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PAYLOAD OPTIMIZATION OF MULTISTAGE LAUNCH VEHICLES 

by Fred Teren and  Omer F. Spur lock  

Lewis Research Center 

SUMMARY 

The methods of the calculus of variations a r e  used to maximize payload capability for 
multistage launch vehicles. The method of solution uses  the Lagrange multipliers to de- 
termine the optimum thrust direction profile, as well as to construct partial derivatives 
of payload with respect to the stage propellant loadings and a booster steering parameter.  
These derivatives a r e  used to terminate the stages and/or as terminal equations to be 
satisfied. Maximum payload can thus be achieved with a single solution, rather than 
with a family of parametric results.  Constant thrust and specific-impulse operation is 
assumed for each upper stage (booster thrust and specific impulse vary with atmospheric 
pressure), and structure weight can be either fixed or a linear function of the stage pro-  
pellant loading. Two-dimensional flight in a central, inverse-square gravitational field 
is assumed. 

circular orbit and Earth escape, respectively. 
compared with the overall optimum solution obtained by use  of the variational technique. 

Numerical results a r e  presented for two- and three-stage launch vehicles flown to 
Parametr ic  results a r e  presented and 

INTRO DU CTlON 

A problem that frequently a r i s e s  in trajectory optimization studies is that of deter-  
mining the maximum payload capability of a multistage launch vehicle flown to a pre-  
scribed set  of burnout conditions. E all vehicle parameters  a r e  specified, the problem 
reduces to that of finding the optimum steering profile. In many cases,  however, not all 
these parameters are specified, and those left unspecified can be varied to maximize 
payload. 

the propulsion system (thrust and propellant flow rate) is specified, but some or all the 
stage propellant loadings a r e  left unspecified. The unspecified propellant loadings gen- 
erally can be varied to achieve maximum payload capability for the vehicle. 

A typical situation that occurs in the design of future launch vehicles is one in which 



An additional optimizing parameter frequently is available in the booster steering 
program. Since the booster stage operates in the atmosphere, the booster thrust direc-  
tion profile is shaped to minimize aerodynamic heating and loads and is not available for 
complete optimization. A single degree of freedom remains,  however, corresponding to 
the magnitude of a short  pitchover phase following the initial vertical r i s e .  This degree 
of freedom, sometimes called the booster kick angle, determines the amount of trajectory 
lofting during boost phase. Since the upper stages operate essentially under vacuum con- 
ditions, the steering program for these stages is available for complete optimization. 

propellant loadings of multistage vehicles. None of these authors, however, has  at- 
, tempted to optimize the steering program for these vehicles. Others (e. g . ,  refs.  8 

to 10) have used the calculus of variations to optimize the steering program for various 
rocket vehicles. In particular, reference 11 t rea t s  the problem of optimizing the s t ee r -  
ing program of a multistage launch vehicle. Reference 11, however, does not consider 
the problem of optimizing the stage propellant loadings or  booster kick angle. 

Recently, Mason, Dickerson, and Smith (ref. 12) have considered the problem of 
simultaneously optimizing the steering program and the stage propellant loadings of a 
multistage launch vehicle. These authors followed the approach of Denbow (ref. 13) and 
Hunt and Andrus (ref. 14) in formulating the variational problem. 

which allows the propellant loadings, booster kick angle, and upper -stage steering pro-  
gram to be simultaneously optimized. The variational approach is somewhat different 
f rom that used in reference 12. 
functional is written as the sum of the final payload and a constraint integral for each of 
the upper stages. The resulting boundary equations supply partial derivatives of payload 
with respect to the unspecified parameters .  These derivatives a r e  then used, along with 
the required burnout conditions, as terminal equations to be satisfied. The analysis does 
not require that all the stage propellant loadings (or booster kick angle) be optimized. 
Equations a r e  developed for optimizing payload with respect to any combination of un- 
specified parameters .  

The variational equations for optimizing vehicle parameters  have been incorporated 
into a digital computer program used previously at Lewis for parametric launch-vehicle 
studies. This computer program is not discussed in detail; however, numerical results 
a r e  presented for two- and three-stage launch vehicles flown to circular orbit and Earth 
escape, respectively, to demonstrate the feasibility of the variational approach. Para- 
metric results a r e  presented showing the variation of payload with propellant loadings 
and booster kick angle. The resulting payload envelopes a r e  then compared with the over- 
all optimum points generated directly by means of the variational technique in order to 
verify the equations. Along with the results, the procedures used to obtain numerical 

Many authors (e.g., refs.  1 to 7) have treated the problem of optimizing the stage 

The present report  was written concurrently with reference 12 and presents a method 

By following the method of reference 15, the maximizing 
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results a r e  briefly discussed. 

ANALY S I S  

The problem to be solved is to determine the maximum payload capability of an 
N-stage launch vehicle flown to a specified set  of burnout conditions. The analysis admits 
atmospheric effects during booster phase but assumes vacuum operation for all other 
stages. Because of these atmospheric effects, the booster steering program is assumed 
completely specified (e. g. , zero angle of attack), except for the booster kick angle. The 
upper-stage steering program, however, is unconstrained and is determined to maximize 
payload. The calculus of variations is used for this purpose. 

and propellant flow rate .  These values may be zero, so that coast phases are admitted. 
The structure mass  for each stage is assumed to be a function of the stage propellant 
loading, defined by 

Each of the upper stages is assumed to operate at a fixed (constant) value of thrust 

P 
m S = m H + k m  

where ms is the total structure mass ,  mH is the fixed mass ,  m 
lant mass,  and k is the propellant sensitive mass  fraction. (All symbols a r e  defined in 
appendix A. ) 

tional velocity increment AvI after the desired orbit conditions a r e  achieved. This ve- 
locity increment is achieved by use  of the final stage fo r  propulsion. The amount of pro-  
pellant required for this maneuver is calculated by use  of the standard impulsive velocity 
equations. 

is the stage propel- P 

In addition to the variational trajectory, provision is also made fo r  adding an addi- 

Var ia t ional  Problem 

Since the booster steering program is not subject to complete optimization, the 
booster stage is not treated in the following Euler-Lagrange equations. The booster de- 
grees  of freedom (propellant loading and kick angle) are included by allowing variations 
in the position and velocity at second-stage ignition. The associated equations, along 
with the equations for optimizing upper -stage propellant loadings, a r e  treated in the 
boundary equations resulting from the variational analysis. 

gram which maximizes the payload capability of an N-stage launch vehicle for given 
boundary conditions. 

The variational problem to be solved is that of finding the upper-stage thrust pro-  

This problem can be formulated as a generalized Bolza problem. 
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By following the treatment in reference 15, 
the functional to be minimized can be 
written as 

Local hor izontal  J = g +  Tpi Fi dt (1 1 
i=2 5-1 

where g is a function of initial and final 
conditions to be minimized and F. con- 
s i s t s  of a set  of constraints to be applied to 
each of the upper stages, added together 
with the aid of Lagrange multipliers. For  

1 

this problem, the payload is to be  maxi- 
mized, so that 

PL Figure 1. - Definit ion of problem variables. g = -m 

The constraint equations a r e  

m 

f2i = r& + 2uw - -cos Ti $ = 0 
m 

fgi = i- - u = 0 

fqi = 6 - w = 0 

fgi  = m + p. = 0 1 

applicable on the interval 

t. < t < t .  1-1- - 1 

for i = 2 ,  . . . ,  N 
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Equations (3a) to (3d) are the two-body equations of motion written in two-dimensional 
polar coordinates with an inverse square force field acting. The thrust direction q and 
the state variables are defined in figure 1. Equation (3e) defines the propellant flow 
rate.  

Equations (3) a r e  combined to give 

i = 2 , .  . . , N  Fi = xj.f.. 1 J1 
j =1 

(4) 

where h.. a r e  undetermined Lagrange multipliers, which a r e  functions of t ime since 
J1 

the constraint equations must be satisfied at all points of the trajectory. 

Eu I e r - Lag ra nge Equations 

A s  shown in reference 16, a necessary condition fo r  g to be minimized is that the 
Euler -Lagrange equations be satisfied. The Euler -Lagrange equations a r e  

where x a r e  the problem variables 
j 

7 X l ( t )  = u : x2(t) = w 

x 3 ( t ) = r  

x4(t) = (P 

x5(t) = m 

x6(t) = $ 

The Euler-Lagrange equations for the present problem can be written explicitly by use  
of equations (3) and (4): 
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x1 = 2wh2 - x3 

U A4 x2 = - 2 9  + - A 2  - - 
r r 

i3 = - (?+ W T x l  + &A2 

x4 = 0 (7d) 

h5 = - (xl sin + +  h2 cos +) 
2 m 

Equations (7) (and subsequent equations) apply separately to each of the upper stages. 
The subscript i has been omitted for simplicity. 

Equation (7f) determines the thrust direction (for T f 0): 

x1 

h2 
tan @ = - 

h ,  

x2 cos + =  f dm 
The uncertainty in sign in equations (8b) and (8c) corresponds to an equivalent uncertainty 
of 180' in the thrust direction. 
ysis.  

Equations (7a) to (7d) must be integrated, along with the equations of motion 
(eqs. (3a) to (3d)) to determine the thrust direction and the optimum trajectory. It is 
shown later that equation (7e) need not be integrated. 

The choice of sign will be determined later in the anal- 

Equation (7d) is easily integrated 
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to give 

X4 = Constant (9) 

First Integra I 

Since the function F does not contain the independent variable (time) explicitly, a 
first integral to the Euler -Lagrange equations exists (for each stage), which can be 
stated as (ref. 16) 

6 

Equation (10) can be written explicitly by use  of equations (3) and (4): 

T 
m 

C - - - w r x1 - 2uwx + uh3 + wx4 - px5 + - (xl sin q + x2 cos +) = 0 (11) (r' ") 2 

Equation (11) is used later in the analysis to  eliminate both C and X5 f rom the boundary 
equations. 

We ie r st r as s Conditio n 

The uncertainty in sign in equations (8b) and (8c) can be resolved by applying the 
necessary condition of Weierstrass (ref. 16). Following the development in refer- 
ence 17, this condition can be stated as E > 0 for a minimum, where - 

6 
* aF xd a,, E = F ( J  x * , x f )  J - F(x.,X.) J J  -k (XT - 

j =1 J 

The x. correspond to the minimizing values, which differ from the x?; by a finite but 
J J 

admissible amount. For the present problem, only Z/J is subject to such a variation. 
Equation (12) can be evaluated to give 

7 

I 



T T 
m m 

- - (xl sin $* + x2 cos $*) + - (xl sin + h2 cos +) > - o 

Equations (8b) and (8c) are now used along with 

J x2 cos $*= T dm 
to give equation (13) in the form 

V I  L -  m 

Equation (15) implies that the plus sign must be chosen in equations (8b) and (8c). 

1 sin $J = 

h2 cos $J= dm 

We i e r  s t ra ss- Erd ma n n Cor n e  r Co nd it ion 

The boundary conditions on the Lagrange multipliers at staging points can be derived 

For the present 
with the aid of the Weierstrass-Erdmann corner condition (ref. 16). This condition 
states that aF/& (j = 1, . . . , 6) must be continuous at such corners.  
problem, 

J 
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All the multipliers are thus continuous across  staging, hence continuous throughout the 
trajectory. 
and $ since these variables a r e  functions of the state conditions and of the Lagrange 
multipliers (appendix B); however, the constant of integration C is not, in general, 
continuous. From equations (11) and (16) the discontinuity in C is given by 

Equations (16) also imply the continuity of the thrust direction and rate Z/J 

AC = - X 1 +  X 2  A - + A S A P  d 2  (3 
Transversal ity Equation 

The relation between changes in boundary conditions and changes in J is expressed 
by the general transversality equation (ref. 16). 
equation can be written 

For this problem, the transversality 

d J  =I 
i=2  

(18) 
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This equation can be written explicitly by using the definition of F (eqs. (3) and (4)) and 
the first integral (eq. (10)). 

N 

1-1 i=2 

The subscript i has been used with C and d m  since these variables may be discon- 
tinuous at staging points. 

Boundary Equations 

If some of the problem variables (state conditions o r  control variables) are not 
specified, values should be chosen which minimize J (or, equivalently, maximize pay- 
load). 

According to reference 16, minimizing J is accomplished by setting d J  (eq. (19)) 
equal to zero. Equation (19) has the form 

m 

j =1 
d J  = G. dx. = 0 

J J  

If the m problem variables x 
te rm on the right side of equation (20) is independently se t  equal to zero. For specified 
variables x., the allowable variation d x .  is zero; for unspecified x. 
G. must be  set equal to  zero. Equation (20) can thus be  interpreted as a total differential 

J 
of J, and 

are all independent, d J  will vanish i f ,  and only i f ,  each 
j 

the coefficient J J J’  

Equation (19) is not suitable for this interpretation, since the variables a r e  not all inde- 
pendent. In the following section, the dependent variables in equation (19) are eliminated 
by expressing the dependence explicitly. 

ables. 
Consider first the t e r m s  in equation (19) involving the variations of the state vari-  
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N- 1 5 (xl du + rh2 dw + X 3  d r  + X d q): = - 
i=2  i-1 i=2 

[(xl du)+ - (hl du)- + (rh2 dw)+ - (rX2 dw)- 

+ (hl du + rx2 dw + x3 dr  + x4 d q )  - - (A1 du + 'A2 dw + Ag d r  + X4 d q )  
t=tN t=tl + 

(22) 

where the superscripts - and + refer to conditions before and after staging, respec-  
tively. The state variables a r e  continuous throughout the trajectory, so  that 

= d x  i = 2 , .  . ., N - 1 ;  j = l , .  . - 9  4 
(dxj)t,t+ i ( j)t=t, 1 

Since the Lagrange multipliers a r e  also continuous (eqs. (16)), the t e rms  before and 
after staging in equation (22) a r e  equal and cancel. 

booster burning t ime and kick angle. 
At t = tl, the variations in state conditions a r e  due to the allowable variations in 

ax ax 

( j) t=t+ 1 aa 
dx - j  - -dT1 + - j da! j = l , . .  * ,  4 

where a! is the booster kick angle and T~ is the booster burning time. 
is the burning t ime of stage i, that is, T~ = ti - ti-l. ) The partial derivatives in equa- 
tion (23) a r e  evaluated by using a numerical approximation method, which is discussed 
later.  

dependent, depending on the specification of the desired burnout conditions. Some typical 
burnout requirements a r e  presented in appendix C.  For generality, the variables x. J 
a r e  expressed in t e r m s  of a se t  of generalized (independent) state variables, %, 
k = 1, . . . , 4, so  that 

(In general, T~ 

The state variations at t = t i ,  as expressed in equation (22), may or may not be in- 

4 

dx. J = c z d a  j = 1 , .  . ., 4 

k = l  
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Equations (23) and (24) are combined with equation (22) to give 

4 N 
(A1 du + r X 2  dw + X 3  dr + X4 =c (Al *+ r X 2  -+ aw X3 -+ ar x4 - a") dVj 

'Vj 'Vj 'Vj a Vj 
j =1 t=tN i=2 

+ rh2  e+ x3 - ar + ~4 2) dcy - fx1 * + rX2 -+ a m  X3 - ar 

a 0  act  a c Y  t=tl a T 1  a T1 a T1 

The superscripts + and - are omitted in equation (25) and subsequent equations. The 
expressions to  be evaluated a t  tl  and tN should be evaluated at t; and tk, respec- 
tively. 

Inasmuch as a suitable form for the state variation t e r m s  in equation (19) has been 
obtained, the mass  (and payload) variation t e rms  are now considered. Since the pro- 
pellant flow ra t e  for each stage is constant, the variables mi are not independent and 
can be expressed as functions of the burning t imes of the stages. Specifically, 

and kQ are the fixed hardware m a s s  and 
H, Q 

where mo is the lift-off m a s s  and m 
propellant tank fraction, respectively, for each stage. The summations in equations (26) 
(and all other similar summations) are defined to  be zero whenever the lower summation 
limit exceeds the upper limit. The superscripts 0 and f refer to conditions at the 
beginning and the end of each stage, respectively. 

In order  to calculate the final payload, the velocity impulse discussed earlier must 
f i r s t  be considered. This velocity impulse is added after the desired orbit is achieved, 
using the Nth stage for propulsion. After this maneuver is completed, the Nth stage 
hardware (fixed and variable) is jettisoned. 
velocity impulse is 

The propellant required to  achieve the 
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Am - m f  ( 1 - e  -Avl @NITN) 
I -  N 

and the final payload is 

mpL = mN f - (1 + kN)AmI - k p T 
N N N - ~ H , N  

The payload can be expressed as a function of burning times, by use of equation (26b). 

where y has been defined as 

-AvI f$J/TN 
y = -kN + (1 + kN)e 

O f  The variations dmi , dmi, and dmpL can now be expressed in t e rms  of the variations 
in burning t imes by differentiating equations (26a), (26b), and (27). 

i = l , .  . ., N 
i-1 

N-1 

Q =1 

By use  of equations (29a) and (29b), the t e rms  in equation (19) involving dmi can be 
simplified and expressed in t e rms  of the variations dTi: 
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N L N N 

N-1 

i=2 

N-1  N-1 

where 

The continuity of h5 (from eqs. (16)) is used in equation (30). Also, the t ime variation 
t e rms  in equation (19) can be expressed in t e rms  of variations in the stage burning times: 

N N N 

i=2 ti-1 i=2  1=2 
(Ci dt)t' = Ci(dti - dti-l) = C. 1 d 'i 

Using the definition of g (eq. (2)) and equation (29c) yields the variation of g: 

N-1  

dg = Y (1 + ki)Pi dTi + ( y  + kN)pN dTN 
i=l 

Since a suitable form for all the t e rms  in equation (19) has been obtained, equations (25), 
(30), (31), and (32) are now substituted into equation (19), and the following result  is 
obtained : 

14 
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N 4 

N-1 

Combining t e r m s  yields 

N-1 

d J  = 2 El + ki)Pi (y - A:) + Ci + "kipi dTi 1 
i=2 

y - h; + h i )  - hl - au - r h 2  - a w  - 

a T1 a T1 

(34) 
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N The coefficient of dTi in equation (34) contains Ci and X 5 .  Both of these can be elimi- 
N nated by using the following identity for X5 : 

N N 

N N N 

_ -  - -q5(Q - A;) + 2 (: - h:-1) + E (A; - *;-I) + A; (35) 

Q =i+ 1 Q =i+ 1 Q =i+ 1 
PQ+O PQ #' PQ =O 

Equation (7e) shows that i, = 0 for coast phases, s o  that for Ti = 0, 

It is convenient to define 

f s. = 0 
1 

0 s. = 0 
1 

i i-1 x5 = X 5  

J pi = 0 

pi = 0 

- i = 2 , .  . . , N  

ar + x3 - aw 

a 71 

With these definitions, equation (3 5) becomes 
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h5 = - 
Q =i+ 1 

By use of equations (37) and ( 3 8 ) ,  equation ( 3 4 )  becomes (if it is assumed that the first 
and last stages are powered): 

N- 1 N 

i=l Q =i+ 1 

N-1 

pi=O 

4 

dqj = 0 ar +Ctl *+  rx2  - aw + x3 -+ h4 
a qj a Uj a Vj 

j = l  

(39) 

The variations in equation (39) a r e  all independent, so that the form of equation (20) has 
been achieved, with 

G ( T ~ )  = Ci p. = 0- , i = 2 , .  . . ,  N - 1  

17 
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aw ar G ( q . )  = x1 - + r X 2  - + h3 - + X4 - 
J ( :", a Tj a Tj 

-- w r X1 + 2uwx2 - ux3 - uh4 - - 

From equations (11) and (37), 

[(: - w2r)xl + 2uwx2 - ux3 - wx4 - 2 4 q  
i t=t i m 

. ~ ___ - ~~~ - . f s; = 
4 I 

ci = [(: - "2')x1 + 2uwx2 - U h 3  - Olq] pi = 0; 

pi#0; i = 2 ,  . . ., N 

pi#O; i = 2 ,  . . ., N 

t. < t < t  i - 1 -  - i 

Since equations (41) do not contain C or  X5, equation ("e) need not be integrated to 
evaluate equations (40), as indicated ear l ie r .  

Boundary Value Problem 

The determination of an optimum trajectory requires the simultaneous integration of 
the equations of motion (eqs. (3a) to (3d)) and the Euler-Lagrange equations (eqs. (7a) to 
(7d)). A set of initial conditions (state variables and Lagrange multipliers) and staging 
t imes is required in order to start the integration and to specify the trajectory uniquely. 

the N + 5 independent problem variables in equation (39). For specified variables x 
the final conditions have the form 

The trajectory thus generated must satisfy N + 5 final conditions, corresponding to 

j '  

x. = x 
J j , d  

where the subscript d indicates the desired final value. For  unspecified variables, 
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equations (40) supply auxiliary final conditions with the form 

G(x.) = 0 (43) J 

Some of equations (42) a r e  easily satisfied; for example, a specified burning time 
for any stage can be achieved simply by terminating that stage at the proper time during 
the integration. 

An iteration is required in order  to satisfy the nontrivial final conditions, and 
variable initial conditions (equal to the number of final conditions) must be available. 
For the present problem, the initial state conditions cannot be varied independently, 
since these variables a r e  determined by the choice of booster burning t ime and kick angle. 
The Lagrange multipliers (Ai, i = 1, . . . , 4), however, can be varied independently. 
In addition, the burning t imes of all stages being optimized and the booster kick angle 
(if it is being optimized) a r e  available as variable initial conditions. 

listed as follows: 
The initial and final conditions for the two-point boundary value problem can be 

Unknown initial condition 

7 
“K 

7 Desired final condition 

j = 1 , .  . . , 4  

G ( a )  = 0 

(i.1) = O 

(7nK) = O 

(44) 

Equation (44) contains K + 5 unknown initial conditions (for K optimized stages, K < N) 
and an equal number of desired final conditions. The size of the iteration loop can be 
reduced by using the fact that equations (7) a r e  homogeneous in the A ’ s .  This implies 
that the choice of any one A in equation (44) is arbi t rary and serves  only as a scale 
factor for the others. The value of this multiplier can be chosen to satisfy one of equa- 
tions (40a) or (40c) appearing on the right side of equation (44). The choice of the arbi-  
t r a ry  multiplier is made in appendix B. 

- 
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The iteration size can be further reduced when X4 = 0 is a required final condition, 
Since X 4  is which occurs when the travel angle is unspecified, as shown in appendix C. 

a constant (eq. (9)) and is continuous across  staging (eq. (16)), this final condition can 
be satisfied at t = tl; X4 is thus removed from both sides of equation (44). 

tion can be removed from equation (44). This is accomplished by choosing one X at 
t = tl, such that equation (40d) is satisfied. 

along with an equal number of equations (40a), (40b), and (40c). 
is s imilar  to that used in removing equation (40d): If all variables in the equation 
G ( T ~ )  = 0 can be calculated at (or previous to) t = tQ, stage Q can be terminated (during 
stage Q )  whenever the optimizing equation is satisfied. The number of optimized stages 
which can be thus removed depends on the characteristics of the particular problem. 

and T ~ ,  Q < m, with km # 0. 
Equation (40a) must be set  equal to zero for each stage: 

Equation (40d) can also be evaluated at t = tl, and the booster kick angle optimiza- 

The burning t imes of optimized stages can sometimes be removed from the iteration, 
The principle involved 

Consider first two optimized powered stages 
TQ 

N 

i=m+ 1 

These two equations can be combined to give 

c m-1 

A s  indicated earlier,  equation (45a) can be satisfied by the proper choice of the initial 
scale factor for the A ' s .  With equation (45a) satisfied, equations (45b) and (46) a r e  
equivalent; however, equation (46) contains te rms  which can all be calculated at, or 
prior to, stage m cutoff, and this equation can be used to terminate stage m. Specifi- 
cally, stage m is terminated when 

r 

m-1 - c  
i=Q+1 

(Sf - sf)] (47 ) 
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. . ... . . ... __ 

If km = 0, the te rm in S', disappears f rom equation (46), and this equation can then be 
used to terminate stage m - 1: 

m-1 m-2 P 

m > Q + l  f 
'm-1 

i=Q + 1 i=Q+l 

The te rms  on the left side of equations (48) a r e  evaluated at stage m - 1 cutoff, and the 
t e rms  on the right side of (48a) a r e  evaluated during previous stages. 

For the special case  m = N, kN # 0, equation ( 4 k )  

is used instead of equation (45b). For this case, the scale factor is calculated from 
equation (45a), after SfN is first eliminated by use  of equation (49). This scale factor 
is then applied to equation (49) to give 

f y + k N  
sN=----  

kN 

[q s: 0 - SN + 

Equation (50) is used to terminate stage N. 
If m = 2 and Q = 1, equation (48b) becomes 

y 
i=Q+l 

Equation (51) could be used to terminate the booster stage optimally. An alternative 
procedure, however, is to terminate the booster at a prespecified time and to choose 
the initial value of one of the Lagrange multipliers such that equation (51) is satisfied. 
This procedure is similar to that used in eliminating equation (4Od) and is computationally 
more  convenient, as will  be  shown in appendix B. 

For coast phases to be optimized, equations (40b) supply cri teria for termination of 
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the previous stage, similar to equations (48) and (51). For such cases, stage Q - 1 is 
terminated when CQ = 0, where stage Q is the coasting stage to be optimized. 

In general, use  of the preceding equations can supply either zero, one, or  two equa- 
tions for termination of a stage. If no equation is supplied, the burning time of that stage 
must be used as an initial condition in the external iteration. If one o r  two equations for 
termination are available, the stage is terminated by u s e  of one of the equations, and 
the additional equation (if available) is used as a desired final condition in the external 
iteration. 

One other simplification of the two-point boundary value problem is possible when 
stage N is being optimized but cannot be terminated by use  of equation (50) (this occurs 
when kN = 0). For this case,  stage N can be terminated when one of the desired orbit 
conditions (appendix C)  is satisfied; T~ and one of the orbit conditions a r e  thus elimi- 
nated from equation (44). It is important, however, to choose an orbit condition which 
increases or decreases monotonically during flight, so that the desired value will always 
be achieved. Energy and velocity are two examples of such terminating variables. 

Choice of Initial Conditions 

In order to facilitate convergence of the two-point boundary value problem, it is 
desirable to start the iteration process with initial guesses which are as close as possible 
to the converged values. It is difficult to guess values for the Lagrange multipliers. It 
is possible, however, to use the thrust direction + and its derivative $ as variable 
initial conditions, and to calculate the initial values of two of the multipliers from these 
variables. The conversion equations a r e  derived in appendix B: 

x2 = xo cos + 035) 

036) ) ?  2 
'0 2 w - + - - s i n + c o s +  * u  + - t a n +  + + E  L x3 =- 

cos + 
where xo is the arbitrary (positive) scale factor. If either the booster burning time or 
kick angle is being optimized internally, the appropriate optimizing equation is used to 
calculate + rather than one of the multipliers. When both the booster burning time and 
kick angle are optimized internally, $ and T~ are calculated from the optimizing equa- 
tions. An iteration is required to calculate these variables, and the equations and pro- 
cedures a r e  presented in appendix B. 
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Exa m p I es 

The equations and procedures derived in the preceding sections can best be illustrated 

(1) A three-stage vehicle, flown to circular orbit a t  a specified radius with the travel 
with the aid of examples: 

angle unspecified, where all three stages and the booster kick angle are available for 
optimization and k = 0 for stages 2 and 3. 

Equations (40a) and (40c) must be satisfied for the optimization of the propellant 
loadings: 

Combining these equations as in equation (48b) gives (if k2 = k3 = 0): 

0 s'l = o  
s2 - El 

(53b) 
O f  s3 - s2 = 0 

Equations (53) a r e  used in place of (52b) and (52c). Since the booster kick angle is also 
being optimized, equations (40d) and (53a) a r e  used to calculate $ and T ~ ,  as shown in 
appendix B. Equation (53b) is used to terminate stage 2 internally, and equation (52a) is 
satisfied by the proper choice of the scale factor ho. Since no optimizing equation is 
available for terminating the final stage, this stage is terminated when the desired final 
velocity is achieved. 

The final orbit requirements for this problem a r e  given in appendix C by equa- 
tion (C3). Since h4  can be removed from the iteration and the desired velocity has 
been used to terminate stage 3, only two initial and final conditions remain for the exter- 
nal iteration: 
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1 Initial Final 
conditions conditions 

i 
CY U = O  J 

(54) 

(2) Same as example (1) but with a fixed second-stage burning time (propellant 
loading): For this case, equations (52a) and (52c) must be satisfied, and these equations 
a r e  combined as in equation (48a) to give 

s 2 - s  f O O  - s  s'l 
3 -  2 - l + k l  

(55) 

Equation (55) cannot be used to terminate stage 2, since this stage must be terminated 
when t - tl = T ~ .  Also, equation (53a) is not available to terminate stage 1, so that T~ 

must be placed in the iteration. Equation (4Od) is used to calculate $. As in the p re -  
vious example, equation (52a) is satisfied by the choice of scale factor, and stage 3 is 
terminated on final velocity. The iteration variables for this example a r e  

7 Initial conditions Final conditions 

T1 

a! 

s = s  0 0  s'l J 
s 2 -  3 2 - l + k 1 1  

If k3 # 0 in this example, equation (50) would be used instead of equation (55): 

O) 
s3 = - ~ (l+ - s3 + s2 - s2 f Y +  k3 s'l O f  

kg 
(57 1 

Equation (57) would be used (instead of the final velocity) to terminate stage 3, and the 
final conditions become 
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u = o  

d r = r  

while the initial conditions remain the same as in equation (56). 

PROCEDURE AND IMPLEMENTATION 

In order to obtain numerical results,  the equations derived in the preceding sections 
were programed for solution on an IBM 7094 computer. Equations (3) and (7) are inte- 
grated by using a variable step-size Runge-Kutta integration scheme with an e r r o r  con- 
t ro l  to minimize truncation effects (ref. 18). 

variable Newton-Raphson iteration scheme. With this method, changes in final condi- 
tions are assumed to be related to changes in initial conditions by first-order,  finite- 
difference equations: 

The two-point boundary value problem of equation (44) is overcome by using a multi- 

6Y = M 6X (59) 

where 6X and 6Y are n-vectors (with an n x n iteration assumed) denoting differences 
in initial and final conditions, and M is an n x n matrix of partial derivatives of final 
conditions with respect to initial conditions : 

The matrix M is obtained by integrating a reference trajectory and n independent 
perturbed trajectories, so that the equation 

is obtained where AX is an n x n matrix of differences in initial conditions such that 
AXjk is the difference of the jth initial condition (from its value on the reference tra- 
jectory) on the k perturbed trajectory, and AY is an equivalent matrix of differences th 

25 



I 

in final conditions. Since the first guesses of initial conditions will not, in general, lead 
to a converged solution, the guesses are improved by using the equation 

where the subscript r indicates differences between reference and desired values. The 
predicted changes in initial conditions 6Xr are obtained by combining equations (61) 
and (62): 

(63) 6Xr = A X  AY-' 6Yr 

Equation (63) is used to predict the initial conditions for each iteration cycle, and the 
iteration proceeds until the desired final conditions are satisfied within some prespecified 
tolerance. 

Cr i te r ia  for  Comparison and Terminat ion  

Since the final payload is to be optimized, it is desirable that the payload e r r o r ,  as 
well as the e r r o r s  in final state conditions, be within tolerance before the iteration is 
terminated. A measure of the e r r o r  in payload is obtained from the following equation: 

Equation (64) is also used to determine whether or not the iteration is converging. If the 
value of 6m on the new reference trajectory is larger than the 6m on the previous 
reference trajectory, i t  is likely that the magnitude of 6Xr is so large that the higher 
order  t e r m s  ignored in equation (59) have become important. In such cases, a new tra- 
jectory is flown with a reduced value of 6Xr, and this procedure is repeated until the 
value of 6m is less than that of the previous reference trajectory. When 6m has de- 
creased, the associated trajectory is used as the new reference trajectory, and the iter- 
ation proceeds. 

Booster Table 

In many trajectory studies, the booster stage remains fixed while other parameters 
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(such as upper-stage thrust levels and orbit parameters) are allowed to vary. Because of 
the large number of cases  that can be run with the same booster stage, it is convenient to 
integrate a family of boost trajectories,  and to  s tore  the burnout points in table form. 
The required booster burnout conditions can then be obtained from the table (by use of 
some interpolation scheme), rather than from an integration of new booster trajectories 
for each case. With lift-off thrust-to-weight ratio fixed, for example, two booster de- 
grees  of freedom are available: kick angle and burning time. The booster table is thus 
a two parameter family of burnout points (radius, velocity, flight path angle, and weight). 

For  a problem involving a new booster stage, three booster trajectories are initially 
flown at different kick angles in the estimated region of interest. For  each of these tra- 
jectories, the state variables are stored at fixed time intervals, ranging from minimum 
to maximum propellant loading. Other values of kick angle a r e  flown and added to the 
table as required. During each computer run, the new booster data developed is stored 
and added to the table, so that after a series of computer runs using the same booster, a 
comprehensive table of booster burnout points is available. 

A two-dimensional second-order interpolation scheme is used to determine the burn- 
out conditions for intermediate values of kick angle and burning time. 
rivatives required in equations (40a) and (40d) are also determined, by differentiating the 
second-order interpolation polynomial. The interpolation accuracy depends on the table 
spacing as wel l  as on the amount and form of variation between table points. In order to 
cover the region of interest with a minimum of trajectories, the initial kick angle spacing 
is large. On the other hand, t ime spacing is small, since only one trajectory is required 
to obtain a complete set  of t ime points for each kick angle. 

In order to determine whether or not the interpolation accuracy is acceptable, an 
additional booster trajectory is flown after convergence is achieved by using the converged 
values of burning time and kick angle. The upper stages are then reflown with the exact 
booster burnout conditions. The payload and burnout conditions from the exact flight a r e  
then compared with the resul ts  of the interpolated converged flight. If agreement is ac- 
ceptable, the interpolated resul ts  a r e  retained and the problem is finished. If agreement 
is not acceptable, new booster trajectories a r e  flown and added to the table (in the region 
of convergence) by using valves of kick angle halfway between the previous table points. 
The flight is then reconverged with the modified table. The interpolation accuracy is 
tested as before, and the entire process is repeated (if necessary) until acceptable agree- 
ment is reached. 

The partial de- 

Convergence Propert ies 

When the problem to be solved is not wel l  known to the analyst, it is difficult to  obtain 
initial conditions which are close to  their converged values. On the other hand, the 
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equations for optimal staging a r e  sometimes very strongly coupled to the initial condi- 
tions. For this reason, it is desirable to optimize the steering program and booster kick 
angle first, before attempting to optimize burning times. 

For  a three-stage vehicle to be completely optimized (booster kick angle and all three 
burning t imes optimized), the procedure is as follows: Firs t ,  the booster and second- 
stage burning t imes a r e  held fixed at initial estimated values while the booster kick angle 
and third-stage burning time a r e  optimized. The converged values of kick angle, pitch 
rate,  and third-stage burning time a r e  then used as f i rs t  guesses, and the second- and 
third-stage burning times a r e  optimized in the second case.  Finally, all three stages 
(and the booster kick angle) a r e  optimized in the third case.  

This procedure has been used with good results in solving problems which were pre-  
viously unfamiliar (as in the results presented). Of course, when the problem to be 
solved represents a small perturbation from a previously solved problem, complete opti- 
mization can be accomplished in  one pass. 

Perturbation S ize 

A s  discussed earlier,  a finite difference procedure is used to obtain the partial de- 
rivatives of final conditions with respect to initial conditions. The perturbation sizes 
used for the initial conditions must be carefully selected: if the perturbations a r e  too 
small, round-off and truncation e r r o r s  inherent in the integration scheme cause large 
e r r o r s  in the final differences; if the perturbations a r e  too large, nonlinear effects be- 
come important, and incorrect local derivatives a r e  obtained. The difficulty in choosing 
the proper perturbation sizes is magnified by the strong coupling of the partial derivatives 
to the optimal staging equations. 

checking scheme was implemented in the program. With this scheme, the perturbation 
sizes a r e  adjusted (when required) so that the payload e r r o r  difference (eq. (64)) between 
reference and perturbed flights is between fixed limits. Generally, the perturbation 
sizes must be adjusted whenever the optimization cri teria a r e  changed. 

In order  to obtain accurate local partial derivatives, an automatic perturbation size 

RESULTS 

In order to demonstrate the validity of the equations and the feasibility of the vari- 
ational technique, parametric results a r e  presented and compared with the overall opti- 
mum solutions obtained by using the variational technique. Two- and three-stage launch 
vehicles were optimized by use  of the equations developed. The results presented include 
a two-stage vehicle flown to circular orbit and a three-stage vehicle flown to Earth escape 
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through a circular parking orbit. In these results, both fixed and variable hardware 
weights were used, and the propellant loadings and booster kick angle optimized. 
metr ic  results a r e  also presented, which show the variation of payload with propellant 
loadings and kick angle. 

Para- 

Vehicle Definition 

The vehicle chosen for this study is a hypothetical three-stage launch vehicle con- 
sisting of two chemical stages and one nuclear stage. The assumptions on propulsion and 
weights a r e  listed in table I. The first stage is based on the Saturn SI-C stage, consist- 
ing of five F-1 engines using RP-LOX prdpellants. Each engine delivers 1. 5 million 
pounds of thrust at sea level, with a specific impulse of 264 seconds. These data a r e  
used for illustrative purposes only and a r e  not necessarily consistent with present SI-C 
values. The second stage consists of one M-1 engine using liquid hydrogen and liquid 
oxygen as propellants. This stage operates at a vacuum thrust of 1. 5 million pounds and 
a vacuum specific impulse of 428 seconds. The third stage is a nuclear stage, with esti- 
mated thrust of 250 000 pounds and a specific impulse of 850 seconds. 

A s  explained earlier,  the booster burnout conditions a r e  determined from a table as 
functions of burning time and kick angle. The launch thrust-to-weight ratio is fixed at 
1.25, so  that the launch weight is 6 million pounds. The booster stage is flown vertically 
for 15 seconds, at which time the relative velocity vector is instantaneously tipped to the 

TABLE I. - LAUNCH VEHICLE PROPULSION 

Thrust, lb 
Specific 

Fixed 
impulse, sec 

hardware 
weight, lb 

Propellant 
sensitive 
fraction 

Drag reference 
area, s q f t  

AND WEIGHT DATA 

Stage 

First 

I .  5x106 (Sea level) 
264 (Sea level) 
305 (Vacuum) 

!45,000 

0.030 

855 

Second 

1. 5X106 
428 

70,000 

0.033 

- - - - - - - 

Third 

5 

850 
i. 5x10 

35,000 

0.120 

- - - - - - - 

1 . 2 r  

Mach number 

Figure 2. - Drag coefficient as funct ion of Mach number. 
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Figure 3. - Payload capability as funct ion of second-stage propellant 
loading. Three stages to Earth escape via 121-nautical-mile park- 
i ng  orbit; variable tanks; first-stage propellant loading at optimum 
point, 4 028 000 pounds; third-stage propellant loading at opti- 
mum point, 317 000 pounds. 

Booster kick 
angle. 

P 
-0- 
m 0 
x 
- 
2 

desired kick angle (measured from 
the horizontal) and azimuth heading. 
A launch azimuth of 90' is assumed. 
Following the initial vertical rise 
and pitchover, the booster is flown 
with a zero angle of attack steering 
program. 

The booster trajectory simula- 
tion includes a detailed oblate Earth 
gravity model (ref. 19). The Air 
Research and Development Command 
atmosphere model (ref. 20) is as- 
sumed. Booster drag is calculated 
as a function of Mach number by 
using the drag coefficient curve p re -  
sented in figure 2 (p. 29). 

The second and third stages use 
the calculus of variations steering 
program, as explained earlier.  A 
spherical Earth with no atmospheric 
forces is assumed for these stages. 

Nu mer ical Results 

A typical propellant tank sizing 
study was conducted with the vehicle 
defined in table I. In this study, the 
stages are assumed to have variable 
tank size, and the optimum propellant 
capacities a r e  determined by flying 
possible missions of interest. 

Earth escape energy with three 
stages. This mission is typical of 
lunar and planetary probes and or -  
biters.  A parking orbit ascent mode 
is used, wherein all three stages a r e  
used to enter a parking orbit of a 

The first mission is flown to 
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89.30 

cop t imum point 
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89.35 89.40 89.45 89.50 89.55 89.60 

Booster kick angle, deg 

pellant loadings optimized; two stages to  121-nautical-mile orbit; 
first-stage propellant loading at optimum point, 3 980 000 pounds; 
second-stage propellant loading at optimum point, 1 276 OOO pounds. 

Figure 5. - Payload capability as function of booster kick angle. Pro- 

121-nautical-mile altitude (similar to the Apollo mission), after which the third stage is 
burned to escape. The second burning of the third stage is assumed to be impulsive, 
with a velocity increment of 10 563 feet per second. The maximum payload capability for 
this mission is obtained by optimizing the booster kick angle as well as the propellant 
loadings of the three stages. By use  of the equations derived earlier, maximum payload 
can be obtained with a single (converged) solution, represented by the optimum point in 
figure 3 .  Actually, since the hypothetical vehicle used fo r  illustration is not typical of 
multistage chemical vehicles, good estimates of initial conditions (in this case, a, T ~ ,  

and z)) were not known. The three-step convergence procedure discussed earlier was 
thus used. 

payload points with all possible combinations of propellant loadings and booster kick 
angle. The increased effort (number of solutions) required for this procedure is obvious. 
In addition to the parametric curves shown in figure 3 ,  each point on the curves had to  be 
obtained a t  an optimum kick angle, which required an additional family of curves (not 
shown in the figure), with kick angle as the independent parameter.  As can be seen from 
figure 3 ,  the payload capability and optimized propellant loading obtained from the varia- 
tional procedure agree with the parametric results. 

the first and second stages from table I (p. 29). Results for  this mission are presented 
in figures 4 and 5. In figure 4, with the use of the parametric procedure, payload capa- 
bility is presented as a function of first-stage propellant loading for various booster kick- 
angles. The maximum payload for each kick angle is determined from the figure and 
presented as a function of kick angle in figure 5. The case flown by use of the variational 

U’ith the parametric procedure, the maximum payload is obtained as the envelope of 

Another mission of interest  is two stages flown to a circular orbit, with the use of 
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Figure 6. - Payload capability as funct ion of second-stage propellant 
loading. Three stages to  Earth escape via 121-nautical-mile park- 
i ng  orbit; fixed tanks; first-stage propellant loading at optimum 
point, 3 964 000 pounds; third-stage propellant loading at optimum 
point, 310 000 pounds. 

technique is represented by the opti- 
mum point in figure 5, and the pay- 
load obtained is in agreement with 
the envelope, as before. 

Frequently, the propellant tanks 
of the various stages are sized for 
one mission and fixed at these values 
for all other missions. Propellant 
loadings can still be optimized in 
such cases  but with the restriction 
that the propellant loadings cannot 
exceed the propellant capacities of 
the tanks. 

In figure 6 ,  the three-stage Earth escape mission is reoptimized with fixed tanks for 
the first and second stages. The tank weights and propellant capacities used a r e  based 
on optimum values for the two-stage orbit mission (figs. 4 and 5). Since the maximum 
propellant capacities of the first and second stages were not exceeded in the optimum 
case, the propellant loadings of these stages were off -loaded to the optimum valves. The 
parametric results and the variational point a r e  compared (as in fig. 3,  p. 30), and the 
results a r e  in agreement. 

CONCLUDING REMARKS 

A technique is presented which allows simultaneous optimization of the thrust direc - 
tion profile and vehicle control parameters  for multistage launch vehicles. The agree-  
ment of parametric and optimum results presented in figures 3 to 6 (pp. 30 to 32)  demon- 
s t ra tes  the correctness  of the optimizing equations. 

The amount of effort (and computer time) saved by the variational technique in de- 
termining the maximum payload capability can be seen by referr ing to the figures. In 
figure 3, for example, approximately 80 parametric data points a r e  required to optimize 
the three-stage propellant loadings and booster kick angle (not shown in the figure). When 
good initial guesses a r e  available, the computer time required to obtain the overall opti- 
mum solution is about the same as for each parametric solution. The time saving is 
therefore proportional to the number of parametric cases  required for complete optimi- 
zation. Even when good initial conditions a r e  not available (this was the case  in fig. 3), 
three cases  a r e  usually sufficient to obtain the optimum solution (as described earlier) ,  
and the t ime saving is still substantial. 

The technique presented is, of course, not limited to the parameters  (propellant 
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loadings and booster kick angle) used herein. Other possible parameters (for launch ve- 
hicle optimization problems) a r e  launch thrust-to-weight ratio and thrust levels for the 
various stages. In addition, the technique should be applicable to other types of optimi- 
zation problems. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, October 8, 1965. 
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APPENDIX A 

SYMBOLS 

a 

b 

C 

E 

e 

F 

f 

G 

g 

H 

J 

k 

M 

m 

P 

r 

S 

T 

t 

U 

V 

X 

functions defined in eqs. (BlO), a! booster kick angle, r ad  

mass  flow rate, slug/sec ft/ sec 

sq  ft /  (sec2)(rad) 
I' flight path angle, r ad  

y 

E argument of perigee, rad  

generalized state variable 

functions defined in eqs. (B13), 

function defined in eq. (28) 
constant of integration 

Weiers t rass  excess function 

eccentricity 
5 8 t rue  anomaly, rad 5: hjfj 

j =I 
constraint equation 

aJ/ ax 

h Lagrange multiplier 

X o  arbitrary scale factor 

p 
2 Earth force constant, cu ft/sec 

7 burning time, sec function of initial and final conditions 
to be minimized cp polar angle, rad 

2 zc) thrust direction, rad energy per  unit mass ,  s q  ft/sec 

functional to be minimized by varia- o angular velocity, rad/sec 

Subscripts : 

d desired value 

tional methods 

propellant sensitive mass  fraction 

matrix relating changes in final and 
initial conditions 

mass,  slugs 

semilatus rectum, f t  

radius, f t  

functions defined in eqs. (37) 

thrust, lb 

time, sec 

radial velocity, ft/sec 

velocity, ft/sec 

problem variable 

H 

I 

i 

j 

k 

Q 

N 

PL 

P 

r 

fixed hardware 

impulsive 

stage number 

variable number 

variable number 

stage number 

last stage 

payload 

propellant 

difference between reference and 
desired values 
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s structure 

0 initial 

Superscripts: 

f end of stage 

i r e fe r s  to t = t. 

0 beginning of stage 
1 

- 
* 

derivative with respect to time 

finite, but allowable variation of the 
variable 

+ after staging 

- before staging 

-. vector 
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APPENDIX B 

CONVERSION EQUATIONS 

Ca I c u I at  ion of Lag ra ng e Mu It i p I i er  s 

In order  to avoid the difficulty associated with guessing initial values of the Lagrange 
multipliers, equations a r e  derived which express two of the multipliers in t e rms  of the 
pitch attitude $ and r a t e  i. 

Equations (8a), (8b1) and (8cl) give $ in t e r m s  of the Lagrange multipliers: 

x1 

x2 
tan $ = - 

x, 
1 sin $ = 

x2 cos 11, = {m 
Differentiating equation (8a) yields the pitch rate 

- 2  x2x1 - v 2  $sec  $ = 

which becomes, with the use  of equations (8cl), (?a), and (7b), 

The discussion following equation (44) shows that one of the multipliers can be picked 
arbitrarily. It is convenient to pick hO as the scale factor, where 
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ho = dm> 0 
With this choice, 

XI = ho sin + 

x2 = xo cos + 

Substituting equations (B3), (B4), and (B5) into (B2) and solving for X3 gives 

- U - s i n + c o s +  + + E  
2 

h3 =- 
cos + r 

The multipliers X1, h2,  and X3 can now be calculated from +, +, h4, and ho 

by using equations (B4), (B5), and (B6). 

1 nter  na l  Opt imizat ion 

The analysis of the boundary value problem showed that the booster kick angle and, 
in certain cases,  the booster burning time can be optimized without iteration. In such 
cases ,  the optimizing equation can be used to calculate z) or +; one set  of initial and 
final conditions is thus eliminated from the iteration. 

The equation for optimizing the booster kick angle is 

x ~ - + ~ x ~ * + x ~ - + x ~ + = o  au ar 
aa aa aa aa 

or ,  in t e rms  of z,b and $, 

- u  2w - + - - s i n  + c o s  1 ~ ,  +- tan  + -+ x X sin z,b -+ r X  cos  + -+  ~ 

aq  - o 
aw [c::+ ( r : 1:: 4aa!- 

au 
aa a 0  0 0 
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Equation (B7) can be solved for 4: 

Use of equation (B8) to calculate $, however, leads to ser ious convergence problems, 
since this equation is an extremely nonlinear function of $. Instead, zl, is used as a 
variable initial condition in the external iteration and equation (40d) is used to calculate 
$. Although a closed form solution for $J is not available (unless X4 = 0), an iteration 
can be performed which converges rapidly. The procedure is as follows: 

(1)Guess q. 
(2) Calculate X1, x2, and X3 f rom equations (B4), (B5), and (B6). 

(3) Calculate A = X1 - + r X 2  - + X3 - + X4 

(4) Iterate steps (1) to (3) to obtain A = 0. 
The booster burning time can be optimized internally when 
(1) Stage 2 is a powered stage (p2, T2 # 0) also being optimized and k2 = 0 
(2) Stage 2 is an optimized coast phase 

The optimizing equations for these two cases  a r e  

ar *. au a m  
a 0  a 0  a 0  a 0  

0 Sf - 0  
S 2 - l + k l -  

and 

c2 = 0 

If equations (37e), (41b), and (41c) a r e  used and i t  is noted that a r / aT1  = u and 
a p / a ~ ~  = w, equations (51) and (40b) become 

a X + a X + a X + a4X4 = a5XO 1 1  2 2  3 3  

where 
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P 

a5 =o 
"2 

Equation (B9) can be expressed in t e rms  of z,b and z,b as in equation (B8): 

(B11) ''sin + + * I4 sin + a2 cos + + -a 
XO 

z,b=2w--sin$~cos$+----- .  U 
r 

Xo I- a3 

As in equation (B8), however, $ is a very nonlinear function of $, and equation (B9) 
must instead be solved for z,b in t e rms  of $. Again, a closed form solution is not avail- 
able, and the iteration proceeds as previously described, except that 

A = alXl + a X + a X + a4h4 - ash0  2 2  3 3  

for this case.  

tions (40d) and (B9) are available for the calculation of any two initial conditions. It is 
convenient to use these equations to calculate z,b and T~ and to leave $ and CY as var i -  
able initial conditions in the external iteration. 

Equations (B9) and (40d) are combined to eliminate X3, after which the resulting 

If the booster burning t ime and kick angle are both being optimized internally, equa- 
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equation is used with equation (B3) to solve for X1 and h2: 

1 2 2  
bl + b2 

b2b3 + b l  {(b: + b2)ho 2 2  - b i  
x, = 

2 2  
bl + b2 

L 

where 

The choice of sign in front of the radical in equations 
direction between 0' and 90'. Substituting equations 

,2 

(B12a) 

(B12b) 

(B13a) 

(B 13b) 

(B13c) 

(B12) was made to obtain a thrust 
(B4) and (B5) into (B6) gives 

*O * u  '1'4 x3 = - (2w - $) - 4 1  + - 
r rh2 x2 

An iteration is required to calculate T ~ ,  which proceeds as follows: 
(1) Guess T ~ .  

(2) Calculate X1, h2, and X3 from equations (B12) and (B14). 

au a #  ar 
a 0  aa act aa 

(3) Calculate A = x1 -+ rx2 -+ x3 -+ x4 *. 
(4) Iterate steps (1) to (3) to obtain A = 0. 

Equations (B12) and (40d) a r e  equivalent to equations (B3), (B9), and (40d), and thus, the 
optimum values of z) and T~ a r e  obtained when the iteration converges. The value of 
z) is calculated from equations (B12), by use  of (B4) and (B5): 
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b2b3 + bl  {(b: + b2)Ao 2 2  - bt  
cos 11, = 

(B 15a) 

(B15b) 

The value of 11, obtained from equations (B15) is independent of the value of Xo chosen, 
provided that x4 is scaled exactly as xo. 

41 



APPENDIX C 

0 R B IT R EQU I R EMENTS 

A two-dimensional orbit is completely specified by any four independent orbit param- 
e te rs .  In many cases, however, one or more of these parameters is left unspecified and 
can be  used to maximize the payload. For such cases,  equations (40e) supply auxiliary 
boundary conditions to be satisfied, in order to guarantee optimum values of the unspeci- 
fied variables. 

the orbit injection point unspecified. 
stated as 

A typical example is the requirement of a circular orbit at a specified radius, with 
For this case, the required final conditions can be 

u = o  I 
where r, u, and w (and all other variables in this appendix) should be evaluated at 
t = t i .  Equations (40e) a r e  written (with r, u, w,  and q~ as independent variables) 

Since 40 is not specified, X 4  = 0 is the auxiliary boundary equation, and the required 
final conditions a r e  
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w=fi 

u = o  t 
J A 4  = 0 

If, in addition to the travel angle, the radius is also unspecified, equation (C2) gives 
X 3  = 0 as an additional auxiliary boundary equation, and 

w:i; 
x3 = 0 

x4 = 0 J 
are the required final conditions. 

cases, H, r, r ,  and cp can be used as independent variables, where 
Frequently, the orbit is specified in t e rms  of energy and flight path angle. For  such 

1 2  
2 

H = - ( U  + 

and 

tan r U - _ -  
w r  
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Solving for u and o yields 

u = , / W s i n  r) 

If the indicated partial derivatives are taken, equations (40e) become 

V 

G ( r )  = (wrX1 - uh2) 

G ( d  = A4 

If energy and flight path angle a r e  specified (radius and travel angle optimized) the r e -  
quir ed final conditions ar e 

1 1 2 2 2  
2 r d -(u + ~ ~ ) - I J - = H  

- -  PU 2 2  h l -  ( w + 3 X 2 + X 3 = 0  
v r  

X 4  = 0 J 
or, if  energy is specified and all other variables are optimized, the required final con- 
ditions become 
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1 2  2 2  -(u + r  ~ ) - L = H  
2 r d 

- -  PU X I  - (w + $)A2 + XR = 0 

v r  

X4 = 0 J 
The last three of equations (C9) are equivalent to 

x4 :::) = 0 

The case of an elliptic orbit is discussed in reference 8, in which the orbit elements 
e, p, 0 and E a r e  chosen as the independent variables: 

1 u =Ee sin 0 

J 1 + e cos 0 

q = 0 + €  

For this case,  equations (40e) become 

? 
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A3 I 2 r cos 0 2 2 r  w COS 8 G(e) = EAl + A2 - e P 

r U 3r w 
G(p)=-X3- -A1- -  x2 

P 2P 2P 

2 
A3 + x4 

r e sin 0 

P 
uA1 2r 2 e o  sin e 

A2 + G(8) = -- 
tan 0 P 

G(E) = A 4  J 
Frequently, the eccentricity e and the semilatus rectum p of the ellipse a r e  specified, 
while the t rue  anomaly 8 and argument of perigee E a r e  left open for optimization. For 
this case, the required final conditions a r e  

A 4  = 0 
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