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ABSTRACT

1S4

The Space Trajectories Program for the IBM 7090 computer is
described in comprehensive detail, with emphasis on the development
of the equations. Equations of motion for both the Cowell and Encke
methods are given. Numerical experience with the class of trajectories
encountered in practice is included to compare the Cowell and Encke
methods, and to obtain an estimate of the over-all accuracy of the
program. Sources of error are pointed out, consistent with the precision
of thz numerical methods. Operating instructions and descriptions of
input and output are provided for the successful running of trajectories.
Flow charts presented serve as a guide to the understanding of the
internal sequence of events and control methods. Major subroutines
used in the program are contained in the Appendix. The program is

written in the FORTRAN Assembly Program language.

G ter

I. INTRODUCTION

The Space Trajectories Program originated in the need
to study trajectories of high precision formed by the
transit of a space probe from the Earth to one of the three
targets technologically feasible at present —-the Moon,
Venus, or Mars — under the influence of gravitational
forces described by Newton’s law alone. Although the
major programming effort has gore into obtaining a
solution for which the accuracy is consistent with the
single nrecision arithmetic used, and which requires a
reas ble amount of computer time (about 30 seconds),
the program may be used for study of general inter-
planetary flight where it is sufficient to include the bodies
Sun, Venus, Earth, Moon, Mars, and Jupiter for their
gravitational influence.

Since the program solves the equations of motion for
the probe only, and ignores the negligible perturbations
of the probe on the bodies, it is sufficient to obtain the

positions and velocities of the bodies in the form of
planetary and lunar ephemerides in some convenient ref-
erence frame. Since the coordinates have been tradition-
aily referred to the Cartesian system based on the mean
equator and equinox of 1950.0, the ephemerides used by
the program have been uni’ornly expressed in the same
comdinate system. The collection of ephemerides was
systematically done on magnetic tape.

Having expressed the coordinates of the bodies in the
1950.0 reference, it was natural to write the equations of
motion in the same coordinate system. But it was immedi-
ately necessary to obtain expressions for the precession

1A description of the standard source tape with origins is given in
“Subtabulated Lunar and Planetary Ephemerides,” by R. H. Hud-
son, Technical Release No. 34-239, Jet Propulsion Laboratory,
Pasadena, Calif., November 2, 1960.
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ind nutation of the Earth’s equator so that the oblateness
perturbation of the Earth might be properly assessed in
the 1950.0 frame and that injection conditions referenced
to the Earth’s true equator of date resulting from pow-
ered-flight arcs might be rotated to the fixed system. To
assist in the latter transformation, the hour angle at
Creenwich of the true vernal equinox was obtained by
the synthesis of a calculated mean value and the nutation
in right ascension formed from the nutations and the
obliquity of the ecliptic.

As the planetary-position ephemerides are tabulated at
four-day intervals and the lunar at one-day intervals on
the ephemeris tape, it was necessary to use an interpola-
tion scheme tc obtain intermediate values of positions
and velocities. An Everett’s formula which utilizes second
and fourth central differences was chosen for the posi-
tions; to obtain the velocities, the Everett’s interpolating
polynomials were differentiated to obtain polynomials to
be applied to the tabulated positions. It was found con-
venient to tabulate the necessary differences on the
ephemeris tape along with the positions, and to arrange
the tape in 20-day records to permit efficient tape scan-
ning in either the forward or the backward direction, and
to avoid excessive tupe reference; thus lunar trajectories
require, at most, two records, and interplanetary on the
order of ten, which keeps tape-handling time within
reasonable limits. Additionally, for the Moon, the sixth
and cighth central differences have been throvn back on
the second and fourth, since the former are not negligible.
To handle long flight times, the argumenti is carried in
double precision; this technique also allows for smcoth
interpolation.

The equations of motion have been written to take
advsatage of the fact that usually a central body may be
found, and the coordinates relative to that body expressed
so that the dominant term iu the acceleration arises from
the chosen body, and the remaining terms are relatively
smail perturbations acting to displace the two-body orbit
formed by the trajectory of the probe in the field of the
central body alone. Thus the remaining gravitational
bodies give rise to what is known as the n-body perturba-
tion; the perturbation arising from the oblateness of the
Earth and expressed by the second, third, and fourth
harmonics is included when the probe is near the Earth;
in a similar manner, the pertwbation derived from: the
triaxial figure of the Moon and represented through a
second harmonic term is included when the probe is in
the vicinity of the Moon. The above method of represent-
ing the equations of motion is known as a Cowell scheme.
If the central-body term is replaced by the acceleration

arising from the deviation of a true orbit from a fixed
reference two-body orbit and the equations of motion
are referred to the deviation, then the method is called
an Encke scheme. Either the Cowell or the Encke scheme
may be used in the program, although the latter is gen-
erally preferred in practice because of a small advantage
i1 speed and accuracy. But for the powered flight option,
which simulates the burning of a constant-thrust motor, a
Cowell scheme is generally advisable because the rapid
deviation from the reference two-body orbit would force
frequent recalculation of the reference if the Encke
scheme were used. The motor is assumed to be of high
thrust since the attitude is forced to remain fixed in space,
a restriction which is unrealistic for a low-thrust motor.

The solution to the trajectory problem is obtained by a
stepwise numerical integration of the equations of motion
appropriate to either the Cowell or Encke scheme accord-
ing to an Adams-Moulton predictor-corrector method
which retains the sixth differences of the derivatives; a
Runge-Kutta method accurate through fourth order is
used to obtain starting values for the Adams-Moulton
method. An additional refinement is the fact that the
ordinates are accumulated in double precision to control
the growth of roundoff error. To obtain the solution at
desired points, the subroutine MARK is employed. (For
details of subroutines, see Appendix.)

For purposes of control, the trajectory has been divided
into segments which are referred to as “phases.” Usually
a phase is characterized by a dominant central body, and
integration step sizz is determined by the distance of the
probe from that body. Thus a normal Venus trajectory
which injects near perigee and terminates with Venus
impzct wouid consist of three phases: phase one, integra-
tion to 2.5 X 10¢ km from the Earth, with the Earth as
the central body; phase two, Sun-centered integration to
25 X 10° km from Venus; and phase three, Venus-
centered integration to the surface of Venus at 6100 km,
In addition, the phase may be used for the auxiliary
function of controlling the density, type, and incidence
of output,

The program operates internally in laboratory units,
i.e, in kilometers and seconds, rather than the classical
units utilized in celestial mechanics, Universal Time (U.T.)
is used, although provisions have been made to augment
U.T. by a constant to obtain Ephemeris Time (E.T.) for
use as the argument of the ephemerides, For purposes of
high resolution, time is carried in double-precision sec-
onds past 0® January 1, 1950. This choice also makes for
consistent results, even though the phase-transfer points
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may be changed somewhat for a particular trajectory;
otherwise, the interpolated values of the coordinates
might not be a smooth function of time, and hence give
rise to systematic errors at the transfer point.

The motion of the Moon s truz equator has been accu-
rately represented by the program to provide for seleno-
graphic coordinates to be used for both input and output.
The rotation necessary to transform from the 1950.0
reference to selenographic Cartesian coordinates is also
needed to represent the perturbation arising from the
nonspherical figure of the Moon. The description of tne
selenographic quantities may be found in the discussions
of subroutines NUTATE, MNA, MNAMD, and XYZDD?
given in the Appendix.

In summary, the Space Trajectories Program in its
present form is the culmination of three years of work in
the space trajectory field at the Jet Propulsion Laboratory,
and is designed for the study of the motion of a space
probe confined to the solar system and influenced by the
nonspherical Earth and Moon, and the point masses
defined by the Sun, Venus, Mars, and Jupiter. The pro-
gram may also be employed in other applications, of
which the following are some examples. A simplified
powered-flight arc may be simulated which assumes a
constant-thrust, constant-burning-rate motor with thrust
direction fixed in space. Any of ..e above-mentioned
bodies may serve as the reference body at the injection

*These subroutines were programmed with minor revisions from the
equations described in “Selenographic Coordinates,” by B. E.
Kalensher, Technical Report No. 32-41, Jet Propulsion Laboratory,
Pasadena, Calif., February 24, 1961.

epoch, and stepwise numerical integration of the equa-
tions of motion appropriate to either a Cowell or an
Encke scheme scrves to step the probe along its flight
path to one of the bodies, which then serves as a target.
Standard-type trajectories injecting near the Earth, and
liaving as target one of the bediés Larth, M<on, Venus, or
Mars, have been given special treatment i reduce the
volume of input necessary for execution. The injection
conditions may be input in Cartesian or spherical coordi-
nates based on one of four reference frames: mean equator
and equinox of 1950.0, mean equinox and ecliptic of
1950.0, true equator and equinox of date, and the true
equinox ar d ecliptic of date. For the Earth as injection
body, the Earth-fixed spherical set, based on a rotating
Earth, is available; for the Moon as injection body, the
selenographic (Moon-fixed spherical) coordinate set,
which takes into account the rotation of the Moon, may
be used. For injection conditions taken with reference to
the Earth, a quasi-orbital element set for escape hyper-
bolas, known as the energy-asymptote option, has Leen
made available. For output, any of the above quantities
may be obtained at will, along with ephemeris informa-
tion expressed in any one of the four Cartesian or spheri-
cal coordirate systems; conic owyat may be called for
which expresses the osculating two-body orbit in many
sets of orbital elements referred to one of the standard
Cartesian frames; all manner of the principal angles be-
tween the probe and the bodies may be displayed; up to
a maximum of 15 tracking stations may be used to observe
the probe in topocentric spherical coordinates; or view
periods of the stations may be determined by the pro-
gram and displayed in the form of rise, maximum eleva-
tion, and set prints.

-
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il. EQUATIONS OF MOTION

A. Cowell Scheme

Let there be a small probe, body 0, in the gravitational
field of n other bodies. Choosing an inertial frame of ref-
erence results, according to Newton, in

§i=—k22 m,—&;f—- i=0,...,n (1)

where Pii = Pi — Pispii = ! Pii I; i,i = 0,...,71; and k is
the gaussian gravitational constant (Sketch 1),

my P//

; / my

o

Sketch 1. Relationship of ith ang jth body
in an inertial frame centered ¢

Okserve that
P=1 z
- M m; pj
i=0

the center of mass, has the interesting property that

since

and

n
pis = py WithM = 2 my
j=0
Therefore P is constant and the barycenter is an inertial
frame,

Were it sufficient to express the motion of the prope,
body 0, in an inertial coordinate system, the result would
be

§o=—b=2m,.!% ()
I Pjo

where the coordinates are referred to the barycenter.
Such a representation would naturally epough be called
the barycentric form of the equations of motion. How-

ever, in practice it is convenient to rewrite Eq. (2) so
that the coordinate system is referred to one of the n
bodies, usually the dominant one.

Using Eq. (%) above with [ = 1 as the central body

ﬁo"'bl: "kzzmlR—j;
}=1 Rjo
with
Ri=p;i—p1=pu
Ry=R;~Ri=p; —~pi = Pis,» 7 =0,...,n
Ri; = |Rij|

defined in the new coorch.:ate systein.

To obtain ﬁo from the atave expression, calculate 'fS;
with the aid of Eq. (1):
n

61= —kZZm; H,* =k’2m,-§—;
e i

1=0 i=
i# i#

So
.o ., . R R,
Ro=-—-&(m+i, rr;'”k’Z(ij—z‘;:-"'Mjﬁ-)

f=1
i#i

In practice, sincs mo/m; ~ 0, write in brief

. R < (R, R
R=- = 3, (——’!-+-—’-) (3)
nE T4 M\E, TR
i1
with R = R, = R,, R;, = Ry, p denoting the probe, and
Hi =k21YIj;f= L...,n

In Eq. (3), the summation on the right will be known
as the n-body perturbation which may be resolved into
the direct terms, — % u; R,/ RS, and the indirect terms,
— 3 p; Ry/R}; the latter sum represents the accelerating
effect of the n — 1 noncentral bodies on the central body
and is what distinguishes Eq. (3) from Eq. (2). The
effect of the central body has beer. deliberately isolated
because normally it is the dominant term in the expres-
sion for the acc~leration, In particular, in the case that all
perturbations vanish, Eq. (3) may be solved completely
for the geometric orbit, a conic. Even when the perturba-
tions are small, the above conic solution may be used to

A A g, A




e s s R

Q

JPL. TECHNICAL REPORT NO. 32-223

rewrite the equations of motion as in Encke’s method
described in Section IIB.

When the probe iz in the vicinity of an oblate body, a
perturbing term is added o the differential equations
which may be described by the corresponding potential
function.

Yor the Earth, use is made of the second, third, and
fourth harmonics:

Ug =%§-{ 3R? (1—3sin%¢) +§§ (3—75sin%¢) sin¢

SSR‘ (3 30sin? ¢ + 35 sm‘¢~)}
where g is the gravitational coefficient of the Earth,
ag is the equatorial radius of the Earth, and ¢ is the
geocentric latitude. The perturbing acceleration is then

given by
. —(oUg 2Ug aUe)
vy =(Zp 2. 25
where R = (X, Y, Z) and the coordinate system is ori-

ented in the fixed 1950 0 system described in Section IVB.
Th. precise form of V U, is given in the subroutine
HARMN described in the Appendix.

The Moon may be regarded as a triaxial ellipsoid with
the explicit expansion for the oblate potential being

A+ B+ C—31
v, (—_—__ZR, )
where
G:ﬂ.:k’
¢

I=4 (7’;-)’ +B (%)' +c (7’2‘-)’

A, B, and C are moments of inertia about the three prin-
cipal axes of the ellipsoid and R = (x, y, z) is the position
of the probe expressed in the orthogonal right-handed
courdinate system defined by the aforementioned prin-
cipal axes. Specifically, the x—y plane defines the Moon’s
true equator, the x axis emanates from the longest axis
which is constrained to point in the general direction of the
Earth, while the z axis lies in the direction of the Moon’s

spin vector; the figure may be likened to a distorted oblate

spheroid, disfigured because of the Earth’s proximity.

To obtain the acceleration, again form V U,, with
X, Y, Z given in the 1950.0 system. The expliclt iorm of

_Thus, R, is available and, if necessary, Ro

V U, may be fourd in subroutine XYZDD described in
the Appendlx, the body-fixed coordinate system for the
Moun is given in the discussicns of subroutines XYZDD,
MNA, and MNAMD in the Appendix.

At times it may be necessary to simulate the perform-
ance of a small midcourse motor which burns with con-
stant thrust with an attitude fized in the 1955.0 reference
system. Thrust duration is handled s a function of time
alone:

F

a==- —m (T — To) C To=T=T: (4)

where C is *he spin-axis vector of the p:obe fixed in space,

F is the constant thrust, m is the constant mass flow rate,
and m, is the initiai mass. i

During burning, Eq. (4) represents the 'amgest contn-
bution to the acceloration and Encke’s method is not
used. In general

.0 R R
R=—poz+P (5)

* where p = p avd P represents the contributions to the
acceleration arising from the above-mentioned perturba- .
tions and any thrust which may be considered. The direct -

numerical integration of Eq. (5) is here defined a. a
Cowell integration, although the latter te 1 is used dif-
ferently by other authors. -

B. Encke's Method .
Let the probe be near a central body so that P becomes

small compared to the central body term in Eq. (5). At .

the epoch T, the two-body problem may be solved with
suitable initial conditions, The defining equations of
motion for the unperturbed orvit are

ii.,=—-n%;- (6)

V, as a func-
tion of time. Next, consider the differential equations for
P =R — R,, the Encke displacement, where R is from
the perturbed orbit defined in Eq. (5):

B=—s(m &) P )

At _his point, the difference betweenr the central-body

terms must be expanded by means of the smali parameter
Q; otherwise, numerical differencing will result ia sig-
nificant errort introduced in the accelerations. So

g va e - it 4 s et AR ANV A A .
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R _R _ R: _
FomTm{(E )R ©

Define, as with Encke, Q by the relation 1 + 2Q =
R*/R%; in general. when the method is appiicable, Q
will be a small parameter. Now

R} _ 1 + .
- -1-0+29)

and the difference may be expanded into the sesies

3
F@=1-1+20)%=0) 40 (%

=0

where m is chosen so that the remainder in the sum stays
smaller than g, X 10" whencver | Q | =< Q..

An accurate numerical value for Q must be obtained in
order to justify the expense of the series expansion in

Eq. (9):
RS
2=7\x “)
(R, + p)- 'R, + p) —R?
R;

R +2p-R, + p-p — R
K

il

=1
2

Q=£(l:—:%—) (10)

It has been found that the above dot product is well
defined numerically for most cases; further numerical
safeguards which have been added to control the accu-
racy of Q are given in subroutine ENCKE, described in
the App=ndix.

If the difference appearing in Eq. (7) is evaluated,
using Eq. (8) and Eq. (9), the final equations of motion

for the Encke method become
P=-J(p-RF(Q)+P (1)
o

To start the integration at the epoch T, an arbitrary
set of elements is chosen to describe the two-body motioz;
in all instanees, judicious selection must be made so that
the Encke term in Eq. (11) does not become large
rapidly and so destroy the advantage over the Cowell
method, which uses Eq. (5). In most cases the elements
will ke osculating, so that p (T,) ~0and B (T,) ~ 0 to

the limitations of the numerical calculation. For the
Encke initial conditions at the epoch T,, use

P (To) = R(T,) — Ro (T,)
0 (To) = R {To) — R (To)

If the perturbation P is large encugh, both Q and p/R,
will grow with time; () may be small while p/R, is rel-
atively large, since Q is defined by the dot product in
Eq. (10). Undcr these circumstances it becomes necessary
to roctify the reference orbit and restart the numerical
integration. /R, is vsed to assess the numerical accu-
racy of Eq. (10), and an empirical bound has been
applied as indicated in the discussion of the control
section c. the program (see Section V).

The use of the Encke method is advantageous because
the perturbation P ent~s the derivatives in Eq. (11) to
more significant digits than in the corresponding ones in
Eq. {5), and hence the effect of P is more accurately
represented; step size muy Le increased by about a factor
of two over Cowell if a dominant central body is chosen;
and the differential equations are such that numerical
stability of the Adams-Moulton predictor is not guite the
problem that it is when Cowell derivatives are used, even
though both methods use one application of Adams-
Moulton cormrector to insure ultimate stability. A com-
parison of thc numerical results appears in Section III.

C. Solutions to the Two-Body Problem

As mentioned in the preceding section, for Encke’s
method it is necessary to obtain a solution to the two-
body problem as a function of time. At epoch T,, in
general, a set of osculating elements is required, defined
by R, V,, and the equations of motion

ii=—~-’%‘- (12)

Observe that R X V is a constant vector since

d(RXV) d(RXR) 2oz -
2= 22D —RxR+RXR

=—-1{!i,- RXR)=0

¢ = |R X V|, the angular momentum, is defined as a
constant of the motion. In the exposition below, ¢, 7 0 is
assumed; if the oscul..ing elements give ¢, =~ 0, then a
nonosculating set is used for the Encke program so that
¢, is clearly defined. Next

RXV

51

W=

3
g
A
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is defined so the motion is constrained to the plane de-
fined by W. The quantity ¢, = V2 — 24/R is another
constant of the motion

by _ 2 (ﬁ-ﬁ_%)ﬁ{ﬁ.m sl

& & R*
_ pR - y.Ri{
—z{— R+ R,}
_ #R -  uR-R
SYEE N en
=0

Thus, ¢; = V2 — 2u/R is defined as the “energy” constant.

It is possible now to .olve the problem of the moticn
in the orbital plane defined by W.

X

Sketch 2. Two-body orbit

Reterring to Sketch 2, let the closest approach distance
be q at the epoch T, and P defined as R...,, = gP; dcfine
Q = W X P so that a Cartesian coordinate system de-
fined by P and Q may be set up in the orbital plane. If
R = constant, then T, = T,. Polar coordinates may be
used to write r = {x,y) = re'’, where v is the true
anomaly. Note that since

P=16"+ i =76 + roeimun

calculate ¢, = r* ¢, since the component e’ of the veloc-
ity lies along r and, hence, does not contribute to the
cross product which defines ¢,. Finally, by differentiating
r and comparing with Eq. {12),

2
r= (’r'-—-%)c"= -—-"‘70"

or

Making the classical change of variables, 1/u = r, and
solving for the geometric orbit with the true anomaly v,

dv?

where p = ¢2/p

1
+{s——) =0
“ p)

Measuring the initial conditions at epoch T, where
v = 0, the solution has the form

1
4

8§ — —

_!_ cos v

?

since du/dv = 0 at v = (. In terms of r, the fundamental
geometric solution becomes

~

=7
= TH e 13

while g (1 + ¢) = p; e = Osince p = q.

An expressinn for ¢ is now obtained:

—2 G, . _easiny
V’—f”}-'z,r——?
€= —z'ﬁ-=§(e’sin’c+s’cos’v—-l)
(14)
z’—l=&
P
e=y1+E2
The solution may then be expressed as
_ pcosy psiny
R = T ecossE T T eems @
(15)

—¢ siny ¢ (e + cosv)
= P+
v 4 4 Q

At the osculation epoch T,, from Eq. (13)
AY

cos vy = l (_P_ - 1)
e
and by manipulatioa of Eq. (15)
sin v, g 3 -—t—ll.,-V.

e Ro [

Inverting E¢ (15) gives the vector expressions

P =cowo—n—° —sin«‘,?':-;g-;n—o
0 o (16)

Q =sinv, %:— + cosv, w:‘&
7
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Equation (16) is satisfactory only for e=<0; if ¢ = 0,
it is customary to take

_K
P=3
Q=WXP

To solve the dynamics, one approach is to work with v,
the true anomaly, in the form v = tan /2.

q (1+ w?)
1+Auw?

where A = (1—¢)/(1 + ¢), in terms of the new variable w.

R =

From the relation ¢, = R? o,

2 _ 14w
P e v Tt

o 14w
X(T“lﬁ)—[ fl—ﬂiu’)”d" (17)

where g = ¢,/24

In practice, the quadrature on the right side of Eq. (17)
is obtained for small values of A by expanding the inte-
grand as 1 power series in A and u® and integrating term
by term. The resultant form appears in the discussion of
subroutine PERI (see Appendix). Equation (15) may
be rewritten in terms of w as

o 1—w? 2w
Rt P T Q (18
V= —c.(1+A)wP+c,(l—Aw’)Q
q(1+w?) q (1 + w?)

To complete the solution, it is necessary to obtain T,. If
w, = sin v/ (1 + cos v,) and A are not too large, then Aw?
will be sufficiently small so that T, may be calculated
from Eq. (17) with the series expansion. It may turn out
that Aw? is not suitable, in which case T, is computed
using the eccentric anomaly which is described below.
But once T, is obtained, Eq. (17) may be solved at epoch
T by iteration to give tc, used to obtain th coordinates as
in Eq. (18). Since At:* must be a small paramcter for the
method to work, the principal application come: when
either A is quite small or the motion is confined to a
region near closest approach; the latter alternative gives
rise to the name “pericenter” method applied to the above
process involving w or v.

Another way to obtain the dynamics is through the
introduction of the eccentric anomaly. A singularity

appears at ¢; = 0 which is adequately handled by the
pericenter method, as ¢; = 0 implies A = 0. Otherwise,
the elliptical case is distinguished with ¢, < 0 and its
eccentric anomaly E, while for ¢; > 0 and the eccentric
anomaly F, the hyperbolic case is considered.

If ¢; < 0, . is defined by
R=a(l—ecosE),0=|E|=180°
a=— £ (19)
€a

E>0s0that EZ0#T=T,

By substitution into the equation ¢c; = V? — 2u/R,

(1—ummé=J%=,

E—¢esinE=n(T —T,) (20)

or

which is Kepler’s equation for an ellipse.

Observing that
= - N =P
R=a(l —ecosE) Y
and

. s el .
R =aesinEE =———P' sinv

leads to
cos v = cosE — ¢
1 —ecosE
(21)
sinv = 1 — ¢*sinE
1 —ecosE

Substitution of Eq. (21) into Eq. (15) yields
R=a(cosE—¢)P +4a\/1—¢*sinEQ

__ —ansinE wn\/1~ e*cosE (22)
v_l—-ecosEP+ 1 —ecosE Q

E, is determined at epoch T, hy

cos B, = -}- (1 —-%9-)

sin E, = _1. _R.L:..!ﬂ

€ aVie|

so that T, may be determined using these equations along
with Eq. (20).

To obtain the coordinates at epoch T for the elliptical
orbits, Eq. (20) is solved by iteration given in the dis-
cussion of subroutine KEPLER (see Appendjx). o
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The hyperbolic case defined by ¢; > 0 admits a similar
solution. Start with the definition for F

R =a(ecoshF —1)

a=r (23)

€3

F>0s0thaa F=0ii T2T,

To obtain the form of Kenler’s equation for the hyper-
bola, use ¢; as with the elliptical case, and obtain

(ecoshF—l)I."="-:—3-=fz

and Kepler’s equation

esinhF —F=n(T —T)p) (24)

Comparing expressions for R and R, v and F are re-
lated by

cosy = = COshF_

ecoshF — 1 (25
- Ve~ IsinhF )
Sy = T oshF — 1

Beplacing the quantities in Eq. (15) by those in Eq
(25), the expressions for the coordinates become

R=a(e—coshF)P + a4\ — 1sinhF Q

- —ansinhFP+an\/e’—lcoshFQ (26)
ecoshF — 1 ecoshF — 1

At the epoch T., T, may be determined from Eq. (24),
when F, is obtained fron.

coshF, = = (1 + &)

€ a

sinh Fy = % ':0 ‘cvo
)

The iterative solution of Kepler’s equation at epoch T is
used to obtain the coordinates; the discussion of subrou-
tine QUADKP (see Appendix) describes the numerical
technique used for the hyperbolic case.

W hes L SamsasAr s sis e tan v
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Ill. NUMERICAL EXPERIENCE

Trajectories computed using single-precision deriva-
tives calculated in the Enck. manner should be slightly
more accurate than those generated using the Cowell
form of the equations of motion, provided that a proper
choice of central hody has been made. The difference
between the two methods arises from the fact that the
relatively small size of the perturbing acceleration, as
compared with the central body acceleration, permits the
Encke scheme to retain more significance in the total
acceleration, as compared with the corresponding accel-
eration term in the Cowell scheme. It is assumed that the
reference orbit for the Encke scheme lies sufficiently close
to the true orbit so that the quantity p/R, < 0.03. where
R, i» the position in the reference orbit while p is the dif-
ference between R, the position in the true orbit, and R,.
Under this assumption, the main term in the acceleration
for the Encke method, viz., — /R] (p — F(Q)R), will
in general be at least an order of magnitude smaller than
the corresponding Cowell term, —uR/R?, for F(Q) ~3Q
=3p- (Ro + p/2)/R? = 3p/R, at worst; thus | p/R, —
F(Q)R/R, |~ 4 p/R, and as R?/R* == 1 — 2Q, the ratio
of acceleration terms will never exceed 0.12. The ultimate
accuracy of the Encke scheme is tied to the accurate
solution of the two-body problem for obtaining the ref-
erence orbit; less accuracy in the reference orbit would
be sufficient for computation of the main Encke accelera-
tion term and a less accurate solution than this would
suffice for the perturbations.

Rounding error in the computation of the main Cowell
acceleration term propagates into the numerical solution
in a strikingly simple fashion—T,, the epoch of pericenter
passage, alone of the orbital elements is significantly per-
turbed. To demonstrate the effect of roundoff, a high
Earth-satellite trajectory was run with both Cowell and

Encke schemes; additional information was obtained by
successively chopping the last and the last two bits in
each coordinate of the acceleration vector at each inte-
gration step. A comparison of the effect on the orbital
elements at the first perigec point appears in Table 1.

As a measure of the over-all difference in the trajec-
tories, comparison of the difference in range SR may be
made near the perigee. Under the assumption that T, is
the only orbital element to be affected, then

SR =R, — R, = §Re YL —esinE®
: ! 1 —ezcosk®

where

satisfies the equation
E* —esicE®* =n (T T,*),
T’. = _;_ (T;l) + T;Z))

SR* =ﬂ_‘__8T’

Vi—¢

8T, =T — TP

where the superscript 1 refers to a comparison trajectory
while the superscript 2 refers to a perturbed trajectory.
3R*® is the extreme value of 3R occumag at n (T — T,*) =
+(cos? e — ¢ VI — £8). A summary of results in Table 2
serves to demnnstrate the adequateness of the conic
approximation. The small perturbation in T, contribute:
only a small difference in the coordinates, if a comparison
is made at a greater time from perigee.

Table 1. Orbital elements at perigee

»
Case ¢ ] T, ! “ 0
km sec deg deg deg
Norma! Encke 8901.362 0.98534697 69.077 19.599986 200.94431 222.12236
Encke with lost bit chopped 8901.362 0.98534687 69.074 19.599986 200.94431 222.1R236
Encke with last two bits chopped 8901.362 0.98534697 69.088 19.599986 200.94431 22718238
Normal Cowell 8901.425 0.98534641 22.029 19.600052 200.94427 222,18245 )
Cowell with last bit chopped 8901.420 0.98534644 27.063 19.600039 200.94428 222.18243 :
Cowael! with last two bits chopped 8901.402 0.98534650 38.793 19.600027 200.94429 222.1824) |
*Ciosest approach distance.
STime of pericenter patsage, past 454 120 58 after the Injection epoch.
10
l' “""-&'i’wm
IE——— SE————.




As a further comparison of the Encke and Cowell
methods, three lunar trajectories were selected which had
flight times of 35 hr, 45 hr, and 66 hr, respectively. The
trajectories were characterized by an injection altitude of
about 200 km near perigee and a termination of 1738.09
km from the center of the Moon. Table 3 compares results
obtained by the running of each trajectory four different
ways: (1) Encke, Moon-centered second phase; (2)
Encke, Earth-centered second phase; (3) Cowell, Moon-
centered second phase; and (4) Cowell, Earth-centered
second phase. In all instances the second phase was
started at a distance of 30,000 km frcm the center of the
Moon. It appears from the data that all four methods are
consistent and yield results of satisfactory accuracy.

The 66-hr lunar trajectory was used to estimate the
effect of integrating in a coordinate system based on the
true equator and equinox of date. A precise comparison
is impossible, since injection conditions expressed in the
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of-date system must be rotated to the mean equator and
equinox of 1930.0 for integration in the normal case. Such
an operation introduces a small variation in the injection
coordinates which propagates under integration into the
numerical solution, thus partially masking the difference
between the two coordinate systems. However, an esti-
mate of the variational effect was made which could
account for abont half of the observed difference in the
Cartesian coordinates at lunar encounter. The perturba-
tions in these coordinates, arising solely from the two
different coordinate systems for integration, seem there-
fore to amount to about 1 km; in addition, the flight time
received a perturbation amounting to about 0.6 sec. These
differences appear to be significant when viewed in the
light of the data in Table

As interplanetary trajectories are usually run in three
phases—phase one Earth-centered, phase two Sun-
centered, and phase three target-centered—it is necessary

Table 2. Range differences near perigee

SR at 45° 12* 3R at 45° 14* Maximum 3R
Case km km km
Computed® Observed® | Computed® | Observed® | Computed® | Observed®
Encke with last bit chopped minus normal Encke —-0.014 —o0.014 | 0.014 0.010 0.014 0.014
Encke with two bits chopped minus normal Encke 0.050 0.052 -0.050 0.052 0.051 0.053
Normai Cowell minus normal Encke —215.028 —214.943 213.824 213.705 220.168 220.064
Cowell with last bit chopped minus normal Cowell 23.025 23.017 —22.860 —22.850 23.557 23.548
Cowell with two bits chopped minus normal Cowell 76.661 76.631 -76.1°4 —76.103 78.450 78.413
#Valves derived from the orbital elements.
SValves derived from the normal trajectory output.
Table 3. Comparison of lunar trajectories
Case Lunar Impact Time BT B-R* I*
km km deg
35" Encke E-M 19 10" 53" 081619 44.129 9.785 27.3.
35" Encke E-E 19 10" 53" 08624 44.142 9.785 27.3384
35" Cowell E-M 1 10" 53" 082620 44,139 9.787 27.3347
35" Cowall E-£ 14 10" 53" 08625 4..149 9.787 27.334)
45" Encke E-M 14 20" 51 32:279 19.037 14.500 46.8673
45" Encke E-E 19 20* 51" 32:284 19.042 14.499 46.8322
45" Cowsll E-M 19 20" 51" 32:279 13.031 14.499 46.8475
45" Cowell E-E 14 20" 51" 32:287 19.047 14.500 46.8408
66" Encke E-M 2¢ 17" 49" 03!028 270.281 -88.532 37.1864
66" Encke E-E 2¢ 17" 49" 031047 270.324 ~88.536 37.1848
66" Cowsll E-M 2¢ 17" 49" 031064 270.300 -88.565 37.1906
66" Cowell E-E 24 17" 49" 03:078 270.339 -88.571 37.1894
*The orbital alements B « T and B « R are computed olong with i, tha Inclination, ot the tive the distance 1738.00 km from the center of the Moon Is reached.




JPL TECHNICAL REPORT NO. 32-223

at the change into phase two to compute the velocity of
the Sun by numerical differentiation of position coordi-
nates, which is inaccurate on two counts: first, the position
ephemeris of the Sun displays noise in the seventh fig-
ure of the positions, which gives rise to inconsistencies
in the velocities as obtained from neighboring segments
of the ephemeris; second, even with eight-figure accuracy
in the position data, calcuiation of the velocities entails
differencing so that significant figures are lost.

To determine the magnitude of the error introduced in
the velocity coordinates as used for rormal cases, an 80-
day arc of the Earth’s orbit was smoothed by a least-
squares fit which utilized a numerical integration of the
equations of motion. Residnalc on the order of £wo wuils
in the seventh figure of the position coordinates were
obtained by the fitting process. As a by-product of the fit,
smooth velocity coordinates were obtained which were
therefore consistent with the new position coordinates.
Intermediate values of the velocities were then obtained
by both a numerical differentiation of the new position
ephemeris and a direct interpolation of the velocity
ephemeris; a comparison of the results revealed maximum
differences of about 0.02 m/sec, or discrepancies in the
seventh figure. Next, the c~"ginal noisy position coordi-
nates were differentiated and compared with the inter-
polation in the velocity ephemeris. In this case, the
maximum differences were observed to be about 0.15
m/sec, or a rel. tive error of about 5 X 10

An actual Venus trajectory with a flight time of 108
days was studied for the effect of inaccuracies introduced
by the velocity transformation in the transfer to phase iwo
by the systematic variation of the epoch of the cvo. linate
change, and also by running a trajectory which integrated
geocentricallv all the way to Venus encounter. The results
are summarized in Table 4, which gives the deviation of
the coordinates at the fixed epoch of transfer into phase
three, and of the time of Venus encovnter, all referred to
a standard trajectory which used the ordinary phasing.
The differences in the coordinates may be explained
fairly well by the known magnitude of maximum errcr in
the velocity of the Svn and the value of the appropriate
variational coefficients, The trajectory. which was inte-
grated all the way te Venus in phase one, does not suffer
from the velocity problem, but because the noisy position
coordinates used in the calculation of the now large per-
turbations in the acceleration undoubtedly contribute a
significant amount of error in the solution, this technique
does not solve the accuracy problem.

The Encke and Cowell methods for the interplanetary
case were compared by running Venus and Mars trajec-

tories in which the transfer point from phase one to phase
two was kept fixed for the respective trajectories. Evi-
dently, the difference between the two methods shows up
more distinctly the longer the flight time, but is of accept-
able magnitude, as Table 5 indicates.

In summary, the trajectory program gives consistent
single-precision results for the Encke and Cowell meth-

Table 4. Differences at transfer to Venus-centered phase

. ax 14 4 arF
Transfer time M® Mm® Mm® suc
93.50 0.6 0.1 0.0 78
93.75 -0.1 0.0 0.0 —15
94.00 -0.7 —0.1 0.0 —87
94.25 -1.2 -=0.1 0.0 - 140
94.50 -1.2 -0.1 0.1 —=132
94.75 —-1.4 ~0.2 0.1 —155
95.00 -1.6 -0.2 0.1 —181
95.25 -1.8 ~0.3 0.1 -211
95.50 -1.9 -0.4 0.0 —234
95.75 -2.2 -0.5 0.0 -370
96.00 -2.3 -0.7 -0.1 ~503
96.25 ~2.4 -0.9 —=0.2 —332
96.50 -2.7 -1.1 —0.2 —-381
96.75 -2.7 -1.3 —-0.3 —403
97.00 -2.7 -1.4 —0.4 —420
97.25 -27 -1.5 —0.4 —434
97.50 -~2.9 -1.6 -0.5 —461
97.75 -2.8 ~1.7 -0.6 —467
98.00 -27 -1.8 -0.7 ~470
98.25 -2.6 -1.9 -0.7 —472
98.50 -2.0 -1.9 -0.7 —417
All geocentric 0.6 -1.0 -0.5 -37
*The transfer time represents the Julion dote in E.T. at which entry was made
into the helioceniric phase.
SMagameters.

Table 5. Comparison of interplanetary trajectories

b (d 3T B'R* i,
Case sec km km deg
108¢ Venus, Encke 51.279 | —4120.9 1694.4 | 153.9196
108¢ Venur. Cowell | 56.636 | —4120.5 1693.2 | 153.9295

118¢ Venus, Encke 25.236 | 249632.8 | ~630020.9 | 76.8357
118¢ Venus, Cowell | 26.827 | 249629.9 | —630022.0 | 76.8359

2314 Mars, Encke 9.743 | ~50153.6 —4537.4 | 173.4127
231¢ Mars, Cowall 34.938 | ~350205.4 —4541.3 |173.4124

2The time of flight Is d from an art y e90ch.

SThe orblital e} are calculoted either at planefary of of closest
approach.
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ods, but the ephemeris problem for interplanetary flight
presents a source of systematic error. This problem will
be largely eliminated by a study now in progress at the

Jet Propulsion Laboratory to obtain smoothed position
and velocity ephemerides which are gravitationally
consistent.
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IV. OPERATING INSTRUCTIONS AND DESCRIPTION OF INPUT

A. Operation of the Space Trajectories Program
on the IBM 7090

The Space Trajectories Program is designed to accept
offline card input in BCD on tape A2, to prepare an offline
BCD output tape on A3, and to obtain ephemeris infor-
mation from a tape mounted on A8 assumed to be written
in high density. For operational convenience, the off-
line output may be monitored on the online printer by
depressing sense switch 6, which peunils sunuliaiieous
off- and online output. The other sense switches, the sense
lights, the panel keys, and the sense indicator register are
not used; additionally, the floating-point trapping mode
of execution is not used.

A machine run usually consists of several cases which
are defined by the appropriate case parameters punched
on cards in a format accepted by the 7090 version of
NYINPI, a SHARE input routine. The sets of cards which
define individual cases are separated by TRA 3,4 cards,
and each set may be trailed by its package of phase cards
to complete the input for running the trajectory. A
description of the available case parameters appears in
Sections IVD-1 and D-2.

For the normal type: f “minimum print” trajectory, a
set of phase parameters suitable for the case may be
selected from the parameters assembled in the program
to be used for the standard targets Earth, Moon, Venus,
and Mars. The values of the stored parameters appear
in Section IVF. Complete control over the trajectory may
be obtained by the appropriate choice of phase param-
eters for each sequential phase belonging to the case; the
phase parameters read in are saved and may be used for
subsequent cases so that one run might consist of several
cases, all using a common set of phase cards which is
read in but once. The functions of the specific param-
eters used in a phase are described in Sections IVE-2
and E-3. -

B. Basic Coordinate Systems

The fundamental coordinate system used by the Space
Trajectories Program for reference of the equations of
motion is the Cartesian frame formed by the mean equator
and equinox of 1950.0; the position of the mean equator
of the Earth and the ascending node of the mean orbit
of the Sun on that equator, taken at the beginning of the
Besselian year 1950, serve as the definition. The X axis is
directed along the node, the Z axis northward above the

14

equator, and the Y axis in a direction to complete the
usual right-handed coordinate system. The auxiliary ref-
erence frame based on the Earth’s mean equator of date,
and the mean equinox of date defined by the Sun’s mean
orbit about the Earth (ecliptic of date), may be obtained
from the 1950.0 system by the application of the preces-
sion as described in the discussion of subroutine ROTEQ
(see Appendix).

Reference to the Earth’s true equator of date is obtained
by the rotation of the mean equator of date about the
mean equinox of date to the ecliptic of date via the mean
obliquity of date, rotation in the ecliptic to form the true
equinox of date via the nutation in longitude, and, finally,
the rotation about the true equinox by means of the true
obliquity of date formed by augmenting the mean oblig-
uity by the nutation in obliquity. The three rotations
described result in but a small chenge, hence the mean
and true coordinates in general agree through the first
four figures. The description of subroutine NUTATE (see
Appendix) contains formulas for the rotation matrix which
performs the necessary transformation from mean coordi-
nates to true.

C. Coordinate Systems for Input

Provisions have been made to input directly into the
Cartesian equatorial system of 1950.0 the basic coordi-
nate frame for the numerical integration. A simple rota-
tion about the mean vernal equinox of 1950.0, with
magnitude the mean obliquity of 1950.0, permits input
in the mean equinox and ecliptic of 1950.0. With the
aid of the nutations in longitude and obliquity, along
with the general precession, it becomes possible to input
in cither the true equator and equinox of date or the
true equinox and ecliptic of date. The Cartesian coordi-
nates expressed in any one of the above four systems
may refer to one of the six available bodies Earth, Moon,
Sua, Venus, Mars, and Jupiter.

It is convenient to input the injection conditions in a
spherical set associated with one of the Cartesian coordi-
nate systems which describes the position vector in terms
of range and two angles, and the velocity vector corre-
sponding as velocity (speed) and two angles. For this
purpose, the Cartesian frame is regarded as being at rest
in the case of the true of-date systems; the reference
frame may be thought of as heing “osculating” rather than
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undergoing a slow rotation in inertial space and thus
forming a rotating coordinate system. The set of equa-
tions necessary for the transformation from sphericals
to Cartesian, along with the definitions of the angles,
may be found in the description of subroutine RVIN
(Appendix).

The Earth-fixed spherical set of inje:tion conditions is
based on a Cartesian coordinate system assumed to rotate
with the Earth: the x —y plane coincident with the
Earth’s true equator of date, the x axis lying in the Green-
wich meridian, and the z axis along the Earth’s spin axis.
As described in subroutine GHA (Appendix), a formula is
furnished which gives the Greenwich hour angle of the
true vernal equinox of date so that the Earth-fixed Car-
tesian coordinates may be referred to the true equator
and equinox of date via a simple rotation. Of course,
the velocity vector in the Earth-fixed system is affected
by the Earth’s rotational rate; appropriate formulas for
the velocity transformation to the nonrotating system are
given in subroutine EARTH (Appendix).

A simailar treatment of the Moon gives rise to injection
conditions expressed in selenographic (Moon-fixed spheri-
cals) coordinates; formulas for the position of the Moon'’s
true equator, the prime meridian of selenographic longi-
tude reference, and the rotation of the Moon cre con-
teined in the discussion of subroutines XYZDD, MNA,
and MNAMD (Appendix).

A final input coordinate system, based on orbital ele-
ments of an escape hyperbola from the Earth, completes
the number of options. The hyperbola has been charac-
terized by its ascending asymptote given by right ascen-
sion and declination, by the energy, and by the constraint
that the launch site lie in the orbital plane. The actual
shape of the hyperbola and the injection point are given
by the remaining two parameters, the path angle and
the range at the injection time.

The equations for the energy-asymptote input option
may be developed as illustrated in the following:

Sketch 3. Launch geometry

Given 3, the azimuth at the launch site, as in Sketch 3,
W, = cosi = sin 3, cos @,

where &, = 28.309 deg, the latitude of the launch site,
a program parameter.

S = (cos @5 cos Oy, cos b5 sin Oy, sin ),

the as.ending asymptote

_ —W.sin@ysindg — cos @5\ cos? &5 — W2

W, =
v cos By

If the radicand is negative, the error message

“DECLINATION OF ASCENDING ASYMPTOTE
OUT OF RANGE”

is printed and the trajectory is aborted.

. SW S,
r = S, 3

completing the construction of W, the unit angular
momentum vector.

V= ’,s +%‘.@.,thevelocity

¢, = |R X V| = RV cos I, the angular momentum

s} ..
e2 — 1= -2 for the eccentricity
[S)

w

Vmox

P

Sketch 4. Relationship of ascending
asympftote and perigee

From sin T = sin (v —T), invert to obtain —90°
< v —T < 90° and v, the true anomaly. In particular, for
I = 90°, an expression for vy,,, the maximum true anomaly
(Sketch 4) is
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P = CO8 ( - 'le') ,90° < Vg < 180°

R = R{cOS (t'myay — #) S + it (¥ — #) S X W}
The velocity vector (Sketch 5) is given by

B WXR . _R)
V~V{cosl‘ R +smli}~

completing the construction of the Cartesian coordinates.

WxR

R

Skeich 5. Description of the velocity vector




D. Relationship Befween Case Analysis and Phase Analysis

Set PH1 to read
from internal
phase cards as
determined by
TARGET; set PH3
to read into
SAVE 1

 REPEAT =< —0

Store REPEAT
in REPFG

T

l

Augment CASE
by 1

Check™<_

REPEAT= 40 _
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WEAT

To phase
analysis

Set PH1 to read
from SAVE 1; set
PH3 to read into
SAVE 1

For CASE ANALYSIS, input desired value of CASE and REPEAT.

If REPEAT = =0, all phase cards are read in and buffered at the same time.

Phase 1 cards
TRA 34

Last phase cards
TRA 3)4

Observe that the symbolic address card

CASE O -1

may be used to effect (CASE) = 0 at the phase-analysis point of the program.

Stack of phase cards for all phases
to be read in for the present case

17
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D. iCont'd}

1. Cuse Parameters

Input
location
(decimal)

100 109

110
111
112
143

114-115

116-118
119-121

122
123

124
125
126
127
128-129

136
137

138
139

Class
field

BCD

BCD
BCD
OCT

DEC

DEC
DEC

DEC
DEC

DEC
DEC
DEC
DEC
DEC

DEC
ocCt

DEC
BCD

Program Identificati

nIMe

60-character cornment field printed at top of each page of output
TARGET BCD name of target body

KERN BCD name of central body at injection
REPEAT Phase input control word

INJECT Injection input type

Tl Injection epoch in sexagesimal format
X1,Y,7Z1 Injection coordinates identified by INJECT
X1,Y1,Z1

GAMMAC Thrust attitude angles givine fixed direction of thrust vector
SIGMAC

ACCl1 Thrust magnitude in Ib force

MASS1 Initial mass in Ib

MASS.1 Mass flow rate in Ib/sec

TBO1 Duration of burning in sec

TGO1 Epoch for ignition of motor

RADP Coefficient for radiation pressure
FLAGS Bit 34 = integrate frequency equations

Bit 35 = integrate variational equations
T(K) Single-precision floating-point time
EQUNOX Injection equator and equinox

2. Detailed Descriptivs: of Case Farameters

Program
name

TARGET

KERN

REPEAT

Explanation

May be Earth, Moon, Sun, Venus, Mars, or Jupiter. It is used to define the target
quantities in the various print groups and to select the appropriate set of minimum
phase cards when REPEAT = —0 and the target is neither the Sun nor Jupiter.

May be any of the bodies as used with TARGET. KERN defines the central body
of the coordinate system at injection and may be distinct from the central body
of integration for phase one.

Determines whether or not phase input cards are to follow:

Value of
REPEAT

-1 Does not input phase cards but uses one of the four internal
sets as determined by TARGET.

Effect
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Program
name

INJECT

Tl

FExplanatinn

-0 Uses the interral sets of phase cards as with REPEAT = —1;
modifications are read in on top of working buffer, and altered
phase parameters are stored in a special buffer to be used
later. After last cards for the last phase have been read in,
REPEAT is set to +1.

+0 Similar tc REPEAT = —0 but does not make use of any
internally stored phase cards.

+1 Assumes all phases have been previously loaded and uses
appropriate buffer for input.

The sevep available types are as follows:

YI‘?}‘I’;C?: Coordinate System

+0 Inertial Cartesiar, equatorial

-0 Inertial Cartesian, ecliptic

+1 Inertial spherical, equatoria’

-1 Inertial spherical, ecliptic

+2 Earth-fixed spherical

+3 Selenographic (spherical)

+4 Energy-asymptote Earth-centered equatorial

Note: For INJECT = +0 or =1, coordinate system may be modified by
EQUNOX

Double precision epoch of injection in the two-word fixed-point decimal format
which is denoted by “sexagesimal format.”

Format of the two words is
yymmoddhh,nnssfff
where the fields are
yy = year, e.g., 61 for 1961
mm = month, e.g., 11 for November
odd = day, 3-digit field, where zero must appear before digits for day of month
hh = hours past start of day
nn = minutes .
ss = seconds
fff = milliseconds
Note: This epoch is modified by T(K).
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Program
name

X1, Y1, Z1,

X1, Y1, Z1.

GAMMAC,
SIGMAC

ACCl1
MASS1
MASS.1
TBO1
TGO1

20

Explanation
;’I:}‘EEC(.); Interpretation
+0 R and V in equatorial Cartesian coordinates
-0 R and V in ecliptic Cartesian coordinates
+1 R, @, @; V, T, 3 inertial equatorial spherical coordinates
-1 R, 8, \; V, T, 3 inertial ecliptic spherical coordinates
+2 r, ¢, 0; v, v, o Earth-fixed spherical
+3 92005 %Y % selerographic (spherical) coordinates
+4 3., R, T; cs, ®5, ©5 energy-asymptote in Earth-centered equa-
torial system

Interpretation is modified by EQUNOX below. Position units are km, velocity
units are km/sec, and angles are in deg.

At injection the position vector R is formed. A fixed-thrust attitude vector C is
characterized by the path angle y. and the azimuth angle o, with respect to a plane
perpendicular to R and the Z axis as a reference direction. R may be a body-fixed
vector so that y. and ¢ would have a different interpretation if the selenographic
input option were used rather than Moon-centered Cartesian for instance.

For powered-flight computation the following formula is used for the accelera-
tion with the parameters described below:

- —FE
B, — m(T — Toy

F, thrust in Ib force; internally multiplied by g = 0.0098 to obtain @ in kin/sec?

Clor T, <T=<T,+4

m,, initial mass in Ib
m, mass flow rate in Ib/sec
t,, duration of burning in floating-point sec

To, epoch of motor ignition in sexagesimal format as with T1, or the modified
sexagesimal format as with PRTENT" in Section IVE-3.

Further phase control raust be provided for the powered flight as indicated in
the flow diagrams of the phu e logic (Section V) and the description of the phase
parameters; i.e., there must be a phase to start the motcr.

For radiation pressure calculation the following equation is used:
A R
o= P KR
where

a = number of km/A.U,, included to make o*R,,/R?,, dimensionless

e Caa &
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Program
name

RADP

FLAGS

T(K)

EQUNOX

Explanation
R,, = the Sun-probe vector
K =1.03034 X 10-¢ Ib force/m?, the solar-flux .;onstant
A = effective area in m?
W = mass of spacecraft in Ib

£ = 0.0098, conversion factor to express acceleration in km/sec? internally

Ag/W with units as above, m*-km/sec? Ib force

The two low-order bits are used to control the introduction of the 10 frequency
equations (bs, = 1) and the 38 variational equations (b,s = 1) for numerical
integration in the Jet Propulsion Laboratory tracking program.

After T1 is converted internally to double-precision floating-point sec past 0°
January 1, 1950, T(K) is added on to give the effective injection time.

If the BCD field is all blanks, then the input is regarded as being expressed in
the true equator and equinox of date or the true ecliptic and equinox of date.
Otherwise the reference is the mean system of 1950.0. As EQUNOX is displayed
along with the injection conditions, it is customary to use the six characters
“1950.0” for the latter case.

The data for case parameters describing the injection conditions and powered-
flight parameters and the associated control is terminated by the card TT" \ 34.

Further cases may follow unless the phase-card input is triggered via
REPEAT = +0. In that event, of course, all the necessary cards for the various
phases must follow, then the subsequent cases.

0
-

Ny W T
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E. Phase-Card Reading and Buffering

1. Storage Layout of Internal Buffers

Input locations

140 to 179

USE buffer

Nominal phase cards stored in core:

q

o phasel

qC phase 2

¢ Moon
O Sun

9 Venus
d Mars
@& Earth

2. Phase Parameters

22

Location

140

141
142

143
144

Type
field

OCT

BCD
DEC

BCD
DEC

USE buffer
mapped onto SAVE
buffers & REPEAT = +0
SAVE,
> 10 buffers
SAVE,,
9 g ® :
@ phase 1 @ phase 1 5] phase 1
© phase 2 O] phase 2 © phase 2
? phase 3 d phase 3 5] phase 3
Program s
name Description
LAST Controls last phase and some of the print
REND Body used to form R,,
Value of R, used to terminate phase
REND. Body used to form l.!.,

Suppression distance from central body



e sttt e

JPL. TECHNICAL REPORT NO. 32-223

E2. (Cont'd)

Type Program
Location field name Description
145 OCT MODE Integrate Encke or Cowell
146 BCD CENTER Central body for integration
"W47-148 DEC H Initial step size, modified sexagesimal format
149 OCT DOUBLE Number of initial doubles
150 BCD  HKERN Body from which to compute step sizes
151-162 DEC PRTEND, DELVRT 3 print end times and intervals
163-166 DEC ODDPRT 2 odd-print epochs
167 OCT GROP 12-octal-character field to contro! print groups
168-163 OCT CODEl 24-octal-character field for station prints
170-171 OCT VIEW 24-octal-character field for stations for view periods
178 OCT ORBETT Reference for B+ T and B« R in conic output
179 BCD EQUNX1 Qutput equator and equinox
3. Detailed Description of Phase Parameters
Program Explanation
LAST (— == call PRINTD at T¢
sgn {-I— = don’t cali PRINTD at T¢
0 = reset Tpry to T4 at start of phase
bit 33 { 1 = use old Tpgr from previous phase
0 = call PRINTD at end of phase
bit 34 { 1 = don't call PRINTD at end of phase
0 = last phase
bit 35 { 1 = more phases to follow

PRINTD is the subroutine which prints the selected groups.

Terr is the print epoch constructed in the previous phase which would have been
reached for printing had the previous phase extended in time to Tean.

When new phase cards are being read, bit 35 = 0 also flags the end of th. read-

ing process.

T4 is the epoch at change of phase.

23
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Program
name

REND
REND.

MODE

CENTER

24

Explanation
End-of-phase devices:
A phase may be terminated by one of the following three conditions:
1. Rexo
2. Rexo
3. Texp

1. Rgnp: The BCD name of the body to which Rgxp refers is input in 141; the
desired value R., = Rgxp is input in 142. Reyp is used as a dependent variable
top.

2. Rzxp: The BCD name of the body from which 1'1,-,. is measured is input in 143;
144 is interpreted as:

(1) (REND. + 1) = 0: suppress R test
(2) (REND. + 1)5£0: test effective in the following ways:
a. If CENTER = TARGET, stop at 2 =0 via a dependent variable stop
b. If CENTER 5= TARGET, suppress test until:
1. R> (REND. + 1) if (REND. + 1) > 0; or
2. R < |(REND. + 1)] if (REND. + 1) <0
R refers to the certral body.

3. TEND: TEND = 1mnax (T¢, Tgxpv, Tgxpz, TENDa) where the TEND.-,S are the end Of
print times input in 151, 155, and 159 and T¢ is the epoch of phase change.

0 = integrate the equations of mction as developed for a Cowell scheme

1 = integrate Encke’s modification of the equations of motion

Any of the six bodies may be used as the central body; but for Rgxp and l.lg,,-p
the following bodies are available:

Central Body Perturbing Bodies
Earth Moor, Sun; Jupiter if B > 10® km
Moon Earth, Sun

Sun
Venus
Mars
Jupiter

All remaining bodies

Adams-Moulton step size in modified sexagesimal format: yy = 0 and mm =0,
so that the ‘mainder is converted to sec. If (H), (H + 1), and (DOUBLE) =0,
the step s: . is selected automatically as a function of HKERN and is halved or
doubled under program control as the need arises.
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Program
name

DOUBLE

HKERN

PRTEND,
DELPRT

ODDPRT

phase n — 1

Explanation

If (H) or (H + 1) £ 0, a fixed-point number in this field gives the.number of times
the step is to be doubled consecutively.

Selects the body from which the step size is to be computed; resultant calculated
step size is used for other purposes so that HKERN is effective even though
(H) or (H + 1) 5£0.

The 12 input locations are divided into three 4-word fields giving control over
print intervals:
TENDIy ATPM,; TENDp ATPRTZ; TENDg; ATPRTa

The Texp, may be input as epochs in the usual sexagesimal format or as intervals
past injection expressed in the modified sexagesimal format in which yy = mm = 0.
In the latter event, the epoch Texp, is formed by augmenting the injection epoch
by the interval. The ATezr, are intervals as represented in the modified sexagesi-
mal format.

’f Texp, is input as zero, it is replaced by a large number but is ignored in the
calculation of Tgxp. Finally the Texp, are internally sorted and consequently
need not be i Hut in ascending sequence.

The location for Texp, is PRTEND + 4 or DELPRT + 2, since PRTEND and
DELPRT define the first of the two words in Texp, and ATegr, respeciively.

Toop, and Topp, are input to provide execution of PRINTD without interrupting
the main printing sequence. The format is the same as for Texp, and the two
resultant epochs are sorted as before. Topp, = 0 is replaced by a large number.

Treatment of print times:

!
i phase n

ATgeg1,
N ptr—

i1 i 1 1 1

Alprr

T¢ Tpn'r TEND, TENDZ

At time of entry to the new phase, Trar is the next print time as determined
by phase n — 1. If the print reset option is chosen, Tear, = T¢ will be the first
print time. Otherwise,

Terr, = min {Tear, Tenn,}
No matter how Trar, is chosen,

Tonp = JMIR {Terr, + ATpar,, Tenn,}, if Teno, > Terry
PRT, min {Tympl + ATpn'r’, Tgm),‘ } otherwise

Thus the Texp,’s function is to reset the printing interval and print epoch. T¢ is
the time at which the nth phase starts.

D Medeme e b oa e e w s o e atmen
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Program ,
name Explanation
GROP The 12 octal characters of GROP are mapred onto the 12 words GROPS + 0,

»++,CROPS + 11:

GROPS +0  geocentric
+1  geocentric conic
+2  heliocentric
+3  heliocentric conic
+4  spacecraft and powered flight
+5  target
+6  target conic
+7  print at R=0 (central body only)
+8
+9
+10
+11

not used

The 3 bits of the octal digits have the following use:

0 = print effective whenever called

bit1 3 1 = print effective as a function of the status of phase
holds for
bit 2 0 = print only when the start-of-phase condition holds ) bitl =1;
! 1 = print only when the end-of-phase condition holds { ignore if
bit1=0
. 0 = ecliptic output
bit3 g = equatorial output

Special cases are:
1. All bits zero-» don't print group
2. Configuration = 3),, same as /1) above

At R = 0 print, the value in GROPS + 7 is mapped onto the cell for the central
body conic and PRINTD is executed.

Start of phase means the first time that PRINTD is called in the phase unless the
end-of-phase condition has been met at that time.

End of phase means that phase has been terminated by one of the following
conditions:

1. Renp attained

2. R test fulfilled

3. TIND attained
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Program
name

CODEl

VIEW

ORBETT

Explanation

Only the leftmost 15 oc:al characters of the two input words are vsed. 0 = suppress
station, 1 = include station. At print time, station print is suppressed if y; <—10°

The 15 stations are, in order:

1. Antigua 9. Grand bahama Island
2. Ascension 10. Johannesburg

3. Millstone Hill 11. Hawaii

4. Mobile Tracker 12. Jodrell Bank

5. AMR. G.E. Tracker 13. Puerto Rico

6. Bermuda 14. San Salvador

7. Goldstone Receiver 15. Woomera

8. Goldstone Transmitter

Printouts of the station dccur at §; = 0, provided y; =y,, and at y; = y,, where
¥o may be input by the symbolic card

STACRDD-001 y,
Enough triggers have been provided to take care of a maximum of five stations.

Provisions have been made for symbolic card input of station coordinz*es and
names if necessary.

STABCD STACRD
0-3} Station 1 name 0¢, )
4.7} Station £ name 14,
. 2r, > Stationl
. 3ta,
. 4fe,

If 0, uses T lying in the orbital plane of body concerned. If 1, uses T lying either
in the equatorial or ecliptic, as called for by the conic GROPS location.

The orbital planes are defined as follows:

Body: Orbital Plane With Respect to:
Earth Sun

Moon Earth

Sun Earth

Venus Sun

Mars Sun

Jupiter Sun

27
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Program .
name Explanation
EQUNX1 If blank, output is referred to true equator or ecliptic and equinox of date; other-

wise, the reference is to the mean equator or ecliptic and equinox of 1950.0.
Normally the BCD “1950.0” is used here when mean equator or ecliptic and
equinox of 1950.0 is desired.

The cards representing input for the phase parameters for a given phase are
terminated by a TRA 3,4 card. The last phase cards read in are indicated by a
zero in the low-order bit of the parameter LAST.

F. Standard Phases

Standard phases are available for the Moon, Earth, Venus, and Mars as the target. The words TARCET
and REPEAT in the case parameters control the use of the stored parameters.

If REPEAT = -1, the standard phases are used.

If REPEAT = —0, the standard phases are used but modifications may be read in to replace the stored
parameters.

The stored values of the standard phases are listed in the following:

1, Stored Phase Cards for Moon as Target

28

Location Type field Phase 1 Phase 2
140 OCT -1 0
141 BCD MOON MOON
142 DEC 30E3 1738.09
143 BCD MOON MOON
144 DEC 330E3 1E3
145 OCT 1 i
146 BCD EARTH MOON
147 DEC 0,0,0 0,0,0
150 BCD EARTH MOON
151 DEC 1500,0 20 00,0
153 DEC 15 00,0 20 00,0
155 DEC 0,0,0,0 0,0,0,0
159 DEC 0,0,0,0 0,0,0,0
163 DEC 0,0,0,0 0,0,0,0
167 OCT 55 00 0 00 00 000 112011100000
168 OCT 0,0 0,0
170 OoCT 0,0 0,0
178 OCT 0 0
179 BCD blank blank

.
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2. Stored Phase Cards for Earth as Target

Location

140
141
142
143
144
145
146
147
150
151
153
155
159
163
167
168
170
178
179

3, Stored Phase Cards for Venus as Target

Locatica

140
141
142
143
144
145
146
147
150
151
153
155
159
163
167
168

Type field

OoCT
BCD
DEC
BCD
DEC
OoCT
BCD
DEC
BCD
DEC
DEC
DEC
DEC
DEC
OoCT
OoCT
OCT
OCT
BCD

Type field

OCT
BCD
DEC
BCD
DEC
oCT
BCD
DEC
BCD
DEC
DEC
DEC
DEC
DEC
OoCT
oCT

Phase 1

ZARTH
2.5E6
EARTH
0

1
EARTH
0,0,0
EARTH
140 00,0
140 00,0
0,0,0,0
0,0,0,0
0,0,0,0
5500 0 00 00 000
0

0,0

0

blank

Phase 1

EARTH
2.5E6
VENUS
0

1
EARTH
0,0,0
EARTH
20 00,0
2000,0
0,0,0,0
0,0,0,0
0,00
55 00 0 00 00 000
00

Phase 2
-1
EARTH
24E0
EARTHO
152E6
1
SUN
0,0,0
SUN
190 00,0
190 00,0
0,0,0,0
0,0,0,0
0,0,0,0
00 22 0 00 00 000
0,0
0,0
0
blank

Phase 2
-1
VENUS
2.5E6
VENUS
- 110E6
1
SUN
0,0,0
SUN
160 00,0
190 00,0
0,0,0,0
0,0,0,0
0,0,0,0
00 22 0 00 00 000
0,0

Phase 3

0
EARTH
6378.
EARTH
1E3

1
EARTH
0,0,0
EARTH
200 00,0
200 00,0
0,0,0,0
v.0,0,0
0,0,0,0
1020 0 01 00 000
0,0

0,0

0

blank

Phase 3

0
VENUS
6100.
VENUS
1E3

1
VENUS
0,0,0
VENUS
200 00,0
200 00,0
0,0,0,0
0,0,0,0
0,0,0,0
1020 0 22 00 000
0,0

JPL TECHNICAL REFORT NO. 32-223
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4. Stored Phase Cards for Mars as Target

30

Location Type field

170
178
179

Location Type field

140
141
142
143
144
145
146
147
150
151
153
155
159
163
167
168
170
178
179

oCT
oCT
BCD

ocT
BCD
DEC

Phase 1
0,0

blank

Phase 1
-1
EARTH
2.5E6
MARS
0
1
EARTH
0,00
EARTH
2000,0
20900,0
0,0,0,0
0.0,0,0
0,0,0,0
5500 0 00 09 000
0,0
9,0
0
blank

Phase 2
0,0

blank

SUN
0,09
SUN
250 00,0
250 00,0
0,900
0,0,00
0,0,0,0
00 22 0 00 00 000
00

0,0

0

blank

Phase 3
0,0

blank

Phase 3

¢
MARS
3415.
MARS
1E3

1
MARS
000
MARS
27000,0
270000
0,000
0,000
0,000
1020022 00 000
0,0

0,0

1

blank

oW
~
i‘



V. FLOW CHARTS AND METHOD OF CONTROL

A. Control in the Space Trajectories Program

After the necessary transformation of the injection conditions to the Cartesian
coordinates based on the mean equator and equinox of 1950.0, the Space Trajec-
tories Program is controlled primarily by the subroutine MARK (see Appendix)
which performs the stepwise numerical integration of the equations of motion
to obtain the solution at desired points along the trajectory. The trajectory is
divided into phases to permit control of output format and print frequency and
of the numerical incegration process itself. Each phase is characterized by a set of
phase parameters which are interpreted before the numerical integration proceeds.

During numerical integration in a phase, the derivatives are requested by
MARK; the derivative routine provides the necessary information and also per-
forms the calculation of the auxiliary dependent variables which MARK might
need as requested by the associated dependent variable triggers. The end-of-step
routine monitors the numerical process by computing the step size and com-
municating this information to MARK, by control of reciification, and by deter-
mination of closest approach to a noncentral body.

At the print times, as determined by the triggers to MARK, the requested
output groups are printed as described in Section VI.

JPL TECHNICAL REPORT NO. 32-223
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B. General Flow in Space Trajectories Program

32

Read cards for

initial conditions

Transform initial conditions to

Read in phase purameters via

1950.0 Cartesian system

cards if necessary

Print via

time stop

Transform phase

Read in phase parameters

parameters

Set up MARK

for current phase

for integration

>

!

Call MARK

Rectify

reference orbit

MARK, routine for stepwise

numerical integration of

equations of motion

:

Print viaR = 0 trigger

Calevlate

derivotives

End of case

K ]

End-of-step control for
rectification, end-of-phase
conditions, step-size

control

Exit from MARK

via end-of-phase f———al gng_of.phase print

triggers

End of phase
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C. Flow During Transformation of Injection Conditions

Read in initial conditions

Augment

CASE by 1

Convert y., o. to € in
Cartesian frame via
RVOUT, RVIN

Initialize flags

3! for reading

phase cards

Rotate R, V, € to
equatorial via ECLIP
if ecliptic input

Rotate R, V, C to
equator and 2quinox of
1950.0 if input is

true of-date

Rotate initial conditions
for variational equations

JPL TECHNICAL REPORY NO. 32-223

Convert

injection

iConvert powered-

epoch

flight parameters

Test

injection
type
Energy

Evaluale nstations, N
precession GHA via

MNA, ROTEQ, GHA

Set up variational

equations buffer

csymptote

Spherical

{ZL' Rl rl Cs3. ¢51 OS}
to Cartesian

Convert

Selenographic

Earth-fixed

¥

Inertial

{(R,®,0,V,T,Z)}to

Convert

{r.$.0,v,v,3}t0

Convert
{f‘c ¢(: 8" Ve Yo ‘7‘()
to Moon-fixed Cartasian
re: Ve via RVIN

Convert

L

to equator and equinox
of 1950.0

Initialize BODY, HARMN
and VARY

|

Prin} fundamental
astronomical parameters

Cartesian via RVIN Cartesian via EARTH Convertrg, vg to RV,
' Moon-centered

Cartesian, equator
— i and equinox of 1950.0
via MNA and MNAMD

Convert ¢ to C, Convert y., o. to
equator and equinox ¢ Moon-fixed Cartesian
of 1950.0 via MNA €¢ via RVOUT, RVIN
L
Print injection conditions To phase logic
33
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ring Transfer of Phase Paramefers

Begin phase logic

_{

Read buffer

REPEAT =— +0

Y

RCPEAT == +0

as specified 1——-—-1

Clear print end
times and print

by PH1 into USE intervals in USE
. ]
Last phase inputs
Check REPEAT = 0 »| Call low—:rdor l'mp:f
REPEAT INP1 q LAST = 0
REPEAT <0
Check REPEAT== —Q
Low-order bit REPV ‘
of LAST=£0
Store USE in SAVE,
REPEAT = —1 appropriaie to
n-phase

REPEAT 4 0

Low-order bit of LAST =0

REPFG =0

refersnce SAVE!

reference SAVE! Set REPEAT = 1
Reset PH3to  [€

F*0 Execute
— current phase
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E. Flow in Phase Setup

Activate R trigger
only if target is
central bady and
(REND.) = (TARGET}

Change central body
for integration if
necessary

Pick out correct set of
phase parameters from
appropriate buffer

If necessary, read in
phase cards and
store in buffers

e R T

Check
mode

Set up trigger to end
phase at desired Ryp as |

If print at R = 0 from
central body is desired,

determined by REND

then activate PRTR.

R trigger not set, chen
selec® body from REND. for
closest approach test

and REND + 1 trigger
Encke L Cowell
A
C::L%:;H?altuc:; I;::,m Set vp view Convert and sort Convert the print end
Encke schem e period triggers the odd print times and intervals;
f necessary times; set higger sort end times

Check
for end
of burn in
previous
phase

Generate first print

‘time according to

LAST and set print
trigger

Generate Tgyp for

end of phase and
set trigger

No

Suppress further Set up MARK for

number of equations,
step size, order

burn in equations
of motion

Call MARKX to integrate
equations of motion;
MARK gains control

Tost
for burn
this phase

l

Set phase end at end
of burning period

Set phase to end at
start of burning period

Give powered-flight

parameter print —

v o i e e = ot i e
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F. End-of-Step Logic

Check
for current Perform i:f;:;::l
time T=<T_., Set programmed -
largest time Tou =T step-size control if [~ D:fz‘):hbe:lt:or
reached by called for surface
&
¥
s 5
R p < 10% km #
N\, < <
’ \ Qy Rgr < 5500 km
y " _arth \ -
i - watra) ‘\ |
Print lunar conic budy ond Mocn ™. Print out geocentric
Return o MARK with message to is not target, P gruup o geocentric
viaaTRA 1, 4 indicate close check for first time conic with error
enco&r:::‘ with probe near message
Moon L

Check

Check
for closest

for R
trigger
on

Yes Ree==10° km Terminate trajectory

by calling ABORT

for probe
in proper zone
¥rom central
body by
REND. + 1

/Ro = 0.025

Cowell p/R < 0.025

f(‘:heck Check Set time stop
r Ryp Store current Return to MARK ec P2 0.025 | o perform
. lorger than Ryp via TRA. 1,4 Q, Encke’s 2=0.025 rectification
. previous parameter at current
; value time

“pe

Yes
Set time stop to
terminate phase -

at current time

R A

[

R XL
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G. Function of the Derivative Routine

Symbol

cX

VAR

Ra8

VAR.

QX
g )
QX.
QZ. }
QX0
QY0 }

QXo0.
QY.

The derivative routine DOT assumes the COMMON storage layout for the
following quantities; coordinates are in the mean equator and equinox of 1950.0.

Storage
BSS 2

BSS 36

BSS 3

BSS 36

Exylanation

Double-precision time in sec past 0* January 1, 1950, U.T.

R if Cowell, p if Encke

V if Cowell, p if Encke

Solution of the variational equations

R R 2R . R MK
X, 3X, aY, "3z, 3Z,

Derivative of R if Cowell, of p if Encke; placed in buffer by DOT from CX,,
CY, Cz.

R if Cowell, p if Encke; computed by DOT and placed in buffer

Derivatives of quantities appearing in the VAR buffer; R /oX,, - - - ,0R/0Z,
computed by DOT and placed in buffer; remaining quantities are selected from
the VAR buffer; final order is

& dt ok ok aRt dt
30X, 90X, 3Y,’ ‘oY, 0z, 9Z,

R =R, + p if Encke, same as conten's of CX, CY, CZ if Cowell; placed in
buffer by DOT

V =V, + p if Encke, same as the contents of CX., CY., CZ. if Cowell; placed
in buffer by DOT only if velocity needed

R,, position solution to the two-body orbit; calculated by ENCKE only when in
Encke mode

V., velocity solution to the two-body orbit; calculated by SPEED -only when
velocity is necessary in the Encke mode
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H. Fiow ir the Derivative Routine

Form derivatives of R {p) and of Call ENCKE to form

oR/0Xy, - - -, ak/aio by exchange of buffers p/R3 (F(Q)R — p)
Form —uR/R? ?l Call INTR for positions of noncentral
bodies; call INTR! for velocities of
noncentral bodies if needed
§
Cell VARY for Form Rgye in true
co:i?:;:"" :" equator and equinox Computedt:tus’:'f:r Call BODY] for n-body
v ona € wer i .
, of date if close to powered Thghtt perturbation
equations necessary
if needed Earth by NUTATE L
\
Obtain Earth oblateness Call XYZDD1 to obtain
perturbation via R lunar oblateness Form R (3) from terms
HARMN1 if ciose perturbation if close previously computed
to Earth to Moon

Form Vgp in true
or Form derivatives for use

equator and

" o in variational equations |
equinox of date if .
if needed
needed
Call SPEED
to obtain
v
Call LOOP if y; and §, are | Caleulate ’“’i'f Compute solar ‘
needed for view-period triggers needed for radiation term Exit
trigger if needed

38
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1. Automatic Step-Size Contrel

Step-size contro! is provide.! 2s a function of the range
from a selected body during a particular phase. For this
purpose each body has associated with it a list of range
intervals; the step size remains constant during a par-
ticular interval and is doubled for the next higher inter-
val. For the lowest interval there is defined an hy,,; all

other step sizes chosen will therefore be of the form
h= 2nhm|n.

At the start of the integration MARK uses Runge-
Kutta for the first m steps. Therefore, at the onset,
ho = Yh, is set in HBANK while HBANKI is set to 2;
after m Runge-Kutta steps and 2m Adams-Moulton steps,
MARK would be using h = 4h, for its next step. The con-
trol section permits the Runge-Kutta steps to be carried
out before attempting to modify the step size to new h..

Assuming MARK is using Adams-Moulton for the inte-
gration, h. is computed at the end of each step and com-
pared with h, the value MARK is using. If h, = 2*h, where
k is the number of uncompleted doubles, then the foliow-
ing tests are made:

1. h. = h,: No action to be taken

2. h. > h,: Augment HBAI X1 by the number of
7 additional doubles necessary to make
7 h=h, and call ABTB to let MARK
pick up the additional doubles. Record

the change.

3. he <h =h,: Augment HBANK2 by number of
halves necessary to make h = h, and
call ABTB to let MARK pick up the
additional halves. Record the change.
h = h, was indicated by the fact that
HD =0.

4. ho < h < h,: Set ND = HBANK1 = 0 and wait until
HD =0 at a later integration step.
Save number of necessa; l.:lves and
execute (3) when h =h,, ie, when
HD = 0.

5. h < h, < h;: Let MARK double up to h, by alter-
ing both HBANK1 and ND. Recoid
change and contirue, but do not call
ABTB.

It is to be noted that controlling step size in the above
munner does not produce instantaneous changes in the
current MARK step h. Therefore, a conservative chcice
of values has been made in the range lists tv insure

stability of the numerical solution in all the practical
cases which have arisen. Each Ay, for the planets has
been chosen to give good results for a low-altitude satel-
lite whose orbit is to be calculated using an Encke
scheme.

If a Cowell scheme is to be used, the program sets
hinin = hmia/2; thus the step-size regimen consists of a
precise and uniform halving of all step sizes in the range
intervals; automatic halving and doubling are conse-
quently executed in general in a chorter time span in
the Cowell mode.

The base step-size and range lists are accessible via
the symbolic input location H((0)). The exact internal
structure follows:

Location V:Ze, Explanation
-6 120 bl
~5 not used
— 4 60 d
-3 60 Q
-2 43,200 o
-1 60 q
H{((0)) — 0 60 ®
Range list for Earth and Venus
Location Vﬁ,
H((0)) + 1 10=
+ 2 2.8 X 10°
+3 1.8 X 10°
o 4 100
+5 600,000
+6 400,000
+7 120,000
+10 80,000
+ 11 30,000
+12 16,000
LST00 = H((0)) + 13 8,000
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Range list for Mars
Location

H((0)) + 14
+15
+16
+17
+20
+21
+22
+23
+24
+25

LST04 = H((0)) + 26

Range list for Moon
Location

H((0)) + 27
+30
+31
+32
+33
+ 34
LSTO1 = H((0)) + 35

Range list for Jupiter
Location

H((0)) + 36
+37
+40
+41
+42
+43
+ 44
+45
+46

Valie,
km
1020
2 X 108
1.2 X 10¢
800,000
500,000
300,000
100,000
60,000
25,000
12,000
6,000

Value,
km

10%
70,000
45,000
30,000
20,000
12,000
5,000

Value,

1020

5X 15
3X10¢
2 X 10°
12X 10¢
10°
800,000
600,000
400,000

Range list for Jupiter (cont'u)

Location Vzl;e,
+ 47 300,000
+ 50 200,000
LSTO06 = H((0)) + 51 100,000
Range list for Sun
Location Value,
ko
H(({, + 52 109
ol 600 X 10¢
+ 54 300 X 108
+ 55 100 X 10¢
LSTO02 = H((0)) + 56 40 X 10¢

It would probably be worthwhile to conduct analytic
and experimental stadies to redistribute the rang: inter-
vals to reduce machine running time.

1. MARK locations used

HD: Flag: 0 = no uncompleted double
1 = doubling not completed

ND: If HD = 0, is 0. Otherwise number of doubles to
be completed — 1.

J: Number of Runge-Kutta steps completed + 1.
J=<m + 1, where m = order of the highest differ-
ence retained in the Adams-Moulton integration.

ABTB: MARK subroutine which inspects HBANK1 and
HBANX2 to determine need for additional halv-
ing or doubling.

2. Contents of HBANK

HBANK2 address = number of halves
HBANK]1 address == number of doubles
HBANK h,: initial step for Punge-Kutta

b g



3. Flow Chart for the Step-size Control

E.O.S.

—JPL TECHNICAL REPORT NO. 32-223

Continue E. O. S, !

=
——-»Ak 1Zm

X= .
HDFG = 0 Test

Calcvlate h,

and .ave

Continue
E.O.S.

Set HDFG
to zero

m = hclhl

Augment HBANK1 by n where

Reset HBANK1 and
ND to zero

Save n where
2 = 2h/h,
When halving is
executed, h, = 2h

{

Set HDFG 3£ 0

Compute n where
2*=p./2h

.

Reset HBANK1 and 1
NDton |

Augment HBANK2 by n,
where 2* = h,/h,

B!

Call ABTB

Record naw ity = h,

Continve E. O. §.
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Vi. DESCRIPTION OF THE OUTPUT FOR THE SPACE
TRAJECTORIES PROGRAM WITH INTERPRETATION
OF THE MNEMONIC CODES

A. Output Philosophy

The output of the Space Trajectories Program displays for each trajectory the
fundamental astronomical constants used in the calculation, the injection con-
ditions which serve as a starting point for the trajectory, and desired output
groups which are reque:ced principally as a function of time. The selection of the
groups and the print times is phase-dependent ~s described in Section IVE-2.
The start of the phase in which power.d flight is used is herald 1 by the
pcwered-flight neader.

To facilitate identifcation of the output quantities, a lettered mnemonic code
precedes the floating-point repcesentation of the quantity printed; each output
group consists of an array of pairs and falls into one of the classifications: geo-
cer'ric, geocentric conic, heliocentric, heliocentric conic, spacecraft and powered
flight, target, and target conic. Each output grou p is further identified by a header
whirbh gives the reference body for the group and the class of cutput, and whi. h
fur' .er identifies the group in addition to the mnemonic codes.

As a further class of output,. each tracking station has for identification & unique
narue which cppears in its output group; all station output is of the same format
except for the station name which therefore functions as an identifying header.

B. E::plandtion of Output and Mnemonic Codes

A sample output of the Space Trajectories Program is given in Exhibit A,
followed by explanations of related output groups and interpretation of the
mnemonic codes.
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APPENDIX

Description of Maijor Subroutines

INDEX

1. Input-Ouiput Routines .

LCLIP

GHA
GEDLAT

JEKYL
SPECL
CLASS

EARTH
SPACE

RVIN
RVOUT
LOOP

ROTEQ

NUTATE

MNA
MNALl

MNAMD
MNAMDI1

3. Ephemeris

INTR
iINTRI1

Rotates equatorial Cartesian cocrdinates to ecliptic
and vice versa .

Calculates Greenwich hour angle of the vernal equinox

Computes geodetic latitude as a function of the
geocentriclatitude. . . . . . . . . . . . ..

Provide orbital elements for output as a function of
rectangular coordinates .

Transforms Earth-fixed spherical to space-fixed Cartesian
coordinates for input .

‘[ransform« space-fixed Cartesian to Earth-fixed spherical
coordinates for output

Transforms spherical to Cartesian coordinates .
Transforms Cartesian to spherical coordinates .

C:2nerates station-fixed or topocentric coordinates as a
function of space-fixed Cartesian coordinates

. Basic Coordinute Transformations .

Transforms Cartesian coordinates from the mean equator
and equinox of date to the mean equator and equinox of
1950.0 and vice ve:sa .

Transforms Cartesian coordinates from the true equator
and equinox of date to the mean equator and equinox of
date and vice ver.a .

Calculate the nutations #¢ and 8¢ for NUTATE; trans-
form Moon-fixed Cartesian position coordinates to the
mean equator and equinox of 1950.0 and vice versa

Transform Moon-fixed Cartesian velocity coordinates to
the mean equator and equi0x of 1950.0 and vice versa .

Read ephemeris taf. 2, interpolate on coordinates o ubtain
intermediate values of the positions and velocities

4. Encke Method Calculations

ENCKE

Calculates the Encke rontribution to the a+~.ler ition
instead of the central-body term

. 57

. 66

. 70

.70

.72

.72

T My



VARY
SVARY

MARK

INDEX (Cont'd}

ORTHO  Obtains initial conditions for integration in the
Encke mode . .

CONIC Obtains orbital elements suitable for the Encke method
from rectangular coordinates at the initial point of
integration in the Encke mode . Coe .

QUADK?Y Obtains solution to Kepler's equation for the hyperbolic

KEPLER Obtains solution to Kepler’s equation for the elliptic case
and generates the corresponding Cartesian position
coordinates for either the ellipse or the hyperbola

PERI Solves the pericenter equation for the true anomaly and
obtains the Cartesian position coordinat~s in the
two-body orbit . . . . . . . .

SPEED Calculates the Cartesian velocity coordinates in the
two-body orbit .

.Periutbations . . . . . . . . . . . . .

HARMN  Calculate contribution to acceleration arising from the

HARMN1 oblate figure of the Earth .

XYZDD Calculate contribution to acceleration arising from the

XYZDD1 triaxial ellipscidal figure of the Moon .

BODY Calculate contribution to acceleration from the influence

BODY! of the noncentral bodies

6. Variational Equations .

Calculate coeficients for derivatives to be used for the
variational equations .

7. Numerical Integration .

Obtains numerical solution of the equations of motion for
evaluation at specific times and for specified values of
chosen dependent variables
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1. Input-Ou.put Roviines

ECLIP
The ecliptic plane is characterized by its inclination to
the equator, ¢, the obliquity ¢f the ecliptic, and its
ascending node on the equator, the vernal equinox.

z
Ze \

Sket-h A-1. Relation between ecliptic
and equatorial planes

In Cketch A-1, X, ¥, Z is the equatorial frame; X{, Y‘, Z(
the ecliptic. ¢ is the vernal equinox. The coordinates are
related by

Xe 1 0 0 X
Y, = 0 coOs€  sin€ Y
Z, 0 —sine cose z

The calling sequence is given by
CALL ECLIP
(OP) X,Y

X —3,X— 2 X -1 contain the input vector; Y — 3,
Y — 2, Y — 1 contain the output vector; X =Y is per-
mitted. OP = PZE assumes equatorizl input to be rotated
to ecliptic; Or = MZE regards input as ecliptic and
rotates to equatorial.

Normally X, Y, Z is regarded as the true equator and
equinox of date and € the true obliguity; however, for
some applications it is necessary to rotate between the
mean equator #nd equinox of 1950.0 and the ecliptic of
1950.0; for the latter purpose €100, the mean obliquity
of 1950.0, is used. To provide for this flexibility, ECLIP
assumes that the desired obliquity has been placed in the
COMMON location ET.

The subroutine uses nine cells of erasable storage start-
ing at COMMON.

GHA

For purposes of calculating ¢ (T'), the Greenwich hour
angle of the vernal equinox at epoch T, the following
mean value is assumed:

Ty (T) = 100207554260 + 0°98564734604
+ (229015) 10342 + »¢ (mod 360°)
C:==ru (T) <360°

where T is the epoch under consideration in U.T.; d is
integer days past 0" January 1, 1950; ¢ is seconds past 0*
of the epoch T. o, the Farth’s rotation rate, is assumed
to be a function of time:

_ 000417807417, o/
T1TF (5211004

Given 8a, the nutation in right ascension, the true value
of the hour angle is computed:

T (T) = Tu(T) + 8a

The calling sequence consists of
CALL GHA,

where it is assumed that the U.T. epoch appears in dou-
ble-precision seconds past 0* fanuary 1, 1950, in the
COMMON cells T, T + 1, and that 3a has been com-
puted and appears in NUTRA. ¢ (T) is stored in the
COMMON location GHA(T), while « is placed in
OMEGA and o in rad/sec is stored in LOMEGA.

The subroutine uses seven cells of erasable storage
starting at COMMON.

GEDLAT

To obtain an accurate numerical expression for the
small difference between the geodetic latitude ¢’ and
the geocentric latitude ¢, a Fourier series expansion is
resorted to. The geometry appears in Sketch A-2:

P

Sketch A-2. Geodetic and geocentric latitudes
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Consider a point P above the Earth and extend a line
to the center of the Earth O. If a spheroidal Earth is
assumed, then let GZ be the spin axis of the Earth and
the plane ZOX contain the line OP with Q the iuter-
section of OP with the surface; OX lies in the equatorial
plane. Then the angie ¢, the geocentric latitude. is the
angle between the lines OQ and OX. If the normal YQ
to the surface is constructed at Q to intersect OX at ¥,
then ¢, the geodetic latitude, is the angle betwesn the
lines YQ and YX. The ellipse of cross section is character-
ized by a, the semimajor axis, ar.d b, the semiminor axis.
It is convenient to introduce > = 1 — b*/a® to describe
¢ — ¢’ by a Fourier series.

As the defining relation, tan ¢ = (1 — ) tan ¢’ is
adopted which leads to the series in 2¢’ for ¢ — ¢/:

o
¢—¢'=2415i112i¢'
where

— 1)} 2 i
“l':( 71) <zi£2>

Alternatively, ¢’ — ¢ may be expanded as a Fourier
series in 2¢:

0

¥—4= bsin2is
i=1

where the b; are obtained by replacing 1 — ¢* by
1/(1 — ¢%) in the expression for the a;. Incidentally,
b; = (— 1)/ a; is obtained by performing the substitution.

Using the Clarke spheroid of 1866 with a = 6378.2064
km, b = 6356.5838 km, and the derived value ¢* =
0.006768657997, the following numerical formula results:

¢' — ¢ = b, sin 2¢ + b, sin 4¢ + b; sin 6p

where

b, = 0219456624
b, = 0200033036
bs = 0200000075

An auxiliary problem is the determiration of the alti-
tude of P above the spheroid. An approximate solution
is obtained by regarding QP = h as the desired altitude.
If R=0P is given, then if p = OQ is calculated, A
would be given by h =R — p.

The arc of the ellipsc may be described by the param-
eter ¢, where x = a cos ¢, y = b sin ¢ for Q(x,y). Then
the expression for p is

p=ayI—sinty

Actually, the formula programmed for p differs in ihat
¢ was used for ¢:

P =T = st g

The numerical difference between the two formulas
may be assessed by expanding p and p’ in power series
in ¢ and using the relation

(1—¢)sin?y

sin*¢ = ———
¢ 1—¢e*sin*y

-p_:: —_1_2‘2,_L4‘4 __l_s's 8
» 1 5~ €7sin® ¢ — o= e'sin'§ — 7 °sin v+ O(ef)

£
a

i

12’2
1 zesm¢

+ e‘{—- —l-sin‘-'gb(sin‘*‘-p-— 1) —%sin‘-]:}

wN

+ ec{- < sin ¢ (sin?y — 1) —i%sin"y’/} +0 (e

SO
4 - 1 4 ¢c1n2 3 6 ot . '22 .‘0 l‘l
p—p-—d{SSSln 2¢+165 sin? y sin® 2y (s)f

Thus the maximum difference, occurring near y = 45°,
should be about ae'/8 ~ 0.06 km.

The calling sequence is given by
(AC) = ¢
CALL GEDLAT
and upon return

(AC) = ¢/, (MQ) =/’
The subroutine uses 10 words of erasable storage start-
ing at COMMON.

JEKYL

JEKYL is the subroutine which is used to generate
orbital elements to be used either as input to the sub-
routines CLASS and SPECL or for printed output. The
equations used are similar in most respects to those
described in the discussion of CONIC (Section 4, Appen-
dix) and are listed here for comgpaiison.

_R:V:— (RR)?
p *

, the semilatus rectum,

87
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where
RR=R-V,
6= 1/1(2 Vi — (RR)? , the angular momentum
1 _ 2u—RV?
P’ Rp
¢s = — £, the “energy” or vis viva integral
3

At this point a test is made with the belp of the 1.D.
input to determine whether or not e is an acceptable
parameter. a* is defined by
10* km for the planets
10° km for the Sun
102 km for the Moon

a*t =

The motion is considered parabolic and c, is set to zero
whenever [a | > a*.

l—e’=—£’
e=\/1— (1 — ¢) , the eccentricity
cosv = p—R

eR
siny = 3-Jg-,trueanomaly
e Np
4

9= 117> closest approach distance
W= L : v , unit angular momentum vector
V,= %v - %n

P = cosvU, —sinvV,
Q =sinvU, +cosvV,

If ¢; %= 0, T — T, is computed from Kepler’s equation
according to the sign of a:

Ifa>0:

cosE=§-(cosv+e)

sinE = %-\/1 — e¥siny

M=E —¢sinE ifl—e>01
orifl —¢=0land!sinE|>0.

ol N _{sin®E | 3sin*E
M= (1 e)smE-l( 3 +——-40 )

ifl —e=<0.1and cos %> 0,|sinE|=0.1
M=a(T —T,) where . = ﬁa"/"
Ifa<O:
RR
£Vpla

M=¢sichF—F ife—1>0lorife —1=0.1
and |sinh F| > 0.1

sinhF =

. . _ [ 3:inh*F _ sinh*F
M= (e —1)sinhF ( %0 3 )

ife — 1=0.land|sinhF|=0.1
M = n (T -- T,) wheten = \/u| 4|3/
If ¢; = 0, the formula for the parabola is used:
M=WHT—n)=ﬂT+%W
where D =R R/Vu = \/2q tan v/2

JEKYL may be called by the sequence

CALL JEKYL
PZE 0, A
PZE B,,C
PZE D,,0
PZE E,,F
PZE G

(ERROR RETURN)

The locations A, A + 1 contain for input x and an I.D.
number:

0 = planets
1 = Moon
2 = Sun

The cells B, B+ 1, B + 2 contain the input position
vector R, and the locations C, C + 1, C + 2 contain the
input velocity vector V; the vectors P, Q, and W are
output to the locations D, ..., D + 8, The single-pre-
cision epoch T is input to location E. whilc the single-
precision epoch of closest approach T', is output to location
F. Finally, the locations G, ..., G + 2 are used to output
the cuantitics AT =T — T, ¢,, and c;.
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Additional quantities are stored at the COMMON
locations

ECCEN .
IMINE 1-—.
AVAL a

PVAL P
NORB n

NU v
JECAN E(orF)
MENAN M

The subroutine uses 15 words of erasable storage start-
ing at COMMON.

SPECL

The subroutine SPECL is used to calculate the auxiliary
impact parameters B+ T and B R along with reference
unit vectors R, S, T and also B itself. Two cases arise
acccrding to the value of «:

{1) e= 1, the hyperbolic case witha < 0
%P+—-—~“:“ 1o

g for the incoming asymptote
Fe+dile
for the outgoing asymptote

/ - T
lal(s: I)P__ |a|\/: IQ

for the incoming asymptote
|a|(e:—l)P+La_[\/E“—lQ

for the outgoing asymptote

(2) & < 1, the elliptic case witha > 0

S=P for both the incoming and
B = 4\/Te? — 1] Qf outgoing asymptote options

The remaining two reference v.ctors T and R are given
in either the hyperbolic or elliptic case by

= s’ , _s' , o)
R=8XT

SPECL is called according to the sequence
(AC) = a,a < 0 for hyperbola
(MQ) =
CALL SPECL
PZE A,,n
PZE B
(ERROR RETURN)

The locations A, ..., A + 8 cortain the vectors P, Q,
W; n = 0 is a flag for output to be referenced to an
incoming asymptote while n = 1 references the output to
an outgoing asymptote. The output is placed in the table
B,..., B + 14 where the assignment is in sequence
B-T,B-R,S,B,T,R.

The error return will only be used in the case that | a |
is sc large that a* exceeds the machine capacity, an event
which may happen only for wild trajectories resulting
{-» an input error.

The subroutine uses four words of erasable storage
beginning at COMMON.

CLASS

CLASS was written as a subroutine to calculate addi-
tional orbital elements from those provided by JEKYL.

Sketch A-3. Description of the Euler angles
for the orbital plane

The formulas that may be deduced from Sketch A-3
are as follows:

§ =cos'W,, where0 =< i< 180° for the inclination
sin = —W—/i
sin s

cosQ = —Vr, where0 =0 < 360° for the right

sins ascension of the ascending node

20¢ Ame e
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. P,
sSinw = ~—
sins
cose = 2= » where 0 = o =< 360° for the argu-
sins ment of the pericenter

The formulas for 2 may be derived by constructing the
unit vector N at the ascending node:

_Uxw
N=1o%xW]

where U = (0, 0, 1) and sin i = |[UX W |. N is then
projectcd onto the X and Y axes to give the formulas
for the cosine and the sine.

Next, the auxiliary unit vector M = W X N is con-
structed so that « is given by

{Sinwz P-M=P:(WXN)=—-N-(WXP)=-N-Q
cosew = PN

The conic parameters are given by the standard formu-
las forc, = 0:

4= l_i_; , the closest approach distance

V,= 2(11e) the velocity at closest approach
(21

v, =20 78 velocity at farthest departure (c, < 0)
€1

V»= Ve , hyperbolic excess velocity (¢; > 0)
g2 = a(1 + ¢) , farthest departure distance (¢; < 0)
p=27  the period

7

For an Earth satellite, the quantities & and Q are also

computed:
. _ nlag 5 . ..
® = 7 <2--2—sm21)
. —nJa?
Q= —#ﬁcosi

where ] is the coefficient of the second harmonic in the
Earth’s oblateness and ag, is the value of the Earth radius
in km. The subroutine assumes that n has been given in
rad/sec and p in km so that & and O may be converted
to deg/day for output.

The subroutine is called according to the sequence
CALL CLASS
PZE A,,B

60

PZE C
(ERROR RETURN)
(ERROR RETURN FOR PARABOLA)

Input locations A, ..., A + 8 contuin the vectors P, Q,
W, while the table composed of ¢;, 5, i, ¢, 1 — ¢, @, P,
aud n is used as input from the cells B,...,B + 7. The
output is stored in the cells C,..., C + 9 forming the
table

P
Q

q

Vo

Vo (orVyifc; > 0)
q: (ot zeroif ¢; > 0)
P (orzeroif ¢; > 0)

.

w

o)
In the event ¢; = 0 at enty, the parabola error return is
given.

The subroutine uses four cells of erasable storage start-
ing at COMMON.

EARTH, SPACE

At the epoch T a “space-fixed” Cartesian coordinate
system is defined, centered at the Earth with the X — Y
planc the equator, the X axis the direction of the vernal
equinox, and the Z axis the spin axis of the Earth. The
“Earth-fixed” frame is obtained from the space-fixed by
rotating about the Z axis by an angle v (T), the Green-
wich hour angle of the vernal equinox, to bring the x
axis in coincidence with the Greenwich meridian (Sketch
A4).

422
y
-y
Tir) L
X P 4

Skeich A-4. Earth-fixed equatorial coordinate system
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The coordiuates are then related by

x\ cos ¥ (T) sin (T) X
9] \=sin?(T) cws®(T)J\Y

z=12Z,
and
x\ [ cose(T) sinv(TY\[X
31 \—sin® (T) cos P (T) Y
—sin P (1) s P AT X
“\—cos®? (T) —zin® (T)/\Y
=2,

where o is the rotation rate of the Earth.

The coordinates may be inverted to give

X\ [cos?(T) —sinr (T) x\
Y/ \sinr (T) cos P (T) y)

Z=z
and

X _fcos P (T) —sinv (T)\( x
Y/ \sin? (T)  cosviT) )\

+ ~—sin ¢ (I') —cos ¢ (T) x
“\ cosP(T) —sinv (T) [ \y

» '

va(x, 5, 4)

Sketch A-5. An Earth-fixed spherica! set
of coordinate system

In Sketch A-3, 1 is the radius, ¢ the north latitude, and
6 the east longitude of the Earth-fixed position vector. It
is convenient to translate the Earth-fixed velocity vector
v to the end of the position vector and project it on the

local horizontal, a plane perpendicular to r. v is the
magnitude, y the path angle or the elevation angle
above the local horizowtal, and ¢ the azimuth from north
of the velocity vector. The transformation between
spherical and Cartesian coordinates, und ‘he inverse, are
described in the discussions of subrsutines RVIN and
RVOUT, respectively, which tollow.

EARTH is the subroutine which makes the transforma-
tion from Earth-fixed spherical to Earth-fixed Cartesian
via RVIN and then rotates to space-fixed Cartesian.
SPACE manages the inverse transformation by first rotat-
ing from space-".ed Cartesian to Earth-fixed Cartesian
and obtaining the spherical set with the aid of RVOUT.
Both EARTH and SPACE assume that the subroutine
GHA has been called and that the COMMON locations
GHA(T) and LOMEGA contain, respectively, v (T) in
deg and « in rad/szc.

The calling sequence for EARTH is
CALL EARTH
PZE A
PJE B,.C
A,..., A + 5 contain the spherical set 7, ¢, 6, v, v, o.

X, Y, Z are placed in the cells B, B+ 1, B + 2; X, Y,
Z are placed in the cells C, C + 1, C + 2. *

The calling sequence for SPACE is

CALL SPACE
PZE A,B
PZE C,.D

A, A+1,A+ 2contain X, Y, Z; B,B+1, B+ 2 con-
tain X, Y, Z,

The Earth-fixed spherical set r, ¢, 6, v, y, ¢ is deposited
inthecells C, ..., C + 5, while the Earth-fixed Cartesian
setx, y, o, %, y, z is placed in the locations D, ..., D + 5.

The subroutines use four words of erasable storage
starting at COMMON,

RVIN, RVOUT

Transformations between Cartesian position and veloc-
ity R and V and the spherical set (R, ¢, 8, V, T, 3) are
provided for by RVOUT, while the inverse transforma-
tion from spherical to Cartesian is obtained with RVIN,

N
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R:{X,%2)

Sketch A-6. Inertial spherical position coordinates

Projecting R on the X — Y plane, © is the angle from
the X axis to the projection measured counterclockwise.
% is the clevation of R above the X — Y plane (Sketch
A-8). The formulas are

X Rcos®cos ©
R={y |=| Rcos®sin®
VA Rsin®
and inversely,

R=VXIVF L

&= sin"-E ,y —90°=0=90°

R

0 =arg (X,Y), 0=0 <360°

tan“-%— ifx>0

arg (x,9) =

tan? L + 180° ifx=-—0

a

To describe the spherical coordinates for the velocity
vector V, it is convenient to construct a new reference
irame obtained by first rotating about the Z axis by an
amount O so that the new X axis lies aleng the projection
of R on the X —Y plane; a subsequent rotation about the
intermediate Y axis by the angle & completes the coordi-
nate change. The resultant X axis lies along R, the Z’ axis
lies in the plane formed by the Z axis and R, and the Y’
axis completes the right-hanced system and thus remains
in the X — Y plane (Sketch A-7).

62

/ \
/ \,

Sketch A-7. Rotution to the local plane

Evidently
X cos®cos® —sin® —sinPcos® X’
Y | = cos®sin® cos® —sindsin® Y’
VA sin @ 0 cos ® \ /4

Representing the velocity vector V in the X/, Y’, Z/
system, the path angle I is the elevation of V above the
Y’ — Z' plane, positive in the radial outward or X’ direc-
tion; the azimuth 3 is the angle measured clockwise trom
the Z’ axis to the projection oi ¥V on the Y’ — Z’ plane.
TLe geometry appears in Sketch A-8.

Sketch A-8. Inertial velocity vector in the
local horizontal plane

Regarding the X’, Y’, Z’ frame as nonrotating, V may
be expressed as

X Vsinl'
V=1y | =| VcosI'sin3
z Veoscos 3

and rotate to the original frame to obtain XY, Z

Ny e e
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Inversion may be obtained as follows:
V=%t v 12
y ’
I’ = sin? —};—,
3= arg (2,Y"), 0=<3 < 360°

—90° =T'=90°

Of course V expressed in the X', Y, Z’ system is given by

/ X cos%0s® cosdsin® sind X
v |=| —sin® cos ©® 0 Y
\Z’ —sin®cos® —sin®sin® cos P Z

The calling sequence for R{JN is

CALL RVIN
PZE ,A
PZE B
PZE ,C

A,..., A + 5 contai. the spherical coordinates R, &, O,
V, T, 3 X, Y, Z are placed in the locations B, B + 1_,
B + 2, while the Cartesia1 velocity components X, Y, Z
are stored in the cells C, C + 1, C + 2.

For RVOUT, the calling sequence is
CALL RVOUT
PZE 1,A
PZE 1,B
PZE 1,C

X, Y, Z are contained in the cells A, A + 1, A + 2, while
the locations B, B + 1, B + 2 contain X, Y, Z. The spheri-
calsetR, &, 0,V, T, 3 isplaced in thecells C,...,C+ 5
as output.

The subroutines use foui’ words of erasable storage
starting at COMMON.

Loorp

Let R=(X,Y,Z) and V= (X, Y, Z) be the Earth-
centered “space-fixed” Cartesian coordinates cof the probe
referenced to the true equator and equinox of date. For
a given station with Earth-fixed spherical coordinates
(13, ¢4, 8:), it is desired to compute a number of topocen-
tric quantities as given below, The basic coordinate sys-
tems are shown in Sketch A-9,

020 v 21)

1\

]
<

/
Y SR

Sketch A-9. Earth-fixed station coordinates

¢ (T) is the Greenwich hour angle of vernal equinox
at epoch T or alternatively, the right ascension of the
Greenwich meridian. It is assumed that GHA has com-
puted T(T) and the correct value appears in the
COMMON location GHA(T). r; is the distance of the
station from the center of the Earth, ¢; is the geocentric
north latitude, and 6; is the east longitude.

The Earth-fixed Cartesian coordinates of the station
are

Xi = 7508 ¢; cos b;
¥i = ric05 py sin b
2 = rysingy
Those for the probe are
x= Xcos ¥ (T) + Ysin ¥ (T)
y= —Xsin? (T)+ Ycos v (T)
2=12Z
%= Xcos 7 (T) + ¥sin v (T) + wy
j= —Xsin P (T) + Ycos 7 (T) — wx
=2
r= (%%%)

where o is the rotition rate of the Earth.

Thus the topocentric Cartesian coordinates of the
probe are

rip = (X — X,y ~ Y2 — %)

v, = (%5, = ¢

S R

—-——
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The slant range r;, is then given by |ri; |, while the
slant-range rate 7;, may be obtained from the formula

. d(rly) _ d(ripr
zfinfipz d: = pdt P)

= 2!',,, . i';p

Provisions have been made to compute 7;,, the slant-
range acceleration, when the Earth is the central body.
The pertinent formulas may be developed as follows:

x - cos T (T) sinr T) X
¥ —sin P (T) cos 7 (T) Y

to —sin P (T_) cos T (T) X
—cos P (T) —sin P (T) Y

TN

1=1Z

— cos T (T) sin v (T)
—sin P (T) cos ¢ (T)

(

~28 X2

i=Z
From
fip hp = r;,-i';,, = Pip* i‘
obtain
tipFip + Fip = Fip T+ Fip* Fip
or

e 1 o .2
r;p=—-{n,°r+v’—np}
fip
where v = |r|,F = (%%, %)

Contrivutions to R are obtained from COMMON
io -tions where they have been deposited by DOT and
are only valid for the Earth as a central body.

The topocentric hour-angle declination system is de-
scribed in Sketches A-10 and A-l1..

sS4

X

Sketch A-17. Rotation to the station meridian

l’

Sketch A-11. Local hour-angle declination
coordinate system

The x—y plane has been translated to the station and
rotated through the angle 6; so that a/ lies along the
meridian; the 2z’ axis remairs parallel to .ue z axis. The
declination §; is given by

. 8 =sint 22 —90° <3 < 90°
fip

and the hour angle may be computed from
a; ==6; — arg (%ip, ¥ip) (mod 360°), 0=y < 360°

where

mntd x>0, —90° <tans < 90°

arg (x,9) =
tan"% + 180° otherwise

From the above formulas, the ‘ngular rates foliow:

3 o = fysindy
s ".ms{
&‘ : ’ ‘ — .x"

ity
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To coustruct the azimuth-elevation topocentric coordi-
nate system, rotate the x” and z’ axes about the y’ axis so
that the resultant ” —y”’ plane is perpendicular to r; and
the 2” axis points to the zenith; the x” —z” plne is still
the meridian plane as illustrated in Sketches * 2 and
A-13.

90°- ¢,

#:

xll

Sketch A-12. Rotation to station latitude

Sketch A-13. Azimuth elevation coord’ ate system

The elevation angle y; may be obtained immediately by

. rir;
siny; = ——=£ | —90° < v; < 90°
i Tip
The component of r;, which lies in the 2’ —y” plane is
Tip €OS y; 5O that the azimuth o, is siven by
~x7,

COS gy = e
fipCOS Y3

”
Yip

sin gy == ————
TipCOS ¥

By performing the rotations to transform the coordi-
nate systems, r;, may be determined in the x”’ —y” —2”
reference:

Xj, = Xipsing;cos §; + y;psin @; sin6; — zi,cos §;

-

Yig = = Xipsinb; + yizcos 6

2{, = X,pC08 $; €08 0 + yip COs ¢y sin 6 + 2 psin

The program uses an inverse function ’efined for
0 = cos™' u = 180° so that

—_ xll
1 ip of . ~
cost \——] ifsineg, =0
71p COS Y4

— a7
%) ~1 x“’ H
360° — cost | ———=—} otherwise
7.pCOSY;

The angular vates are calculated from the formulas

. P F i fpsiny;

v 1i7ipCOS Y;

%y t+cosa (FipCOSy, — fip™y 5i0y;)
agi =

7, €05 y; sin o

where &7, = xsin¢;cos8; + §sin¢;sinfd; — 2cos ¢;.
ip

The look angle A; is the angle between the spacecraft
attitude vector T and the slant-range vector where C is
specified by the calling sequence and is a unit vector
expressed in the true equator and equinox of date. It is
convenient to const.uct R;, in a topocentric system
parallel to the X, Y, Z axes:

X;=x;c0os T (T) --y;sin P (T)
Y, =ux;sinv (T) + yicos T (T)
Z; =2
R,=(X—-X,Y—-Y,,Z2—-1Z))
Then A; is obtained from
A; == cos™ (M> , 0= =180°
Rip
The polarization angle p; is defined as
_ f RXRi, CXRj )
H=OT\TRXR,] JCXR, |’

An expression for the measured received frequency,
miciuding a scaled doppler shift, appears as

0=<p <180°

1= foi ~ fei ;ap
where fz; represents a bias frequency in the receiver and
foi includes the velocity of light and may be adjusted to
represent either two-way or normal doppler.

The calling sequence is

CALL LOOP
PZE XY
op B,C

A o 00 AP R A N, SRR
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XX+ 1,X+4+ 2containR; Y, Y+ 1,Y + 2contain V.

B contains the binary control word which selects the
appropriate stations from among the available 13. The
small subroutine CW1 transforms the octal input to the
required binary format which permits LOOP to scan
the stations from bit 35 to bit 21.

C,C + 1, C + 2 contain the unit vector C.

If OP = PZE, LOOP will compute the quantities for
each station in turn and will print out whenever y; =
—10°. If OP = MZE, y; and ¥, for each station up to a
maximum of five, will be stored in a buffer to be used
by MARK as ‘cpendent variables for the view-period
computation.

The parameters describing the stations are stored sn
the follewing sequence:

STABCD +0

4 BCD words for
station 1 name

W DO =

71{ 4 BCD words for
‘Z( station 15 name

coordinates for

s station 1

STACRD +0 ¢,
1 1
2 1
3 fs,\ frequency parameters
4

fey § for station 1

106
107 %15 | coordinates for
15 :
10 -, station 15
111 fu,o} frequency parameters
112 fe5f for station 15

To describe the view periods for the stations, three

other parameters are used:

STACRD -3 v,
. e s
—_ 1 Yo
66

The eievation condition is met tor rise or set with respect
to the station whenever |y; — yo | = vs; at this time the
station quantities ar2 printed and further testing is sup-
pressed for one integration step. The elevation-rate con-
dition is met for extreme elevation whenever |y | < ¥s
and y; = y,. Upon success, the station quantities are
printed and the test is suppressed for one integration
step.

The subroutine uses 100 words of erasable storage
starting at COMMON.

2. Basic Coordinate Transformations

ROTEQ

The general precession of the Earth’s equator and the
consequent retrograde motion of the equinox on the
ecliptic may be represented by the rotation matrix:

X a4y arn 413\ X
Y’ = a2, @22 23 Y
z 43 32 3= / z

where X, ¥, and Z are expressed in the mean aquator
and equinox of 1950.0 and X', Y, Z’ are the coordinates
in the mean equator and equinox of date. The geometry
of the precession has been represented by the three small
parameters £, z, and 6 in Sketch A-14:

“—ECLIPTIC OF
1950.0
ECLIPTIC OF DATE

Sketch A-14. Relationship between fundamental
reference equators

%P 19500 is the mean equinox of 1950.9; €,050.0 is the mean
obliquity of 1950.0; ¥ mes is the mean 2quinox of date;
€ is the mean obliquity of date. Measured in the mean
equator of 1950.0 from the mean equinox of 1850.0,
90° — ¢, is the right ascension of th. ascending node of
the mean equator of date on the mcan equator of 1950.0.
90¢ + z is the right ascension of the no'e measured
in the mean equator of date from the mean equinox of
date. 6 is the inclination of thc mean equator of date to
the mean equator of 1950.0.
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In terms of &, z, and 6, (ai;) is given by

a4y = —sinfosaz+ cos {, cos zcos @
&2 = — c0s {o sin z — sin {, cos z cos §
s = —cos zsin @

dyy = sin o <05 z + o5 ¢, sin 2 Cos @
a5 = 05 {o €Os 2 — sin {, sin z cos 8

a3 = — sin z sin 8

a3, = cos {o sin @
a3, = —sin {, sin 8

sy = cos 0

{0 = 23047997T + 0/302T* + 0701791
z = 23047997T + 17093T* + 0701921
0 = 2004”7298T — 0"426T* — 0704161

with T the number of Julian centuries of 36,525 days past
the epoch 1950.0,

The actual cemputational form of {a;,) is obtained by
expanding the a,; in power series in {,, 2, § and replacing
the arguments by the above time series. The result. are

&3 = 1 — 6.00029697T% — 0.00000013T*

a4 = — a5 = — 0.02234988T — 0.00000676T2
+ 0.000002217*

4y = — ay, = — 0.00971711T + 0.00000207T*
+ 0.000000961

43 = 1 — 0.00024976T* — 0.00000015T*
dys = @33 = — 0.0001085972 — 0.00000003T3
ays = 1 — 0.000047217% + 0.000000027°

The calling sequence has the form
(AC) = days past O* January 1, 195G, E.T.
CALL ROTEQ
(OP) X, Y

X -3, X—2, X—1 contain the input vector; Y—3, Y—-2,
Y —1 contain the output vector; X =Y is permitted.

OP = PZE regards X as 1950.0 and rotates to date in
Y; OP = MZE regards X as of date and rotates to 1950.0
inY.

The matrix (a;) is saved in the COMMON locations
AA, ..., AA + 8 and recomputed only when the time has
changed by 1/64 day.

The subroutine uses three cells of erasable storage
starting at COMMON.

NUTATE

To describe the nutation of the Earth about its pre-
cessing mean equator, it is convenient to construct the
nutatica matrix N which relates the Cartesian coordinates
expressed in the true equator and equinox to those in the
rean equator and equinox (Sketch A-15).

i

EC! 'PTIC
Y

MEAN EQUATOR

AY‘

my

TRUE EQUATOR

Sketch A-15. Relationship between true squator
and mean equator of date

3y is the nutation in longitude measured from the true
vernal equinox at the X’ axis to the mean vernal equinox
at the X axis. € is the mean obliquity, while € = & + 3¢ is
the true obliquity where 8¢ is the nutation in obliquity.
Numerical expressions for the above quantities appear in
the discussion of subroutine MNA following.

If N is defined in the sense

X’ X
Y | =N} Y
z z

where the primned system is the true equator and equinox
and the unprimed is the mean equator and equinox, then
the N,; are given by

N“=C0$8¢
Niy= —sindycose
Nu= - sin8¢cos§'

N, = sin8 y cos €
Ny; = 08 8 y cos €cos € + sin €siu €

a7
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N, = cos 8y cos€sin€ — sin€cos €

N;, = sindy¢<ine
Ni, = cos8 sin€cos € — cos€sin €
N3 = cos 8 ysin€sin € + cos €cos €
Since |8y | < 10™ and j8e¢| < 107, the Ni; are ex-

panded to first order in 8¢ and 8¢ to obtain a form which
is better behaved for numerical calculation:

. 1 —8y¢ycos € —8ysin€
N=1| sycos€ 1 —d8¢€
Sysin€ S 1

NUTATE is used as a utility routine to generate the
matrix product NA, where A 1s obtained by calling
ROTEQ; the resultant NA is used to rotate from the
equator and equinox of 1950.0 to the true equator and
equinox of date and is saved in the COMMON cells
(NA),...,(NA) + 8. As N is a slowly varying matrix,
it is saved and recomputed only if the time has changed
Ly at least 0.1 day. The generation of N is effected by
calling MNA which also internally store: N.

MNA, MNA1

It is the priacipal function of MNA to provide the
rotation matrix MNA which allows vectors in the 1950.0
system to be expressed relative to the Moon's true equator
and conversely.

For this purpose it is assumed that the matrix A has
been formed by ROTEQ and appears in the COMMON
locations AA, ..., AA + 8. The form of the matrix N (see
preceding discussion of NUTATE) depends upon the
nutations 8¢ and de. In the discussion of XYZDD to fol-
low, M is identified as (bij).

The numerical expressions for the necessary quantities
appear beiow:

3¢ = Ae + de, where A€ denotes the long-period and
de the short-period terms for the nutation in obliquity.
In a similar manner the nutation in longitude 8y is given
with long-period and short-period terms Ay and dy.

A€ = 2595844 X 10~*cos @ — 092511 X 107 cos 202
+ 195336 X 10~ cos 2L + 0°0666 X 10~ cos (3L —T)
~— 020258 X 10*cos (L + I')
-- 090183 X 10~ cos (2L — Q)
— 020067 X 10~ cos (2IY — )

de = 092456 X 10™*cos 2 + 020598 X 10*cos (2L — Q)
4 0°0369 X 10*cos (3¢ —IV)
—0°0139 X 10~ cos (€ + 1Y)
— 020086 X 10*cos (¢ — IV + Q)
+ 020083 X 10*cos (¢ — ¥ — Q)
+ 0°0061 X 10*cos (3C + IV — 2L)
+ 0°0064 X 10*cos (3¢ —TY — Q)

Ay = — (47°8927 + 0°0482T) X 10 *sinQ
+ 095800 X 107*sin202 — 325361 X 10™*sin 2L
— 0°1378 X 107*sin (3L —T')
+ 020594 X 10*sin (L + T')
+ 020344 X 10*sin (2L — Q)
+ 020125 X 107*sin (2IY — Q)
+ 023500 X 10*sin (L ~T')
+ 020125 X 10*sin (2L — 2I™)

dy = — 095658 X 107*sin 2 C
— 090950 X 10*sin (24 — Q)
—0°0725 X 10™*sin (3¢ —I")
4+ 0°0317 X 10*sin (( +IY)
+ 020161 X 10*sin (¢ — IV + Q)
+ 020158 X 107*sin (¢ —I¥ — @)
— 020144 X 10~*sin (3¢ + IV —2L)
—0°0122 X 10*sin( 3¢ -V — @)
+ 091875 X 10*sin ( ¢ — IV)
+ 020078 X 107*sin (2 ¢ — 2I")
+ 0°0414 X 10~*sin (¢ + I¥ —2L)
+ 020167 X 107*sin (2 ¢ — 2L)
— 020089 X 10™*sin (4 < — 2L)

Q= 129112790z — 0205295392224 + 200795 X 10™* T
+ 20°81 X 1072 4 0202 X 10+ T1*

€ = 64237545167 + 13917639652684 — 11231575 X 10~ T
— 11°3015 X 104 T% + 09019 X 10 T*

IV = 2088439877 + 001114040803 4 — 0°010334 T
—0°010343 7% — 0212 X 10* T*®

L= 280208121009 + 0298564733544 + 3°03 X 10T
+3203 X 107 T

I' = 282208053028 + 02470684 X 10~ d + 495525 X 10* T
+ 49575 X 104 T? + 0203 X 10+ T*

T is the number of Julian centuries of 36,525 days past
the epoch 0" January 1, 1950, E.T., while d is the number
of days past the same epoch. The program uses d in
double precision. The-mean obliquity is calculated from
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€ = 23°4457587 — 0°01309404 T — 020088 X 10~ T*
+ 020050 X 10+ T°

The quantity 8a = 8¢ cos € is computed and stored in
the COMMON cell NUTRA for the GHA routine to use
as the nutation in right ascension for calculation of the
true value of the Greenwich hour angle of the vernal
equinox.

The librations are given by
asinl = — 020302777 sin g + 020102777 sin (g + 2 o)
— 0200305555 sin (2g + 2 )
r = — 0°003333 sin g + 0°0163888 sin g’
+ 0°005sin2 w
p = — 0°0297222 cos g + 020102777 cos (g + 2 w)

= 0°00305555 cos (2g + 2 w)
I=1%535
The following expressions Lave heen programmed for

g g, and :

g = 215954013 -+ 1330649924
g = 358%009067 + 029856005 d
o = 196745637 + 0°16435864

Evidently g = € — 1Y, the mean anomaly of the Moon;
g =L —T, the mean anomaly of the Sun; and  =I" — Q,
the argument of the perigee of the Moon. All quantities
relate to mean moticns of the Sun and the Moon.

cosi = cos (@ + o + 8¢) sinesin (I + p)
+cosecos (I + p), 0<s<90°
sin@' = —sin (Q + o + 8¢) sin (I + p) csci,
—90° < Q' < 90°
sinA = —sin (0 + o + 8y) sinecsci
cosd = —sin(Q + o+ 8y) sinQ’ cos €
—cos(Q + o+ 8y) cos, 0=<4 < 360°
A=A+ (C+y) —(D+0)
€=¢+ ¢

The calling sequence to MNA is
(AC) = fractional day past 0" of epoch T in E.T.

(MQ) = integer days past 0" January 1, 1950 of the
epoch T

CALL MNA
PZE 1A
PZE },B

BT sereary -

The cells A, A + 1, A 4 2 centain the 1950.0 position
vector R = (X, Y, Z), while the output vector ¥ = (%, y, z)
in the Moon-fixed coordinate system is placed in tke loca-
tions B, B 4 1, B 4+ 2. The coordinate transformation is
given by

/x X
y | =MNA| vy
z VA

The inverse transformation

/

X x
y |=@Nay| ,
z oz
is indicated by
CALL MNA
PZE 1,A
PZE 0,B

A, A+ 1, A+ 2 contain r and the output R is placed
inB,B+1,B + 2.

If MNAL is called instead of MNA, the matrices are
not recomputed unless time has changed by 0.01 day.

The subroutines use four cells of erasable storage
starting at COMMON.

MNAMD, MNAMDI

As it is necessary to form the Moon-fixcd velocity, the
subroutine MNAMD has been provided to accomplish
this task. As in the preceding discussion of MNA, the
formulas for transforming positions are

X 'X\
(y)=MNA Y
\ 2/ z

for the transformation from 1950.0 position to Moon-fxed
position and inversely,

X x
Y = (MNA)’
V4 z

for the position transformation in the other direction.

69
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To obtain velocity ransformations, the above formulas
are differentiated and the approximation is made that

N=A4A=0
Thus
% X ) X
j |=MNA[ ¥ |+MNA| v
- Z \ z

and for the inverse transformation

X X . x
Yy | = @MNA)Y j |+ (MNA)' y
Z 2 z

In computing M the rates for the slowly varying angles
Q' and i are taken to be zero.

M= (M“)
where

My = (— sin A cos @' — cos A sin €’ cos5) A
b.f,-_. = (—sinAsin 0’ + cos A cos @’ coss) A
M,s = (cos Asini) A

M,, = (— cos A cos Q' + sin A sin @’ cos$) A
M, = (— cos Asin’ — sin A cos ' cos5) A
My = (—sinAsind) A

M =0
My, =0
M”:O

From the formula
A=A+ (C+7)—(Q+0)
obtain
A=A+i+i+—-a0-4%
The adopted numerical expressions for t1e rates are

—cos (Q+ o+ 8y)sine (0 +5)

A= —

SinsCos A
€ = 0.266170762 X 10°° — 012499171 X 10 T rad/sec
G = — 01069698435 X 10~ -- 0.23015329 X 10~ T rad/sec

— 0.1535272946 X 10~ cos g
+ 0569494067 X 107 cos ¢’
+ 0.579473484 X 1071 cos » w sad/sac

[
T

= — 0520642191 X 107 cos g
+ 0.1811774451 X 107" cos (g + 2w)
—01064057858 X 107 cos (2w + 2g) rad/sec

The calling sequence to MNAMD has the form

{AC) = fractional day past O* of epoch T under
consideration

(MQ) = integer days past 0 January 1, 1950, E.T.
to T in E.T.

el Ty NENT 2 &
CALL MNAMD

PZE 1,A
PZE 1,B
PZE 1,C

The 1950.0 position vector R = (X, Y, Z) is input to celis
A, A+ 1, A+ 2 while the 1950.0 velocity vector V =
(X, Y, Z) occupies locadons B, B + 1, B + 2. The output
vector v = (%,#,%) is placedin C,C + 1, C + 2.

If the inverse transformation is desired, the calling
sequence is modified to read
CALL MNAMD
PZE 1,A
PZE 1,B
PZE 0,C

The Moon-fixed position vector r = (x,y, z) occupies
cells A, A+ 1, A + 2 as the Moon-fixed velocity vector
v = (%,§,%) uses B, B + 1, B + 2 for input. The 1950.0
velocity vector V = (X, Y, Z) is the output and is placed
in locations C,C + 1,C + 2.

The alternate ertry MNAMDI differs from the entry
MNAMD in that the matrices M and M are recomputed
only if time has changed by 0.01 day.

The subroutines use four words of erasable storage
starting at COMMON.

3. Ephemeris

INTR, INTR1

The subroutine INTR assums a high-density ephem-
eris tape on A8 wiith 20-day records of 596 words in the
following format:

!
i
!
|
%
#
|
i
i
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T, integer days past 0"
Januaty 1, 1950, ET.
(floatiag point)

X ((Tp), 88X (T, ¥X (T )

Y (T, &Y ((T,), ¥Y ((Ty) | geocentric block

Z (T, ¥Z(Ty), $Z(Tyy | 1= 020

X o(T5), 88X 5(Ty), 8#Xo(T)) ( time interval is 1 day

Yo (Ty), 8Y o (Ty), #Y(Ty) | 378 words

Z o(T)), BZo(Ty), ¥Zo(T)) |

X o (Ty), 88X (Ty), X o (Ty)

Yg (Tj)y sng (T’)r S‘YQ (Tj)

7o (T1), BZ o (Ty), 824 (Ty)

X (Ty), X (T;), X ,(T))

Y4 (T5), 8Y 4 (Ty), 8 4 (T5) | petiocentric block

Z (T, &Z ,(T;), Z (T;) | j=0,48,12,16,20
(Nine words per time point time interval is 4 days
representing what was the
Earth-Moon barycenter used 216 words

in an older version)
Xy (Ty), 83X, (T)), 84Xy (T))
Y 4 (Ty), 8Y 4 (T;), 8Y 4 (T))
Z-);(Tf)» szzu(T})) S‘ZQ(TI)

J

The last word of the record is the check sum for the
previous 595 words.

From record to record the time must be incremented
by 20 days. In addition, the time on the first record T»
and the time on the last record T, are subroutine param-
eters which give the base point of the ephemeris and
also a check for time out of the range of the ephemeris.
The symbolic locations are TFIRST and TLAST for T,
and T, respectively,

The lunar coordinates are assumed to use the Earth
radius as a unit of length, while all other coordinates are
expressed in terms of the Astronomical Unit. As the pro-
gram runs in km, conversion factors are provided at
SCALEI1 for the Earth radius and SCALE2 for the Astro-
nomical Unit. The rectangular coordinates are assumed
to be expressed in the mean equator and equinox of the
epoch 1950.0 E.T., the beginning of the Besselian year. :

As the argument of the tables is ET. (Ephemeris
Time) and the program uses U.T. (Universal Time) ‘he
subroutine E.T. is used to form the double-precicion
ephemeris time in sec E.T. = U.T. 4+ AT, where the con-
stant AT appeavs at GRAV—2 and thus may be input
via INP1 in the symbolic mode.

Beginning at GRAYV, a list of gravitational coefficients
for the bodies appears in the units km®/sec?. As a func-
tion of the central body, certzin sets of these coefficients
are provided for the subroutine BODY in the COMMON
list KBO, . . ., KB8. The following illustrates the transfers:

Central body Effective noncentral bodies
Earth Moon, Sun; Jupiter if Ry, =10° km
Moon Earth, Sun
Sun Earth, Moon, Venus, Mars, Jupiter
Venus Earth, Moon, Sun, Mars, Jupiter
Mars Earth, Moon, Venus, Sun, Jupiter
Jupiter Earth, Moon, Venus, Mars, Sun

The entry INTR takes as argument the double-precision
seconds past 0" January 1, 1950, U.T,, stored in T, T + 1,
makes the conversion to E.T., and interpolates as a func-
tion of the central body on the required coordinates for
the budies listed above, There are two conditions under
which actual interpolation takes place:

1. Central body has changed
2. Time has changed

If neither (1) nor (2) is satisfied, then INTR gives an
immediate return.

In contrast with INTR, the entry INTRI always inter-
polates; in addition, this entry obtains the positions of all
the bodies in terms of the central body instead of the
selective list used with BODY. The positions appear in
the COMMON bank XN. Additional'y, INTR1 numeri-
cally differentiates the positions to obtain the velocities
which are deposited in the bank XN. in COMMON.

Positiovning of the ephemeris tape on A8 is accom-
plished by the following scheme:

LT < Tror T = T, an error point is given and
ABORT is called.

2. f T = Ty + 20, where Ty is the time on the record
currently in core, the tape is searched in a forward
direction until the correct record is found. If the
tape has not been previously read, a dummy Ty
causes a forward search.

8. If Ty =T < Ty + 20, internclation proceeds.

4. If T < Ty, the correct number m of backspaces is
caleulated.

a. If m = 15, the tape is backspaced m times and
proceeds to do a forward search.

71
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b. If m > 15, the tape is backspaced 1 file and a
forward search is undertaken.

After the correct record has been found, i* is read into
ore and both check-summed and redundancy-tested.
Reading of the desired record is attempted a maximum of
10 times, after which an error comment is printed and
ABORT is called. In the forward search the above two
tests are not made.

The following Everett’s formula is used for the inter-
polation:

y(r) = {,.yo + tyl} + {""‘”3!— D gy, 4 221 Szy,}

N {u(u‘-‘ VN Ok ) PO il V] Ui 4)8,%}

5! 5!
where

0 = y(Ty)
»n =y(T;+ hb)

b = ephemeris interval

_T-T;

‘=%

#=1—1¢

T;=ST<T+h

To obtain a formula for the velocity, the above Everett's
form is differentiated and scaled:

3! 3!

1 Sut—154*+ 4
* —{" 5t

2 2 .
+ l_{_ 32 — 1 Sy -+ 32— 1 82%}

St —15¢+4
51 8 71}

) S‘yo +

The ephemeris tape currenily used has the following
modified differcuces for the Moon:
82y = 8%y — 0.01312 8% + 0.0043 8%
84y = 8'y — 0.27827 8%y + 0.0685 8%
Thus 82 and $ 4, are used in the Everett’s formula instead

of 82 and 8 to provide for the influence of the higher
differences.

The following constants are used:

ER. = 6378.155 }
AU. = 0149599 X 10° f K™

72

ng = 0.3986032 X 108
pq¢ = 04900759 X 10*
p o = 0.132715445 X 102
ne = 0.3247695 X 108
pe = 04297780 X 10°
py = 01267106 X 10°

km 3,/sec2

The subroutine uses 20 cells of erasable storage starting
at COMMON.

4. Encke Method Calculations

ENCKE, ORTHO
The subroutine ENCKE has been provided to per-

forra the calculation of the Encke contribution to the
acceleration

-I’;—S(RF(Q) - p)

where R = R, + p. The solution R, for the position in
the two-body orbit is provided by KEPLER, and is saved
from step o step so that a new R, is calculated only when
the time has changed; thus KEPLER is called normally
once per integration step while using the Adams-Moulton
predictor-corrector.

F(Q) =1— (14 2Q)~™ is calculated trom the series
expansion

Q) =0, a0
j=0

where
a=3
@ ==75
a, = 17.5
1, = "'39.375
a, = 86.625
as = —187.6875
as = 402.1875
and
p-(Ro + g—)
0=—p—"

The expansion Zives accurate results for | Q | = 0.03; if
the limit is exceeded, an error print will be given and the
trajectory will be terminated. Normally, Q grows slowly
enough so that rectification may be performed at the end
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of the integration step; however, for wild trajectories the
error procedure has been observed to occur.

ENCKE deposits the true positior R in the COMMON
cells QX, QX + 1, QX 4 2 and the acceleration term
#/R? (R F(Q) —p) in the cells CX.,CX..+ 1, CX.. +2.

At the osculation epoch T, the subreutine ORTHO
provides the Encke scheme with initial conditions:

p (To) = R(T,) — Ry (T,
f.’ (T,) = V(To) — Vo(T,)
P (T,) is placed in the COMMON cells CX, CX + 1,

CX + 2, while p (T,) is placed in storage locations CX..
CX. +1,CX. + 2

CONIC

The subroutine CONIC supplies the Encke machinery
with the necessary orbital elements given an epoch T,
and the Cartesian position and velocity vectors R, and V.
Under certain circumstances described below the derived
elements are nonosculating,

The computation starts with the formation of the angu-
lar momentum ¢, given by

Clw—_—Rono

If ¢, > (0.99¢)R,V,, where € = 0.5 X 103, the orbit is
considered nonrectilinear and the subroutine proceeds in
the normal case. However, for ¢; =< (0.99¢)R,V,, V, is
replaced by V?# given by

v::Vo[\/l —€258G(R0‘Vo)!—1;1+eM]
0

where

1 .
M - W—YT(YO, - Xo, 0) if X; + Yg #0,
(1,0,0) otherwise

and the routine cycles back to recompute the angular
momentum. Observe that ¢ * =€R,V, so that V# is accept-
able; of course, V* = V, and c?=c,

Next come the elements
- & :
= " the semilatus rectum

c=V:— —ZR% , the “energy” or vis viva integral
cicy

u

At this point the eccentricity ¢ is computed and tested:

l1—et=—

0 otherwise

= {\/1 — (1 — ¢*) if radicand > O,

If the computed e is smaller than 0.01, then a circular
orbit is assumed and the remaining elements are made
consistent with the assumption of ¢ = 0. There follows in
quick succession :

q= -1—%_—5— , the closest approach distance
1—e

= -~ ' th i
A D e pericenter parameter

g= L the mean motion for the pericenter method
24°
® o . .
= the semimajor or transverse axis
=Tal ’
VI Cs '
a

b= a\/[T — ¢, the semiminor or conjugate axis

n= , the mean motion

and finally,
_ 11—t

l1=e=3T,

It remains to calculate P and Q along withAT =T, — T,
and to make the two sets agree sufficiently so that the
Encke starting values will not be too large.

Ife =0,

P=R—:andQ=T%;>><<%’—lwithAT=0
Otherwise, the vectors are constructed:
eR2 P = (eRocosvy) Ry — (eRosiny) WX R,
eR? Q= (eRosinv,) Ry + (eRocosv) WX R,
Divide by R,, and normalize the resultant vectors to

obtain P and Q. The expressions involvir 7 the true anom-
aly at epoch are calculated from

eRycosv, =p — R,
eRysiny, = iRo°\’,,
»
To obtain AT, the applicability of the pericenter

method for |A| < 045 is tested. w, is formed accoru-
ing to

sin v, . -
‘——-—1 T oosv, ifcosvo =0

Wy =
1 — cosv, ,
s = otherwise
sinvy
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and tested. Ir | o | = W, thei.
6
gaT = Z‘! (A) wo?!
=0

where the coefficients a;(A) along with w,,., are given in
the discussion of the subroutine PERI.

Whenever |wo | > Wmas, the eccentric anomaly and
Kepler's equation are resorted to. The scheme is divided
into two cases according to the value of «:

(1) e < 1, elliptic case

The following expressions are constructed “or the
eccentric anomaly:

gcos B, =1 —-&’-
a

RV,
4\/]‘»‘3'

from which E, is determined.

E Sin Eo =

If | esin Eo | = | & cos E, |, then the auxiliary vari-
able E* is constructed:

RV 7 pecr
aeVics] 2 2

Then E, is given by

E* =sin™

. Ro
] — s,
E, = {E if1 ” >0
wsgn (E*) — E* otherwise
On the other hand, if | e sin E, | > | e cos E, |» then

Ee =cos“—i—(1 ~-§—°—), 0<E* <m,

with

Eo = sgn (Ro'v) E*
Finally, AT is calculated from
. R,'V
AT = E, —esinE, = E, — “‘—w—-ﬂ:_
(2) ¢ > 1, hyperbolic case

The eccentric anomaly F, is found from the re-
lation

esinhFo =T Yo _ o
a\/Cy

Fo=sgn (Re* Vo) In(]a] + VI + &)
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Then AT is obtained from Kepler’s equation:
Ro o
v

nAT == esinhFy — Fy, =

—_— Po

QUADKP

The subroutine QUADKP was written to provide an
iterative solution to Kepler’s equation for the elliptic and
hyperbolic cases using a second-order gradient method.
However, only the machinery for the latter case has been
utilized in the main program for the Encke solution.

Let Kepler’s equation be represented in the hyperbolic
case by
f(F) =esichF—F—M, M=n(T—T,)

Then for the approximate solution F; the Taylor series
expansion through second-order termns may be used to
obtain a new estimate F,, of the root f(F) = 0.

0=f(F;+ 8F;) = f(F) ~ f(Fj)

2
j

8F
+8E, f (F)) + —5- 17(Fy)

Sclving directly for the roots of the quadratic,

2f(Fy)
—f"(Fy) — VI*(Fy) — 2f(F) " (F))

where the minus sign is taken before the radical to insure
that 8 F;— 0 as f(F;) - 0; for a wild guess, however,
the radicand may become negative, in which case the
radical is replaced by zero. With a good initial approxi-
mation the latter case arises only infrequently.

st -_-Fjﬂ '—F;=

A similar result may be obtained for the elliptic case,
namely

f(B) =E—esinE— M

Convergence in either the hyperbolic or elliptic case is
evidently given by

Fj. —F = O((F; — F)?)

The program is made complex by the attention neces-
sarily paid to obtaining a good initial approximation for
starting the higher order iteration scheme and the be-

havior of Kepler's equation when ¢ is near 1 and M is
small,

The initiel approximation is obtained as a function of
e and M:
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1) e>11, Fu=-.
e—1
sgn(M)min{I,lnﬂgl} if|Fq]>1
F3 F*
B Ar N £]F. =1
v-l—s_—._l__f_ F?-I Fﬁl l,-ll:
‘ . 2! 4!
(1 iteration by Newton's method )

(2) 111

i {sgn (M) mm{l,mﬁ%"-l} if |[M|>1

0=

(6M)* otherwise

(3) 09<ex1
E, = <6M)%
4 0<r=09, E,=-2
25 Xsgn (M) if|E,]>3
E3 E§
_ 350 .
E = E“—l_e FZ E% if|E,|=3
e + 2 &
(1 iceration by Newton’s method)
(5) e=0

Ecz=M=E

In the iteration scheme, a modification occurs in the
numerical evaluation of f, £, and # for the hyperbolic
case,

(1) lrozlp,l <198
esinhFy — Fy = (sishFy — F;) + (e — 1) sinh F,

anp, -7, = 23 GLL (B2

sinh F; F"ss‘ @+ 31 \31
=0

sinhF) = F, + (sinhF; — F;)
(2) For|F,| <228
]
_Fi’ (2!)“1 —p,_.l(

‘“”"I‘ET‘ (2i+2)!(2!

=0

e —cshFy= (e~ 1) — (coshFy — 1)

The power series developments are employed since the
guantity 1 — ¢ is regarded as an independent orbital ele-
ment and ¢ is made consistent with this choice. For small
values of F;, underflow is avoided by choosing fewer terms
in the expansions.

Additionally, if M = 0, F is set to zer: and no iteration
is performed. The calling sequence has the form

(AC) =M

(MQ) =1
CALL QUADKP
DEC

PZE A

(ERROR RETURN)

For the elliptic case, it is assumed that M has been
normalized so that | M | =

The location A contains a positive number for the ellip-
tic case and a negative number for the hyperbolic case to
choose the correct form of Kepler’s equation for the recti-
linear orbit.

As a convergence criterion, € =5 X 10® has been
chosen to apply such that the normal return is given with
(AC) = F or E whenever |f(F;) | <e€|M|and F = F;
for the hyperbolic case, or | f(E;) | < €|M |and E = E;
for the elliptic case. However, if the process fails to con-
verge to within € in N = 50 iterations, the following com-
ment is printed:

QUADRATIC METHOD FAILED

M ¢ Fy(orE;) f(F,) [orf(E,)]

and the error return is given with (AC) = F; or E;,
Generally, convergence is obtained in five or fewer itera-
tions. After the first time QUADKP has been called in a
phase, subsequent initiul approximations are obtained by

using the solution at the previous timne point,

The subroutine uses eleven words of erasable storage
starting at COMMON.
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KEPLER, PERI, SPEED

KEPLER is the subroutine which provides the solutior
to the two-body problem at the epoch T. The necessary
elements are assumed to have been provided at the oscu-
lation epoch by ORTHO and CONIC, Different methods
of solution are chosen according to the following criteria:

1. The pericenter method is used whenever
a. || <045 and
b. |w|=gA Tou

2. QUADKEF is used for ¢ > 1 and if item 1 is not
satisfied.

8. If the conditions in item 1 are not met and if ¢ < 1,
then the methods described below for the ellipse are
used.

As the orbital elements furnished by CCNIC are non-
osculating if true osculating elements give cearly recti-
linear results, the case for ¢ = 1 and ¢; 7 0 u¢ed not be
treated.

Pericenter Method

The first problem to be solved in the perr ... methcd

is the determination ~f w from the formui.

w0
1+ #
W°=3<T—Tv>=fm’;—ara“
o

where g = ¢,/2¢%. The quadrature is approximated by
the expansion

w cw!
i=0

where the coefficients are a tunction of A:

‘_1
1
== (—1) eee—[ (4 J o 53
a;=(—1) 21.,1[(1+1)«\ FA]

€ \1/14 € \1/ma
Wmax = max — . ———— ,
@ 34,

where € = 0.5 X 108,

g AT wmax = Winax Ed} w ‘:.l_‘

3=0
w,, the initial approximation, is given by
Bwe) ¥ if |wo| >3

w, = 1"2100 if1<|w°|'§3

o HOS|wo | =1
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Iteration proceeds by Newton’s method:

Wy = 1w, — fwy)

f (w;)

where
¢
flw) = wz aywt! — wy
J=n

and

L+
P =ariwr

Convergen~e 1 usually obtained in a maximum of four
iterations for cases which have arisen in practice, assuming
a criierion of | f(wy) | <5 X 10°® | wy |.

Wher convargence has been obtained the coordinates
may be calculated from the formulas

_ 1= o 2w
R= 1+ e P 1+ 2wt 7Q
_ _(1+A) e g _(I—sz) ¢
v= q (1 -+ g (1 +w?) Q
Hyperholic Case
If method ¢ is to be use:. : ie subroutine QUADKP is
called and returns 7ith ~. ¢ solution to Kepler's equa-

tion. The coordinates .. then calculated from the

JXpressions

R==a(e- .~ i+ aye?—1sinhFQ
PR 2 — 1 F
V = ——i.‘ﬁ :}éh:ﬂp.i-a\/z;\/eR 1 cosh Q

Elliptic Case
Begin by defining the auxiliary quantity M* by
M*==M=n(T—T,) (mod2r) ~x<M*==~
and
by = - {sgn (M')} -,-;-
Then for | M* | S #/8 — ¢/2, take

E.=M
Es=M~—bh
E,=M+ b,
and for | M* | > x,'8 — /2 the approximations are
E, =M -b,
Ei=M— 2,
B=M
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Now if | M* | = 0.25, iteration is performed using
Newton’s method with E, as the initia! approximation:

E

where f (E) = E — esin E — M. Convergence for New-
ton’s method is evidently given by

E;,, —E=O0((E, — E)?)
where f (E) = 0.

Whenever | M* | < 0.25 Muller’s method?® is used:
Eja=E; + blrl
bjse = A by
28; f(Ey)
g+ {sgn (g) 4]
— 4x; 3 f(Ey)
X [A;f(Ej-2) —8;f (Bsa) +f(Ep)]
= A} f (Es-2) — 85 f (By-1)
+ (A + 8) f(Ey)
=14+

)\}n = --

Initially, of course,

The convergence rate is given by
E}“ b E ‘) (8 ”)

whe 2 ey = max {|Z —E|,|Ejs —E|.|Ejo — E|}
and f(E) = 0. The method owes much of its usefulness
to the obtaining of E;,, by interpolation, which makes it
relatively insensitive to #(E) = 0.

For both the Newton and Muller methods, convergence
is defined by

| (Bp) | S el M|

where € = 5 X 10°® or until E;,, and E; agree to 45
bits. In practice, for the values of M and e encountered,
three or four iterations are usually sufficient for conver-
gence.

Whenever 0.5 < ¢ < 1, the following series expansions
are resorted to:

*David E. Muller, “A Method for Solving Algebraic Equations
Using an Automatic Computer,” Mathematical Tables and Other
Aids to Computation, 1958, pp. 208-215.

(1) Por|E;| <198

E,‘ - SSinE/ = (E} —sinE,) + (1 - a) sinE,
&
L ___E_i (3!)“1 El >
Bi—sink =37 2 @i+ Hi\ " 30
i=0

(2) PFor|Ej| <228
[
_E;z - (2!)44»1 (_ E;z)i
2! (2, +2)! 2!
i=0

cosEy—e= (L —e) — (1 — cosEy)

1—cosd

Here ¢ is made consistent with the chcice of 1 — ¢ as
an independent orbital element.

The coordinates are obtained after convergence by use
of the formulas

R=a(cosE—e)P +a\/T- esinEQ
_ a\fTes|sinE a\[es [ V1 — e2cosE
V=— R P+ R

4s usually only the position is required for the two-
body orbit in th: Encke scherae, KEPLER is additionally
used to calciate R. Whenever V is needed, the subrou-
tine SPEED is called upon, which makes use of the pre-
vious solution E, F, or w. R is placed in the COMMON
cells QX0, QX0 + 1, QXN + 2 by KEPLER, while
SPEED places V in the cells QX0., QX.. + 1, QX0. + 2
and also celculates the true velocity V + p which is
placed in the cells QX,, QX. + 1, QX. + 2,

After the first use of KEPLER in a phase, further time
points use as initial approximation the solution at the
preceding time point.

5. Perturbations

HARMN, HARMN1

The oblate potential of the Earth is assumed to centair
the second, third, and fourth spherical harmonics:

Ja Ha}
Ug = ﬁlﬁ }—3-1%(1 — 3sin®¢) +'§(-?(3 — 5sin¢) sing

D
35R‘ —£ (3 —20sin? ¢ + 35sin )
wh=ve u g is the gravitational coefficient of the Earth and
a, > the equatorial radius of \he Earth.

R = (X,Y,Z) is the position vector from the Earth’s
center of mass expressed in the mean equator and equi-
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nox of 1950.0. To obtain ¢, the geocentric latitude, » =
(x, y, z), the position vector expressed in the true equator
and equinox of date, must be obtained. NUTATE pro-
vides the necessary rotation matrix A:

x 4y, a2 ay: X
y = a2y as2 a2y Y
ayy @32 831 zZ

Thus sin ¢ = z/R.
To obtain the perturbing acceleration, VU is formed:

cu. =(%Y% Y 23U
& O 0% 0%

where u, = X, u, =Y, and u, = Z.

oU, Jug 4% { 522
e__1oa’ 9 22 \4 z
Y7 g )% TR~
_Heg 53 \z %
F R\ F)RER

DP@& 3 z ¢\ 5
wherei=l;2,3.

The calling sequence for the setup entry is
"CALL HARMN

PZE  X,B
PZE  KJZT
PZE R

X, X + 1, X + 2 contain the vewor R = (X, Y, Z); B,
B + 1, B + 2 will contain — VU,,, the negative of the
perturbing acceleration; K contains ug, the Earth’s gravity
coefficient; ZT contains z, the distance above the true
equator of the Earth; and R contains R, the distance to
the center of the Earth.

"HARMNI is the execution entry which assumes the
ahove storage layout. In addition, provisions have been
made to omit the calculation of the various harmonics as
a fuuction of the geocentric range. The internal param-
ccers are listed in the following:
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Nominal value
1.62345 X 10

Location  Quantity
HARMN + 2 J

Explanation

Coefficient
for second
harmonic
Coefficient
for third
harmonic

+3 H —0.575 X 10°°

Coefficient
for fourth
harmonic

Earth radius

R > R, sup-
press second
harmonic

R > R;, Sllp-
press third
harmonic

‘R > R,, sup-
press fourth
harmonic

+4 D 0.7875 X 10~*

6378.165 km
500,000 km

+7 R,

+ 10 R,

As HARMN is contained in the symbol table for INP1,
the sbove parameters may be input in the symbolic mode
of INP1.

The subroutine uses 15 cells of erasable storage starting
at COMMON.

XYZDD, XYZDD1

For purposes of computing the oblate potential, the
Moon is assumed to have a triaxial ellipsoidal figure. The
moments of inertia A, B, and C are taken about the prin-
cipal axes of the ellipsoid x, y, and z originated at the
Moon’s center of mass.

Q+o+3y- 100 /7t
*Il(, %;: z‘

Sketch A-16. Geometry of the frue equator of the Moon
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In Sketch A-16, the X’, Y’, Z' frame is the Earth's true
equator and equinox; the x — y plane lics in Moon’s true
equator with z compl-ting the right-hand system by lying
along the Moon’s spiu axis. i is the inclination of the
Mcon’s true cquator to the Earth’s true equator; @’ is the
right ascension of the ascending node of the Moon’s true
equator; A is the anomaly from the node to the x axis;
A is the anomaly from the node to the ascending node of
the Moon’s true equator on the ecliptic; € is the true
obliquity of the ecliptic; 8¢ is the nutation in longitude;
Q is the mean longitude of the descending node of the
Moon’s mean equator on the ecliptic; ¢ is the mean
longitude of the Moon; I is the inclination of the Moon’s
mean equator to the ecliptic; ¢ is the libration in the
node; 7 is the libration in the mean longitude; and p is
the libration in the inclination. The anomalies are related
byA — A= (C+ r) — (2 + o). Expressions for the
above quantities appear in the discussion of subroutine
MNA.

The two rectangular systems; are related through A, @',
and i by the rotation:

x b1 by, b 13 X
y = b,, 2 b,y Y’
z b3, by, by z

where

b, = cos A cos Q' — sin Asin ' coss
by, = cos AsinQ’ + sin A cos ' cos §

b,s =sin Asiné

by = —sin AcosQ’ — cos Asin QY cos 4§
by, = — sin Asin Q' + cos A cos ¥ cos §
by = cos Asin

by, =sinQ'sins
b:g = - COSQ'sini
bys = coss
Combining the above rotation with the one to rotate

1956.0 coordinates tn true of-date, as described in
NUTATE, derives the additional relation

My My My X
y = maz M2 My Y
z Mgy M3 Mss / 4

where X, Y, and Z are the 1950.0 coordinates.

The following form of the potential function which
accounts for a second harmonic has been adopted:

. _ G (A+B+C -3l
2R

R
G= -g—n«— —= k*, the universal gravitational constant
q

- j_ 2 L 2 _E_ 2
I—A(R) +B<R) +c(R)
To obtain an expression for the perturbing acceleration
_(2Yc 29U 2Uq )
VUE\T0 " Bn o
is formed, where u, = X, u, = Y, and u, = Z.

9% _ G [ 34+B+C 15 1%
9% K 2T ' 27 R R

- i?’_ [Awjx + Bmyyy + Cm; z]}

where j = 1, 2, 8. In current use, che values of the param-
eters are

G = 06671 X 10**km?*/kg-sec?
A = 0.88746 X 10%° kg-km?
B = 0.88764 X 10% kg-km?
C = 0.88801 X 107 kg-km?

The calling sequences are

(AC) = fractional days past 0" of epoch

(MQ) = integer days past 0" January 1, 1950, E.T.
CALL XYZDD (or XYZDDI for time change check)
PZE LX

PZE X.

X, X + 1, X + 2 contain R in the 1950.0 system; X..,
X.. + 1, X.. + 2 will contain the perturbing acceleration.
If the entry XYZDD1 is used, the matrix (m;;) is re-
computed or'y after time has changed by d = 0.01 day,
where d is a program parameter, On the other hand, the
entry XYZDD will give recalculation of (m,;) exch time.
It has bcen determined by numerica! experimentation
that d = 0.01 day gives the perturbing acceleration to
snfficient accuracy to represent faithfully the motion of a
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low-altitude satellite in the field of an oblate Moon. as
ccmpared with an evaluation of (m;;) at each integration
step.

If R > R, = 40,000 km, then the contribution from the
oblateness is set to zero. R, is a program parameter.

The subroutine uses six cells of erasable storage start-
ing at COMMON.

BODY, BODY1

The subroatine BODY has been provided to perform
the calculation of the n-body perturbation term

where R;, = R — R;,.

The subroutine has the execution catry

CALL BODY1

and the setup entry
CALL BODY
PZE X,,n
PZE  XN,K]
PZE  RJ,RJP
PZE X.

where the locations X, X + 1, X + 2, contain the vector
R, the position of the probe with respect to the centzal
body. The maximum number of noncentral bodies is
given by n; the gravitational coefficients yx, for the non-
central bodies are assumed to be stored in the Qist K, ..

K] + (n—1) with the conventior inat a cell contammg
zero means that the cor:esponding body is not used in
the formation cf #. The vectors R;, the positions of the n
bodies with respect to the central body, are assumed to
be stored in the bank XN, ..., XN + 3(n— 1) + 2 where
the ordering is the same as for the g;.

The execution entry results in three types of output:
— P is stored in the cells X.., X.. + 1, X.. + 2; the R, for
the effective bodies are stored in locations R], ..., R] +
(n — 1), while the R;, for the same bodies are placed in
the list RJP,. ., RJP + (n — 1).
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The subroutine uses 14 cells of erasable storage start-
ing at COMMON.

6. Vcriational Equations

VARY, SVARY

The subroutine VARY has been written to provide for
the calculation of the derivatives of the first-order vari-
ational coeflicients, i.e., of the partial derivatives 2R/9u;
where {u;} = {Xo, Yo, Zo, X,, Yo, Z;} and 2!l guantities
are referred to the mean equator and equinox of 1950.0.
The aR/au may be expressed in the form aR/au,
(A + B) 2R/9u; where the matrix A arises from the
central-body term and the n-body perturbation and B
approximates the effect of the Earth’s oblateness to be
used only in the vicinity of the Earth.

The form of A is obtained by differentiating R with

respect to u; and exchanging the order of differentiation

wheie
R R z- R R:
FRs e { R? R} }

2R < (i oK 3 aR)
~— . R
% =—2_40“{R§, YT R§, (R" du;s k’}

with p, = u and R,, = R. Expanding the dot products,
the computational form of A results:

k=0 1
N XY
An=An=3Y 2
k=0 b

3
k=0 Rt’
» 1 3Y’
A”"_E"" $R8 - R.,
k=0 kp k»
" YuZ
A= Ay = 32 m
k=0 L
L] l Z!
Ay = — E bk R2 3 :' %
k=0 ” k’
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To obtain an approximate expression for the oblateness
contribution B, choose the perturbation which retains just
the second Larmonic term:

X Y Z
gl 1gXRyg“R

Jaipg 5z:
&6 = ——%—(1 - T)

x
-

82—_]-@'—( lt_t)

At this point a further appreximatioa is made in that the

coordinates are regarded as being, expressed in the 12fer-
ence system, the mean cquato and equinox of 1950.0.

Forming the partial derivutives

27 _ Z (1 2Z _ 3 o, 2R
o% ng z Qu; R: all;
reZ Iy { 2Z (_102) an}
R R IOZa +213 R- 5%,

where 9R/2 u; represents the contribution arising from
the oblateness only. The final form of B is obtained by
the expansion of the dot products:

X{1 3X Xz 14 1022\
B“”“E(‘)?"‘R'f)“"eﬁ?‘i'?(l ® )

XY J4 1o>z2
m)”“@ R 'k%(l— R )

Y(1 3Y vz Jaj, 1022\
Ba: 81 R (‘?’ R,) +2’L$ R3 R‘ (1 R*

(. 32\ ,, YZIl% 6_10z=
R o RS nc

xz]J % 1022
t e R ( R: )

(
ek (5)s
(

3Y¥ Y Z Jag 102*
— % )+2”'6 R (3 -‘I‘z;*)

zzJay (1072
)T r R O T E

The vector (g, X/R, g, Y/R, g. Z/R) is assumed to be
calculated ecternaily while the parts of B which do not
contain ¢, or g, are replaced by zere whenever R > 3 gy

The execution entry VARY is preceded by the setup
entry SVARY:

CALL SVARY, A, B,C,D,E, F,GHIL]JLK

where R, the position of the probe with respect to the
central body, is contained in the cells A —3, A — 2, A -- 1
The biock B — 3n, ..., B — 1 contains the noncentral
body position vectors R,, ..., R,; R is contained in loca-
tion C while the block D —n, ..., D — 1 contains
the quantities R,, ..., Rap. p is in location E and the ceils
F~n,..., F—1 are occupied by uy, ..., pus; 2 zero
in one of the latter cells is used as a flag to skip the
corresponding body in the calculation of A. The oblate-
ness perturbation is assumed to be stored in the locations
G~ 3, G — 2, G — 1, an internal test is made to deter-
mine whether the Earth is the central body, since B is set
to zero whenever the calculation is not centercd at the
Earth. To determinc the maximum number of perturbing
bodies, the decrement of the cell H contains n. The
oblatencss parameters ag and J occupy the locations I
and J respectively.

As output from the execution entry, the matrix A + B
is deposited in the storage locations K ~ 9, ..., K ~ 1,
Execution of the subroutine requires 30 cells of erasable
storage starting at COMMON.

LN



e

JPL TECHNICAL REPORT NO. 32-223

7. Numerical Integration

MARK

MARK is the subroutine -hich obtains the numerical
stepwise solution of a set of linear first-order differential
equations by empioving an Adams-Moulton predictor-
corrector of victually arbitrary order which utilizes back-
wards differences; a Runge-Kutta scheme is used to form
the necessary differences of the derivatives to start the
integration for the multistep method. The step size is
halved or doubled upon external request by subtabuia-
tion of the derivativec in the former case and by elimi-
nation of intermediate points in the latter; hence it is not
necessary to restart with Runge-Kutta to effect a step-size
change. MARK has been designed to carry out the aux-
iliary functions of obtaining the numerical solution at
specified values of the double-precision independent
variable; i.e., for desired times, or doing the same job
whenever a specified dependent variable attains a null
value. To permit the main program to determine the
desired times and to define the dependent variables, a
list of control words called triggers is appended to the
calling -equence; the structurc of the triggers is described
in the expianation of the calling sequence to follow.

To allow the main program to moritor the numecrical
solution, ECS, a supervisory routine provided by the
main program, is called at the end of each step by MARK.
Additionally, MARK must be given access to a subrou-
tine for the evaluation of the derivatives and the caicula-
tion of all necessary dependent variables so that isolated
zeros may be iterated down upon and captured.

If m is the highest-ordesc ditference retained for the
Adamis-Moulton method, then for starting purposes the
Runge-Kutta portion of MARK must integrate ahead m
steps of h, at which time the necessary backwards differ-
ence tables for the derivatives will have been completed.

Assuming one variable for simplicity, the Runge-Kutta
formulas are

ynol = yn "' %(b; + Zbg + Zk; + b‘)
& = b, (‘m}'»)
_ b 1
kz = bf(t. + 'i",yu + -i- k;)

b 1
i; = bf(tu+ 7,}'»4’ 'i"z)

ko= 5f(ta+ by + &)

where the differential equation to be solved has the form
y = f(t,y). The ordinate y. is accumulated double pre-
cision, while the k; are evaluated and summed in single
precision to be added to y, in double-precision form. The
solutin at intermediate times is obtained by altering h
to step forward to the desired time and resuming the
integration with the old step size h upon return from the
trigger execution; while homing in on a zerc of a depend-
ent variable, the step size may even become negative.
The collecting of the derivatives for the difference tables
is acconplished by the setting up of internal time stops
at the necessary mesh points; thus the Runge-Kutta sec-
tion will obtain the solution at the necessary times for the

s 1

tables while carrying on the ordinary functions of MARK.

The Runge-Kutta formulas give resuits which agree
through fourth order in s with a Taylor series expansion
as may be seen fiom the following development:

3 A(i) A ]
ki=h ;—,(b-a—ug_,-a—) 1O, i=2,34

o oy
j=0
(1 for i=4
Al = .
4 72"':’0{ i=23

Expanding the operatsr and using the notation
of/o¥ 24 1, ., there results

b=t Zg ot + 212 o st pio ]

+ 'z-!:[%(fu + 3ffoy +3f fue f"fv')] + O (4,

.. B
ks = b+ 5(h + ffa) r

+§[’3"* o+ fho) + 3 (o +2ff,,+f=f,,)]
b!
+ F[S (fe + ffy) (foy + ff)

+ 2y (Fo + 2o + 1)

4k a3+ 30fin + P |
+ O (4°)
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b=bf+ 2 [+ 0]
F I Dy (Bt 10 +3 (ot 2 fu+ 1]

¥ %—[Gﬁ(ft +ffy) 120+ 1) (foy + Hi)

+ 3fv (fﬂ+ fo'v + fzfy“)
+4(fut 3ffoy +3f frt F )]
-+ O %)

‘é‘(kri' 2k. + 2by - k)
= bf + ,;—!,(.f:+jf,)
+§:_ [,V(f‘+fff) + (fn+2ff"+f!f',)]

+ 2 U et 1) 3 e+ i) o+ )

+ fy (fot 2f foy + f2 fu)
+ (fot 3ffyt+ 3 fuet P h)]
+ O (#°)

But .., is given explicitly by the series

4
Yner = Yn -t Z —ib'i y(“ +0 (b5)
§=1

where
413,) ( 3 ),-x
(1) = 2. —_-
Y (df’ s EY, +f dy f
In particular,
y =f
¥ = fo+ f

¥ =fy (fe+ i) + (fo + 2f fo + f 1)

¥ = fyfe + ffy) + 3 (fe + ff) (fig + ffin)
+ folfee+ 2f foy + 2 f1r)
+ (fo+3ffoy +3F fon + P )
Thus the two series expansions agree through terms of
he.

To show that the truncation error is, in general, at least
O(h®), consider as an exumple the simple differential
equation .

y=y
with solution
b b b
7»1=y.[l+b+—2!—+—?,!— +-4—'-+

In comparison, the Runge-Kuttx formulas yield
k= byu

b
"s‘v"_] + 0 (4%)

— / b
“”%(“z)
_ b B
k,—by..<1+2+ 4)

— B B
ki‘by.(1+b+7+—4—>
1 bz BB

Thus the two scries disagree beginning with terms of h®.

The formulas used for the Adams-Moulton integration
are derived from the expression

(1—-V)ir—1i.
Ynp=ysth ln(l 7,5 O

If a series expansion is obtained and differences through
order m are retained, then the truncation error is evi-
dently O(h™?) since
b ™y, = b (P D™?y, + O (h™#1))
The predictor formula results from p = - 1:
a1-v) —-1.
S (R o TR

The computational form is obtained by expanding intc a
series and retaining differences up through mth order.

Y1 = Yn + b(z a5 V’) y.n

EEL ]
where the first few coefficients are

As the predictor is relatively unstable for m = 5, an
option has been provided in MARK for the use of a cor-
rector formula which may be obtained by setting p = 1
in the general expression

o— + bv .
In = Yo —mh
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For purposes of computation this becomes

/' m
In = ¥n-1 + b(z bj V’) }"n
j=0

where the low-order coefficients are

bo=1
-_1
b, = 3
1
bz——~17
1
b3=——22
=_19
bo= 720
—-__3
bs = 160
5 — _ 863
° 60480

The predictor and corrector each require sepaiate eval-
vations of the derivatives; after agplication of the. cor-
rector and the calculation of the derivatives at the new
time station ¢,, the solution may be obtained at intermedi-
ate points ¢ by choice of . = (t, — t)/h, where t, — h <

t < t,:
Yn-p = Yn + b(E ¢y V’) In

J=0

where the c; are obtained by the convolution of the series

v

®
(1—-V)y*—1_
___\__’)__.: (_l)m(j:l>vl

j=0

with the series for the corrector

[- -]
Eb,v’

The interpolated solution may then be used either for an
intermediate time stop or to help find the zero of a de-
pendent variable.

At the return from the execution of a trigger, MARK
may be signal~1 to change step size by powers of £ over
the nominal value; any other type of step-size change
must be effected by restarting the numerical solution.

84

Each time a double is called for, MARK sets internal time
stops to save the necessary information for doubling dur-
ing the ncxt m steps as measured from the end of the
current step; of course, the necessary past information is
regenerated at this time and saved to be adjoined to the
future information to form a difference table of deriva-
tives with twice the step size. At the completion of first
doubling, further doubles may be executed in sequence
as called for by the main progrem.

Halving is accomplisned by the subtabulation of the
derivatives according t¢ Newton’s formula:

e e OR)T

j=0

forp =1/2,1,...,m/2

At this point new differences of the derivatives corre-
sponding to half the step size may be generated, and
further halving may be accomplished if called for by the
main program.

Step-size changes by doubling or halving are éxecuted
only at the end of an Adams-Moulton step and after all
time stops and dependent variable stops occurring at
times inside the current interval have been executed.
While integration is being carried out by the Runge-
Kutta section, the doubling and halving signals are
ignored; both signals given simultaneously will result in
internal confusion.

MARK has the calling sequence
CALL MARK
PZE HBANK,T,EOS
PZE DERI,DER2
(ERROR RETURN)
(FIRST TRIGGER)

(LAST TRIGGER)
HTR End of calling sequence

Most of the information to be shared by the main pro-
gram and MARK is organized in the following buffer:
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HBANK -3 PZE m Adams-Moulton
order
-2 PZE NH Number of
initial halves
-1 PZE ND Number of
initial doubles
+0 DEC h Initial Runge-
Kutta step
+1 PZE N,n Total and effec-
tive variables
+2 DEC T, Double pre-
cision
+3 DEC T, Time
BSS n y, solution of
differential
equations
BSS MA—n Expansion for
more equations
BSS n y, derivatives
BSS N-n Expansion for
more equations
BSS (2m+5)N Working area
for MARK

T # 0 flags time as double precision; otherwise, com-
putation would be with single-precision interpretation.
At the end of step, MARK calls the routine EOS; return is
via TRA 1,4. For the calculation of the derivatives,
MARK calls a routine which may be divided into two
parts: DERI for time-dependent derivatives and DER2
for the other derivatives. If time has just changed, MARK
calls the first entry, while the second entry is calied if
time remains the same as a previous evaluation. The
return device is provided by TRA 1, 4.

A generation of a time which is smaller than the current
time will cause MARK to give the error return; if the
number of active dependent variables exceeds 20, the
error return is likewise given. Normally, the main routine
controls the integration by means of the subroutine EOS
and by the triggers, but MARK does most of the detail
work.

While in the Adams-Moulton mode, the main routine
must determine how many times the corrector formula is
tn be applied; the symbolic location NI in MARK must
have in its address the desired number of applications of
the corrector.

-

Each trigger has the structure
OP AB
P7E C

The trigger is a“tive whenever the sign bit of the first
word is plus; otherwise, a minus sign will cause MARK
to ignore the trigger. At location A is a subroutine in
the main program which MARK calls whenever the con-
dition defined by the trigger has been met. This subrou-
tine retwins via TRA 1, 4; if the trigger is not disabled
by the subroutine at execution time, then the value of
the variable must in general be changed, lest MARK
attempt to execute the trigger again upon return of con-
trol. The tag of the first word of the trigger is used as a
flag by MARK in the case of a dependent variable so that
many triggers may be worked on in a single interval.

The variable defined by a trigger may be of two types—
indeper.dent (time-stop) or dependent. The former case
is flagged by B =0 and C is then the location of the
desired doable-precision time for execution of the trigger.
In the latter case, the dependent variable is defined to be
the difference between the contents of B (B 540) and
the contents of C. In practice, the quantity in C is the
desired value of the variable which is computed in the
derivative or the end-of-step routine and stored in the
location B.

At the end of each step MARK scans the list of triggers
and determines the smallest time which will result in a
time stop; all the active dependent variable triggers are
inspected to determine those variables which have ex-
hibited a sign change over the preceding step. A linear
approximation is made o the root of each variable and
the variable which apparently has 2 root at the earliest
time in the interval is iterated upon; a new set of linear
estimates of the roots for all the pertinent variables is
formed at each step of the iterative solution. At conver-
gence, the time stops and the dependent variable stops
are executed in proper time sequence.

For purposes of convergence, two times are considered
the same whenever agreement is obtained out to approxi-
mately the last two bits; the same test is applied to the
sequence of times formed by the iteration process in
finding the zero of a dependent variable. Each new time
generated requires the calculation of the derivatives ap-
propriate to the new time solution. After all the tnggers
in an interval have been cleaned up, the information
at the end of step is vestored and the derivatives are
recalculated.
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