Technical Report No. 32-774

Stiffness Matrix Structural Analysis

B. Wada

GFO PRIME $\$$ \qquad
CFSTI PRICE(S) S \qquad

ff 653 July 65

Technical Report No. 32-774

Stiffness Matrix Structural Analysis

B. Wada

CONTENTS

I. introduction 1
A. Gencral Description i
B. Function of Program 1
C. Method of Aizalysis 2
D. Operating Experience 2
II. Mathemafics 3
A. Notation 3
B. Derivation of Matrix Equations 4
C. Generation of Stiffness Matrix 4
D. Generation of Weight and Load Matrices 7
E. Weights, Center of Weight, and Weight Homents of Incrtia Ahout Center of Weight 7
F. Static Analysis 8
G. Thermal Analysis 8
H. Normal-Mode Analysis 8
I. Jacobis Method 12
J. Orthogonality Check 14
K. Accuracy 14
L. Structural Ideali\%ation 16
III. Programming 18
A. Input Format 18
B. Output Format 22
C. Tape Requirements 23
Bibliography 23
Appendix A. Matrices for Various Member Types 25
Appendix B. Loads for Various Member Types 35
Apperidix C. Thermal Loads for Various Member Types 39
Appendix D. Example Problem 42

1. Illustrative member 5
2. Illustrative problem 5

FIGURES (Cont'd)

A-1. Three-dimensional pin-jainted member 25
A-2. Three-dimensional rigid-jointed member with equal member cross section moment of inertia 27
A-3. Two-dimensional rigid-jointed loaded in-plane member 29
A.4. Two-dimensional rigid-jointed loadeá normat-to-plane member 31
A-5. Three-dimensional rigid-jointed member, doubly symmetric cross section member 32
C-I. Three-dimensional pin-joinied member 39
C-2. Two-dimensional rigid-jointed loaded in-plane member 40
C-3. Two-dimensional rigid-jainted loaded nr-mal-to-plane member 40
D-1. Example problem 42

FOREWORD

This document supersedes Technical Memorandum No. 33-75, dated February 12, 1962, titled Stifness Matrix Stiuctural Analysis. The computer program has been modified to meet the needs of the engineers that have used the program. The major modifications are:

1. Input data is part of output format
2. Evaluation of mass properties
3. Thermal analysis
4. Jaccbi's method for eigenvalue and eigenvector evaluation
5. Orthogonality check
6. Addition of a non-circular rigid-jointed member.

The original program was modified by Lincoln Laboratory of MIT to increase the degrees of freedom that can be handled. The identification given for the program by Lincoln Laboratory is STEIGR.

Abstract

! 14576

A computer program is described that solves structural problems having lumped masses connected by weightless members. The program is capable of handling 130 degrees of freedom with the option of using any one of five different member types.

Using the stiffness formulation, static deflections and loads, thermal deflections and loads, eigenvalues and eigenvectors can be evaluated.

I. INTRODUCTION

A. General Description

A program has been developed at the Jet Propulsion Laboratory (JPL) for the analysis of structural frameworks. Since the program is intended for use as a design tool, particular attention has been given to simplicity and flexibility of input and output. It may thus be used by personnel who have had little training in computer utilization, and input may easily be revised to reflect changes in a design.

The program is coded in FORTRAN -II version-3 lamgage, operating under IBSYS, and may be rum at any IBM 7090 installation whose system is compatible with that of the Jet Propulsion Laboratory and whose machine has a 32 K memory.

The program has been written for the analysis of five types of structure:

1. Threc-dimensional structure, pined joints
2. Three-dimensional structure, rigid joints, equal membur cross-section moment of inertia
3. Planar structure, rigid joints, loaded in-plane
4. Planar grid structure, rigid joints, loaded normal-toplane
5. Three-cimensional structure, rigid joints, doubly symmetric eross-sections

B. Function of Program

A structural framework will be defined as a stable systen of uniform, weightless members, and joints at which loads are applied and weights are lumped. Such a framework and its environment may be described by the following quantities:

1. Coordinates of joints
2. Geometric and clastic properties of members
3. Locations of restraints
4. Weights at joints
5. Static loads at joints
6. Temperature changes of members
7. Acceleration of a joint during free vibration in a normal mode

Given these as input, the program will perform the computations to provide the following as cotput:

1. Genter of weight and weight moments of inertia of the sitructure

2 Deflections and member loads for static loadings
s. Reactions and equilibrium checks at each joint for static loadings
4. Deflecions and , wember loads for thermal loadings
5. Frequencies, mure shapes, and member loads during free vibration in normal modes
6. Reactions and $\mathrm{c}_{4}-\mathrm{B}^{\prime 2}$-ium checks at each joint for dynamic loading
7. Orthogonality clers. ff normal modes

C. Method of Arsyw is

The progratu.". anctes the stiffness matix \mathbf{K} for a particular ri: it sinucture from geometrical data, and perforisis sta; and normal-mode analyses by solving the equations

$$
\mathfrak{V}:=\mathbf{K}^{-1} \mathbf{F} \text { and } \frac{\mathbf{l}}{\omega^{2}} \mathbf{U}=\mathbf{K}^{-1} \mathbf{M} \mathbf{U}
$$

where \mathbf{F} is is matrix of static loads, \mathbf{M} is a matrix of inertia terms, \mathbf{U} is a matrix of static deflections or a normal-mode shape, and ω is the circular frequency of a normal mode. Member loads are computed from a set of deflections \mathbf{U} and geometrical propertics of the members.

The thermal loads are computed by first calculating member loads with all degrees of freedom fixed and forces at each jrint required to prevent joint motion caused by temperature increase. The thermal deflections of joints and thermal loads in members are obtained by superimposing the member loads evaluated above to the member loads aud joint defections evaluated by applying forces equal, but opposite in sign, to the joint-restrainiug forces to tl:a structure.

The stiffness matrix method of analysis was chosen over possible techniques (e.g., flexibility matrix, force relaxation) because it most fully satisfies the following criteria:

1. That it provide a complete analysis (deflections, loads, normal modes)
2. That input be in a simple form
3. That it analyze statically indeterminate structures with no extra effort on the part of the user
4. That it be adaptable to any type of framework
5. That a seful program be easy to write
6. That the computer be utilized efficiently with respect to storage capacity and running time
7. That the accuracy of the solution be sufficient for engineering use and be predictable

D. Operating Experience

The program has been used extensively during design of various spacecraft vehicles. In the few cases where prototype experimental data are available, correlation with predicted results is good. Analyses of structures of 130 degrees of freedom have been peiformed with no accuracy problems, as indicated by a check on stati equilibrium of the structure and orthognality of the modes.

Machinc time on the 7094 for complete analyses (static and normal mode) varies from 1 min for 20 degrees of freedom to 20 min for 130 degrees of freedom.

The input for the original Mariner-A basic structure, as an example, could be written in about 2 hr after appropriate idealization. (The structure was of 90 degrees of freedom, statically indeterminate to the 48th degree.) Key-punching the data cards required 20 min ; machine time was about 10 min . More than 25 revisions to the original data have been run during the design process.

Some exprimentation has been done with very poorly conditioned matrices (in particular, Hilhert matrices) to determine che effect of conditioning on accuracy. Empirical results of these tests are p.e cisented in Section II-K.

A. Notation

A square matrix
A member area
$\mathrm{A}^{\mathrm{k})} \quad k^{\text {(h) matrix }}$
A_{i} input member section property; thermal strains of members
a_{i} acceleration of structure in \mathbf{x}_{i} direction
$a_{i j}$ element of matrix \mathbf{A}
$a_{i i}^{(k)}$ element of matrix $A^{(k)}$
B square matrix
C square matrix
$c_{i j}$ element of matrix \mathbf{C}
D outside diameter of circular member cross section
E elastic inodulu,
F matrix of static loadings
f_{i} load in $i^{\text {'h }}$ generalized component direction; natual frequency of $i^{\prime \prime}$ mode, cps
$f_{n i}$ load at point p in the \mathbf{x}, direction
\mathfrak{f}_{p} vector load applied to joint p in \mathbf{x} : coordinate system
g gravity accelcration, $386.4 \mathrm{in} . / \mathrm{sec}^{2}$
h depth of member cross-section
I unit matrix
I moment of inertia of member cross-section
I_{1} mpment of inertia of hen, or cross-section about ξ;axis
$I_{i j}$ weight moment z^{f} inertia about the x_{j} axis through the center of weig' :
$I_{j k}$ cross product weight moment of inertia about center of weight with respect to x_{1} and x_{1} axis
j input joint number
K square stiffness matrix
K member sciction torsional stiffuess parameter
$\mathbf{K}_{p q}$ square stiffuess matrix relating joint p to joir t $\|$
$k_{1 ;}$ element of matrix \mathbf{k}
$\bar{k}_{i j}$ the $i^{\text {th }}$ row, $j^{\text {th }}$ column component of generalized spring matrix
k_{t}^{\star} tice $i^{\text {th }}$ row, $j^{\text {th }}$ column cimponent of nomedized generalized spring matri:
L. diagomal matrix of © igenvaluc s. load matrix:

M diagonal mat: i : of ine tia, tems
m number of joints in stracture, nomal mode
$m_{\text {: }}$ incertia ina $i^{\prime \prime}$ generalized emmponent airection
$m_{p ;}$ inertia at point p in x, direction
' \bar{m} ' the $i^{\prime \prime}$ row, $i^{\prime \prime}$ column component or generalized weight matrix
m^{*}, dhe i^{\prime} row: $i^{\text {t" }}$ colurm compone int of normalized gencralized spring matrix
λ input control parameter
n degree of treedom of structure. centrol parameter
p first joint specified to clescribe membe: in input data
P condition number
pq vector from ioint p to joirá ${ }^{\prime}$
Pr rector hirm iotit p to joint r
p_{k} constant
q second joint specified to describe member in input data
q_{m} acceleration in $m^{2 n}$ mode, in/sec:
r symbel for a joint
r. input restraint parameter
S member length
time variable
T wall thickness of circular member cross-sention
δT thermal gradient across memier cross section
ΔT thermal inerease of member
U matrix of static deffection
\mathbf{U}_{m} vector mode shape, $m^{\text {th }}$ nomal wode
$u_{\text {, }}$ cteflection in $i^{\text {ith }}$ gencralized component dirrection
$u_{p i}$ deflection of joint p in \mathbf{x}, direction: :mplitude of u_{μ} in the $i^{\text {th }}$ normal mode
\mathbf{u}_{r} vector dedection of joint p in x, coordinate system
\mathbf{V} matrix of cigenvectors
\mathbf{V}_{m} cigenvector, $m^{\text {ih }}$ mode
W diagonal matrix of weights
W. component of weight (or weight moment of in(erta) in x direction
$W_{i,} \quad i^{-1}$ weight component of η^{2} joint

X trial uector

$\mathbf{X}^{(k)} k^{\prime}$ trial wector
$x_{:}$: coordinate of joint p in x, direction
$x_{;}$reference coordinate system
\mathbf{x}, unit vector in $x_{\text {, }}$ coordinate direction
$\overline{\boldsymbol{x}}_{j}$ location of center of weiglt from x_{i} axis
2 trassformation matrix
Z ${ }^{61} \quad h^{\text {t/ }}$ transformation matrix
as cocfficient of thermai expansion
ar: censtint
γ_{i} cosine of angle between nember axis and x_{i} axis
e constant
A. eigenvalue, m^{*} mode $=1 / w_{m}^{*}$

- Poisson's ratio
if initial off-diagonal norm
r re final off-diagonal norm
$r_{i} \quad i=$ off-diagonal norm
σ constant
ρ accuracy requirement
ξ. unit cector in ${ }^{\text {th }}$ courdinate direction of memberoriented coordinate system
\& member coordinate sistem
w. circular frequenc: : ad $/ \mathrm{sec}$

Sign Convention:

1. Right-handed coordinate systems
2. Forces and displacements positive in positive coordinate directions
3. Moments and rotations positive by right-hand rule about positive coordinate axes

B. Derivation of Matrix Equations

At any joint in a stricture, a component of load f_{1} applied to the joint must be in equilibriam wet member loads reacting on the joint in the same direction. Since
sember loads in a lincar structure are proportional to d. Aections u_{i}, the expression of fore equilibrium in an n degree-of-freedom system may be witten

$$
\begin{equation*}
f_{i}=\sum_{j i}^{\ddot{\theta}} k_{i,} u_{i} \quad i=1, n \tag{1}
\end{equation*}
$$

where the $h_{:}$are cons taits of proporionality. In matrix notation, the same equation is

$$
\mathbf{F}=\mathbf{K} \mathbf{U}^{\mathbf{x}}
$$

When a joint undergoes free vibration in a nomal mode m. its component deflections must be of the form

$$
u_{i}=u_{i m} \sin \omega_{m} t
$$

The inertiat load acting in the same direction is

$$
\begin{equation*}
\dot{f}_{i}=-m_{i} \ddot{u}_{i}=m_{i} u_{i, n} \omega_{m}^{-\dot{n}} \sin \omega_{m} t \tag{シ}
\end{equation*}
$$

Substituting this load into the expression for ferce equilibrium.

$$
m_{i} u_{i m}, u_{m}^{2}=\sum_{j=1}^{n} k_{i j} u_{i, n} \quad i=1 . n
$$

or, in matrix notation

$$
\mathbf{M} \mathbf{U}_{w, 1} \cdots \cdots_{1, n}=\mathbf{K} \mathbf{U}_{a}
$$

The analysis thus involves solution of two matrix equations; knowing a set of loads \mathbf{F} to compute static displacements \mathbf{U} from

$$
\mathbf{F}=\mathbf{K} \mathbf{U}
$$

and knowing the inertia of the structure \mathbf{M} to compute normal-mode shapes and frequencies (eigenvectors and eigenvalues) \mathbf{U}_{m} and ω_{m}^{\prime} from

$$
\mathbf{M} \mathbf{U}_{m} \omega_{m}^{\prime}=\mathbf{K} \mathbf{U}_{m}
$$

Nember loads may be computed from static displacements \mathbf{U} or properly normalized mode shapes \mathbf{U}_{m}.

C. Generation of the Stiffness Matrix

In Eq. 1 , if all displacernents $u_{:}=0, k \neq j$, the resulting equations are

$$
f_{i}=k_{i j} \|, \quad i=1, n
$$

The coefficient $k_{1 ;}$ is thas the force component in the $i^{\text {th }}$ direction per unit deffection in the $i^{\text {th }}$ drection, all other deflechons being zero.

1. Matrices for the members meeting at joint 1 are computed as

$$
\left\{f_{1} \left\lvert\,=10^{\prime}\left[\left.\begin{array}{rr}
1 & 0 \\
0 & 0 \\
-1 & 0 \\
0 & 0
\end{array} \right\rvert\,\left\{u_{1}\right\}\right.\right.\right.
$$

for menber (1-2) and

$$
\left\{\mathbf{f}_{\mathrm{f}_{3}} \left\lvert\,=10^{+}\left[\begin{array}{rr}
0.5 & 0.5 \\
0.5 & 0.5 \\
-0.5 & -0.5 \\
-0.5 & -0.5
\end{array}\right]\left\{\mathbf{u}_{1}\right\}\right.\right.
$$

for member ($1-3$).
2. The stiffuess matrix of the structure will be set up in an 8×8 array with forees (and deflections) in the order

$$
\mathbf{f}_{1}, \mathbf{f}_{2}, \boldsymbol{f}_{\ldots}, \mathbf{f}_{4}
$$

3. Due to unit component deflections of joint 1 , forces are produced which are the elements of the first two columns of the stiffness matrix. These forces, being reacted by loads in the members at juint 1 , are determined by adding the matrices of members $1-2$ and $1-3$ as follows:

$$
\left.\left\{\begin{array}{c}
\mathbf{f}_{1} \\
\mathbf{f}_{2} \\
\mathbf{f}_{:} \\
\mathbf{f}_{1}
\end{array}\right\}=1 \mathbf{u}^{4}\left[\begin{array}{cc}
1.5 & 0.5 \\
0.5 & 0.5 \\
-1 & 0 \\
0 & 0 \\
-0.5 & -0.5 \\
-0 . 亡 & -0.5 \\
\hdashline 0 & 0 \\
0 & 0
\end{array}\right] \mathbf{u}_{1}\right\}
$$

4. The complete matrix is formed by similar superpositions:
$\left.\left\{\begin{array}{l}\mathbf{f}_{1} \\ \mathbf{f}_{2} \\ \mathbf{f}_{4} \\ \mathbf{f}_{4}\end{array}\right\}=10^{\mathbf{4}}\left[\begin{array}{rrrr:rrr}1.5 & 0.5 & -\mathbf{J} & 0 & -0.5 & -0.5 & 0 \\ 0.5 & 0.5 & 0 & 0 & -0.5 & -0.5 & 0 \\ 0 \mathbf{1} & 0 & 2 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0.5 & -0.5 & 0 & 0 & 1 & 0 & 0 \\ \hdashline-0.5 & -0.5 & 0 & -1 & 0 & 0 & 0.5 \\ 0 & 0 & -1 & 0 & -0.5 & 0.5 & 1.5 \\ 0 & 0 & 0 & 0.0 .5 \\ \hdashline 0.5 & 0.5 & 0.5 & 0.5\end{array}\right\} \quad \begin{array}{l}\mathbf{u}_{1} \\ \mathbf{u}_{2} \\ \mathbf{u}_{3} \\ \mathbf{u}_{4}\end{array}\right\}$
5. Restraints are introduced in the form $u_{11}=: u_{1:}=u_{1:}$ $=0$. Multiplying these known deflections through the matrix, the first, second, and last columns make no contribution to the prodact and may be omitted from the operation. Also, the forces $\dot{f}_{11}, f_{12}, f_{5:}$ are unknown reactions to be determined from the unrestrained deflection components.
6. Analysis for the unknown deflections thus reduces to solution of the equation
$\left\{\begin{array}{l}f_{i 2} \\ f_{: 2} \\ f_{n 1} \\ f_{: 2} \\ f_{i 1}\end{array}\right\}=10^{4}\left[\begin{array}{rrrrr}2 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -0.5 \\ 0 & -1 & 0 & 2 & 0.5 \\ -1 & 0 & -0.5 & 0.5 & 1.5\end{array}\right]\left\{\begin{array}{l}u_{::} \\ u_{\because: 2} \\ u_{: 1} \\ u_{n=2} \\ u_{i 1}\end{array}\right\}$
In summary, the program generates the stiffness matrix as follows:
7. Step through the joints consecutively.
8. For joint p, search list of member numbers for p -
9. For each member $p q$, generate and store (temporarily) the matrix columns corresponding to deflections $\mathbf{u}_{l \text { - }}$. The submatrices $\mathbf{K}_{p,}, \mathbf{K}_{q /}$ have the following locations:

$$
\left\{\begin{array}{c}
\mathbf{f}_{1} \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{f}_{n} \\
\cdot \\
\cdot \\
\mathbf{f}_{i} \\
\cdot \\
\cdot \\
\mathbf{f}_{n}
\end{array}\right\} \quad\left[\begin{array}{c}
\mathbf{K}_{1 p} \\
\cdot \\
\cdot \\
\mathbf{K}_{p, p} \\
\cdot \\
\cdot \\
\mathbf{K}_{n p} \\
\cdot \\
\cdot \\
\mathbf{K}_{n p}
\end{array}\right]\left\{\mathbf{u}_{n}\right\}
$$

\therefore Search list of component restraints; delete rows and contract stifness matrix columns vertically.
5. Store contracted columns into main stiffiness matrix array, except where a column corresponds to a zero deflection component as determined by checking the list of component restraints.

A few properties of the stifiness matrix are evident from its derivation:

1. It is symmetric, a consequence of Maxwell's reciprocity theorem.
$\xrightarrow{2}$. Eath diagonal term is positive and is large compared with all other elements in its row, since diagonal blocks are formed by superpesition of off-diagomal !locks.
2. Stability of the structure is reflectec in the linear independence of ions, aften rows have been deleted to account for restraints.
. It is generally sparse (many clements are zero), since the position of matrix elements reflects the presence of members.

D. Generation of Weight and Load Matrices

The matrices M and \mathbf{F} are generated by appropriate storage of imput quantities and contricted to account for restraints in the same manne: as for stiffness matrix columns. The diagonal matrix \mathbf{M} is stored as a vector.

Loads may be specified either as concentrated forces or moments on the joint, or as linear and/or rutary accelerations of the structure as a rigid body. Loads ad joint p corresponding to acceleration in the $i^{\text {th }}$ coorlinate direction a_{i} are computed as

$$
f_{p i}=r_{p i} a_{i}
$$

E. Weights, Center of Weight, and Weight Moments of Inertia About Cenier of Weight

The weights are obtained by adding the values in each $i^{\text {th }}$ coordinate direction separately as

$$
\sum_{p=1}^{m} W_{r, j} \quad,=1, \underline{9} \cdots 6
$$

where m is the number of joints and $W_{, j}$ is the $i^{\text {th }}$ weight component of the $p^{\text {th }}$ joint.

The center of weight and weight moment of inertia about center of weight are calculated assuming the first weight component represents the weights in all three directions. The enter of weight and weight moment of inertia are calculated as
$\bar{x}_{j}=\frac{\sum_{p=1}^{m} W_{p^{\prime}} x_{p j}}{\sum_{j 1}^{m} W_{p ;}}$
$I_{j j}=\sum_{j=1}^{m} W_{p 1}\left(x_{j k}^{n}+x_{p l}^{\prime}\right)-\sum_{j 1}^{m} W_{m}\left(\bar{x}_{k}^{2}+x_{i}\right) \quad(j \neq k \neq l)$
and
$I_{j k}=\sum_{p=1}^{L^{\prime}} W_{p 1} x_{p j} x_{p k}-\bar{x}_{j} \bar{x}_{k} \sum_{p=1}^{m \prime} W_{p i 1}^{\gamma} \quad(i \neq k)$
The terms $\bar{x}_{i,}, x_{k}, I_{j j}$, and $I_{j k}$ are defined as location of center of weight along \mathbf{x}_{j} direction, coordinate of joint p in \mathbf{x}_{j} direction, weight moment of inertia about the \mathbf{x}_{j} axis through the center of weight, and cross-product weight moment of inertia about center of weight with respect to \mathbf{x}_{j} and \mathbf{x}_{k} axes, respectively.

F. Sratic Analysis

Given the matrices \mathbf{K} and \boldsymbol{F}, the deflections of \mathbf{U} are computed from

$$
\mathbf{U}=\mathbf{K}^{-1} \mathbf{F}
$$

by gaussian cimmination. No row interchanges or pivot. tests are performed, since the diagonal of the stifness matrix is always strong; i.e., the diagonai element is the largest number in its mw. Overlow or underflow during an arithmetic operation is not sensed, so the elimination process continues with whatever remains in the accumulator.

Experience with this basic procedure has been good. It has provided results to highly ill-conditioned problems which compare favorably with those computed by more sophisticated techniques.

Static member loads are computed from the deflections \mathbf{U} and the geometry of the structure. s ppropriate equations for earh inember type are given in Appendix B.

Equilibrium check at each joint is made by summing the various loads (member loads plus external loads) in the x , directions. The unbalanced loads at the restrained joints are the reaction loads on the structure.

G. Thermal Analysis

The thermal analysis is performed as follows:
l. The load in each member of the structure induced by temperature changes, with all joints restrained, are calculated and stored.
2. Equilibrium checks at all originally umrestrained joints of the structure are made to determine the loads imposed by the temporary restraints. The restraint forces on the joints are stored.
3. Forces equal and opposite to the restraint forces (determined in step 2) are applied as static loads to the structure and member loads and joint deflections are calculated (Section II-F).
4. The addition of member loads calculated in steps 1 and 3 give the thermal loads of the structure, and the deflections calculateo in step 3 are the thermal dispiacements of the stricture.

H. Normal-Mode Analysis

An iterative procedure for computing solutions \mathbf{U}_{n} and ω_{m} of the equation

$$
\begin{equation*}
\mathbf{K} \mathbf{U}_{m}=\omega_{m}^{2} \mathbf{M} \mathbf{U}_{m} \tag{3}
\end{equation*}
$$

is developed in this Section.
First, the above equation will be transformed into

$$
\mathbf{A} \mathbf{V}_{m}=\omega_{m}^{2} \mathbf{V}_{m}
$$

or

$$
\begin{equation*}
\left(\mathbf{A}-\omega_{m}^{2} \mathbf{I}\right) \mathbf{V}_{m}=0 \tag{4}
\end{equation*}
$$

where \mathbf{A} is real and symmetric. Solutions to this equation have the following properties (Refs. 1-6):
l. There are n solutions $\omega_{n}^{2}, \mathbf{V}_{m}$, where \mathbf{A} is of order $n \times n$.
2. The eigenvalues $\omega_{v i n}^{2}$ are all real and positive, and the eigenvectors \mathbf{V}_{m} are real.
3. The eigenvectors are orthogonal with respect to the unit matrix

$$
\begin{equation*}
\mathbf{V}_{k}^{\tau} \mathbf{V}_{n}=0 \quad(k \neq m) \tag{5}
\end{equation*}
$$

4. The length of an eigenvector is indeterminate; i.e., if \mathbf{V}_{m} is a solution, $\alpha_{m} \mathbf{V}_{m}$ is also a solution, where α_{m} is a constant.
5. Any vector \mathbf{X} of order n may be represented by a linear combination of eigenvectors

$$
\begin{equation*}
\mathbf{X}=\sum_{m=1}^{n} \alpha_{m} \mathbf{V}_{m} \tag{6}
\end{equation*}
$$

There are iwo principal reasons for performing the transformation:

1. Equation 3, representing an undamped structure, can only have real, positive eigenvalues. It is possible, however, for roundoff during operations on \mathbf{K} and \mathbf{M} to produce an equation of similar form with
imaginary components in its solution. The convergent process, using real arithmetic, will not converge on such solutions. This problem is avoided if the matrix \mathbf{A} in Eq. 4 is kept symmetric.
2. Use of the orthogonality condition is simpler if cigenvectors are orthogonal with respect to the unit matrix rathe : han to another matrix

$$
\mathbf{V}_{k}^{\tau} \mathbf{B V _ { m }}=0 \quad(k \neq m)
$$

The transformation is effected by defining

$$
\begin{equation*}
\mathbf{M}=\mathbf{M}^{1_{2}} \mathbf{M}^{1_{2}} \tag{7}
\end{equation*}
$$

where, since M is a diagonal matrix of positive elements, $\mathbf{M}^{\prime 2}$ is also a diagonal matrix whose element in the $i^{\text {th }}$ row is $\left(m_{i}\right)^{i_{2}}$, and the corresponding element in $\mathbf{M}^{-1 / 2}$ is $1 /\left(m_{i}\right)^{\prime 2}$. Also, let

$$
\begin{equation*}
\mathbf{V}_{m}=\mathbf{M}^{12} \mathbf{U}_{m} \tag{8}
\end{equation*}
$$

Substituting Eq. 7 into Eq. 3,

$$
\begin{equation*}
\mathbf{K U}_{m}=w_{m}^{\prime} \mathbf{N}^{\prime}=\mathbf{M} \mathbf{I}^{\prime}=\mathbf{U}_{m} \tag{9}
\end{equation*}
$$

Substituting Eq. 8 into Eq. 9,

$$
\mathbf{M}^{-1}: \mathbf{K} \mathbf{U}_{t a}=\omega_{i m}^{2} \mathbf{V}_{m}
$$

or

$$
\mathbf{M}^{-12} \mathbf{K} \mathbf{M}^{-1 / 2} \mathbf{V}_{m}=\boldsymbol{\omega}_{m}^{2} \mathbf{V}_{m}
$$

Since \mathbf{K} is symmetric, the product

$$
\mathbf{A}=\mathbf{M}^{-t^{2}} \mathbf{K} \mathbf{M}^{-{ }^{-2}}
$$

is symmetric and the desired formulation

$$
\mathbf{A} \mathbf{V}_{m}=\omega_{m}^{2} \mathbf{V}_{m}
$$

is achieved, where

$$
\mathbf{U}_{m}=\mathbf{M}^{-1 / 2} \mathbf{V}_{m}
$$

and ω_{m} are the desired solutions.

The solutions of Eq. 3 corresponding to smallest values of ω_{m} arr of primary importance in structural applications, since larger deflections and loads occur during vibration at lower frequencies. The iterative process to be described converges most readily on the eigenvalue of largest magnitade, so a transformation of Eq. 4 is performed:

$$
\begin{equation*}
\mathbf{C} \mathbf{V}_{m}=\lambda_{m} \mathbf{V}_{m} \tag{10}
\end{equation*}
$$

where $\mathbf{C}=\mathbf{A}^{-1}$ and $\lambda_{m}=1 / \omega_{m}^{\prime}$
The inverse is computed by siraightforward gaussian elimination on the upper triangular half. No row inter-
changes or checks for division by zero pivot elements are performed.

Solutions of Eq. 10 for the largest value of λ_{m} and the correspoading value of \mathbf{V}_{m} will now be found. From Eq. 6 any vector

$$
\mathbf{X}=\sum_{m-\mathbf{i}}^{n} \boldsymbol{r}_{m} \mathbf{V}_{w}
$$

so

$$
\begin{aligned}
\mathbf{C X} & =\mathbf{C}\left(\sum_{m 1}^{n} \alpha_{m} \mathbf{V}_{m}\right) \\
& =\sum_{m+1}^{n} \alpha_{m} \mathbf{C} \mathbf{V}_{m} \\
& =\sum_{m-1}^{n} \alpha_{m} \lambda_{m} \mathbf{V}_{m}
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
\mathbf{C}(\mathbf{C X}) & =\mathbb{C} \mathbf{X}=\mathbf{C}\left(\sum_{m-1}^{n} \alpha_{m} \lambda_{m} \mathbf{V}_{m}\right) \\
& =\sum_{m-1}^{n} \alpha_{n} \lambda_{m}^{2} \mathbf{V}_{m}
\end{aligned}
$$

or, in general,

$$
\begin{equation*}
\mathbf{C}^{k} \mathbf{X}=\sum_{m-\mathfrak{l}}^{n} \alpha_{m} \lambda_{m}^{k} \mathbf{V}_{m} \tag{11}
\end{equation*}
$$

If the multiplication process is continued, the right side of Eq. Il will eventually be dominated by powers of the largest eigenvalue λ_{1} :

$$
\mathbf{C}^{\prime}: \mathbf{X} \rightarrow a_{1} \lambda_{1}^{k} \mathbf{V}_{1} \quad k \rightarrow \infty
$$

In practice, to keep the components of $\mathbf{X}^{(i+1)}=\mathbf{C X}^{(i)}$ from becoming too large, $\mathbf{X}^{(i+1)}$ is normalized after each multiplication so that its largest componeat is 1 . (This is permitted since the lengths of the V's are arbitary.) Normalized versions of $X^{(1)}$ are multiplied through C until $\mathbf{X}^{(k)}$ converges to V_{1} and the normalization factor to λ_{1}. Multiplications continue until the maximum difference between components of $\mathbf{X}^{(i)}$ and $\mathbf{X}^{(1+1)}$ is within a given tolerance, or until a maximum number of cycles has been performed.

For obvious reasons, the foregoing procedure is called the "power method." It is a generalization of Stodola's method, where successive guesses at a mode shape $X_{m}^{(i)}$ are used to compute better guesses:

$$
\mathbf{C X}_{m}^{(i)}=\lambda_{m} \mathbf{X}_{m}{ }^{(i+1)}
$$

ete.

At any stage in the convergent process, an approximate eigenvalue of better accuracy than the current eigenvector is given (Ref. 1) by Rayleigh's Quotient, defined as

$$
\lambda_{r}=\frac{\mathbf{X}^{\tau} \mathbf{C X}}{\mathbf{X}^{T} \mathbf{X}}
$$

If, in Eq. 6, $\alpha_{1}=0$

$$
\mathbf{X}=\sum_{m-i}^{n} a_{m} \mathbf{V}_{m}
$$

and

$$
\mathbf{C}^{k} \mathbf{X}=\sum_{\mathrm{w}:=2}^{n} \alpha_{m} \lambda_{m}^{k} \mathbf{V}_{m}
$$

then convergence will be to the next largest eigenvalue λ_{2} and eigenvector \mathbf{V}_{2}. This condition may be obtained by application of the orthogonality condition of Eq. 5 to keep an arbitrary vector \mathbf{X} orthogonal to \mathbf{V}, (or any known eigenvectors). Thus if \mathbf{V}_{1} is known, the transformation of an arbitrary vector \mathbf{X} to a vector \mathbf{X}_{1} orthogonal to V_{1} is as follows:

$$
\begin{aligned}
\mathbf{X} & =\sum_{m=1}^{n} \alpha_{m} \mathbf{V}_{m} \\
\mathbf{V}_{1}^{\tau} \mathbf{X} & =\sum_{\mathrm{in}=1}^{n} \alpha_{m} \mathbf{V}_{1}^{r} \mathbf{V}_{m}=\alpha_{1} \mathbf{V}_{1}^{\tau} \mathbf{V}_{1} \\
\mathbf{V}_{1}^{r} \mathbf{X}_{1} & =0=\mathbf{V}_{1}^{\tau} \mathbf{X}-\alpha_{1} \mathbf{V}_{1}^{r} \mathbf{V}_{1} \\
\mathbf{X}_{1} & =\mathbf{X}-\alpha_{1} \mathbf{V}_{1} \\
& =\mathbf{X}-\frac{\mathbf{V}_{1}^{\tau} \mathbf{X}}{\mathbf{V}_{1}^{\tau}} \mathbf{V}_{\mathbf{1}}
\end{aligned}
$$

Similar transformations orthogonalize \mathbf{X} to other eigenvectors $\mathbf{V}_{2}, \mathbf{V}_{3}$, etc.

When eigenvalues are close, say

$$
\lambda_{1} \approx \lambda_{2}
$$

the trial vector becomes

$$
\mathbf{X}^{(k)}=\alpha_{1} \lambda_{1}^{k} \mathbf{V}_{1}+\alpha_{2} \lambda_{2}^{L} \mathbf{V}_{2}
$$

in which powers of λ_{1} cannot dominate those of λ_{2} for any reasonable k. The process described above will be modified to speed convergence to the larger of close eigenvalues. As before,

$$
\mathbf{X}=\sum_{m i}^{n} \alpha_{m} \mathbf{V}_{m}
$$

Given an arbitrary number p,

$$
\begin{aligned}
(\mathbf{C}-p \mathbf{I}) \mathbf{X} & =\sum_{m=1}^{n} \alpha_{m}(\mathbf{C}-p \mathbf{I}) \mathbf{V}_{m} \\
& =\sum_{m=1}^{n} \alpha_{m}\left(\mathbf{C} \mathbf{V}_{m}-p \mathbf{V}_{m}\right) \\
& =\sum_{m=1}^{n}\left(\alpha_{m}\left(\Lambda_{m}-p\right) \mathbf{V}_{m}\right.
\end{aligned}
$$

Powers of both sides are

$$
(\mathbf{C}-p \mathbf{I})^{t} \mathbf{X}=\sum_{m=1}^{n} \alpha_{m}\left(\lambda_{m}-p\right)^{t} \mathbf{V}_{m}
$$

which converges to

$$
(\mathbf{C}-p \mathbf{I})^{k} \mathbf{X} \rightarrow \alpha_{m}\left(\lambda_{m}-p\right)_{\mathrm{w}} \mathbf{V}_{m}, \quad k \rightarrow \infty
$$

where $\left(\lambda_{m}-p\right)_{I I}$ is the largest value of the difference. The problem here is to choose values of p which

1. will hasten convergence by increasing the ratio

$$
\frac{\lambda_{1}-p}{\lambda_{2}-p}>\frac{\lambda_{1}}{\lambda_{2}}
$$

2. will not force convergence to a mode other than the first by causing $\left(\lambda_{m}-p\right)$ to be greater than $\left(\lambda_{1}-p\right)$.

The effect of the prosedure is to orthogonalize the trial vector $\mathbf{X}^{(k)}$ to an eigenvector $\mathbf{V}_{m i}$ if $p=\lambda_{m i n}$ is chosen, since

$$
\begin{aligned}
\mathbf{X}^{(t)}= & \left(\mathbf{C}-\lambda_{m} \mathbf{I}\right) \mathbf{X}^{(t /-1)}=\alpha_{1} \lambda_{1}^{k-1}\left(\lambda_{1}-\lambda_{m}\right) \mathbf{V}_{1} \\
& +\cdots(0) \mathbf{V}_{m}+\cdots
\end{aligned}
$$

has no component of \mathbf{V}_{m}. In this context, a "troublesome" eigenvector is one whose cigenvalue is close to that being sought. Convergence is hastened if components of the troublesorse eigenvector in the trial vector \mathbf{X} are "suppressed." Components of trcublesome vectors are never completely suppressed, since even if $p=\lambda_{m}$, roundoff will soon replace troublesome components in \mathbf{X} as p takes on values far from λ_{m}.

When λ_{1} is close to λ_{2}, the trial vector approximates \mathbf{V}_{1} after many cycles, although convergence to the true eigenvector is slow. If the approximate first cigenvector is \mathbf{X}_{1}, a trial vector $\mathbf{X}_{\text {e }}$ orthogonalized to \mathbf{X}_{1} will converge to an approximation of \mathbf{V}_{3}. The Ray'eigh's Quotient computed from X_{2} is a better estimate of the true λ_{2}, and is an effective value of p to accelerate convergence on V_{1}. But, since

$$
\left|\lambda_{n}-\lambda_{2}\right| \gg\left|\lambda_{1}-\lambda_{2}\right|
$$

use of $p=\lambda_{2}$ will also strong!y increase components of the lowest cigenvectors $\mathbf{V}_{m}, \cdots, \mathbf{V}_{n}$ in \mathbf{X}_{1}. The solution to
this quandry is to alternate values of p between an estimated upper eigenvalue and zero, thereby suppressing components in \mathbf{X} of eigenvectors at each end of the range of eigenvalues. Eigenvector components near the middle of the range are then suppressed by varying p between zero and $0.6125 \lambda_{m}$, where λ_{m}, is the eigenvaiue currently being sought.

Variations of p with the power method may be concisely described by the continued product notation

$$
\prod_{i=1}^{u} a_{1}=a_{1} a_{2} \cdots a_{t_{1}}
$$

or

$$
\begin{equation*}
\prod_{k=1}^{q}\left(\mathbf{C}-p_{k} \mathbf{I}\right) \mathbf{X}=\sum_{m=1}^{n} \alpha_{m} \prod_{k=1}^{q}\left(\lambda_{m}-p_{k}\right) \mathbf{V}_{m} \tag{12.2}
\end{equation*}
$$

which denotes products of ($\left.\mathrm{C}-p_{k} \mathrm{I}\right)$ and $\left(\lambda_{m}-p_{k}\right)$ with p_{k} varying from p_{1} to p_{q}.

The procedure for automatic selection of p_{t} in Eq .12 may be summarized as follows:

1. Set $p=0$. Obtain estimates of the highest six eigenvalues by five iterations on each.
2. Alternate $p_{L}=\lambda_{m+1}, 0, \cdots, \lambda_{i ;}, 0,0.9 \lambda_{m-1}, 0,0.81$ $\lambda_{m-1}, 0$ to force convergence on λ_{m}. If $\lambda_{m+1}>0.999$ λ_{m}, use $p_{1}=0.99 \lambda_{m}$ to prevent undue suppression of the desired eigenvector.
3. Vary p_{L} in the range $0 \leq m_{\mathrm{s}} \leq 0.6125 \lambda_{m}$ by a quadratic formula emphasizing values of p_{k} near zero. Repeat a maximum of 20 times for each mode, checking convergence at each cycle.
4. Repeat steps 2 and 3 five times.

When two (or morc) eigenvalues are cqual,

$$
\lambda_{1}=\lambda_{2}
$$

then, after many iterations the trial vector

$$
\mathbf{X}=\alpha_{1} \mathbf{V}_{\mathbf{1}}+\alpha_{2} \mathbf{V}_{2}
$$

where the α 's are arbitrary; thus, there can be no convergence to a "first" eigenvector although the eigenvalue $\lambda_{1}=\lambda_{2}$ is well defined. Consider, for example, a mass at the end of a wcightess cantilever that is rigid axially and of circular cross-section. The position of the mass is defined by two coordinate components so the system has two degrees of freedom, two mode shapes, and two equal frequencies Using the power method, there would be no convergence to a first mode shape, since this could be deflection in any direction. When iterations are
stopped, however, convergence on a second mode orthogonal to the first will be obtained. The same is true in the case of many degrees of treedom and several identical frequencies.

There is still the possibility that convergence on the first eigemalue and

$$
\mathbf{X}=u_{1} \mathbf{V}_{1}: u_{2} \mathbf{V} .
$$

will hot be refined enough to eliminate components of lower vectors in \mathbf{X}. No test on this error is available. In practice, enough iterations have been made that physically reasonable mode shapes have been obtained in several problems with multiple eigenvalues.

Convergence is tested by searching for the maximum difference between elements in successive trial cigenvectors. If all

$$
\mid x_{j, \ldots}^{\prime, 1}-x_{i, \ldots}^{1, \ldots, 1} \leq \epsilon, j=1, n
$$

iterations are stopped on that mode and hegun on the next. The criterion ε varies from 4×10^{-4} when coarse estimates of the eigenvalues are required to $4 \times 10^{-}$for the final cycles.

Initial guesses at the trial vectors $\mathbf{X}_{m \prime \prime}^{\prime \prime}$ are required to start comergence on each of the six modes computed. These are taken as successive nomalized products of the diagonal of $\mathbf{C} X \mathbf{C}$, in reverse order:

$$
\begin{aligned}
& x_{i, i}^{\prime \prime}=c_{i} ; \\
& \mathbf{X}_{m}^{\prime \prime \prime}=\mathbf{C}^{6-m+1} \mathbf{X}_{n}{ }^{\prime \prime}
\end{aligned}
$$

The vector $\mathbf{X}_{\text {a }}$ should be a fair guess at the first mode shape, since its components are largest where mass and flexibility are largest. This guess improves with successive iterations, so \mathbf{X}_{1} may be close to \mathbf{V}_{1} before convergence is tested. Higher mode guesses \mathbf{X}_{m} are similarly affected by mass and flexibility, so when they are orthogonalized to lower modes they may be expected to converge relatively rapidly as well. Experience with this procedure has been satisfactory.

In theory, it is possible to compute lower frequencies from the original Eq. 4 of the problem

$$
\boldsymbol{\lambda} \mathbf{V}_{m}=\omega_{m}^{2} \mathbf{V}_{m}
$$

by choosing $p>\omega_{1}^{2}$ so that ($\omega_{n}^{2}-p$) has a larger magnitude thim any other $\left(\omega_{p 2}--p\right)$. This has the advantage that computation of $\mathbf{C}=\mathbf{A}^{-1}$, with attendant errors, is climinated. In practice, however, the lower eigenvalues are so close in comparison with the upper ones that convergence
is prohibitively slow. Also, there is evidence that eigenvectors computed by this process are more in error than those obtained from even a poor inverse. Similarly, although the accuracy of eigenvectors computed from

$$
\mathbf{C V} \mathbf{V}_{m}=\lambda_{m} \mathbf{V}_{m}
$$

is dependent on the accuracy of the inver.e $\mathbf{C}=\mathbf{A}^{-1}$, the eigenvectors will not be improved by itcration through

$$
\mathbf{A} \mathbf{V}_{m}=\omega_{m}^{2} \mathbf{V}_{m}
$$

If the acceleration in a component direction at a joint is known when a structure is undergoing vibration in a normal mode, the absolute amplitude of the mode shan: is determined and loads may be computed. An acceleration may be knowr from previous dynamic testing, or analysis of an idealized damped version of the structure. Deflections are of the periodic form

$$
u_{r}=u_{\mathrm{t}} m \sin \omega_{m} t
$$

so the amplitude of acceleration in the $i^{\text {th }}$ generalized direction is

$$
\ddot{u}_{1 m}=-u_{i m} w_{m}^{2}
$$

when $q_{i m}$ is the acceleration amplitude input, the eigenvector will be renormalized by the factor

$$
\frac{q_{i m}}{u_{i m} \frac{g}{\left(w_{m}^{2}\right.}}
$$

In summary, the program operates on the given matrices \mathbf{K} and \mathbf{M} as follows:

1. Compute $\mathbf{A}=\mathbf{M}^{-\mathbf{1}^{2}} \mathbf{K} \mathbf{M}^{-{ }^{-2}}$.
2. Compute $\mathbf{C}=\mathbf{A}^{-1}$.
3. Compute first-guess vectors \mathbf{X}_{m}.
4. Attempt to converge on the six eigenvalues and cigenvectors corresponding to modes of lowest frequency.
5. Compute $\mathbf{U}_{m}=\mathbf{M}^{-1}=\mathbf{V}_{m,} \boldsymbol{\omega}_{m}=1 /\left(i_{m}\right)^{1 / 2}$.
6. Renormalize mode shape to input acceleration levels; compute loads from equations given in Appendix B.
7. Equilibrium checks at each joint.
8. Output mode shapes, frequencies, dynamic loads.

I. Jacobi's Methcd

The Jacobi method (Ref. 23) of determining eigenvalues and eigenvectors exists in th: program. The advantages of the method is that all eigenvalues and
eigenvectors are evaluated witin equal accuracy, multiple roots can be evaluated, and zero frequencies systems can be handled. The modified power method (described in Section H) is retained because it has been successfully used for the past 3 yr .

Equation 4, $\mathbf{A} \mathbf{V}_{m}=\omega_{m}^{=} \mathbf{V}_{m}$, is used for the evaluation of the eigenvalues and eigenvectors by Jacobi's Method. For an n degree-of-freedom system, n equations ($m=1$, $2, \cdots n$) can be written as

$$
\begin{equation*}
\mathbf{A} \mathbf{V}=\mathbf{V} \mathbf{L} \tag{13}
\end{equation*}
$$

where \mathbf{V} is the matrix of eigenvectors, and \mathbf{L} is a diagonal matrix of eigenvalues. Since \mathbf{V} is an orthogonal matrix, Eq. 13 can be written as

$$
\begin{equation*}
\mathbf{V}^{r} \mathbf{A V}=\mathbf{L} \tag{14}
\end{equation*}
$$

Jacobi's Method is to start with a given matrix A and transform it by a number or pre- and post-multiplications $\mathbf{Z}^{(k) T}$ and $\mathbf{Z}^{(k)}$
where

$$
\prod_{i=1}^{i} \mathbf{Z}^{(h)}=\mathbf{Z}
$$

and

$$
\prod_{i=1}^{i} \mathbf{Z}^{(i) T}=\mathbf{Z}^{r}
$$

($\ell=$ number of transformations), such that

$$
\begin{equation*}
\mathbf{Z}^{r} \mathbf{A Z}=\text { diagonal matrix }=\mathbf{L}^{1} \tag{15}
\end{equation*}
$$

The \mathbf{Z}^{1} and \mathbf{Z} must satisfy the relation $\mathbf{Z T}^{r}=\mathbf{I}$. If the satisfactory matrix condition can be obtained, then comparing Eq. 15 with Eq. $13, \boldsymbol{Z}$ is the desired eigenvector matrix and L^{1} is the diagonal cigenvalue matris.

The Jacobi process of obtaining the orthogonal Z matrix is to ammihilate, in turn, selected off-diagonal elements of A by orthogonal transformations. To eliminate an element $a_{i j}^{(t)}(i<i)$ of $\mathbf{A}^{(k)}$ the elements of the transformation matrix $Z^{(k)}$ would be

$$
\begin{aligned}
& z_{i j}=\cos \theta, \quad z_{i j}=\sin \theta \\
& z_{j 1}=-\sin \theta, \quad z_{j j}=\cos \theta \\
& z_{k k}=1, \text { and } z_{i 1}=z_{k j}=z_{k j}=0
\end{aligned}
$$

where

$$
\begin{align*}
& k \neq i, i \tag{16}\\
& l \neq i, i
\end{align*}
$$

Represent the $k^{\text {b }}$ transformation matrix product by

$$
\begin{equation*}
\mathbf{Z}^{(k) T} \mathbf{Z}^{(k-1) T} \cdots \mathbf{Z}^{(1, T} \mathbf{A} \mathbf{Z}^{(1)} \mathbf{Z}^{121} \cdots \mathbf{Z}^{L_{1}}=\mathbf{A}^{(L:} \tag{17}
\end{equation*}
$$

The elements of $\mathbf{A}^{(k)}$ are

$$
a_{i i}^{(k)}=a_{i i}^{(!-1)} \cos ^{2} \theta+a_{i j}^{(j-1)} \sin ^{2} \theta-2 a_{i j}^{(k-1)} \sin \theta \cos \theta
$$

$$
a_{j j}^{(k)}=a_{i i}^{(k-1)} \sin ^{2} \theta+a_{j i}^{(k-1)} \cos ^{2} \theta+2 a_{i j}^{(k-1)} \sin \theta \cos \theta
$$

$$
\begin{equation*}
a_{i j}^{(k)}=\frac{1}{2}\left(a_{a}^{(,-1)}-a_{j j}^{(l-1)}\right) \sin 2 \theta-L a_{i j} \cos 2 \theta \tag{19}
\end{equation*}
$$

In order to eliminate $a_{i j}^{(t)}$, the equation

$$
\frac{1}{2}\left(a_{i i}^{(k-1)}-a_{j j}^{\prime \prime}{ }^{\prime \prime}\right) \sin 2 \theta+a_{1 ;} \cos 2 \theta=0
$$

or

$$
\begin{equation*}
\tan 2 \theta=-\frac{a_{i j}^{(k-1)}}{\frac{1}{2}\left(a_{a}^{k-1}-a_{j j}^{t-1}\right)} \tag{20}
\end{equation*}
$$

is the angle θ required for annihilation of ali/,
The orthogonal transformation designed to aunihilate an off-diagonal term may undo the previously amnihilated off-diagonal terms. For this reason, the facobi's method is an iterative process, rather than a finite one, that is carried on indefinitely until a predetermined aecuracy requirement is satisfied. The success of the method depends on cach transtomation reducing the sum of the syuares of the off-diagonal terms; the proof is outlined below. Stability of the convergence process against roundoff error is mentioned (Ref. 23).

The Pope-Tompkins scheme for convergence of Jacobi's mothod when subjected to the transtomations shall be pioved.

From Eq. : 3

$$
a_{1!}^{()^{3}}+a_{i l}^{\left(k_{1}^{\prime 2}\right.}=a_{i 1}^{k-1!}+a_{i l}^{(k-1)^{2}}
$$

and
and since other elements $a_{k i}(l, k \neq i, j)$ are uaffected by the transformation, with the exception of $a_{j}^{\prime, 1}$ and $a_{1,1}^{\prime, 1}$, the sum of the squares of the offediagonal element is insariant.

Also

$$
\begin{align*}
& =a_{i 1}^{1 ;-11:}+a_{i,}^{1 / 1-112}+a_{j 1}^{1 / k-1):}+a_{j j}^{(k-10} \tag{29}
\end{align*}
$$

Since $a_{i}^{\prime ;}=a_{n}^{(k)}=0$, from Eq. 19

Equation 23 shows that the quantity $2 a+1, j=$ has been lost from the sum of squares of the off-diagonal terms.

$$
\begin{equation*}
\text { Drefine } v_{t}=\left\{\sum_{\substack{\mid,-1 \\ i, k}}^{n} a_{1 k}^{1,1 t^{\prime}}\right\}^{t=} \tag{24}
\end{equation*}
$$

where v_{i} is the initial off-diagonal norm. A threshold v_{1} is established by dividing r by a fixed constant $a \geq n$; the threshold value is used to determine the torms to be amnihilated first. The off-cliagonal elements for which

$$
\begin{equation*}
\left|a_{k i l}^{s^{k} \cdot 1}\right| \geq v_{1}=\frac{v^{\prime}}{\sigma}, k \neq l \tag{25}
\end{equation*}
$$

is annihilated.

Sinec a $\geq n$, there exists at least one off-diagonal clement $\geq y_{1}$, since if all were \leq

$$
\sum_{l=1} a_{i=1}^{: z} \leq \sum r_{1}^{*}=n(n-1) v_{1}^{*} \leq n^{*} v_{1}^{\prime 2} \leq \sigma_{1}^{2} r_{1}^{\prime \prime}=v_{r}^{\dot{r}}
$$

whieh contradicts Eq. 24. Note that, because of symmetry, only one half of diagonal elements are used. For any clement whose magnitude is not smatler than r_{1}, the appropriate transformation is performed. Thus, from Eq. . 3 the off-diagonal squared norm is decreased hy at least $2, \quad$. If all off-cliagomal terms $<r_{1}$, the off-diagonal norm is bourded as follows:

Lower the threshold by $1:=\frac{r_{1}}{r}$ and proceed as before.
 i and as shown berore, there exists an off diagonal element if $\frac{p_{0}, 0}{r}$ and, thus, $>y_{r}$. Performing the appropriate
transformations on all elements $>\nu_{r}$, a bound on the new off-diagonal norm follows

$$
\begin{align*}
\left(v_{o d}^{(2)}\right)^{2} & =v_{o s i}^{2}-\sum_{i_{k i} \mid \geq v_{r}} 2 a_{k, l}^{2}<v_{o, d}^{(}-2_{y_{o u l}^{2}}^{2} / \sigma^{2} \\
& =\left(1-\frac{2}{\sigma^{-2}}\right) v_{o d}^{2}<\left(1-\frac{2}{\sigma^{2}}\right)^{2} v_{t}^{2} \tag{27}
\end{align*}
$$

By induction, if $\psi_{\text {oil }}^{(. n)}$ is the off-diagonal norm after m stages in which at least one transformation has been performed, then at worst

$$
\begin{equation*}
\left(v_{o d}^{\prime m}\right)^{\prime \prime} \leq\left(1-\frac{2}{\sigma^{2}}\right)^{m} \nu_{I}^{2} \tag{28}
\end{equation*}
$$

For convergence a final threshold. v_{F} must be established such that

$$
\begin{equation*}
v_{o d t}^{2}=\sum_{k \neq 1} a_{k i}^{2} \leq n(n-1) v_{r}^{2}<n^{2} v_{F}^{2} \tag{29}
\end{equation*}
$$

or the accuracy requirement may be specified as

$$
\begin{align*}
v_{o d}^{2} \leq \rho^{2} v_{l}^{2} & \text { where } \\
v_{F} & =\left(\frac{\rho}{n}\right) v_{l} \tag{30}
\end{align*}
$$

For this problem $\quad \frac{\rho}{n}=2^{-27} \quad$ has been selected; thus

$$
\begin{equation*}
v_{o i}^{2} \leq n^{2}\left(2^{-25}\right)^{2} v_{I}^{2}=n^{2} 2^{-5 t} v_{I}^{2} \tag{31}
\end{equation*}
$$

is the convergenee criteria of this program.

J. Orthogonality Check

If the structure has discrete nonequal eigenvalues, Eq. 3 can be written

$$
\mathbf{K} \mathbf{U}_{m}=\omega_{m}^{2} \mathbf{M} \mathbf{U}_{m}
$$

and

$$
\mathbf{K} \mathbf{U}_{n}=\omega_{n}^{2} \mathbf{M} \mathbf{U}_{n}
$$

where $m \neq n$.
Premultiply the first equation by U_{n}^{r} and the second equation by \mathbf{U}^{T}. Subtracting the transpose of the second equation from the first results in

$$
\left(\omega_{m}^{2}-\omega_{n}^{2}\right) \mathbf{U}_{n}^{2} \mathbf{M} \mathbf{U}_{m}=\mathbf{0}
$$

Since $n \neq m$ was asstmed, $\omega_{m}^{2} \neq \omega_{n}^{2}$; thus, $\mathbf{U}_{n}^{r} \mathbf{M U}_{i n}=0$ for all m and n not equal to each other. By a similar argument

$$
\begin{equation*}
\mathbf{U}_{n}^{r} \mathbf{K} \mathbf{U}_{m}=0 . n \neq m \tag{32}
\end{equation*}
$$

can be shown. A 6×6 generalized weight and spring matrix representing the orthogonality check is outputed.

To obtain a better comparison of the magnitude of the off-diagonal terms, the generalized weight and spring matrix are normalized as

$$
\begin{equation*}
m_{i j}^{\star}=\frac{\bar{m}_{i j}}{\left(\bar{m}_{i i}\right)^{1 / 2}\left(\bar{m}_{j j}\right)^{3 / 2}} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{i j}^{\dot{i}}=\frac{\bar{k}_{1 j}}{\left(\bar{k}_{i i}\right)^{2 / 2}}\left(\bar{k}_{i j}\right)^{1 / 2} . \tag{34}
\end{equation*}
$$

The values $\bar{m}_{i j}$ and $\bar{k}_{i j}$ are the elements of the $i^{\text {th }}$ row, $j^{\text {th }}$ column of the generalized weight and spring matrix, and $\bar{m}_{i j}^{\star}$ and $\bar{k}_{i j}^{\star}$ are the elements of the $i^{\text {th }}$ row, $i^{\text {th }}$ column of the normalized generalized weight and spring matrices.

K. Accurucy

Although no analytic studies have been made of error inherent in the nume- al process described herein, enough has been learned from production runs and experiment with abnormal cases to permit some general comments on accuracy of the program. (The discussion is for Section H and not Section I.) Several iests, available to the user when resuit, sue in doubt. are discussed in this Section.

Accuracy of a structural analysis performed by the program is affected adverselv by the following factors:

1. Errors in idealization of a structure. All structures must be idealized by one of the standard-structure types before analysis; a basic discussion of this procedure is presented in Section II-K.
2. Gross errors in input. These may be indicated by -bvious errers in output, but all inputs should be carefully hand-checked.
3. Characteristics of the stiffness matrix \mathbf{K} that lead the static deflections to be in error.
4. Cheracteristics of the matrix $\mathbf{C}=\mathbf{M}^{\mathbf{1 2}^{2}} \mathbf{K}^{-1} \mathbf{M}^{\mathbf{1}_{2}}$ that lead normal-mode shapes and frequencies to be in error.
5. Failure to properly test convergence of the normalmode analysis.
6. Gross program or machine errors. The programs have been tested on check problems and on nearly 200 production rums. Correlation with test results has been good where t-rts have been rum.

Single-precision arithmetic is used throughout; this provides storage of approximately eight decir ' digits plus an exponent for all quantities. Required accuracy for the proposed engineering is two or acre significant figures for the largest quantities in a set of deflections

Input will usuaily be provided with three or more significant digits, with zeros filling out the stored number of eight digits. Computation during matrix generation introduces roundoff in the last one or two places of the elements of the stifness matrix.

Accuracy of the static analysis

$$
\ddot{\mathbf{U}}=\mathbf{K}^{-1} \mathbf{F}
$$

i: impaired if the stiffness matrix is singular or illconditioned. Singularity is caused by structural instability which, in turn, causes division by zero; since no overflow checks are made to detect division by zero, the only indicators are those cited below for ill-conditioning. This latter is a qualitative description of the loss of arcuracy during computation of an inverse matrix. Generally, signif ant figures are lost during subtraction operations when digits (r) subject to roundoff are drawn into the significant places of a number:
$0.1234567 r \times 10^{n}$
$-0.1234566 r \times 10^{n}$

$$
\overline{0.0000001 r \times 10^{11}}=0.1 r 000000 \times i 0^{-3}
$$

It has been observed in structural usage that illconditioning becomes a problem when the stiffness of members are greatly different. Thus, when the ratios of diagonal elements of K were

$$
\frac{k_{1 i}}{k_{j j}}<10
$$

systems of 130 degrees of freedom were successfully analyzed, vihile smaller systems with

$$
\frac{k_{i i}}{k_{i j}}>100
$$

gave obviously false resulis. A secund indication of illconditioning is the ratio of maximum to minimum eigenvalues of \mathbf{K} or condition number

$$
P=\frac{\lambda_{\max }}{\lambda_{\text {min }}}
$$

This number is computed for

$$
\mathbf{A}=\mathbf{M}^{-1 / 2} \mathbf{K} \mathbf{M}^{-1 / 2}
$$

and only indicates the condition of \boldsymbol{K} when the elements of \mathbf{M} are nearly equal. Condition numbers $P>10^{\prime \prime}$ may indicato loss of all significance from computed deflestions.

Normal norle analysis is subject to the same problems of singularity and? ill-conditioning as satic analysis, plus problems caused by the nature of \mathbf{M}, and the convergen: means of solution. If \mathbf{M} contains zero diagonal elements, then $\mathbf{M}^{-{ }^{-2}}$ will have elements produced by divisiou by zero and

$$
A_{.}=\mathbf{M}^{-1^{12}} \mathbf{K} \mathbf{M}^{-1 / 2}
$$

proves to be singular If the ratios of element; of Mare large, so that ratios of diagonal elemeats of \mathbf{A} are large.

$$
\frac{a_{1 i}}{a_{i j}}>1 \omega 0
$$

then \mathbf{A} may be ill-conditioned and $\mathbf{C}=\mathbf{A}^{\cdot \cdot}$ subject to large error.

Convergence is tested by comparing slements of normalized trial vectors at successive iterations

$$
\mathbf{C X} \mathbf{X}_{m}^{(i)}=\alpha_{m} \mathbf{X}_{m}^{(i+1)}
$$

when

$$
\left|x_{j m}^{(i)}-x_{j m}^{(1+1)}\right| \leq \epsilon
$$

iterations are stopped. Alternate tests are

$$
\begin{gathered}
\left(\mathbf{C}-\lambda_{m}^{(1)} \mathbf{I}\right) \mathbf{V}_{m}^{(i)}=\mathbf{X}_{n i}^{(i)} \\
\left|r_{j n i}^{(i)}\right| \leq \boldsymbol{c}
\end{gathered}
$$

which may never stop iterations, and

$$
\left|\lambda_{n}^{(i)}-\lambda_{m}^{(1+1)}\right| \leq \epsilon
$$

which proves to stop the convergent process too soon. There is always a risk that convergence will stop too soon when it is very slow, since the chage in any parameter then becomes small even when the parameter is far from its true value. Cherks against this possibility in:lude model testing and computation of normal modes by Jacobi's method. The maximum change in a vecter element is output for checking; this value should be $\epsilon \leq 4<10^{-i}$ at the final iteration of each mode.

The ratio of maximan to minimum eigenvalues of a matrix or condition number is a measuc of the degree of in-soiditioning of the matrix. The maximum eigenvalue of

$$
\mathbf{A} \mathbf{V}_{m}=\omega_{m}^{幺} \mathbf{V}_{m}
$$

wo: may usually be found easily and accurately by the power method. The minimum eigensalue w, is found from

$$
\mathbf{C V}=\lambda, V_{17}
$$

where

$$
C=A^{-1}
$$

As noted before condition numliprs

$$
P=\frac{\omega_{n}^{n}}{\omega_{1}^{\frac{2}{2}}}<10 .
$$

usually indicate that enginering accuracy can be obtained.

A consequence of the power method is that eigenvalues are computed in descending order. If such is not the case, there probably has been no reliable sonvergence to one or more eigenvectors. Since frequencies are proportionai to recipro als of eigenvalues of $\mathbf{C}=\mathrm{A}^{-1}$, the output frequencie's must be in ascending order. (When frequencies are very close, differing in the thind place, this rule may be ciolated without prejudicing the results.)

The following eigenalues are defined as:

```
\(\lambda_{1}=\) computed lower eigencalue of \(A\)
\(\lambda_{c}=\) corresponding computed upper eigensalue of
    \(\mathbf{C}=\mathrm{A}^{-2}\)
\(\lambda_{T}=\) true magnitude of lower eigencalut of \(A\)
```

It has been observed in tests with Hilbert matrices that the difference

$$
\left|\lambda_{1}-\frac{1}{\lambda_{r}}\right| \gg\left|\lambda_{T}-\frac{1}{\lambda_{r}}\right|
$$

Also, in all reliable production runs

$$
\lambda_{1} \lambda_{z} \approx 1
$$

Thus, if

$$
\lambda_{1} \lambda_{5}-1 \mid>10^{-2}
$$

the validity of λ. and its eigenvector should be douinted; and, if not, then the error in the computed eigenvalue is

$$
\left|\lambda_{T}-\frac{1}{\lambda_{C}}\right|<\left|\lambda_{1}-\frac{1}{\lambda_{C}}\right|
$$

Experience with the program has indicated that the acenacy rules mentioned above are to be used as a guide and are not absolute in ensuring accurate data. The best methods of evaluating the results have been the equilibrium checks at the joints and the orthogonality of the
mode shapes. An estimate of the accuracy of the resuits can be determined be the equilibriun check from the non-zero terms at the unrestrained joints of the structure. Usually the off-diagond terms of the generalized weight or spring matrix are orders of magnitude less than the diagonal terr... if the mode shapes are correct.

In summary, the following checks are available to the user in program output:

1. Normal-mode convergence test, $\epsilon<4 \times 10$:
2. Condition namber, $P<10^{\circ}$
3. Prequencies output in :scending order unless nearly equal
4. Equitibrium check at the joints
5. Eigenvalues of \mathbf{C} equal cigenvalues of \mathbf{A} withen

$$
\lambda_{1} \lambda_{r}-1 \vdots<10^{-}
$$

6. Orthogonality check of mode shapes

The following tests may be applied as the need arises:

1. Hand-check of programi input
2. Reasonableness of program output
3. Ratios of stiffness matrix diagonal elements $k_{i i} / k_{i j}$ <100
4. Solution by independent numerical methods
5. Comparison with different idealizations of the same configuration
6. Model testing

L. Strustural Idealizction

Matrix repersentations of five distinct types of structure have been programmed. Any structure to be analyzed must be idealized by a structure composed entirely of members of one of these types:

1. Three-dimensional, pin-jointed
2. Three-dimensional, rigid-jointed, with circular member cross-sections
3. Planar, rigid-jointed, loaded in-plane
4. Plamar grid, ragid-jointed, loaded normal-io-plane
5. Three-dimensional, rigid-jointed doubly symmeui cross-section

Some types of idealizatio: are commonly used in structural amalysis; for exampie, trusses are usually assumed to be pin gointed, and continuous slabs are often amalyzed as grids. The following remarks will be concerned with typical approximations that extend the power of the program:

1. A continumus structure may be approximated by a "lumped-mass" system. Natural frequensies of a humped-mass system will always be lower than those of the represented system, with the degree of approximation dependent on the quantity of mass points and connecting members in the idealization.
2. The stiffness (and thus normal modes) of a structure as stacle as a truss will usually be well-represented by a pin-jointed truss. Secondary loads will not be found directly, but may be estimated from deflections.
3. The stiffness of a shar panel may be represented by a lattice of pin-comnected members (Ref. 14). In most cases, if a negative area is required as specified by the iattice analogy, negative frequencies (obviously erroneous) results.
4. Flexible supports may be represented by inserting members with appropriate stiffness at points of support.
5. A beam of varying section properties may be approximated by several beams of constant section. Care should be taken that the probicin does not become ill-condiiioned by making the stiffness of the suall beam segments very large in comparison to other elements of the structure.
6. Members normal to the plane of a grid may be included by adding appropriate stiffnesses to the matrix of the gricl in the normal direction.
7. Pin-ended members in a rigid-iointed frame may be input wiih zero moment of inertia.

8 . Loads applied at the interior of a bending member may be approximated by shears and fixed-end moments at its ends.
9. The validity of an idealization may be checked by comparison with a continuous structure idealization. comparison with another lumped-mass idealization, or by model testing.
10. Increments of elements of the stiffness matrix may be input to the program; thus, the stiffness of structural components that are not conveniently idealized by a standard member may be included in an analysis.
11. Various end conditions can be approximated by a linkage system of several members; additional degrees of freedom will be required.

III. PROGRAMMING

A. Input Formaf

Input to the program is provided in the following blocks. An example of the input format is given in the sample problem, Appendix D.

1. Comment
2. Control
3. Joint coordinates
4. Member properties
5. Restraints
6. Stiffness matrix elements (optional)
7. Static loadings (optional)
8. Accelerations (optional)

The most convenient sheet on which to enter data for punching contains nine or more columns. Each line is punched on one card, with a maximum of nine words per card. Where a word is not required as input for a problem, it may be left blank; blanks are always read as 0 . Most of the irput is writ n with fixed-point numbers (integers) in th. first two columns and floating-point numbers (mixed numbers) in succeeding columns. Float-ing-point nuribers must be written witi a decimal point regardless of whether the fractional part is present.

1. Comment

Comments up to 72 characters (I2A6)
The first column must not be used
2. Control

N_{1} Structure type
1 Pin-jointed member, three dimensiens
2 Rigid-jointed member, equal member crosssection moment of inertia, three dimensions
3 Planar memiser, rigid joints, loaded in-plane
4 Planar member, rigid joints loaded normal-toplane (grid)
5 Rigid-juinted member, doubly symmetric crosssection, three dimensions.
\therefore. Mode shape card output control (13; 6FS.5)
0 Xo output desired
1 Output desired
n Number of modes desired for Iacobi Method (use only if $\mathrm{N}_{\mathrm{L}}, .<0$)
$N_{\text {r }}$ Eigenvalue control
1 No output desired
0 Output desired
n Numbers of rigid body modes tu be eliminated, if any. $\left(N_{i 1}<0\right)$

A Problem number (six characters or less)
N_{1} Quantity of joints in structure
N: Quantity of members in structure
$N_{\text {c }}$ Quantity of static loadings
$N_{\text {: }}$ Weight code
0 No weight input
1 Weight input included
\therefore Quantity of joints having one or more components of restraint
N_{3} Degrees of freedom per joint
N_{10} Normal-mode code
0 Compute no normal modes
1 Compute lowest six mode shapes, normalized to input accelerations, and compute dynamic loads
2 Compute lowest six mode shapes only, normalized to the largest component ($u_{\text {max }}=1.0$)
-1 Jacobi's method for evaluating eigenvectors and rigenvalues; the lowest six non-rigid body eigenvectors nommalized to input accelerations, and compute dynamic loads
-2 Jacobi's method for evaluating eigenvectors and eigenvalues; the lowest six non-rigia body eigenvec'ors normalized to the largest component ($u_{\text {max }}=1.0$)
N_{11} Output code
0 No output of $\mathbf{K}, \mathbf{L}, \mathbf{W}$ matrices
1 Output K, L, W matrices

\section*{| $X_{: 2}$ | N_{1}, | $i E_{1}$ | v | γ |
| :--- | :--- | :--- | :--- | :--- |}

(21S.3ES.0)
$\lambda_{1:}$ Quantity of stiffiness matrix elements to be altered
$\lambda_{1:}$ Temperature code
0 Temperature problem not to be solved
1 Temperature problem to be solved
E Elastic inodulus. $10 \cdot 1 \mathrm{~h} / \mathrm{in}^{2}=$
r. Poisson's ratio
y Specific weight ib/in.:

3. Joint Coordinntes

i	Blank	x_{1}	x_{2}	x_{2}

(218.3F5.0)
i Joint number (must be listed consecutively starting with I)
$\left.\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right\}$ Joint coordinates, in.
In two-dimensional problems x_{3} must be normal to the plane

4. Member Properties

Propertics are entered on one line (one card per member); when temperature code, $N_{1:}==1$, then A. . A., or $A_{\text {}}$ must be included. Values for $A_{\text {; }}$ are not required umless specifically indicated.

p	q	A_{1}	A_{2}	A_{3}	A	A:	A_{6}	A_{7}	${ }_{7}$

p (Member ends (enter in any order:
q $\}$ enter cach member once only)
Member properties and temperature inputs are defined for each structure type as follows (all quantities to be imput in inch units):
a. Structure type 1, three-dimensional, pin-jointed members
$\mathrm{A}_{1}=A$, section area
$A_{3}=$ non-zero term
or
$A_{2}=-D$, outside diameter of circular tube
$A_{2}=T$, wall thickness of circular tube
$\mathrm{A}_{\mathrm{c}}=0$
and
$A_{:}=-a \Delta T$, coefficient of thermal expansion times change in temperature of member. Positive ΔT indicates increase in temperature.
b. Structure type 2, three-dimensional, rigid-jointed, equal member cross-section moment of inertia
$A_{1}=A$, section area
$A_{2}=I$, section moment of inertia
$A_{-}=K$, section to sional stiffness
or
$A_{1}=D$, outside diameter of circular tube
$A_{2}=7$, wall thichness of circular tube
$\mathrm{A}_{\mathrm{t}}=0$
and
$A_{:}=a \Delta T$, coefficient of thermal expansion times change in temperature of member. Positive ΔT indicates increase in temperature.
c. Structure type 3, two-dimensional, rigid-jointed members, loaded in-plane
$A_{1}=A$, section area
$A_{2}=I$, section moment of inertia
$\mathrm{A}_{4}=$ non-zero term
or
$A_{1}:=D$, outside diameter of circular tube
$\mathrm{A}_{2}=T$, wall thickness of circular tube
$\mathrm{A}_{3}=0$
and
$A_{s}=\alpha \Delta T$, coefficient of thermal expansion times change in temperature of member. Positive ΔT indicates increase in temperature.
$\lambda .=\pi \delta T / h$, coefficient of thermal-expansion times change in temperature across member cross-section divided by height of rectangular crosssection. δT is positive if a change in temperature will tend to rotate joint p of the member in positive $x_{\text {. }}$ direction. Joint p of nember is the first joint listed in III $A-4$ to describe the member.

d. Structure type 4, two-dimensional rigid-jointed, loaded normal-to-plane (grid)

$A_{.2}=I$, section moment of inertia
$A_{:}=K$, section torsional constant
or
$A_{1}=D$, out $\cdot 1$ de diameter ot circular tubes
$A_{2}=T$, wat thickness of circular tubes
$A_{s}=0$
and
$A_{.}=\alpha \delta \delta / h$, coefficient of thermal-expansion times change in temperature across member crosssection divided by height of rectangular crosssection. δT is positive if the increase in temperatwe across member cross-section is in positive \mathbf{x}_{3} dinection.
e. Structure, type 5, three-dimensional rigid-jointed member, doubly symmetric cross-section
$A_{1}=A$, section area
$A_{2}=I_{1}$, section torsional constant
$A_{1}=I_{2}$, section moment of inertia about ξ_{2} axis
$A_{1}=I_{3}$ section moment of inertia about $\xi_{, ~ a x i s}$
$A_{i}=\alpha \Delta T$, coefficient of thermal expansion times change in temperature of member. Positive ΔT indicates increase in temperature.
$A_{7}=$ Joint number in input lisf (III A-3) not along member axis. The section moment of inertia $I_{\text {, }}$ is about ξ_{i}, which is perpendicular to the plane formed by the member pi (p represents first joint listed to describe member in member properties input, and q the second joint) and $\overline{p A}_{i}$; $\boldsymbol{\xi}_{3}$ is positive in the direction $\boldsymbol{p q} \times \boldsymbol{p} \boldsymbol{A}_{i}$.

5. Restraints

The restraints must be followed by a zero card if no stiffness matrix element cards are incorporated in a temperature probleim.

$$
\frac{\begin{array}{|l|l|l|l|l|l|l|}
\hline i & r_{1} & r_{2} & r_{3} & r_{i} & r_{:} & r_{i} \\
(718)
\end{array}}{\substack{ \\
\hline}}
$$

j Joint number (may be listed in any order)
r_{i} Restraint code (integer)
0 No restraint
1 ith component of deflection at joint j is 0 . The order of deflection components at a joint in each structure type is as follows:
a. Structure type 1, three-dimensional, pin-jointed members
$\boldsymbol{u}_{j \mathbf{1}}=$ displacement in \mathbf{x}_{1} direction
$u_{j_{1}}=$ displacement in \mathbf{x}_{2} direction
$u_{j s}=$ displacement in x : direction
b. Siructure type 2, three-dimensional, rigid-jointed members, equal member cross-section moment of inertia
$u_{j_{1}}=$ displacement in \mathbf{x}_{1} direction
$u_{j:}=$ displacement in \mathbf{x}. direction
$u_{j 3}=$ displacement in \mathbf{x}_{3} direction
$u_{j 1}=$ rotation about x_{1} axis
$u_{j s}=$ rotation about x_{2} axis
$u_{j a}=$ rotation about x_{3} axis
c. Structure type 3, two-dimensional, rigid-1ointed members, loaded in-plane
$u_{j 1}=$ displacement in \mathbf{x}_{1} direction
$u_{j_{2}}=$ displacement in \mathbf{x}_{2} direction
$u_{\mathrm{J}, \mathrm{s}}=$ rotation about x_{3} axis
d. Siructure type 4, two-dimensional, rigid-jointed, loaded normal-to-plane (grid)
$u_{j 1}=$ displacement in \mathbf{x}. direction
$u_{j 2}=$ rotation about x_{1} axis
$u_{j, 4}=$ rotation about x_{n} axis

$$
\begin{aligned}
& \text { e. Structure type 5, threc-dimensional, rigid-jointed } \\
& \text { member, doubly symmetric cross-section } \\
& u_{11}=\text { displacement in } \times \text {, direction } \\
& u_{j ;}=\text { displacement in } x_{2} \text { cirection } \\
& u_{j}=\text { displacement in } \times \text { direction } \\
& u_{j 1}=\text { rotation about } x_{1} \text { axis } \\
& u_{j ;}=\text { rotation about } x_{2} \text { axis } \\
& u_{j ;}=\text { rotation about } x_{i} \text { axis }
\end{aligned}
$$

6. Stiffness Matrix Elements

To account for the effect of structural elements that cannot be idealized by members of the type with which an analysis is being performed, increments to elements of the matris may be inputed. This block may be inputed only if the control parameter $\mathrm{N}_{1}: \neq 0$. The stiffness matrix elements must be followed by a zero card for a temperature problem.

i	j	$\Delta k_{i j}$
(218, ES. 2)		

Row and column, respectively, of revised element i in non-contracted stiffness matrix (ineert as if rows i $\left\{\begin{array}{l}\text { and columns have not been deleted to account for } \\ \text { restraints) }\end{array}\right.$
$\Delta k_{i j}$ Incrementai :hange to element $k_{i j}$ of original stiffness matrix. The new element, $k_{i j}=k_{i j}-\Delta k_{i j}$.

7. Weights

i Joint number (may be listed in any order)
$W_{i} i^{\text {th }}$ component of inertia at joint j. The order of translational inertia (lb) and rotary inertia (lb-m.') components is as specified for deflections in III A-5.

If normal modes are to be computed, finite (nonzero) inertia components should be specified for all degrees of freedom of the structure; the effect of a \%ero inertia is to produce accumulator overflow. (This is a peculiarity of the numerical procedure.) This block of input may be vritten only if the weight code, $N_{i}=1$. If no loadings follow ($\mathrm{N}_{\mathrm{i}}=0$), the last card of weights must be followed by a card with 0 as its first word. If temperature pioblem is to be solved ($\mathrm{N}_{1,1}=1$), the weight cards must not be incorporated.

8. Static Loadings

Each loading is initiated by a card with 0 or -1 as the first word, and the final loading must be followed by a zero card (blank card).

The initi.l card has the format:

i	Blank	A_{2}	A_{2}	$A_{:}$	A_{1}	$A_{:}$	A_{4}

$j=0, A_{i}(i=1, \underline{3} 3)$ are the components of translational acceleration on the structure as a rigid bodyin the $i^{\text {h }}$ coordinate direction (III A-5) and A_{i} ($i=4,5,6$) are the components of rotational acceleration of the structure as a rigid body about the i^{16} coordinate direction (III $A-5$) with respect to the origin of the coordinates. The effect of specifying $A_{i}(\underline{g})$ is to multiply componert W_{i} ($i=1,2,3$) at each joint by $A_{i}(i=1,2,3)$, or $\varepsilon_{i t}, \ldots, x_{j}, A_{1}$ where $(k=4.5,6)$.
$j=-1$. same as for $j=0$ except the rigid body rotationat acceleration is with respect to he center of weight.
$j=$ joint number. A, are components of concentrated load on joint i in the $i^{\text {th }}$ direction. Order of load component is as specified in III A-5.

9. Accelerations

If the normal-mode code, $\mathrm{N}_{\mathrm{t}}=\mathbf{0}$ or 2 , this block must be omitted. If $N_{114}=1$ or -1 deflections and dynamic loads will be computed. In this case, six cards must be given in the following format (one for each mode m in order):

i	i	q_{m}

(2I8, E8.2)
i Joint number
i Translational component direction number as specificd for deffections (see III A-5)
q_{m} Acceleration (g) of joint j in direction \mathbf{x}_{i}. If $j=0$, the acceleration q_{m} applies to the maximum deflection component in the mode shape. The mode shape is renormalized with the factor $q_{m} g / \omega_{m}=u_{j i}$ before output and load calculation. Rotary accelerations have no meaning in this application. A zero card after accelerations is not required if $\mathrm{N}_{\mathrm{t}}=1$.

The matrix of ceefficients $k_{i j}$ for a member of any type connecting joints p and q is derived by introducing unitcomponent deflections of p and q, and calculating the: forces at p and q produced by each deflection. Matrices for several types of memher are presented in Appendix A.

To illustrate the method bev which such matrices are computed, and how they are used in the geeneration of a matrix for a stiucture, consider the pin-ended member in two dimensions as show in lig. 1 :

1. Compute member length S and direction cosines γ_{1} and γ : from joint coordinates.
2. Introduce $u_{t_{1,1}}=1$, holding $u_{u_{2}}=u_{q_{1}}=u_{q_{2}}=0$.
3. Axal load in member : - AE/SS\%
4. Compute force components at p and q, holding loaded member in equilibrium:

$$
\begin{aligned}
& f_{r_{1}}=\frac{A E}{S} \gamma_{1}^{\prime} \\
& f_{r: 2}=\frac{A E}{S} \gamma_{1} \gamma_{i} \\
& f_{r 1}=-\frac{A E}{S} \gamma_{i}^{\prime} \\
& f_{y:}=-\frac{A E}{S} \gamma_{1} \gamma_{y}
\end{aligned}
$$

This set of forces constitutes the first column of the stiffness matrix in the tollowing equation. Succeeding columns are formed similarly:

Fig. 1. Illustrative member

The notation of this equation may be further condensed by writing

$$
\left|\begin{array}{l}
\mathbf{f}_{p} \\
\mid \mathbf{f}_{q}
\end{array}\right|=\left[\begin{array}{ll}
\mathbf{K}_{p /} & \mathbf{K}_{w} \\
\mathbf{K}_{m p} & \mathbf{K}_{q u}
\end{array}\right] \begin{gathered}
\left|\mathbf{u}_{p}\right| \\
\left|\mathbf{u}_{q}\right|
\end{gathered}
$$

where the vectors have components

$$
\mathbf{f}_{j}=\left\{\begin{array}{l}
f_{p 1} \\
f_{p z}
\end{array}\right\}, \quad \mathbf{u}_{p}=\left\{\begin{array}{l}
u_{p 1} \\
\mid u_{p z}
\end{array}\right\}
$$

ctic., and the clements of $\mathbf{K}_{w,}$ are components of the force vector \mathbf{f}_{r}, for unit values of each component $L \mathbf{u}_{i l}$.

The stiffuess matrix for the simple truss illustrated in Fig. 2 will be generated by appropriate superposition of the matrices of its members.

Fig. 2. Illustrative problem

Size limitations

Degree of freedom of structure $\quad 130$
Joints in structure (free or fixed) 60
Members in structure $\quad 200$
Components of restraint 100
Loadings 6
Joints \times degree of freedom per joint 180

B. Output Format

The output is printed in the following divisions. An example of the output format is given in the sample problen, Appendix D.

1. Input data
2. Stiffness matrix ($\mathrm{lb} / \mathrm{in}$.), weight (lb) matrix, load matrix (lb) printed columnwise, ten words per line. Each column is numbered.
3. Weight (lb), center of weight (in.), and weight moment-of-inertia matrix about center of weight (lb -in. ${ }^{\text {² }}$).

The $W_{\text {, }}$ in the directions $\mathbf{x}_{i}(i=1,2,3)$ are summed individually; the \bar{x}_{1} (center of weight) is determined by using W_{i} 's in x_{i} directions; the weight inertia matrix with respect to center of weight is determined by using only weights in the \mathbf{x}_{1} direction.
4. Static or thermal deflections. Each column corresponds to one loading; deflections at each joint follow the joint number in the order specified in III A-5.
5. Static or thermal member loads. The output values are defined in Appendix B.
6. Equilibrium check of static solution at each joint. The non-zero terms represent the reactions at the restraints; the reactions are positive if they act along the positive \mathbf{x}_{i} directions. The equilibrium cheek is not made for the thermal loads. The unrestrained joints at which elements to stiffness matrix are added will not be 0 in equilibrium check; the non-zero term $f_{i}=\Delta k_{1,} u_{j}$.
7. Convergence data. The results of accuracy tests discussed in Section II-Kare printed under appropriate headings.
8. Six frequencies, computed from the cigenvalues of the matrix C (see Section II-H), assuming input of weight in pound units and dimensions in inch units:

$$
f_{m}=\frac{1}{2 \pi}\left(\frac{g}{\lambda_{m}}\right)^{\prime=}=3.128 .518\left(\frac{1}{\lambda_{m}}\right)^{\prime 2}
$$

9. Eigenvectors and eigenvalues using Jacobi's Method ($\mathrm{N}_{14}<0$).
10. Dynamic member loads. The output values are defined in Appendix B.
11. Eigenvectors corresponding to the six eigenvalues of III-B-8.
12. Equilibrium check of dynamic solution at each joint. The non-zero terms represent the reactions at the restraints; the reactions are positive if they act along the positive \mathbf{x}_{i} directions.
13. Generalized weight and spring matrix.
14. Normalized generalized weight and spring matrix.

To obtain an estimate of the time required to solve the various parts of the problem, the computer times are printed out after the following calculations:

1. Zero time
2. Reading input
3. Generating stiffness matrix
f. Generate load and weight matrices
4. Stiffness matrix inversion
5. Static displacement calculations
6. Static load calculations
7. Temperature calculations
8. Eigenvalue computation
9. Dynamic displacements
10. Dynamic loads

The first two numbers represent hours, the second two numbers represent minutes, and the fifth number represents tens of seconds.

Certain input errors will terminate the computation process and the cause will be part of the output format. The following errors will be detected:

1. ERROR READING JOINT COORDINATES. The joints coordinates are not in order.
2. PROBLEM EXCEEDS TOTAL DEGREE-OFFREEDOM SIZE LIMITATION. The number of joints times the number of degrecs of freedom at each joint exceeds 180 .
3. NUSIBER OF ALLOWABLE RESTRAINTS EX CEEDED. The number of restraint exceeds 100
4. PROBLEM EXCEEDS NCMBER DEGREES-OFFREFDOM SIZE LIMITATION. The number of joints times the number of degrees of freedom for each joint minus the number of restraints exceeds 130.
5. NEGATIYE CIGENVALUES.
6. STIFFNESS ELEMENT HAS BEEN PUT ON A A RESTRAINT. A change to the stifiness matrix corresponding to a restrained degiee of freedom has been specified in the input.
7. NO ORTHOGONALITY CHECK, $p q$. For option 5, ξ, is not orthogonal to the member for nember $p q$.

C. Tape Requirements

Logical	Channrl-unit	Use
4	A 4	Intermediate input tape
5	A2	BCD input
6	A3	BCD output
7	B4	BCD card output
9	A5	Intermediate scratch
14	B7	Intermedi te storage
15	AS	Intermediate scratch

BIELIOGRAPHY

1. Crandall, S. H., Engineering Analysis, McGraw-Hill Book Co., Inc., New York, N. Y., 1956.
2. von Karman, T. and Bict, M. A., Mathematical Methods in Fngineering, McGraw-Hill Book Co., Inc., New York, N. Y., 1940.
3. Frazer, R. A., Duncan, W. J., and Collar, A. R., Elementary Matrices, and Some Applications to Dynamics and Differential Equations, Cambridge University Press, New York, N. Y., 1955.
4. Lanczos, C., Applied Analysis, Prentice Hall, Inc., Englewood Cliffs, N. J., 1956.
5. Bodewig, E., Matrix Calculus, Interscience Publishers, Inc., New York, N. Y., 1956.
6. Norris, C. H., et al., Structural Design for Dynamic Load, McGraw-Hill Book Co., Inc., Niew York, N. Y., 1959.
7. Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hill Book Co., Inc., New York, N. Y., 1956.
8. Scanlan, R. H. and Rosenbaum, R., Introduction to the Study of Aircraft Vibration and Flutter, The Macmillan Co., New York, N. Y., 1951.
9. Hall, S. A. and Woodhead, R. W., Frame Analysis, Joha Wiley and Sons, Inc., New York, N. Y., 1961.
10. Timoshenko, S., Vibration Problems in Engineering, 0. Van Nostrand Co., Inc., New York, N. Y., 1955.
11. Roark, R. J., Formulas for Stress and Strain, McGraw-Hill Book Co., inc., New York, N. Y., 1954, p. 174. -
12. Argyris, J. H., "Energy Theorems and Structural Aralysis" Aircraft Engineering, October 1954, November 1954, February 1955, March 1955, April 1955, and May 1955.
13. Archer, J. S., "Digital Computation for Stiffness Matrix Analysis," Proceedings of the American Society of Civii Engineers, October 1958.
14. Archer, J. S. and Samson, C. H., Jr., "Structural Idealization for Digital Computer Analysis," Conference Papers of the American Society of Civil Engineers, Pittsburgh Conference on Electronic Computation, september 1960.
15. Martin, H. C., "Truss Analysis by Stiffne:s Consideration," Proceedings of the American Society of Civil Engineers, October 1956.
16. Clough, R. W., "Structural Analysis by Means of a Matrix Algebra Program," Confarence Papers of the American Soriely of Civil Engineers, Kansas City Conference on Electronic Computation, November 1958.
17. Turner, M. J., Clough, R. W., Martin, H. C., and Topp, L. J., "Stiffness and Deflection Analysis of Complex Structures," Journal of Aeronautical Sciences, September 195u.
18. Klein, D., "A Simple Method of Motrix Structural Analysis," Journal oí Aeronaufical Sciences, January 1957. November 1957, and June 1858.
19. Samson, C. H., Jr. and Bergmann, H. W., "Analysis of Low-Aspect-Ratio Aircraft Structures," Journal of Aerospace Sciences, September 1960.
20. Melosh, R. J., "A Stiffness Matrix for .he Analysis of Thin Plates in Bending," Journal of Aerospace Sciences, January 1961.
21. Martin, I. and Hernandez, J., "Orthogonal Gridworks Loaded Normally to Their Planes," Journal of the American Saciety of Civil Engineers, January 1960.
22. White, P. A., "The Computation of Eigenvalues and Eigenvectors of a Matrix." Journal of the Society for Industrial and Applied Mathematics, December 1958.
23. Ralston, A., and Wilf, H. S., Mathematical Methods for Digital Compute-s, John Wiley and Sons, Inc., New York, N. Y., 1962, pp. 84-91.

APPENDIX A

Mafrices for Various Member Types

The following derivations are performed on typial mombers by introducing successive unit coordinate deflections of their ends and calculating forces reacting on the member. Coordinate deflections inclu'c both translations and rotatior loads are forces and moments. In each case, the first column of the required matr is derived in some a tail to illustrate procedure.

Matrices relating forces and displacements in structure-oriented (x_{1}) coordinates are desired here; but intermediate use of member-oriented (ξ_{1}) coordinates is made in the more complicated derivations.

In the derivations below, the following quantities are input or computed for each member $p-q$:

1. Input coordinates $x_{p}, x_{i j}$
2. Input member properties, A_{1}, E
3. Compute member length

$$
S=\left[\left(x_{i / 1}-x_{p 1}\right)^{2}+\left(x_{i / 2}-x_{p, 2}\right)^{2}+\left(x_{i / 1}-x_{p, k}\right)^{2}\right]^{1 / 2}
$$

4. Compute direction cosines

$$
\begin{aligned}
& \gamma_{1}=\frac{\left(x_{i!}-x_{p 1}\right)}{S} \\
& \gamma_{2}=\frac{\left(x_{q z}-x_{p 2}\right)}{S}
\end{aligned}
$$

and

$$
\gamma_{3}=\frac{\left(x_{p, 1}-x_{p, 3}\right)}{S}
$$

Matrices $\mathbf{K}_{p j}, \mathbf{K}_{q p}$ are written satisfying the expression

$$
\left\{\begin{array}{l}
\mathbf{f}_{p} \\
\mathbf{f}_{u}
\end{array}\right\}=\left[\begin{array}{l}
\mathbf{K}_{p p} \\
\mathbf{K}_{t p}
\end{array}\right]\left\{\mathbf{u}_{p}\right\}
$$

1. Structure type 1, three-dimensional, pin-jointed members (Fig. A-1)

Fig. A-1. Three-dimensional pin-jointed member

Section prownery

$$
A=A_{1}
$$

or if

$$
A_{1}=0
$$

then

$$
D=\mathrm{A},
$$

and

$$
\begin{aligned}
& T=A: \\
& A=\pi T(D-T)
\end{aligned}
$$

Introduce $u_{p, 1}=1$

$$
\text { Axial load }=\frac{A E}{S} \gamma_{1}
$$

Force components at joints p and q are

$$
\begin{aligned}
& f_{p_{1}}=-f_{y_{1}}=\frac{A E}{S} \gamma_{1}^{2} \\
& f_{r 12}=-f_{r=2}=\frac{A E}{S} \gamma_{1} \gamma_{2}
\end{aligned}
$$

and

$$
f_{i, l}=-f_{y,:}==\frac{A E}{S} \gamma_{1} \gamma_{3}
$$

The matrix relating displacements of joint p to forces at joints p and q is

$$
\frac{A E}{S}\left[\begin{array}{ccc}
\gamma_{1}^{2} & \gamma_{1} \gamma_{2} & \gamma_{1} \gamma_{i} \\
\gamma_{1} \gamma_{2} & \gamma_{2}^{2} & \gamma_{2} \gamma_{3} \\
\gamma_{1} \gamma_{3} & \gamma_{2} \gamma_{3} & \gamma_{13}^{\prime} \\
\hdashline \gamma_{1}^{2} & -\gamma_{1} \gamma_{2} & -\gamma_{1} \gamma_{3} \\
\hdashline \gamma_{1} \gamma_{2} & -\gamma_{3}^{\prime} & -\gamma_{i} \gamma_{3} \\
-\gamma_{1} \gamma_{3} & -\gamma_{2} \gamma_{3} & -\gamma_{3}^{2}
\end{array}\right] .
$$

2. Structure tippe 2, threc-dimensional, rigid-jointed members, equal member cross.section moment of incrtia (Fig. A-2)

Section properties:

$$
\begin{aligned}
A & =\lambda_{1} \\
I & =A_{2} \\
K & =\lambda_{1} .
\end{aligned}
$$

Fig. A-2. Three dimensional rigid-jointed memt,er with equal member cross-section
moment of inertia

Or it

$$
\begin{aligned}
A_{3} & =0 \\
D & =A_{1} \\
T & =A_{2} \\
A & =T(D-T)_{\pi} \\
I & =\frac{\pi}{4}\left(\frac{1}{2} D^{3} T-\frac{3}{2} D^{-} T^{2}+2 D T^{3}-T^{1}\right) \\
K & =2 I
\end{aligned}
$$

Introduce $u_{m 1}=1$. Vector displacements in the axial and trousverse durections at joint p are

$$
\begin{aligned}
& \delta_{1}=\gamma_{1}^{2} \mathbf{x}_{1}+\gamma_{1} \gamma_{2} \mathbf{x}_{2}+\gamma_{1} \gamma_{i} \mathbf{x}_{3} \\
& \delta_{2}=\left(1-\gamma_{1}^{\ddot{2}}\right) \mathbf{x}_{1}-\gamma_{1} \gamma_{2} \mathbf{x}_{2}-\gamma_{1} \gamma_{1} \mathbf{x}_{1}
\end{aligned}
$$

$\delta_{: 2}$ is defined as a vector peipendicular to the plane defined by vectors δ_{1}, ud \mathbf{x}_{1}.

A unit vector normal to δ_{1}
and δ. is

$$
\begin{aligned}
\delta_{i} & =\frac{\delta_{1} \times \delta_{z}}{\left|\delta_{1}\right|!\delta_{z} \mid} \\
& =\frac{\left(\gamma_{1} \gamma_{i} x_{3}-\gamma_{1} \gamma_{11} x_{3}\right)}{\gamma_{1}\left(1-\gamma_{1}^{2}\right)^{1_{2}}} \\
& =\frac{\left(\gamma_{s} x_{2}-\gamma_{2} x_{3}\right)}{\left(1-\gamma_{1}^{2}\right)^{1_{2}}}
\end{aligned}
$$

The vector force exerted on joint p

$$
=\frac{A E}{S} \delta_{1}+\frac{12 E I}{S^{3}} \delta_{2}
$$

and the vector moment at joint p

$$
=\frac{6 E I}{S^{*}}\left(1-y_{1}^{3}\right)^{\prime 2} \delta_{3}
$$

Components of these load vectors are

$$
\begin{aligned}
& f_{\nu 1}=\text { force along } x \text {; axis }=\frac{A E}{S} \gamma_{i}^{2}-\frac{1-E I}{S^{3}}\left(1-\gamma_{i}^{\prime}\right) \\
& f_{i}=\text { force along } x_{1} \text { axis }=\left(\frac{A E}{S}-\frac{12 E I}{S^{3}}\right) y_{1} \%_{2} \\
& f_{b ;}-\text { force along } x_{3} \text { axis }=\left(\frac{A E}{S}-\frac{12 F I}{S^{3}}\right) \times 1 \% \\
& f_{p}=\text { moment about } x_{1} \text { axis }=0 \\
& f_{F}=\text { momeat about } x_{\#} \text { axis }=\frac{6 E I}{S^{z}} \gamma: \\
& f_{1:}=\text { moment about } x_{3} \text { axis }=-\frac{6 E 1}{S^{-z}} ;
\end{aligned}
$$

Similar load components at joint q are

$$
\begin{aligned}
& f_{q 1}=-\frac{A E}{S} \gamma_{1}^{2}-\frac{12 E I}{S^{2}}\left(1-\gamma_{1}^{2}\right) \\
& f_{q 2}=\left(-\frac{A E}{S}+\frac{1 \underline{ }{ }^{2}}{S^{3}}\right) \gamma_{1} \gamma_{2} \\
& f_{q 3}=\left(-\frac{A E}{S}+\frac{12 E I}{S^{3}}\right) \gamma_{1} \gamma_{3} \\
& f_{q 4}=0 \\
& f_{q 5}=+\frac{\epsilon E I}{S^{2}} \gamma_{1} \\
& f_{70}=-\frac{6 E I}{S^{2}} \gamma_{2}
\end{aligned}
$$

The sequired maivix will be written in terms of the quantitics

$$
\begin{aligned}
C_{0} & =\frac{A E}{S} \\
C_{1} & =\frac{E K}{2 S(1+v)} \\
C_{2.1} & =\frac{12 E I}{S^{1}} \\
C_{2 n} & =\frac{6 E I}{S^{2}} \\
C_{2 c} & =\frac{2 E I}{S}
\end{aligned}
$$

$\begin{gathered} C_{n \gamma_{1}^{\prime}}^{1} \\ \div C_{n .(1}\left(1-\gamma_{1}^{\prime}\right) \end{gathered}$		$\left(C_{1,}-C_{2.1}\right)_{\gamma, \%}$	0	$C_{\text {cric. }}$	${ }^{-} C_{z i n}{ }^{\text {r }}$
	$\begin{gathered} C_{n . y}^{z} \\ + \\ +C_{n}^{2}\left(1-\gamma_{z}^{z}\right) \end{gathered}$	$\left(C_{n}-C_{z 1}\right)_{y=\%}$		0	$C_{2 B Y}$
	$\left(C_{0}-C_{2},\right)_{Y} \%$.	$\begin{aligned} & C_{w i z}= \\ & C_{n=1}(1-\gamma \%) \end{aligned}$	C \#\%	${ }^{-} \mathrm{C}_{2 \mathrm{HY}}$	0
0	$-\mathrm{Cum}_{\text {a }}$	$\mathrm{C}_{2 \pi \%}$	$\begin{gathered} C_{1} \gamma_{1}^{\prime} \\ -2 C_{w}(1-\gamma) \end{gathered}$	$\left.{ }_{1} C_{1} \cdots 2 C_{y+1}\right)_{1}$	$\left(C_{1}-2 C_{Y r 1}\right)_{Y \gamma_{1}}$
$C_{n a \%}$	0	$-\mathrm{C}_{2 H \%}$	$\left(C_{1}-2 C_{Y}\right)_{i} \%_{2}$	$\begin{gathered} C_{1} \gamma_{2}^{2} \\ \left.+2 C_{2 r\left(1-\gamma_{2}\right.}^{*}\right) \end{gathered}$	$\left(c_{1}-2 C_{i \prime \prime}\right)_{y=\gamma}$ \%
$-C_{\text {\#tr }}$	$C^{\text {M\% }}$	0	$\left(C_{1}-\underline{2} C_{\text {wr }}\right)_{\text {\%1\% }}$	$\left(C_{1}-2 C_{z r}\right)_{Y=\%}$	$\begin{gathered} C_{1} \gamma_{3}^{2} \\ +2 C_{=}=(1-\gamma) \end{gathered}$
$\begin{aligned} & -C_{0 \gamma_{1}^{\prime}} \\ & -C_{2.4}\left(1-\gamma_{1}^{2}\right) \end{aligned}$	$\left(C_{2.1}-C_{0}\right)_{17 \%}$	$\left(C_{2},-C_{1 .}\right)_{\gamma / \gamma_{3}}$	0	$-C_{\text {Onf }}$	$C_{\text {an }}{ }^{\prime}$
$\left.\left(C_{2.1}-C_{n}\right)_{Y}\right)_{1 \%}$	$\begin{aligned} & -C_{n-y_{3}^{\prime}}^{1} \\ & -C_{n .1}\left(1-Y_{-}^{\prime}\right) \end{aligned}$	$\left(C_{z: ~}-C_{n}\right)_{y=\gamma}$.	$C_{=B \%}$	0	$-C_{2 n}{ }^{1}$
$\left(C_{9.1}-C_{0}\right)_{71 \%}$	$\left(C_{0.1}-C_{4 .}\right)_{\gamma=\%}$	$\begin{aligned} & -C_{n_{1} z_{3}^{\prime}}^{\prime} \\ & -C_{2.1}\left(1-\gamma_{3}^{2}\right) \end{aligned}$	$-C_{2 B Y}$	$\mathrm{C}_{2 \rightarrow \%}$	0
0		$\mathrm{C}_{3 B \gamma_{2}}$	$\begin{aligned} & -C_{11} \gamma_{1}^{z} \\ & +C_{2 c}\left(1-\gamma_{i}^{z}\right) \end{aligned}$		$\left(-C_{1}-C_{2 r}\right)_{\gamma 1 \%}$
$C^{n H / 3}$	0	$-C^{2 \prime} H_{1}$	$\left(-C_{1} \cdots C_{\# \prime}\right)_{1 \% \%}$	$\begin{aligned} & -C_{1} \gamma_{i}^{*} \\ & +C_{y c}\left(1-\gamma_{\ddot{2}}^{*}\right) \end{aligned}$	$\left(-C_{1}-C_{2-r}\right) \% \%$
$-C_{\because n \%}$	$C_{n n \%}$	0	$\left(-C_{1}-C_{1 r}\right)_{Y_{1} \gamma_{3}}$	$\left(-C_{1}-C_{2}\right)_{Y=\%}$	$\begin{aligned} & -C_{1} \gamma_{3}^{\#} \\ & +C_{r c}\left(1-\gamma_{B}\right) \end{aligned}$

3. Strictire type 3, two-dimensional, rigid-jointed members, loaded in-plane (Fig. A-3)

Fig. A-3. Two-dimensional rigid-jointed loaded in-plane member

Section properties:

$$
\begin{aligned}
A & =A_{1} \\
I & =A_{2}
\end{aligned}
$$

or if

$$
\begin{aligned}
A_{3} & =0 \\
D & =A_{1} \\
T & =A_{4} \\
A & =T\left(D-T^{\prime} \pi\right. \\
I & =\frac{\pi}{4}\left(\frac{1}{2} D^{3} T-\frac{3}{2} D T^{2}+B D T^{:}-T^{4}\right)
\end{aligned}
$$

The derivation is similar to that preceding with $\%_{3}=0$.

The matrix is written in terms of

$$
\begin{array}{rlr}
C_{0}=\frac{A L^{\prime}}{S^{-}} & C_{2 B}=\frac{6 E I}{S^{2}} \\
C_{2 A}=\frac{12 E I}{S^{3}} & C_{3}=\frac{2 E I}{S}
\end{array}
$$

Loads at joint p are in the order

$$
\begin{aligned}
& f_{p 1}=\text { force along } x_{1} \text { axis } \\
& f_{p 2}=\text { force along } x_{2} \text { axis } \\
& f_{p 1}=\text { moment about } x_{\mathrm{\imath}} \text { axis }
\end{aligned}
$$

$$
\left[\begin{array}{clc}
C_{0} \gamma_{1}^{2}+C_{2.1}\left(1-\gamma_{3}^{2}\right) & \left(C_{0}-C_{21}\right) \gamma_{1} \gamma_{2} & -C_{2 n \gamma_{2}} \\
\left(C_{0}-C_{2.1}\right) \gamma_{1} \gamma_{2} & C_{0 \gamma_{2}^{2}}+C_{2.1}\left(1-\gamma_{2}^{2}\right) & C_{2 n \gamma_{1}} \\
-C_{2 n \gamma_{2}} & C_{2 n \gamma_{1}} & 2 C_{3} \\
\hdashline-C_{0} \gamma_{1}^{2}-C_{2.1}\left(1-\gamma_{1}^{2}\right) & \left(C_{2.1}-C_{0}\right) \gamma_{1} \gamma_{2} & C_{2 a \gamma_{2}} \\
\left(C_{2.1}-C_{0}\right) \gamma_{1} \gamma_{2} & -C_{0 \gamma_{2}^{2}-C_{2.1}\left(1-\gamma_{2}^{2}\right)} & -C_{2 B \gamma_{1}} \\
-C_{2 n \gamma_{2}} & C_{2 n \gamma_{1}} & C_{3}
\end{array}\right]
$$

4. Structure type 4, twodimensional, rigid-jointed, loaded normal-to-plane (grid) (Fig. A-4)

Section properites:

$$
\begin{aligned}
I & =\mathrm{A}_{3} \\
K & =\mathrm{A}_{3}
\end{aligned}
$$

Fig. A-4. Two-dimensional rigid-iointed loaded normai-to-plane member
or if

$$
\begin{aligned}
A_{3} & =0 \\
D & =A_{1} \\
T & =A_{2} \\
I & =\frac{\pi}{4}\left(\frac{1}{2} D^{3} T-\frac{3}{2}-D^{2} T^{2}+\supseteq D T^{3}-T^{4}\right) \\
K & =2 I
\end{aligned}
$$

Introduce $u_{p 1}=1$. Moment about an axis transverse to the member is of magnitude $6 E I / S^{-}$. Components of load exerted on joints p and q are:

$$
\begin{aligned}
& f_{p 1}=-f_{\eta_{1}}=\text { force in } \mathrm{x}_{3} \text { direction }=\frac{12 E I}{S^{3}} \\
& f_{p 2}=f_{y_{2}}=\text { moment about } x_{1} \text { axis }=\frac{6 E I}{S^{2}} \gamma_{2} \\
& f_{n_{3}}=f_{q_{3}}=\text { moment about } x_{2} \text { axis }=-\frac{6 E I}{S^{2}} \gamma_{1}
\end{aligned}
$$

As before, the matrix is written in terms of the parameters

$$
\begin{aligned}
& C_{1}=\frac{E K}{2 S(1+1)} \\
& C_{2 B}=\frac{6 E I}{S^{2}}
\end{aligned} \quad C_{2.1}=\frac{12 E I}{S^{3}}
$$

Fig. A-5. Three-dimensional rigid-jointed member, doubly symmetric cross-section member
5. Structure type 5, three-dimenaional, rigid-jointed member, doubly symmetrical cross-section (Fig. A-5)

Section properties:

$$
\begin{aligned}
\mathrm{A} & =\mathrm{A}_{1} \\
I_{1} & =\mathrm{A}_{2} \\
I_{2} & =\mathrm{A}_{3} \\
I_{3} & =\mathrm{A}_{1} \\
\text { Joint } r & =\mathrm{A}_{2}
\end{aligned}
$$

Calculate the direction cosine of the vector $\mathbf{p q} \times \mathbf{p r}$ and define the vector to be $\xi_{:}=\xi_{1} \mathbf{x}_{1}-\xi_{2} \mathbf{x}_{2}+\xi_{:} \mathbf{x}_{\text {: }}$ or the I : axis of the member. Using the right-handed coordinate system define the axis of I_{2} to be

$$
\begin{aligned}
\xi_{2}=\frac{\xi_{3} \times \xi_{2}}{\left|\xi_{3}\right| \xi_{1} \mid}= & \mathbf{x}_{1}\left(\xi_{3} \gamma_{1}-\xi_{31} \gamma_{12}\right)+\mathbf{x}_{2}\left(\xi_{1}: \gamma_{1}\right. \\
& \left.-\xi_{17} \gamma_{3}\right)+\mathbf{x}_{3}\left(\xi_{11} \gamma_{2}-\xi_{0} \gamma_{1}\right) \\
= & \mathbf{x}_{1} \beta_{1}+\mathbf{x}_{1} \beta_{2}+\mathbf{x}_{;} \beta_{3}
\end{aligned}
$$

where ξ_{1} is a unit vector along the member.
Introduce $u_{l, 1}=1$. Vector displacements of point p in the member-oriented coordinate system (ξ_{1}) are

$$
\begin{aligned}
& \delta_{1}=\gamma_{1}^{2} \mathbf{x}_{1}+\gamma_{1} \gamma_{2} \mathbf{x}_{2}+\gamma_{1} \gamma_{1} \mathbf{x}_{3} \\
& \delta_{2}=\left(\xi_{21} \gamma_{1}-\xi_{3,1} \gamma_{2}\right)^{2} \mathbf{x}_{1}+\left(\xi_{3} \gamma_{3}-\xi_{3, ~}^{\gamma_{2}}\right)\left(\xi_{13} \gamma_{1}-\xi_{13} \gamma_{3}\right) \mathbf{x}_{2} \\
& +\left(\xi_{01} \gamma_{1}-\xi_{13} \gamma_{2}\right)\left(\xi_{33} \gamma_{2}-\xi_{n} \gamma_{1}\right) \mathbf{x}_{3} \\
& =\beta_{1} \mathbf{x}_{1}+\beta_{1} \beta_{2} \mathbf{x}_{2}+\beta_{1} \beta_{3} \mathbf{x}_{3} \\
& \boldsymbol{\delta}_{3}=\xi_{13}^{2} \mathbf{x}_{1}+\xi_{2,1} \xi_{3} \mathbf{x}_{3}+\xi_{11,} \xi_{33} \mathbf{x}_{3}
\end{aligned}
$$

The vector force exerted. . joints

$$
-q \text { and } p=\frac{A E}{S} \delta_{1}+\frac{12 E I_{3}}{S^{3}} \delta_{2}+\frac{12 E I_{2}}{S^{4}} \delta_{2}
$$

and the vector moment exerted on joints

$$
p \text { and } q=-\frac{6 E I_{\Xi}}{S^{2}} \delta_{.,} \xi_{-} \cdot \frac{6 E I_{-}}{S^{2}} \delta_{-} \xi^{2}
$$

Components of these load vectors are:

$$
\begin{aligned}
& f_{F 1}=-f_{y i}=\text { force along } x_{1} \text { axis }-\frac{A E}{S} \gamma_{1}^{\prime}+\frac{19 E I_{i}}{S^{3}}\left(E_{2} \gamma_{3} \cdots y_{1} y_{1}\right)^{\prime \prime} \\
& +\frac{12 E I_{2}}{S^{3}} \\
& f_{p_{2}=}=-f_{y_{2}}=\text { force along } x_{2} \text { axis }=\frac{A E}{S} \gamma_{1} \gamma_{2}+\frac{12 E I_{2}}{S^{i}}\left(\sigma_{2}-\xi_{s} y_{1}\right) \\
& \times\left(\xi_{33} \gamma_{1}-\xi_{13} \gamma^{\prime}\right)+\frac{12 E I_{2}}{S^{3}} \xi_{13} \xi_{21} \\
& \hat{f}_{p 3}=-f_{t_{3}}=\text { force along } x_{3} \text { axis }=\frac{A E}{S} \gamma_{1} \gamma_{3}+\frac{12 E I_{2}}{S^{3}}\left(\xi_{2.1} \gamma_{4}-\xi_{1,} \gamma_{2}\right) \\
& \times\left(\xi_{1: 3} \gamma_{2}-\gamma_{1}\right)+\frac{12 E I_{2}}{S^{3}} \xi_{1:} \xi \\
& f_{m}=+f_{n_{4}}=\text { moment about } x_{1} \text { axis }=\xi_{11}\left(\xi_{2 x} \gamma_{4}-\xi_{: 1} \gamma_{2}\right)\left(\frac{6 E I_{3}}{S^{-2}}-\frac{6 E I_{2}}{S^{2}}\right) \\
& f_{p 5}=f_{4: 5}=\text { moment about } x_{2} \text { axis }=-\frac{6 E I_{2}}{\rho_{2}^{2}} \xi_{: ~}\left(\xi_{n: 3} \gamma_{1}-\xi_{13} \gamma_{3}\right) \\
& +\frac{6 E I_{32}}{S^{2}} \xi_{i s}\left(\xi_{3 ;} \gamma_{3}-\xi_{33} \gamma_{2}\right) \\
& f_{p 6}=f_{y_{i}}=\text { moment about } x_{i} \text { axis }=-\frac{6 E I_{2}}{S^{2}} \xi_{13}\left(\xi_{1,3} \gamma_{2}-\xi_{2:} \gamma_{1}\right) \\
& +\frac{6 E I_{3}}{S^{*}} \xi_{m, 3}\left(\xi_{m, i} \gamma_{\%}-\xi_{m} \gamma_{2}\right)
\end{aligned}
$$

The stiffness matrix is written in terms of the parameters

$$
\begin{array}{ll}
C_{1}=\frac{6 E I_{2}}{S^{2}} & K_{1}=\frac{2 E L_{2}}{S}=\frac{L_{1}}{2} \\
C_{2}=\frac{6 E I_{3}}{S^{2}} & K_{3}=\frac{2 E I_{3}}{S}=\frac{L_{2}}{2} \\
C_{4}=\frac{E I_{1}}{2 S(1+v)} & K_{4}=\frac{12 E I_{2}}{S^{3}} \\
C_{4}=\frac{A E}{S} & K_{1}=\frac{12 E I_{3}}{S^{3}}
\end{array}
$$

$\begin{aligned} & C_{\gamma_{1}^{2}}^{2}+K_{1} \beta_{1}^{z} \\ + & K_{3} \xi_{i 1} \end{aligned}$	$K(2,1 . \mu)$	$K(3,1, p)$	$K(4,1, p)$	$K(5,1, p)$	$K(6,1, p)$
$\begin{aligned} & C_{1} y_{1} y_{2}+K_{1} \beta_{1} \beta_{2} \\ & +K_{1} \varepsilon_{1} \varepsilon=: \end{aligned}$	$\begin{aligned} & C_{1} \gamma_{=}^{2}+K_{4} \beta_{2}^{3} \\ + & K_{3} 5_{3}^{2} \end{aligned}$	$K(3,2, p)$	$K(4,2, p)$	$K(5, \Omega, p)$	$K(6,2, p)$
$\begin{aligned} & \quad C_{1} \gamma_{1} \gamma_{i}+K_{1} \beta_{1} \beta_{;} \\ & +K_{3} \xi_{1} \xi_{m} \end{aligned}$		$\begin{aligned} & C_{4} y_{3}^{2}+K_{4} \beta_{3}^{z} \\ & +K K_{3}^{e} \end{aligned}$	$K(4,3, p)$	$K(5,3, p)$	$K(6,3, p)$
$\hat{C}_{11} \beta_{1}\left(C_{2} \cdot C_{1}\right)$	$C_{1} E_{1} \beta_{1}+C_{2 j} j_{2} k_{1}$	$C_{2} \xi_{1.1} \beta_{3}-C_{1} \xi_{33} \beta_{1}$	$\begin{aligned} & C_{3} \gamma_{1}^{2}+L_{i} \xi_{13}^{z} \\ + & L_{4}^{2}, \beta_{1}^{2} \end{aligned}$	$K(5,4, p)$	$K(6,4, p)$
$-C_{1} \xi_{1} \beta_{2}+C_{2} t_{43} \beta_{1}$	$\xi_{3} \beta_{2}\left(C_{2}-C_{5}\right)$	$\begin{aligned} & -C_{1} \xi_{s,} \beta_{2} \\ & +C_{5} \xi_{35} \beta_{3} \end{aligned}$	$\begin{aligned} & C_{3} \gamma_{1} \gamma_{2}+L_{4} \xi_{13} \xi_{23} \\ + & L_{1} \beta_{1} \beta_{2} \end{aligned}$	$\begin{aligned} & C_{3} \gamma_{3}^{\#}+L_{E} \xi_{2}^{\#} \\ + & L_{1} \beta_{2}^{2} \end{aligned}$	$K(6,5, p)$
$\begin{array}{r} \mathcal{O}_{1} \xi_{1}, \beta_{4}, \\ +\quad+\xi_{13} \beta_{1} \end{array}$	$\begin{aligned} & -C_{1} \xi_{33} \beta_{3} \\ & +C_{2} \beta_{2} \xi_{33} \end{aligned}$	$\xi_{n} \beta_{4}\left(C_{2}-C_{1}\right)$	$\begin{aligned} & C_{3} \gamma_{1} \gamma_{3}+L_{2} \xi_{13} \xi_{33} \\ & \therefore L_{1} \beta_{1} \beta_{3} \end{aligned}$	$\begin{aligned} & C_{4} \gamma_{*} \gamma_{3}+L_{4} \xi_{2 s} \xi_{: 3} \\ + & L_{1} \beta_{2} \beta_{3} \end{aligned}$	
$-K_{1} 1,1,{ }_{1}$,	$-K(2.1 . p)$	$-K(3,1, p)$	$-K(4,1, p)$	$-K(5,1, p)$	$-K(6,1, p)$
-K(2, $1, p$)	$-K(2,2, p)$	$-K(3,2, p)$	$-K(4,2, p)$	$-K(5,2, p)$	$-K(6,2, p)$
-K(3, $1, p$)	- $K(3,2, p)$	$-K(3,3, p)$	$-K(4,3, p)$	$-K(5,3, p)$	$-K(6,3, p)$
K(4, $1, p$)	$K(4,2, p)$	$K(4,3, p)$	$\begin{aligned} & -C_{3} \gamma_{1}^{2}+K_{2} \xi_{1 ; 3}^{n} \\ & +K_{1} \beta_{1}^{\prime 2} \end{aligned}$	$\begin{aligned} & -C_{i \gamma 1} \gamma_{2}+K_{2 \xi_{1}, \varepsilon_{\mathrm{a}}} \\ & +K_{1} \beta_{1} \beta_{2} \end{aligned}$	$\begin{aligned} & x-C_{3,} \gamma_{1} \gamma_{3}+K_{2} \xi_{13} \varepsilon_{33} \\ & +K_{1} \beta_{1} \beta_{3} \end{aligned}$
$K(5,1, p)$	$k(5,2, p)$	$K(5,3, p)$	$\begin{aligned} & -C_{; ~}^{7}, \gamma_{2}+K_{z} \xi_{13} \xi_{23} \\ & +K_{1} \beta_{1} \beta_{2} \end{aligned}$	$\begin{aligned} & -C_{3} \gamma_{=}^{2}+K_{3} \xi_{23}^{v} \\ & +K_{1} \beta_{2}^{2} \end{aligned}$	$\begin{aligned} & -C_{3} \gamma_{y} \gamma_{3}+K_{0} \xi_{23} \xi_{33} \\ & +K_{1} \beta_{2} \beta_{3} \end{aligned}$
$K(6,1, p)$	$K(6,2, p)$	$K(6,3, p)$	$\begin{aligned} & -C_{3} \gamma_{1} \gamma_{3}+K_{2} \xi_{1} \xi_{1} \\ & +K_{1} \beta_{1} \beta_{3} \end{aligned}$	$\begin{aligned} & -C_{r} \gamma_{1}, \gamma_{3}+K_{3} \xi_{m} \varepsilon_{n} \\ & +K_{1} \beta_{3} \beta_{3} \end{aligned}$	$\begin{aligned} & -C_{: r} y_{1}^{2}+K_{r} \xi_{33}^{4} \\ & +K_{1} \beta_{3}^{2} \end{aligned}$

APPENDIX B

Loads for Various Member Types

Expressions for member loads are developed, using the geemetrical parametcrs of Section III and the joint deflections in the order specified in Section III A-5.

1. Structure type 1, three-dimensional, pin-jointed members, axial extension of the member is

$$
\delta_{1}=\left(u_{q_{1}}-u_{p_{1}}\right) \gamma_{1}+\left(u_{q 2}-u_{p_{1}}\right)_{\gamma_{2}}+\left(u_{q_{3}}-u_{p 3}\right) \gamma_{3}
$$

The axial load is computed and output for each loading on each member in pound units, tension positive:

$$
P=\frac{A E}{\mathrm{~S}} \delta_{1}
$$

2. Structure type 2, three-dimensional, rigid-jointeä members, equal member cross-section moment of inertia

A member-oriented coordinate system is defined as follows:

$$
\begin{aligned}
\xi_{1}= & \text { unit vector along member axis } \\
= & \gamma_{1} \mathbf{x}_{1}+\gamma_{2} \mathbf{x}_{2}+\gamma_{3} \mathbf{x}_{3} \\
\xi_{2}= & \text { unit vector normal-to-plane of } \xi_{1} \text { andi } \mathbf{x}_{1} \\
& \left(\text { or } \mathbf{x}_{2} \text { if } \xi_{1}=\mathbf{x}_{1}\right) \\
= & \frac{\xi_{1} \times \mathbf{x}_{1}}{\mid \xi_{1} \times \mathbf{x}_{1}} \\
= & \frac{\left(\gamma_{3} \mathbf{x}_{2}-\gamma_{2} \mathbf{x}_{3}\right)}{\left(\gamma_{3}^{2}+\gamma_{2}^{2}\right)^{1 / 2}} \\
\xi_{3}= & \text { unit vector normal-to-plane of } \xi_{1} \text { and } \xi_{2:} \\
= & \xi_{1} \times \xi_{2} \\
= & \frac{-\left(\gamma_{2}^{2}+\gamma_{3}^{2}\right) \mathbf{x}_{1}+\gamma_{2} \gamma_{1} \mathbf{x}_{2}+\gamma_{1} \gamma_{3} \mathbf{x}_{3}}{\left(\gamma_{2}^{2}+\gamma_{3}^{2}\right)^{2 / 2}}
\end{aligned}
$$

Net displacement components in the ξ_{i} directions are

$$
\begin{aligned}
& \delta_{10}=\left[\left(u_{q 1}-u_{p}\right) \mathbf{x}_{1}+\left(u_{q 2}-u_{p 2}\right) \mathbf{x}_{2}+\left(u_{q 3}-u_{p 3}\right) \mathbf{x}_{3}\right] \cdot \xi_{1} \\
& \delta_{20}=\left[\left(u_{q 1}-u_{p 1}\right) \mathbf{x}_{1}+\left(u_{q 2}-u_{p: 3}\right) \mathbf{x}_{2}+\left(u_{q ; 3}-u_{p 3}\right) \mathbf{x}_{1}\right] \cdot \xi_{y} \\
& \delta_{s 11}=\left[\left(u_{q 1}-u_{p 11}\right) \mathbf{x}_{1}+\left(u_{q 2}-u_{p 2}\right) \mathbf{x}_{2}+\left(u_{q 3}-u_{p 3}\right) \mathbf{x}_{3}\right] \cdot \xi_{3}
\end{aligned}
$$

Net torsional rotation is

$$
\delta_{w}=\left[\left(u_{q 1}-u_{p 4}\right) \mathbf{x}_{1}+\left(u_{q ;}-u_{\mu_{5}}\right) \mathbf{x}_{2}+\left(u_{q 4}-u_{p u}\right) \mathbf{x}_{2}\right] \cdot \xi_{1}
$$

Transverse rotations of each end are

$$
\begin{aligned}
& \delta_{p ; 5}=\left(u_{p, 4} \mathbf{x}_{1}+u_{p ;} \mathbf{x}_{\underline{2}}+u_{p ;} \mathbf{x}_{: 3}\right) \cdot \xi_{2} \\
& \delta_{p ; 3}=\left(u_{p 1} \mathbf{x}_{1}+u_{p ;} \mathbf{x}_{2}+u_{p ; ;} \mathbf{x}_{2}\right) \cdot \xi_{: 3} \\
& \delta_{q ; 5}=\left(u_{q 1} \mathbf{x}_{1}+u_{q ;} \mathbf{x}_{2}+u_{q ;} \mathbf{x}_{3}\right) \cdot \xi_{2} \\
& \delta_{q ;}=\left(u_{\eta ;} \mathbf{x}_{1}+u_{q ;} \mathbf{x}_{2}+u_{q ;} \mathbf{x}_{3}\right) \cdot \xi_{3}
\end{aligned}
$$

Moments about the transverse axes are

$$
\begin{aligned}
& M_{p 2}=\frac{-2 E I}{S}\left(2 \delta_{j, 5}+\delta_{q: 5}+\frac{3 \delta_{3 m}}{S}\right) \\
& M_{p ; i}=\frac{2 E I}{S}\left(-2 \delta_{p ;}-\delta_{4 ;}+\frac{3 \delta_{3,}}{S}\right) \\
& M_{q z}=\frac{-2 E I}{\mathrm{~S}}\left(2 \delta_{q ;}+\delta_{p ;}+\frac{3 \delta_{5 i}}{\mathrm{~S}}\right) \\
& M_{43}=\frac{2 E I}{S}\left(-2 \delta_{46 \mathrm{i}}-\delta_{p 6}+\frac{3 \delta_{30}}{S}\right)
\end{aligned}
$$

The following quantities are output, in order, for each member:

$$
\begin{aligned}
P & =\text { axial load } \\
& =\frac{A E}{S} \cdot \delta_{11} \\
M_{p} & =\text { resultant bending moment at } p \\
& =\left(M_{p,}^{2}+M_{p ; 3}^{2}\right)^{1 / 2} \\
M_{q} & =\text { resultant bending moment at } q \\
& =\left(M_{q 2}^{2}+M_{q ; 3}^{2}\right)^{1 / 2} \\
M_{t} & =\text { twisting movement } \\
& =\frac{K E}{2 S(1+\nu)} \delta_{10} \\
V_{p} & =\text { resultant shear at } p \\
& =\frac{1}{S}\left[\left(M_{p 2}+M_{q ;}\right)^{2}+\left(M_{p 3}+M_{q 3}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

3. Structure type 3, two-dimensional, rigid-jointed members, loaded in-plane

Axial extension of the member is

$$
\delta_{1}=\left(u_{q_{1}}-u_{p_{1}}\right) \gamma_{1}+\left(u_{q_{2}}-\gamma_{p_{2}}\right) \gamma_{2}
$$

Net transverse deflection of member is

$$
\delta_{i}=-\left(u_{q_{1}}-u_{p_{1}}\right) \gamma_{2}+\left(u_{q 2}-u_{p 2}\right) \gamma_{1}
$$

The following quantities are output, in order, for each member:

$$
\begin{aligned}
M_{p} & =\text { bending moment at } p \\
& =\frac{2 E I}{S}\left(2 u_{p, t}+u_{q}-\frac{3 \delta_{i}}{S}\right) \\
B u_{q} & =\text { bending moment at } q \\
& =\frac{2 E I}{S}\left(2 u_{q 3}+u_{p: \mathrm{a}}-\frac{3 \delta_{i}}{S}\right) \\
V_{p} & =\text { shear aí } p \\
& =-\frac{1}{S}\left(M I_{p}+M_{q}\right) \\
P & =\text { axial load } \\
& =\frac{A E}{S} \delta_{1}
\end{aligned}
$$

4. Structure typ? 4, two-dimensional, rigid-jointed, loaded normal-to-plane (grid)

Net transverse displacement (normal-to-plane) is

$$
\delta_{3}=u_{q 1}-u_{p 1}
$$

net axial rotation is

$$
\delta_{1}=\left(u_{q_{1}-}-u_{p 2}\right) \gamma_{1}+\left(u_{q_{1}, 3}-u_{p_{3}}\right)_{\gamma_{2}}
$$

Transverse rorations of the ends are

$$
\begin{aligned}
& \delta_{p 2}=-u_{q 2} \gamma_{2}+u_{13} \gamma_{1} \\
& \delta_{q 2}=-u_{q_{2}} \gamma_{2}+u_{q_{3}} \gamma_{1}
\end{aligned}
$$

The following quantities are output, in order, for each member:

$$
\begin{aligned}
M_{p} & =\text { bending moment at } p \\
& =\frac{2 E I}{S}\left(2 \delta_{p:!}+\delta_{q z}-\frac{3 \delta_{n}}{S}\right) \\
M_{q} & =\text { bending moment at } q \\
& =\frac{2 E I}{S}\left(2 \delta_{q 2}+\delta_{p 2}-\frac{3 \delta_{i}}{\mathrm{~S}}\right) \\
M_{t} & =\text { twisting moment } \\
& =\frac{E K}{2 S(1+v)} \delta_{1} \\
V_{p} & =\text { shear at } p \text { (nomal-to-plane) } \\
& =-\frac{1}{S}\left(M M_{p}+M_{q}\right)
\end{aligned}
$$

5. Structure type 5, three-dimensional, rigid-jointed member, doubly symmetric, cross-section

A member-oriented :oordinate system is defined as follows:

$$
\begin{aligned}
\xi_{1}= & \text { unit vector along member axis }=\gamma_{1} \mathbf{x}_{1}+\gamma_{2} \mathbf{x}_{2}+\gamma_{3} \mathbf{x}_{3} \\
\xi_{2}= & \text { unit vector normal-to-planc of } \xi_{1} \text { and } \xi_{3} \\
= & \xi_{:} \times \xi_{1}=\left(\xi_{3} \gamma_{3}-\xi_{13} \gamma_{2}\right) \mathbf{x}_{1}+\left(\xi_{n 1} \gamma_{1}-\xi_{13} \gamma_{1}\right) \mathbf{x}_{2} \\
& \div\left(\xi_{1}, \gamma_{2}-\xi_{33} \gamma_{1}\right) \mathbf{x}_{3}=\beta_{1} \mathbf{x}_{1}+\beta_{2} \mathbf{x}_{2}+\beta_{3} \mathbf{x}^{2}
\end{aligned}
$$

$\begin{aligned} \varsigma_{4}= & \text { unit vector normal-to-plane of } \xi_{1} \text { and } \operatorname{pr}(p \text { is first joint of mem- } \\ & \left.\text { ber and } r \text { is an inputed joint not on } \xi_{1}\right)=\xi_{13} \mathbf{x}_{1}+\xi_{23} \mathbf{x}_{2}+\xi_{33} \mathbf{x}_{3}\end{aligned}$

Net displacement components in the ξ_{1} directions are

$$
\begin{array}{r}
\delta_{i 11}=\left[\left(u_{\ell 1}-u_{p 1}\right) \mathbf{x}_{\mathbf{i}}+\left(u_{q, 2}-u_{p, 2}\right) \mathbf{x}_{2}+\left(u_{q 3}-u_{p 3}\right) \mathbf{x}_{3}\right] \cdot \xi_{i} \\
(i=1,2,3)
\end{array}
$$

Net torsion rotation is

$$
\delta_{4}=\left[\left(u_{q_{4}}-u_{p 4}\right) \mathbf{x}_{1}+\left(u_{q ;}-u_{p i}\right) \mathbf{x}_{2}+\left(u_{q_{i} ;}-u_{m_{m}}\right) \mathbf{x}_{3}\right] \cdot \xi_{1}
$$

Transverse rotations of each enci are

$$
\begin{aligned}
& \delta_{p i}=\left(u_{p,} \mathbf{x}_{1}+u_{p i} \mathbf{x}_{2}+u_{p,} \mathbf{x}_{\mathbf{r}}\right) \cdot \xi_{i}(i=2,3) \\
& \delta_{q i}=\left(u_{q} ; \mathbf{x}_{1}+u_{q ;} \mathbf{x}_{3}+u_{q ; i} \mathbf{x}_{3}\right) \cdot \xi_{i}(i=2,3)
\end{aligned}
$$

Noments about the transverse axes are

$$
\begin{aligned}
& M_{m:}=\frac{2 E I_{2}}{S}\left[2 \delta_{p ;}+\delta_{q ;}+-\frac{3 \delta_{m}}{S}\right] \\
& M_{p 3}=-\frac{2 F l_{3}}{S}\left[2 \delta_{m ;}+\delta_{q ;}-\frac{3 \delta_{20}}{S}\right] \\
& M_{4, ~}=\frac{2 E I_{2}}{S}\left[2 \delta_{q ; 5}+\delta_{\mu 5}+\frac{3 \delta_{m}}{S}\right] \\
& M_{4,}=\frac{2 E I_{3}}{S}\left[2 \delta_{q,}+\delta_{p m}-\frac{3 \delta_{20}}{S}\right]
\end{aligned}
$$

Shears along the transverse axes are:

$$
\begin{aligned}
& V_{p_{2}}=-V_{q_{2}}=\left[M_{p: 3}+M_{q_{1}}\right] / S \\
& V_{p,}=-V_{q_{3}}=-\left(M_{p 2}+M_{q_{2}}\right) / S
\end{aligned}
$$

The following cuantities a.e output, in order, for each member:

$$
\begin{aligned}
& P=\text { axial load }=-\frac{A E}{S} \delta_{1 \prime} \\
& M_{p, 3}, M_{q^{\prime}}, M_{q 2}, M_{q,}=\text { momenls at joints } p \text { and } q \\
& M_{t}=\text { (wisting moment }=\frac{I_{1} E}{2 S(1-\eta)} \delta_{1 n} \\
& V_{p,}, V_{q,}, V_{p, i}, V_{q,}=\text { sitcars at joints } p \text { and } q
\end{aligned}
$$

A.PPENDIX ©

Thermal Loads for \forall urious Member Types

The analysis method is outlined in II-G. The equation used to calcu:ate the loading in a member with the ends fixed in-space will be calculated.

1. Structure type I, three-dimensicnai, pin-jointed members (Fig. C-1)

Fig. C-1. Three-dimensional pin-jointed member

Thermal input

$$
\alpha \Delta T=A .
$$

where

$$
\begin{aligned}
u= & \text { coefficient of thermal expansion } \\
\lambda T= & \text { change of temperature of entire incmher: positive } \\
& \text { if increase in temprature }
\end{aligned}
$$

Forse components at joints p and q are

$$
\begin{aligned}
& f_{p 1}=-f_{q_{1}}=E \lambda \gamma_{1} \alpha \Delta T \\
& f_{p: 2}=-f_{q_{2}}=E A \gamma_{2} \alpha \Delta T \\
& f_{m: 3}=-f_{q_{1}}=E A \gamma_{3} a \Delta T
\end{aligned}
$$

2. Structure type 2, three-dimensional, rigid-jointed members, * , wal member cross-section moment of inertia

The equations are identical to structure Type 1.
3. Structure type 3, two-dimensional, rigid-jointed members, loaded in-plane (Fig. C-2)

Thermal inputs:

$$
\begin{aligned}
\alpha \Delta T & =\mathrm{A}_{\mathrm{i}} \\
-\frac{\alpha \delta T}{h} & =\mathrm{A}_{\mathrm{i}}
\end{aligned}
$$

Fig. C-2. Two-dimensional rigid-jointed loaded in-plane member
where
$u=$ coefficient of thermal expansion
$\Delta T=$ change of temperature of entire member; positive if increass in temperature
$\delta T=$ temperature gradient through member cross-section: positive if the unrestrained rotation of joint p is in positive $x_{\text {, }}$ direction

$$
h=\text { height of cross-section }
$$

Force components at joints p and q are

$$
\begin{aligned}
& f_{i 1}=-f_{n_{1}}=E A_{y_{i}}: \Delta T \\
& f_{u z}=-f_{q z}=E A_{y z} \alpha \Delta T
\end{aligned}
$$

Homent component at p and q are

$$
f_{p}:=-f_{\psi}=\frac{E I a \delta T}{h}
$$

4. Structure type 4, two-dimeusional, risid-jointed, loaded normal-to-plane (grid) (Fig. C-3)

Thermal input

$$
\frac{\alpha \delta T}{h}=A
$$

Fig. C-3. Two-dimensional rigid-jointed loaded
normal-to-plane member
where

$$
\begin{aligned}
\alpha= & \text { coefficient of thermal expansion } \\
\delta T= & \text { thermal gradient through the member; positive } \\
& \text { if gradient increases in positive } \mathbf{x}_{3} \text { direction } \\
h= & \text { height of cross-section }
\end{aligned}
$$

Moment component at joints ρ and q are

$$
\begin{aligned}
& f_{p 1}=-f_{q 1}=-\gamma_{2} \frac{E \operatorname{Ia} \delta T}{h} \\
& f_{p 2}=-f_{q_{2}}=\gamma_{1} \frac{E \operatorname{Ia} \delta T}{h}
\end{aligned}
$$

5. Structure type 5, three-dimensional, rigid-jointed member, doubly symmetric cross-section

The equations are identical to structure Type 1.

APFENDIX D

Example Problem

The option-1 sample problem chosen is shown in Fig. D-1.

Fig. D-ו. Example problem


```
INPUI gaina
STIFFMESS
alx anatysis phoblem sapple
```



```
soini CCunoina
\(-\operatorname{Joint}\)
\(\vdots\)
```



``` Lume A-ten heading input \(=005404\)
```


$\begin{array}{cc}-0 . & -0 . \\ -0.3435 s e & 04 \\ 0.0 & -0.0 \\ 0.0\end{array}$
$-1.30000 f$ OH -0.

sotir	xi-dinectick
	0.
2	26.8421
3	-11.3485
4	-0.0000
6	
7	Q.000
${ }^{8}$	-0.0000
9	26.4749
10	-19.4899
11	16.0524
12	-28.4830
13	0.0000

xe-direcition	x3-directiun
17.3077	-87.6934
17.3077	-132.8914
-21.7193	122.0001
-12.9962	98.3046
ก.n000	0.0000
-0.0000	-0.0000
0.0000	-0.000n
-0.0000	0.0nuo
-0.0000	-0.040
-0.0000	0.0008
0.0000	0.0008
0.7000	-0.0000
0.0000	-0.0000

0.577419111-07	U. $22521519 \mathrm{~F}-07$	-0.29080bree-08	0.30232764E-06	- 09999999E 0:	-0.29480255E-07
0.2459b379t-06	-0.1217e00er-0s	-0.24981441E-06	-0.15769943E-07	-0.3350<293E-07	0.09999999E 01
leneralileu heicht matkix					
$0.55893906 E 02$	0. $33.993274 L-07$	0.24214387E-06	-6. $7803342 \mathrm{E}-06$	-0.40978193E-97	-0.14062972E-06
0.33073274E-87	0.23096367E 02	-0.14505806E-07	0.554;9354E-07	0.74505808E-07	-0.1117¢871f-06
$0.24214397 t-06$	-0. $74505806 \mathrm{E}-07$	0. 889525168 Uz	-0.59604645 c-07	-0.14901161E-06	-0.119209>9E-06
-0.10803342c-06	0. $55689354 \mathrm{E}-07$	-0.59604845t-07	0.98017911E 02	0.52899122E-06	0.3725- 0 1E-6.
-0.409/81936-07	0.74505606f-07	-0.14901161f-06	0.52899122E-06	0.41148349E $\overline{02}$	
-0.140029nt-06	0.11775871F-06	-0.1192u929k-n6	0.37252903E-07	-0.10430813E-06	0.57725675E 02
normaliled meight matrix					
0.09999899501	$0.44610334 \mathrm{E-09}$	0.39004572E-08	-0.14595629E-08	-0.85443562E-09	-0.24757682E-08
$0.946163342-09$	9.0999494-VE O1	-0.18659y39E-08	0. $11744291 \mathrm{E}-08$	0.2416H956E-08	0. 30607300E-08
0.39004S/2t-08	-0.18689939F-08	0.0999799701	-0.72502338E-09	'-0.27975918E-08	-0.18895144F-08
-0.14595624F-08	$0.11744291 \mathrm{t}-98$	-0.72502338E-09	0.09949499E 01	ก.83298151E-08-	0.495248178-09
-0.85444562E-09	3.24168956E-08	-0.27975918E-08	0.83298151E-38	0.09999999E 01	-0. $21402931 \mathrm{E}-08$
-0.2475 fbe $2 \mathrm{E}-08$	0.30601300F-08	-0.18895144t-08	0.49524817E-09	-0.21402931E-08	0.09999999501
time arier urnapic pisplacements $=$ ocst22					

ACKNOWLEDGMENT

The problem was programmed by J. Heath and L. Schmele of the Computer Applications Section (JPL).

