Y ( 4 ) . G E . 7 . 1 4 1 5 9 2 6 )  GO T O  14 

I F ( Y ( 6 ) o C E . 3 . 1 4 1 5 9 2 6 )  GO T f l  1 4 1  

IF(Y(6).LE.O.O.AND.KTR2.C�.16) GO T O  1 4 2  

I F ( A B S ( T 2 / T O - l . O ) . G T . 0 . 0 1 )  GO T O  1 4 3  

I F ( K T R 2 . G T . 2 5 0 0 )  

GO TO 5 1  


10 I F ( K T R l . G T . 1 7 )  

K T R l  = K T R l  + 

X = X - H  

H = H / 2 * 0  

DG 101 J = l , h  

D Y ( J )  = D Y P ( J )  


1 0 1  	Y ( J )  = Y P ( J )  

K T R 3  = 0 

G O  TO 7 


1 2  	K T R l  = K T R l  -

H = 2.O*H 

K T R 3  = 0 

GO TO 1 3  


1 4  	K ( 1 )  = K ( 1 )  + 

G O  TO 147  


1 4 1  K ( 2 )  = K ( 2 )  + 

G O  TO 147  


1 4 2  K ( 3 )  = K ( 3 )  + 

G O  T f l  147 


1 4 3  K ( 4 )  = K ( 4 )  + 

GO T O  147 


144  K ( 5 )  = K ( 5 )  + 

GO TO 147 


1 4 5  K ( 6 )  = K ( 6 )  + 

GO TI7 147 


146 K ( 7 )  = K ( 7 )  + 

G O  TO 1 5  


147 I F ( K T R 4 o E Q . O )  

1 5  	C O N T I N U E  

DO 16  J = 1 , 8  
X K ( J )  = K ( J )  

GO TI7 144  

G O  TO 1 4 5  

1 


1 


1 


1 


1 


1 


1 


1 


1 


K ( 8 )  = K ( R )  + 1 


16  	X K ( J )  = X K ( J ) / R N U M  
C A L L  T I M E l ( C L 2 )  
T I M E  = A B S ( C L 2 - C L 1 ) / 3 6 0 0 . n  

17  W R I T E  ( 6 , 6 0 1 )  N , A L P H A , T H E T A , C l Z , C 1 3 , S C A L E , T E S T , C H E C K , D E L T A , R M , ~ P S ,  
* ( X K ( J )  , J = l r 8 1  

W R I T E  ( 6 9 G 0 2 )  N I J M , T I M E  
G O  T O  2 


5 0 1  F O R M A T  ( 1 5 , / , ( 3 E 1 0 . 0 ) )  

5 0 2  F O R M A T  ( 2 1 5 ~ 7 ~ i n . o )  
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6 0 1  F09MAT ( ~ H ~ , / ~ ~ H ~ ~ ~ H N = ~ I ~ ~ ~ X , ~ H A L P H A ~ , ~ ~ ~ ~ ~ ~ ~ X ~ ~ H T H E T A ~ ~ ~ ~ ~ O ~ ~ ~ X ~ ~  
* H C 1 2 = , G 1 2 . 5 , 2 X , 4 H C 1 3 = ~ G 1 2 0 5 ~ 2 X , 5 H S ~ A L ~ = ~ ~ 1 2 . 5 ~ ~ X ~ 5 H T E S T = ~ ~ 1 2 o 5 ~ / ~  
*7H C H E C K = , G ~ ~ . ~ ~ ~ X , ~ H D E L T A = ~ G ~ ~ . ~ , ~ X , ~ H R M = , ~ ~ ~ ~ ~ ~ ~ H E P S I L O N = ~ G ~ ~ O ~ ~  
yr / , l H K , F 7 * 4 , 5 6 H  CIF THE P A R T I C L E S  WERE STOPPED A T  ALPHA 
+f .GEe 3*14159265 , /91HK,F7 .4 ,54H OF THE P A R T I C L E S  WERE STOPPED A T  
* E T A  .GE. 3 .14159265, / ,1HK,F7.4 ,47H O r  THE P A R T I C L E S  WERE STOPPED 
*AT ETA OLE.  3.0,/,1HK,F7.4,53H OF THE P A R T I C L E S  WERE STOPPED BECA 
+USE OF D R I F T  I N  T , / , l H K , F 7 0 4 , 6 5 H  OF THE P A R T I C L E S  WERE STOPPED BE 
*CAUSE 2 5 0 0  P O I N T S  WERE COMFVTED,/, lHY,F7.4,75H 
x-ERE STOPPED BECAUSE THE INCREMENT WAS LESS THAN 
* ,64H OF THE P A R T I C L E S  WERE STOPPED BECAUSE THEY 
* I C , / , l H K , F 7 . 4  
* ,33H OF THE P A R T I C L E S  WERE ADIABP.T IC1  

6 0 2  FORMAT ( 1 5 H K T H I S  RUN USED , 1 2 9 3 1 H  P O I N T S  WITH AN 
*5 .295H MIN. )  

END 

Sample Data 

$ D A T A  
2 0  

0.0C 0 . 7 0 7 1 3 6 8  2 . 7 C 7 1 0 6 8  
0.05 0 . 7 0 6 2 2 2 3 - 0 . 7 0 6 2 2 7 3  
0.10 0 . 7 0 3 5 6 2 4  n e 7 0 3 5 6 7 4  
0.15 c . 6 9 9 1 0 ~ 8 - 0 . 6 9 9 i n ~ 8  
0.20 0 . 6 9 2 8 2 0 3  0 0 6 9 2 8 2 9 3  
0.25 0 . 6 8 4 5 5 3 2 - 0 0 6 8 4 6 5 3 2  
0 .30  0 . 6 7 4 5 3 6 9  9 . 6 7 4 5 3 6 9  
0.35 q . 6 6 2 3 8 2 1 - n . 6 6 2 3 8 2 1  
C.4C 0 . 6 4 8 C 7 4 1  n . 6 4 Q Q 7 4 1  
C.45 p . 6 3 1 4 6 6 5 - P . 6 3 1 4 6 6 ‘  
0 .5?  7 . 6 1 2 3 7 2 4  “ e 6 1 2 7 7 2 4  
0.55 9 . 5 9 0 5 5 n h - n . 5 9 n 5 5 n 6  
0 .60  ? e 5 6 5 6 9 5 4  0 . 5 6 5 6 8 5 4  
9 - 6 5  9 . 5 3 7 3 5 4 6 - 0 . 5 3 7 3 5 4 6  
0.7c 0 . 5 0 4 9 7 5 2  n . 5 ~ 4 9 7 5 2  
3.75 C . 4 6 7 7 C 7 7 - n e 4 6 7 7 0 7 2  
0.8’n r e 4 2 4 2 6 4 1  (‘-4242641 
r . 8 5  g . 3 7 2 4 9 1 6 - n . 3 7 2 4 9 1 6  
c . 9 ~  0 . 3 ~ 8 2 2 0 ’ 7  0 . 3 f i ~ 2 2 r . 7  
0 .95  0 . 2 2 ~ 7 9 4 ~ - n . 2 2 ~ 7 9 4 0  

1 2 0 . 5 0  0 . 7 8 5 4  1.oo 0 1 5  
1 2 P.5C 0 . 7 8 5 4  1.00 e 2 0  
1 2 0 .59  2 .7R54  1.oo .30  

50 

OF THE P A R T I C L E S  W 
1 /2**24 , / ,1HK,F7.4  

BECAME NONADIABAT 

ELAPSED T I M E  OFvF 

0010 5.OE-5 1.050 
0310 5.OE-5 1 .050  
. c 1 0  5.OE-5 1 0 5 0  



S U B R O I I T I N E  D I F F ( T , Y , D Y )  
C T t i I S  S U B R O U T I N E  E V A L U A T E S  T H E  S I X  F I R S T  ORDER D I F F E R E N T I A L  
C E Q U A T I O N S  F O R  S U B R O I I T I N E  PUhlGE. 

D I M E N S I O N  Y ( 1 ) , 3 Y ( l ) , Z ( 3 )  

COMF.?ON N R N  9 C 1 2  9 C 13 ,C@ETA,S 

C O E T A  = C O S ( Y ( 6 ) )  

S I E T A  = S ! N ( Y ( 6 ) )  

V = R N * Y ( 5 )  

C O N T H  = C O S ( V )  

. S I N T H  = S I N ( V )  

Z ( 1 )  = Y ( 4 )  

C A L L  RESI(Z) 

A L F N  = Y ( 4 ) * * N  

A L F N l  = A L F N / Y ( 4 )  

V 1  = Y ( 4 ) * Y ( 2 )  

V 2  = C 1 3 * V 1  

V 3  = C l Z * Y ( 3 ) * A L F N l  

V 4  = C f l E T A * Z ( 2 )  

V 5  = S I E T A * Z ( 3 )  


1E T A  C O N T H  9 5 I N T H ,  A L F M 1  92 

D Y ( 1 )  = Y(2)*V1+V3*SINTH+Vl+V2*V4 

D Y ( 2 )  = ( - 2 . 0 * Y ( 2 ) " Y ( 1 ) - Y ( 1 ) ~ C ~ 3 ~ Y ( 3 ) * V 5 - C l 3 i ~ Y ( l ) * V 4 + V 3 ~ C O N T H ) / Y ( 4 )  

D Y ( 3 )  = - C 1 2 * Y ( l ) " A L F N l ~ S I N T H - C l 2 - ~ A L F ~ * Y ( 2 ) ~ ~ ~ ~ ~ T H - V Z * V 5  

D Y ( 4 )  = Y ( 1 )  

D Y ( 5 )  = Y ( 2 )  

D Y ( 6 )  = Y ( 3 )  

R E T U R N  

E N D  


5 1  




SUBROUTINE ADI(Y1DY,XMH,XML) 
C T H I S  SUBROCTINE COMPUTES M4 AND STORES THE EXTREME VALUES, 1.E. 
C M 4 ( H I G H ) r  M 4 ( L @ W ) .  

COMMON N~RN,ClZ,Cl3,COFTA,SIETA,CONTH,SINTH,SINTH,V9,Z 

COMMON / C O M l /  N ~ , N ~ , V ~ , V ~ , V ~ , V ~ Y V ~ , V ~ , V ~  

D I M E N S I O N  Y ( l ) , D Y ( l I , Z ( 3 )  

X O  = V l * C O E T A * Z ( 2 )  

X 1  = V 2 * S I E T A * * 2 * Z ( 3 ) * * 2  

X2 = V 2 * C f l E T A * * 2 * Z ( 2 ) * * 2  

V8 = V9* *2  

x 3  = V3*V8  

X 4  = V 4 * V 9 * S I E T A " C O N T H * Z ( 3 )  

X5 = V 5 * V 9 * S I N T H  

Q = XO*C12*V9 

X 6  = Q * S I N T H  

X 7  = Q*CONTH 

X8 = V l * S I E T A * Z ( 3 )  

X 9  = V 6 * S I E T A * C f l E T A * Z ( 2 1 ~ ~ 2 [ 3 )  

X 1 0  = V5*V9*CONTH 

X 1 1  = V 7 * V 8 ~ C G N T H * S I N T H + V 4 * V 9 * S I E T A * S I ? 4 T H * ~ Z { 3 )  

B = l .O+XO+Xl+X2+X3+X4 

B = S Q R T ( B ) * B  

VE = ( Y ( 4 ) * Y ( 2 ) ) * * 2 + ( l . . O + X 2 + X n + X 3 + C O N T H + a 2 + X 1 + X 4 )  + Y ( 3 ) * * 2 + ( X 3 + X ?  


* + X 4 )  + Y(1)**2*(l.O+XZ+XO+X3*SIYTH**2) + Y ( 3 ) * Y ( 4 ) * Y ( 2 ) * ( X q + X o )  ­
* 	Y ( 1 ) * Y ( 3 ) * ( X 7 + X B + X 9 + X l O )  + Y ! l ) * Y ( 4 ) * Y ( 2 ) * X l l  
H = v e l a  
I F ( H . G T * X M H )  XMH = H 
I F ( H . L T * X M L )  XML = H 
RETURR 
END 

52 




I 


Rungec---> 


Evaluate 
derivatives 

Y(I )  +(H/2. )::CZ(I) 

derivatives 

4-
Figure 28. 

Returnc-t' 

Call Diff 

derivatives 

18 

(DY(1) + 2. :::CZ(I) 
+ 2. :::C3(I) 
+ C41I))- Y(I I  
X + H - X  

derivatives 
at X t H  

- Flw chart  for Integration subroutine. 
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SUBQOUTINE RUNGF(N,H ,X ,Y ,DY, ISET,F )  
C SUBROLlTINE TC INTEGRATE i\; F I R S T  ORDER D I F F E R E N T I A L  EQUATIONS. 

C N = NUMBER OF ECUATIONS T'3 BE INTEGRATED. 

C H = INCREVENT OF THE INCEPENDENT V A P I A B L F .  

C X = INDFPFNDENT V A R I A B L F .  

C Y = ARRAY OF N DEPENDENT VARIABLCS.  

C DY = ARRAY.OF N D E Q I V I T A V E S  C)F T Y F  DEDFNDFNT V 4 R I A P L F S .  

C I S E T  = 0 FOR I N I T I A L I Z A T I O N  

C = 1 TO ADVANCE THE S O L U T I O N  ONE INCREYENT. 

C F = NAME OF THE SUBROUTINE PROVIDFD T 3  EVALUATE THF 

C N D I F F E R E N T I A L  EQUATIONS. T P I S  NAME YUST APPEAR I N  

C AN EXTERNAL CARD OF THE C A L L I N G  DROGRA$4.  


D I M E N S I O N  Y ( l ) , D Y ( l ) , P ( 2 4 ) , C 2 ( 2 4 ) , C ? o , C 4 ( 2 4 ) , C 4 ( 2 4 )  
I F I I S F T )  21,21,1 

2 1  C A L L  F (X,Y,DY) 
GO TC) 10 

1 DO 11 I = l , N  
11 	? ( I )  = Y ( I )  + ( t i / Z . ) * D Y ( I )  

C A L L  F(X+H/2. ,P,C2)  
DO 1 2  I = l , Y  

12 	P I 1 1  = Y ( I ) + ( H / ? . ) * C Z ( I )  
C A L L  F I X + H / 2  ,P ,C3 ) 

D f l  1 3  I = l , Y  
1 3  	P I I )  = Y ( I ) + H * C 3 I I )  

C A L L  =IX+H,P,C4) 
DO 18 I = l , N  

1 8  	Y ( i  = Y(I)+IH/6.)+(DY(I)+2.*CZ( I ) + 2 . + C 3 ( I ) + C 4 ( 1 )  1 
X = X+H 
C A L L  F (X ,Y ,DY)  

1 0  	RETURN 
END 
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TABLE I. -VELOCITY INITIAL CONDITIONS O F  TWENTY 


PARTICLES USED TO DETERMINE FRACTION 


OF PARTICLES ADIABATIC 


Dimensionless 
axial velocity, 

; 

0 

.05 

.10 


.15 


.20 


.25 


.30  


.35 


.40  


.45 


. 50  


. 5 5  


. 60  


.65 


. 70  


.75 


.80  


.85 


.90  


.95 


Dimensionless 
radial velocity, 

1 

a! 

0.7071068 

.7062223 

.7035624 

.6991008 

.6928203 


.6846532 


.6745369 

,6623821 

.6480741 

.6314665 


.6123724 


.5905506 


.5656854 


.5373546 


.5049752 


.4677072 


.4242641 


.3724916 


.3082207 


.2207940 


Dimensionless 
azimuthal velocity, 

@e
? 

0.7071068 
-.7062223 


.7035624 

-.6991008 


.6928203 


-.6846532 

.6745369 


-.6623821 

.6480741 


-.6314665 


.6123724 

-.5905506 


.5656854 

-.5373546 


,5049752 

-.4677072 

.4242641 


-.3724916 

.3082207 


-.2207940 
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------ 

------ 

------ 

------ 

------ 

------ 

------ 

------ 

------ 

------ 

------ 

------ 

------ 

------ 

------ 

------ 

TABLE 11. 

Number  of Radia l  
p a i r s  of m i r r o r  

mult ipolar  r a t io ,  
c u r r e n t s ,  6 

n 0.05 0. 25 0.50 0. 75 1.00 1 . 5 0  1 2.00 

c4  

2 0 0.1174 0.235 0.385 0.146 0.1659 
. 2 5  . l o 9 7  .1959 .1591 0.1707 .152 .1570 
. 5 0  . 1600 .1623 .370 .1491  . 120 . 1695 
. 7 5  . 1483 .086  . 1264 . 1179 . 1331 .5588 

1.00 .1580 3.00 .1168 . 1850 .2069 .320  
1.50 

3 	 0. 25 0.1695 0.222 0.210 0.1812 0.1501 0.1534 
. 5 0  .1735 . 2 3 3  . 1466 . 1460 . 1386 . 1499 
. 7 5  . 1680 . 1625 . 1505 . 1319 . 1198 . 1352 

1 .00  . 1690 . 1450 . 1521 . 1281 . 1436 .2009 
1.50 . 1597 . 185 . 1337 . 1306 . 1408 

~~ 

c5 

2 0 0 0.620 0 .203  0.068 0 
. 2 5  .0519 .2295 .3154 0.3417 . 120 . 125 
. 5 0  0 .5918 .157  . 1406 .074  0 
. 7 5  .3688 . 8 0 0  1 .5061 .2986 .5465 . 1285 

1 .00  . 2 2 6 1  . l o 2  .7719 , 0 8 8  0 . 144  
1.50 

~ 

3 	 0. 25 0 3.550 0.190 0 0 0 
. 5 0  0 1.30 .2770 . 1796 . 1464 . 1143 
. 7 5  0 1. 30 .2632 . 1887 .0753  .2182 

1 . 0 0  0 .485  .3377 .2224 .3654 .0915 
1 .50  .0304 .335  .3961  .409  .3794 
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-------- ------ 

-------- 

------- 

- - - - - 

------- 

------- ------- 

------- 

------- 

------- 

------- 

E2
TABLE II. - Concluded. CONSTANTS FOR RELATION c0 = C 4 ( l  - F)E1+ C 5 ( l  - F) 

Jumber of Radial  Nondimensional rad ius ,  CY 

p a i r s  of m i r r o r  
nultipolar r a t io ,  
c u r r e n t s ,  6 

n 0 .05  1 0 . 2 5  I 0.50  I 0 .75  1 1 . 0 0  I 1 .50  1 2 . 0 0  1 2.50 

E,I 

2 0 0.0256 0.455 7. 22 0 .180  0 .2259 

. 2 5  -.0286 . 1986 .2079 0.3466 .430  .420  

. 5 0  .5574 .5494 9. 25 .5635 .500  .8291  

. 7 5  .7987 .310  . 6 0 7  .5073  .6537 -.1158 

1 .00  1.2317 .5 .50 .7322  4. 70 1.7614 11 .60  

1.50 . - - - - - - - - _-----­

3 0 .25  0.02632 0. 134 0 .195  0. 2113 0.3030 0.3665 

. 5 0  .0731  .260  .03252 .2226 .3923  .6796 

. 7 5  .05766 0 . 1764 .3080 .4169  .9117 

1 . 0 0  .0539  0 .3032 .4366 .7894 7 .7503 

1 . 5 0  .04686 .290  .4211  .7515 1.1109 

z2  

2 0 0 4. 86 0 .090  6. 87 0 

.25 .6487 6 .741  5.122 15.40 11 .20  18 .20  

. 5 0  0 0.437 .630  7.4054 5 .44  0 

- 7 5  18 .753  6.380 10.184 12.590 22.146 2.641 

1 .00  11.588 .620  15.827 .4550 0 1 . 4 5  

1 . 5 0  

3 	 0. 25 0 4.160 4.56 0 0 0 

. 5 0  0 7. 30 4.1816 9.5807 11.093 13 .632  

. 7 5  0 5 .40  6.3970 7 .4901 5.3557 17.098 

1 .00  0 3. 38 LO. 167 10.340 24.714 .5127 

1 . 5 0  8.1517 3. 92 7.8666 14.780 16.154 
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TABLE III. - CONSTANTS FOR RELATIONS 

A, = AoA(l - F)E3 AND K = Ko(l - F)E4 

Number of 
pairs of 

multipolar 
currents ,  

n 

2 

3 

Radial AoA E3 KO E4 
m i r r o r  
ratio, 

6 

0 0.3441 0.1780 -0.2531 -0.0796 
.25 .3411 . 157'7 -.2692 -. 1136 
.50 .3291 .0491 -.3023 -. 1391 
.75 .3222 .047 -.3216 -. 2192 

1.00 .3130 -.2147 -.2750 -. 155 
1.50 ------ ------

0. 25 0.3611 0.1983 -0.2405 -0.1259 
.50  .3419 .080 -.250 0 
.75 .350 .067 -. 250 .84  

1.00 .3552 .0148 -.252 .280 
1.50 .385 .0310 -.250 .432 
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TABLE IV. 9ATA RELEVANT TO ADIABATICITY FROM PRIOR EXPERIMENTS 

Axial linimum Particle 
distance iagnetic energy, 
between field V, 

Bmin and strength eV 
on axis, 

Bnlax, 
zO' 

Bminp 
m w/m2 

0.254 0.260 8X104 

.254 .260 1x106 

.254 .260 4x106 

.457 . 2 2 0  I. 2 x 1 0 ~  

.457 .z20 1x106 

.457 .220 4x106 

0.075 0. 150 = 1x10~ 

0. ( J 0.0300 :1.5 o3 
.0360 
.029 
.005 
.009 
.029 
.029 
.043 
.021 
.026 
.0401 

.130 


.065 


.0578 


.0506 


.0939 5 x 1 0 ~  


0.405 0. 173 5 x 1 0 ~  
. 130 5 

.065 5 

.0578 5 

.173 1x106I
.410 .065 

.410 .130 5 

.625 .059 5 


Reduced Ldiabatic ?lotted 
plasma trameter, point 
radius, . =  (Re). _­n r  
c y = P  ZO 

Z 

<l. 0.0102 A24-
.62 5 cy 5 1.86 .0375 n 
.62 5 cy 5 1.86 .0750 n 
<l. .0057 A37-

.69 5 cy 5 2.06 .0164 n 

.69 5 cy 5 2.06 .0328 n 
~ 

<l. 0.0475 L25-

<O 2 0.017-
.014 
.0176 0 
. l o 2  0 
.0075 0 
.0071 0..0071 
.0069 
.0095 0 
.0094 17,. 
.0090 

. 
<o. 57- 0.0244 e 

.0325 e 

.065 0 

.073 0 

.0345 e 

.046 @ 

.092 0 

.103 0 

.118 0 

.064 e 

.066 0 

.033 e 
<O 8- .0288 0 
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TABLE IV. - Concluded. DATA RELEVANT TO ADIABATICITY FROM PRIOR EXPERIMENTS 

1 
Minimum Mirror I Charge Particle Adiabatic Plotted 

! B{77 Bmin’ 
W/m2 

Bmax zO 

~~ 

0.625 0.079 0.286 Electron 5 ~ 1 0 ~  0.0214 
.410 .065 .59  1x106 .0935 
.410 .130 .59  1 .0468 
.625 .059 .286 .0406 
.535 .093 . 9 1  .0458 
.535 .186 . 9 1  .0229 
.535 .280 . 9 1  .0151 
.810 .057 . 5 9  .038 
.810 .096 .59  .0226 
.810 .130 . 5 9  .0167 
.810 .172 .59  .0126 

1.25 .053 .27  .0152 

distance magnetic ratio, species energy, parameter, point 
between field 

R I-Bmin v, 
E I-

( Re)
Bmin and 	 strength m eV 

on axis, 

O I  
.535 .186 . 9 1  .0324 0 
.535 .280 . 9 1  .0214 0 
.810 .057 .59  .054 0 
.810 .096 .59  .022 0 
.810 . 130 .59  .0237 0 
.810 

1.25 
1.25 

.172 

.053 

.072 

.59  

.27- 2 7  I 
.0179 
.0216 
.0159 

0 
0 
0 

1.25 .072 .27  .0112 0 

.405 . 130 .0326 0 

.405 .130 .56  I .0326 0 
~ 

0.196 0.1245 0.465 Helium ion 5.7 0.028 0 
.210 .209 .262 9.4 .021  0 
.198 .256 .188 10.0 .018 0 
.214 .223 .256 11.0 .020 0 
.208 1 . 2 4  .238 10.0 .018 0 
. 196 .18 .27  4.4 .017 0 
.23 .34 .214 24.0 .018 0 
. 13  .20  .404 18.0 .049 0 
.24 . 25 .165 10.5 .016 0 
.22 . 4 1  . 3 1  14 .012 0 
. 24  .27  . 2 0  23 .021  0 
.25 . 3 4  .16 21  .016 0 
. 17  .28  .28  30 .033 0 
.20 .29  .34  23 .024 0 
.20 .26 .38 24 .027 0 
. 14  .18 .46  17 .046 0 
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TABLE V. - RAW EXPERIMENTALDATA 
-

Axial dis- Average Charge Zritical Adiabatic 
tance be- magnetic species leuteron )arameter, 

;ween Bmin field, energy, E 

and B*=, Bav3 
v, 

=O' W/m2 eV 
m 

0.127 1.59 Singly charged 5200 0.100 

helium ions 


.127 1.59 4900 .099 


.127 1.59 5500 . l o 4  


. l o 9  1.22 5200 .156 


. l o 9  1. 22 5300 .158 


. l o 9  1.22 5300 .158 


.114 .92 3000 .129 


.114 .92 3100 .132 


.114 .92 3300 .135 


.117 1.51 7000 .136 


.117 1. 51 5600 .122 


.117 1.51 5900 .125 


.117 1. 51 5600 .122 


. l o 2  .89 3700 .193 


. l o 2  .89 4300 .208 


. l o 2  .89 4200 .206 


.084 .94 3900 .229 


.084 .94 4100 .234 


.084 . 9 4  4100 .234 


.059 .96 3850 .321 


.059 .96 3950 .325 


.059 .96 t 4000 .327 


.061 1.89 Singly charged 2300 .271 

neon ions 


.061 1. 89 Singly charged 2500 .282 

neon ions 


.133 	 .029 Electrons 6800 .072 

.029 6600 .071 

.029 7100 .074 

.038 7500 .059 

.038 7200 .058
i .038 7500 .059 

.146 .051 7700 .410 


VIirro RUn 
ratio, 

Rm 

0.63 27 


.63 28 


.63 29 


.73 51 


.73 52 


.73 53 


.70 69 


.70 70 


.70 71 


.68 141 


.68 142 


.68 143 


.68 144 


.78 149 


.78 150 


.78 151 


.87  189 


.87  190 


.87  191 


.95 202 


.95 203 


.95 204 


.94 225 


.94 226 


.56 228 


.56 229 


.56 230 


.52 246 


.52 247 


.52 248 


.43 264 
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TABLE V. - Continued. RAW EXPERIMENTAL DATA 

Nondimen- Axial dis­
sional tance be-
radius, tween Bmir 

CY and Bmax, 

zO 
m 

0.05 0.146 
.146 
.191 
.191 
.191 

.165 

. i 7 a  
-241 

.241 

.241 

.203 

.203 

.203 

.190 

.190 

.190 

.210 

.210 

.210 

0. 25 0.127 

.127 

.127 

. lo9 

. l o9  

. l o9  

.114 

.114 

.114 

.117 

.117 

.117 

. l o 2  

. l o2  

. l o2  

Averagc Charge 
magnetii species 

field, 

Bavy 
W/m2 

0.051 Electrons 
.051 
.0735 
.0735 
.0735 

.0620 

.059 

. i 6a  

. i 6 a  

. i 6 a  

.075 

.075 

.075 

.089 

.089 

.089 

.125 

.125 

.125 

1.59 

1.59 
1.59 
1.22 
1.22 

1.22 
.92 
.92 
.92 

1.51 

1. 51 
1.51 
.90 
.90 
.90 

Singly charged 
helium ions 

Critical Adiabatic Mirroi RUI 
deuter01 parameter ratio, 
energy, E Rm 

v, 
eV 

7600 0.040 0.43 265 
7500 .040 .43 266 
5000 .017 .32 2a 1 
4900 .017 .32 282 
4900 .017 .32 283 

5800 .025 .41  305 
3400 .019 .35 309 
2200 .0039 .175 319 

2000 .0037 .175 320 
2300 .0040 .175 321 
2700 .012 .26 328 
2400 . O l l  .26 329 
2600 .0115 .26 330 

4900 .014 .2a 336 
5000 .014 .28 337 
5000 .014 .2a 338 
4200 .ooa4 .23 348 
4600 .0087 .23 349 
4000 .ooa2 .23 350 

5700 0.106 0.63 30 

5400 . l o3  .63 31 
5600 .105 .63 32 
5800 .164 .73 54 
5900 .167 .73 55 

5900 .167 .73 56 
3100 .131 .70 72 
3400 .137 .70 73 
3600 .140 .70 74 
5000 .115 .68 25 

5100 .116 0 68 26 
4900 .114 .68 27 
4000 .200 .7a 52 
4300 .210 .7a 53 
4000 .20 .7a 54 
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TABLE V. - Continued. RAW EXPERIMENTAL DATA 

Nondimen- Axial dis- Average Charge Crit ical  Adiabatic Mirror 
sional tance be- magnetic species leuteron iarameter,  ratio, 
radius , tween Bmin field, 

a, and Bm" Bav, 
zO' W/m2 
m 

0.25 0.084 0.940 


.084 .940 


.084 .940 


.059 .955 


.059 .955 


.059 .955 


.133 	 .029 

.029 

.029 

.029 

-038 

.038
1 .038 

.146 .051 

.146 .051 

.146 .051 

.191 .074 

.191 .074 

.191 .074 

-178 .059 

.178 .059 

.178 .059 

.241 .168 


.241 .168 

-241 -168 

.203 .075 

.203 .075 

.190 .089 


.190 .089 


.190 .089 


.210 .125 


.210 .125 


.210 .125 


Singly charged 
helium ionsI

Electrons 

energy, E Rm 
v, 
eV 

~ 

4400 0.244 0.87 192 

4500 .245 .87 193 
4600 .249 .87 194 
3700 .31 .95 205 
3750 .32 .95 206 
4000 .33 .95 207 

5200 .063 .56 231 
5100 .063 .56 232 
5200 .063 .56 233 
5700 .066 .56 234 
6700 .056 .515 249 
6400 .054 .515 250 
6300 .054 .515 251 

7400 .039 .43 267 
7400 .039 .43 268 
7800 .041 .43 269 
4900 .017 .32 284 
4100 .015 .32 285 

4500 .016 .32 286 
3800 .020 .35 310 
3800 .020 .35 311 
3500 .019 .35 312 
2000 .0037 .175 322 

2200 .0039 .175 323 
1600 .0033 .175 324 
2200 .0105 .26 331 
1900 .0097 .26 332 
3900 * 012 .28 339 

4200 .013 .28 340 
4100 .013 .28 341 
3400 .076 .23 351 
3500 .076 .23 352 
3400 .075 .23 353 

~ ~ 

65 


. .. - . . .. . . . .  .... ..... ~ .... 



TABLE V. - Continued. RAW EXPERIMENTAL DATA 

Nondimen- Axial dis- Average Charge Critical Adiabatic 
sional tance be- magnetic species ieuteron iarameter, 
radius, tween Bmin field, energy, E 

CY 3 . d  Bmax' Bav 9 v, 
zO , W/m2 eV 
m 

0.50 0.117 1.51 Singly charged 5600 0.122 

helium ions 


.117 1.51 5500 .121 


.117 1.51 5900 -125 


.102 .goo 4100 .204 


. l o 2  .goo 4100 -204 


. l o2  .goo 4000 .20 


.oa4 .94 4600 .25 

.oa4 .94 4650 .25 

.oa4 .94 4700 .25 

.059 .96 4000 .33 

.059 .96 4350 .34 

.059 .96 4100 .33 


.133 .029 Eleci ins 4600 .060 

.029 4000 .056 

.029 4200 .057 

.03a 6100 .053 

.03a 6000 .053
1 .038 6300 .054 

.146 .051 7300 .039 


.146 .051 6200 .036 


.146 .051 6300 .037 


.191 -074 3800 .015 


.191 ,074 3200 .014 


.191 .0735 3200 .014 


.241 . i 6a  1600 .0033 


.241 -168 1600 .0033 


.241 . i 6 a  1500 .0032 


.203 .0745 3200 .0126 


.203 .0745 1900 .0097 


.203 .0745 2000 .010 


.190 .oag 3600 .012 

-190 .089 3400 .0116 

.190 .089 3500 .0117 

.210 ,125 3500 .0077 

.210 .125 3400 .0075 


-

Mirror RUn 
ratio, 

Rm 

0.68 128 


.68 129 


.68 130 


.7a 155 


.7a  156 


.7a  157 


.a7 195 


. 87  196 


.a7 197 


.95 208 


.95 209 


.95 2 10 


.56 235 


.56 236 


.56 237 


.52 252 


.52 253 


.52 254 


.43 270 


.43 271 


.43 272 


.32 287 


.32 1aa 


.32 189 


. 175 125 


.175 126 


.175 127 


.26 133 


.26 134 


.26 135 


.28 142 


.2a 143 


.2a 144 


.23 154 


.23 ;55 
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TABLE V. - Continued. RAW EXPERIMENTAL DATA 
~ 

Axial dis- Average Critical Adiabatic Mirror Xun 
tance be- magnetic deuteron arameter,  ratio, 

ween Bmin field, energy, E Rm 
and B,,, Bav7 v, 

=0 W/m2 eV 
m 

~ 

0.127 1.59 2100 0.064 0.63 33 

.127 1.59 2500 .070 .63 34 

.127 1.59 2700 .073 .63 35 

. l o 9  1.22 3700 .132 .73 66 

. l o 9  1.22 3800 .134 .73 67 

. l o 9  1.22 4100 .138 .73 68 

.114 - 9 2  3700 .143 .70 75 

.114 .92 3100 .131 .70 76 

.117 1.51 6800 .134 .68 131 

.117 1. 51 7200 .138 .68  132 

.117 1.51 8200 .147 .68 133 

. l o 2  .896 4400 .210 .78 158 

. l o 2  .896 3500 .190 .78 159 

. l o 2  .896 3600 .190 .78 160 

.OB4 .940 4650 .250 .87 198 

.084 .940 4750 .252 .87  199 

.OB4 .940 4700 .251 -87 200 

.059 .955 4000 .326 .95 211 

.059 .955 3650 .312 .95 212 

.059 .955 3750 .317 .95 213 

.133

i 
.029 
.029 
.038 
.038 
.038 

3600 
4600 
6000 
6000 
6400 

.053 

.059 

.053 

.053 

.054 

.56 

.56 

.515 

.515 

.515 

238 
239 
255 
256 
257 

.146 .051 6200 .035 .432 273 

.146 .051 6600 .037 .432 274 

.152 .033 3000 .018 .350 313 

.152 -033 2700 .017 .350 314 

.152 .033 3100 .018 .350 315 

.190 .089 2900 . O l l  .284 345 

.190 -089 2900 . O l l  .284 346 

.190 .OB9 2800 .0105 .284 347 

Charge 
species 

Singly charged 
helium ions 

Elecl )ns 
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TABLE V. - Continued. RAW EXPERIMENTAL DATA 

~ 

Nondimen­
sional 

radius, 
CY 

1.00 

Axial dis­
tance be­

tween Bmin 

and Bm,, 

zO 
m 

0.117 

.117 

.117 

. l o 2  

. l o 2  

. l o 2  

. l o 2  

.084 

.059 

.059 

.059 

.133I

.146 
.146 
.146 
.178 
.178 
.178 

~ 

1.25 0.117 

.117 

.117 

. l o 2  

. l o 2  

.059 

.059 

.059 

Average 
magnetic 

field, 

BW, 

W/m2 

1.51 

1.51 
1.51 
.goo 
.goo 
.goo  

.goo  

.94 

.96 

.96 

.96 

.029 

.029 

.029 

.038 

.038 

.038 

.051 

.051 

.051 

.059 

.059 

.059 

1.51 

1.51 
1. 51 
.90 

.90 

.96 

.96  

.96 

Charge 
species 

Singly charged 
helium ions 

Elecl ons 

I 

Singly charged 
helium ions 

I 

Critical  Adiabatic Mir ror  RUn 
ieuteron parameter, ratio, 
energy, E Rm 

v, 
eV 

5200 0.118 0.68 135 

5100 .116 .68 136 
4900 .114 .68 137 
2300 .153 .78  161 
2400 .156 .78 162 
3100 .177 .78 163 

3400 .185 .78 164 
4200 .238 .87 20 1 
3850 .32  .95 214 
3900 .32  .95 215 
3950 .33 .95 216 

4200 .057 .56 240 
4400 .058 .56 24 1 
4600 .060 .56 242 
4800 .047 .52 258 
4600 .046 .52 259 
4400 .045 .52 260 

5100 .033 .43 275 
5200 .033 .43 276 
5200 .033 .43 277 
2100 .015 .35 316 
2400 .016 .35 317 
1700 .013 - 3 5  318 

3700 0.070 0.68 138 

3000 .063 .68 139 
3100 .064 .68 140 
4100 .204 .78 165 

4100 .204 .78  166 
3950 .324 . 9 5  117 
4150 . 3 3  .95  218 
4450 .34 .95  219 
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TABLE V. - Concluded. RAW EXPERIMENTAL DATA 

Nondimen- Axial dis- Average 2 ritical Adiabatic rlirror Run 
sional tance be- nagnetic .euteron Iarameter , ratio, 
radius, ween Bmin field, energy, E Rm 

CY and Bmax, Bav7 v, 
eV

zO’ W / m 2  
m -

1.25 0 . 1 3 3  0 .029  3000 0 .048  0 .56  243 

. 0 2 9  2900 . 0 4 7  . 5 6  244 

. 0 2 9  2800 . 0 4 7  . 5 6  245 

. 0 3 8  3400 . 0 4 0  . 5 2  26 1 

. 0 3 8  3300 . 0 3 9  . 5 2  262I . 0 3 8  2600 . 0 3 4  - 5 2  263 

.146 . 0 5 3  4200 . 0 3 0  . 4 3  278 

.146 . 0 5 3  3700 .028  . 4 3  279 

.146 .053  4400 . 0 3 1  . 4 3  280 
.~ 

1 . 5 0  0 .102  0 .90  4200 0 .206  0 . 7 8  167 

. l o 2  . 9 0  4300 . 2 0 9  . 7 8  168 

. l o 2  . 9 0  4500 . 2 1 3  . 7 8  169 

- 0 5 9  . 9 6  3700 . 3 1 4  . 9 5  220 

. 0 5 9  . 9 6  3600 .310  . 9 5  221 

. 0 5 9  . 9 6  3750 . 3 1 6  . 9 5  222 
__ 

1 . 7 5  0 .102  0 .90  2700 0 .165  0 .78  170 

.102 . 9 0  3500 . 1 8 8  . 7 8  171  

. l o 2  . 9 0  3100 .177 . 7 8  172 

. 0 5 9  . 9 6  4450 . 3 4  . 9 5  223 

. 0 5 9  . 9 6  4150 . 3 3  . 9 5  224 

. 0 5 9  . 9 6  4000 . 3 3  . 9 5  227 
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TABLEVI. -PARAMETERS el AND A1 

FOR BEST FIT TO DATA FROM 

PRESENT EXPERIMENT 

(a) Experimental data. 

Nondimen - �1 A1 Number 
sional of data 
radius , points 

a! 

0 0.3473 0.3854 49 
.25 .3551 .3731 48 
.50 .3580 ,3670 35 
.75 .3692 .3435 33 
1.00 ,3725 .3265 23 
1. 25 .4022 .2916 17 
1.50 .3518 .4904 6 
1. 75 .4036 .3062 6 



TABLE VI. - Concluded. PARAMETERS eo 


AND A FOR BEST FIT TO DATA FROM 


PRESENT EXPERIMENT 


(b) Transformed experimental data. 

- .- __ 

Nondimen- �0 
A Number 

sional of data 
radius , points 

CY 
-. ~ 

0 0.3472 0.3858 49 
. 2 5  .3524 .3820 48 
. 5 0  .3464 .4041  35 
. 7 5  .3557 .4120 33 

1 . 0 0  .3558 .4399 23 
1. 25 .3839 .4474 17 

. _. _ _  
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I 

TABLE VII. - CRITICAL ENERGY AS FUNCTION OF AZIMUTHAL 

ANGLE FOR REFERENCE DEVICE 

Radial Nondimen- Fraction Number Azimutha1 A Critical�0 

mirror  sional of of pairs angle, energy, 

ratio, radius, particles of multi- e v, 


6 CY adiabatic, polar eV 

F, currents , 


percent n 


0.50 0.50 0.50 2 4 2 3.4684 0.1308 3.40~10~ 

-¶/4 .4123 . 1236 5. 10 


0 .4475 .1032 1. 65 


d 4  .4610 . 1108 5. 80 


¶/2 .4684 . 1308 3. 40 


72 




TABLE VIII. - DEWAR HEAT-TRANSFER CHARACTERISTICS 

-

Canisters Time betwet Boiloff, 

Stationary Dewar, liquid 
helium 

Movable Dewar, liquid 
helium 

Stationary Dewar, liquid 
nitrogen 

Movable Dewar, liquid 
nitrogen 

~ 

NASA-Langley, 1965 E-2447 

I 

fills, 
hr  

12.3 


10.0 


12.7 


8.8 


liter/hr  

0.70 helium 

.95 helium 

. 6 7  nitrogen 

.70 nitrogen 

73 




"The aeronautical and space activities of the United States shall be 
conducted so as to contribute . . . to the expansion of human knowl­
edge of phenomena in the atmosphere and space. The Administration 
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