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FOREWORD. T h i s  contribution i s  intended as an introductory survey of t he  

topological concepts t h a t  underlie t he  D E N D W  system f o r  chemical s t ruc ture  

notation. The main purpose of the system is t o  provide a language i n  which a 

computer program can frame hypotheses of  organic chemistry. 

program t o  generate a l l  t h e  isomers of a given formula has already been imple- 

ment ed. 

For example, a 

T h i s  introduction i s  especially intended f o r  users  who wish only 

a general out l ine of DENDRAL rather than i ts  f u l l  details  of syntax. Some 

notation i s  necessarily used. This resembles the  def in i t ive  DENDRAL forms, 

but t h e  complete manual should be used as a def in i t ive  statement of t h e  lan- 

c 
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The s t ruc tu ra l  formula f o r  an orgmic molecule is a paragon of a topological  

graph, t h a t  is, the  connectivity re la t ions  of a s e t  of atoms. True, We 

recognize more than one type of connection, double, t r i p l e ,  and non-covalent 

bonds, os w e l l  os s ing le  bonds. 

bonds could j u s t  as w e l l  be denoted as spec ia l  atoms. 

does not specify the  geometry, t h a t  i s ,  t h e  bond distances and bond angles of 

t he  molecule. 

cnonnous number of organic molecules whose s t ruc ture  is very w e l l  known from 

a topological standpoint. 

thus comprises a survey of t h e  topological p o s s i b i l i t i e s  f o r  t h e  d i s t i n c t  ways 

i n  which s e t s  of atoms may be connected, subject t o  the rules of valence. The 

student t h e n  a l s o  learns  ru l e s  which prohibit  some configurations as unstable  

o r  unrealizable (and may l a t e r  earn h i s  s c i e n t i f i c  reputation by ju s t i fy ing  

o r  overturnine one of these ru les ) .  

however, reached its present s t a tu re  without many benef i t s  from any general 

analysis  of molecular topology. These benefits  might arise i n  appl icat ions 

at two extremes of sophistication: 

college undergraduates, and to electronic computers. They may also apply t o  

the vcxatious problems of nomenclature and systematic methods of information 

retrieval. 

However, from on electronic  standpoint t h e  s p e c i d  

The s t r u c t u r a l  graph 

In f a c t ,  t h i s  i s  known for  only a small proportion of t h e  

Most of the  syllabus of elementary organic chemistry 
--I 

The f i e l d  of organic chemistry has ,  

t h e  teaching of chemical pr inc ip les  t o  
. .  

Althoueh the  topological character of chemical graphs was recognized by 
\ 
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t he  first topologis ts ,  very l i t t l e  vor: has been done on t h e  e x p l i c i t  c l a s s i f i -  

cat ion of t h e  Graphs having the most clemical. i n t e r e s t .  ' 

. problens, e.&. , 
Some d i f f i c u l t  

t h e  enumeration of polyhedra, remain unsolved. However, t h e  

=in obstacle  may be the  seeming t r i v i a l i t y  of the  problems; many topologis t s  

bein8 qui te  unsat isf ied with systems res t r ic ted  t o  2- or  3-dimensional space, 

Tnis a r t i c l e  will review some elementary features  of graphs t h a t  m a y  be 

used f o r  a systematic ou t l ine  of organic chemistry.' The same theory has t h e  

broader s i m i f i c a n c e  of classifying the possible nets  of re la t ionships  among 

t h e  members of a set of objects. For present purposes, our graphs WiU. be 

undirected,  t h a t  i s ,  any connections are reciprocal  and unpolarized. Further- 

more, our atoms have a maximum valence of 4. Wnen w e  come t o  cyc l ic  s t ruc tu res  

we s h a l l  have occasion t o  study an even more r e s t r i c t e d  set  of graphs, those 

i n  which every node has a valence of 3. 

A problem statement might' be: enumerate a l l  t h e  d i s t i n c t  s t r u c t u r a l  

isomers of a given elementary composition, say C H NO This is tantamount t o  -a 3 7  2'  
producing all the  connected graphs t h a t  can be constructed from t h e  atoms of 

t h e  formula, l inked t o  one another i n  n l l  d i s t i n c t  ways, compatible with t h e  

valence establ ished for each eleme:.11; ( I & ,  3, and 2 f o r  C ,  N, 0,  respect ively) .  

For compnctness, H can be l e f t  impl ic i t ,  being l a t e r  res tored a t  every unused 

valence. 

Our main approach throughout t h i s  n r t i c l e  is mappin&, a r u l e  of correspon- 

dence between a par t  of t h e  chemical s t ructure  and a par t  of some abs t r ac t  

graph. 

link of t h e  graph. 

Thus, each atom may be mapped on t o  a node,: each bond. t o  an ede;e o r  - 
For fu r the r  analysis,  however, it will be important t o  map 

from complexes of t h e  stmcture t o  elements of a graph. 

lend themselves t o  canonical forms, i .e.,  a choice among equivalent representat ions 

The abs t r ac t  graphs 
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according t o  precise rule .  Since the  root problem is general ly  not t h a t  Of 

producing a l l  possible combinations of atoms, but recognizing which forms a.re 

unique, t h i s  is of utmost importance. 

l eve l s  of abstraction. 

Chemistry w i l l  r eemerge  a f t e r  a f e w  

These pr inciples  have been elaborated i n  a computer-oriented laneuage 

Dendral-64" which is  described more fully elsewhere f o r  t h e  purpose of I1 

possible implementation i n  programming systems (Lederberg , 1964) 
- Trees a r e  1-connected graphs, i.e., can be separated i n t o  two pa r t s  by 

cu t t i ne  any l i n k ,  They correspond t o  t h e  acyclic s t ruc tures  of organic 

chemistry. 

noting its order (number of nodes). 

How may we e s t ab l i sh  a canonical form f o r  a t r e e ,  a f t e r  first 

.-. 
The first  s t e p  might be t o  f i n d  some unique place t o  begin the  description. 

' A t r e e  must have at least two terminals, and may have many more i f  highly 

branched; these are therefore  not very sui table .  

unique centcr.  

However, each t r e e  has a 

I n  f a c t  Jordan (1869) showed t h a t  any t r e e  has kinds of 

.. center ,  a mass-center.and a radius-center. Each center  has a unique place i n  

any t r c e ;  t h e  two may or  may not coincide. 

To f ind the  radius-center, t h e  t r ee  i s  pruned one l eve l  at a time, being 

cu t  back one l i n k  from every terminal a t  each level .  

M ultimate node o r  node-pair ( i n  e f fec t ,  edge) as t h e  center ;  t he  radius  of 

t h e  graph i s  the  number of leve ls  of pruning needed t o  reach the  center.  

T h i s  w i l l  leave,  f i n a l l y  

To i d e n t i e  t h e  mass-center of a t r ee ,  w e  must consider t h e  two or  more 

branches t h a t  Join t o  each non-terminal node. 

branches have the  most evenly balanced al locat ion of t h e  remaining mass (node- 

count) of t h e  t ree .  

branches exceed ha l f  t h e  to ta l  mass. 

b i l i t y  of t h e  center being a node pair o r  edge which jo ins  equal halves. 

The center is  the  node whose 

This is t h e  same as t o  say t h a t  none of t h e  pendant 

Amass of even number allows t h e  possi- 
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Eit'ner of t h e  centers (Fig. 1) is unique, and so could solve our problem 

Of defining a canonical s t a r t i n g  point of a descr ipt ion.  

is Pore per t inent  t o  finding a l is t  of isomers, which of course enjoy t h e  

same m x s .  

vent ional  nomenclature, which is based on f i n d i n g  t h e  longest linear path,  

i .e.,  Q d i u e t e r .  The diameter is not necessar i ly  unique. For example, urea 

has three  diameters, N - C - N 
center ,  t h e  C atom. The problem of generating isomers i s  t h e  main j u s t i f i c a -  

t i o n  f o r  adopting t h e  mass-center over t he  radius-center t o  work out  canonical 

fonns. 

The center  Of mass 

The radius-center is  ill-adapted for  t h i s ,  but  matches con- 

f f  1 
and N - C = 0 ( twice) ,  but j u s t  one radius- 

I n  chemical terms, the  center  divides t h e  graph i n t o  two or more rad ica ls .  

These r ad ica l s  can be ordered by obvious compositional pr inc ip les ,  giving rise 

t o  a canonical descr ipt ion of the  whole graph i n  a l i n e a r  code. Thus a rg in ine  

- becomes (C-C-N-C(N)-N C-C(N)-C(O)-O) or,  i n  a parenthesis-free notat ion 
1 . Any l i n e a r  code I .2.N.C.:NN 2..NC.:OO , -  

with aome abbreviations 

has an impl ic i t  number system: 

denoted i n  the  s t r ing .  

each atom i s  numbered according t o  when it is  

Some t h i r t y  years ago, Henze and Blair (1931) showed how Jordan's p r inc ip l e  

could be used f o r  t h e  enumeration of isomers of saturated hydrocarbons and 

some simple der ivat ives  of them. Here, t h e  nodes are a l l  t h e  same (carbon 

atoms) and t h e  enumeration can proceed by recursion from smaller t o  l a r c e r  

complexes. 

nated as center ,  leaving 10  t o  be allocated among 2, 3 or 4 branches. 

following partitions satisfy the rules (leaving dissymmetry out of account): 

For example, for t h e  isomers of undecane, CllH24, one atom is desig- 

Only t h e  

I 
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To complete the solution, one must have calculated the number of alkyl radicals 

5 :  -C5, -C4, etc. To illustrate with C 

The radical must have an apical atom, leaving the rest to be partitioned 
I 
1 

! ! 
in all distinct ways among 1, 2 or 3 pendant branch&, the radicals of the next 

level. Thus we have: 

OC\o 4 

4 

The count of -C radicals is thus derived from the table for -Ci, taking i from 

1 to n - 1, and the process may be itcrated as far as needed, i*e*, until 
partitions into units, C1 

n 
\ I 

i 
b I , prevail. NO deep mathematical insight is needed to 

I 

. . ... . , . - . . . . - ... - 
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ver i fy  t h a t  the  first s teps  of the  alkyl se r i e s  cl, c2, c3, c4 have 

1,1,2,4 fonns r e s p x t i v e l y .  

No closed algebraic expression has  been found f o r  t h i s  enumeration. 

However, . t he  recursive expansion was done by hand (Henze and B la i r ,  1931) with a 

few t r i v i a l  e r ro r s  found by a computer check; no organic chemist w i l l  be 

surprised by t h e  enormous scope of his f ie ld .  (Table 1). 

The t o t n l  range of acycl ic  compounds is  of course very much l a rge r  t h a n  

these subsets. 

a l locat ion t o  consti tuent radicals  takes account of the  kind as well  as number 

of unused atoms. However, t he  specification of a hierarchy of ordering, which 

mny be done almost a r b i t r a r i l y  t o  s u i t  computational convenience, permits t h e  

same pr inciples  t o  be applied t o  a complete enumeration of s t r u c t u r a l  isomers 

of a given composition, f o r  example of alanine, C H NO (Table 2.) 

A t  each s t ep ,  instead of par t i t ioning a mere number of nodes, an 

3 7  2 
Cyclic Structures 

Cyclic graphs are much l e s s  t rac tab le ,  s ince every path w i l l  re turn back -.- - 
' t o  t he  complex, and a center i s  l e s s  easi ly  defined. Suf f ic ien t  reminder of  

the  taxonomic d i f f i c u l t i e s  posed by rings i s  t h e  popularity of t h e  Ring Index 

(1964) wherein the "11524 rines known to chemistry" a re  l a i d  ou t ,  together with a 

6. 

- 

1 

profis ion of synomyous and a l te rna t ive  numbering systems t o  map them as nodes. 

For example, naphthoyl pyridine would ult imately form a t r e e ,  R1 - C\- R2 , R1 and R2* 

0 
We now consider t h e  domain of s t r i c t l y  cycl ic  s t ruc tures .  These are 2- 

connected graphs, since at  l e a s t  2 (sometimes more) l i n k s  must be cut i n  order 

t o  separate  t h e  graph. 

For fu r the r  analysis,  we dis t inguish the  t r i v a l e n t  ve r t i ce s  of t h e  s t ruc tu re  

We can then construct t he  full s e t  of atom3 t h a t  j o i n  3 patha, or branch points. 
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abstract ,  t r i v a l e n t  eraphs. 

links and atoms. 

Define a path aSa l i n k  or an unbranched chain of 

The paths between ver t ices  of t he  s t ruc tu re  can then be 

mapped onto the  edees of an abstract  graph which is  regular ly  t r i v a l e n t  Or 

t r i hed ra l .  

of 6 ver t ices ,  indeed, t h e  abs t rac t  prism. 

To i l l u s t r a t e ,  observe how pyrene is mapped onto an a b s t r a c t  graph .- 

(4 (b 1 (4 (a) 
Sone ver t ices  are 4-valent, in so-called sp i ro  forms, but these  graphs 

can bc mappedgionto 3-valent graphs by expanding each 4-valent node i n t o  a pa i r  

of 3-valent nodes. That  i s ,  \ becomes - *  

re lat ionship between t h e  number of ver t ices  and t h e  number of r ings  conventionally 

/ 
There is  an obvious \.' \ 

/ \ .  
ascribed t o  a s t ructure .  

Then naphthalene, 2 ver t ices  and 2 r i n g s .  

more ver t ices .  Hence, f o r  r r i n g s  and n ver t ices  

We start w i t h ,  say,  benzene, 0 ve r t i ce s ,  and 1 ring.  

Each addi t ional  r i n g  e n t a i l s  2 

r = L + n / 2 ,  

and f o r  these t r i va l en t  graphs, n must be an even integer.  

V a l e n t  ver tex maps i n t o  2 

Recalling t h a t  a 4- 

3-valent nodes, we can write 

r 1 + n/2 + q 

f o r  q 4-valent ver t ices .  T h i s  calculation agrees with the  Ring Index r u l e  which 

counts r i n g s  as t h e  number of cuts  needed t o  convert a r ing  s t ruc tu re  i n t o  a 

t r e e  

As each edge jo ins  2 nodes, a t p i v a l e n t  graph of order n will have 

3n/2 edges. 

EnumeratinR t h e  t r i v a l e n t  Eraphs. A t r i v a l e n t  graph may have severa l  
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rcprcsentations,  and some e f f o r t  uay b i  r2quired t o  relate them t o  one another,  

and to decide which form is t o  be rc,;a.-de.5 as a canonical reference f o r  mapping 

purposes. Thus, t he  graphs of Figure 2 are a l l  topological ly  equivalent O r  

isomorphic. 

t o  ( threc)  nodes. 

themore ,  it should relate t o  a convenient code by which t o  r e f e r  t o  each 

This is  t o  say, they a.11 represent t h e  same connections of node 

A meaningful entmcration must unify these  isomorphisms. W- 

graph, b e t t e r  s t i l l ,  t o  embody a reconstruction. FinalLy, it should generate 

nn obvious numbering of the  nodes and edges. 

.'!milton - c i r cu i t s .  A prac t i ca l  key t o  t h e  solut ion of t h i s  problem, as 

t o  many o ther  network problems, takes ridvantage of t he  Hamilton c i r c u i t s  found 

i n  most of t h e  abs t rac t  graphs hgving cheniccsl i n t e re s t .  A Hamilton c i r c u i t  

(HC) is a round t r i p  through t h e  8:raph t h a t  t raverses  each node j u s t  once. 

It therefore  uses n edges, leaving out; n/2 edges. Figure 3 i s  Hamilton's 

own example, t he  dodecahedron, proposed by him as a par lor  game, each node 

represcnting a c i t y  t h a t  t h e  round-the-worLd t r a v e l l e r  would not wish t o  , 

r e v i s i t .  The u t i l i t y  of HC representations w i l l  become evident. 

Finding a l l  IIC's  of a graph may bc a challenging game, but it is  reduced 

t o  a merely tedious algorithm on the ccmputer. S t a r t  from an a r b i t r a r y  node. 

Trace a path as through a maze, each node presentinp; a binary choice of 

d i f fc rcn t  edgcs. 

t rack  onc s tep.  A successful path h a s  n correct  choices. Thus, at most 

2n 'mnrch s t cps  w i l l  exhaust all possible paths; i n  p rac t ice ,  c loser  . t o  l / n  

times t h i s  number w i l l  be needed t o  .identify a l l  the  I IC's .  Even f o r  n up 

t o  20 t h i s  is  a modest task.  

HC, at perhaps n-fold less e f f o r t ,  w i l l  enable a given graph t o  be r e l a t ed  t o  t h e  

If the  chosen path reverts t o  a node already v i s i t e d ,  back- 

And i f  t h e  work has been done once, f inding any 
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previously establ ished set. 

A t m i c a l  problem i n  graph nanipulation i s  t o  e s t ab l i sh  whether two 

ccmidicated graphs are isomorphic. 

t e s t i n g  a l l  possible permutations of nodes, with a scope of Fac to r i a l  ( n ) .  

A t  n =: 20, t h i s  number is  an u t t e r l y  uncomputable 2.4 x loL8 steps.  

I n  the  long run, t h i s  might require  

.. 
On t h e  

o ther  hand, i f  two graphs are isomorphic, they niust have t h e  same HC's, found 

with at  sost  2*' = 10 6 3. steps.  
I 
I 
I A convenient representation of a l iC maps t h e  nodes and edges of t h e  c i r c u i t  

os vcr t i ce s  and bounding edges of a regular polygon. 

thcn form chords, each node being one of t h e  two termini  of one chord. 

descr ipt ion of t he  Graph then needs on ly  some notat ion f o r  t h e  n/2 chords. 

The remaining n/2 edges 

A 

F i r s t ,  w e  should canonicate t h e  or ientat ion of t he  polygon, having chosen 

t o  i n i t i a l i z e  t h e  HC a r b i t r a r i l y  among n nodes and 2 d i rec t ions  ( t h e  r o t a t i o n a l  

and r e f l ec t iona l  symmetries of t h e  polyeon). 

chord havine a cer ta in  span. 

it is invariant  under ro ta t ion ;  i.e., immaterial which node i s  selected as 

s t a r t i n g  point.  The e f f ec t  of reflection i s  a l so  e a s i l y  computed. 

s p a  l i s t  I s  regarded as a number, i t s  minimum value under co ta t ion / re f lec t ion  

bccomcs t h e  canonical form. For example, an 8-node graph misht be represented (Figure 4) 

by any one of t he  span l is ts  17522663, 31752266, e tc . ,  o r  t h e  r e f l ec t ions  

75226631, e tc .  

hcnce t h e  canonical form. 

graph, they can be compared, and t h e  lowest-valued of them chosen as t h e  

reference graph. 

Each node is  joined by some 
c 

\ 
The span list can be put i n  cyc l ic  order ,  where 

e 

If t h e  

O f  these,  one quickly finds t h a t  17522663 is t h e  lowest-valued, 

Similerly,  when other  HC's are found f o r  t h e  same 

The same procedure es tab l i shes  a canonical ordering of t h e  nodes and 
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l edges. For t h e  l a t te r ,  w e  take the  EC sequence ( the  polygon) first,  then  

cnch Chord i n  order of first reference. 

Yhc Gpnn l ist  has n terms. On ly  n/2 are necessary, s ince  each chord 

i o  referred t o  twice i n  t he  span l ist .  For a n  abbreviated code, simply omit 

t h e  sccond reference,  

suf f ices ,  t h e  last chord being completely determined by t h e  ones previously 

b u i l t .  The chord l i s t  (152), o r  an alphabetic equivalent (8AEB) whose lending 

numcral ncrely reminds us of t h e  order of t h e  graph, then encodes t h e  graph i n  

a canonical form (Figure 4 ) .  Furthermore, t h e  Graph can be reconstructed from 

t h e  code by rc t rac ing  the  s teps  j u s t  reci ted.  

t h e  abbreviated chord l is ts  cannot be f ree ly  rotated.  

17522663 becomes 1522. Indeed, one less character  s t i l l  

Caution: Unlike span l is ts ,  

Chord lists can be computed by an obvious combinatorial procedure, with 

t h e  help of a few t r i c k s  t o  save some f r u i t l e s s  e f f o r t .  

bccomc in t e rna l ly  inconsistent a f t e r  a l imited number of i n i t i a l  characters ;  t h e  

number of combinations t h a t  must be tes ted is therefore  considerably less than 

mny nppear. 

t h i s  way, exhaustive lists of t r i va l en t  graphs have been computed -- Table 3 

(tnkcn from t h e  DENDRAL repor t )  shows t h e i r  scope. 

t h e  complete l i s t  of HC's is computed for  each chord l i s t .  

Most a r b i t r a r y  lists 

1 

-. 
Additional r e s t r i c t i o n s  can a l s o  be put on prospectively. I n  

-., 

To unify isomorphisms, 
I 

Apart from the  ro ta t ion  of the  polygon, two or  more incongruent HC's may 

bc prcocnt i n  a Graph. 

hi&h symmetry tcnd t o  have t h e  fewest incongruent HC's. 

t h a t  nny edge of a polyhedron must be involved i n  an even number (not excludine 0 )  

Of HC'o, and t h a t  if a polyhedron admits one HC, it must a h i t  at least  three.  

No general  pr inciple  is  known, except t h a t  graphs with 

Tut te  (1946) proved 

Class i f ica t ion  of t r ivalent  graphs. Two important, independent cr i ter ia  
' I  
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Of abstract graphs are (1) planarity, and (2) level of connectedness. 

A planar prph is one that can be represented on the plane without edges 

crossing over one another. 

rtLrckj l ~ c k . . ;  crossing chards: ~ f g u f . t r  3 is certainly plana. Kuratowski has 

The graph need not be drawn as an HC-polycon, which 

shown that any trivalent non-planar graph nust contain 

Fortunately, this condition is easily recognized in the building of span lists. 

As the surface of a polyhedron can be napped onto the plane, planarity is a 

6CC (Figure 5 b) 

necessary condition for an abstract polyhedron. 

In practice, nonplanar graphs are so fax unknown in organic chemistry 

(barring coordination complexes) ; however, they might in principle be realized, 

e.g.,by the hypotheticnl Figure 5d. 

Connectedness is the least*number of  cuts that will anywhere separate the 

graph. 

convex polyhedra. 

2 edges would be unable to enclose a volume. 

showcd that every 3-connected planar trivalent graph could be realized as a 

polyhodron. 

mccting point of topology and classic Greek geometry. 

enumeration is still unknown. 

trivalent polyhedra for n 5 16; in an abstract and unpublished manuscript (1928) 

he iL60 showed 1250 for n = 18. 

was repeated on the computer by Grace (1965) who found some errors in Bdckner's 

The 3-connected planar graphs are the abstract 

Intuitively, it is obvious that a region bounded only by 

Steinitz (see Lyusternik, 1963) 

These graphs have, naturally, attracted some interest as a 

Nevertheless, a complete 

In 1901, Brkkner published figures of the 

- 
This work, done by hand over several decades, 
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l i s t i n g s ,  and found 1249. However, even t h i s  census admits some p o s s i b i l i t y  

Of bcing incomplete, though t h i s  i s  rerote.  Grace zenerated t h e  polyhedra 

by induction as a l l  possible s l i c ings  of t h e  faces of smaller polyhedra. T h i s  

produces many isorirphisms which must be unif ied;  f o r  t h i s ,  Grace used a 

c r i t e r i o n ,  II equisurroundedness", which i s  already known t o  be too  weak, a l b e i t  

f o r  much larger  graphs. Therefore, it cannot be rigorously shown t h a t  t h e  l i s t  

Of 1249 has not excluded addi t ional  forms, equisurrounded, but not isomorphic 

with the  s t a t ed  set. The analysis OP H C ' s  could a f ford  an independent avenue 

of corroboration at r e l a t i v e l y  low cost .  

The polyhedra play an important ro l e  i n  t h e  c l a s s i f i ca t ion  of cyc l ic  graphs 

but  havc no remarkable chemical significance except t h a t  they represent  t h e  

nos t  t i g h t l y  caged polycyclic stxQctares'.?/ Note t h a t  many unfamiliar iso- 

morphisms are generated by portray in^ a polyhedron as a planar mesh, i .e.,  as 

proJccted within an  axbzt ra r i ly  chosen ftrce, ca l led  the  base. The proJection 

can be visual ized as the  view of t h e  polyhedron from a point Jus t  outs ide t h e  

place of t h e  face chosen as base (Figure 2) .  . 
IIC-free graphs. These are promrtly encountered i n  t h e  2-connected series, 

s t a r t i n g  with n8 (8(AC:8,1:A) Figure 6 ) .  

illuminates some of the  combinatorial processes involved i n  building graphs. 

Since all t h e  graphs f o r  n 6 have HC's, an XC-free graph i s  generated by a 

particu1ci.r mode of union of H C ' s  of lower order. 

bilincal, one edge is cut  on each of two smaller graphs and reunited. 

c i t h c r  of thc 'cdges involved is barred from any HC of i t s  graph, t he  b i l i n e a l  

union w i l l  be  HC-free. 

must be t raversed by a path known t o  be forbidden. 

An analysis of t h e  conditions f o r  no-HC 

The simplest mode i s  

If 

This follows, since the  union introduced nodes which 

12 . 

\ 

! 
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I n  general ,  an HC-free graph can be canonicated by d i s sec t ing  

larZeSt c i r b u i t s  it contains. The disse2tions are first completed 

it i n t o  t h e  

across t h e  

b i l i n e a l  (2-connecting) unions. 

nust  consider XC-free polyhedra as a oachematical, i f  not a pragmatic chemical 

If any resu l t ing  subgraphs are s t i l l  HC-free, W e  

poss ib i l i t y .  

i!C-free polyhedra. T a i t  beljeved that  all convex t r i h e d r a l  polyhedra 

contained IIC's and h i s  conjecture was  indeed unchallenged f o r  over 60 years.  

HOWCVer, Tut te  (1946) refuted t h e  conjecture with an example ingeniously proven 

t o  be HC-free, though with 46 ver t ices  it woulli defy exhaustive search. 3 

' Chemical graphs of t h i s  order (24 r ings)  are  out of range of systematic pred ic t ion ,  

but  t h e  nrpment gives fu r the r  insight  into the  combinatoric of abs t r ac t  graphs. 

We dea l  here with t h e  process of t r i l i n e a l  union. This can be done i n  

d.1 possible  ways by extract ing one node from any source polyhedron, leaving 

3 c u t  edges. This 3-cut graph can then replace one node of another graph. 

However, t o  influence t h e  poss ib i l i t y  of forming an HC, t h e  edges must be 

subject  t o  some r e s t r i c t i o n s  distinguishing t h e  3-cut complex from a s ing le  

node. The node poses no r e s t r i c t ions .  T h a t  is ,  i t s  3 edges are ava i lab le  i n  
1 

any pairwise combination, thus any one of 3 ways. If the  corresponding edges 

of t h e  source Graph have t h e  same property, i .e . ,  none of t h e  3 edges is  e i t h e r  

c o r r ~ ~ u l s o ~ ~ y  o r  forbidden, then t h e  3-cut graph w i l l  not influence t h e  occurrence 

of a n  Z!C. By induction, t h e  lower order polyhedra t h a t  already contain some 

3-connected regions can be passed over i n  looking f o r  spec ia l  graphs. A 

systematic survey of t h e  f e w  4-connected, - i.e., 4-connected except f o r  t he  

i so l a t ed  nodes 

the  polyhedron 

which are, of course, 3-connected, - graphs (Tabhe 4)  shows 

(16CGDIGDF), t he  smallest with a spec ia l  edge, namely t h a t  t h e  

I . . . . .  . .. _ .  . . . . - -. . . . . . -----.__ ~ _- -_- -. . -. __ . . . . . - . - . . . 



Ones marked are obligatory i n  any EC of the  polyhedron ( F i e r e  7 ) .  Tut te  

. then replaced 3 nodes of a tetrahedi-on with a 3-cut g r q h  from (16CGDIGDF) 

leading t o  the  contradiction t h a t  all three edges from one node mus t  be 

I included i n  any HC; hence there  can be AO EC i n  t h i s  graph of 46 = 4 + 3(14) 

I 
nodes. 

t h e  pentagonal prism t o  give a n  HC-free polyhedron of 38 = 10 + 2(14) edges.$' 

Tnis  is c l e a r l y  t h e  smallest iiC-free polyhcciron w i t h  two 3-connected regions. 

Tie cut graph can a l so  be planted at, t w o  mutually-exclusive edees Of 

A smaller liC-free polyhedron may yet bc! found by analogous s tudies  of 

4-linea;?hnd 5-lineal unions, Ind i f  so, is  Jus t  within the  bounds of 

rcasonible computational e f fo r t .  

If Grace's l ist  of polyhedra is correct ,  every one through n has an  XC. 18 

T h i s  conclusion i s  corroborated by a detailed consideration of the  propert ies  

of t ab le  3. By t h e  inductive argument, forms w i t h  any "16 of tine graphs 

t r iangular  face -- indeed, any 3-connected region -- could be passed over, 

g rea t ly  reducing the  computational e f fo r t .  O f  course, from t h e  smallest  HC- 

. f r e e  polyhedron, la rger  ones can be generated by replacing a node with a t r i a n g l e  

or l a r g e r  3-connected region. 

The HC-free polyhedra can be c lass i f ied  by the  same principles  used f o r  

b i l i n c a l  unions, as complexes of the  1arg;est c i r c u i t s  united over t h e  l e a s t  

l e v e l s  o f  connectedness. 



While distant from chemical graphs of any reasonable size, these studies 

do firnish a clearer indication of the sufficiency of HC representations, and 

of the sources of exceptions. 

- 

Recapitulation: the scope of anticination and reco,:nition. There is no 

perceptible limit except the computation of HC's and of alternative disscctions to 

restrict the encodinl: of abstract graphs either as HC's or as canonicated 

unions of HC's. 

phisms between given eraphs. 

These assignments also facilitate the recognition of isomor- 

The anticipation of all possibilities poses a greater burden. Iiowever, 

all the grqhs up to n12 (7 rings) have been tabulated together with their 

isomorphisffis and symmetries. 

extension would tax the output-printer, and before long the computer itself. 

The series expands so rapidly that further 

XnnpinC: and spmetry. Having explored the trihedral graphs, we now return 

to mapping chemical atoms on their nodes an6 bonds or linear chains on their 

edges. 

operations must be considered to decide on a canonical representation. 

again, the I i C ' s  are helpful. 

thc s a m  grclph after any symmetry operation: 6 '  Therefore, the whole set of 

Symnctry Operations is included within the l ist  of the F i C ' s ,  giving remarkable 

* 
Many graphs have substantial symmetry, and the corresponding by redundant : 

Mere 

If an HC is present, it can a l s o  be projected on 

economy of computational effort to the search for the symmetries, as w e l l  as 

a straichtforward expression of the operators. 

structure, it can be mapped on an arbitrary choice of form, and the result then 

To describe a molecular 

subJectcd to the symmetry operators.. The,canonical representation satisfies 

801rie r i l l s ,  say the highest order listing, of the  inapped e1s;iept.q. Tlius, for  
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t h e  norphine nucleus, w e  would have to c!ioo:;e among t h e  4 symmetries Of i t s  

undcrlyin8 graph: (Figure 8) . 

Since t h i s  choice is  readi ly  computable, t he  human user  may be rel ieved of 

t h e  burden t o  make these tedious calculations. 

Becides the l i nea r  paths of t he  cyclic s t ruc ture ,  the  mapping may a l so  

include specif icat ions for  fused edges (L-hedral cen ters ) ,  heteroatom replacements 

of ver t icco , and specif icat ions of slereoasymaetry of ver t ices .  

are inevi tably fussy and are given elsewhere. 

The d e t a i l s  

After the mapping, each atom is  

numbercd i n  t h e  order of i ts  reference. 

Mcrcing cycles and t r ees .  Each cycl ic  s t ruc ture  is  now fully defined, with 

ru l e s  fo r  a canonical code and numbe15ng of every atom. The s t ruc tu re  can then 

bo. handled as Q node i n  a t r e e ,  t h e  runbering system allowing precise  reference 

f o r  t h e  point ( s )  of connection. 

P.ppl i c  at ions 

This dcvclopment was needed f o r  a continuing e f f o r t  t o  program the  

automatic computation of s t ruc tu ra l  hypotheses t o  be matched against  various 
.. 

c c t s  of ana ly t i ca l  data, especial ly  mass spectra. 

instrumcnccll methods has already begun t o  outdo the  chemist; capacity t o  in t e rp re t  

The growing sophis t icat ion of 

t h e  feoul t s .  Since mass spectrometers are now commercially 



. -  
17 

ovailablc t h a t  can Generate 10,000 spectra per second, t h e  nced for computational 

ass is tance t o  make full use of such de;ic(:s is self-cvidcnt.  (Biemnnn & McMurraY 

1965; Lcdcrberg 1964b) 

exploretion of t h e  planets ,  which p t s  even heavier demands on the  l o c a l  

in te l l igence  avai lable  t o  the  systl2zi. 

Such device:; tire &so being considered f o r  t h e  automated 

Thcsc applications relate primarily t o  t h e  p o s s i b i l i t y  of an t ic ipa t ing  

h n o t h e t i c d .  s t ructures .  

synthet ic  i n s i e h t s ,  i .e . ,  the  elementary rezctions by which functional groups 

t an  bc a l t c red  or exchanged. 

computer programs which have been taught a f e w  thousand u n i t  processes, and 

t h e i r  l imi ta t ions ,  and could be challenge6 t o  an t ic ipa te  a synthet ic  route 

from given precursors or t o  a given end proiiuct. 

lcrrst a s s i s t  the  chemist by remindic3 of a. few among myriad p o s s i b i l i t i e s  of 

combining the  un i t  processes learned from t he  same chemist, or b e t t e r ,  from 

a diverse  school, For t h e  moment we leave out of consideration the  empirical 

The l anguqe  a l s o  provides a format f o r  cxyressing 

We m i & t  then exyect t h e  ul t imate  development Of 

Such programs m i G h t  a t  

- t e s t i n g  i n  its own laboratory of a few thousand routes chosen on t h e  computer's 

own i n i t i a t i v e .  

The nomenclatural applications of any system of canonical forms a re  also 

self-evident. We are very nearly a t  the point where linear notation may again 

be dispensable, since t h e  computer should be 

as such. However, a mathematically coaplete 

s t ruc tures  i o  s t i l l  important, regardless of 

s t ruc tu res  are expressed. 

I 

able  t o  in t e rp re t  s t r u c t u r a l  graphs 

system, of c l a s s i f i c a t i o n  of 

t he  notation i n  which the  
* .  

Thc simple graph-theoretical ideas of DENDRAL could be implemented with a 

nunber of  possible notations. The one adopted for DENDRAL - 64 aims t o  emulate 
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t r ad i t i ona l  notation for all l i n e a r  chains, only t h e  most obvious abbreviations,  

l i k e  "3." f o r  I 1  C.C.C.", and a ''repeat" synbol, arbitrarily "/", being l a i d  on. 

The User must of course understand t n e  pr inciples  and notation f o r  t h e  a b s t r a c t  

cyc l ic  graphs. However, it would be quite reasonable t o  produce an abridged 

version of t h e  Ring Index which would l is t  t h e  carbocyclic equivalents Of 

expected fori=, and allow the  most unskilled assistant t o  t ranscr ibe  s t r u c t u r a l  

d a t a  i n  a form readi ly  matched t o  DEXD3AL. 

Some examples of s t ruc tu ra l  codes the  i somro  of alanine,  Table 2 a r e  

a2pended as a challenge t o  puzzle-aindcd readers. 

of deta i led  specif icat ions (Lederberg :t96;+a) is not required reading f o r  

Hopefully the  tedious manual 

pragmatic understanding of t h e  systcm. 

Tiere  are of course many a1ternat::ve aFp?oaches t o  notation reviewed by 

D. National Academy of Sciences Cornnittee (1964) and appearing from time t o  t i m e  

i n  t h e  Journal of Chemical Documentation. As far as I know none of them has 

been addressed t o  the  exhaustive prediction of cananical forms and most of 
1 

them are too  complicated t o  be eas i ly  adaptable t o ' t h i s  end. 
i. 

Syntax and induction. One of t he  motives f o r  t h i s  study w a s  t o  uncover 

t h e  kinds of problems t h a t  would be encountered i n  computer-emulation of t h e  

process of sc i en t i f i c  induction f'rom experimental data. A necessary s t e p  i s  a 

means or' generating a set of  relevant hypotheses. I have been impressed with 

both the  d i f f i c u l t y  and t h e  u t i l i t y  of es tabl ishing a precise  syntac t ica l  

framcwork f o r  the r a g e  of hypotheses even i n  a f i e l d  as w e l l  s t ructured as 
e .  

orG:anic chemistry. 

Sone years ago, Woodger (1937) attempted t o  axiomatize developmental and 

genet ic  biology. His efforts were perhaps too  remote from the experimental 

.. 



Cst& now available.  

cn tc rpr i se ,  to es tab l i sh  a precise  s y n a x  for hmothe t ica l  statements i n  

biolocy. 

staterrents are correct.  

should compte very successfully i n  =he exercises of model-building t h a t  

preoccupy many b io logis t s  today, and with advantage t o  t h e  r i g o r  with which 

they axe put to&ether. 

However, h e  Day have pointed the  way t o  8 more f e a s i b l e  

T h i s  is a nore modest aiui, since it Goes not purport t o  deduce which 

However, there i s  every good reason why conputers 

19. 

. 



FOOTNOTES 

S Y S T E 4 A T I C S  OF ORGANIC MOLECULES, GRAPH TOPOLOGY AND HAMILTON C I R C U I T S  

Footnote p. 9. 

’While t h i s  paper was  being revised, another algorithm requiring only about 

10 n 

(1)  growing a subgraph, adding one node a t  a time, (2)  defining the  list Of 

possible c i r cu i t s  at  each l eve l  by recursion from t h e  l i s t  of p r e v i a e  leve l ,  and 

(3) looking ahead some s teps t o  choose nodes which close face ts  of the  graph 

SO ae t o  minimize the  s i z e  of the  l i s t  t h a t  must be maintained. 

2 steps w a s  discovered and programmed for routine use. It depends on 

Footnote t o  p. 12.. 

*The speculative “pOlyhedrqnesn have been discussed by Schultz, H.P. : 

Organic Chemistry. 

Topological 

Polyhedranes and Prismanes. J. Org. Chem. 39, 1361 (1965). 

Footnote t o  p. 13. 

J 3This i s  no longer true.  With a new algorithm’, Tutte*’a graph wae exhausted i n  

29 seconds of 7090 time. The same algorithm ie also very ap t  for finding the  

la rges t  c i r cu i t s  and for forbidden edges. 

Footnote to  p. 14.  

4 
“hi6 had already been found by other workers a8 disclosed i n  pr ivate  communications: 

D. Bernet t ,  University of WaShingtOn and J. b e a k ,  B r 8 t i S l a V a .  

Footnote t o  p. 14. 

’Tutte (1960) quotee an example 

fewer than 38 nodes it probably 

leave no encouragement for euch 

with 224 nodeel If any HC-free 

has one 3-connected region. 

an example at  l e se  than n 36 

polyhedron has 

own investigations 
. 



Footnote t o  p. 15. 

6I note t h e  following conjecture, t h a t  t h e  symmetries of any abs t rac t  convex 

t r ihedra l  polyhedron can be real ized in a geometrical polyhedron i n  3-space 

w i t h  ref lect ion,  i .e .  can be assigned t o  a point group. 

conJecture is not a premise of the  method indicated f o r  f inding t h e  symmetriear 

The conjecture is plainly inapplicable t o  2-connected or t o  non-planar graphs. 

I would be grateful for any refutation, or a formal proof, new or otherwise. 

However, t h i s  

, 

, /  

\ .- 

, 
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c-s-c-c-c 

C m  NY2m /C 

B. 
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II 
I1 a-c 
I 

FIR. 1. Centere of trees: (radiue-center), and 2 (mass-center). Two 

exemplee, A., methionine, and B o ,  leucine% The diagrams were plotted by a 

computer program from punch cards coded for each structure a8 indicated. 
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Fig. 2 .  

four isomorphic planar meshes, 5.e. four kind6 of faces, as labelled.  

the equivalent Hamilton circuit. 

nodee with abbreviated code f o r  t h i e  graph whibh is 10BCC. 

enjoy ae t i r fy i ag  himeelf t h a t  these graphs are indeed isomorphic (equi-connected) 

(a) Benzoperylene and i t s  mapping on a polyhedron (b) which has 

(c) is 

Do not confuse the l e t t e r ed  l abe l s  of the 

The reader may 



. 
FiRm 3. liamiltcm'e Hamilton circuit . The abstract dodecahedron, represented 

81) a planar map of 20 nodee. 
. .  .- 

4 
... .- 
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Figure 4 
Caption follows 
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. Fin. 4. Symmetries and encoding of a cyclic trivalent graph with 8 nodes. 

' 
There are 16 symmetry operation (a rotational X 2 reflection). 

8 rotatione, and a reflection that could be combined with each of theee. 

Shown are 

With 

each figure ie also a span liet; the canonical choice of the 16 (not all distinct) 

is the lowest valued span liet, 17522663, calculated with the upper rightmost node 

as the Initial. This can then be reduced to the code AEBB, or even more econo- 

mically AEB, ae outlined In the text. I 

i 

. 
, 
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6-valent and 3-valent respectively. 

any nonplanar graph, 

internal chord, end (d) io a hypothetical molecular structure that maps on to ( c ) .  

Non planar graphs. (a) and (b) are Kuratowski's fundamental forms, 

At least one of these must be included in i . I 

I 

d 
- i (c) is a projection of ( b )  as a tetrahedron with an additional 

I 
- J  I. 

c 
U 

I' 
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Figure  -6 
Caption follows 

0 Ixi 
2 4A 4B 0 

Q 
6AC 6 B C  ~ A A   AB 

L .- a 0 
8ACD 8AEB 8ABD 8ADD 

) 

8BBB ~ B C C  

. 
. 

8(6AC:8,1:2) 8CEC 



Fig. 6. The cyclic, t r i va l en t  planar graphs with 8 or  fewer nodes. Where 

possible, these a r e  represented as Hamilton c i r c u i t s ,  the  nodes of the  graph 

being projected as ver t ices  of a polygon which cons t i tu tes  the c i r c u i t ,  t he  

remaining edges shown as chords. Each of these f igures  can also be drawn as a 

planar map. The codes are abbreviated forms from which the graph can be recon- 

structed.  Note tha t  8BCC and 8BDD are isomorphic desp i te  the incongruence of the  

Hamilton c i rcu i t s .  The abs t rac t  polyhedra of t h i s  list include two degenerate 

forms ( 0 ,  circle; 2, hoeohedron) and 4B, tetrahedron; 6BC, prism; 8 CEC, cube; 

8BCC = BBDD, pentagonal wedge. 

c i r cu i t ,  and i e  c lass i f ied  a8 a union which epl icee the  8 ' th  edge of graph 6AC 

with the l ' e t  edge of graph 2. Complete l i e t e  of the  graphs through 12 nodes ' 

are presented in Lederberg (1963). 

One of these graphs, 8(6C:8 ,1 :2)  hae no Hamilton 

n 

, 



Fig. 7. 

nodes. 

A graph with spec ia l  edges and two HC-free polyhedra. (a) has 16 
I 

The mrked edges are included i n  any HC of the graph. Hence t h e  3-cut 

(b),  with 15 nodes, obl igates  t h e  marked edge as p a r t  of an HC of any graph i n  

which (b) ie inserted.  

in ( c )  Tutte'e graph, with 46 nodes and (d) with 38 nodes. 

h i s  leads t o  a contradiction, i .e.,  no Hamilton c i r c u i t  
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CANONICAL 
MAP 

HAMILTON CIRCUIT REPRESENTATIONS 

Fig. 8. Morphine nucleus: symmetry and choice f o r  coding. The dashed edge 

7---8 etands f o r  the epiro- (quadrivalent) center i n  the morphine ring; however, 

4 permutations are possible under the  symmetry operations. In  the canonical form, 

a f t e r  account is taken of the  mapping of the chemical graph onto the  abs t r ac t  graph, 

t h i e  edge i e  labelled 2-03. 

(8BDD-N.3,$, , ,3,0>,,C) each comma marking the  next edge of the  map. This code 

The canonical map would be coded as 
1 

. 
i e  su f f i c i en t  input for the computer program to  reconstruct the molecular e t ruc tu re  

and r e tu rn  the  famil iar  two-dimeneional graphic representation of it. 
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FNUMF94TION OF THF ALKANES 
S T E R E I S O V F S I S M  D I S R E G A R D E D  

I 
1 
1 
2 
7 
5' 
Q 

18 
35 
75 
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355  
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61 71 056 14 

1590507121 k 
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ln6603077ol 
27711253769 # 
722140RRGhQ 

1 8 R 6 2 6 3 q 6 1 3 9  
49375205 2 9 0  2 

1295297588128 
34fl44Qn780161 
9 0 6  4 74 7 4 711 5 0 5 

23647478033960 
6?481801147341 

165351455535782 
438242894769224 
116316Q7n7806437 
3091461011836856 
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2 1 9 2 7.8 340 8 66 8 3 2 6 0 
58481806621086230 

156192366474587200 
417612400765371900 

1 1 17743 6 5'1 746 93 10 00 

* /- 

'i'able 1. Enumeration of isomeric  a lkanes (d i s r ega rd ing  s te reo isomer ism) ,  from 

methane t o  pentacontane. The va lues  marked d i sag ree  i n  some d i g i t s  w i t h  t h e  

va lues  oa lou la t ed  manually by Henze and Ulair  (1931) and Pe r ry  (1932). While 

t h i s  is an  amusing exe ro i se  f o r  the computer, t he  d i sc repanc ie s ,  need le s s  t o  s a y ,  

w i l l  have no pragmatio chemical s ign i f i cance .  I n  any case ,  a propor t ion  of the  
, 

s t r u o  turee will be u n r e a l i s a b l e  owing t o  s t e r i o  hindranoe 6 I 
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.C.C.C O O N Z O  
*C.,.CC 0.N.O 
.C.C=C N.O.0 
.C.CmC O.N.0 
.CoCmC 0.O.N 
.C.CmC N o 0 0 0  
.CmCoC N o 0 0 0  
O C ~ C O C  0eN.O 
.C=C.C O o O o N  
.CcCoC N o 0 0 0  
.Co*CC N o 0 0 0  
.C.aCC 0oN.O 
O C O ~ C C  0.O.N 
.c.-cc N..OlO 
oC0C.N OoCn10 
0C.C.N C o n 0 0  
0C.N.C O.C=O 
.C.N.C C o c O O  
.N.CoC O * C = O  
.N.C.C C o z O O  
0 C o e C N  O o C a O  
.C.oCN C o z O O  
.No .CC O o C t O  
ON'* oCC C o a O O  
0 C o C u N  C . 0 0 0  
OCOCIN 0.C.C) 
oCoCmN O o O o C  
O C O C P N  C o o 0 0  
O C P C O N  C . 0 0 0  
.CaC.N 0.C.O 
0CmC.N O o O o C  
0CnC.N C o o 0 0  
oCoN*C C.O.0 
.CONIC O O C O O  
.CON-C 0oO.C 
*CONIC C o o 0 0  
0CrN.C CoO.0 
0CmN.C O O C O O  
O C ~ N O C  O O O O C  

C o o o C  C - N  010 
C o o o C  N o C  0.0 
C o e o C  C O N  000 
C o O o C  N e C  000 
CmooC C O N  000 
Ca..C N.C 0.0 
C o o o C  C O O  NmO 
C.0.C 0.C N o 0  
C o o r C  CwO N o 0  
C..oC c-0 OON 
C r r m C  C O O  NIO 
i:..oC O O C  N e 0  
'.aoC C O O  N o 0  
e w o C  C O O  O o N  

' m o o C  C O O  N o 0  

0CsN.C Cor00 
0N.CmC C.0.0 
O N O C P C  0oC.O 
.N*C=C 0.0.C 
o N o C u C  C o o 0 0  
eN=C.C C.O.0 
o N 1 C o C  O o C o O  
.NuC.C 0 0 0 0 C  
O N O C O C  C o o 0 0  
oCo=CN CoO.0 
e C o * C N  O o C o O  
0 C o t C N  000.C 
oCo=CN C o o 0 0  
O C P O C N  C.O.0 
oCmoCN O.C*O 
0 C s o C N  O0O.C 

0 C o C o O  C o N t O  
0CoC.O CuN.0 

oC0C.O N - C o O  
0C.C.O OoCmN 
oC.C.0 OoN=C 
eCoC.0 C o n N O  
oCoC.0 C = o N O  
0C.O.C C o N a O  
0C.O.C C t N . 0  
.C.OoC NoC-JO 
oCo0.C N s C o O  
oC.0.C OoC=N 
0 C o O o C  O o N x C  
0 C o O o C  C O P N O  
eC0O.C C t o N O  
oO0C.C C.N=O 
o 0 . C . C  CmN.0 
o0oC.C NoCmO 
oO0C.C NmC.0 
o0oC.C OoCmN 

o C ~ O C N  C o b O O  

0C.C.O N.C=O 

Cc..C COO O o N  
C - o o C  0.C N o 0  
C=.OC 0.C 0.N 
C O O O N  C n C  000 
COPIN C o C  0.0 
Cm0.N C o C  0.0 
C O O O N  COO C s O  
C O O O N  C s O  O o C  
C 6 o - N  C O O  C O O  
C o n o N  COO 0.C 
Cn0.N COO COO 

? C=o.N C O O  O O C  
C S O O N  O o C  0.C 
C o o 0 0  C o C  NnO 
C o o 6 0  C p C  NIO 

C o o o o C  0 0 N n C  
C o o o o N  0 0 C a C  

0OoC.C OoN=C 
o0.C.C C.=NO 
.O.CoC C r o N O  
o C o o C O  C e N t O  
0 C o o C O  C-N.0 
OCOOCO N.C=O 
.Co.CO N t C o O  
.Ca.CO O e C = N  
0 C o o C O  O o N = C  
.Co.CO C o = N O  
0 C o o C O  C r o N O  
. C o C - 0  C.N.0 
. C o C r O  C.0.N 
o C o C 3 0  N.C.0 
o C o C 1 0  No0.C 
0 C o C s O  0.C.N 
.CoC=O O0N.C 
oCeC=O C O O N O  
.CeC=O N e o C O  
.C=CoO C o N o O  
.C=C.O C.0.N 
.C=C.O N.C.0 
.C=C.O N.0.C 
.C=C.O O o C o N  
oC=C.O O o N o C  
oC=C.O C o e N O  
.C=CoO N o o C O  
oO.C=C CoN.0 
0 0 o C c C  COOIN 
oOoC=C N O C O O  
oO.C=C N o O o C  
.OoCcC O o C o N  
.O.C=C 0.N.C 
oO.C=C C O O N O  
.OoC=C N o o C O  
oC.=CO C o N o O  
.CorCO C O O O N  
r C o a C O  N o C o O  

C o o 0 0  C a C  0.N 
C o o = O  C o C  N o 0  
Co=.O C e C  N o 0  
C o c o 0  C o C  O O N  
C s o o O  C o C  N o 0  
C t 0 . 0  CoC O o N  
C o o 0 0  C O N  C=O 
C o o 0 0  N o C  C=O 
C o o 0 0  CmN C O O  
C o r 0 0  C a N  0.C 
C o o 0 0  NmC C O O  
C o o 0 0  NmC O o C  
C o o n 0  C O N  C O O  
c o o = o  NOC ,coo 

r C o = C O  N o O o C  
.C.=CO O0C.N 
o C o = C O  O o N o C  
.CoeCO C O O N O  
bCO=CO OC0 
.C=.CO CoN.0 
o C = o C O  C O O O N  
oC=.CO N e C o O  
mC=oCO No0.C 
.C=.CO 0.C.N 
.C=oCO O o N o C  
.C=eCO C O O N O  
O C P O C O  N o o C O  
=C.C.C N e 0 0 0  
~ C O O C C  N o 0 0 0  
rC.C.N C.O.0 
=C.C.N C o o 0 0  
= C o N o C  C o o 1 0  
=C.N.C C 0 . 0 0 ~  
1NoC.C CoO.0 
=N.C.C c o  000 
=C..CN C.O.0 
gC.oCN C e e O O  

. . = C * C o O  C.N.0 
t C o C . 0  C o O o N  
=C.CoO NoC.0 
=C.C.O N a O o C  
tC.C.0 C..NO 
=CoO.C C.EI.0 

. = C o O o C  C O O O N  
=C.OoC N.C.0 
tC.0.C NoOIC 
=C.OoC C e o N O  
=C..CO C0N.O 
~ C O O C O  C.0.N 
nCe.CO NeC.0 
aCo.CO No0.C 
" C o o C O  C o o N O  

C o s 0 0  C O N  C.0 
C o o 0 0  C O N  O O C  
C.=oO N o C  C O O  
C o s 0 0  N o C  O O C  
C ~ a . 0  C O N  C O O  
C = o o O  C O N  0.C 
C=..O N o C  C O O  
C a o o O  N o C  O o C  
N o o o C  C n C  000 
N o o o C  C O O  C=O 
N o o o C  C s O  0.C 
N o 0 . 0  C o C  CmO 
N o 0 0 0  C n C  C O O  
N.o.0 c=c 0.C 

' n h l c  2 .  The iriomers of alanine (.C..CN C.=OO ) systematically ordered i n  DENDRAL-64 
rotation. 
lust  bc satisfied by a t ra i l ing  atom or radical .  T h i s  w i l l  be  t h e  f i r s t  previously 
inrcfcrcnccd item in  the list t o  the right  of the bond. A leading bond cons t i tu tes  
I ccntrnl m, which must then be followed by two radicals .  A space is  used 
.o separate t h e  primary radicals  for  convenience i n  reading but has no coding 
ignif icance.  
oms; an equal number are the ir  tautomers. 
r Schiff bases or s imilar unstable forms. 
ight be real izable  but were not found in  a cursory search of the l i t era ture .  

Each 'I." or "=" stands for a s i n g l e  or double bond respect ive ly  which 

Some 25 of these topological p o s s i b i l i t i e s  are recognized chemical 
Most of the remainder are e i ther  pgroxides 

A f e w ,  l i k e  hydracrylaldoxime, (.C.C.O C-N.0) 

- I -- - -- -I I_--- -- - . -_ --- 



v 
..' . 

I , 

n o  
W h  
Y Y  

I 

tn 
0)  
-4 cu - 

Y 
0 

a0 
c( 

n 
0 

cr) 
cr) 
r( 

Y 
. . .  

. I %; 

t 

c1 

U 
U 

(0 
* * *  
d r l d  

* *  r l w  

I 
I 

0 aL4 
c c u  

M- 

. ..  


