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The results of an investigation of the effect of axisymmetric i n i t i a l  

imperfections on the bum- of cylindrical shells under combinations of 

axial compression and pressure are presented and discussed. Interaction 

curves are obtaAned which ham a branch determined by the present theory 

and a branch determined by linear buckling theory. 
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INTRODUCTION 

Buckling of Imperfect Cylindrical Shells under 

Axial Compression and External Pressure 
t 

b9 

John Hutchinson 
Harvard University, Cambridge, Massachusetts 

This note presents the results of a brief investigation of the effect 

of initial imperfections on the buckling of cylindrical shells under 

combinations of axial compression and external pressure. 

consideration is restricted to shells with axisymmetric imperfections, the 

important features of previously reported experimental findings are 

reproduced. 

Although 

ANALYSIS OF CYLINDRICAL SHELL WITH AXISYMMETRIC IMPERFECTIONS 

In this note we consider a cylindrical shell with an initial 

imperfection in the form of the axisymmetric buckling mode of the perfect 

shell under axial compression. That is 

X - 
w - 5 h s i n q  - 

0 O R  

where w is the initial radial displacement, 5 is the magnitude of the 

imperfection relative to the shell thickness 

R is the shell radius and 

0 

h , x is the axial distance, 

The length of the shell L is assumed to be sufficiently long to insure 
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that the end conditions (assumed sufficiently strong) do not have an 

appreciable effect on the buckling load of the cylinder when loaded under 

axial compression alone. 

requirement is met for thin shells of length greater than or about equal 

to the radius. 

Theoretical analyses’ seem to indicate that this 

2 biter has obtained an upper-bound to the buckling load of the 

hperfect shell deecriSed above for the case of pure axial hadirig. 

results are shown in Figure 1. 

imperfect shell P 

load of the perfect shell 

His 

In this plot the buckling load of the 

has been normalized with respect to the axial buckling 

P 0 = (3(1-~~))-~” Eh2 

Koiter’s analysis has been extended to obtain an upper-bound to the axial 

buckling load of pressurized cylinders. 

Reference (3) is also valid for buckling under combined axial compression 

and external pressure. Here, these results will be exploited without 

repeatfng the details of the analysis other than to give a very brief 

description of the method employed. 

The upper-bound expression Ln 

The large-deflection Donne11 equations for an imperfect cylindrical 

shell yield a very simple prebuckling solution for the loading combinations 

considered here and for an initial imperfection of the form given by 

Equation (1). 

value of the axial load (for a given external pressure) in the form of a 

non-axisymmetric buckling mode. 

to bifurcation; and thus, the bifurcation value is the buckling load. 

The eigenvalue equations for the bifurcation load are solved 

Bifurcation from the prebuckling solution occurs at a certain 

The load-deflection curve falls subsequent 

approximately in a manner which insures that the approximate eigenvalue 
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expression yields an upper-bound to the exact bifurcation load (again, €or 

fixed values of external pressure and initial imperfection). To effect 

this approximate solution it is necessary t o  assume a form for the non- 

axisynrmetric buckling deflection. The form assumed was 

where y is the circumferential distance and y is a free parameter to 

be chosen to minimize the upper-bound value. 

The eigenvalue equation, obtained in Reference (31, 2s 

- - 2py2 - 2P/P 1 4 (l-P/P 0 ) 2 l T +  ( l+Y 2, 
0 

- cy2Z(l-P/P )[P/P + 1 + 4(CY2Z12[ l +  1 - 0  
0 O (l-y2)2 (l+r212 (Srr2)* 

(3)* 

where c2 = 3(1-v2) and the pressure parameter is 

- cpR2 
P' 

Eh2 

Here P is the total axial load (the load resulting from external pressure 

on the capped ends plus the additional applied axial load). 

To find the upper-bound extimate of the axial buckling load P/Pa for 

a given value of 6 and initial imperfection 5 , it is necessary to solve 
Equation (3) for P/P in terms of y and then find the value of y such 

that P/P is minimized. Au equivalent, but considerably easier, procedure 

is to solve Equation (3) for 6 in terms of P/P , 5 and y and then 

minimize with respect to y This procedure leads to the upper-bound 

0 

- 0 

0 

curves plotted as solid lines in Figure 2. 

values of 'i chosen such that shell buckles at P/Po - .3 ,  .5 and .7 when 

subject to axial compression with no external pressure. The upper-bound 

= 0 , this is the expression Koiter used to obtain the results 

These curves correspond to three 

_ - - - - - - - - - - - - - - - - - -  
* 

With 
shown in Figure 1. 
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character can be construed in either of two ways: 

of external pressure F 
bound to the actual axial buckling load, or (2) for a given value of total 

axial load P/P the associated value of F is an upper-bound to the 

actual buckling pressure. 

(1) for a given value 

the associated value of axial load is an upper- 

0 

Included in Figure 2 are buckling load curves (dashed) for combined 

axial capressfon a d  external pressure for an initially perfect shell. 

These curves are straight line approxlaerions t o  those ebtaised,  for example, 

in Reference 1 on the basis of linear buckling equations for a perfect 

cylinder. 

frequently defined leEgth parameter 

The several curves shown correspond to different values of the 

112 R L T;cd 2 = (14) 

where L is the length of the shell. While the upper-bound results are 

independent of shell length and end conditions, the dashed buckling curves 

for the perfect cylinders are dependent on both. The curves in Figure 2 

correspond to a shell which is simply supported with respect to the radial 

displacement, free with respect to additional axial stresses and clamped 

with respect to the circmferential displacement. Completely damped end 

conditions can raise the buckling load under pure external pressure as much 

as forty percent.' 

the curves for the perfect cylinder would also be essentially straight line 

curves. However, they would intersect the axis at different values than 

shown. 

considered negligible for the purposes of this note as long as they are 

sufficiently strong. 

For other end conditions, completely clamped for example, 

The effect of end conditions on the axial buckling load can be 

Reduction of the load carrying capacity resulting from the presence of 
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the imperfection of the assumed axisymmetric form occurs only if the shell 

buckles in a mode which is, more or less, of the form given by Equation (2) 

Under pure external pressure, for example, the shell buckles in a made with 

only one half wave length over the entire length of the cylinder. 

assumed imperfection has essentially no effect on the buckling load and, 

consequently, the predictions of the linear theory are valid. We expect the 

sppez-bo-md predictions t o  be appropriate for combinations of axial load and 

external pressure such that  the upper-bound predictions fall helm tf?oS€! for 

the linear buckling theory. O n  the other hand, the linear theory will be 

valid, both with respect to buckling load and mode form, for combinations 

such that results of the linear theory fall below the upper-bound predictions. 

Thus, the curve of critical load combinations (sometimes referred t o  as the 

interaction curve) consists of two branches -- (1) the upper-bound branch 
on which the shell buckles in a mode of the form of Equation (2); and (2) 

the linear buckling theory branch. 

The 

For a given value of external pressure the axial buckling load will be 

either the upper-bound value (actually less than or equal to this value) 

the value predicted for the perfect shell, whichever is less. 

DISCUSSION OF RESULTS AND COMPARISON WITH EXPERIMENT 

4 Recently published experimental data by Weingarten and Seide are 

reproduced from their paper in Figure 3 .  

plotted was buckled repeatedly for loads ranging from axial compression with 

no external pressure to pure external pressure. 

load data for each specimen represents a complete interaction curve for a 

cylindrical shell with a given initial imperfection. 

A typical specimen of the nine 

In effect, the buckling 

It is therefore 

meaningful to make a direct comparison with the interaction curves of 
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Figure 2. Of course, it: should be remembered tha t  the theore t ica l  inter-  

act ion curves are s t r i c t l y  applicable only t o  s h e l l s  with the  assumed 

axisynrmetric imperfection. 

A typ ica l  experimental point i n  Figure 3 represents a cri t ical  

combination of t o t a l  axial load P and external  pressure p . The t o t a l  

a x i a l  load has been normalized with respect t o  2nEh2 ; and thus, the value 

of the  ordinate f o r  p = 0 r e f l ec t s  the extent t o  which the ax ia l  buckling 

h a d  f a l l s  bch.; that for 2 pCKfett Shell, i?/(2iiEh2) = .6 . addition, 

the  abscissa value is p/p where p i s  the  experimentally determined 

pressure f o r  buckling under external pressure alone. 
0 0 

The dotted l i n e  

labeled " interact ion curve" is the  curve of c r i t i ca l  load combinations a s  

predicted by t h s  l i nea r  buckling theory for a perfect  cylinder.  

Theory and experiment a re  compared i n  Figure 4 f o r  a specimen f o r  which 

the  agreement is qu i t e  good. For t h i s  specimen z 5 1526 , and the 

theore t ica l  in te rac t ion  curve i n  Figure 4 corresponds t o  t h i s  value of z . 
The external  pressure has been normalized with respect t o  the buckling 

pressure fo r  buckling under external pressure alone i n  the same manner 

i n  which the experimental results are  presented i n  Figure  3. 

5 

The value of 
- 

associated with the upper-bound branch of the  in te rac t ion  curve was 

chosen such tha t  the theore t ica l  buckling load under pure axial  compression 

agreed with the experimental value, 

The two main features  of the theore t ica l  r e s u l t s  are: (1) the  two 

branches of the interact ion curve and (2) the  lack of dependence of the 

ax ia l  buckling load on pressure on the  upper-bound branch. Both these 

features  a re  charac te r i s t ic ,  t o  a cer ta in  extent ,  of almost a l l  the 

specimens. Apparently, however, some specimens exhibi t  a grea te r  

dependence on pressure than is predicted f o r  a s h e l l  with axisymmetric 
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imperfections. 

At least two possible explanations can be suggested to account for the 

discrepancy between the theory, as presented here, and experiment. Firstly, 

the predictions on upper-bound branch are, as has been emphasized, of an 

upper-bound nature and, most likely, over-estimates. Probably more 

important is the failure to account for other than axisyannetric imperfections. 

In  this caaaection, it is noted that a significant distinction was found 

between the roles of axispmoetric and asmetric i~perfecticzs iz reducing 

the axial buckling load of pressurized cylinders .3  

imperfections are "ironed out" by internal pressure, axisymmetric ones are 

not. An "ironing in" effect due t o  external pressure (that is, the effect 

of the external pressure in "pushing in" the initial asymnetric imperfection) 

is expected to give a greater pressure dependence than is predicted for a 

shell with only axisymmetric imperfections. 

While asymmetric 

A multiplicity of buckling modes are associated with the critical load 

of a perfect cylindrical shell under axial compression. 

the form of any of ths buckling modes are particularly degrading. 

basis of linear shell theory, it is a simple matter to show that the 

smaller the number of circumferential wavelengths associated with one of 

these imperfections the less internal or external pressure will be necessary 

to iron it out or in. Thus, a cylinder whose buckling behavior is determined 

by an asymmetric imperfection with relatively few circumferential wavelengths 

should be expected to show a definite pressure dependence over the entire 

interaction curve. This effect, however, will be less noticeable in the 

case of externally pressurized cylinders than for those internally 

pressurized. 

Imperfections in 

On the 

This follows because the external pressure on a thin shell 

with z greater than 50,  say, can never exceed - .2 , while the ironing 
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out effect only becomes significant at internal pressures of this order 

or larger. 
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