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DEFINITION OF SYMBOLS 

Definition 

Plan area of typical section 

Dynamic pressure  1/2 p V2 

Air Speed 

Moment of inertia about C. M. 

Uncoupled bending frequency 

Uncoupled torsional frequency 

Static structural coupling t e rms  

Coup1 ed bending frequency 

Coupled torsional frequency 

Location of aerodynamic center 

Location of elastic axis 

Mass of wing 

Damping coefficient of bending mode 

Damping coefficient of torsion mode 

Decay rate of bending mode 

Decay rate of torsion mode 

Lift coefficient 

Rotational displacement 

Lateral displacement 

Bending spr ing constant 

Torsion spring constant 

V 



DEFINITION OF SYMBOLS ( Concluded) 

Symbol Definition 

L Aerodynamic lift force 

r Radius of gyration about C.  M. 

M Aerodynamic moment 

S Laplace transform variable 

K Aerodynamic feedback parameter 

Other symbols and abbreviations' a r e  explained in t h e  text.  
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A NEW APPROACH TO THE EXPLANATION. 
OF THE FLUTTER MECHAN I S M  

SUMMARY 

The paper demonstrates the feasibility and effectiveness of analyzing the stability 
behavior of a simplified bending-torsion flutter model by the root-locus method of W. R. 
Evans. This method promotes an  intuitive physical interpretation of the flutter mecha- 
nism by exposing its intrinsic feedback principle, and lends itself to a systematic and 
complete classification of the stability patterns of the system by enumerating all possible 
pole-zero constellations in the complex plane. Results of corresponding conventional 
studies using Routh-Hurwitz stability criteria are quickly verified and extended. The 
inclusion of structural  damping in the analysis sheds new light on long standing questions 
about the effect of energy dissipation on system stability and reveals i ts  extreme sensi- 
tivity to damping parameter  variations. The paper concludes with a discussion of the 
potentials and limitations of the root-locus method for  preliminary design studies and 
flutter analyses of systems with many degrees of freedom. 

1. INTRODUCTION 

Theoretical investigations of the flutter phenomenon started during the latter par t  
of World W a r  I after the first flutter incidents became known. 
marked by concentrated efforts t o  develop a rigorous mathematical theory of unsteady 
aerodynamics, which was considered the principal agent responsible for  the dynamic 
aeroelastic instability encountered in flutter. With increasing mathematical complexity 
of the unsteady aerodynamic theory, however, the real  origin of the flutter mechanism 
became progressively concealed. Although i t  was understood that a physical rather than 
mathematical understanding of the flutter mechanism could be brought about only through 
a simplified flutter model, most  researchers  felt that discarding the unsteady portion of 
the aerodynamics would destroy the essentially dynamic features of the flutter phenome- 
non. In fact ,  it was known for  many years  that the source of the flutter mechanism of a 
purely rotational motion of a typical wing section is represented by the nonstationary 
component of the aerodynamic moment acting on the wing. 

The subsequent yea r s  were  

Guided by a discussion of a simplified control surface flutter model in a classical 
textbook by von Karman (Ref. 1) , several  analysts were  also able to demonstrate, how- 
ever , that an apposite bending-torsion f lu t t e r  model could be established by using only 
static aerodynamics as a forcing function (Refs. 2 and 3 ) .  This system proved not only 
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to be simple enough to promote a clear  physical understanding of the flutter mechanism 
but also revealed surprisingly good agreement with experimental flutter tests for  a large 
number of wing configurations. 

The authors of these studies analyze the stability behavior of the system by apply- 
ing the classical  Routh-Hurwitz stability cri teria.  Although relatively simple, this tech- 
nique still leads to ra ther  cumbersome expressions from which the influence of parameter 
changes on system stability has to be assessed. The present study presents a s impler  
approach of systems analysis by rearranging the characterist ic polynomial in order  to 
uncover the intrinsic feedback principle of the flutter mechanism. A s  a direct  conse- 
quence of this rearrangement,  it is possible to analyze the system stability by using the 
root locus method of control system design originated by W. R. Evans (Ref. 4). This 
technique provides an instantaneous and complete appraisal  of the effect of parameter 
changes on the stability of the system by simple inspection of i ts  pole-zero constellation 
in the complex s-plane. Results of previous studies can then readily be verified as well 
as extended. 

1 1 .  TWO-DEG REE-OF-FREEDOM FLUTTER MODEL 

Since the main objective of the present study is to expose a new technique of ana- 
lyzing system stability and to compare it with previous analyses,  we select the same 
simplified bending-torsion flutter model already investigated by previous authors. The 
typical wing section and pertinent system parameters of this flutter model a r e  shown in 
Figure 1. 
of the center of m a s s  of the model. The structural  damping of the system is accounted 
for  by an equivalent viscous damping law. 

The origin of the coordinate system shall be located a t  the equilibrium position 

To derive the equations of motion in bending and torsion, we sum all  forces  posi- 
tive upwards and moments positive in the clockwise direction. 

This yields the bending motion as 

and the torsional motion as 

For the aerodynamic operator we employ quasi-steady aerodynamics intended to be used 
for a la ter  discussion of the effect of aerodynamic energy dissipation on system stability. 
Thus, the aerodynamic force and moment on the right hand side of equations (1) and ( 2 )  
a r e  assumed to be proportional to  the instantaneous angle of attack a t  the center of mass  
of the flutter model, i. e. , 

2 



acL 
L = q S  - a a  

M = - q S %  - 

( 3 )  

For  convenience of the subsequent analysis,  we furthermore introduce the following 
abbreviations: 

The equations of motion can now be written in the form: 

N' 
y .- + ( 2cJi +- m";) j ,  + wi2y - (k12 + m) CY = 0 

N'Xp 
a - 1<21y - ___ 3; = O .  I IV 

The characterist ic polynomial of this set of homogeneous differential equations with 
constant coefficients is of fourth order  in the Laplace transform variable s and reads: 

In order  to study the effect of the aerodynamics of the system stability by the root locus 
method, we have to separate  the aerodynamic operator from the structural  parameters  
of the system. As  a result  the characterist ic polynomial appears in the form: 

3 

I 



We are now ready to  analyze the stability of the system. However, since the 
aeroelastician does not often encounter problems which call f o r  applicgt.ion of the root 
locus method, it would be appropriate first to  discuss briefly some of its basic principles 
and rules. 

I 1 1 .  THE ROOT LOCUS METHOD 

The root locus method has application in problems which call for  analyzing the 
effect of a parameter  K on the roots of a polynomial vyhich is composed of two additive 
par ts  in the form: 

P(s) = M(s) + K  N(s)  = 0 (9) 

where M ( s )  and N(s) represent polynomial in s whose coefficients are usually 
assumed to be real. 

The usefulness of the root locus method in analyzing such problems lies in the 
simplicity with which the effect of a change in the parameter  K can be appraised. 
rules for  constructing the root loci as a function of K involve both analytical and graphi- 
cal concepts. There exists a wide variety of special rules which are often tailored to the 
particular needs of the pxoblem under investigation. 
subsequent discussion will be listed here.  Others can be found in standard textbooks on 
classical control theory (e. g. , Ref. 5) . The first step of the root locus method consists 
of factorizing the polynomials M (  s) and N( s )  of equation (9 )  which resul ts  in the ' 

standard form 

Its 

Only those rules  pertinent for the 

The parameter K ( r e a l  o r  complex) is often re fer red  to  as "loop gain" and G ( s )  as the 
(open-loop) , 
the principal application of the root locus method in feedback control systems. 
solution of equation (10) is called a root whose location in the complex s-plane depends 

''transfer. function" of the system. This terminology stems from 
The 
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on K such that S = S (K)  . In this respect we can consider the root locus a conformal 
mapping of the (complex) K-plane into the complex s-plane. The number of separate 
root loci, of course,  equals the order  of the original polynomial P (s) . 

The essence of the root locus method now consists in representing the expression 
(10) in polar form. 
transfer function G( s) 
and terminating at the point s. Analytically, each vector is described by a complex 
number defined by magnitude and angle such that 

This can be done graphically, as in Figure 2 ,  by representing the 
in te rms  of vectors originating at the various poles and zeros  

Thus, equation ( I O )  can also be written as: 

For  a point in the complex s-plane to be on a root locus,it has to satisfy two separate 
conditions: The angle condition 

where e is the net angle of the (complex) right-hand side. As an example fo r  real  K ,  
a point in the complex s-plane can only represent a root of the original polynomial P( s) 
if the net angle from all vectors terminating at this point is either 180" + n360" ( K >  0) 
o r  0" + n 360" ( K  < 0) where n is any integer. 

The angle condition already contains all information necessary for constructing 
the root loci. 
derived from it. The gain K corresponding to a specific point on a root locus, however, 
has to  be determined by the magnitude condition 

Consequently, the majority of the rules of the root locus method can be 

Pi P, '. - - Pm 
Zn IKl= z,z2 .. ... 

Although often of secondary importance, the magnitude condition furnishes the basic rule  
that the root loci originate at the poles of the transfer function for K = 0 and approach 
the zeros  for  K = 00 . 

In the approximate construction of the root loci, one can take advantage of a force 
analogy. According to this the root locus is in the direction of the net vector force act- 
ing on a particle which is repelled from the poles and attracted by the zeros  inversely 
proportional to their  distances. F o r  simple pole-zero configurations, it is possible to 
obtain an analytic expression for the root loci themselves. 
tion of the root locus is obtained by setting s = (T + jw  in the polynomials M( s) and 

Such an  analytic representa- 
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N (  s) of equation (9)  and derive conditions which have to be satisfied by the resulting 
real  and imaginary par t s  of equation ( 9 ) .  This technique affords some additional analyti- 
cal  rules concerning asymptotes,, intersection of the root locus with the real  o r  imaginary 
axis and other relationships (Ref. 6 )  . 

I v. PARAMETRIC STABILITY ANALYSIS 

The characterist ic polynomial of equation (8)  is still ra ther  complicated. How- 
ever ,  as shown by previous analysts , it is possible to introduce further simplifications 
without eliminating the basic source leading to the dynamic instability o r  flutter. To 
this effect we omit fo r  our first discussion all  t e r m s  in equation (8) which represent 
aerodynamic and structural  energy dissipation. 
is then biquadratic and can be written in the form amenable to the root locus method 

The resulting characteristic polynomial 

where the "loop gain" K represents the aerodynamic feedback coupling which exists 
between the two degrees of freedom of the system. Since K = NIXp 

- 
it is proportional 

I 
to the angular acceleration which. the wing experiences at its equilibrium caused by an 
aerodynamic moment acting on it. As such, K serves  as a measure for  the "turnability" 
of the wing. The feedback parameter K can be either positive o r  negative depending on 
the location of the aerodynamic center relative to the center of mass .  If the aerodynamic 
center is aft of the center of mass ,  .the aerodynamic coupling tends to  oppose any deviation 
from the nominal position (equilibrium) of the wing and we speak of negative feedback. 
For  a forward location of the aerodynamic center ,  however , the aerodynamic feedback 
coupling reinforces an initial disturbance and we speak of positive feedback. 
the latter condition will exhibit a higher tendency towards instability than the former.  

Intuitively 

The four poles of the t ransfer  function are seen to represent physically the un- 
damped ( structurally) coupled frequencies of the bending-torsion model as observed in 
a ground vibration test. They occur in conjugate pa i r s  and lie on the imaginary axis of 
the complex s-plane: 

For  unswept wings, the structural  coupling between the bending and torsion mode is 

In view of the approximations made for the present discussion, therefore, it is not neces- 
a r y  to  distinguish between the uncoupled and (structurally) coupled frequencies of the 

usually very small  (Ref. 7) . Mathematically speaking, this means that w22/w12 >> - 2  XE /r 2 . 
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system. 
analysis or extend it to sweptback wings which display pronounced interaction between 
the various modes. 

This simplification is not at all serious and can easily be waived to refine the 

The location of the two zeros  of the t ransfer  function is determined bv 

and is, thus, a function of the bending mode frequency and the ratio of the location of 
elastic axis and aerodynamic center relative to the center of m a s s  of the model, but 
independent of the torsional frequency. F o r  positive w l  they lie on the imaginary axis; 
for  negative ut, on the real axis of the complex s-plane. Due t o  the symmetry of the 
pole-zero constellation of the transfer function, we can identify four different pole-zero 
topologies. They are depicted in Figure 3. A s  mentioned above, the feedback parameter 
K can assume both positive and negative values, Consequently, we a r r ive  at two sets of 
root loci, one fo r  positive K (x,> 0) where the net  angle of the vectors add up to 180" 
and one fo r  negative K (XP < 0) where the net angle is zero. 
different pole-zero constellations. 
possible parameter variations. 
4 and 5). In these figures the root loci a r e  portrayed only approximately and only for 
the upper half-plane; the lower half-plane is symmetric to the real  axis. 
verified that the hatched portions of the real  and imaginary axis represent admissible 
locations for roots of the characterist ic polynomial because they satisfy one of the above 
mentioned angle requirements. Once these portions are identified, one can quickly com- 
plete the missing sections of the root loci, at least in their qualitative shape. The direc- 
tion in which the root locus is traversed follows from the magnitude condition of the root 
locus method. 
parameter condition leading to the particular pole-zero constellation and in the right 
column the dependency of the aerodynamically coupled frequencies of the system on the 
feedback parameter K. The pattern of these frequency characterist ics unfolds at once 
from the adjacent root loci. Although the situation is nearly self-explanatory, it seems 
opportune to direct  attention t o  several  important points: 

Each set comprises four 
The resulting eight stability patterns exhaust a l l  

Their codification is extremely simple (shown in Figures 

It can be easily 

In addition to the root loci, Figures 4 and 5 show in the left column the 

(1) Flutter can only occur if both frequencies approach each otherwithincreas- 
ing airspeed. 

(2) No flutter is possible if both frequencies increase with increasing airspeed. 
In this case (A-2) , the low-frequency mode asymptotically approaches a finite frequency. 

(3) A decrease in both frequencies always leads to divergence. 

(4) Flutter can be entered from below and above. In this case,  the flutter 
frequency associated with the high airspeed l ies outside the interval between the high 
and low frequency mode. 
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( 5 )  There exist three different flutter modes: 

a. Flutter occurs a t  one airspeed only (€5-4). 

b. Flutter s e t s  on a t  low airspeed and ceases af ter  the high flutter speed 
is exceeded (A-1) . 

c. Flutter ceases  after the high flutter speed is exceeded but the wing 
becomes divergently unstable with increasing airspeed (B-3-a). 

It should be emphasized that these rules  hoId only for  the simplified flutter model under 
investigation. Conclusions of the aeroelastic behavior of an actual wing have to  be made 
with extreme care .  

Collecting all  parameter  conditions on the left column of Figures 4 and 5 leads to 
They are  illustrated in Figure the aeroelastic stability cr i ter ia  for  the composite wing. 

6 with the location of the elastic axis as the independent variable. A s  was expected, a 
wing with i ts  aerodynamic center aft  of the center of m a s s  exhibits much less  tendency 
toward instability than a wing with forward aerodynamic center. It is quite interesting 
to notice that a center of mass  forward of the elastic axis no doubt prevents flutter,  but 
is not a safeguard against divergence as has sometimes been stated. Since the majority 
of practical wing configurations lead to an aerodynamic center forward of the center of 
mass, the only way to  prevent instability is to raise the cri t ical  airspeed above the ex- 
pected operational flight range of the system. 

The critical airspeed o r  critical gain K at which instability sets on is easily 
derived from the magnitude condition given in equation (14). From this follows the flutter 
gains as: 

- 
KF - 

and the divergence gain simply by setting w = 0 as: F 

Since all quantities in equation ( i 9 )  are known, the divergence speed can be explicitly 
written down. F o r  the torsional divergence speed ( 0 2  > wl), we find 

and for the flexural divergence speed ( w 2  < mi) , we find 
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Since the flutter frequency w appearing in equation (18) is unknown the expression for  

the flutter speed is m o r e  complicated. The unknown flutter frequency is determined by 
the points where the root locus breaks away from the imaginary axis. Using the above 
mentioned force analogy, they are found t o  be the equilibrium points of the force field 
created by the pole-zero constellation of the system. Accordingly, the flutter frequency 
is given by 

F 

1 A A 
1 1 1 + = o  w 2 - w z  

F 
w - w22 - 2 

F 
w 2 - w i  

F 

2 
F which leads to the biquadratic equation in w 

(23) w 4 -  2w2w 2 + w o  2 ( w * 2 + w 2 2 )  -w12u22 = 0 . F O F  

The four roots of this polynomial do not always represent f lutter frequencies. The flutter 
mode B-4, fo r  example, has only one flutter speed and consequently, only two roots of 
the polynomial have physical significance. The other two roots are imaginary and repre- 
sent the arr ival  points of the root locus at the real  axis. Because of these extraneous 
roots, the explicit expression f o r  the flutter speed becomes awkward and difficult t o  inter- 
pret  physically. To establish a c l ea re r ,  although less precise ,  correlation between 
system parameters and flutter speed, some typical cri t ical  flutter and divergence gains 
were calculated and plotted in Figures 7 and 8. To preserve correspondence with Figure 
6 ,  the location of the elastic axis w a s  again selected as independent variable. 

The characterist ic hyperbolic pattern of the cri t ical  gain curves suggests the 
possibility t o  delay flutter and divergence onset for  all  elastic axis locations by increas- 
ing the cri t ical  gains at their  endpoints. According to the magnitude condition, the flutter 
gain at the endpoint of the flutter interval is given by 

from which follows the corresponding flutter speed as 
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Several interesting conclusions can be drawn from the situation at hand: 

(I) 
mass.  This calls fo r  a conservative design philosophy fo r  many practical configurations 
falling into this category. 

Critical gains are sensitive to elastic axis variations close to the center of 

( 2 )  Decreasing density ratio lowers the flutter speed. This is in agreement 
with classical  f lutter analyses for  high density ratios but at variance with them for  low 
ones. So is the experiment. 

(3 )  The flutter speed approaches zero  as the two natural frequencies of the 
system merge. 
reduction in stability for  unity frequency ratio. 

This correlates with the familiar tendency of a wing to exhibit an  acute 

(4) Flutter onset can be delayed by raising the frequency of the high mode. 
Care should be taken, however, if the bending mode is the high-frequency mode. Since 
raising the stiffness in a mode gradually suppresses it, such a procedure would render 
the wing dominantly torsional. 
dynamics is known to play a major role in the flutter process and the simplified bending- 
torsion flutter model consequently breaks down. 

In this case,  the nonstationary component of the aero- 

(5) F o r  a wing whose aerodynamic center lies forward of the center of m a s s ,  
the flutter and divergence speed coalesce at their  common end-point if the natural fre- 
quencies of the system are well separated. 

V. THE EFFECT OF ENERGY D ISS IPATION 

The influence of damping on system stability is a subject of much question and 
controversy. The following discussion serves t o  present new aspects toward solving 
this issue,  as well as to illustrate the intricacies involved. 

In the first step we analyze the system by considering only structural  damping 
while st i l l  ignoring aerodynamic energy dissipation. From equation (8) we obtain the 
corresponding characterist ic polynomial by discarding damping of aerodynamic origin. 
We obtain 
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The expression still appears in the standard form which can be handled by the root locus 
method. Now the poles of the t ransfer  function represent the damped coupled frequencies 
of the system. Their distance to the left of the imaginary axis is approximately given by 
their  corresponding decay rates ai and u2. The zeros  of the transfer function are also 
lying in the left half plane, their  distance from the imaginary axis being approximately 
equal to the decay rate cri of the bending mode. An illustration of how flutter instability 
evolves in the presence of structural  damping is provided in Figures 9-11 for  the three 
basic flutter modes identified previously in the undamped system. A qualitative evaluation 
of the resulting change in the root locus pattern is afforded by the force analogy and the 
rules of the root locus method concerning departure and ar r iva l  angles at the poles and 
zeros ,  respectively. A s  can be seen, f lutter onset is in general no longer associated 
with frequency coalescence when the system is damped. Under certain circumstances , 
however, the roots can still "meet" in the left half plane and then separate and become 
unstable. 
esting phenomenon: A s  a direct  result  of the closeness of the pole-zero constellation to 
the imaginary axis,  the system can exhibitan extreme sensitivity toward variations of the 
damping parameters.  Under certain conditions, minute variations of these parameters  
will  result  in drastic changes of the flutter frequency and also of the flutter speed. It can, 
for instance, readily be shown by applying the departure angle rule of the root locus 
method and intuitively understood from its force analogy that the introduction of an  infini- 
tesimal amount of damping in only one mode causes the flutter speed to drop t o  zero. 
Theoretically, at least ,  it is possible to reduce the flutter speed to any desired fraction of 
the undamped flutter speed by introducing a proper ratio of infinitesimal small damping in 
both modes. 
variations than the flutter frequency. Since, in general, the root closest to the axis 
becomes unstable, the cri t ical  parameter dictating the stability behavior of a mode is its 
decay rate rather  than its damping ratio. 
interpretations which t ry  to explain the source of instability of siish a sensitive system in 
t e rms  of changes in mode shapes, phase shifting o r  energy transfer between modes seem 
to be rather  artificial and can even be misleading when applied to a particular case. 

Examining the behavior pattern of the root loci, one discovers a rather  inter-  

A s  a rule, however, the flutter speed is less sensitive toward parameter 

In the light of these circumstances, physical 

While the inclusion of structural  damping still preserves  the standard form of the 
characterist ic polynomial suitable fo r  the root locus method, this is no longer t rue for  the 
aerodynamic energy dissipation. It not only causes the zeros  of the t ransfer  function to 
depend on the airspeed, but a lso introduces a new zero on the real axis. Evaluation of 
system stability in this ca se  is more  complicated and requires a familiarity with the root 
locus method which is beyond the scope of the present discussion. 
instance, that a zero  on the negative real  axis would effectively cause the root loci to turn 
counterclockwise in the upper half plane and clockwise in the lower half plane. 
aerodynamic damping could effectively enhance system stability for  the configuration de- 
picted in Figure 9 (a) but reduce it for the configuration of Figure 9 (b)  . 
emphasized, however, that the root locus method in this case  can give at best  qualitative 
results which might be useful for  interpreting parametric studies. 

One can show, fo r  

Hence, 

It should be 



As can be readily concluded from the above, the introduction of quasi-steady 
aerodynamics essentially destroys the usefulness of the root-locus method fo r  obtaining 
quantitative answers. The method becomes even less helpful if one tries to  incorporate 
more  general unsteady aerodynamics, which then becomes a complicated function of the 
reduced frequency. As a consequence the gain K of the root locus method would also 
become a function of the reduced frequency. To obtain at least  a qualitative impression 
of how a (constant) complex gain K would affect the pattern of the root loci,, the flutter 
mode A-i  was taken as an example and its root loci constructed, assuming a phase lag of 
20" which is approximately the maximum phase lag encountered in the Theodorsen analy- 
sis (Fig., 12).  According to  the rules of conformal mapping, a phase lag turns each 
segment of the root loci in the clockwise direction. A s  a consequence the root loci are no 
longer symmetric to the real axis and the systems has, in general, four distinct aero- 
elastic modes. On this basis one could infer that complex aerodynamics should generally 
have a destabilizing effect on the system. 

VI. CONCLUSIONS 

The root locus method furnishes a convenient tool for  analyzing the aeroelastic 
stability behavior of a simplified bending-torsion flutter model and promotes an intuitive 
physical understanding of the flutter mechanism in t e rms  of aerodynamic f.eedback cou - 
pling. Its usefulness is kept intact when structural  damping is introduced into the system. 
As a consequence the method a l so  provides a lucid explanation of the effects of energy 
dissipation on system stability and reveals the extreme sensitivity of the stability behavior 
with respect to damping parameter variations. The la t ter  phenomenon is intrinsic to any 
system whose pole-zero constellation is close to  the imaginary axis of the complex plane. 

Extensions of the root locus method to  systems involving many degrees of freedom 
are straight forward as long as the analysis is restr ic ted to static aerodynamics. Such 
extensions could se rve  the purpose of isolating-potentially dangerous flutter modes which 
would thereafter be subjected to a more  accurate flutter analysis. 

Inclusion of aerodynamic energy dissipation and unsteady aerodynamics renders  
the root locus method impractical fo r  a quantitative stability analysis but still  supplies 
qualitative statements about the stability behavior of the system that could be used as 
guidelines in preliminary design studies. Modifications of the root locus method involving 
an iterative process on a graphical basis could, of course,  be developed in order  t oa r r ive  
at quantitative results. It is believed, however, that such a graphical technique could 
not compete with any of the existing digital f lut ter  analyses in te rms  of accuracy, speed 
o r  other expenditures. 
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