

Technical Report No. 32-223
Revision No. I

Space Trajectories Program for the IBM 7090 Computer

D. B. Holdridge

National Aeronautics and Space Administraticn
 CONTRACT iví. NAS 7-100

Technical Report No. 32-223

Reuision No. I

Space Trajectories Program for the IBM 7090 Computer

D. B. Holdridge

Copyright 1962
Jet Propuision Laboratory
Californic Institute of Technology

CONTENTS

I. Introduction 1
!!. Equations of Motion 4
A. Cowell Scheme 4
B. Encke's Method 5
C. Solutions to the Two-Body Problem o
III. Numerical Experience 10
IV. Operating Instructions and Description of Input 14
A. Operation of the Space Trajectories on the IBM 7090 14
B. Basic Coordinate Systems 14
C. Coordinate Systems for Input 14
D. Re'aiaonship Between Case Analysis and Phase Analysis 17
E. Phase-Card Reading and Buffering 22
F. Standard Phases 28
V. Flow Charts and Method of Control 31
A. Control in the Space Trajectories Program 31
B. General Flow in the Space Trajectories Program 32
C. Flow During Transformation of Injection Conditions 33
D. Flow During Transfer of Phase Parameters 34
E. Flow in Phase Setup 35
F. End-of-Step Logic 36
G. Function of the Derivative Routine 37
H. Flow in the Derivative Routine 38
I. Automatic Step-Size Control 39
VI. Description of the Output for Space Trajectories Program With Interpretation of the Mnemonic Codes 43
A. Output Philosophy 43
B. Explanation of Output Groups and Mnemonic Codes 43
Appendix: Description of Major Subroutines 54

1. Iipui-Óutpur Koútines 56
2. Basic Coordinate Transformations 66
3. Ephemeris 70
4. Encke Method Calculations 72
5. Perturbations 77
6. Variational Equations 80
7. Numerical Integration 82

TABLES

1. Orbital elements at perigee 10
2. Range differences near perigee 11
3. Comparison of luncr Irajectories 11
4. Difforences at transfer io Vanus-centered phase 12
5. Comparison of inferplanetary trajectories 12

Abstract

16592 The Space Trajectories Program for the 18M 7090 computer is described in comprehensive detail, with emphasis on the development of the equations. Equations of motion for both the Cowell and Encke methods are given. Numerical experience with the class of trajectories encountered in practice is included to compare the Cowell and Encke methods, and to obtain an estimate of the over-all accuracy of the program. Sources of error are pointed out, consistent with the precision of the numerical methods. Operating instructions and descriptions of input and output are provided for the successful running of trajectories. Flow charts presented serve as a guide to the understanding of the internal sequence of events and control methods. Major subroutines used in the program are contained in the Appendix. The program is written in the FORTRAN Assembly Program language.

I. INTRODUCTION

The Space Trajectories Program originated in the need to study trajectories of high precision formed by the transit of a space probe from the Earth to one of the three targets technologically feasible at present -. the Moon, Venus, or Mars - under the influence of gravitational forces described by Newton's law alone. Although the major programming effort has gore into obtaining a solution for which the accuracy is consistent with the single precision arithmetic used, and which requires a reas be amount of computer time (about 30 seconds), the program may be used for study of general interplanetary flight where it is sufficient to include the bodies Sun, Venus, Earth, Moon, Mars, and Jupiter for their gravitational influence.

Since the program solves the equations of motion for the probe only, and ignores the negligible perturbations of the probe on the bodies, it is sufficient to obtain the
positions and velocities of the bodies in the form of planetary and lunar ephemerides in some convenient reference frame. Since the coordinates have been traditionally referred to the Cartesian system based on the mean equator and equinox of 1950.0, the ephemerides used by the program have been uniformly expressed in the same coordinate system. The collection of ephemerides was systematically done on magnetic tape. ${ }^{1}$

Having expressed the coordinates of the bodies in the 1950.0 reference, it was natural to write the equations of motion in the same coordinate system. But it was immediately necessary to obtain expressions for the precession

[^0]ind nutation of the Earth's equator so that the oblateness perturbation of the Earth might be properly assessed in the 1950.0 frame and that injection conditions referenced to the Earth's true equator of date resulting from pow-ered-flight arcs might be rotated to the fixed system. To assist in the latter transformation, the hour angle at Greenwich of the true vernal equinox was obtained by the synthesis of a calculated mean value and the nutation in right ascension formed from the nutations and the obliquity of the ecliptic.

As the planetary-position ephemerides are tabulated at four-day intervals and the lunar at one-day intervals on the ephemeris tape, it was necessary to use an interpolation scheme to obtain intermediate values of positions and velocities. An Everett's formula which utilizes second and fourth central differences was chosen for the positions; to obtain the velocities, the Everett's interpolating polynomials were differentiated to obtain polynomials to be applied to the tabulated positions. It was found convenient to tabulate the necessary differences on the ephemeris tape along with the positions, and to arrange the tape in 20 -day records to permit efficient tape scanning in either the forward or the backward direction, and to avoid excessive tape reference; thus lunar trajectories require, at most, two records, and interplanetary on the order of ten, which keeps tape-handling time within reasonable limits. Additionally, for the Moon, the sixth and eighth central differences have been thrown back on the second and fourth, since the former are not negligible. To handle long flight times, the argument is carried in double precision; this technique also allows for smionth interpolation.

The equations of motion have been written to take adventage of the fact that usually a central body may be fround, and the coordinates relative to that body expressed $s)$ that the dominant term i_{1} the acceleration arises from the chosen body, and the remaining terms are relatively smail perturbations acting to displace the two-body orbit formed by the trajectory of the probe in the field of the central body alone. Thus the remaining gravitational bodies give rise to what is known as the n-body perturbation; the perturbation arising from the oblateness of the Earth and expressed by the second, third, and fourth harmonics is included when the probe is near the Earth; in a similar manner, the perturbation derived from the triaxial figure of the Moon and represented through a second harmonic term is included when the probe is in the vicinity of the Moon. The above method of representing the equations of motion is known as a Cowell scheme. If the central-body term is replaced by the acceleration
arising from the deviation of a true orbit from a fixed reference two-body orbit and the equations of motion are referred to the deviation, then the method is called an Encke scheme. Either the Cowell or the Encke scheme may be used in the program, although the latter is generally preferred in practice because of a small advantage i.l speed and accuracy. But for the powered flight option, which simulates the burning of a constant-thrust motor, a Cowell scheme is generally advisable because the rapid deviation from the reference two-body orbit would force frequent recalculation of the reference if the Encke scheme were used. The motor is assumed to be of high thrust since the attitude is forced to remain fixed in space, a restriction which is unrealistic for a low-thrust motor.

The solution to the trajectory problem is obtained by a stepwise numerical integration of the equations of motion appropriate to either the Cowell or Encke scheme according to an Adams-Moulton predictor-corrector methoi which retains the sixth differences of the derivatives; a Runge-Kutta method accurate through fourth order is used to obtain starting values for the Adams-Moulton method. An additional refinement is the fact that the ordinates are accumulated in double precision to control the growth of roundoff error. To obtain the solution at desired points, the subroutine MARK is employed. (For details of subroutines, see Appendix.)

For purposes of control, the trajectory has been divided into segments which are referred to as "phases." Usually a phase is characterized by a dominant central body, and integration step size is determined by the distance of the probe from that body. Thus a normal Venus trajectory which injects near perigee and terminates with Venus impsict wouid consist of three phases: phase one, integration to $2.5 \times 10^{\circ} \mathrm{km}$ from the Earth, with the Earth as the central body; phase two, Sun-centered integration to $2.5 \times 10^{6} \mathrm{~km}$ from Venus; and phase three, Venuscentered integration to the surface of Venus at 6100 km . In addition, the phase may be used for the auxiliary function of controlling the density, type, and incidence of output.

The program operates internally in laboratory units, i.e., in kilometers and seconds, rather than the classical units utilized in celestial mechanics. Universal Time (U.T.) is used, although provisions have been made to augment U.T. by a constant to obtain Ephemeris Time (E.T.) for use as the argument of the ephemerides. For purposes of high resolution, time is carried in double-precision seconds past $0^{\text {h }}$ January 1, 1950. This choice also makes for consistent results, even though the phase-transfer points
may be changed somewhat for a particular trajectory; otherwise, the interpolated values of the coordinates might not be a smooth function of time, and hence give rise to systematic errors at the transfer point.

The motion of the Moons true equator has been accurately represented by the program to provide for selenographic coordinates to be used for both input and output. The rotation necessary to transform from the 1950.0 reference to selenographic Cartesian coordinates is also needed to represent the perturbation arising from the nonspherical figure of the Moon. The description of the selenographic quantities may be found in the discussions of subroutines NUTATE, MNA, MNAMD, and XYZDD ${ }^{2}$ given in the Appendix.

In summary, the Space Trajectories Program in its present form is the culmination of three years of work in the space trajectory field at the Jet Propulsion Laboratory, and is designed for the study of the motion of a space probe confined to the solar system and influenced by the nonspherical Earth and Moon, and the point masses defined by the Sun, Venus, Mars, and Jupiter. The program may also be employed in other applications, of which the following are some examples. A simplified powered-flight are may be simulated which assumes a constant-thrust, constant-burning-rate motor with thrust direction fixed in space. Any of we above-mentioned bodies may serve as the reference body at the injection

[^1]epoch, and stepwise numerical integration of the equations of motion appropriate to either a Cowell or an Encke scheme serves to step the probe along its flight path to one of the bodies, which then serves as a target. Standard-type trajectories injecting near the Earth, and inuring as target one of the bodies Earth, Mom, Venus, or Mars, have been given special treatment is reduce the volume of input necessary for execution. The injection conditions may be input in Cartesian or spherical coordinates based on one of four reference frames: mean equator and equinox of 1950.0 , mean equinox and ecliptic of 1950.0, true equator and equinox of date, and the true equinox ar d ecliptic of date. For the Earth as injection body, the Earth-fixed spherical set, based on a rotating Earth, is available; for the Moon as injection body, the selenographic (Moon-fixed spherical) coordinate set, which takes into account the rotation of the Moon, may be used. For injection conditions taken with reference to the Earth, a quasi-orbital element set for escape hyperbolas, known as the energy-asymptote option, has leen made available. For output, any of the above quantities may be obtained at will, along with ephemeris information expressed in any one of the four Cartesian or spherical coordinate systems; conic outrut may be called for which expresses the osculating two-body orbit in many sets of orbital elements referred to one of the standard Cartesian frames; all manner of the principal angles between the probe and the bodies may be displayed; up to a maximum of 15 tracking stations may be used to observe the probe in topocentric spherical coordinates; or view periods of the stations may be determined by the program and displayed in the form, of rise, maximum elevation, and set prints.

II. EQUATIONS OF MCTION

A. Cowell Scheme

Let there be a small probe, body 0 , in the gravitational field of n other bodies. Choosing an inertial frame of reference results, according to Newton, in

$$
\begin{equation*}
\ddot{\rho}_{i}=-k^{2} \sum_{\substack{j=0 \\ j \neq i}}^{n} m_{j} \frac{\rho_{j i}}{\rho_{j i}^{3}} \quad i=0, \ldots, n \tag{1}
\end{equation*}
$$

where $\rho_{j i}=\rho_{i}-\rho_{j ; ~} \rho_{j i}=\left|\rho_{j i}\right| ; i_{s} j=0, \ldots, n$; and k is the gaussian gravitational constant (Sketch 1).

Sketch 1. Relationship of ith and ith body in an inertial frame centered $\boldsymbol{c}^{\text {- }}$

Ohserve that

$$
\mathbf{P}=\frac{1}{M} \sum_{j=0}^{n} m_{j} \boldsymbol{p}_{j}
$$

the center of mass, has the interesting property that

$$
\ddot{\mathbf{P}}=\frac{-k^{2}}{M} \sum_{j=0}^{n} m_{j} \sum_{\substack{i=0 \\ i \neq j}}^{n} m_{i} \frac{\rho_{i j}}{\rho_{i j}^{s}}=0
$$

since

$$
\rho_{i j}=-N_{j i}
$$

and

$$
\rho_{i j}=\rho_{j i} \quad \text { with } M=\sum_{j=0}^{n} m_{j}
$$

Therefore $\dot{\mathbf{P}}$ is constant and the barycetiter is an inertial frame.

Were it sufficient to express the motion of the proide, body 0 , in an inertial coordinate system, the result would be

$$
\begin{equation*}
\ddot{\boldsymbol{p}}_{0}=-k^{2} \sum_{j=1}^{n} m_{j} \frac{\boldsymbol{\rho}_{j 0}}{\rho_{j 0}^{3}} \tag{2}
\end{equation*}
$$

where the coordinates are referred to the barycenter. Such a representation would naturally ensugh be called the barycentric form of the equations of motion. How-
ever, in practice it is convenient to rewrite Eq. (2) so that the coordinate system is referred to one of the n bodies, usually the dominant one.

Using Eq. (1) above with $l \geqq 1$ as the central body

$$
\ddot{\mathbf{R}}_{0}+\ddot{\boldsymbol{\rho}}_{l}=-k^{2} \sum_{j=1}^{n} m_{j} \frac{\mathbf{R}_{j 0}}{R_{j 0}^{3}}
$$

with

$$
\begin{aligned}
\mathbf{R}_{i} & =\rho_{i}-\rho_{l}=\rho_{l i} \\
\mathbf{R}_{i j} & =\mathbf{R}_{i}-\mathbf{R}_{i}=\rho_{j}-\rho_{i}=\rho_{i j}, \backslash i, j=0, \ldots, n \\
R_{i j} & =\left|\mathbf{R}_{i j}\right|
\end{aligned}
$$

defined in the new coords:ate systen.
To obtain $\ddot{\mathbf{R}}_{0}$ from the aiove expression, calculate $\ddot{\mathbf{p}}_{l}$ with the aid of Eq. (1):

$$
\ddot{\rho}_{l}=-k^{2} \sum_{\substack{j=0 \\ j \neq i}}^{n} \boldsymbol{r}_{\substack{ \\r_{i}}}=k^{2} \sum_{\substack{j=0 \\ j \neq i}}^{n} m_{j} \frac{\mathbf{R}_{j}}{R_{j}^{3}}
$$

So
$\ddot{\mathbf{R}}_{0}=-k^{2}\left(m_{l}+\cdots, \quad \underset{\substack{j \\ j \neq l}}{ }-k^{2} \sum_{\substack{j=1}}^{n}\left(m_{j 0} \frac{\mathbf{R}_{j_{0}}}{R_{j 0}^{j}}+m_{j} \frac{\mathbf{R}_{j}}{R_{j}^{j}}\right)\right.$

In practice, sineo $n_{i_{0}} / m_{l} \approx 0$, write in brief

$$
\begin{equation*}
\ddot{\mathbf{R}}=-\mu_{l} \frac{\mathbf{R}}{R^{3}}-\sum_{\substack{j=1 \\ j \neq i}}^{n} \mu_{j}\left(\frac{\mathbf{R}_{j p}}{R_{j p}^{3}}+\frac{\mathbf{R}_{j}}{R_{j}^{3}}\right) \tag{3}
\end{equation*}
$$

with $\mathbf{R}=\mathbf{R}_{0}=\mathbf{R}_{p}, \mathbf{R}_{j p}=\mathbf{R}_{j 0}, p$ denoting the probe, and $\mu_{j}=k^{2} m_{j} ; j=1, \ldots, n$.

In Eq. (3), the summation on the right will be known as the n-body perturbation which may be resolved into the direct terms, $-\Sigma \mu_{j} \mathbf{R}_{j p} / R_{j p}^{3}$, and the indirect terms, $-\Sigma \mu_{j} \mathbf{R}_{3} / R_{j}^{s}$; the latter sum represents the accelerating effect of the $n-1$ noncentral bodies on the central body and is what distinguishes Eq. (3) from Eq. (2). The effect of the central body has been deliberately isolated because normally it is the dominant term in the expression for the accaleration. In particular, in the case that all perturbations vanish, Eq. (3) may be solved completely for the geometric orbit, a conic. Even when the perturbations are small, the above conic solution may be used to
rewrite the equations of motion as in Encke's methed described in Section IIB.

When the probe is in the vicinity of an oblate body, a perturbing term is added to the differential equations which may be described by the corresponding potential function.

For the Earth, use is made of the second, third, and fourth harmonics:

$$
\begin{array}{r}
U_{\oplus}=\frac{\mu_{\oplus}}{R}\left\{\frac{J a_{\oplus}^{2}}{3 R^{2}}\left(1-3 \sin ^{2} \phi\right)+\frac{H \epsilon_{\oplus}^{8}}{5 R^{3}}\left(3-5 \sin ^{2} \phi\right) \sin \phi\right. \\
+
\end{array}
$$

where μ_{\oplus} is the gravitational coefficient of the Earth, a_{\oplus} is the equatorial radius of the Earth, and ϕ is the geocentric latitude. The perturbing acceleration is then given by

$$
\nabla U_{\oplus}=\left(\frac{\partial U_{\oplus}}{\partial X}, \frac{\partial U_{\oplus}}{\partial Y}, \frac{\partial U_{\oplus}}{\partial Z}\right)
$$

where $\mathrm{R}=(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ and the coordinate system is oriented in the fixed 19500 system described in Section IVB. Th. precise form of ∇U_{\oplus} is given in the subroutine HARMN described in the Appendix.

The Moon may be regarded as a triaxial ellipsoid with the explicit expansion for the oblate potential being

$$
U_{\mathbb{G}}=G\left(\frac{A+B+C-31}{2 R^{3}}\right)
$$

where

$$
\begin{aligned}
G & =\frac{\mu_{\mathbb{C}}}{m_{\mathbb{Q}}}=k^{2} \\
I & =A\left(\frac{x}{R}\right)^{2}+B\left(\frac{y}{R}\right)^{2}+C\left(\frac{x}{R}\right)^{2}
\end{aligned}
$$

A, B, and C are moments of inertia about the three principal axes of the ellipsoid and $\mathbf{R}=(x, y, z)$ is the position of the probe expressed in the orthogonal right-handed courdinate system defined by the aforementioned principal axes. Specifically, the $x-y$ plane defines the Moon's true equator, the x axis emanares from the longest axis which is constrained to point in the general direction of the Earth, while the z axis lies in the direction of the Moon's spin vector; the figure may be likened to a distorted oblate spheroid, disfigured because of the Earth's proximity.

To obtain the acceleration, again form $V U_{g}$, with X, Y, Z given in the 1950.0 system. The explicit form of
$\nabla U_{\mathbb{C}}$ may be fourd in subroutine XYZDD described in the Appendix; the body-fixed coordinate system for the Moon is given in the discussicns of subroutines XYZDD, MNA, and MNAMD in the Appendix.

At times it may be necessary to simulate the performance of a small midcourse motor which burns with constant thrust with an attitude fixed in the 195 f .0 reference system. Thrust duration is handled is a function of time alone:

$$
\begin{equation*}
\mathbf{a}=-\frac{F}{m_{0}-\dot{m}\left(T-T_{0}\right)} \mathbf{C} \quad T_{0} \leqq T^{\prime} \leqq T_{1} \tag{4}
\end{equation*}
$$

where \mathbf{C} is the spin-axis vector of the p: obe fixed in space, F is the constant thrust, \dot{m} is the constant mass flow rate, and m_{0} is the initial mass.

During burning, Eq. (4) represents the largest contribution to the accel ration and Encke's method is not used. In general

$$
\begin{equation*}
\ddot{\mathbf{R}}=-\mu \frac{\mathbf{R}}{R^{3}}+\mathbf{P} \tag{5}
\end{equation*}
$$

whsre $\mu=\mu_{l}$ ard \mathbf{P} represents the contributions to the acceleration arising from the above-mentioned perturbations and any thrust which may be considered. The direct numerical integration of Eq. (5) is here defined a: a Cowell integration, although the latter te: is used differently by other authors.

B. Encke's Method

Let the probe be near a central body so that \mathbf{P} becomes small compared to the central body term in Eq. (5). At the epoch T_{0} the two-body problem may be solved with suitable initial conditions. The defining equations of motion for the unperturbed of vit are

$$
\begin{equation*}
\ddot{\mathbf{R}}_{0}=-\mu \frac{\mathbf{R}_{0}}{\mathbf{R}_{0}^{s}} \tag{6}
\end{equation*}
$$

Thus, \mathbf{R}_{0} is available and, if necessary, $\dot{\mathbf{R}}_{0}=\mathrm{V}_{0}$ as a function of time. Next, consider the differential equations for $\boldsymbol{\rho}=\mathbf{R}-\mathbf{R}_{0}$, the Encke displacement, where \mathbf{R} is from the perturbed orbit defined in Eq. (5):

$$
\begin{equation*}
\ddot{\mathbf{p}}=-\mu\left(\frac{\mathbf{R}}{\boldsymbol{R}^{3}}-\frac{\mathbf{R}_{0}}{\boldsymbol{R}_{0}^{3}}\right)+\mathbf{P} \tag{7}
\end{equation*}
$$

At his point, the difference between the central-body terms must be expanded by means of the smali parameter Q; otherwise, numerical differencing will result in significant errors introduced in the accelerations. So

$$
\begin{equation*}
\frac{\mathbf{R}}{R^{\mathbf{3}}}-\frac{\mathbf{R}_{0}}{R_{0}^{3}}=\frac{1}{R_{0}^{3}}\left\{\left(\frac{R_{0}^{3}}{R^{\mathbf{3}}}-1\right) \mathbf{R}+\rho\right\} \tag{8}
\end{equation*}
$$

Define, as with Encke, Q by the relation $1+2 Q=$ R^{z} / R_{0}^{z}; in general, when the method is appicable, Q will be a small parameter. Now

$$
1-\frac{R_{0}^{3}}{R^{3}}=1-(1+2 Q)^{-n}
$$

and the difference may be expanded into the series

$$
\begin{equation*}
F(Q)=1-(1+2 Q)^{-k}=Q \sum_{j=0}^{m} a_{j} Q^{j} \tag{9}
\end{equation*}
$$

where m is chosen so that the remainder in the sum stays smaller than $o_{0} \times 10^{-2}$ whencver $|Q| \leqq Q_{0}$.

An accurate numerical value for Q must be obtained in order to justify the expense of the series expansion in Eq. (9):

$$
\begin{align*}
Q & =\frac{1}{2}\left(\frac{R^{2}}{R_{0}^{2}}-1\right) \\
& =\frac{1}{2} \frac{\left.\left(R_{0}+\rho\right) \cdot i R_{0}+\rho\right)-R_{0}^{2}}{R_{0}^{2}} \\
& =\frac{1}{2} \frac{R_{0}^{2}+2 \rho \cdot R_{0}+\rho \cdot \rho-R_{0}^{2}}{R_{0}^{z}} \\
Q & =\frac{\rho \cdot\left(R_{0}+\frac{p}{2}\right)}{R_{0}^{2}} \tag{10}
\end{align*}
$$

It has been fround that the above dot product is well defined numerically for most cases; further numerical safeguards which have been added to control the accuracy of Q are given in subroutine ENCKE, described in the Appendix.

If the differance appearing in Eq. (7) is evaluated, using Eq. (8) and Eq. (9), the final equations of motion for the Encke method become

$$
\begin{equation*}
\ddot{\mathbf{p}}=-\frac{\mu}{R_{0}^{2}}(\boldsymbol{p}-\mathbf{R} F(Q))+\mathbf{P} \tag{11}
\end{equation*}
$$

To start the integration at the epoch T_{0}, an arbitrary set of elements is chosen to describe the two-body motion; in all instances, judicious selection must be made so that the Encke term in Eq. (11) does not become large rapidly and so destroy the advantage over the Cowell method, which user Eq. (5). In most cases the elements will be osculating. so that $\rho\left(T_{0}\right) \approx 0$ and $\rho\left(T_{0}\right) \approx 0$ to
the limitations of the numerical calculation. For the Encke initial conditions at the epoch T_{0}, use

$$
\begin{aligned}
& \rho\left(T_{0}\right)=\mathbf{R}\left(T_{0}\right)-\mathbf{R}_{0}\left(T_{0}\right) \\
& \dot{\mathbf{o}}\left(T_{0}\right)=\dot{\mathbf{R}}\left(T_{0}\right)-\dot{\mathbf{R}}_{0}\left(T_{0}\right)
\end{aligned}
$$

If the perturbation P is large enough, both Q and $\rho / R_{\text {, }}$ will grow with time; Q may be small while ρ / R_{0} is relativeiy large, since Q is defined by the dot product in Ea. (10). Undcr these circumstances it becomes necessary to rectify the reference orbit and restart the numerical integration. ρ / R_{0} is t ised to assess the numerical accuracy of Eq. (10), and an empirical bound has been applied as indicated in the discussion of the control section ca the program (see Section V).

The use of the Encke method is advantageous because the perturbation \mathbf{P} entr:s the derivatives in Eq. (II) to more significant digits than in the corresponding ones in Eq. (5), and hense the effect of \mathbf{P} is more accurately represented; step size may le increased by about a factor of two over Cowell if a dominant central body is chosen; and the differential equations are such that numerical stability of the Adams-Moulton predictor is not quite the problem that it is when Cowell derivatives are used, even though both methods use one application of AdamsMoulton corrector to insure ultimate stability. A comparison of the numerical results appears in Section III.

C. Solutions to the Two-Body Problem

As mentioned in the preceding section, for Encke's method it is necessary to obtain a solution to the twobody problem as a function of time. At epoch T_{0}, in general, a set of osculating elements is required, defined by R_{3}, V_{0}, and the equations of motion

$$
\begin{equation*}
\ddot{\mathbf{R}}=-\frac{\mu \mathbf{R}}{R^{3}} \tag{12}
\end{equation*}
$$

Observe that $\mathbf{R} \times \mathbf{V}$ is a constant vector since

$$
\begin{aligned}
\frac{d(\mathbf{R} \times \mathbf{V})}{d t} & =\frac{d(\mathbf{R} \times \dot{\mathbf{R}})}{d t}=\dot{\mathbf{R}} \times \dot{\mathbf{R}}+\mathbf{R} \times \ddot{\mathbf{R}} \\
& =-\frac{\mu}{R^{3}}(\mathbf{R} \times \mathbf{R})=\mathbf{0}
\end{aligned}
$$

$c_{1}=|\mathbf{R} \times \mathbf{V}|$, the angular momentum, is defined as a constant of the motion. In the exposition below, $c_{1} \neq 0$ is assumed; if the osculaing elements give $c_{1} \approx 0$, then a nonosculating set is used for the Encke program so that c_{1} is clearly defined. Next

$$
\mathbf{W}=\frac{\mathbf{R} \times \mathbf{V}}{c_{1}}
$$

is defined so the motion is constrained to the plane defined by W. The quantity $c_{3}=V=-2 \mu / R$ is another constant of the motion

$$
\begin{aligned}
\frac{d c_{\mathbf{3}}}{d t}=\frac{d}{d t}\left(\dot{\mathbf{R}} \cdot \dot{\mathbf{R}}-\frac{2 \mu}{R}\right) & =2\left\{\ddot{\mathbf{R}} \cdot \dot{\mathbf{R}}+\frac{\mu \dot{R}}{R^{2}}\right\} \\
& =2\left\{-\frac{\mu \mathbf{R}}{R^{3}} \cdot \dot{\mathbf{R}}+\frac{\mu R \dot{R}}{R^{3}}\right\} \\
& =2\left\{-\frac{\mu \mathbf{R}}{R^{3}} \cdot \dot{\mathbf{R}}+\frac{\mu \mathbf{R} \cdot \dot{\mathbf{R}}}{R^{3}}\right\} \\
& =0
\end{aligned}
$$

Thus, $c_{3}=V^{2}-2 \mu / R$ is defined as the "energy" constani.
It is possible now to solve the problem of the motion in the orbital plane defined by W.

Sketch 2. Two-body orbit

Feterrirg to Sketch 2, let the closest approach distance be q at the epoch T_{n}, and P defined as $R_{m+n}=q P$; define $\mathbf{Q}=\mathbf{W} \times \mathbf{P}$ so that a Cartesian coordinate system defined by \mathbf{P} and \mathbf{Q} may be set up in the orbital plane. If $R=$ constant, then $T_{p}=T_{0}$. Polar coordinates may be used to write $\mathrm{r}=(x, y)=r e^{i v}$, where v is the true anionialy. Note that since

$$
\dot{\mathbf{r}}=\dot{r} e^{i v}+i e^{i v} r_{\dot{v}}^{\dot{v}}=\dot{r} e^{i v}+r \dot{i} e^{i(v+\pi / 2)}
$$

calculate $c_{1}=r^{2} \dot{\theta}_{\text {, }}$ since the component $\dot{r} e^{i v}$ of the velocity lies along r and, hence, does not contribute to the cross product which defines c_{1}. Finally, by differentiating \dot{r} and comparing with Eq. (12),

$$
\ddot{\mathrm{r}}=\left(\ddot{i}-\frac{c_{1}^{2}}{r^{2}}\right) e^{i v}=-\frac{\mu}{r^{2}} e^{i v}
$$

or

$$
\ddot{r}+\frac{\mu}{r^{2}}-\frac{c_{2}^{2}}{r^{2}}=0
$$

Making the classical change of variables, $1 / u=r$, and solving for the geometric orbit with the true anomaly v,

$$
\frac{d^{2} u}{d v^{2}}+\left(u-\frac{1}{p}\right)=0
$$

where $p=c_{1}^{2} / \mu$.
Measuring the initial conditions at epoch T_{p}, where $v=0$, the solution has the form

$$
\psi-\frac{1}{p}=\frac{\varepsilon}{p} \cos v
$$

since $d u / d v=0$ at $v=0$. In terms of r, the fundamental geometric solution becomes

$$
\begin{equation*}
r=\frac{p}{1+\varepsilon \cos v} \tag{13}
\end{equation*}
$$

while $q(1+\varepsilon)=p ; \varepsilon \geqq 0$ since $p \geqq q$.

An expressinn for ε is now obtained:

$$
\begin{align*}
V^{2} & =\dot{r}^{2}+\frac{c_{2}^{2}}{r^{2}} ; \dot{r}=\frac{\varepsilon c_{1} \sin v}{\rho} \\
c_{3} & =V^{2}-\frac{2 \mu}{r}=\frac{\mu}{p}\left(\varepsilon^{2} \sin ^{2} \varepsilon+\varepsilon^{2} \cos ^{2} v-1\right) \\
\varepsilon^{2}-1 & =\frac{p c_{3}}{\mu} \tag{14}\\
\varepsilon & =\sqrt{1+\frac{\rho c_{3}}{\mu}}
\end{align*}
$$

The solution may then be expressed as

$$
\begin{align*}
& \mathbf{R}=\frac{p \cos v}{1+\varepsilon \cos v} \mathbf{P}+\frac{p \sin v}{1+\varepsilon \cos v} \mathbf{Q} \\
& \mathbf{V}=\frac{-c_{1} \sin v}{p} \mathbf{P}+\frac{c_{1}(\varepsilon+\cos v)}{\cdot p} \mathbf{Q} \tag{15}
\end{align*}
$$

At the osculation epoch T_{0}, from Eq. (13)

$$
\cos v_{0}=\frac{1}{e}\left(\frac{p}{R_{0}}-1\right)
$$

and by manipulation of Eq. (15)

$$
\sin \nu_{0}=\frac{1}{\varepsilon} \frac{p}{R_{0} c_{\mathrm{t}}} \mathbf{R}_{0} \cdot \mathbf{V}_{0}
$$

Inverting E_{5} (15) gives the vector expressions

$$
\begin{align*}
& \mathbf{P}=\cos v_{0} \frac{\mathbf{R}_{0}}{R_{0}}-\sin v_{0} \frac{W \times \mathbf{R}_{0}}{R_{0}} \tag{16}\\
& \mathbf{Q}=\sin v_{0} \frac{\mathbf{R}_{0}}{R_{0}}+\cos v_{0} \frac{W \times \mathbf{R}_{0}}{\boldsymbol{R}_{0}}
\end{align*}
$$

Equation (16) is satisfactory oniy for $\varepsilon=: \leq 0$; if $\varepsilon=0$, it is customary to take

$$
\begin{aligned}
& \mathbf{P}=\frac{\mathbf{R}_{\mathbf{n}}}{\mathbf{R}_{\mathbf{0}}} \\
& \mathbf{Q}=\mathbf{W} \times \mathbf{P}
\end{aligned}
$$

To solve the dynamics, one approach is to work with v , the true anomaly, in the form $w=\tan t / 2$.

$$
R=\frac{q\left(1+w^{2}\right)}{1+\lambda w^{2}}
$$

where $\lambda=(1-\varepsilon) /(1+\varepsilon)$, in terms of the new variable w.
From the relation $c_{1}=R^{2} \dot{v}$,

$$
\frac{c_{1}}{2 q^{2}} d T=\frac{1+w^{2}}{\left(1+\lambda w^{2}\right)^{2}} d w
$$

or

$$
\begin{equation*}
g\left(T-T_{p}\right)=\int_{0}^{\infty} \frac{1+u^{2}}{\left(1+\lambda u^{2}\right)^{2}} d u \tag{17}
\end{equation*}
$$

where $\mathrm{g}=c_{1} / 2 q^{2}$.
In practice, the quadrature on the right side of Eq. (17) is obtained for small values of λ by expanding the integrand as a power series in λ and u^{2} and integrating term by term. The resultant form appears in the discussion of subroutine PERI (see Appendix). Equation (15) may be rewritten in terms of w as

$$
\begin{align*}
& \mathbf{R}=\frac{1-w^{2}}{1+\lambda w^{2}} q \mathbf{P}+\frac{2 w}{1+\lambda w^{2}} q \mathbf{Q} \\
& \mathbf{V}=\frac{-c_{1}(1+\lambda) w}{q\left(1+w^{2}\right)} \mathbf{P}+\frac{c_{1}\left(1-\lambda w^{2}\right)}{q\left(1+w^{2}\right)} \mathbf{Q} \tag{18}
\end{align*}
$$

To complete the solution, it is necessary to obtain T_{p}. If $w_{0}=\sin v_{0} /\left(1+\cos v_{0}\right)$ and λ are not too large, then λw_{0}^{2} will be sufficiently small so that T_{p} may be calculated from Eq. (17) with the series expansion. It may turn out that λw_{0}^{2} is not suitable, in which case T_{p} is computed using the eccentric anomaly which is described below. But once T_{p} is obtained, Eq. (17) may be solved at epoch T by iteration to give v, used to obtain tiv coordinates as in Eq. (18). Since $\lambda \varepsilon^{\prime \prime}{ }^{2}$ must be a small parameter for the method to work, the principal application come: when either λ is quite small or the motion is confined to a region near closest approach; the latter alternative gives rise to the name "pericenter" method applied to the above process involving w or v.

Another way to obtain the dynamics is through the introduction of the eccentric anomaly. A singularity
appears at $c_{3}=0$ which is adequately handled by the pericenter method, as $c_{3}=0$ implies $\lambda=0$. Otherwise, the elliptical case is distinguished with $c_{3}<0$ and its eccentric anomaly E, while for $c_{3}>0$ and the eccentric anomaly F, the hyperbolic case is considered.

If $c_{3}<0, \dot{*}$ is defined by

$$
\begin{align*}
R= & a(1-\varepsilon \cos E), 0 \leqq|E| \leqq 180^{\circ} \\
a= & -\frac{\mu}{c_{3}} \tag{19}\\
& \dot{E}>0 \text { so that } E \geqq 0 \text { if } T \geqq T^{\prime}
\end{align*}
$$

By substitution into the equation $c_{3}=V^{2}-2 \mu / R$,

$$
(1-\varepsilon \cos E) \dot{E}=\sqrt{\frac{\mu}{\alpha^{3}}}=n
$$

or

$$
\begin{equation*}
E-\varepsilon \sin E=n\left(T-T_{p}\right) \tag{20}
\end{equation*}
$$

which is Kepler's equation for an ellipse.
Observing that

$$
R=a(1-\varepsilon \cos E)=\frac{p}{1+\varepsilon \cos v}
$$

and

$$
\dot{R}=a \varepsilon \sin E \dot{E}=\frac{\varepsilon c_{1}}{p} \sin v
$$

leads to

$$
\begin{align*}
& \cos v=\frac{\cos E-\varepsilon}{1-\varepsilon \cos E} \\
& \sin v=\frac{\sqrt{1-\varepsilon^{2}} \sin E}{1-\varepsilon \cos E} \tag{21}
\end{align*}
$$

Substitution of Eq. (21) into Eq. (15) yields

$$
\begin{align*}
& \mathbf{R}=a(\cos E-\varepsilon) \mathbf{P}+a \sqrt{1-\varepsilon^{2}} \sin E \mathbf{Q} \\
& \mathbf{V}=\frac{-a n \sin E}{1-\varepsilon \cos E} \mathbf{P}+\frac{\left\llcorner n \sqrt{1-\varepsilon^{2}} \cos E\right.}{1-\varepsilon \cos E} \mathbf{Q} \tag{22}
\end{align*}
$$

E_{0} is determined at epoch T_{6} hy

$$
\begin{aligned}
& \cos E_{0}=\frac{1}{\varepsilon}\left(1-\frac{R_{0}}{a}\right) \\
& \sin E_{0}=\frac{1}{\varepsilon} \frac{\mathbf{R}_{0} \cdot \mathbf{V}_{0}}{a \sqrt{\left|\sigma_{3}\right|}}
\end{aligned}
$$

so that T_{p} may be determined using these equations along with Eq. (20).

To obtain the coordinates at epoch T for the elliptical orbits, Eq. (20) is solved by iteration given in the discussion of subroutine KEPLER (see Appendix).

The hyperbolic case defined by $c_{3}>0$ admits a similar solution. Start with the definition for F

$$
\begin{align*}
R= & a(\varepsilon \cosh F-1) \\
a= & \frac{\mu}{c_{3}} \tag{23}\\
& \dot{F}>0 \text { so that } F \geqq 0 \text { is } T \geqq T_{p}
\end{align*}
$$

To obtain the form of Kepler's equation for the hyperbola, use c_{3} as with the elliptical case, and obtain

$$
(\varepsilon \cosh F-1) \dot{F}=\sqrt{\frac{\mu}{a^{3}}}=n
$$

and Kepler's equation

$$
\begin{equation*}
e \sinh F-F=n 2\left(T-T_{p}\right) \tag{24}
\end{equation*}
$$

Comparing expressions for R and \dot{R}, v and F are related by

$$
\begin{align*}
& \cos v=\frac{\varepsilon-\cosh F}{\varepsilon \cosh F-1} \\
& \sin v=\frac{\sqrt{\varepsilon^{2}-1} \sinh F}{\varepsilon \cosh F-1} \tag{25}
\end{align*}
$$

Replacing the quantities in Eq. (15) by those in Eq (25), the expressions for the coordinates become

$$
\begin{align*}
& \mathbf{R}=a(\varepsilon-\cosh F) \mathbf{P}+a \sqrt{\varepsilon^{2}-1} \sinh F \mathbf{Q} \\
& \mathbf{V}=\frac{-a n \sinh F}{\varepsilon \cosh F-1} \mathbf{P}+\frac{a n \sqrt{\varepsilon^{2}-1} \cosh F}{\varepsilon \cosh F-1} \mathbf{Q} \tag{26}
\end{align*}
$$

At the epoch T_{0}, T_{p} may be determined from Eq. (24), when F_{0} is obtained from.

$$
\begin{aligned}
& \cosh F_{r}=\frac{1}{\varepsilon}\left(1+\frac{R_{0}}{a}\right) \\
& \sinh F_{0}=\frac{1}{\varepsilon} \frac{R_{0} \cdot V_{0}}{a \sqrt{c_{3}}}
\end{aligned}
$$

The iterative solution of Kepler's equation at epoch T is used to obtain the coordinates; the discussion of subroutine QUADKP (see Appendix) describes the numerical technique used for the hyperbolic case.

III. NUMERICAL EXPERIENCE

Trajectories computed using single-precision derivatives calculated in the Encke manner should be slightly more accurate than those generated using the Cowell form of the equations of motion, provided that a proper choice of central body has becin made. The difference between the two methods arises from the fact that the relativoly small size of the perturbing acceleration, as compared with the central body acceleration, permits the Encke scheme to retain more significance in the total acceleration, as compared with the corresponding acceleration term in the Cowell scheme. It is assumed that the reference orbit for the Encke scheme lies sufficiently close to the true orbit so that the quantity $\rho / R_{0}<0.03$. where \mathbf{R}_{0} is lue position in the reference orbit while ρ is the difference between R, the position in the true orbit, and \mathbf{R}_{0}. Under this assumption, the main term in the acceleration for the Encke method, viz., $-\mu / R_{0}^{3}(\rho-F(Q) \mathbf{R})$, will in general be at least an order of magnitude smaller than the corresponding Cowell term, $-\mu \mathbf{R} / R^{3}$, for $F(Q) \approx 3 Q$ $=3 \rho \cdot\left(\mathbf{R}_{0}+\rho / 2\right) / R_{0}^{2} \approx 3 \rho / R_{0}$ at worst; thus $\mid \rho / R_{0}-$ $F(Q) R ; R_{0} \mid \approx 4 \rho / R_{0}$ and as $R_{0}^{2} / R^{2} \approx 1-2 Q$, the ratio of acceleration terms will never exceed 0.12 . The ultimate accuracy of the Encke scheme is tied to the accurate solution of the two-body problem for obtaining the reference orbit; less accuracy in the reference orbit would be sufficient for computation of the main Encke acceleration term and a less accurate solution than this would suffice for the perturbations.

Rounding error in the computation of the main Cowell acceleration term propagates into the numerical solution in a strikingly simple fashion- T_{p}, the epoch of pericenter passage, alone of the orbital elements is significantly perturbed. To demonstrate the effect of roundoff, a high Earth-satellite trajectory was run with both Cowell and

Encke schemes; additional information was obtained by successively chopping the last and the last two bits in each coordinate of the acceleration vector at each integration step. A momparison of the effect on the orbital elements at the first perigec point appears in Table 1.

As a measure of the over-all difference in the trajectories, comparison of the difference in range δR may be made near the perigee. Under the assumption that T_{p} is the only orbital element to be affected, then

$$
\delta R=R_{2}-R_{1}=\delta R^{*} \frac{\sqrt{1-\varepsilon^{2}} \sin E^{*}}{i-\varepsilon \cos E^{*}}
$$

where

$$
E^{*}=\frac{1}{2}\left(E_{1}+E_{2}\right)
$$

satisfies the equation

$$
\begin{aligned}
E^{*}-\varepsilon \sin E^{*} & =n\left(T \cdot T_{p}^{*}\right), \\
T_{p}^{*} & =\frac{1}{2}\left(T_{p}^{(1)}+T_{p}^{(2)}\right) \\
\delta R^{*} & =\frac{a n \varepsilon}{\sqrt{1-\varepsilon^{\varepsilon}}} \delta T_{p} \\
\delta T_{p} & =T_{p}^{(2)}-T_{p}^{(1)}
\end{aligned}
$$

where the superscript 1 refers to a comparison trajectory while the superscript 2 refers to a perturbed trajectory. δR^{*} is the extreme value of δR occurning at $n\left(T-T_{p}^{*}\right)=$ $\pm\left(\cos ^{-1} \varepsilon-\varepsilon \sqrt{1-\varepsilon^{2}}\right)$. A summary of results in Table 2 serves to demonstrate the adequateness of the conic approximation. The small perturbation in T_{p} contribute: only a small difference in the coordinates, if a comparison is made at a greater time from perigee.

Table 1. Orbital elements at perigee

Case	c_{k}	ε	$\begin{aligned} & r_{p} \bullet \\ & * e c \end{aligned}$	$\begin{array}{r} 1 \\ \operatorname{deg} \end{array}$	$\stackrel{\omega}{\operatorname{dog}}$	$\begin{gathered} \mathbf{n} \\ \operatorname{dog} \end{gathered}$
Norma! Encke	8901.362	0.98534697	69.077	19.599986	200.94431	222.12236
Encke with lest bit chopped	8901.362	0.98534687	69.074	19.599986	200.94431	222.18236
Encke with lost two bits chopped	8901.362	0.98534697	69.088	19.599986	200.94431	229.18235
Normal Cowall	8901.425	0.98534641	22.029	19.600052	200.94427	222.18245
Cowell with last bit chopped	8901.420	0.98534644	27.063	19.600039	200.94428	222.18243
Cowell with last two bits chopped	8901.402	0.98534650	38.793	19.600027	200.94429	222.18241
Closest approach distanca. 						

As a further comparison of the Encke and Cowell methods, three lunar trajectories were selected which had flight times of $35 \mathrm{hr}, 45 \mathrm{hr}$, and 66 hr , respectively. The trajectories were characterized by an injection altitude of about 200 km near perigee and a termination of 1738.09 km from the center of the Moon. Table 3 compares results obtained by the ruming of each trajectory four different ways: (1) Encke, Moon-centered second phase; (2) Encke, Earth-centered second phase; (3) Cowell, Mooncentered second phase; and (4) Cowell, Earth-centered second phase. In all instances the second phase was started at a distance of $30,000 \mathrm{~km}$ from the center of the Moon. It appears from the data that all four methods are consistent and yield results of satisfactory accuracy.

The 6f-hr lunar trajectory was used to estimate the effect of integrating in a coordinate system based on the true equator and equinox of date. A precise comparison is impossible, since injection conditions expressed in the
of-date system must be rotated to the mean equator and equinox of 1950.0 for integration in the normal case. Such an operation introduces a small variation in the injection coordinates which propagates under integration into the numerical solution, thus partially masking the difference between the two coordinate systems. However, an estimate of the variational effect was made which could account for about half of the observed difference in the Cartesian coordinates at lunar encounter. The perturbations in these coordinates, arising solely from the two different coordinate systems for integration, seem therefore to amount to about 1 km ; in addition, the flight time received a perturbation amounting to about 0.6 sec . These differences appear to be significant when viewed in the light of the data in Tahle 8

As interplanetary trajectories are usually run in three phases-phase one Earth-centered, phase two Suncentered, and phase three target-centered-it is necessary

Table 2. Range differences near perigee

Cese	$\underset{i k m}{ }$		$\begin{gathered} 8 \mathrm{kt} \text { of } 45^{\circ} 14^{n} \\ \mathrm{~km} \end{gathered}$		Moximum 8 虾 km	
	Computed ${ }^{\text {d }}$	Observed ${ }^{\text {c }}$	Computad	Observed	Computar	Observed ${ }^{\text {b }}$
Encke with last bit chopped minus normal Encke	-0.014	-0.014	0.014	0.010	0.014	0.014
Encke with two bits chopped minus normal Encke	0.050	0.052	-0.050	0.052	0.051	0.053
Normal Cowell minus normal Encke	-215.028	-214.943	213.824	213.705	220.168	220.064
Cowell with last bit chopped minus normal Cowell	23.025	23.017	-22.860	-22.850	23.557	23.548
Cowell with two bits chopped minus normal Cowell	76.661	76.631	-76.1:4	-76.103	78.450	78.413
-Valuer derived from the orbital eloments. bValues derived from the normal trojectory output.						

Table 3. Comparison of lunar trajectories

Case	Lunar Impect Tirwo	$\underset{\mathrm{km}}{\mathbf{B} \cdot \mathbf{T}^{*}}$	$\underset{\mathbf{k m}}{\mathbf{B} \cdot \mathbf{R}^{\bullet}}$	$\stackrel{j^{4}}{\text { deg }}$
35 ${ }^{\text {b }}$ Encke E-M	$1^{14} 10^{\text {m }} 533^{\text {ma }} 089619$	44.129	9.785	27.3.
35' Encke E-E	$1^{40} 10^{\text {m }} 53^{\text {m }}$ 08! 624	44.142	9.785	27.3384
35 Cowall E-M	$1{ }^{4} 10^{\prime \prime} 53^{\prime \prime \prime} 08: 620$	44.139	9.787	27.3347
35b Cowall E-E	$1{ }^{10} 10^{\prime \prime} 53^{\text {m }} 08: 625$	$4 . .149$	9.787	27.3341
45 ${ }^{\text {b }}$ Encke E-M	$1^{*} 20^{\prime \prime} 51^{\prime \prime}$ 32,279	19.017	14.500	46.8673
454 Encke E-E	$1^{4} 20^{\circ} 51^{\circ \prime}$ 32:284	19.042	14.499	46.8322
45 Cowall E-M	$1^{4 \times 2014} 51^{\prime \prime \prime} 32: 279$	17.031	14.499	46.8475
$45^{\text {b }}$ Cowall E-E	$140^{\text {ch }} 51 \mathrm{~lm}$ 32,287	19.047	14.500	46.8408
66" Encke E-M		270.281	-88.532	37.1864
664 Encke E-E		270.324	-88.536	37.1848
664 Cowall E.M	24 174 48m 03,064	270.300	-88.565	37.1906
66" Cowall E-E		270.339	-88.571	37.1894

at the change into phase two to compute the velocity of the Sun by numerical differentiation of position coordinates, which is inaccurate on two counts: first, the position ephemeris of the Sun risplays noise in the seventh figure of the positions, which gives rise to inconsistencies in the velocities as obtained from neighboring segments of the ephemeris; second, even with eight-figure accuracy in the position data, calcuiation of the velocities entails differencing so that significant figures are lost.

To determine the magnitude of the error introduced in the velocity coordinates as used for normal cases, an 80 day are of the Earth's orbit was smoothed by a leastsquares fit which utilized a numerical integration of the equations of motion. Residuals on the order of tive uniis in the seventh figure of the position coordinates were obtained by the fitting process. As a by-product of the fit, smooth velocity coordinates were obtained which were therefere consistent with the new position cosrdinates. Intermediate values of the velocities were then obtained by both a numerical differentiation of the new position ephemeris and a direct interpolation of the velocity ephemeris; a comparison of the results revealed maximum differences of about $0.02 \mathrm{~m} / \mathrm{sec}$, or discrepancies in the seventh figure. Next, the o-ginal noisy position coordinates were differentiated and compared with the interpolation in the velocity ephemeris. In this case, the maximum differences were observed to be about 0.15 $\mathrm{m} / \mathrm{sec}$, or a rel.tive error of about 5×10^{-6}.

An actual Venus trajectory with a flight time of 108 days was studied for the effect of inaccuracies introduced by the velocity transformation in the transfer to phase iwo by the systematic variation of the epoch of the cuo. dinate change, and also by running a trajectory which integrated geocentrically all the way to Venus encounter. The results are summarized in Table 4, which gives the deviation of the coordinates at the fixed epoch of transfer into phase three, and of the time of Venus encounter, all referred to a standard trajectory which used the ordinary phasing. The differences in the coordinates may be explained fairly well by the known magnitude of maximum errer in the velocity of the Sun and the value of the appropriate variational coefficients. The trajectory. which was integrated all the way to Venus in phase one, does not suffer from the velocity problem, but because the noisy position coordinates used in the calculation of the now large perturbations in the acceleration undoubtedly contribute a significant amount of error in the solution, this technique does not solve the accuracy problem.

The Encke and Cowell methods for the interplanetary case were compared by running Venus and Mars trajec-
tories in which the transfer point from phase one to phase two was kept fixed for the respective trajectories. Evidently, the difference between the two methods shows up more distinctly the longer the flight time, but is of acceptable magnitude, as Table 5 indicates.

In summary, the trajectory program gives consistent single-precision results for the Encke and Cowell meth-

Table 4. Differences at transfer to Venus-centered phase

Transfer time*	$\begin{aligned} & \mathbf{8 X} \\ & M m b * \end{aligned}$	$\begin{gathered} 87 \\ \mathrm{Mmb} \end{gathered}$	$\begin{gathered} \delta Z \\ M m^{b} \end{gathered}$	$\begin{aligned} & 8 T F \\ & \sec \end{aligned}$
93.50	0.6	0.1	0.0	78
93.75	-0.1	0.0	0.0	-15
94.00	-0.7	-0.1	0.0	-87
94.25	-1.2	-0.1	0.0	-140
94.50	-1.2	-0.1	0.1	-132
94.75	-1.4	-0.2	0.1	-155
95.00	-1.6	-0.2	0.1	-181
95.25	-1.8	-0.3	0.1	-211
95.50	-1.9	-0.4	0.0	-234
95.75	-2.2	-0.5	0.0	-370
96.00	- 2.3	-0.7	-0.1	-503
96.25	-2.4	-0.9	-0.2	-332
96.50	-2.7	-1.1	-0.2	-381
96.75	-2.7	-1.3	-0.3	-403
97.00	-2.7	-1.4	-0.4	-420
97.25	-2.7	-1.5	-0.4	-434
97.50	-2.9	-1.6	-0.5	-461
97.75	-2.8	-1.7	-0.6	-467
98.00	-2.7	-1.8	-0.7	-470
98.25	-2.6	-1.9	-0.7	-472
98.50	-2.0	-1.9	-0.7	-417
All geocentric	0.6	-1.0	-0.5	-37

-The transfer time represents the Julion date in E.T. at which entry was made info the helioceniric phase.
b/hrgamaters.

Table 5. Comparison of interplanetary trajectories

Case	$\begin{aligned} & \text { ffa } \\ & \text { sec } \end{aligned}$	$\underset{\mathrm{km}}{\mathbf{B} \cdot \mathrm{~T}^{b}}$	$\underset{\text { Kn }}{\mathbf{B} \cdot \mathbf{R}^{\bullet}}$	$\begin{gathered} i, \\ \operatorname{sing} \end{gathered}$
108 ${ }^{\text {d Venus, Encke }}$	51.279	-4120.9	1694.4	153.9196
1084 Venur. Cowell	56.636	-4120.5	1693.2	153.9295
$118{ }^{\text {d }}$ Vanus, Encke	25.236	249632.8	-630020.9	76.8357
118^{4} Venus, Cowell	26.827	249629.9	-630022.0	76.8359
2314 Mars, Encke	9.743	-50153.6	-4537.4	173.4127
231 ${ }^{\text {d Mars, Cowall }}$	34.938	-50205.4	-4541.3	173.4134

aThe time of flight it meosured from an arblifrary egech.
uThe ofbltal elomentz are celculated either at planetory onceuntor of ct clocent eppreach.
ods, but the ephemeris problem for interplanetary flight presents a source of systematic error. This problem will be largely eliminated by a study now in progress at the

Jet Propulsion Laboratory to obtain smoothed position and velocity ephemerides which are gravitationally consistent.

IV. OPERATING INSTRUCTIONS AND DESCRIPTION OF INPUT

A. Operation of the Space Trajectories Program on the IBM 7090

The Space Trajectories Program is designed to accept offline card input in BCD on tape A 2 , to prepare an offline BCD output tape on A3, and to obtain ephemeris information from a tape mounted on A8 assumed to be written in high density. For operational convenience, the offline output may be monitored on the online printer by depressing sense switch 6 , whicn peaniis siniuliañ $\overline{\text { üū }}$ off- and online output. The other sense switches, the sense lights, the panel keys, and the sense indicator register are not used; additionally, the floating-point trapping mode of execution is not used.

A machine run usually consists of several cases which are defined by the appropriate case parameters punched on cards in a format accepted by the 7090 version of NYINPI, a SHARE input routine. The sets of cards which define individual cases are separated by TRA 3,4 cards, and each set may be trailed by its package of phase cards to complete the input for running the trajectory. A description of the available case parameters appears in Sections IVD-1 and D-2.

For the normal type cic "minimum print" trajectory, a set of phase parameters suitable for the case may be selected from the parameters assembled in the program to be used for the standard targets Earth, Moon, Venus, and Mars. The values of the stored parameters appear in Section IVF. Complete control over the trajectory may be obtained by the appropriate choice of phase parameters for each sequential phase belonging to the case; the phase parameters read in are saved and may be used for subsequent cases so that one run might consist of several cases, all using a common set of phase cards which is read in but once. The functions of the specific parameters used in a phase are described in Sections IVE-2 and E-3.

B. Basic Coordinate Systems

The fundamental coordinate system used by the Space Trajectories Program for reference of the equations of motion is the Cartesian frame formed by the mean equator and equinox of 1950.0; the position of the mean equator of the Earth and the ascending node of the mean orbit of the Sun on that equator, taken at the beginning of the Besselian year 1950, serve as the definition. The X axis is directed along the node, the \mathbf{Z} axis northward above the
equator, and the Y axis in a direction to complete the usual right-handed coordinate system. The auxiliary reference frame based on the Earth's mean equator of date, and the mean equinox of date defined by the Sun's mean orbit about the Earth (ecliptic of date), may be obtained from the 1950.0 system by the application of the precession as described in the discussion of subroutine ROTEQ (see Appendix).

Reference to the Earth's true equator of date is obtained by the rotation of the mean equator of date about the mean equinox of date to the ecliptic of date via the mean obliquity of date, rotation in the ecliptic to form the true equinox of date via the nutation in longitude, and, finally, the rotation about the true equinox by means of the true obliquity of date formed by augmenting the mean obliquity by the nutation in obliquity. The three rotations described result in but a small chenge, hence the mean and true coordinates in general agree through the first four figures. The description of subroutine NUTATE (see Appendix) contains formulas for the rotation matrix which performs the necessary transformation from mean coordinates to true.

C. Coordinate Sysfems for Inpuf

Provisions have been made to input directly into the Cartesian equatorial system of 1950.0 the basic coordinate frame for the numerical integration. A simple rotation abou: the mean vernal equinox of 1950.0, with magnitude the mean obliquity of 1950.0 , permits input in the mean equinox and ecliptic of 1950.0 . With the aid of the nutations in longitude and obliquity, along with the general precession, it becomes possible to input in cither the true equator and equinox of date or the true equinox and ecliptic of date. The Cartesian coordinates expressed in any one of the above four systems may refer to one of the six available bodies Earth, Moon, Sun, Venus, Mars, and Jupiter.

It is convenient to input the injection conditions in a spherical set associated with one of the Cartesian coordinate systems which describes the position vector in terms of range and two angles, and the velocity vector corresponding as velocity (speed) and two angles. For this purpose, the Cartesian frame is regarded as being at rest in the case of the true of-date systems; the reference frame may be thought of as being "osculating" rather than
undergoing a slow rotation in inertial space and thus forming a rotating coordinate system. The set of equations necessary for the transformation from sphericals to Cartesian, along with the definitions of the angles, may be found in the description of subroutine RVIN (Appendix).

The Earth-fixed spherical set of injestion conditions is based on a Cartesian coordinate system assumed to rotate with the Earth: the $x-y$ plane coincident with the Earth's true equator of date, the x axis lying in the Greenwich meridian, and the z axis along the Earth's spin axis. As described in subroutine GHA (Appendix), a formula is furnished which gives the Greenwich hour angle of the true vernal equinox of date so that the Earth-fixed Cartesian coordinates may be referred to the true equator and equinox of date via a simple rotation. Of course, the velocity vector in the Earth-fixed system is affected by the Earth's rotational rate; appropriate formulas for the velocity transformation to the nonrotating system are given in subroutine EARTH (Appendix).

A similar treatment of the Moon gives rise to injection conditions expressed in selenographic (Moon-fixed sphericals) coordinates; formulas for the position of the Moon's true equator, the prime meridian of selenographic longitude reference, and the rotation of the Moon are contained in the discussion of subroutines XYZDD, MNA, and MNAMD (Appendix).

A final input coordinate system, based on orbital elements of an escape hyperbola from the Earth, completes the number of options. The hyperbola has been characterized by its ascending asymptote given by right ascension and declination, by the energy, and by the constraint that the launch site lie in the orbital plane. The actual shape of the hyperbola and the injection point are given by the remaining two parameters, the path angle and the range at the injection time.

The equations for the energy-asymptote input option may be developed as illustrated in the following:

Sketch 3. Launch geometry

Given Σ_{L}, the azimuth at the launch site, as in Sketch 3,

$$
W_{z}=\cos i=\sin \Sigma_{L} \cos \Phi_{L}
$$

where $\Phi_{L}=28.309 \mathrm{deg}$, the latitude of the launch site, a program parameter.

$$
\begin{gathered}
S=\left(\cos \Phi_{B} \cos \Theta_{S}, \cos \Phi_{S} \sin \Theta_{S}, \sin \Phi_{B}\right), \\
\text { the ast.ending asymptote } \\
W_{y}=\frac{-W_{z} \sin \Theta_{S} \sin \Phi_{B}-\cos \Theta_{S} \sqrt{\cos ^{2} \Phi_{B}-W_{z}^{2}}}{\cos \Phi_{S}}
\end{gathered}
$$

If the radicand is negative, the error message

"DECLINATION OF ASCENDING ASYMPTOTE OUT OF RANGE"

is printed and the trajectory is aborted.

$$
W_{x}=-\frac{S_{y} W_{y}+S_{z} W_{z}}{S_{x}}
$$

completing the construction of \mathbf{W}, the unit angular momentum vector.

$$
\begin{aligned}
V & =\sqrt{c_{3}+\frac{2 \mu_{\oplus}}{R}}, \text { the velocity } \\
c_{1} & =|\mathbf{R} \times \mathbf{V}|=R V \cos \Gamma, \text { the angular momentum } \\
\varepsilon^{2}-1 & =\frac{c_{3} c_{1}^{2}}{\mu_{\oplus}^{2}}, \text { for the eccentricity }
\end{aligned}
$$

Sketch 4. Relationshlp of ascending asymptote and perigee

From $\sin \Gamma=e \sin (v-\Gamma)$, invert to obtain -90° $<v-\Gamma<90^{\circ}$ and v, the true anomaly. In particular, for $\Gamma=90^{\circ}$, an expression for $v_{\text {max, }}$, the maximum true enomaly (Sketch 4) is

$$
\begin{gathered}
v_{\max }=\cos ^{-1}\left(-\frac{1}{\varepsilon}\right), 90^{\circ}<v_{\max }<180^{\circ} \\
\mathbf{R}=R\left\{\cos \left(v_{\max }-v\right) \mathbf{S}+\sin \left(v_{\max }-v\right) \mathbf{S} \times \mathbf{W}\right\}
\end{gathered}
$$

The velocity vector (Sketch 5) is given by

$$
\mathbf{V}=V\left\{\cos \Gamma \frac{\mathbf{W} \times \mathbf{R}}{R}+\sin \Gamma \frac{\mathbf{R}}{R}\right\}
$$

completing the construction of the Cartesian coordinates.

Sketch 5. Description of the velocity vector

D. Relationship Befween Case Analysis and Phase Analysis

For CASE ANALYSIS, input desired value of CASE and REPEAT.
If REPEAT $= \pm 0$, all phase cards are read in and buffered at the same time.

Observe that the symbolic address card
CASE
0
-1
may be used to effect (CASE) $=0$ at the phase-analysis point of the program.
D. iCont'd)

1. Case Parameters

Input location (decimal)	Clase field	Program marye	Idertification
100109	BCD	60-character conmment field printed at top of each page of output	
110	BCD	TARGET	BCD name of target body
111	BCD	KERN	BCD name of central body at injection
112	OCT	REPEAT	Phase input control word
113	OCT	INJECT	Injection input type
114-115	DEC	T1	Injection epoch in sexagesimal format
116-118	DEC	X1, Y1, Z1	Injection coordinates identified by INJECT
119-121	DEC	X1., Y1., Z1.	
122	DEC	GAMMAC	Thrust attitude angles givinr fixed direction of thrust vector
123	DEC	SIGMAC	
124	DEC	ACCI	Thrust magnitude in lb force
125	DEC	MASS1	Initial mass in lb
126	DEC	MASS. 1	Mass flow rate in lb/sec
127	DEC	TBO1	Duration of burning in sec
128-129	DEC	TGO1	Epoch for ignition of motor
136	DEC	R.ADP	Coefficient for radiation pressure
137	OCT	FLAGS	Bit $34=$ integrate frequenc,' equations Bit $35=$ integrate variational tquations
138	DEC	T (K)	Single-precision floating-point time
139	BCD	EQUNOX	Injection equator and equinox

2. Detailed Description of Case Farameters

Program
 name

TARGET May be Earth, Moon, Sun, Venus, Mars, or Jupiter. It is used to define the target quantities in the various print groups and to select the appropriate set of minimum phase cards when REPEAT ≤-0 and the target is neither the Sun nor Jupiter.

KERN May be any of the bodies as used with TARGET. KERN defines the central body of the coordinate system at injection and may be distinct from the central body of integration for phase one.

REPEAT
Determines whether or not phase input cards are to follow:

Value of REPEAT
-1

Effect

Does not input phase cards but uses one of the four internal sets as determined by TARGET.

D2. (Cont'd)

Program name

-0	Uses the interral sets of phase cards as with REPEAT $=-1 ;$ modifications are read in on top of working buffer, and altered phase parameters are stored in a special buffer to be used later. After last cards for the last phase have been read in,
REPEAT is set to +1.	

INJECT
The seven available types are as follows:
Value of
INJECT
Coordinate System

+0	Inertial Cartesiar, equatorial
-0	Inertial Cartesian, ecliptic
+1	Inertial spherical, equatoria'
-1	Inertial spherical, ecliptic
+2	Earth-fixed spherical
+3	Selenographic (spherical)
+4	Energy-asymptote Earth-centered equatorial

Note: For INJECT $= \pm 0$ or ± 1, coordinate system may be modified by EQUNOX

Double precision epoch of injection in the two-word fixed-point decimal format which is denoted by "sexagesimal format."

Format of the two words is
yymmoddhh,nnssfff
where the fields are

$$
\begin{aligned}
\mathrm{yy} & =\text { year, e.g., } 61 \text { for } 1961 \\
\mathrm{~mm} & =\text { month, e.g., } 11 \text { for November } \\
\text { odd } & =\text { day, } 3 \text {-digit field, where zero must appear before digits for day of month } \\
\mathrm{hh} & =\text { hours past start of day } \\
\mathrm{nn} & =\text { minutes } \\
\mathrm{ss} & =\text { seconds } \\
\mathrm{fff} & =\text { milliseconds }
\end{aligned}
$$

Note: This epoch is modified by $T(K)$.

D2. (Conf'd)

Program nanue

X1, Y1, Z1, X1., Y1., Z1.

GAMMAC, SIGMAC

ACCl
MASSI
MASS. 1
TBO1
TGOI

Explanation

Interpretation

INJECT

+0	\mathbf{R} and \mathbf{V} in equatorial Cartesian coordinates
-0	\mathbf{R} and \mathbf{V} in ecliptic Cartesian coordinates
+1	$\boldsymbol{R}, \boldsymbol{\Phi}, \Theta ; \boldsymbol{V}, \Gamma, \Sigma$ inertial equatorial spherical coordinates
-1	$R, \beta, \lambda ; V, \Gamma, \Sigma$ inertial ecliptic spherical coordinates
+2	$r, \phi, \theta ; v, \dot{\gamma}, \sigma$ Earth-fixed spherical
+3	${ }_{\text {c }}, \phi_{\mathbb{*}}, \theta_{\text {d }} ; \nu_{\text {d }}, \gamma_{\text {d }}, \sigma_{\text {d }}$ selerıographic (spherical) coordinates
+4	$\Sigma_{L}, R, \Gamma ; c_{3}, \Phi_{5}, \Theta_{s}$ energy-asymptote in Earth-centered equatorial system

Interpretation is modified by EQUNOX below. Position units are km, velocity units are $\mathrm{km} / \mathrm{sec}$, and angles are in deg.

At injection the position vector \mathbf{R} is formed. A fixed-thrust attitude vector \mathbf{C} is characterized by the path angle γ_{c} and the azimuth angle σ_{c} with respect to a plane perpendicular to \mathbf{R} and the \mathbf{Z} axis as a reference direction. \mathbf{R} may be a body-fixed vector so that γ_{e} and σ_{c} would have a different interpretation if the selenographic input option were used rather than Moon-centered Cartesian for instance.

For powered-flight computation the following formula is used for the acceleration with the parameters described below:

$$
\mathbf{a}=\frac{-F}{m_{0}-\dot{m}\left(T-T_{0}\right)} \mathbf{C} \text { for } T_{0} \leq T \leq T_{0}+t_{b}
$$

F, thrust in lb force; internally multiplied by $g=0.0098$ to obtain a in $\mathrm{km} / \mathrm{sec}^{2}$ m_{0}, initial mass in $l \mathrm{~b}$ \dot{m}, mass flow rate in $\mathrm{lb} / \mathrm{sec}$
t_{b}, duration of burning in floating-point sec
T_{0}, epoch of motor ignition in sexagesimal format as with $T 1$, or the modified sexagesimal format as with PRTENT in Section IVE-3.

Further phase control naust be provided for the powered flight as indicated in the flow diagrams of the phi e logic (Section V) and the description of the phase parameters; i.e., there must be a phase to start the motor.

For radiation pressure calculation the following equation is used:

$$
a=\frac{d g}{W} K \alpha^{2} \frac{R_{a p}}{R_{s p}^{s_{s p}}}
$$

where

$$
\alpha=\text { number of } \mathrm{km} / \text { A.U., included to make } \alpha^{2} \mathbf{R}_{a p} / R^{3}{ }^{\text {p }} \text {, dimensionless }
$$

D2. ICont'd!

Program name

Explanation

$$
\begin{aligned}
\mathbf{R}_{t \mathrm{p}} & =\text { the Sun-probe vector } \\
K & =1.03034 \times 10^{-\mathrm{s}} \mathrm{lb} \text { force } / \mathrm{m}^{2}, \text { the solar-flux constant } \\
A & =\text { effective area in } \mathrm{m}^{2} \\
W & =\text { mass of spacecraft in } \mathrm{lb} \\
g & =0.0098, \text { conversion factor to express acceleration in } \mathrm{km} / \mathrm{sec}^{2} \text { internally }
\end{aligned}
$$

RADP

FLAGS The two low-order bits are used to control the introduction of the 10 frequency equations ($b_{34}=1$) and the 36 variational equations ($b_{35}=1$) for numerical integration in the Jet Propulsion Laboratory tracking program.
$\mathrm{T}(\mathrm{K}) \quad$ After Tl is converted internally to double-precision floating-point sec past 0^{h} January $1,1950, T(K)$ is added on to give the effective injection time.

EQUNOX If the BCD field is all blanks, then the input is regarded as being expressed in the true equator and equinox of date or the true ecliptic and equinox of date. Otherwise the reference is the mean system of 1950.0. As EQUNOX is displayed along with the injection conditions, it is customary to use the six characters " 1950.0 " for the latter case.

The data for case parameters describing the injection conditions and poweredllight parameters and the associated control is terminated by the card T5 $\mathbf{3 , 4}$.

Further cases may follow unless the phase-card input is triggered via REPEAT $= \pm 0$. In that event, of course, all the necessary cards for the various phases must follow, then the subsequent cases.

E. Phase-Card Reading and Buffering

1. Storage Layout of Internal Buffers

Nominal phase cards stored in core:

\oplus	phase 1
\mathbb{C}	phase 2

\oplus	phase 1
\odot	phase 2
$\%$	phase 3

\oplus phase 1 \odot phase 2 σ° phase 3

\oplus	phase 1
\odot	phase 2
\oplus	phase 3

(Moon
\odot Sun
\& Venus
σ^{2} Mars
\oplus Earth

2. Phase Parameters

Loartion	Type field	Program name
	OCT	LAST
140	BCD	REND
141	DEC	
142	BCD	REND.
143	DEC	

Description

Controls last phase and some of the print
Body used to form $R_{n p}$
Value of $\boldsymbol{R}_{n p}$ used to terminate phase
Body used to form \dot{R}_{n},
Suppression distance from central body

E2. (Cont'd)

Location	Type field	Program name	Description
145	OCT	MODE	Integrate Encke or Cowell
146	BCD	CENTER	Central body for integration
人147-148	DEC	H	Initial step size, modified sexagesimal format
149	OCT	DOUBLE	Number of initial doubles
150	BCD	HKERN	Body from which to compute step sizes
151-162	DEC	PRTEND, DELI'RT	3 print end times and intervals
163-166	DEC	ODDPRT	2 odd-print epochs
167	OCT	GROP	12-octal-character field to control print groups
168-169	OCT	CODE1	24-octal-character field for station prints
170-171	OCT	VIEW	24-octal-character field for stations for view periods
178	OCT	ORBETT	Reference for B • T and B $\cdot \mathbf{R}$ in conic output
179	BCD	EQUNXI	Output equator and equinox

3. Detailed Description of Phase Parameters

Program name.

LAST

Explanation

$\operatorname{sgn} \quad\left\{\begin{array}{l}-=\text { call PRINTD at } T_{\phi} \\ +=\text { don't call PRINTD at } T_{\phi}\end{array}\right.$
bit $33\left\{\begin{array}{l}0=\text { reset } T_{\text {PRT }} \text { to } T \phi \text { at start of phase } \\ 1=\text { use old } T_{\text {PRT }} \text { from previous phase }\end{array}\right.$
bit $34\left\{\begin{array}{l}0=\text { call PRINTD at end of phase } \\ 1=\text { don't call PRINTD at end of phase }\end{array}\right.$
bit $35\left\{\begin{array}{l}0=\text { last phase } \\ 1=\text { more phases to follow }\end{array}\right.$
PRINTD is the subroutine which prints the selected groups.
$\mathrm{T}_{\mathrm{PRT}}$ is the print epoch constructed in the previous phase which would have been reached for printing had the previous phase extended in time to $\mathrm{T}_{\text {PR2 }}$.
When new phase cards are being read, bit $35=0$ also flags the end of the reading process.
$T \phi$ is the epoch at change of phase.

E3. (Cont'd)

Program

 name
Explanation

REND REND.

MODE $\quad 0=$ integrate the equations of motion as developed for a Cowell scheme
l = integrate Encke's modification of the equations of motion
CENTER Any of the six bodies may be used as the central body; but for $\mathrm{R}_{\text {END }}$ and $\dot{\mathrm{R}}_{\text {END }}$ the following bodies are available:

Central Body	Perturbing Bodies
Earth	Moor, Sun; Jupiter if $R>10^{6} \mathrm{~km}$
Moon	Earth, Sun
Sun	
Venus	All remaining bodies
Mars Jupiter	

End-of-phase devices:
A phase may be terminated by one of the following three conditions:

1. $\mathrm{R}_{\text {END }}$
2. $\dot{R}_{\text {END }}$
3. $\mathrm{T}_{\mathrm{END}}$
4. $R_{\text {Evd }}$: The BCD name of the body to which $\mathrm{R}_{\text {END }}$ refers is input in 141 ; the desired value $\boldsymbol{R}_{n p}=\mathbf{R}_{\text {END }}$ is input in $142 . \mathbf{R}_{\text {END }}$ is used as a dependent variable top.
5. $\dot{\mathrm{R}}_{\text {zND }}$: The BCD name of the body from which $\dot{\boldsymbol{R}}_{s P}$ is measured is input in 143 ; 144 is interpreted as:
(1) $($ REND. +1$)=0$: suppress \dot{R} test
(2) (REND. +1$)=0$: test effective in the following ways:
a. If CENTER $=$ TARGET, stop at $\dot{\mathrm{L}}=0$ via a dependent variable stop
b. If CENTER \neq TARGET, suppress test until:
6. $R>$ (REND. +1) if (REND. +1) >0; or 2. $R<\mid($ REND. +1$) \mid$ if (REND. +1$)<0$
R refers to the central body.
7. $\mathrm{T}_{\mathrm{END}}: \mathrm{T}_{\mathrm{END}}=\max \left(T_{\phi}, \mathrm{T}_{\mathrm{END},}, \mathrm{T}_{\mathrm{END}}^{2}\right.$, $\mathrm{T}_{\mathrm{END}}^{3}$ $)$ where the $\mathrm{T}_{\mathrm{END} \mathrm{D}_{i}}$'s are the end of print times input in 151, 155, and 159 and T_{ϕ} is the epoch of phase change.

Adams-Moulton step size in modified sexagesimal format: $\mathrm{yy}=0$ and $\mathrm{mm}=0$, so that the mainder is converted to sec. If $(H),(H+1)$, and (DOUBLE) $=0$, the step s: .c is selected automatically as a function of HKERN and is halved or doubled under program control as the need arises.

E3. (Cont'd)

Program
name
DOUBLE If (H) or $(H+1) \neq 0$, a fixed-point number in this field gives the number of tines the step is to be doubled consecutively.

HKERN Selects the body from which the step size is to be computed; resultant calculated step size is used for other purposes so that HKERN is effective even though (H) or $(\mathrm{H}+1) \neq 0$.

PRTEND, DELPRT

Explanation

The 12 input lecations are divided into three 4-word fields giving control over print intervals:

$$
\mathrm{T}_{\mathrm{END}_{1}}, \Delta \mathrm{~T}_{\mathrm{PRT}_{1}} ; \mathrm{T}_{\mathrm{END}_{2}}, \Delta \mathrm{~T}_{\mathrm{PRT}_{2}} ; \mathrm{T}_{\mathrm{END}_{3}}, \Delta \mathrm{~T}_{\mathrm{PRT}_{3}}
$$

The $\mathrm{T}_{\mathrm{END}}$ may be input as epochs in the usual sexagesimal format or as intervals past injection expressed in the modified sexagesimal format in which $\mathrm{yy}=\mathrm{mm}=0$. In the latter event, the epoch $\mathrm{T}_{\mathrm{END}_{i}}$ is formed by augmenting the injection epoch by the interval. The $\Delta \mathrm{T}_{\mathbf{P R T}_{i}}$ are intervals as represented in the modified sexagesimal format.

If $T_{E N D_{i}}$ is input as zero, it is replaced by a large number but is ignored in the calculation of $\mathrm{T}_{\mathrm{END}}$. Finally the $\mathrm{T}_{\mathrm{END}}^{\mathrm{i}}$ are internally sorted and consequently need not be ir. yut in ascending sequence.

The location for $\mathrm{T}_{\mathrm{END}_{2}}$ is PRTEND +4 or DELPRT +2 , since PRTEND and DELPRT define the first of the two words in $\mathrm{T}_{\mathrm{END}_{1}}$ and $\Delta \mathrm{T}_{\mathrm{PRT}_{1}}$ respeciively.

ODDPRT $\quad T_{0 D D_{1}}$ and $T_{O D D_{2}}$ are input to provide execution of PRINTD without interrupting the main printing sequence. The format is the same as for $\mathrm{T}_{\mathrm{END}_{i}}$ and the two resultant epochs are sorted as before. $\mathrm{T}_{\mathrm{oDD}_{i}}=0$ is replaced by a large number.

Treatment of print times:

At time of entry to the new phase, $\mathrm{T}_{\mathrm{PRT}}$ is the next print time as determined by phase $n-1$. If the print reset option is chosen, $\mathrm{T}_{\mathrm{PRT}_{0}}=\boldsymbol{T}_{\phi}$ will be the first print time. Otherwise,

$$
\mathrm{T}_{\mathrm{PRT}_{0}}=\min \left\{\mathrm{T}_{\mathrm{PRT},}, \mathrm{~T}_{\mathrm{END}_{1}}\right\}
$$

No matter how $\mathrm{T}_{\mathrm{PRT}_{0}}$ is chosen,

$$
\mathrm{T}_{\mathrm{PRT}_{1}}=\left\{\begin{array}{l}
\min \left\{\mathrm{T}_{\mathrm{PRT}_{0}}+\Delta \mathrm{T}_{\mathrm{PRT}_{1}}, \mathrm{~T}_{\mathrm{END}_{1}}\right\}, \text { if } \mathrm{T}_{\mathrm{END}_{1}}>\mathrm{T}_{\mathrm{PRT}_{0}} ; \\
\min \left\{\mathrm{T}_{\mathrm{END} D_{1}}+\Delta \mathrm{T}_{\mathrm{PRT}_{2}}, \mathrm{~T}_{\mathrm{EN} D_{2}}\right\} \text { otherwise }
\end{array}\right.
$$

Thus the $\mathrm{T}_{\mathrm{END} \mathrm{D}_{i}}$'s function is to reset the printing interval and print epoch. T_{ϕ} is the time at which the nth phase starts.

E3. (Cont'd)

Prograriz

 name
Explanation

GROP The 12 octal characters of GROP are mapped onto the 12 words GROPS +0 , \cdots, CROPS + 11:
GROPS +0 geocentric
+1 geocentric conic
+2 heliocentric
+3 heliocentric conic
+4 spacecraft and powered flight
+5 target
+6 target conic
+7 print at $\dot{R}=0$ (central body only)
$\left.\begin{array}{l}+8 \\ +9 \\ +10 \\ +11\end{array}\right\}$ not used
The 3 bits of the octal digits have the following use:
bit $1\left\{\begin{array}{l}0=\text { print effective whenever called } \\ 1=\text { print effective as a function of the status of phase }\end{array}\right.$
holds for
bit $2\left\{\begin{array}{l}0=\text { print only when the start-of-phase condition holds } \\ 1=\text { print only when the end-of-phase condition holds }\end{array}\right\} \begin{aligned} & \text { bit } l=1 \text {; } \\ & \text { ignore if }\end{aligned}$ bit $1=0$
bit $3\left\{\begin{array}{l}0=\text { ecliptic output } \\ 1=\text { equatorial output }\end{array}\right.$
Special cases are:

1. All bits zero \rightarrow don't print group
2. Configuration $=3$), same as (1) above

At $\dot{R}=0$ print, the value in GROPS +7 is mapped onto the cell for the central body conic and PRINTD is executed.

Start of phase means the first time that PRINTD is called in the phase unless the end-of-phase condition has been met at that time.

End of phase means that phase has been terminated by one of the following conditions:

1. $R_{\text {END }}$ attained
2. \dot{R} test fulfilled
3. $\mathrm{T}_{\mathrm{END}}$ attained

E3. (Cont'd)

Program name

CODEI

VIEW

ORBETT If 0 , uses \mathbf{T} lying in the orbital plane of body concerned. If 1 , uses T lying either in the equatorial or ecliptic, as called for by the conic GROPS location.
The orbital planes are defined as follows:

Body:	Orbital Plane With Respect to:
Earth	Sun
Moon	Earth
Sun	Earth
Venus	Sun
Mars	Sun
Jupiter	Sun

E3. (Cont'd)

Program

name

Explanation

EQUNX1 If blank, output is referred to true equator or ecliptic and equinox of date; otherwise, the reference is to the mean equator or ecliptic and equinox of 1950.0 . Normally the BCD " 1950.0 " is used here when mean equator or ecliptic and equinox of 1950.0 is desired.

The cards representing input for the phase parameters for a given phase are terminated by a TRA 3,4 card. The last phase cards read in are indicated by a zero in the low-order bit of the parameter LAST.

F. Standard Phases

Standard phases are available for the Moon, Earth, Venus, and Mars as the target. The words TARGET and REPEAT in the case parameters control the use of the stored parameters.

If REPEAT $=-1$, the standard phases are used.
If REPEAT $=-0$, the standard phases are used but modifications may be read in to replace the stored parameters.
The stored values of the standard phases are listed in the following:

1. Stored Phase Cards for Moon as Target

Location	Type field	Phase 1	Phase 2
140	OCT	-1	0
141	BCD	MOON	MOON
142	DEC	$30 E 3$	1738.09
143	BCD	MOON	MOON
144	DEC	330 E 3	1 E3
145	OCT	1	1
146	BCD	EARTH	MOON
147	DEC	$0,0,0$	$0,0,0$
150	BCD	EARTH	MOON
151	DEC	1500,0	2000,0
153	DEC	1500,0	2000,0
155	DEC	$0,0,0,0$	$0,0,0,0$
159	DEC	$0,0,0,0$	$0,0,0,0$
163	DEC	$0,0,0,0$	$0,0,0,0$
167	OCT	550000000000	112011100000
168	OCT	0,0	0,0
170	OCT	0,0	0,0
178	OCT	0	0
179	BCD	blank	blank

F. (Cont'd)

2. Stored Phase Cards for Earth as Target

Location	Type field	Phase 1	Phase 2	Phase 3
140	OCT	-1	-1	0
141	BCD	EARTH	EARTH	EARTH
142	UEC	2.5E6	2.4 E 0	6378.
143	BCD	EARTH	EARTH	EARTH
144	DEC	0	152E6	1E3
145	OCT	1	1	1
146	BCD	EARTH	SUN	EARTH
147	DEC	0,0,0	0,0,0	0,0,0
150	BCD	EARTH	SUN	EARTH
151	DEC	14000,0	19000,0	20000,0
153	DEC	14000,0	19000,0	20000,0
155	DEC	0,0,0,0	0,0,0,0	0,0,0,0
159	DEC	0,0,0,0	0,0,0,0	ù.0,0,0
163	DEC	0,0,0,0	0,0,0,0	0,0,0,0
167	OCT	550000000000	002200000000	102000100000
168	OCT	0, 6	0,0	0,0
170	OCT	0,0	0,0	0,0
178	OCT	0	0	0
179	BCD	blank	blank	blank

3. Stored Phase Cards for Venus as Target

Locaticn	Type field	Phase 1	Phase 2	Phase 3
140	OCT	-1	-1	0
141	BCD	EARTH	VENUS	VENUS
142	DEC	2.5E6	2.5E6	6100.
143	BCD	VENUS	VENUS	VF,NUS
144	DEC	0	$-110 E 6$	1 1E3
145	OCT	1	1	1
146	BCD	EARTH	S'UN	VFINUS
147	DEC	$0,0,0$	$0,0,0$	$0,0,0$
150	BCD	EARTH	SUN	VENUS
151	DEC	2000,0	19000,0	20000,0
153	DEC	2000,0	19000,0	20000,0
155	DEC	$0,0,0,0$	$0,0,0,0$	$0,0,0,0$
159	DEC	$0,0,0,0$	$0,0,0,0$	$0,0,0,0$
163	DEC	$0, n, 0,0$	$0, C, 0,0$	$0,0,0,0$
167	OCT	550000000000	002200000000	102002200000
168	OCT	0,0	0,0	0,0

JPL TECHNICAL REPORT NO. 32-223

F3. (Cont'd)

| Location | Type field | Phase 1 | Phase 2 | Phase 3 |
| :---: | :---: | :--- | :--- | :--- | :--- |
| 170 | OCT | 0,0 | 0,0 | 0,0 |
| 178 | OCT | 0 | 0 | 1 |
| 179 | BCD | blank | blank | blank |

4. Stored Phase Cards for Mars as Target

Location	Type field	Phase 1	Phase 2	Phase 3
140	OCT	-1	-1	0
141	BCD	EARTH	MARS	MARS
142	DEC	2.5E6	2 E 6	3415.
143	BCD	MARS	MARS	MARS
144	DEC	0	240 E 6	1 E 3
145	OCT	1	1	1
146	BCD	EARTH	SUN	MARS
147	DEC	0,0,0	0,0,0	0,0,0
150	BCD	EARTH	SUN	MARS
151	DEC	2000,0	25000,0	27000,0
153	DEC	2000,0	25000,0	27000,0
155	DEC	0,0,0,0	0,0,0,0	0,0,0,0
159	DEC	0,0,0,0	0,0,0,0	0,0,0,0
163	DEC	0,0,0,0	0,0,0,0	0,0,0,0
167	OCT	550000000000	002200000000	102002200000
168	OCT	0,0	0,0	0,0
170	OCT	0,0	0,0	0,0
178	OCT	0	0	1
179	BCD	blank	blank	blank

V. FLOW CHARTS AND METHOD OF CONTROL

A. Confrol in the Space Trajectories Program

After the necessary transformation of the injection conditions to the Cartesian coordinates based on the mean equator and equinox of 1950.0, the Space Trajectories Program is controlled primarily by the subroutine MARK (see Appendix) which performs the stepwise numerical integration of the equations of motion to obtain the solution at desired points along the trajectory. The trajectory is divided into phases to permit control of output format and print frequency and of the numerical incegration process itself. Each phase is characterized by a set of phase parameters which are interpreted before the numerical integration proceeds.

During numerical integration in a phase, the derivatives are requested by MARK; the derivative routine provides the necessary information and also performs the calculation of the auxiliary dependent variables which MARK might need as requested by the associated dependent variable triggers. The end-of-step routine monitors the numerical process by computing the step size and communicating this information to MARK, by control of recification, and by determination of closest approach to a noncentral body.

At the print times, as determined by the triggers to MARK, the requested output groups are printed as described in Section VI.

B. General Flow in Space Trajectories Program

C. Flow During Iransformation of Injection Condifions

\qquad

D. Flow During Transfer of Phase Parameters

E. Flow in Phase Setup

F. End-of-Step Logic

G. Function of the Derivative Roufine

The derivative routine DOT assumer the COMMON storage layout for the iollowing quantities; coordinates are in the mean equator and equinox of 1950.0 .

$\begin{array}{c}\text { Symbol } \\ \text { T }\end{array}$	$\left.\begin{array}{c}\text { Storage } \\ \text { CX } \\ \text { CY } \\ \text { CZ }\end{array}\right\}$		
BSS 2	$\begin{array}{c}\text { Explanation }\end{array}$		
CX.			
CY.			
CZ.		$\} \quad$	Double-precision time in sec past 0^{h} January 1, 1950, U.T.
:---			

VAR
BSS 36 Solution of the variational equations

$$
\frac{\partial \mathbf{R}}{\partial X_{n}}, \frac{\partial \dot{\mathbf{R}}}{\partial X_{0}}, \frac{\partial \mathbf{R}}{\partial Y_{0}}, \cdots, \frac{\partial \mathbf{R}}{\partial \dot{Z}_{0}}, \frac{\partial \dot{\mathbf{K}}}{\partial \dot{Z}_{0}}
$$

GSS 3 Derivative of \mathbf{R} if Cowell, of ρ if Encke; placed in buffer by DOT from CX., CY., CZ.
CX.

CY. .
CZ. .

VAR.
BSS 36
$\ddot{\mathbf{R}}$ if Cowell, $\ddot{\boldsymbol{\rho}}$ if Encke; computed by DOT and placed in buffer

QX
QY
QZ
QX.
QY.
QZ.
QX0
QY0
QZ0
QZ0
QXO.
QYO.
QZN.
$\mathbf{R}=\mathbf{R}_{0}+\rho$ if Encke, same as conterı's of $\mathbf{C X}, \mathrm{CY}, \mathrm{CZ}$ if Cowell; placed in buffer by DOT
$\mathbf{V}=\mathbf{V}_{\mathbf{0}}+\dot{\rho}$ if Encke, same as the contents of CX., CY., CZ. if Cowell; placed in buffer by DOT only if velocity needed
\mathbf{R}_{0}, position solution to the two-body orbit; calculated by ENCKE only when in Encke mode
\mathbf{V}_{0}, velocity solution to the two-body orbit; calculated by SPEED only when velocity is necersary in the Encke mode

H. Fiow in the Derivative Routine

I. Aufomatic Step-Size Confrol

Step-size control is provide. es a function of the range from a selected body during a particular phase. For this purpose each body has associated with it a list of range intervals; the step size remains constant during a particular interval and is doubled for the next higher interval. For the lowest interval there is defined an h_{min}; all other step sizes chosen will therefore be of the form $h=2^{n} h_{\text {min }}$.

At the start of the integration MARK uses RungeKutta for the first m steps. Therefore, at the onset, $h_{0}=1 / 4 h_{c}$ is set in HBANK while HBANK1 is set to 2 ; after m Runge-Kutta steps and $2 m$ Adams-Moulton steps, MARK would be using $h=4 h_{0}$ for its next step. The control section permits the Runge-Kutta steps to be carried out before attempting to modify the step size to new h_{c}.

Assuming MARK is using Adams-Moulton for the integration, h_{c} is computed at the end of each step and compared with h, the value MARK is using. If $h_{1}=2^{k} h$, where k is the number of uncompleted doubles, then the following tests are made:

1. $\quad h_{\mathrm{c}}=h_{1}$: No action to be taken
2. $h_{c}>h_{1}$: Augment HBAiiX1 by the number of additional doubles necessary to make $h=h_{c}$ and call ABTB to let MARK pick up the additional doubles. Record the change.
3. $h_{c}<h=h_{1}$: Augment HBANK2 by number of halves necessary to make $h=h_{c}$ and call ABTB to let MARK pick up the additional halves. Record the change. $h=h_{1}$ was indicated by the fact that $\mathrm{HD}=0$.
4. $\boldsymbol{h}_{\mathrm{c}} \leqslant h<\boldsymbol{h}_{1}$: Set ND $=$ HBANKl $=0$ and wait until $\mathrm{HD}=0$ at a later integration step. Save number of necessa. Lilves and execute (3) when $h=h_{1}$, i.e., when $\mathrm{HD}=0$.
5. $h<h_{c}<h_{1}$: Let MARK double up to h_{c} by alter ing both HBANKI and ND. Record change and continue, but do not call ABTB.

It is to be noted that controlling step size in the above manner does not produce instantaneous changes in the current MARK step h. Tinerefore, a conservative choice of values has been made in the range lists to insure
stability of the numerical solution in all the practical cases which have arisen. Each $h_{\text {min }}$ for the planets has been chosen to give good results for a low-altitude satellite whose orbit is to be calculated using an Encke scheme.

If a Cowell scheme is to be used, the program sets $h_{\text {min }}^{\prime}=h_{\text {min }} / 2$; thus the step-size regimen consists of a precise and uniform halving of all step sizes in the range intervals; automatic halving and doubling are consequently executed in general in a shorter time span in the Cowell mode.

The base step-size and range lists are accessible via the symbolic input location $\mathbf{H}((0))$. Tine exact internal structure follows:

Location	Value, sec	Explanation
-6	120	4
-5		not used
-4	60	σ
-3	60	\doteqdot
-2	43,200	\odot
-1	60	\mathbb{C}
$\mathrm{H}((0))-0$	60	\oplus

Range list for Earth and Venus

Location	Value, km
$\mathrm{H}((0))+1$	10^{20}
+2	2.8×10^{9}
+3	1.8×10^{6}
+4	10^{6}
+5	600,000
+6	400,000
+7	120,000
+10	80,000
+11	30,000
+12	16,000
LSTOO $=\mathrm{H}((0))+13$	8,000

Range list for Mars

Location	Value, $k m$
$\mathbf{H}((0))+14$	10^{20}
+15	2×10^{6}
+16	1.2×10^{6}
+17	800,000
+20	500,000
+21	300,000
+22	100,000
+23	60,000
+24	25,000
+25	12,000
LST04 $=\mathrm{H}((0))+26$	6,000

Range list for Jupiter (cont'c)

Location	Value, $\boldsymbol{k m}$,
$+\mathbf{4 7}$	300,000
+50	200,000
LST06 $=\mathrm{H}((0))+51$	100,000

Range list for Sun

Location	Value, $k n i$
	10^{9}
' .	600×10^{6}
$+54$	300×10^{6}
$+55$	100×10^{6}
LST02 $=\mathrm{H}((0))+56$	40×10^{8}

It would probably be worthwhile to conduct analytic and experimental studies to redistribute the rang: intervals to reduce machine running time.

1. MARK locations used

HD: Flag: $0=$ no uncompleted double $1=$ doubling not completed

ND: If $H D=0$, is 0 . Otherwise number of doubles to be completed - 1 .

J: Number of Runge-Kutta steps completed +1 .
$\mathrm{J} \leqslant m+1$, where $m=$ order of the highest difference retained in the Adams-Moulton integration.

ABTB: MARK subroutine which inspects HBANK1 and HBANK2 to determine need for additional halving or doubling.

2. Contents of HBANK

HBANK2 address = number of halves
HBANK1 address = number of doubles
HBANK \boldsymbol{h}_{0} : initial step for Punge-Kutta

3. Flow Chart for the Step-size Control

VI. DESCRIPTION OF THE OUTPUT FOR THE SPACE TRAJECTORIES PROGRAM WITH INTERPRETATION OF THE MNEMONIC CODES

A. Outpuf Philosophy

The output of the Space Trajectories Program displays for each trajectory the fundamental astronomical constants used in the calculation, the injection conditions which serve as a starting point for the trajectory, and desired output groups which are requei ied principally as a function of time. The selection of the groups and the print times is phase-dependent s described in Section IVE-2. The start of the phase in which powerd flight is used is heraldu by the pc.wered-flight neader.

To facilitate identifcation of the output quantities, a lettered mnemonic code procedes the floating-point representation of the quantity printed; each output group consists of an array of pairs and falls into one of the classifications: geocen'ric, geocentric conic, heliocentric, heliocentric conic, spacecraft and powered flight, target, and target conic. Each output grov p is further identified by a header whirb gives the reference bordy for the group and the class of output, and whi h fur' er identifies the group in addition to the mnemonic codes.

As a further class of output, each tracking station has for identification a unique narue which e.ppears in its output group; all station output is of the same format except for the station name which therefore functions as an identifying header.

B. E:iplanetion of Output and Mnemonic Codes

A sample output of the Space Trajectories Program is given in Exhibit A, followed by explanations of related output groups and interpretation of the mnemonic codes.
Exhibit A. Sample of space Irajectories owiput \qquad

 -EOUATORTAL"COOROINATE5"

 Nō̃:- $4.1961^{-\cdots} 161^{-14.028}$ EDUATORTAL COCROINRTES

CASE..

LUNAR TRAJECIORY FCR OISPLAY OF CUTOUY
EQUATORIAL COORDINATES OES'Eラ 8 I
 ECLIPTIC COORDINATES

SPACEGRAFI AITLIUCE AAO PGHEREQ FLIGFT_ SELENDCENTRIC_ EQUATORIAL CORROINATES

EQUATORIAL COOROINATES

[^2]MOV. 4,1951

NO. 32-223
(Page K)
SPACE TRAJECTORIES

[^3]CASE (N)
*If ecliptic coordinates are input, then ECLIIPTIC is printed; otherwise space is
left blank.

 are input, then ECL.IPTIC is printed; otherwise space is
HRUST $F \quad$ FLOW $\dot{m} \quad$ MASS m_{0}

$\begin{array}{lll}F & & \\ \dot{m} \text { thrast, lb force } & \\ m_{0} \text { mass flow rate, } \mathrm{lb} \text { mass } / \mathrm{sec} & \\ t_{B} \text { burning interval, sec }\end{array}$

$$
\begin{array}{ll}
\boldsymbol{R} & \text { radius, km } \\
\boldsymbol{\Phi} & \text { declinatio ., deg } \\
\boldsymbol{\Theta} & \text { right ascension, deg } \\
\boldsymbol{V} & \text { velocity, kuı/sec } \\
\text { I } & \text { path angle, deg } \\
\mathbf{\Sigma} & \text { azimuth angle, deg }
\end{array}
$$

Format for time at print epoch:
(SEXAGESIMAL INTERVAL
PAST INJECTION)

The pourered-flight header appears only at the start of the powered-fight phase
(JULIAN DATE)
(EQUINOX)

GEOCENTRIC GROUP										
GEOCENTRIC							(COORDINATE PLANE)			
$\mathrm{X} \quad \mathrm{X}$	Y	\boldsymbol{Y}	Z		DX	$\dot{\mathrm{X}}$	D X	$\dot{\text { Y }}$	DZ	$\dot{\mathbf{z}}$
R R	DEC	Φ				v	PTH	Γ	AZ	ェ
R \boldsymbol{r}	Lat	中	L.ON		VE	v	PTE	γ	AZE	σ
Xs X_{8}	YS	$\boldsymbol{Y}_{\boldsymbol{g}}$	zS		DXS	\dot{X}_{8}	DYS		DZS	$\dot{\mathbf{Z}}_{8}$
XM X_{4}	YM			Z_{k}	DXM	\dot{X}_{4}	DYM	\dot{Y}_{4}	DZM	\dot{Z}_{1}
XT $\mathrm{X}_{\boldsymbol{r}}$	YT				DXT	\dot{X}_{T}	DYT		DZ7'	$\mathrm{Z}_{\text {r }}$
RS $\mathrm{R}_{\boldsymbol{s}}$	vs	V_{s}			VM	V_{1}	R'T		VT	
GED $\boldsymbol{\phi}^{\prime}$	ALT		LOS		RAS	0_{s}	RAM		LOM	θ_{M}
LUT ΔT							DES	Φ_{s}	DEM	Φ_{4}

OSCULATING CONICS

-Values , ne printed in the heliocentric and target-centered conics. In addiiion, the \quad SZI in line six and prints DAO and RAO in place of DAI and RAI in line three.
target-antered conic prints an extra line marted SXO SYO SZO DAO RAO TF

SXI SYI The gancentric cunic prints SXO SYO SZO in place of SXI SYI id and ${ }^{\circ}$ are printed only in geocentric conic.
HELIOCENTRIC GROUP

[^4]SPACECRAFT GROUP

(TARGET) CENTRIC

X	X	Y	\boldsymbol{Y}	Z	Z)X	\dot{X}	DY	\dot{Y}	DZ	$\dot{\mathbf{Z}}$
R	\boldsymbol{R}	DEC	¢	RA	\bigcirc	V	V	PTH	Γ	AZ	Σ
R	r	LAT	ϕ	LON	θ	VR	v	PTR	γ	AZR	σ
LTS	$\beta_{8 \odot}$	LNS	$\lambda_{\mathbb{1}}$	LTE	$\beta_{\text {¢ }}$	LNE					
ALT	h_{r}	SH:	d	ALP	$\boldsymbol{\alpha}$	DR	$\dot{\boldsymbol{R}}$	DP		ASD	δ
HGE	$\Theta_{8 E}$	SVL	$\boldsymbol{\Phi}_{s T}$	HNG	$\epsilon_{\text {Sr }}$	SIA	$\delta_{\text {F }}$				

APPENDIX
 Description of Maijor Subroutines

INDEX

1. Input-Ouíput Routines ?
ECLIP Rotates equatorial Cartesian coordinates to ecliptic and vice versa 56
GHA Calculates Greenwich hour angle of the vernal equinox 56
GEDLAT Computes geodetic latitude as a function of the geocentric latitude 56
JEKYL Provide orbital elements for output as a function of SPECL rectangular coordinates 57
CLASS
EARTH Transforms Earth-fixed spherical to space-fixed Cartesianccordinates for input60
SPACE 'Iransformr space-fixed Cartesian to Earth-fixed spherical coordinates for output 60
RVIN Transforms spherical to Cartesian coordinates 61
RVOUT Transforms Cartesian to spherical coordinates 6.1
LOOP Cenerates station-fixed or topocentric coordinates as a function of space-fixed Cartesian coordinates 63
2. Basic Coordinate Transformutions 66
ROTEO Transforms Cartesian coordinates from the mean equator and equinox of date to the mean equator and equinox of 1950.0 and vice versa 66
NUTATE Transforms Cartesian coordinates from the true equator and equinox of date to the mean equator and equinox of date and vice versa 67
MNA Calculate the nutations $\delta \psi$ and $\delta \varepsilon$ for NUTATE; trans- MNAL form Moon-fixed Cartesian position coordinates to the mean equator and equinox of 1950.0 and vice versa 68
MNAMD Transform Moon-fixed Cartesian vel city coordinates to MNAMD1 the mean equator and equ' $10 x$ of 1950.0 and vice versa 39
3. Ephemeris 70
INTR Read ephemeris tap ${ }^{3}$, interpolate on coordinater o ubtain 1 N'TR1 intermediate values of the positions and velocities 70
4. Encke Method Calculations 72
ENCKE Calculates the Encke contribution to the arrsler tion instead of the central-body term 72

INDEX ICont'd:

ORTHO Obtains initial conditions for integration in the Encke mode 72
CONIC Obtains orbital elements suitable for the Encke method from rectangular coordinates at the initial point of integration in the Encke mode 73
QUADK: Obtains solution to Kepler's equation for the hyperbolic case 74
KEPLER Obtains solution to Kepler's equation for the elliptic case and generates the corresponding Cartesian position coordinates for either the ellipse or the hyperbola 76
PERI Solves the pericenter equation for the true anomaly and obtains the Cartesian position coordinates in the two-body orbit 76
SPEED Calculates the Cartesian velocity coordinates in the two-body orbit 76
5. Periurbations 77
HARMN Calculate contribution to acseleration arising from the HARMN1 oblate figure of the Earth 77
XYZDD Calculate contribution to acceleration arising from the XYZDD1 triaxial ellipsoidal figure of the Moon. 78
BODY Calculate contribution to acceleration from the influence BODY1 of the noncentral bodies 80
6. Variational Equations 80
VARY Calculate coefficients for derivatives to be used for the SVARY variational equations 80
7. Numerical Infegration 82
MARK Obtains numerical solution of the equations of motion for evaluation at specific times and for specified values of chosen dependent variables 82

1. Input-Ouiput Routines

ECLIP

The ecliptic plane is characterized by its inclination to the equator, ϵ, the obliquity f the ecliptic, and its ascending node on the equator, the vernal equinox.

Sket:h A-1. Relation between ecliptic
and equatorial planes
In ${ }^{\text {cketch } A-1, X, Y, Z}$ is the equatorial frame; $X_{\epsilon}, Y_{\epsilon}, Z_{\epsilon}$ the ecliptic. r is the vernal equinox. The coordinates are related by

$$
\left(\begin{array}{c}
X_{\epsilon} \\
Y_{\epsilon} \\
Z_{\epsilon}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \epsilon & \sin \epsilon \\
0 & -\sin \epsilon & \cos \epsilon
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)
$$

The calling sequence is given by
CALL ECLIP
(OP) X,Y
$X-3, X-2, X-1$ contain the input vector; $Y-3$, $\mathrm{Y}-2, \mathrm{Y}-1$ contain the output vector; $\mathrm{X}=\mathrm{Y}$ is permitted. $O P=P Z E$ assumes equatorial input to be rotated to ecliptic; $\mathrm{Or}=\mathrm{MZE}$ regards input as ecliptic and rotates to equatorial.

Normally X, Y, Z is regarded as the true equator and equinox of date and ϵ the true obliquity; however, for some applications it is necessary to rotate between the mean equator and equinox of 1950.0 and the ecliptic of 1950.0; for the latter purpose $\bar{\epsilon}_{19,0.0}$, the mean obliquity of 1950.0 , is used. To provide for this flexibility, ECLIP assumes that the desired obliquity has been placed in the COMMON location ET.

The subroutine uses nine cells of erasable storage starting at COMMON.

GHA

For purposes of calculating $T(T)$, the Greenwich hour angle of the vernal equinox at epoch T, the following mean value is assumed:

$$
\begin{aligned}
T_{Y}(T) & \equiv 100: 07554260+0.9856473460 d \\
& +(2: 9015) 10^{-13} d^{2}+\text { wt }\left(\bmod 360^{\circ}\right) \\
& \equiv \Upsilon_{Y}(T)<360^{\circ}
\end{aligned}
$$

where T is the epoch under consideration in U.T.; d is integer days past 0^{h} January 1,1950 ; t is seconds past 0^{h} of the epoch T. ω, the Earth's rotation rate, is assumed to be a function of time:

$$
\omega=\frac{0.00417807417}{1+(5.21) 10^{-13} d} \mathrm{jeg} / \mathrm{sec}
$$

Given $\delta \alpha$, the nutation in right ascension, the true value of the hour angle is computed:

$$
\Upsilon(T)=\Upsilon_{y}(T)+\delta \alpha
$$

The calling sequence consists of
CALL GHA,
where it is assumed that the U.T. epoch appears in dou-ble-precision seconds past 0^{h} January 1, 1950, in the COMMON cells $T, T+1$, and that $\delta \alpha$ has been computed and appears in NUTRA. $\boldsymbol{T}(T)$ is stored in the COMMON location GHA(T), while ω is placed in OMEGA and ω in rad/sec is stored in LOMEGA.

The subroutine uses seven cells of erasable storage starting at COMMON.

GEDLAT

To obtain an accurate numerical expression for the small difference between the geodetic latitude ϕ^{\prime} and the geocentric latitude ϕ, a Fourier series expansion is resorted to. The geometry appears in Sketch A-2:

Sketch A-2. Geodetic and geocentric latitudes

Consider a point P above the Earth and extend a line to the center of the Earth O. If a spheroidal Earth is assumed, then let $G Z$ be the spin axis of the Earth and the plane $Z O X$ contain the line $O P$ with Q the intersection of $O P$ with the surface; $O X$ lies in the equatorial plane. Then the angle ϕ, the geocentric latitude. is the angle between the lines $O Q$ and $O X$. If the normal $Y Q$ to the surface is constructed at Q to intersect $O X$ at Y, then ϕ^{\prime}, the geodetic latitude, is the angle between the lines $Y Q$ and $Y X$. The ellipse of cross section is characterized by a, the semimajor axis, ard b, the seniminor axis. It is convenient to introduce $\varepsilon^{2}=1-b^{2} / a^{2}$ to describe $\phi-\phi^{\prime}$ by a Fourier series.

As the defining relation, $\tan \phi=\left(1-\varepsilon^{2}\right) \tan \phi^{\prime}$ is adopted which leads to the series in $2 \phi^{\prime}$ for $\dot{\phi}-\phi^{\prime}$:

$$
\phi-\phi^{\prime}=\sum_{j=1}^{\infty} a_{j} \sin 2 i \phi^{\prime}
$$

where

$$
a_{j}=\frac{(-1)^{j}}{j}\left(\frac{\varepsilon^{2}}{2-\varepsilon^{2}}\right)^{j}
$$

Alternatively, $\phi^{\prime}-\phi$ may be expanded as a Fourier series in 2ϕ :

$$
\phi^{\prime}-\phi=\sum_{j=1}^{\infty} b_{j} \sin 2 j \phi
$$

where the b_{j} are obtained by replacing $1-\varepsilon^{2}$ by $1 /\left(1-\varepsilon^{2}\right)$ in the expression for the a_{j}. Incidentally, $b_{j}=(-1)^{j} a_{j}$ is obtained by performing the substitution.

Using the Clarke spheroid of 1866 with $a=6378.2064$ $\mathrm{km}, b=6356.5838 \mathrm{~km}$, and the derived vaiue $\varepsilon^{2}=$ 0.006768657997 , the following numerical formula results:

$$
\phi^{\prime}-\phi=b_{1} \sin 2 \phi+b_{2} \sin 4 \phi+b_{3} \sin 6 \phi
$$

where

$$
\begin{aligned}
& b_{1}=0: 19456624 \\
& b_{2}=0: 00033036 \\
& b_{3}=0: 00000075
\end{aligned}
$$

An auxiliary problem is the determination of the altitude of P above the spheroid. An approximate solution is obtained by regarding $\overline{Q P}=h$ as the desired altitude. If $R=\overline{O P}$ is given, then if $\rho=\bar{O} \bar{Q}$ is calculated, h would be given by $h=R-\rho$.

The arc of the ellipsc may be described by the paramter ψ, where $x=a \cos \psi, y=b \sin \psi$ for $Q(x, y)$. Then ihe expression for ρ is

$$
\rho=a \sqrt{1-\varepsilon^{2} \sin ^{2} \psi}
$$

Actually, the formula programmed for ρ differs in that ϕ was used for ψ :

$$
\rho^{\prime}=a \sqrt{1-\varepsilon^{2} \sin ^{2} \phi}
$$

The numerical difference between the two formulas may be assessed by expanding ρ and ρ^{\prime} in power series in ε^{2} and using the relation

$$
\begin{gathered}
\sin ^{2} \phi=\frac{\left(1-\varepsilon^{2}\right) \sin ^{2} \psi}{1-\varepsilon^{2} \sin ^{2} \psi}: \\
\frac{\rho}{a}=1-\frac{1}{2} \varepsilon^{2} \sin ^{2} \psi-\frac{1}{8} \varepsilon^{4} \sin ^{4} \psi-\frac{1}{16} \varepsilon^{6} \sin ^{6} \psi+O\left(\varepsilon^{8}\right) \\
\frac{\rho^{\prime}}{a}=1-\frac{1}{2} \varepsilon^{2} \sin ^{2} \psi \\
+\varepsilon^{4}\left\{-\frac{1}{2} \sin ^{2} \psi\left(\sin ^{2} \psi-1\right)-\frac{1}{8} \sin ^{4} \psi\right\} \\
\\
+\varepsilon^{6}\left\{-\frac{3}{4} \sin ^{4} \psi\left(\sin ^{2} \psi-1\right)-\frac{1}{16} \sin ^{6} \psi\right\}+O\left(\varepsilon^{8}\right)
\end{gathered}
$$

so

$$
\rho^{\prime}-\rho=a\left\{\frac{1}{8} \varepsilon^{4} \sin ^{2} 2 \psi+\frac{3}{16} \varepsilon^{6} \sin ^{2} \psi \sin ^{2} 2 \psi+O\left(\varepsilon^{8}\right)\right\}
$$

Thus the maximum difference, occurring near $\psi=45^{\circ}$, should be about $a \varepsilon^{4} / 8 \approx 0.06 \mathrm{~km}$.

The calling sequence is given by

$$
(A C)=\phi
$$

CALL GEDLAT
and upon return

$$
(A C)=\phi^{\prime},(M Q)=\rho^{\prime}
$$

The subroutine uses 10 words of erasable storage starting at COMMON.

JEKYL

JEKYL is the subroutine which is used to generate orbital elements to be used either as input to the subroutines CLASS and SPECL. or for printed output. The equations used are similar in most respects to those described in the discussion of CONIC (Section 4, Appendix) and are listed here for compasison.

$$
p=\frac{R^{2} V^{2}-(R \dot{R})^{2}}{\mu}, \text { the semilatus rectum, }
$$

JPL TECHNICAL REPORT NO. 32-223
where

$$
\begin{aligned}
& R \dot{R}=\mathbf{R} \cdot \mathbf{V} \\
& c_{1}=\sqrt{R^{2} V^{z}-(R \dot{R})^{2}}, \text { the angular momentum } \\
& \frac{1}{a}=\frac{2 \mu-R V^{2}}{R_{\mu}} \\
& c_{3}=-\frac{\mu}{2}, \text { the "energy" or vis viva integral }
\end{aligned}
$$

At this point a test is made with the help of the I.D. input to determine whether or not a is an acceptable parameter. a^{*} is defined by

$$
a^{*}=\left\{\begin{array}{l}
10^{10} \mathrm{~km} \text { for the planets } \\
10^{9} \mathrm{~km} \text { for the Sun } \\
10^{12} \mathrm{~km} \text { for the Moon }
\end{array}\right.
$$

The motion is considered parabolic and c_{3} is set to zero whenever $|a|>a^{*}$.

$$
\begin{aligned}
1-\varepsilon^{2} & =\frac{p}{a} \\
\varepsilon & =\sqrt{1-\left(1-\varepsilon^{2}\right)}, \text { the eccentricity } \\
\cos v & =\frac{p-R}{\varepsilon R} \\
\sin v & =\frac{\dot{R}}{\varepsilon} \sqrt{\frac{p}{\mu}}, \text { true anomaly } \\
q & =\frac{p}{1+\varepsilon}, \text { closest approach distance } \\
\mathbf{W} & =\frac{\mathbf{R} \times \mathbf{V}}{c_{1}}, \text { unit angular momentum vector } \\
\mathbf{U}_{1} & =\frac{\mathbf{R}}{?} \\
\mathbf{V}_{1} & =\frac{R}{c_{1}} \mathbf{V}-\frac{\dot{R}}{c_{1}} \mathbf{R} \\
\mathbf{P} & =\cos v \mathbf{U}_{1}-\sin v \mathbf{V}_{1} \\
\mathbf{Q} & =\sin v \mathbf{U}_{1}+\cos v \mathbf{V}_{1}
\end{aligned}
$$

If $c_{3} \neq 0, T-T_{p}$ is computed from Kepler's equation according to the sign of a :

If $a>0$:

$$
\left\{\begin{array}{l}
\cos E=\frac{R}{p}(\cos v+\varepsilon) \\
\sin E=\frac{R}{p} \sqrt{1-\varepsilon^{2}} \sin v
\end{array}\right.
$$

$$
\begin{aligned}
M= & E-\varepsilon \sin E \text { if } 1-\varepsilon>0.1 \\
& \text { or if } 1-\varepsilon \leqq 0.1 \text { and }|\sin E|>0.1 \\
M= & (1-\varepsilon) \sin E+\left(\frac{\sin ^{3} E}{6}+\frac{3 \sin ^{5} E}{40}\right) \\
& \text { if } 1-\varepsilon \leqq 0.1 \text { and } \cos E>0,|\sin E| \leqq 0.1 \\
M= & n\left(T-T_{p}\right) \text { where } \varepsilon=\sqrt{\mu} a^{-3 / 2}
\end{aligned}
$$

If $\boldsymbol{a}<\mathbf{0}$:

$$
\begin{aligned}
& \sinh E= \frac{R \dot{R}}{\varepsilon \sqrt{\mu|a|}} \\
& M=\varepsilon \sinh -F-\text { if } \varepsilon-1>0.1 \text { or if } \varepsilon-1 \leqq 0.1 \\
& \quad \text { and }|\sinh F|>0.1 \\
& M=(\varepsilon-1) \sinh F-\left(\frac{3 \operatorname{inh}^{5} F}{40}-\frac{\sinh ^{3} F}{6}\right) \\
& \quad \text { if } \varepsilon-1 \leqq 0.1 \text { and }|\sinh F| \leqq 0.1 \\
& M= n\left(T-T_{p}\right) \text { where } n=\sqrt{\mu}|a|^{-3 / 2}
\end{aligned}
$$

If $c_{3}=0$, the formula for the parabola is used:

$$
i=\sqrt{\mu}\left(T-T_{p}\right)=q D+\frac{1}{6} D^{3}
$$

where $D=R \dot{R} / \sqrt{\mu}=\sqrt{2 q} \tan \nu / 2$

JEKYL may be called by the sequence
CALL JEKYL
PZE $0, \mathrm{~A}$
PZE B, C
PZE D, 0
PZE E, F
PZE G
(ERROR RETURN)
The locations $\mathbf{A}, \mathbf{A}+1$ contain for input μ and an I.D. number:

$$
\begin{aligned}
& 0=\text { planets } \\
& 1=\text { Moon } \\
& 2=\text { Sun }
\end{aligned}
$$

The cells $\mathrm{B}, \mathrm{B}+1, \mathrm{~B}+2$ contain the input position vector R, and the locations $C, C+1, C+2$ contain the input velocity vector \mathbf{V}; the vectors \mathbf{P}, \mathbf{Q}, and W are output to the locations $\mathrm{D}, \ldots, \mathrm{D}+8$. The single-precision epoch T is input to location E, while the singleprecision epoch of closest approach T_{p} is output to location F. Finally, the locations $G, \ldots, G+2$ are used to output the ciantities $\Delta T=T-T_{m}, c_{1}$, and c_{3}.

Additional quantities are stored at the COMMON locations

ECCEN	ε
IMINE	$1-\varepsilon$
AVAL	a
PVAL	p
NORB	n
INU	0
JECAN	E (or $F)$
MENAN	M

The subroutine uses 15 words of erasable storage starting at COMMON.

SPECL

The subroutine SPECL is used to calculate the auxiliary impact parameters $\mathbf{B} \cdot \mathbf{T}$ and $\mathbf{B} \cdot \mathbf{R}$ along with reference unit vectors $\mathbf{R}, \mathbf{S}, \mathbf{T}$ and also \mathbf{B} itself. Two cases arise accerding to the value of ε :
(1) $\varepsilon \geqq 1$, the hyperbolic case with $a<0$
$\mathbf{S}=\left\{\begin{array}{c}\frac{1}{\varepsilon} \mathbf{P}+\frac{\sqrt{\varepsilon^{2}-1}}{\varepsilon} \mathbf{Q} \\ \text { for the incoming asymptote } \\ \frac{-1}{\varepsilon} \mathbf{P}+\frac{\sqrt{\varepsilon^{-}-1}}{\varepsilon} \mathbf{Q} \\ \text { for the outgoing asymptote }\end{array}\right.$
$\mathbf{B}=\left\{\begin{array}{l}\frac{|a|\left(\varepsilon^{2}-1\right)}{\varepsilon} \mathbf{P}-\frac{|a| \sqrt{\varepsilon^{2}-1}}{\varepsilon} \mathbf{Q} \\ \text { for the incoming asymptote } \\ \frac{|a|\left(\varepsilon^{2}-1\right)}{\varepsilon} \mathbf{P}+\frac{|a| \sqrt{\varepsilon^{2}-1}}{z} \mathbf{Q} \\ \text { for the outgoing asymptote }\end{array}\right.$
(2) $e<1$, the elliptic case with $a>0$
$\mathbf{S}=\mathbf{P} \quad\left\{\begin{array}{l}\text { for both the incoming and }\end{array}\right.$ $\left.\mathbf{B}=a \sqrt{\tau^{2}-1} \mathbf{Q}\right\}$ outgoing asymptote options

The remaining two reference v ctors \mathbf{T} and \mathbf{R} are given in either the hyperbolic or elliptic case by

$$
\begin{aligned}
& \mathbf{T}=\left(\frac{S_{y}}{\sqrt{S_{z}^{2}+S_{y}^{2}}}, \frac{-S_{s}}{\sqrt{S_{s}^{2}+S_{y}^{2}}}, 0\right) \\
& \mathbf{R}=\mathbf{S} \times \mathbf{T}
\end{aligned}
$$

SPECL is callcd according to the sequence
(AC) $=a, a<0$ for hyperbola
$(M Q)=\varepsilon$
CALL SPECL
PZE A, n
PZE B
(ERROR RETURN)
The locations $A, \ldots, A+8$ cortain the vectors \mathbf{P}, \mathbf{Q}, $W ; n=0$ is a flag for output to be referenced to an incoming asymptote while $n=1$ references the output to an outgoing asymptote. The output is placed in the table $B, \ldots, B+14$ where the assignment is in sequence $\mathbf{B} \cdot \mathbf{T}, \mathbf{B} \cdot \mathbf{R}, \mathbf{S}, \mathbf{B}, \mathbf{T}, \mathbf{R}$.

The error return will only be used in the case that $|a|$ is sc large that a^{2} exceeds the machine capacity, an event which may happen only for wild trajectories resulting $f \cdots$ an input error.

The subroutine uses four words of erasable storage beginning at COMMON.

CLASS

CLASS was written as a subroutine to calculate additional orbital elements from those provided by JEKYL.

Sketch A-3. Description of the Euler angles for the orbital plane

The formulas that may be deduced from Sketch A. 3 are as follows:

$$
\begin{aligned}
& i=\cos ^{-1} W_{z}, \quad \text { where } 0 \leqq i \leqq 180^{\circ} \text { for the inclination } \\
& \begin{cases}\sin \Omega=\frac{W_{z}}{\sin i} \\
\cos \Omega=\frac{-W_{v}}{\sin i}, & \begin{array}{c}
\text { where } 0 \leqq \Omega< \\
\text { ascension of the ascending node }
\end{array}\end{cases}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\sin \omega=\frac{P_{z}}{\sin i} \\
\cos \omega=\frac{Q_{z}}{\sin i}, \quad \begin{array}{c}
\text { where } 0 \leqq \omega \leqq 360^{\circ} \text { for the argu- } \\
\text { ment of the pericenter }
\end{array}
\end{array}\right.
$$

The formulas for Ω may be derived by constructing the unit vector \mathbf{N} at the ascending node:

$$
\mathbf{N}=\frac{\mathbf{U} \times \mathbf{W}}{|\mathbf{U} \times \mathbf{W}|}
$$

where $\mathrm{U}=(0,0,1)$ and $\sin i=|\mathbf{U} \times \mathbf{W}| . \mathrm{N}$ is then projected onto the X and Y axes to give the formulas for the cosine and the sine.

Next, the auxiliary unit vector $\mathbf{M}=\mathbf{W} \times \mathbf{N}$ is constructed so that ω is given by
$\left\{\begin{array}{l}\sin \omega=\mathbf{P} \cdot \mathbf{M}=\mathbf{P} \cdot(\mathbf{W} \times \mathbf{N})=-\mathbf{N} \cdot(\boldsymbol{W} \times \mathbf{P})=-\mathbf{N} \cdot \mathbf{Q} \\ \cos \omega=\mathbf{P} \cdot \mathbf{N}\end{array}\right.$
The conic parameters are given by the standard formulas for $c_{1} \neq 0$:
$q=\frac{p}{1+\varepsilon}$, the closest approach distance
$V_{p}=\frac{\mu(1+\varepsilon)}{c_{1}}$, the velocity at closest approach
$V_{a}=\frac{\mu(1-\varepsilon)}{c_{1}}$, velocity at farthest departure $\left(c_{3}<0\right)$
$V_{h}=\sqrt{c_{3}}$, hyperbolic excess velocity ($c_{3}>0$)
$q_{2}=a(1+\varepsilon)$, farčhest departure distance $\left(c_{3}<0\right)$
$P=\frac{2 \pi}{n}$, the period
For an Earth satellite, the quantities $\dot{\omega}$ and $\dot{\Omega}$ are also computed:

$$
\begin{aligned}
& \dot{\omega}=\frac{n J a_{\oplus}^{2}}{p^{2}}\left(2-\frac{5}{2} \sin ^{2} i\right) \\
& \dot{\Omega}=\frac{-n J a_{\Phi}^{2}}{p^{2}} \cos i
\end{aligned}
$$

where J is the coefficient of the second harmonic in the Earth's oblateness and a_{\oplus} is the value of the Earth radius in km . The subroutine assumes that n has been given in $\mathrm{rad} / \mathrm{sec}$ and p in km so that $\dot{\omega}$ and $\dot{\Omega}$ may be converted to deg/day for output.

The subroutine is called according to the sequence
CALL CLASS
PZE
A, , B

PZE C
(ERROR RETURN)
(ERROR RETURN FOR PARAbOLA)
Input locations $A, \ldots, A+8$ contain the vectors \mathbf{P}, \mathbf{Q}. W, while the table composed of $c_{1}, c_{3}, \mu, \varepsilon, l-\varepsilon, a, p$, and n is used as input from the cells $B, \ldots, B+7$. The output is stored in the cells $\mathrm{C}, \ldots, \mathrm{C}+9$ forming the table

```
i
\Omega
\omega
q
V
Va (or Vh if c}\mp@subsup{c}{3}{}>0
q}\mp@subsup{q}{2}{(or zero if c3>0)
P (or zero if cu>0)
\dot{\omega}
\Omega
```

In the event $c_{3}=0$ at entry, the parabola error return is given.

The subrontine uses four cells of erasable storage starting at COMMON.

EARTH, SPACE

At the epoch ${ }^{T}$ a a "space-fixed" Cartesian coordinate system is defined, centered at the Earth with the $X-Y$ plane the equator, the X axis the direction of the vernal equinox, and the Z axis the spin axis of the Earth. The "Earth-fixed" frame is obtained from the space-fixed by rotating about the Z axis by an angle $\Gamma(T)$, the Greenwich hour angle of the vernal equinox, to bring the x axis in coincidence with the Greenwich meridian (Sketch A-4).

Sketch A-4. Earth-fixed equatorial coordinate systom

The coordiudtes are then related by

$$
\begin{aligned}
\binom{x}{y} & =\left(\begin{array}{rr}
\cos \Upsilon(T) & \sin r(T) \\
-\sin \Upsilon(T) & \cos r(T)
\end{array}\right)\binom{X}{Y} \\
z & =\mathbf{Z},
\end{aligned}
$$

and

$$
\begin{aligned}
&\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{rr}
\cos \Upsilon(T) & \sin \Upsilon(T) \\
-\sin \Upsilon(T) & \cos \Upsilon(T)
\end{array}\right)\binom{\dot{X}}{\dot{Y}} \\
&+\omega\left(\begin{array}{rr}
-\sin \Upsilon(T) & \cos \gamma(T) \\
-\cos \gamma(T) & -\operatorname{in} \gamma(T)
\end{array}\right)\binom{\dot{X}}{\dot{Y}} \\
& \dot{z}=\dot{\mathrm{Z}},
\end{aligned}
$$

where ω is the rotation rate of the Earth.
The coordinates may be inverted to give

$$
\begin{aligned}
\binom{X}{Y} & =\left(\begin{array}{rr}
\cos \Upsilon(T) & -\sin \Upsilon(T) \\
\sin \Upsilon(T) & \cos \Upsilon(T)
\end{array}\right)\binom{x}{y} \\
Z & =z
\end{aligned}
$$

and

$$
\begin{aligned}
\binom{\dot{X}}{\dot{Y}} & =\left(\begin{array}{rr}
\cos \gamma(T) & -\sin \gamma(T) \\
\sin \gamma(T) & \cos \gamma(T)
\end{array}\right)\binom{\dot{x}}{\dot{y}} \\
& +\omega\left(\begin{array}{rr}
-\sin \gamma(T) & -\cos \Upsilon(T) \\
\cos \gamma(T) & -\sin \gamma(T)
\end{array}\right)\binom{x}{y} \\
\dot{Z} & =\dot{z}
\end{aligned}
$$

Sketch A-5. An Eorth-fixed spherical set
of coordinafe system

In Sketch A-亏r, 1 is the radius, ϕ the north latitude, and θ the east longitude of the Earth-fixed position vector. It is convenient to translate the Earth-fixed velocity vector v to the end of the position vector and project it on the
local horizontal, a plane perpendicular to r. v is the magnitude, γ the path angle or the elevation angle above the local horizoltal, and σ the azimuth from north of the velocity vector. The transformation between spherical and Cartesian coordinates, and 'he inverse, are described in the discussions of subrjutines RVIN and RVOUT, respectively, which tollow.

EARTH is the subroutine which makes the transformation from Earth-fixed spherical to Earth-fixed Cartesian via RVIN and then rotates to space-fixed Cartesian. SPACE manages the inverse transformation by first rotating from space- \because.ed Cartesian to Earth-fixed Cartesian and obtaining the spherical set with the aid of RVOUT. Both EARTH and SPACE assume that the subroutine GHA has been called and that the COMMON locations GHA(T) and LOMEGA contain, respectively, $T(T)$ in deg and ω in $\mathrm{rad} / \mathrm{sec}$.

The calling sequence for EARTH is
CALL EARTH
PZE A
PZE $\quad B, C$
$\mathrm{A}, \ldots, \mathrm{A}+5$ contain the spherical set $r, \phi, \theta, v, \gamma, \sigma$. \dot{X}, Y, Z are placed in the cells $B, B+1, B+2 ; \dot{X}, \dot{Y}$, \dot{Z} are placed in the cells $\mathrm{C}, \mathrm{C}+1, \mathrm{C}+2$.

The calling sequence for SPACE is
CALL SPACE
PZE
A, B
PZE
C,,D
$A, A+1, A+2$ contain $X, Y, Z ; B, B+1, B+2$ con$\operatorname{tain} \dot{\mathrm{X}}, \dot{\mathrm{Y}}, \dot{\mathrm{Z}}$.

The Earth-fixed spherical set $r, \phi, \theta, v, \gamma, \sigma$ is deposited in the cells $C, \ldots, C+5$, while the Earth-fixed Cartesian set $x, y, \dot{x}, \dot{x}, \dot{y}, \dot{z}$ is placed in the locations $\mathrm{D}, \ldots, \mathrm{D}+5$.

The subroutines use four words of erasable storage starting at COMMON.

RVIN, RVOUT

Transformations between Cartesian position and velocity \mathbf{R} and V and the spherical set ($R, \Phi, \Theta, V, \Gamma, \Sigma$) are provided for by RVOUT, while the inverse transformation from spherical to Cartesian is obtained with RVIN.

Sketch A-6. Inertial spherical position coordinates

Projecting \mathbf{R} on the $\mathbf{X}-\mathbf{Y}$ plane, Θ is the angle from the X axis to the projection measured counterclockwise. Φ is the clevation of \mathbf{R} above the $X-Y$ plane (Sketch A-6). The formulas are

$$
\mathbf{R}=\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{l}
R \cos \Phi \cos \theta \\
R \cos \Phi \sin \theta \\
R \sin \Phi
\end{array}\right)
$$

and inversely,

$$
\begin{aligned}
R & =\sqrt{X^{2}+Y^{2}+Z^{2}} \\
\Phi & =\sin ^{-1} \frac{Z}{R}, \quad-90^{\circ} \leqq \Phi \leqq 90^{\circ} \\
\Theta & =\arg (X, Y), \quad 0 \leqq \Theta<360^{\circ} \\
\arg (x, y) & =\left\{\begin{array}{l}
\tan ^{-1} \frac{y}{x} \quad \text { if } x>0 \\
\tan ^{-1} \frac{y}{x^{\prime}}+180^{\circ} \quad \text { if } x \leqq-0
\end{array}\right.
\end{aligned}
$$

To describe the spherical coordinates for the velocity vector \mathbf{V}, it is convenient to construct a new reference frame obtained by first rotating about the Z axis by an amount Θ so that the new X axis lies along the projection of \mathbf{R} on the $X-Y$ plane; a subsequent rotation about the intermediate Y axis by the angle Φ completes the coordinate change. The resultant X^{\prime} axis lies along R, the Z^{\prime} axis lies in the plane formed by the Z axis and R, and the Y^{\prime} axis completes the right-hanced system and thus remains in the $X-Y$ plane (Sketch A-7).

Sketch A-7. Rotation to the local plane

Evidently

$$
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{ccc}
\cos \Phi \cos \theta & -\sin \theta & -\sin \Phi \cos \theta \\
\cos \Phi \sin \theta & \cos \theta & -\sin \Phi \sin \Theta \\
\sin \Phi & 0 & \cos \Phi
\end{array}\right)\left(\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right)
$$

Representing the velocity vector V in the $X^{\prime}, Y^{\prime}, Z^{\prime}$ system, the path angle Γ is the elevation of V above the $Y^{\prime}-Z^{\prime}$ plane, positive in the radial outward or X^{\prime} dirertion; the azimuth Σ is the angle measured clockwise trom the Z^{\prime} axis to the projection of V on the $Y^{\prime}-Z^{\prime}$ plane. The geometry appears in Sketch A-8.

Sketch A-8. Inertial velocity vector in the local horizontal plane

Regarding the $X^{\prime}, Y^{\prime}, Z^{\prime}$ frame as nonrotating, V may be expressed as

$$
\mathbf{V}=\left(\begin{array}{c}
\dot{X}^{\prime} \\
\dot{Y}^{\prime} \\
\dot{Z}^{\prime}
\end{array}\right)=\left(\begin{array}{l}
V \sin \Gamma \\
V \cos \Gamma \sin \Sigma \\
V \cos \Gamma \cos \Sigma
\end{array}\right)
$$

and rotate to the original frame to obtain $\dot{\mathbf{X}}, \dot{\mathbf{Y}}, \dot{\mathbf{Z}}$.

Inversion may be obtained as follows:

$$
\begin{aligned}
& V=\sqrt{\dot{X}^{2}+\dot{Y}^{2}+\dot{Z}^{2}} \\
& \Gamma=\sin ^{-1} \frac{\dot{X}^{\prime}}{V}, \quad-90^{\circ} \leqq \Gamma \leqq 90^{\circ} \\
& \mathbf{\Sigma}=\arg \left(\dot{Z}^{\prime}, \dot{Y}^{\prime}\right), \quad 0 \leqq \Sigma<360^{\circ}
\end{aligned}
$$

Of course \mathbf{V} expressed in the $X^{\prime}, Y^{\prime}, Z^{\prime}$ system is given by

$$
\left(\begin{array}{l}
\dot{X}^{\prime} \\
\dot{Y}^{\prime} \\
\dot{Z}^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
\cos r^{2} \cos \Theta & \cos \Phi \sin \Theta & \sin \Phi \\
-\sin \Theta & \cos \Theta & 0 \\
-\sin \Phi \cos \theta & -\sin \Phi \sin \Theta & \cos \Phi
\end{array}\right)\left(\begin{array}{c}
\dot{X} \\
\dot{Y} \\
\dot{Z}
\end{array}\right)
$$

The calling sequence for RYN is

CALL RVIN

PZE „A
PZE „B
PZE „C
$A, \ldots, A+5$ contai.j the spherical coordinates R, Φ, Θ, $V, \Gamma, \Sigma ; X, Y, Z$ are placed in the locations $B, B+1$, $B+2$, while the Cartesia 1 velocity components $\dot{X}, \dot{Y}, \dot{Z}$ are stored in the cells $\mathbf{C}, \mathbf{C}+1, \mathbf{C}+2$.

For RVOUT, the calling sequence is

CALL RVOUT

PZE $1,{ }^{1}$
PZE 1,B
PZE 1,C
X, Y, Z are contained in the cells $A, A+1, A+2$, while the locations $\mathrm{B}, \mathrm{B}+1, \mathrm{~B}+2$ contain $\dot{X}, \dot{Y}, \dot{Z}$. The spherical set $R, \Phi, \Theta, V, \Gamma, \Sigma$ is placed in the cells $C, \ldots, C+5$ as output.

The subroutines use fuui words of erasable storage starting at COMMON.

LOOP

Let $\mathbf{R}=(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ and $\mathbf{V}=(\dot{X}, \dot{Y}, \dot{\mathbf{Z}})$ be the Earthcentered "space-fixed" Cartesian coordinates of the probe referenced to the true equator and equinox of date. For a given station with Earth-fixed spherical cooruinates ($r_{i}, \phi_{i}, \theta_{i}$), it is desired to compute a number of topocentric quantities as given below. The basic coordinate systems are shown in Sketch A-9.

Sketch A-9. Earth-fixed station coordinates
$\Upsilon(T)$ is the Greenwich hour angle of vernal equinox at epoch T or alternatively, the right ascension of the Greenwich meridian. It is assumed that GHA has computed $\Upsilon(T)$ and the correct value appears in the COMMON location GHA(T). r_{i} is the distance of the station from the center of the Earth, ϕ_{i} is the geocentric north latitude, and θ_{i} is the east longitude.

The Earth-fixed Cartesian coordinates of the station are

$$
\begin{aligned}
& x_{i}=r_{i} \cos \phi_{i} \cos \theta_{i} \\
& y_{i}=r_{i} \cos \phi_{i} \sin \theta_{i} \\
& z_{i}=r_{i} \sin \phi_{i}
\end{aligned}
$$

Those for the probe are

$$
\begin{aligned}
& x=X \cos \Upsilon(T)+Y \sin \Upsilon(T) \\
& y=-X \sin \Upsilon(T)+Y \cos \Upsilon(T) \\
& z=Z \\
& \dot{x}=\dot{X} \cos \Upsilon(T)+\dot{Y} \sin \Upsilon(T)+\omega y \\
& \dot{y}=-\dot{X} \sin \Upsilon(T)+\dot{Y} \cos \Upsilon(T)-\omega x \\
& \dot{x}=\dot{Z} \\
& \dot{\mathbf{r}}=(\dot{x}, \dot{y}, \dot{x})
\end{aligned}
$$

where ω is the rot tuion rate of the Earth.

Thus the topocentric Cartesian coordinates of the probe are

$$
\begin{aligned}
& \mathbf{r}_{i p}=\left(x-x_{i}, y-y_{i}, z-z_{i}\right) \\
& \dot{r}_{i p}=(\dot{x}, \dot{y}, \dot{x})=\dot{\mathbf{i}}
\end{aligned}
$$

The slant range $r_{i p}$ is then given by $\left|\mathbf{r}_{i p}\right|$, while the slant range rate $\dot{r}_{i p}$ may be obtained from the formula

$$
2 \mathbf{r}_{i n} \dot{r}_{i p}=\frac{d\left(\boldsymbol{r}_{i p}^{2}\right)}{d t}=\frac{d\left(\mathbf{r}_{i p} \cdot \mathbf{r}_{i p}\right)}{d t}=2 \mathbf{r}_{i p} \cdot \dot{\mathbf{r}}_{i p}
$$

Provisions have been made to compute $\ddot{r}_{i p}$, the slantrange acceleration, when the Earth is the central body. The pertinent formulas may be developed as follows:

$$
\begin{aligned}
&\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{rrr}
\cos \Upsilon(T) & \sin \Upsilon(T) \\
-\sin \Upsilon(T) & \cos \gamma(T)
\end{array}\right)\binom{\dot{X}}{\dot{Y}} \\
&+\cdots\left(\begin{array}{rr}
-\sin \Upsilon(T) & \cos \Upsilon(T) \\
-\cos \Upsilon(T) & -\sin \Upsilon(T)
\end{array}\right)\binom{X}{Y} \\
& \dot{z}=\dot{\mathbf{Z}}
\end{aligned}
$$

$$
\binom{\ddot{x}}{\ddot{j}}=\left(\begin{array}{rr}
\cos \Upsilon(T) & \sin \Upsilon(T) \\
-\sin \Upsilon(T) & \cos \gamma(T)
\end{array}\right)
$$

$$
\times\left\{\binom{\ddot{X}}{\ddot{Y}}+2 \omega\binom{\dot{Y}}{-\dot{X}}-\omega^{2}\binom{X}{Y}\right\}
$$

$$
\ddot{z}=\ddot{Z}
$$

From

$$
r_{i p} \dot{r}_{i p}=\mathbf{r}_{i p} \cdot \dot{\mathbf{r}}_{i p}=\mathbf{r}_{i p} \cdot \dot{\mathbf{r}}
$$

obtain

$$
r_{i p} \ddot{r}_{i p}+\dot{r}_{i p}^{2}=\mathbf{r}_{i p} \cdot \ddot{\mathbf{r}}+\dot{\mathbf{r}}_{i p} \cdot \dot{\mathbf{r}}_{i p}
$$

or

$$
\ddot{r}_{i p}=\frac{1}{r_{i p}}\left\{\mathbf{r}_{i p} \cdot \ddot{\mathbf{r}}+v^{2}-{\dot{r_{i p}}}_{3}\right\}
$$

where $\nu=|\dot{\mathbf{r}}|, \ddot{\mathbf{r}}=(\ddot{\dot{x}}, \ddot{y}, \ddot{z})$

Contrivutions to $\ddot{\mathbf{R}}$ are obtained from COMMON心 tions where they have been deposited by DOT and are only valid for the Earth as a central body.

The topocentric hour-angle declination system is described in Sketches A-10 and A-1..

Sketch A-1s. Rotation to the station meridian

Sketch A-11. Local hour-angle declination coordinate system

The $x-y$ plane has been translated to the station and rotated through the angle θ_{i} so that x^{\prime} lies along the meridian; the z^{\prime} axis remairs parallel to ne z axis. The declination δ_{i} is given by

$$
\delta_{i}=\sin ^{-1} \frac{z_{i p}}{\gamma_{i p}}, \quad-90^{\circ} \leqq \delta_{i} \leqq 90^{\circ}
$$

and the hour angle may be computed from

$$
\alpha_{i} \equiv \theta_{i}-\arg \left(x_{i p}, y_{i p}\right)\left(\bmod 360^{\circ}\right), \quad 0 \leqq \alpha_{i}<360^{\circ}
$$

where
$\arg (x, y)= \begin{cases}\tan ^{-1} \frac{y}{x} \quad \text { if } x>0, & -90^{\circ} \leqq \tan ^{-1} u \leqq 90^{\circ} \\ \tan ^{-1} \frac{y}{x}+180^{\circ} & \text { otherwise }\end{cases}$
From the above formulas, the :ngular rates foliow:

$$
\begin{aligned}
& \dot{\delta}_{i}=\frac{\dot{z}-\dot{f}_{i p} \sin \delta_{i}}{p_{i p} \cos \delta_{i}} \\
& {\dot{\alpha_{i}}}=\frac{\dot{x} y_{i p}-\dot{j} x_{i p}}{x^{2} i_{p}+y_{i p}^{2}}
\end{aligned}
$$

To construct the azimuth-elevation topocentric coordinate system, rotate the x^{\prime} and z^{\prime} axes about the y^{\prime} axis so that the resultant $x^{\prime \prime}-y^{\prime \prime}$ plane is perpendicular to r_{i} and the $z^{\prime \prime}$ axis points to the zenith; the $x^{\prime \prime}-z^{\prime \prime}$ plane is still the meridian plane as illustrated in Sketches ". 2 and A-13.

Sketch A-12. Rotation to station latitude

Sketch A-13. Azimuth elevation coord" ate system

The elevation angle γ_{i} may be obtained immediately by

$$
\sin \gamma_{i}=\frac{\mathbf{r}_{i} \cdot \mathbf{r}_{i p}}{r_{i} \boldsymbol{\mu}_{i p}}, \quad-90^{\circ} \leqq \gamma_{i} \leqq 90^{\circ}
$$

The component of $\mathbf{r}_{i p}$ which lies in the $x^{\prime \prime}-y^{\prime \prime}$ plane is $r_{i p} \cos \gamma_{i}$ so that the azimuth σ_{i} is given by

$$
\left\{\begin{array}{l}
\cos \sigma_{i}=\frac{-x_{i p}^{\prime \prime}}{r_{i p} \cos \gamma_{i}} \\
\sin \sigma_{i}=\frac{y_{i p}^{\prime \prime}}{r_{i p} \cos \gamma_{i}}
\end{array}\right.
$$

By perfurming the rotations to transform the coordinate systems, $\mathbf{r}_{i p}$ may be determined in the $x^{\prime \prime}-y^{\prime \prime}-z^{\prime \prime}$ reference:

$$
\begin{aligned}
& x_{i p}^{\prime \prime}=x_{i p} \sin \phi_{i} \cos \theta_{i}+y_{i p} \sin \varphi_{i} \sin \theta_{i}-z_{i p} \cos \phi_{i} \\
& y_{i p}^{\prime \prime}=-x_{i p} \sin \theta_{i}+y_{i p} \cos \theta_{i} \\
& z_{i p}^{\prime \prime}=x_{i p} \cos \phi_{i} \cos \theta_{i}+y_{i p} \cos \phi_{i} \sin \theta_{i}+z_{p} \sin \phi_{i}
\end{aligned}
$$

The program uses an inverse function 'efined for $0 \leqq \cos ^{-1} u \leqq 180^{\circ}$ so that

$$
\sigma_{\imath}=\left\{\begin{array}{l}
\cos ^{-1}\left(\frac{-x_{i p}^{\prime \prime}}{r_{i p} \cos \gamma_{i}}\right) \quad \text { if } \sin \sigma_{i} \geqq 0 \\
360^{\circ}-\cos ^{-1}\left(\frac{-x_{i p}^{\prime \prime}}{r_{i p} \cos \gamma_{i}}\right) \quad \text { otherwise }
\end{array}\right.
$$

Thus $0 \leqq \sigma_{i} \leqq 360^{\circ}$.
The angular rates are calculated from the formulas

$$
\begin{aligned}
& \dot{\gamma}_{i}=\frac{\mathbf{r}_{i} \cdot \dot{\mathbf{r}}-r_{i} \dot{r}_{i p} \sin \gamma_{i}}{r_{i} r_{i p} \cos \gamma_{i}} \\
& \dot{\sigma}_{i}=\frac{\dot{x}_{i p}^{\prime \prime}+\cos \sigma_{i}\left(\dot{r}_{i p} \cos \gamma_{1}-r_{i p} \dot{\eta}_{i} \sin \gamma_{i}\right)}{r_{i,} \cos \gamma_{i} \sin \sigma_{i}}
\end{aligned}
$$

where $\dot{x}_{i p}^{\prime \prime}=\dot{x} \sin \phi_{i} \cos \theta_{i}+\dot{y} \sin \phi_{i} \sin \theta_{i}-\dot{z} \cos \phi_{i}$.
The look angle λ_{i} is the angle between the spacecraft attitude vector \mathbb{C} and the slant-range vector where \mathbf{C} is specified by the calling sequence and is a unit vector expressed in the true equator and equinox of date. It is convenient to const. uct $\mathbf{R}_{i p}$ in a topocentric system parallel to the X, Y, Z axes:

$$
\begin{aligned}
X_{i} & =x_{i} \cos \Upsilon(T)-y_{i} \sin \Upsilon(T) \\
Y_{i} & =x_{i} \sin \Upsilon(T)+y_{i} \cos \Upsilon(T) \\
Z_{i} & =z_{i} \\
\mathbf{R}_{i p} & =\left(X-X_{i}, Y-Y_{i}, Z-Z_{i}\right)
\end{aligned}
$$

Then λ_{i} is obtained from

$$
\lambda_{i}=\cos ^{-1}\left(\frac{\mathbf{R}_{i p} \cdot \mathbf{C}}{R_{i p}}\right), \quad 0 \leqq \lambda_{i} \leqq 180^{\circ}
$$

The polarization angle p_{i} is defined as

$$
f_{i}=\cos ^{-1}\left\{\frac{\mathbf{R} \times \mathbf{R}_{i p}}{\left|\mathbf{R} \times \mathbf{R}_{i p}\right|} \cdot \frac{\mathbf{C} \times \mathbf{R}_{i p}}{\left|\mathbf{C} \times \mathbf{R}_{i p}\right|}\right\}, \quad 0 \leqq p_{i} \leqq 180^{\circ}
$$

An expression for the measured received frequency, inciuding a scaled doppler shift, appears as

$$
f=f_{B i}-f_{c i} \dot{r}_{i p}
$$

where $f_{B i}$ represents a bias frequency in the receiver and $f_{c i}$ includes the velcuitc of light and may be adjusted to represent cither two-way or normal doppler.

The calling sequence is

CALL LOOP
PZE $\mathrm{X}_{\boldsymbol{\prime}} \mathbf{Y}$
OP B,C
$\mathbf{X}, \mathbf{X}+\mathbf{1}, \mathbf{X}+2$ contain $\mathbf{R} ; \mathbf{Y}, \mathbf{Y}+1, \mathbf{Y}+2$ contain \mathbf{V}.
B contains the binary control word which selects the appropriate stations from among the available $1:$. The small subroutine CWI transforms the octal input to the required binary format which permits LOOP to scan the stainons from bit 35 to bit 21.
$C, C+1, C+2$ contain the unit vector C.
If $O P=$ PZE, LOOP will compute the quantities for each station in turn and will print out whenever $\gamma_{i} \geqq$ -10°. If $\mathrm{OP}=\mathrm{MZE}, \gamma_{i}$ and $\dot{\gamma}_{i}$, for each station up to a maximum of five, will be stored in a buffer to be used by MARK as ${ }^{\text {ejependent variables for the view-period }}$ computation.

The parameters describing the stations are stared in the following sequence:

$$
\begin{aligned}
& \left.\begin{array}{cr}
\text { STABCD } & +0 \\
1 \\
2 \\
3
\end{array}\right\} \begin{array}{l}
\text { 4 BCD words for } \\
\text { station } 1 \text { name }
\end{array} \\
& \text { : } \\
& \left.\begin{array}{l}
70 \\
71 \\
72 \\
73
\end{array}\right\} 4 \text { BCD words for } \\
& \text { STACRD } \left.\begin{array}{rrr}
+0 & \phi_{1} \\
1 & \theta_{1} \\
2 & r_{1}
\end{array}\right\} \begin{array}{l}
\text { coordinates for } \\
\text { station } 1
\end{array} \\
& \left.3 f_{B_{1}}\right\} \text { frequency parameters } \\
& \left.4 \quad f_{c_{1}}\right\} \text { for station } 1 \\
& \vdots
\end{aligned}
$$

To describe the view periods for the stations, three other parameters are used:

$$
\begin{array}{ccc}
\text { STACRD } & -3 & \gamma_{B} \\
& -2 & \dot{\gamma}_{B} \\
& -1 & \gamma_{0}
\end{array}
$$

The eievation condition is met tor rise or set with respect to the station whenever $\left|\gamma_{i}-\gamma_{0}\right| \leq \gamma_{B}$; at this time the station quantities are printed and further testing is suppressed for one integration step. The elevation-rate condition is met for extreme elevation whenever $\left|\dot{\gamma}_{i}\right| \leqq \dot{\gamma}_{B}$ and $\gamma_{i} \geqq \gamma_{0}$. Upon sliccess, the station quantities are printed and the test is $s u_{i}$ pressed for one integration step.

The subroutine uses 100 words of erasable storage starting at COMMON.

2. Basic Coordinate Transformations

ROTEQ

The general precession of the Earth's equator and the consequent retrograde motion of the equinox on the ecliptic may be represented by the rotation matrix:

$$
\left(\begin{array}{l}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)
$$

where X, Y, and \dot{Z} are expressed in the mean equator and equinox of 1950.0 and $X^{\prime}, Y^{\prime}, Z^{\prime}$ are the coordinates in the inean equator and equinox of date. The geometry of the precession has been represented by the three small parameters ζ_{0}, z, and θ in Sketch A-14:

Sketch A-14. Relationship between fundamental reiarence equators
$\tau_{1950.0}$ is the mean equinox of $1950.0 ; \bar{\epsilon}_{1950.0}$ is the mean obliquity of $1950.0 ; \Upsilon_{\text {mean }}$ is the mean equinox of dat ϵ; $\bar{\epsilon}$ is the mean obliquity of date. Measured in the mean equator of 1950.0 from the mean eriuinox of 1950.0, $90^{\circ}-\zeta_{0}$ is the right ascension of the ascending node of the mean equator of date on the mean equator of 1950.0 . $90^{c}+z$ is the right ascension of the nore measured in the mean equator of date from the mean equinox of date. θ is the inclination of the mean equator of date to the mean equator of 1950.0 .

In terms of ζ_{0}, z, and $\theta,\left(a_{i j}\right)$ is given by

$$
\begin{aligned}
& a_{11}=-\sin \zeta_{0} \sin z+\cos \zeta_{0} \cos z \cos \theta \\
& a_{12}=-\cos \zeta_{0} \sin z-\sin \zeta_{0} \cos z \cos \theta \\
& a_{13}=-\cos z \sin \theta \\
& a_{21}=\sin \zeta_{0} \cos z+\cos \zeta_{0} \sin z \cos \theta \\
& a_{22}=\cos \zeta_{0} \cos z-\sin \zeta_{0} \sin z \cos \theta \\
& a_{23}=-\sin z \sin \theta \\
& a_{31}=\cos \zeta_{0} \sin \theta \\
& a_{32}=-\sin \zeta_{0} \sin \theta \\
& a_{33}=\cos \theta \\
& \zeta_{0}=2304^{\prime \prime} 997 T+0^{\prime \prime} 302 T^{2}+0!0179 T^{3} \\
& z=2304^{\prime \prime} 997 T+1^{\prime \prime} 093 T^{2}+0!0192 T^{3} \\
& \theta=2004^{\prime \prime} 298 T-0^{\prime \prime} 426 T^{2}-0^{\prime} 0416 T^{3}
\end{aligned}
$$

with T the number of Julian centuries of 36,525 days past the epoch 1950.0.

The actual computational form of $\left(a_{i j}\right)$ is obtained by expanding the a_{y}, in power series in ζ_{0}, z, θ and replacing the arguments by the above time series. The result, are

$$
\begin{aligned}
a_{11}= & 1-0.00029697 T^{2}-0.00000013 T^{3} \\
a_{12}= & -a_{21}=-0.02234988 T-0.00000676 T^{2} \\
& +0.00000221 T^{3} \\
a_{13}= & -a_{31}=-0.00971711 T+0.00000207 T^{2} \\
& +0.00000096 T^{3} \\
a_{22}= & 1-0.00024976 T^{2}-0.0000001 s^{\prime} \mathrm{T}^{3} \\
a_{23}= & a_{32}=-0.00010859 T^{2}-0.00000003 T^{3} \\
a_{33}= & 1-0.00004721 T^{2}+0.00000002 T^{3}
\end{aligned}
$$

The calling sequence has the form
$(A C)=$ day past 0^{h} January 1, 195C, E.T.
CALL ROTEQ
(OP) X,Y
$X-3, X-2, X-1$ contain the input vector; $Y-3, Y-2$, $Y-1$ contain the output vector; $X=Y$ is permitted.
$O P=P Z E$ regards X as 1950.0 and rotates to date in $\mathbf{Y} ; \mathbf{O P}=\mathrm{MZE}$ regards \mathbf{X} as of date and rotates to 1950.0 in \mathbf{Y}.

The matrix ($a_{1 j}$) is saved in the COMMON locations $\mathrm{AA}, \ldots, \mathrm{AA}+8$ and recomputed only when the time has changed by $1 / 64$ day.

The subroutine uses three cells of erasable storage starting at COMMON.

NUTATE

To describe the nutation of the Earth about its precessing medn equator, it is convenient to construct the nutation matrix N which relates the Cartesian coordinates expressed in the true equator and equinox to those in the mean equator and equinox (Sketch A-15).

Sketch A-15. Relationship between true equator and mean equator of date
$\delta \psi$ is the nutation in longitude measured from the true vernal equinox at the X^{\prime} axis to the mean vernal equinox at the X axis. $\bar{\epsilon}$ is the mean obliquity, while $\epsilon=\bar{\varepsilon}+\delta \epsilon$ is the true obliquity where $\delta \epsilon$ is the nutation in obliquity. Numerical expressions for the above quantities appear in the discussion of subroutine MNA following.

If N is defined in the sense

$$
\left(\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right)=N\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)
$$

where the primed system is the true equator and equinox and the unprimed is the mean equator and equinox, then the N_{11} are given by

$$
\begin{aligned}
& N_{11}=\cos \delta \psi \\
& N_{18}=-\sin \delta \psi \cos \bar{\epsilon} \\
& N_{1 s}=-\sin \delta \psi \cos \bar{\epsilon} \\
& N_{21}=\sin \delta \psi \cos \epsilon \\
& N_{18}=\cos \delta \psi \cos \epsilon \cos \bar{\epsilon}+\sin \epsilon \sin \bar{\epsilon}
\end{aligned}
$$

$$
\begin{aligned}
& N_{23}=\cos \delta \psi \cos \epsilon \sin \bar{\epsilon}-\sin \epsilon \cos \bar{\epsilon} \\
& N_{31}=\sin \delta \psi \operatorname{in} \epsilon \\
& N_{32}=\cos \delta \psi \sin \epsilon \cos \bar{\epsilon}-\cos \epsilon \sin \bar{\epsilon} \\
& N_{33}=\cos \delta \psi \sin \epsilon \sin \bar{\epsilon}+\cos \epsilon \cos \bar{\epsilon}
\end{aligned}
$$

Since $|\delta \psi|<10^{-4}$ and $|\delta \epsilon|<10^{-4}$, the $N_{i j}$ are expanded to first order in $\delta \psi$ and $\delta \in$ to obtain a form which is better behaved for numerical calculation:

$$
N=\left(\begin{array}{crr}
1 & -\delta \psi \cos \bar{\epsilon} & -\delta \psi \sin \bar{\epsilon} \\
\delta \psi \cos \bar{\epsilon} & 1 & -\delta \epsilon \\
\delta \psi \sin \vec{\epsilon} & \delta \epsilon & 1
\end{array}\right)
$$

NUTATE is used as a utility routine to generate the matrix product $N A$, where A is obtained by calling ROTEQ; the resultant NA is used to rotate from the equator and equinox of 1950.0 to the true equator and equinox of date and is saved in the COMMON cells (NA),\ldots, (NA) +8 . As N is a slowly varying matrix, it is saved and recomputed only if the time has changed ty at least 0.1 day. The generation of N is effected by calling MNA which also internally stores N.

MNA, MNAI

It is the principal function of MNA to provide the rotation matrix MNA which allows vectors in the 1950.0 system to be expressed relative to the Moons true equator and conversely.

For this purpose it is assumed that the matrix A has been formed by ROTEQ and appears in the COMMON locations $\mathrm{AA}, \ldots, \mathrm{AA}+8$. The form of the matrix N (see preceding discussion of NUTATE) depends upon the nutations $\delta \psi$ and $\delta \epsilon$. In the discussion of XYZDD to follow, M is identified as ($b_{i j}$).

The numerical expressions for the necessary quantities appear beiow:
$\delta \epsilon=\Delta \epsilon+d \epsilon$, where $\Delta \epsilon$ denotes the long-period and $d \epsilon$ the short-period terms for the nutation in obliquity. In a similar manner the nutation in longitude $\delta \psi$ is given with long-period and short-period terms $\Delta \psi$ and $d \psi$.

$$
\begin{aligned}
\Delta \epsilon= & 2.5: 5844 \times 10^{-4} \cos \Omega-0.2511 \times 10^{-4} \cos 2 \Omega \\
& +1.5336 \times 10^{-4} \cos 2 L+0.0666 \times 10^{-4} \cos (3 L-\Gamma) \\
& -0.0258 \times 10^{-4} \cos (L+\Gamma) \\
& -0.0183 \times 10^{-4} \cos (2 L-\Omega) \\
& -0.0067 \times 10^{-4} \cos \left(2 \Gamma^{-}-\Omega\right)
\end{aligned}
$$

$$
\begin{aligned}
& d \epsilon=0.2456 \times 10^{-4} \cos 2 \mathbb{d}+0.0508 \times 10^{-4} \cos (2 \mathbb{} \Omega-\Omega) \\
& +0.0369 \times 10^{-4} \cos \left(3 \mathbb{C}-\Gamma^{r}\right) \\
& -0.0139 \times 10^{-4} \cos \left(\mathbb{C}+\Gamma^{\prime}\right) \\
& -0.0086 \times 10^{-4} \cos \left(\mathbb{C}-\Gamma^{\gamma}+\Omega\right) \\
& +0.0083 \times 10^{-4} \cos \left(\mathbb{C}-\Gamma^{\gamma}-\Omega\right) \\
& +0.0061 \times 10^{-4} \cos \left(3 \mathbb{C}+\Gamma^{\prime}-2 L\right) \\
& +0.0064 \times 10^{-4} \cos \left(3 \mathbb{C}-\Gamma^{\circ}-\Omega\right) \\
& \Delta \psi=-(47: 8927+0: 0482 \mathrm{~T}) \times 10^{4} \sin \Omega \\
& +0.5800 \times 10^{-4} \sin 2 \Omega-3.5361 \times 10^{-4} \sin 2 L \\
& -0.1378 \times 10^{-4} \sin (3 I-\Gamma) \\
& +0.0594 \times 10^{-4} \sin (L+\Gamma) \\
& +0.0344 \times 10^{-4} \sin (2 L-\Omega) \\
& +0.0125 \times 10^{-4} \sin \left(2 \Gamma^{\prime}-\Omega\right) \\
& +0.3500 \times 10^{-4} \sin (L-\Gamma) \\
& +0.0125 \times 10^{-4} \sin \left(2 L-2 \Gamma^{\prime}\right) \\
& d \psi=-0.5658 \times 10^{-4} \sin 2 \mathbb{C} \\
& -0.0950 \times 10^{-4} \sin (2 \mathbb{C}-\Omega) \\
& -0.0725 \times 10^{-6} \sin \left(3 \mathbb{C}-\Gamma^{7}\right) \\
& +0.0317 \times 10^{-4} \sin \left(\mathbb{C}+\Gamma^{\varphi}\right) \\
& +0.0161 \times 10^{-4} \sin \left(\mathbb{C}-\Gamma^{4}+\Omega\right) \\
& +0.0158 \times 10^{-4} \sin \left(\mathbb{}\left(\mathbb{}-\Gamma^{\varphi}-\Omega\right)\right. \\
& -0.0144 \times 10^{-4} \sin \left(3 \mathbb{C}+\Gamma^{4}-2 L\right) \\
& -0.0122 \times 10^{-6} \sin \left(3 \mathbb{C}-\Gamma^{\prime}-\Omega\right) \\
& +0.1875 \times 10^{-4} \sin \left(\mathbb{C}-\Gamma^{\varphi}\right) \\
& +0.0078 \times 10^{-4} \sin \left(2 \mathbb{C}-2 \Gamma^{\prime}\right) \\
& +0.0414 \times 10^{-6} \sin \left(\mathbb{C}+\Gamma^{\vee}-2 L\right) \\
& +0.0167 \times 10^{-4} \sin (2 \mathbb{C}-2 L) \\
& -0: 0089 \times 10^{-4} \sin (4 \mathbb{C}-2 L) \\
& \Omega=12: 1127902-0.0529539222 d+20.795 \times 10^{-4} T \\
& +20.81 \times 10^{-4} T^{2}+0.02 \times 10^{-4} T^{3} \\
& \mathbb{Q}=64.37545167+1391763965268 d-11931575 \times 10^{-1} T \\
& -11: 3015 \times 10^{-4} T^{2}+0: 019 \times 10^{-4} T^{3} \\
& \Gamma^{\top}=208: 8439877+0: 1114040803 d-0.010334 T \\
& -0.010343 T^{2}-0.12 \times 10^{-4} T^{3} \\
& L=280.08121009+0.9856473354 d+3.03 \times 10^{-4} T \\
& +3: 03 \times 10^{-1} T^{2} \\
& \Gamma=282: 08053028+0.470684 \times 10^{-4} d+4.5525 \times 10^{-4} T \\
& +4.575 \times 10^{-4} T^{2}+0.03 \times 10^{-4} T^{3}
\end{aligned}
$$

T is the number of Julian centuries of 36,525 days past the epoch 0^{h} January 1,1950, E.T., while d is the number of days past the same epoch. The program uses d in double precision. The-mean obliquity is calculated from

$$
\begin{aligned}
\bar{\epsilon}=23.4457587-0.01309404 T & -0.0088 \times 10^{-4} T^{2} \\
& +0.0050 \times 10^{-4} T^{3}
\end{aligned}
$$

The quantiiy $\delta \alpha=\delta \psi \cos \bar{\epsilon}$ is computed and stored in the COMMON cell NUTRA for the GHA routine to use as the nutation in right ascension for calculation of the true value of the Greenwich hour angle of the vernal equinox.

The librations are given by

$$
\begin{aligned}
\sigma \sin I= & -0.0302777 \sin g+0.0102777 \sin (g+2 \omega) \\
& -0.00305555 \sin (2 g+2 \omega) \\
\tau= & -0.003333 \sin g+0.0163898 \sin g^{\prime} \\
& +0.005 \sin 2 \omega \\
\rho= & -0.0297222 \cos g+0.0102777 \cos (g+2 \omega) \\
& -0.00305555 \cos (2 g+2 \omega) \\
I= & 1.535
\end{aligned}
$$

The following expressions have heen programmed for g, g^{\prime}, and ω :

$$
\begin{aligned}
g & =215054013+13.064992 d \\
g^{\prime} & =358.009067+0.9856 c 05 d \\
\omega & =196.745637+0.1643586 d
\end{aligned}
$$

Evidently $g=\mathbb{C}-\Gamma^{\top}$, the mean anomaly of the Moon; $g^{\prime}=L-\Gamma$, the mean anomaly of the Sun; and $\omega=\Gamma^{\prime}-\Omega$, the argument of the perigee of the Moon. All quantities relate to mean motions of the Sun and the Moon.

$$
\begin{aligned}
\cos i= & \cos (\Omega+\sigma+\delta \psi) \sin \epsilon \sin (I+\rho) \\
& +\cos \epsilon \cos (I+\rho), \quad 0<i<90^{\circ} \\
\sin \Omega^{\prime}= & -\sin (\Omega+\sigma+\delta \psi) \sin (I+\rho) \csc i, \\
& -90^{\circ}<\Omega^{\prime}<90^{\circ} \\
\sin \Delta= & -\sin (\Omega+\sigma+\delta \psi) \sin \epsilon(\operatorname{si} i \\
\cos \Delta= & -\sin (\Omega+\sigma+\delta \psi) \sin \Omega^{\prime} \cos \epsilon \\
& -\cos (\Omega+\sigma+\delta \psi) \cos \Omega^{\prime}, 0 \leqq \Delta<360^{\circ} \\
\Lambda= & \Delta+(\mathbb{C}+r)-(\Omega+\sigma) \\
\epsilon= & \bar{\epsilon}+\delta \epsilon
\end{aligned}
$$

The calling sequence to MNA is
(AC) = fractional day past 0^{h} of epoch T in E.T.
$(M Q)=$ integer days past 0^{h} January 1,1950 of the epoch T

CALL MNA
PZE 1,A
PZE $1, B$

The cells $A, A+1, A+2$ contain the 1950.0 position vector $\mathbf{R}=(X, Y, Z)$, while the output vector $\mathbf{r}=(x, y, z)$ in the Moon-fixed coordinate system is placed in the locations $\mathrm{B}, \mathrm{B}+1, \mathrm{~B}+2$. The coordinate transformation is given by

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=M N A\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)
$$

The inverse transformation

$$
\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=(M N A)^{\prime}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

is indicated by
CALL MNA
PZE 1,A
PZE 0,B
$A, A+1, A+2$ contain \mathbf{r} and the output \mathbf{R} is placed in $\mathrm{B}, \mathrm{B}+1, \mathrm{~B}+2$.

If MNAl is called instead of MNA, the matrices are not recomputed unless time has changed by 0.01 day.

The subroutines use four cells of erasable storage starting at COMMON.

MNAMD, MNAMDI

As it is necessary to form the Moon-fixed velocity, the subroutine MNAMD has been provided to accomplish this task. As in the preceding discussion of MNA, the formulas for transforming positions are

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=M N A\left(\begin{array}{l}
X \\
y \\
z
\end{array}\right)
$$

for the transtormation from 1950.0 position to Moon-ixed position and inversely,

$$
\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=(M N A)^{\prime}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

for the position transformation in the other direction.

To obtain velocity transformations, the above formulas are differentiated and the approximation is made that

$$
\dot{N}=\dot{A}=0
$$

Thus

$$
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right)=M N A\left(\begin{array}{c}
\dot{x} \\
\dot{Y} \\
\dot{Z}
\end{array}\right)+\dot{M} N A\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)
$$

and for the inverse transformation

$$
\left(\begin{array}{c}
\dot{X} \\
\dot{Y} \\
\dot{Z}
\end{array}\right)=(M N A)^{\prime}\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right)+(\dot{M} N A)^{\prime}\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)
$$

In computing \dot{M} the rates for the slowly varying angles $\boldsymbol{\Omega}^{\prime}$ and i are taken to be zero.

$$
\dot{M}=\left(\dot{M}_{i j}\right)
$$

where

$$
\begin{aligned}
& \dot{M}_{11}=\left(-\sin \Lambda \cos \Omega^{\prime}-\cos \Lambda \sin \Omega^{\prime} \cos i\right) \dot{\Lambda} \\
& \dot{M}_{12}=\left(-\sin \Lambda \sin \Omega^{\prime}+\cos \Lambda \cos \Omega^{\prime} \cos i\right) \dot{\Lambda} \\
& \dot{M}_{13}=(\cos \Lambda \sin i) \dot{\Lambda} \\
& \dot{M}_{21}=\left(-\cos \Lambda \cos \Omega^{\prime}+\sin \Lambda \sin \Omega^{\prime} \cos i\right) \dot{\Lambda} \\
& \dot{M}_{22}=\left(-\cos \Lambda \sin \Omega^{\prime}-\sin \Lambda \cos \Omega^{\prime} \cos i\right) \dot{\Lambda} \\
& \dot{M}_{23}=(-\sin \Lambda \sin i) \dot{\Lambda} \\
& \dot{M}_{21}=0 \\
& \dot{M}_{32}=0 \\
& \dot{M}_{33}=0
\end{aligned}
$$

From the formula

$$
\Lambda=\Delta+(\mathbb{Q}+\boldsymbol{\tau})-(\Omega+\sigma)
$$

obtain

$$
\dot{\Lambda}=\dot{\Delta}+\dot{\mathbb{C}}+\dot{i}-\dot{\mathbf{\Omega}}-\dot{\mathbf{\sigma}}
$$

The adopted numerical expressions for the rates are
$\dot{\Delta}=\frac{-\cos (\Omega+\sigma+\delta \psi) \sin \epsilon(\dot{\Omega}+\dot{\sigma})}{\sin i \cos \Delta}$
$\dot{\mathbb{C}}=0.266170762 \times 10^{-5}-0.12499171 \times 10^{-13} \mathrm{~T} \mathrm{rad} / \mathrm{sec}$
$\dot{\Omega}=-0.1069698435 \times 10^{-7} \div 0.23015329 \times 10^{-15} \mathrm{Trad} / \mathrm{sec}$

$$
\begin{aligned}
\dot{\tau}= & -0.1535272946 \times 10^{-6} \cos g \\
& +0.569494067 \times 10^{-10} \cos s^{\prime} \\
& +0.579473484 \times 10^{-11} \cos 2 \omega .3 \mathrm{~d} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
\dot{\boldsymbol{\sigma}}= & -0.520642191 \times 10^{-\tau} \cos g \\
& +0.1811774451 \times 10^{-\tau} \cos (g+2 \omega) \\
& -0.1064057858 \times 10^{-7} \cos (2 \omega+2 g) \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

The calling sequence to MNAMD has the form
(AC) $=$ fractional day past 0^{h} of epoch T under consideration
$(M Q)=$ integer days past 0^{h} January 1, 1950, E.T. to T in E.T.

CALL MNAMD

PZE 1,A
YZE 1,B
PZE .„C
The 1950.0 position vector $\mathbf{R}=(X, Y, Z)$ is input to celis $A, A+1, A+2$, while the 1950.0 velocity vector $\mathbf{V}=$ ($\dot{X}, \dot{Y}, \dot{Z}$) occupies locaions B, B $+1, \mathrm{~B}+2$. The output vector $\mathbf{v}=(\dot{x}, \dot{y}, \dot{z})$ is placed in $\mathrm{C}, \mathrm{C}+1, \mathrm{C}+2$.

If the inverse transformation is desired, the calling sequence is modified to read

CALL MNAMD
PZE 1,A
PZE 1,,B
PZE 0,C
The Moon-fixed position vector $\mathbf{r}=(x, y, z)$ occupies cells $A, A+1, A+2$ as the Moon-fixed velocity vector $\mathrm{v}=(\dot{x}, \dot{y}, \dot{z})$ uses $\mathrm{B}, \mathrm{B}+\mathbf{1}_{2} \mathrm{~B}+2$ for input. The 1950.0 velocity vector $V=(\dot{X}, \dot{Y}, \dot{Z})$ is the output and is placed in locations $C, C+1, C+2$.

The alternate entry MNAMD1 differs from the entry MNAMD in that the matrices M and \dot{M} are recomputed only if time has changed by 0.01 day.

The subroutines use four words of erasable storage starting at COMMON.

3. Ephemeris

INTR, INTR1

The subroutine INTR assum is a high-density ephemeris tape on A8 with 20 -day records of 596 words in the following format:

T_{0}	integer days past 0^{h} January 1, 1950, E.T. (floating point)
$\mathrm{X}_{\mathbb{C}}\left(T_{j}\right), \delta^{2} \mathrm{X}_{\mathbb{C}}\left(T_{j}\right), \delta^{4} \mathrm{X}_{\mathbb{G}}\left(T_{j}\right)$	
$Y_{\mathbb{C}}\left(T_{j}\right), \delta^{2} Y_{\mathbb{G}}\left(T_{j}\right), \delta^{\boldsymbol{s}} Y_{\mathbb{Q}}\left(T_{j}\right)$	geocentric block
$Z_{\mathbb{G}}\left(T_{j}\right), \delta^{2} Z_{\mathbb{G}}\left(T_{j}\right), \delta^{4} Z_{\mathbb{Q}}\left(T_{j}\right)$	$j=0, \ldots, 20$
$\mathrm{X}_{\odot}\left(T_{j}\right), \delta^{2} X_{\odot}\left(T_{j}\right), \delta^{4} \mathrm{X}_{\odot}\left(T_{j}\right)$	time interval is 1 day
$Y_{\odot}\left(T_{j}\right), \delta^{2} Y_{\odot}\left(T_{j}\right), \delta^{4} Y_{\odot}\left(T_{j}\right)$	378 words
$Z_{\odot}\left(T_{j}\right), \delta^{2} Z_{\odot}\left(T_{j}\right), \delta^{4} Z_{\odot}\left(T_{j}\right)$	
$\mathrm{K}_{\boldsymbol{q}}\left(T_{i}\right), \delta^{\mathbf{2}} \mathrm{X}_{\boldsymbol{q}}\left(T_{j}\right), \delta^{4} \mathrm{X}_{\boldsymbol{q}}\left(T_{i}\right)$	
$Y_{q}\left(T_{j}^{\prime}\right), \delta^{2} Y_{q}\left(T_{j}\right), \delta^{4} Y_{q}\left(T_{j}\right)$	
${ }^{7}{ }_{¢}\left(T_{j}\right), \delta^{2} Z_{q}\left(T_{j}\right), \delta^{4} Z_{¢}\left(T_{j}\right)$	
$\mathrm{X}_{\delta}\left(T_{j}\right), \delta^{2} \mathrm{X}_{\delta}\left(T_{j}\right), \delta^{4} \mathrm{X}_{\delta}\left(T_{j}\right)$	
$Y_{\delta^{\prime}}\left(T_{j}\right), \delta^{2} Y_{\delta}\left(T_{j}\right), \delta^{4} Y_{\delta^{(}}\left(T_{j}\right)$	heliocentric block
$Z_{\delta^{\prime}}\left(T_{i}\right), \delta^{2} Z_{\delta}\left(T_{j}\right), \delta^{4} Z_{\delta^{\prime}}\left(T_{j}\right)$	$j=0,4,8,12,16,20$
(Nine words per time point representing what was the Earth-Moon barycenter used in an older version)	$\} \begin{aligned} & \text { time interval is } 4 \text { days } \\ & 216 \text { words }\end{aligned}$
$\mathrm{X}_{4}\left(T_{j}\right), \delta^{2} \mathrm{X}_{4}\left(T_{j}\right), \delta^{4} \mathrm{X}_{4}\left(T_{j}\right)$	
$Y_{4}\left(T_{j}\right), \delta^{2} Y_{4}\left(T_{j}\right), \delta^{4} Y_{4}\left(T_{j}\right)$	
$Z_{\psi}\left(T_{j}\right), \delta^{2} Z_{\psi}\left(T_{j}\right), \delta^{+} Z_{\psi}\left(T_{j}\right)$	

The last word of the record is the check sum for the previous 595 words.

From record to record the time must be incremented by 20 days. In addition, the time on the first record T_{F} and the time on the last record T_{L} are subroutine parameters which give the base point of the ephemeris and also a check for time out of the range of the ephemeris. The symbolic locations are TFIRST and TLAST for T_{r} and T_{L} respectively.

The lunar coordinates are assumed to use the Earth radius as a unit of length, while all other coordinates are expressed in terms of the Astronomical Unit. As the program runs in km, conversion factors are provided at SCALE1 for the Earth radius and SCALE2 for the Astronomical Unit. The rectangular coordinates are assumed to be expressed in the mean equator and equinox of the epoch 1950.0 E.T., the beginning of the Besselian year.

As the argument of the tables is E.T. (Ephemeris Tine) and the program uses U.T. (Universal Time) :he subroutine E.T. is used to form the double-precision ephemeris time in sec E.T. $=$ U.T. $+\Delta T$, where the constant ΔT appears at GRAV-2 and thus may be input via INP1 in the symbolic mode.

Beginning at GRAV, a list of gravitational coefficients for the bodies appears in the units $\mathrm{km}^{3} / \mathrm{sec}^{2}$. As a function of the central body, certain sets of these coefficients are provided for the subroutine BODY in the COMMON list KB0, .., KB6. The following illustrates the transfers:

Central body	Effective soncentral bodies
Earth	Moon, Sun; Jupiter if $R_{\oplus 4} \geqq 10^{6} \mathrm{~km}$
Moon	Earth, Sun
Sun	Earth, Moon, Venus, Mars, Jupiter
Venus	Earth, Moon, Sun, Mars, Jupiter
Mars	Earth, Moon, Venus, Sun, Jupiter
Jupiter	Earth, Moon, Venus, Mars, Sun

The entry INTR takes as argument the double-precision seconds past 0^{b} January 1,1950 , U.T., stored in $T, T+1$, makes the conversion to E.T., and interpolates as a function of the central bedy on the required coordinates for the budies listed above. There are two conditions under which actual interpolation takes place:

1. Central body has changed
2. Time has changed

If neither (1) nor (2) is satisfied, then INTR gives an immediate return.

In contrast with INTR, the entry INTRI always interpolates; in addition, this entry obtains the positions of all the bodies in terms of the central body instead of the selective list used with BODY. The positions appear in the COMMON bank XN. Additional''y, INTR1 numerically differentiates the positions to obtain the velocities which are deposited in the bank XN. in COMMON.

Positioning of the ephemeris tape on A8 is accomplished b_{j} the following scheme:

1. If $T<T_{r}$ or $T \geqq T_{L}$, an error point is given and ABORT is called.
2. If $T \geqq T_{N}+20$, where T_{N} is the time on the record currently in core, the tape is searched in a forward direction until the correct record is found. If the tape has not been previously read, a dummy T_{y} causes a forward search.
3. If $T_{N} \leqq T<T_{N}+20$, interpelaion proceeds.
4. If $T<T_{N}$, the correct number m of backspaces is calculated.
a. If $m \leqq 15$, the tape is backspaced m times and proceeds to do a forward search.
b. If $m>15$, the tape is backspaced 1 file and a forward search is undertaken.

After the correct record has been found, i^{\bullet} is read into ore and both check-summed and redundancy-tested. Reading of the desired record is attempted a maximum of 10 times, after which an error comment is printed and ABORT is called. In the forward search the above two tests are not made.

The following Everett's formula is used for the interpolation:

$$
\begin{aligned}
y(t) & =\left\{u y_{0}+t y_{1}\right\}+\left\{\frac{u\left(u^{2}-1\right)}{3!} \delta^{2} y_{0}+\frac{t\left(t^{2}-1\right)}{3!} \delta^{2} y_{1}\right\} \\
& +\left\{\frac{z\left(u^{2}-1\right)\left(u^{2}-4\right)}{5!} \delta^{4} y_{0}+\frac{t\left(t^{2}-1\right)\left(t^{2}-4\right)}{5!} \delta^{4} y_{1}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
y_{0} & =y\left(T_{j}\right) \\
y_{1} & =y\left(T_{j}+b\right) \\
b & =\text { ephemeris interval } \\
t & =\frac{T-T_{j}}{b} \\
u & =1-t \\
T_{j} & \leqq T<T+b
\end{aligned}
$$

To obtain a formula for the velocity, the above Everett's form is differentiated and scaled:

$$
\begin{aligned}
\dot{y}(T) & =\frac{1}{b} \frac{d y(i)}{d t}=\frac{1}{b}\left\{-y_{0}+y_{1}\right\} \\
& +\frac{1}{b}\left\{-\frac{3 u^{2}-1}{3!} \delta^{2} y_{0}+\frac{3 t^{2}-1}{3!} \delta^{2} y_{1}\right\} \\
& +\frac{1}{b}\left\{-\frac{5 u^{4}-15 u^{2}+4}{5!} \delta^{4} y_{0}+\frac{\left.5 t^{4}-\frac{15 t+4}{5!} \delta^{4} y_{1}\right\}}{}\right.
\end{aligned}
$$

The ephemeris tape currentiy used has the following modified differcinces for the Moon:

$$
\begin{aligned}
& \delta_{m}^{2} y=\delta^{2} y-0.01312 \delta^{6} y+0.0043 \delta^{8} y \\
& \delta_{m}^{4} y=\delta^{4} y-0.27827 \delta^{6} y+0.0685 \delta^{8} y
\end{aligned}
$$

Thus δ_{m}^{2} and δ_{m}^{4} are used in the Everett's formula instead of δ^{2} and δ^{4} to provide for the influence of the higher differences.

The following constants are used:

$$
\left.\begin{array}{l}
\text { E.R. }=6378.165 \\
\text { A.U. }=0.149599 \times 10^{9}
\end{array}\right\} \mathrm{km}
$$

The subroutine uses 20 cells of erasable storage starting at COMMON.

4. Encike Method Calculations

ENCKE, ORTHO

The subroutine ENCKE has been provided to perforrn the calculation of the Encke contribution to the acceleration

$$
\frac{\mu}{R_{0}^{3}}(\mathbf{R} F(Q)-\rho)
$$

where $\mathbf{R}=\mathbf{R}_{0}+\rho$. The solution \mathbf{R}_{0} for the position in the two-body orbit is provided by KEPLER, and is saved from step to step so that a new \mathbf{R}_{0} is calculated only when the time has changed; thus KEPLER is called normally once per integration step while using the Adams-Moulton predictor-corrector.
$F(Q)=1-(1+2 Q)^{-3 / 2}$ is calculated trom the series expansion

$$
F(Q)=Q \sum_{j=0}^{6} a_{j} Q^{j}
$$

where

$$
\begin{aligned}
& a_{0}=3 \\
& a_{1}=-7.5 \\
& a_{2}=17.5 \\
& i_{3}=-39.375 \\
& a_{4}=86.625 \\
& a_{5}=-187.6875 \\
& a_{6}=402.1875
\end{aligned}
$$

and

$$
Q=\frac{\rho \cdot\left(\mathbf{R}_{3}+\frac{p}{2}\right)}{R_{0}^{2}}
$$

The expansion cives accurate results for $|Q| \leqq 0.03$; if the limit is exceeded, an error print will be given and the trajectory will be terminated. Normally, Q grows slowly enough so that rectification may be performed at the end
of the integration step; however, for wild trajectories the error procedure has been observed to occur.

ENCKE deposits the true positior \mathbf{R} in the COMMON cells $\mathrm{QX}, \mathrm{QX}+1, \mathrm{QX}+2$ and the acceleration term $\mu / R_{0}^{3}(\mathbf{R} F(Q)-\rho)$ in the cells CX.., CX.. $+1, C X . .+2$.

At the osculation epoch T_{0} the subroutine ORTHO provides the Encke scheme with initial conditions:

$$
\begin{aligned}
& \boldsymbol{\rho}\left(T_{0}\right)=\mathbf{R}\left(T_{0}\right)-\mathbf{R}_{0}\left(T_{0}\right) \\
& \dot{\boldsymbol{\rho}}\left(T_{0}\right)=\mathbf{V}\left(T_{0}\right)-\mathbf{V}_{0}\left(T_{0}\right)
\end{aligned}
$$

$\rho\left(T_{6}\right)$ is placed in the COMMON cells $\mathrm{CX}, \mathrm{CX}+1$, CX +2 , while $\dot{\rho}\left(T_{0}\right)$ is placed in storage locations CX. CX. +1, CX. +2 .

CONIC

The subroutine CONIC supplies the Encke machinery with the necessary orbital elements given an epoch T_{0} and the Cartesian position and velocity vectors \mathbf{R}_{0} and \mathbf{V}_{0}. Under certain circumstances described below the derived elements are nonosculating.

The computation starts with the formation of the angular momentum c_{1} given by

$$
c_{1} \mathbf{W}=\mathbf{R}_{0} \times \mathbf{V}_{0}
$$

If $c_{1}>(0.99 \epsilon) R_{0} V_{0}$, where $\epsilon=0.5 \times 10^{-3}$, the orbit is considered nonrectilinear and the subroutine proceeds in the normal case. However, for $c_{1} \leqq(0.99 \epsilon) R_{0} V_{0}, V_{0}$ is replaced by \mathbf{V}_{0}^{*} given by

$$
\mathbf{V}_{0}^{*}=V_{0}\left[\sqrt{1-\epsilon^{2}} \operatorname{sgn}\left(\mathbf{R}_{0} \cdot \mathbf{V}_{0}\right) \frac{\mathbf{R}_{0}}{R_{0}}+\epsilon \mathbf{M}\right]
$$

where

$$
M=\left\{\begin{array}{l}
\frac{1}{\sqrt{X_{0}^{2}+Y_{0}^{2}}}\left(Y_{0},-X_{0}, 0\right) \quad \text { if } X_{0}^{2}+Y_{0}^{2} \neq 0 \\
(1,0,0) \text { otherwise }
\end{array}\right\}
$$

and the routine cycles back to recompute the angula: momentum. Observe that $c_{i}^{*}=\epsilon R_{0} V_{0}$ so that V_{0}^{*} is acceptable; of course, $V_{0}^{*}=V_{3}$ and $c_{3}^{*}=c_{3}$.

Next come the elements

$$
\begin{aligned}
p & =\frac{c_{1}^{3}}{\mu}, \text { the semilatus rectum } \\
c_{3} & =V_{0}^{2}-\frac{2 \mu}{R_{0}}, \text { the "energy" or vis viva integral } \\
1-\varepsilon^{2} & =-\frac{c_{1}^{2} c_{3}}{\mu^{2}}
\end{aligned}
$$

At this point the eccentricity ε is computed and tested:

$$
\varepsilon=\left\{\begin{array}{l}
\sqrt{1-\left(1-\varepsilon^{2}\right)} \quad \text { if radicand }>0 \\
0 \text { otherwise }
\end{array}\right.
$$

If the computed ε is smaller than 0.01 , then a circular orbit is assumed and the remaining elements are made consistent with the assumption of $\varepsilon=0$. There follows in quick succession
$q=\frac{p}{1+\varepsilon}$, the closest approach distance
$\lambda=\frac{1-\varepsilon^{2}}{(1+\varepsilon)^{2}}$, the pericenter parameter
$g=\frac{c_{1}}{2 q^{2}}$, the mean motion for the pericenter method
$a=\frac{\mu}{\left|c_{3}\right|}$, the semimajor or transverse axis
$n=\frac{\sqrt{\left|c_{y}\right|}}{a}$, the mean motion
$b=a \sqrt{\left.\bar{I}-\varepsilon^{2}\right\rceil}$, the semiminor or conjugate axis
and finally,

$$
1-\varepsilon=\frac{1-\varepsilon^{2}}{1+\varepsilon}
$$

It remains to calculate P and Q along with $\Delta T=T_{0}-T_{p}$ and to make the two sets agree sufficiently so that the Encke starting values will not be too large.

$$
\begin{aligned}
& \text { If } \varepsilon=0 \\
& \qquad \mathbf{P}=\frac{\mathbf{R}_{0}}{\mathbf{R}_{0}} \text { and } \mathbf{Q}=\frac{\mathbf{W} \times \mathbf{R}_{0}}{\left|\mathbf{W} \times \mathbf{R}_{0}\right|} \text { with } \Delta T=0
\end{aligned}
$$

Otherwise, the vectors are constructed:

$$
\begin{aligned}
& \varepsilon R_{0}^{2} \mathbf{P}=\left(\varepsilon R_{0} \cos v_{0}\right) \mathbf{R}_{0}-\left(\varepsilon R_{0} \sin v_{0}\right) \mathbf{W} \times \mathbf{R}_{0} \\
& \varepsilon R_{0}^{2} \mathbf{Q}=\left(\varepsilon R_{0} \sin v_{0}\right) \mathbf{R}_{0}+\left(\varepsilon R_{0} \cos v_{0}\right) \mathbf{W} \times \mathbf{R}_{0}
\end{aligned}
$$

Divide by R_{0}, and normalize the resultant vectors to obtain \mathbf{P} and \mathbf{Q}. The expressions involvin? the true anomaly at epoch are calculated from

$$
\begin{aligned}
& \varepsilon R_{0} \cos v_{0}=p-R_{0} \\
& \varepsilon R_{0} \sin v_{0}=\frac{c_{1}}{\mu} \mathbf{R}_{0} \cdot \mathbf{V}_{0}
\end{aligned}
$$

To obtain ΔT, the applicability of the pericenter method for $|\lambda|<0.45$ is tested. w_{0} is formed accorciing to

$$
w_{0}= \begin{cases}\frac{\sin v_{0}}{1+\cos v_{0}} & \text { if } \cos v_{0} \geqq 0 \\ \frac{1-\cos v_{0}}{\sin v_{0}} & \text { otherwise }\end{cases}
$$

and tested. In $\left|w_{0}\right| \leqq w_{\text {max }}$, thei.

$$
g \Delta T=\sum_{j=0}^{6} a_{j}(\lambda) w_{0}^{2 j}
$$

where the coefficients $a_{j}(\lambda)$ along with $w_{\text {max }}$ are given in the discussion of the subroutine PERI.

Whenever $\left|w_{0}\right|>w_{\text {max }}$, the eccentric anomaly and Kepler's equation are resorted to. The scheme is divided into two cases according to the value of ε :
(1) $\varepsilon<1$, elliptic case

The following expressions are constructed ${ }^{\kappa_{r}}$ the eccentric anomaly:

$$
\begin{aligned}
& \varepsilon \cos E_{0}=1-\frac{R_{0}}{a} \\
& \varepsilon \sin E_{0}=\frac{\mathbf{R}_{0} \cdot \mathbf{V}_{0}}{a \sqrt{\left|c_{3}\right|}}
\end{aligned}
$$

from which E_{0} is determined.
If $\left|\varepsilon \sin E_{0}\right| \leqq\left|\varepsilon \cos E_{0}\right|$, then the auxiliary variable E^{*} is constructed:

$$
E^{*}=\sin ^{-1} \frac{\mathbf{R}_{0} \cdot \mathbf{V}_{0}}{a \varepsilon \sqrt{\left|c_{3}\right|}},-\frac{\pi}{2}<E^{*}<\frac{\pi}{2}
$$

Then E_{0} is given by

$$
E_{0}=\left\{\begin{array}{l}
E^{*} \quad \text { if } 1-\frac{R_{0}}{a}>0 \\
\pi \operatorname{sgn}\left(E^{\prime}\right)-E^{*} \text { otherwise }
\end{array}\right.
$$

On the other hand, if $\left|\varepsilon \sin E_{0}\right|>\left|\varepsilon \cos E_{0}\right|$, then

$$
E^{*}=\cos ^{-1} \frac{1}{e}\left(1-\frac{R_{0}}{a}\right), \quad 0<E^{*}<\pi
$$

with

$$
E_{0}=\operatorname{sgn}\left(\mathbf{R}_{0} \cdot \mathbf{V}\right) E^{*}
$$

Finally, ΔT is calculated from

$$
n \Delta T=E_{0}-\varepsilon \sin E_{0}=E_{0}-\frac{\mathbf{R}_{0} \cdot \mathbf{V}_{0}}{a \sqrt{\left|c_{3}\right|}}
$$

(2) $\varepsilon>1$, hyperbolic case

The eccentric anomaly F_{0} is found from the relation

$$
\begin{aligned}
\varepsilon \sinh F_{0} & =\frac{\mathbf{R}_{0} \cdot V_{0}}{a \sqrt{c_{3}}}=\varepsilon \alpha \\
F_{0} & =\operatorname{sgn}\left(R_{0} \cdot V_{0}\right) \ln \left(|\alpha|+\sqrt{1+a^{2}}\right)
\end{aligned}
$$

Then ΔT is obtained from Kepler's equation:

$$
n \Delta T=\varepsilon \varepsilon \sinh F_{0}-F_{0}=\frac{\mathbf{R}_{0} \cdot V_{r}}{a \sqrt{c_{3}}}-F_{0}
$$

QUADKP

The subroutine QUADKP was written to provide an iterative solution to Kepler's equation for the elliptic and hyperbolic cases using a second-order gradient method. However, only the machinery for the latter case has been utilized in the main program for the Encke solution.

Let Kepler's equation be represented in the hyperbolic case by

$$
f(F)=\varepsilon \sinh F-F-M, \quad M=n\left(T-T_{p}\right)
$$

Then for the approximate solution F_{j} the Taylor series expansion through second-ordex terms may be used to obtain a new estimate F_{j+1} of the root $f(F)=0$.

$$
\begin{aligned}
0= & f\left(F_{j}+\delta F_{j}\right)=f(F) \approx f\left(F_{j}\right) \\
& +\delta F_{i} f^{\prime}\left(F_{j}\right)+\frac{\delta F_{j}^{2}}{2} f^{\prime \prime}\left(F_{j}\right)
\end{aligned}
$$

Solving directly for the roots of the quadratic,

$$
\delta F_{j}=F_{j+1}-F_{j}=\frac{2 f\left(F_{j}\right)}{-f^{\prime}\left(F_{j}\right)-\sqrt{f^{\prime 2}\left(\bar{F}_{j}\right)-2 f\left(F_{j}\right) f^{\prime \prime}\left(F_{j}\right)}}
$$

where the minus sign is taken before the radical to insure that $\delta F_{j} \rightarrow 0$ as $f\left(F_{j}\right) \rightarrow 0$; for a wild guess, however, the radicand may become negative, in which case the radical is replaced by zero. With a good initial approximation the latter case arises only infrequently.

A similar result may be obtained for the elliptic case, namely

$$
f(E)=E-\varepsilon \sin E-M
$$

Convergence in either the hyperbolic or elliptic case is evidently given by

$$
F_{j+1}-F=O\left(\left(F_{j}-F\right)^{\mathrm{a}}\right)
$$

The program is made complex by the attention necessarily paid to obtaining a good initial approximation for starting the higher order iteration scheme and the behavior of Kepler's equation when e is near 1 and M is small.

The initial approximation is obtained as a function of ε and M :
(1) $\varepsilon>1.1, \quad F_{-1}=\frac{M}{\varepsilon-1}$
$F_{0}=\left\{\begin{array}{cc}\operatorname{sgn}(M) \min \left\{1, \ln \frac{2|M|}{\varepsilon}\right\} & \text { if }\left|F_{-1}\right|>1 \\ F_{-1}-\frac{\frac{F_{-1}^{3}}{3!}+\frac{F_{-1}^{5}}{5!}}{\frac{\varepsilon-1}{\varepsilon}+\frac{F_{-1}^{2}}{2!}+\frac{F_{-1}^{4}}{4!}} & \text { if }\left|F_{-1}\right| \leqq 1 \\ (1 \text { iteration by Newton's method) }\end{array}\right.$
(2)
(3) $0.9<\varepsilon \leqq 1$

$$
E_{0}=(6 M)^{1 / 3}
$$

(4)
$1 \leqq \varepsilon \leqq 1.1$
$F_{0}=\left\{\begin{array}{l}\operatorname{sgn}(M) \min \left\{1, \ln \frac{2|M|}{\varepsilon}\right\} \\ (6 M)^{1 / n} \text { otherwise }\end{array}\right.$ if $|M|>1$
$0<e \leqq 0.9, \quad E_{-1}=\frac{M}{1-\varepsilon}$

$$
E_{0}=\left\{\begin{array}{l}
2.5 \times \operatorname{sgn}(M) \text { if }\left|E_{-1}\right|>3 \\
E_{-1}-\frac{\frac{E_{-1}^{3}}{3!}-\frac{E_{-1}^{s}}{5!}}{\frac{1-\varepsilon}{E_{-1}^{2}}+\frac{E_{-1}^{s}}{2!}} \text { if }\left|E_{-1}\right| \leqq 3 \\
\text { (1 iceration by Newton's method) }
\end{array}\right.
$$

(5)

$$
\varepsilon=0
$$

$$
E_{0}=M=E
$$

In the iteration scheme, a modification occurs in the numerical evaluation of f, f^{\prime}, and $f^{\prime \prime}$ for the hyperbolic case.
(1) \mid For $\left|F_{j}\right|<1.98$
$\varepsilon \sinh F_{j}-F_{j}=\left(\sinh F_{j}-F_{j}\right)+(\varepsilon-1) \sinh F_{j}$
$\sinh F_{j}-F_{j}=\frac{F_{j}^{3}}{3!} \sum_{i=0}^{5} \frac{(3!)^{i+1}}{(2 i+3)!}\left(\frac{F_{j}^{2}}{3!}\right)^{i}$
$\sinh F_{j}=F_{j}+\left(\sinh F_{j}-F_{j}\right)$
(2) For $\left|F_{i}\right|<2.28$
$\cosh F_{j}-1=\frac{F_{j}^{2}}{2!} \sum_{i=0}^{6} \frac{(2!)^{i+1}}{(2 i+2)!}\left(\frac{F_{j}^{2}}{2!}\right)^{i}$
$z-\cosh P_{j}=(e-1)-\left(\cosh P_{f}-1\right)$

The power series developments are employed since the quantity $1-\varepsilon$ is regarded as an independent orbital element and ε is made consistent with this choice. For small values of F_{j}, underflow is avoided by choosing fewer terms in the expansions.

Additionally, if $M=0, F$ is set to zer; and no iteration is performed. The calling sequence has the form
$(\mathrm{AC})=M$
$(M Q)=1-\varepsilon$

CALL QUADKP

DEC

PZE A
(ERROR RETURN)

For the elliptic case, it is assumed that M has ween normalized so that $|M| \leqq \pi$.

The location A contains a positive riumber for the elliptic case and a negative number for the hyperbolic case to choose the correct form of Kepler's equation for the rectilinear orbit.

As a convergence criterion, $\epsilon=5 \times 10^{-8}$ has been chosen to apply such that the normal return is given with (AC) $=F$ or E whenever $\left|f\left(F_{j}\right)\right|<\epsilon|M|$ and $F=F_{j}$ for the hyperbolic case, or $\left|f\left(E_{j}\right)\right|<\epsilon|M|$ and $E=E_{j}$ for the elliptic case. However, if the process fails to converge to within ϵ in $N=50$ iterations, the following comment is printed:

QUADRATIC METHOD FAILED

$$
M \quad \varepsilon \quad F_{j}\left(\operatorname{or} E_{j}\right) \quad f\left(F_{j}\right)\left[\operatorname{or} f\left(E_{j}\right)\right]
$$

and the error return is given with $(A C)=F_{j}$ or E_{j}. Generally, convergence is obtained in five or fewer iterations. After the first time QUADKP has been called in a phase, subsequent initial approximations are obltained by using the solution at the previous time point.

The subroutine uses eleven words of erasable storage starting at COMMON.

KEPLER, PERI, SPEED

KEPLER is the subroutine which provides the solution to the two-body problem at the epoch T. The necessary elements are assumed to have been provided at the osculation epoch by ORTHO and CONIC. Different methods of solution are chosen according to the following criteria:

1. The pericenter method is used whenever
a. $|\lambda|<0.45$ and
b. $\left|w_{0}\right| \leqq g \Delta T_{\max }$
2. QUADKF is used for $\varepsilon>1$ and if item 1 is not satisfied.
3. If the conditions in item 1 are not met and if $\varepsilon<1$, then the methods described below for the ellipse are used.

As the orbital elements furnished by CCNIC are nowosculating if true osculating elements give neariy rectilinear results, the case for $\varepsilon=1$ and $c_{3} \neq 0$ itt od not be treated.

Pericenter Method

The first problem to be solved in the per ... method is the determination of w from the formula

$$
w_{0}=g\left(T-T_{p}\right)=\int_{0}^{w} \frac{1+u^{2}}{\left(1+\lambda u^{2}\right)^{2}} d u
$$

where $g=c_{1} / 2 q^{2}$. The quadrature is approximated by the expansion

$$
w \sum_{j=0}^{6} c_{j} w^{2 j}
$$

where the coefficients are a tunction of λ :

$$
\begin{aligned}
& a_{0}=1 \\
& a_{j}=(-1)^{j} \frac{1}{2 j+1}\left[(j+1) \lambda^{j}-j \lambda^{j-1}\right] \\
& w_{\max }=\max \left\{\left(\frac{\epsilon}{a_{2}}\right)^{1 / 14}, \quad\left(\frac{\epsilon}{3 a_{7}}\right)^{1 / 22}\right\}
\end{aligned}
$$

where $\epsilon=0.5 \times 10^{-8}$.

$$
g \Delta T_{\max }=w_{\max } \sum_{j=0}^{n} a_{j} w_{\max }^{2 j}
$$

w_{1}, the initial approximation, is given by

$$
w_{1}= \begin{cases}\left(3 w_{0}\right)^{1 / 8} & \text { if }\left|w_{0}\right|>3 \\ 1 / 2 w_{0} & \text { if } 1<\left|w_{0}\right| \leqq 3 \\ w_{0} & \text { if } 0 \leqq\left|w_{0}\right| \leqq 1\end{cases}
$$

Iteration proceeds by Newton's method:

$$
w_{j+1}=w_{j}-\frac{f\left(w_{j}\right)}{f^{\prime}\left(w_{j}\right)}
$$

where

$$
f(w)=w \sum_{j=1}^{b} a_{j} w^{2 j}-w_{0}
$$

and

$$
f^{\prime}(w)=\frac{1+w^{2}}{\left(1+\lambda w^{2}\right)^{2}}
$$

Convergenee 1 : usually obtained in a maximum of four iterations for cases which have arisen in practice, assuming a crii rion of $\left|f\left(w_{j}\right)\right|<5 \times 10^{-8}\left|w_{0}\right|$.

Wher: convargence has been obtained the coordinates nay be calculated from the formulas

$$
\begin{aligned}
& \mathbf{R}=\frac{1-w^{2}}{1+\lambda w^{2}} q \mathbf{Y}+\frac{2 w}{1+\lambda w^{2}} q \mathbf{Q} \\
& \mathbf{V}=-\frac{(1+\lambda) w^{2} c_{1}}{q\left(1+w^{2}\right.}+\frac{\left(1-\lambda w^{2}\right) c_{1}}{q\left(1+w^{2}\right)} \mathbf{Q}
\end{aligned}
$$

Hyperholic Case

If method \mathcal{L} is to be ust-: : ie subroutine QUADKP is called and returns rith :- rest solution to Kepler's equatien. The coordinater $\because \because$ then calculated from the expressions

$$
\begin{aligned}
& \mathbf{R}=a\left(\varepsilon \cdots, a \sqrt{\varepsilon^{2}-1} \sinh F \mathbf{Q}\right. \\
& \mathbf{V}=-\frac{a}{2} \mathbf{P}+\frac{a \sqrt{c_{3}} \sqrt{\varepsilon^{2}-1} \cosh F}{R} \mathbf{Q}
\end{aligned}
$$

Elliptic Case

Begin by defining the auxiliary quantity M^{*} by

$$
M^{*}=M=n\left(T-T_{p}\right)(\bmod 2 \pi)-\pi<M^{*} \leqq \pi
$$

and

$$
h_{\mathrm{p}}=-\left\{\operatorname{sgn}\left(M^{*}\right)\right\} \frac{\varepsilon}{2}
$$

Then for $\left|M^{*}\right| \leqq \pi / 6-\varepsilon / 2$, take

$$
\begin{aligned}
& E_{8}=M \\
& E_{1}=M-b_{2} \\
& E_{0}=M+b_{2}
\end{aligned}
$$

and for $\left|M^{*}\right|>\pi j^{\prime} 6-\varepsilon / 2$ the approximations are

$$
\begin{aligned}
& E_{2}=M-b_{2} \\
& E_{1}=M-2 b_{2} \\
& E_{0}=M
\end{aligned}
$$

Now if $\left|M^{*}\right| \geqq 0.25$, iteration is performed using Newton's method with E_{2} as the initial approximation:

$$
E_{j+1}=E_{j}-\frac{f\left(E_{j}\right)}{f^{\prime}\left(E_{j}\right)}
$$

where $f(E)=E-\varepsilon \sin E-M$. Convergence for Newton's method is evidently given by

$$
E_{j+1}-E=O\left((E,-E)^{2}\right)
$$

where $f(E)=0$.
Whenever $\left|M^{*}\right|<0.25$ Muller's method ${ }^{2}$ is used:

$$
\begin{aligned}
E_{j+1}= & E_{j}+b_{j r 1} \\
b_{j+1}= & \lambda_{j+1} b_{j} \\
\lambda_{j+1}= & -\frac{2 \delta_{j} f\left(E_{j}\right)}{g_{j}+\left\{\operatorname{sgn}\left(g_{j}\right)\right\} \sqrt{\left|a_{j}\right|}} \\
a_{j}= & g_{j}^{2}-4 \lambda_{j} \delta_{j} f\left(E_{j}\right) \\
& \times\left[\lambda_{j} f\left(E_{j-2}\right)-\delta_{j} f\left(E_{j-1}\right)+f\left(E_{j}\right)\right] \\
g_{j}= & \lambda_{j}^{2} f\left(E_{j-2}\right)-\delta_{j}^{2} f\left(E_{j-1}\right) \\
& +\left(\lambda_{j}+\delta_{j}\right) f\left(E_{j}\right) \\
\delta_{j}= & 1+\lambda_{j}
\end{aligned}
$$

Initially, of cours?

$$
\lambda_{2}=\frac{E_{2}-E_{1}}{E_{1}-E_{0}}=-\frac{1}{2}
$$

The convergence rate is given by

$$
E_{j_{+1}}-E=O\left(\varepsilon_{\underline{3}}^{3}\right)
$$

whe $3 \varepsilon_{u}=\max \left\{|\Sigma-E|,\left|E_{j-1}-E\right| \cdot\left|E_{j-2}-E\right|\right\}$ and $f(E)=0$. The method owes much of its usefulness to the obtaining of E_{j+1} by interpolation, which makes it relatively insensitive to $f^{\prime}(E) \approx 0$.

For both the Newton and Muller methods, convergence is defined by

$$
\left|f\left(E_{j}\right)\right| \leqq \epsilon|M|
$$

where $\epsilon=5 \times 10^{-8}$ or until E_{j+1} and E_{j} agree to 25 bits. In practice, for the values of M and ε encountered, three or four iterations are usually sufficient for convergence.

Whenever $0.5<e<1$, the following series expansions are resorted to:

[^5](i) For $\left|E_{j}\right|<1.98$
$E_{j}-\varepsilon \sin E_{j}=\left(E_{j}-\sin E_{j}\right)+(1-\varepsilon) \sin E_{j}$
$E_{j}-\sin E_{j}=\frac{E_{j}^{3}}{3!} \sum_{i=0}^{5} \frac{(3!)^{i+1}}{(2 i+3)!}\left(-\frac{E_{j}{ }^{2}}{3!}\right)^{i}$
(2) For $\left|E_{j}\right|<2.28$
$1-\cos Z_{j}=\frac{E_{j}{ }^{2}}{2!} \sum_{i=0}^{6} \frac{(2!)^{i+1}}{(2 i+2)!}\left(-\frac{E_{j}{ }^{2}}{2!}\right)^{i}$
$\cos E_{j}-\varepsilon=(1-\varepsilon)-\left(1-\cos E_{j}\right)$
Here ε is made consistent with the chcice of $1-\varepsilon$ as an independent orbital element.

The coordinates are obtained after convergence by use of the formulas

$$
\begin{aligned}
& \mathbf{R}=a(\cos E-\varepsilon) \mathbf{P}+a \sqrt{1-\varepsilon^{2}} \sin E \mathbf{Q} \\
& \mathbf{V}=-\frac{a \sqrt{\left|\epsilon_{3}\right|} \sin E}{R} \mathbf{P}+\frac{a \sqrt{\left|c_{3}\right|} \sqrt{1-\varepsilon^{2}} \cos ;}{R} \mathbf{Q}
\end{aligned}
$$

is usually only the position is required for the twobody orbit in the Encke schene, KEPI, $\mathrm{E}^{\text {? }}$ is additionally used to calcriate \mathbf{R}. Whenever \mathbf{V} is needed, the subroutine SPEED is called upon, which makes use of the previous solution E, F, or $w . \mathbf{R}$ is placed in the COMMON cells QX 0 , QXO $+1, \mathrm{QX} \cap+2$ by KEPLER, while SPEED places V in the cells $Q X 0 ., Q_{1} .+1, Q X 0 .+2$ and also celculates the true velocity $V+\dot{\rho}$ which is placed in the cells $\mathrm{QX} ., \mathrm{QX} .+1, \mathrm{QX} .+2$.

After the first use of KEPLER in a phase, further time points use as initial approximation the solution at the prereding time point.

5. Perturbations

HARMN, HARMN1

The oblate potential of the Earth is assumed to contair the second, third, and fourth spherical harmonics:
$U_{\oplus}=\frac{\mu_{\oplus}}{R}\left\{\frac{J a_{\oplus}^{2}}{3 R^{2}}\left(1-3 \sin ^{2} \phi\right)+\frac{H a_{\oplus}^{3}}{5 R^{3}}\left(3-5 \sin ^{2} \phi\right) \sin \phi\right.$

$$
\left.+\frac{D a_{\oplus}^{4}}{35 R^{*}}\left(3-30 \sin ^{2} \phi+35 \sin ^{4} \phi\right)\right\}
$$

wbare μ_{\oplus} is the gravitational coefficient of the Earth and a_{\oplus} s the equatorial radius of the Earth.

$$
\mathbf{R}=(X, Y, Z) \text { is the position vector from the Earth's }
$$ center of mass expressed in the mean equator and equi-

nox of 1950.0. To obtain ϕ, the geocentric latitude, $r=$ (x, y, z), the position vector expressed in the true equator and equinor of date, must be obtained. NUTATE provides the necessary rotation matrix A :

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{32} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)
$$

Thus $\sin \phi=z_{\prime}^{\prime} R$.
To obtain the perturbing acceleration, ∇U_{\oplus} is formed:

$$
\nabla U_{\oplus}=\left(\frac{\partial U_{\Theta}}{\partial x_{1}}, \frac{\partial U_{\Theta}}{\partial x_{2}}, \frac{\partial U_{\Theta}}{\partial x_{3}}\right)
$$

where $u_{1}=X, u_{2}=Y$, and $u_{3}=Z$.

$$
\begin{aligned}
& \frac{\partial U_{\Theta}}{\partial w_{j}}=-\frac{J \mu_{\Theta}}{R^{2}} \frac{a_{\oplus}^{2}}{R^{j}}\left\{\left(1-\frac{5 z^{2}}{R^{2}}\right) \frac{w_{j}}{K}+2 \frac{z}{R} a_{3 j}\right\} \\
& -\frac{H_{\mu_{\oplus}}}{R^{2}} \frac{\boldsymbol{\sigma}_{\Phi}^{*}}{R^{3}}\left\{\left(3-7 \cdot \frac{z^{2}}{R^{2}}\right) \frac{z}{R} \frac{\mu_{1}}{R}\right. \\
& \left.+\left(-\frac{3}{5}+\frac{3 z^{2}}{R^{2}}\right) a_{3 j}\right\} \\
& -\frac{D_{\mu_{\oplus}}}{R^{2}} \frac{2_{\oplus}^{4}}{K^{4}}\left\{\left(\frac{3}{7}-6 \frac{z^{2}}{R^{2}}+9 \frac{z^{4}}{R^{4}}\right) \frac{w_{j}}{R}\right. \\
& \left.+\left(\frac{12}{7}-4 \frac{z^{2}}{R^{2}}\right) \frac{z}{R} a_{3 j}\right\} \\
& \text { where } j=1,2,3 .
\end{aligned}
$$

The calling sequence for the setup entry is

> CALL HARMN

PZE X,B
PZE K,ZT
PZE \quad R
$\mathbf{X}, \mathbf{X}+1, X+2$ contain the vazur $\mathbf{R}=(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) ; \mathbf{B}$, $B+1, B+2$ will contain $-\nabla U_{i z 0}$ the negative of the perturbing acceleration; K contains μ_{\oplus}, the Earth's gravity coefficient; ZT contains 2 , the distance above the true equator of the Earth; and R contains R, the distance to the center of the Earth.

HARMNI is the execution entry which assumes the above storage layout. In addition, provisions have been made to omit the calculation of the various harmonics as a function of the geocentric range. The internal paramzcers are listed in the following:

Location	Quantity	Nominal value	Explanation
HARMN + 2	J	1.62345×10^{-3}	Coefficient for second harmonic
$+3$	H	-0.575×10^{-5}	Coefficient for third harmonic
+4	D	0.7875×10^{-5}	Coefficient for fourth harmonic
$+5$	a_{\oplus}	6378.165 km	Earth radius
$+6$	R_{2}	$500,000 \mathrm{~km}$	$\begin{aligned} & R>R_{2} \text { sup- } \\ & \text { press second } \\ & \text { harmonic } \end{aligned}$
$+7$	\boldsymbol{R}_{3}	$200,000 \mathrm{~km}$	$R>R_{3}, \text { sup- }$ press third harmonic
$+10$	\boldsymbol{R}_{4}	$100,000 \mathrm{~km}$	$\begin{aligned} & R>R_{4} \text {, sup- } \\ & \text { press fourth } \\ & \text { harmonic } \end{aligned}$

As HARMN is contained in the symbol table for INP1, the above parameters may be inpus in the symbolic mode of INP1.

The subruatine uses 15 cells of erasable storage starting at COMMON.

XYZDD, XYZDD1

For purposes of computing the oblate potential, the Moon is assumed to have a triaxial ellipsoidal figure. The moments of inertia A, B, and C are taken about the principal axes of the ellipsoid x, y, and z originated at the Moon's center of mass.

Sketch A-16. Geometry of the irve equator of the Moon

In Sketch A-16, the $X^{\prime}, Y^{\prime}, Z^{\prime}$ frame is the Earth's true equator and equinox; the $x-y$ plane lics in Moon's true equator with z completing the right-hand system by lying along the Moon's spin axis. i is the inclination of the Mcon's trie equator to the Earth's true equator; Ω^{\prime} is the righi ascension of the ascending node of the Moon's true equator; Λ is the anomaly from the node to the x axis; Δ is the anomaly from the node to the ascending node of the Moon's true equator on the ecliptic; ϵ is the true obliquity of the ecliptic; $\delta \psi$ is the nutation in longitude; Ω is the mean longitude of the descending node of the Moon's mean equator on the ecliptic; © is the mean longitude of the Moon; I is the inclination of the Moon's mean equator to the ecliptic; σ is the libration in the node; τ is the libration in the mean longitude; and ρ is the libration in the inclination. The anomalies are related by $\Lambda-\Delta=(\mathbb{C}+\tau)-(\Omega+\sigma)$. Expressions for the above quantities appear in the discussion of subroutine MNA.

The two rectangular system; are related through Λ, Ω^{\prime}, and i by the rotation:

$$
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right)\left(\begin{array}{l}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right)
$$

where

$$
\begin{aligned}
& b_{11}=\cos \Lambda \cos \Omega^{\prime}-\sin \Lambda \sin \Omega^{\prime} \cos i \\
& b_{12}=\cos \Lambda \sin \Omega^{\prime}+\sin \Lambda \cos \Omega^{\prime} \cos i \\
& b_{13}=\sin \Lambda \sin i \\
& b_{21}=-\sin \Lambda \cos \Omega^{\prime}-\cos \Lambda \sin \Omega^{\prime} \cos i \\
& b_{22}=-\sin \Lambda \sin \Omega^{\prime}+\cos \Lambda \cos \Omega^{\prime} \cos i \\
& b_{23}=\cos \Lambda \sin i \\
& b_{3 .}=\sin \Omega^{\prime} \sin i \\
& b_{32}=-\cos \Omega^{\prime} \sin i \\
& b_{33}=\cos i
\end{aligned}
$$

Combining the above rotation with the one to rotate 1950.0 coordinates to true of-date, as described in NUTATE, derives the additional relation

$$
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)
$$

where X, Y, and Z are the 1950.0 coordinates.
The following form of the potential function which accounts for a second harmonic has been adopted:

$$
\begin{aligned}
U_{\mathbb{C}} & =\frac{G}{R} \frac{(A+B+C-3 I)}{2 R^{2}} \\
G & =\frac{\mu_{\mathbb{G}}}{m_{\mathbb{G}}}=k^{2}, \text { the universal gravitational constant } \\
I & =A\left(\frac{x}{R}\right)^{2}+B\left(\frac{y}{R}\right)^{z}+C\left(\frac{z}{R}\right)^{2}
\end{aligned}
$$

To obtain an expression for the perturbing acceleration

$$
\nabla U_{\mathbb{C}}=\left(\frac{\partial U_{\mathbb{C}}}{\partial u_{1}}, \frac{\partial U_{\mathbb{C}}}{\partial u_{2}}, \frac{\partial U_{\mathbb{C}}}{\partial u_{3}}\right)
$$

is formed, where $u_{1}=X, u_{2}=Y$, and $u_{3}=Z$.

$$
\begin{aligned}
\frac{\partial U_{q}}{\partial u_{j}}=\frac{G}{R^{2}}\{[- & \left.\frac{3}{2} \frac{A+B+C}{K^{2}}+\frac{15}{2} \frac{I}{R^{2}}\right] \frac{\mu_{j}}{R} \\
& \left.-\frac{3}{R^{3}}\left[A m_{1 j} x+B m_{2 j} y+C m_{; j} z\right]\right\}
\end{aligned}
$$

where $j=1,2,3$. In current use, the values of the parameters are

$$
\begin{aligned}
G & =0.6671 \times 10^{-19} \mathrm{~km}^{3} / \mathrm{kg}^{-}-\mathrm{sec}^{2} \\
A & =0.88746 \times 10^{29} \mathrm{~kg} \cdot \mathrm{~km}^{2} \\
B & =0.88764 \times 10^{29} \mathrm{~kg} \cdot \mathrm{~km}^{2} \\
C & =0.88801 \times 10^{29} \mathrm{~kg} \cdot \mathrm{~km}^{2}
\end{aligned}
$$

The calling sequences are
$(\mathrm{AC})=$ fractional days past $0^{\text {h }}$ of epoch
(MQ) $=$ integer days past 0^{n} January 1, 1950, E.T.
CALL XYZDD (or XYZDDI for time change check)
PZE 1, X
PZE „X.
$\mathbf{X}, \mathbf{X}+1, \mathbf{X}+2$ contain \mathbf{R} in the 1950.0 system; $\mathbf{X} .$. , $X . .+1, X . .+2$ will contain the perturbing acceleration.

If the entry XYZDD1 is used, the matrix ($m_{i j}$) is recomputed or'y after time has changed by $d=0.01$ day, where d is a program parameter, On the other hand, the entry XYZDD will give recalculation of (m_{i}) each time. It has been determined by numerical experimentation that $d=0.01$ day gives the perturbing acceleration to sufficient accuracy to represent faithfully the motion of a
low-altitude satellite in the field of an oblate Moon, as compared with an evaluation of ($m_{: 1}$) at each integration step.

If $R>R_{0}=40,000 \mathrm{~km}$, then the contribution from the oblateness is set to zero. R_{n} is a program parameter.

The subroutine uses six cells of erasable storage starting at COMMON.

BODY, BODYI

The subroutine BODY has been provided to perform the calculation of the n-body perturbation term

$$
\mathbf{P}=-\sum_{j=2}^{n} \mu_{j}\left(\frac{\mathbf{R}_{j p}}{R_{j p}^{3}}+\frac{\mathbf{R}_{j}}{R_{j}^{3}}\right)
$$

where $\mathbf{R}_{j p}=\mathbf{R}-\mathbf{R}_{j}$.
The subroutine has the execution entry

CALL BODY1

and the setup entry
CALL BODY
PZE X,n
PLE $\quad \mathrm{XN}, \mathrm{KJ}$
PZE RJ,RJP
PZE X..
where the locations $X, X+1, X+2$, contain the vector \mathbf{R}. the position of the probe with respect to the central body. The maximum number of noncentral bodies is given by n; the gravitational coefficients μ_{j} for the noncentral bodies are assumed to be storid in the list KJ, ..., $\mathrm{KJ}+(\mathrm{n}-1)$ with the convention inat a cell containing zero means that the corsesponding body is not used in the formation of \bar{r}. The vectors \mathbf{R}_{j}, the positions of the n bodies with respect to the central body, are assumed to be stored in the bank $\mathrm{XN}, \ldots, \mathrm{XN}+3(\mathrm{n}-1)+2$ where the ordering is the same as for the μ_{j}.

The execution entry results in three types of output: $-\mathbf{P}$ is stored in the cells $\mathrm{X} . ., \mathrm{X} . .+1, \mathrm{X} . .+2$; the R_{j} for the effective bodies are stored in locations RJ, ..., RJ + ($n-1$), while the $R_{j g}$ for the same bodies are placed in the list RJP, . ., RJP + (n-1).

The subroutine uses 14 cells of erasable storage starting at COMMON.

6. Variational Equations

VARY, SVARY

The subroutine VARY has been written to provide for the calculation of the derivatives of the first-order variational coefficients, i.e., of the partial derivatives $\partial \mathbf{R} / \partial u_{j}$ where $\left\{u_{j}\right\}=\left\{X_{0}, Y_{0}, Z_{0}, \dot{X}_{0}, \dot{Y}_{0}, \dot{Z}_{0}\right\}$ and all quantities are referred to the mean equator and equinox of 1950.0. The $\partial \ddot{\mathbf{R}} / \partial u$, may be expressed in the form $\partial \ddot{\mathbf{R}} / \partial u_{j}=$ $(\Lambda+B) \partial R / \partial u_{j}$ where the matrix A arises from the central-body term and the n-body perturbation and B approximates the effect of the Earth's oblateness to be used only in the vicinity of the Earth.

The form of A is obtained by differentiating $\ddot{\mathbf{R}}$ with respect to u_{j} and exchanging the order of differentiation where

$$
\begin{aligned}
\ddot{\mathbf{R}} & =-\mu \frac{\mathbf{R}}{R^{3}}-\sum_{k=1}^{n} \mu_{k}\left\{\frac{\mathbf{R}_{k p}}{R_{k j}^{3}}+\frac{\mathbf{R}_{k}}{R_{k}^{3}}\right\} \\
\frac{\partial \ddot{\mathbf{R}}}{\partial u_{j}} & =-\sum_{k=0}^{n} \mu_{k}\left\{\frac{1}{R_{k p}^{3}} \frac{\partial \overline{\mathbf{R}}}{\partial u_{j}}-\frac{3}{R_{k p}^{s}}\left(\mathbf{R}_{k p} \cdot \frac{\partial \mathbf{R}}{\partial u_{j}}\right) \mathbf{R}_{k p}\right\}
\end{aligned}
$$

with $\mu_{0}=\mu$ and $\mathbf{R}_{0 p}=\mathbf{R}$. Expanding the dot products, the computational form of A results:

$$
\begin{aligned}
& A_{11}=-\sum_{k=0}^{n} \mu_{k}\left\{\frac{1}{R_{k p}^{j}}-\frac{3 Y_{k p}^{\prime}}{R_{k p}^{5}}\right\} \\
& A_{12}=A_{21}=3 \sum_{k=0}^{n} \mu_{k} \frac{X_{k p} Y_{k p}}{R_{k p}^{5}} \\
& A_{13}=A_{31}=3 \sum_{k=0}^{n} \mu_{k} \frac{X_{k p} Z_{k p}}{R_{k p}^{5}} \\
& A_{22}=-\sum_{k=0}^{n} \mu_{k}\left\{\frac{1}{R_{k p}^{3}}-\frac{3 Y_{k p}^{2}}{R_{k p}^{s}}\right\} \\
& A_{23}=A_{32}=3 \sum_{k=0}^{n} \mu_{k} \frac{Y_{k p} Z_{k p}}{R_{k p}^{s}} \\
& A_{3 s}=-\sum_{k=0}^{n} \mu_{k}\left\{\frac{1}{R_{k p}^{s}}-3 \frac{Z_{k p}^{2}}{R_{k p}^{5}}\right\}
\end{aligned}
$$

To obtain an approximate expression for the oblateness contribution B, choose the perturbaia' which retains just the second harmonic term:

$$
\left(g_{1} \frac{X}{R}, g_{1} \frac{Y}{R}, g_{2} \frac{Z}{R}\right)
$$

where

$$
\begin{aligned}
& g_{1}=-\frac{J a_{\Theta}^{2} \mu_{\Theta}}{R^{2}}\left(1-\frac{\varsigma Z^{2}}{R^{2}}\right) \\
& g_{2}=-\frac{J a_{\Theta}^{2} \mu_{\Theta}}{R^{2}}\left(3-\frac{S Z^{2}}{R^{2}}\right)
\end{aligned}
$$

At this point a further appreximation is made in that the coordinates are regarded as being expressed in the 1 zference system, the mean equator and equinox of 1950.0 .

Forming the partial derivatives

$$
\begin{aligned}
\frac{\partial \ddot{X}}{\partial u_{j}}= & g_{1} \frac{X}{R}\left(\frac{1}{X} \frac{\partial X}{\partial u_{j}}-\frac{3}{R^{2}} \mathbf{R} \cdot \frac{\partial \mathbf{R}}{\partial u_{j}}\right) \\
& +\frac{\mu_{\Theta} X}{R^{3}} \frac{J a_{\oplus}^{2}}{R^{4}}\left\{10 Z \frac{\partial Z}{\partial u_{i}}+2\left(1-\frac{10 Z^{2}}{R^{2}}\right) \mathbf{R} \cdot \frac{\partial \mathbf{R}}{\partial u_{j}}\right\} \\
\frac{\partial \ddot{Y}}{\partial u_{j}}= & g_{:}: \frac{Y}{R}\left(\frac{1}{Y} \frac{\partial Y}{\partial u_{j}}-\frac{3}{R^{2}} \mathbf{R} \cdot \frac{\partial \mathbf{R}}{\partial u_{j}}\right) \\
& +\frac{\mu_{\Phi} Y}{R^{3}} \frac{J a_{\Phi}^{2}}{R^{4}}\left\{10 Z \frac{\partial Z}{\partial u_{j}}+2\left(1-\frac{10 Z^{i}}{R^{2}}\right) \mathbf{R} \cdot \frac{\partial \mathbf{R}}{\partial u_{j}}\right\} \\
\frac{\partial \ddot{Z}}{\partial u_{j}}= & g_{2} \frac{Z}{R}\left(\frac{1}{Z} \frac{\partial Z}{\partial u_{j}}-\frac{3}{R^{2}} \mathbf{R} \cdot \frac{\partial \mathbf{R}}{\partial u_{j}}\right) \\
& +\frac{\mu_{\Theta} Z}{R^{3}} \frac{J a_{\oplus}^{2}}{R^{4}}\left\{10 Z \frac{\partial Z}{\partial u_{j}}+2\left(3-\frac{10 Z^{2}}{R^{2}}\right) \mathbf{R} \cdot \frac{\partial \mathbf{R}}{\partial u_{j}}\right\}
\end{aligned}
$$

where $\partial \ddot{\mathbf{R}} / \partial u_{j}$ iepresents the contribution arising from the oblateness only. The final form of B is obtained by the expansion of the dot products:

$$
\begin{aligned}
& B_{11}=g_{1} \frac{X}{R}\left(\frac{1}{X}-\frac{3 X}{R^{2}}\right)+2 \mu_{\oplus} \frac{X^{2}}{R^{3}} \frac{\int a_{\oplus}^{2}}{R^{4}}\left(1-\frac{10 Z^{2}}{R^{2}}\right) \\
& B_{12}=g_{1} \frac{X}{R}\left(-\frac{3 Y}{R^{2}}\right)+2 \mu_{\oplus} \frac{X Y}{R^{3}} \frac{J a_{\oplus}^{2}}{R^{4}}\left(1-\frac{10 Z^{2}}{R^{2}}\right) \\
& B_{13}=g_{1} \frac{X}{R}\left(-\frac{3 Z}{R^{2}}\right)+2 \mu_{\oplus} \frac{X Z}{R^{2}} \frac{J a_{\oplus}^{2}}{R^{4}}\left(6-\frac{10 Z^{2}}{R^{2}}\right) \\
& B_{21}=g_{1} \frac{Y}{R}\left(-\frac{3 X}{R^{2}}\right)+2 \mu_{\oplus} \frac{X Y}{R^{3}} \frac{!a_{\oplus}^{2}}{R^{4}}\left(1-\frac{10 Z^{2}}{R^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& B_{23}=g_{1} \frac{Y}{R}\left(\frac{1}{Y}-\frac{3 Y}{R^{2}}\right)+2 \mu_{\oplus} \frac{Y^{2}}{R^{3}} \frac{J a_{\oplus}^{2}}{R^{4}}\left(1-\frac{10 Z^{2}}{R^{2}}\right) \\
& B_{23}=g \cdot \frac{Y}{R}\left(-\frac{3 Z}{R^{2}}\right)+2 \mu_{\oplus} \frac{Y Z}{R^{3}} \frac{J a_{\oplus}^{2}}{R^{4}}\left(6-\frac{10 Z^{2}}{R^{2}}\right) \\
& B_{31}=g_{2} \frac{Z}{R}\left(-\frac{3 X}{R^{2}}\right)+2 \mu_{\oplus} \frac{X Z}{R^{3}} \frac{J a_{\oplus}^{2}}{R^{4}}\left(3-\frac{10 Z^{2}}{R^{2}}\right) \\
& B_{j 2}=g_{2} \frac{Z}{R}\left(-\frac{3 Y}{R^{2}}\right)+2 \mu_{\oplus} \frac{Y Z}{R^{3}} \frac{j a_{\oplus}^{-}}{R^{4}}\left(3-\frac{10 Z^{2}}{R^{2}}\right) \\
& B_{33}=\overline{R_{2}} \frac{Z}{R}\left(\frac{1}{Z}-\frac{3 Z}{R^{2}}\right)+2 \mu_{\oplus} \frac{Z^{2}}{R^{3}} \frac{J a_{\oplus}^{2}}{R^{4}}\left(8-\frac{10 Z^{2}}{R^{2}}\right)
\end{aligned}
$$

The vecior ($g_{1} X / R, g_{1} Y / R, g_{2} Z / R$) is assumed to be calculated esternally while the parts of B which do not contain r_{1} or g_{2} are replaced by zero whenever $R>3 a_{\oplus}$.

The execution entry VARY is preceded by the setup entry SVARY:

CALL SVARY, A, B, C, D, E, F, G, H, I, J, K
where R, the position of the probe with respect to the central body, is contained in the cells $A-3, A-2, A-1$ The biock $B-3 n, \ldots, B-1$ contains the noncentral body position vectors $\mathbf{R}_{1}, \ldots, \mathbf{R}_{x} ; R$ is contained in location C while the block $D-n, \ldots, D-1$ contains the quantities $R_{1 p} \ldots, R_{n p} \mu$ is in location E and the ceils $\mathbf{F}-\mathbf{n}, \ldots, \mathbf{F}-1$ are occupied by μ_{1}, \ldots, μ_{n}; a zero in one of the latter cells is used as a flag to skip the corresponding body in the calculation of A. The oblateness perturbation is assumed to be stored in the locations G-3, G-2, G-1; an internal test is made to determine whether the Earth is the central body, since B is set to zero whenever the calculation is not centercd ai the Earth. To determinc the maximum number of perturbing bodies, the decrement of the cell H contains n. The oblatencos parameters a_{\oplus} and J occupy the locations I and J respectively.

As output from the execution entry, the matrix $A+B$ is deposited in the storage locations $K-9, \ldots, K-1$. Execution of the subroutine requires 30 cells of erasable storage starting at COMMON.

7. Numerical Infegration

MARK

MARK is the subroutine hich obtains the numerical stepwise solution of a set of linear first-order differential equations by emploving an Adams-Moulton predictorcorrector of virtually arbitrary order which utilizes backwards differences; a Runge-Kutta scheme is used to form the neressary differences of the derivatives to start the integration for the multistep method. The step size is halved or doubled upon external request by suhtabuiation of the derivatives in the former case and by elimination of intermediate points in the latter; hence it is not necessary to restart with Runge-Kutta to effect a step-size change. MARK has been designed to carry out the auxiliary functions of obtaining the numerical solution at specified values of the double-precision independent variable; i.e., for desired times, or doing the same job whenever a specified dependent variable attains a null value. To permit the main program to determine the desired times and to define the dependent variables, a list of control words called triggers is appended to the calling equence; the structurc of the triggers is described in the explanation of the calling sequence to follow.

To allow the main program to monitor the numerical solution, EOS, a supervisory routine provided by the main program, is called at the end of each step by MARK. Additionally, MARK must be given access to a subroutine for the evaluation of the derivatives and the caiculation of all necessary dependent variables so that isolated zeros may be iterated down upon and captured.

If m is the highest-crder difference retained for the Adaris-vioulton method, then for starting purposes the Runge-Kutta portion of MARK must integrate ahead m steps of h, at which time the necessary backwards difference tables for the derivatives will have been completed. Assuming one variable for simplicity, the Runge-Kutta formulas are

$$
\begin{aligned}
y_{n+1} & =y_{n}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
\dot{k}_{1} & =b f\left(t_{n}, y_{n}\right) \\
k_{2} & =b f\left(t_{n}+\frac{b}{2}, y_{n}+\frac{1}{2} k_{1}\right) \\
k_{3} & =b f\left(t_{n}+\frac{b}{2}, y_{n}+\frac{1}{2} k_{2}\right) \\
k_{1} & =3 f\left(t_{n}+b, y_{n}+k_{3}\right)
\end{aligned}
$$

where the differential equation to be solved has the form $\dot{y}=f(t, y)$. The ordinate y_{n} is accumulated double precision, while the k_{f} are evaluated and summed in single precision to be added to y_{n} in double-precision form. The solution at intermediate times is obtained by altering h to step forward to the desired time and resuming the integration with the old step size h upon return from the trigger execution; while homing in on a zers of a dependent variable, the step size may even become negative. The collecting of the derivatives for the difference tables is accomplished by the setting up of internal time stops at the necessary mesh points; thus the Runge-Kutta section will obtain the solution at the necessary times for the taules while carrying on the ordinary functions of MARK.

The Runge-Kutta formulas give resuits which agree through fourth order in h with a Taylor series expansion as may be seen from, the following development:
$k_{1}=b f$

$$
\begin{gathered}
k_{i}=b \sum_{j=0}^{3} \frac{\lambda_{j}^{(i)}}{j!}\left(b \frac{\partial}{\partial t}+k_{i-1} \frac{\partial}{\partial y}\right)^{\prime} f+O\left(b^{5}\right), i=2,3,4 \\
\lambda_{j}^{(i)}=\left\{\begin{array}{l}
1 \text { for } i=4 \\
2 ; \text { for } ;=2,3
\end{array}\right.
\end{gathered}
$$

Expanding the operator and using the notation $\partial f^{k} / \partial t^{j} \partial t^{k-j}-t_{t} y_{y^{-j-j}}$, there results

$$
\begin{align*}
& k_{2}=b f+\frac{b^{2}}{2!}\left(f_{t}+f f_{v}\right)+\frac{b^{3}}{3!}\left[\frac{3}{4}\left(f_{t^{2}}+2 f f_{t y}+f^{2} f_{p}\right)\right] \\
& +\frac{b^{4}}{4!}\left[\frac{1}{2}\left(f_{n}+3 f f_{i v}+3 f^{2} f_{i v}+f^{3} f_{p}\right)\right]+O\left(b^{*},\right. \\
& \dot{k}_{3}=\dot{b} \dot{f}+\frac{h^{2}}{2!}\left(f_{t}+f f_{y}\right) \\
& +\frac{b^{3}}{3!}\left[\frac{3}{2} f_{y}\left(f_{t}+f f_{y}\right)+\frac{3}{4}\left(f_{t z}+2 f f_{t y}+f^{2} f_{y^{2}}\right)\right] \\
& +\frac{b^{4}}{4!}\left[3\left(f_{t}+f f_{v}\right)\left(f_{t y}+f f_{p}\right)\right. \\
& +\frac{3}{2} f_{y}\left(f_{12}+2 f f_{1 y}+f^{2} f_{y^{a}}\right) \\
& \left.+\frac{1}{2}\left(f_{11}+3 f_{i v p}+3 f^{2} f_{1 p}+f^{3} f_{p}\right)\right] \tag{5}
\end{align*}
$$

$$
\begin{align*}
& k_{4}=b f+\frac{b^{2}}{2!}\left[\frac{1}{2}\left(f_{t}+f f_{y}\right)\right] \\
& +\frac{b^{3}}{3!}\left[3 f_{v}\left(f_{t}+f f_{v}\right)+3\left(f_{t^{2}}+2 f f_{t y}+f^{2} f_{v^{2}}\right)\right] \\
& +\frac{b^{4}}{4!}\left[6 f_{v}^{2}\left(f_{t}+f f_{y}\right)+12\left(f_{t}+f f_{v}\right)\left(f_{i v}+f f_{v^{2}}\right)\right. \\
& +3 f_{v}\left(f_{t^{2}}+2 f f_{t v}+f^{2} f_{\mathfrak{y}^{2}}\right) \\
& \left.+4\left(f_{t^{2}}+3 f f_{t^{2 y}}+3 f^{2} f_{t v^{2}}+f^{3} f_{v^{2}}\right)\right] \\
& +O\left(b^{5}\right) \\
& \frac{1}{6}\left(k_{1}+2 k_{-}+2 k_{3}+k_{4}\right) \\
& =b f+\frac{b^{2}}{2!}\left(f_{k}+f f_{v}\right) \\
& +\frac{b^{3}}{3!}\left[f_{y}\left(f_{t}+f f_{y}\right)+\left(f_{t z}+2 f f_{t y}+f^{2} f_{p^{2}}\right)\right] \\
& +\frac{b^{4}}{4!}\left[f_{y}^{2}\left(f_{t}+f f_{v}\right)+3\left(f_{t}+f f_{y}\right)\left(f_{t v}+f f_{v^{2}}\right)\right. \\
& +f_{y}\left(f_{l_{2}}+2 f f_{t y}+f^{2} f_{v}\right) \\
& \left.+\left(f_{i z}+3 f f_{i v}+3 f^{2} f_{t p}+f^{3} f_{p}\right)\right] \tag{5}
\end{align*}
$$

But y_{n-1} is given explicitly by the series

$$
y_{n+1}=y_{n}-\vdots \sum_{j=1}^{4} \frac{b^{j}}{j!} y^{(j)}+O\left(b^{5}\right)
$$

where

$$
y^{(f)}=\left(\frac{d^{j} y}{d t^{j}}\right)_{t_{n}}=\left(\frac{\partial}{\partial t}+f \frac{\partial}{\partial y}\right)^{2 \cdot t} f
$$

In particular,

$$
\begin{aligned}
y^{(1)}= & f \\
y^{(2)}= & f_{t}+f f_{y} \\
y^{(3)}= & f_{v}\left(f_{t}+f f_{y}\right)+\left(f_{t^{2}}+2 f f_{t y}+f^{2} f_{v^{2}}\right) \\
y^{(4)}= & f_{v}^{2}\left(f_{t}+f f_{y}\right)+3\left(f_{t}+f f_{v}\right)\left(f_{t y}+f f_{v z}\right) \\
& +f_{y}\left(f_{t z}+2 f_{t y}+f^{2} f_{v}\right) \\
& +\left(f_{v^{2}}+3 f f_{i_{v}}+3 f^{2} f_{v^{2}}+f^{3} f_{v}\right)
\end{aligned}
$$

Thus the two series expansions agree through terms of h^{4}.

To show that the truncation error is, in general, at least $O\left(h^{5}\right)$, consider as an example the simple differential equation

$$
\dot{y}=y
$$

with solution

$$
y_{n+1}=y_{n}\left[1+b+\frac{b^{2}}{2!}+\frac{b^{3}}{3!}+\frac{b^{4}}{4!}+\frac{b^{5}}{5!}\right]+O\left(b^{6}\right)
$$

In comparison, the Runge-Kutta formulas yield

$$
k_{1}=b y_{n}
$$

$$
\begin{aligned}
& k_{2}=b y_{n}\left(1+\frac{b}{2}\right) \\
& k_{3}=b y_{n}\left(1+\frac{b}{2}+\frac{b^{2}}{4}\right) \\
& k_{4}=b y_{n}\left(1+b+\frac{b^{2}}{2}+\frac{b^{3}}{4}\right) \\
& \frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)=y_{n}\left[b+\frac{b^{2}}{2!}+\frac{b^{3}}{3!}+\frac{b^{4}}{4!}\right]
\end{aligned}
$$

Thus the two series disagree beginning with terms of h^{5}.
The formulas used for the Adams-Moulton integration are derived from the expression

$$
y_{n} \mu=y_{n}+b \frac{(1-\nabla)^{\mu}-i}{-\ln (1-\nabla)} \dot{y}_{n}
$$

If a series expansion is obtained and differences through order m are retained, then the truncation error is evidently $O\left(h^{m+2}\right)$ since

$$
b \nabla^{m+p} \dot{y}_{n}=b\left\{b^{m+p} D^{m+p} \dot{y}_{n}+O\left(b^{m+p+1}\right)\right\}
$$

The predictor formula results from $\mu=-1$:

$$
y_{n+1}=y_{n}+b \frac{(1-\nabla)-1}{-\ln (1-\nabla)} y_{n}
$$

The computational form is obtained by expanding into a series and retaining differences up through m th order.

$$
y_{n+1}=y_{n}+b\left(\sum_{j=0}^{m} a_{j} \nabla^{j}\right) \dot{y}_{n}
$$

where the first few coefficients are

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=\frac{1}{2} \\
& a_{2}=\frac{5}{12} \\
& a_{3}=\frac{3}{8} \\
& a_{4}=\frac{251}{720} \\
& a_{5}=\frac{95}{288} \\
& a_{0}=\frac{19087}{60480}
\end{aligned}
$$

As the predictor is relatively unstable for $m \geqq 5$, an option has been provided in MARK for the use of a corrector formula which may be obtained by setting $\mu=1$ in the general expression

$$
y_{n}=y_{n-1}+\frac{b \nabla}{-\ln (1-\nabla)} \dot{y}_{n}
$$

For purposes of computation this becomes

$$
y_{n}=y_{n-1}+b\left(\sum_{j=0}^{m} b_{j} \nabla^{j}\right) \dot{y}_{n}
$$

where the low-order coefficients are

$$
\begin{aligned}
& b_{0}=1 \\
& b_{1}=-\frac{1}{2} \\
& b_{2}=-\frac{1}{12} \\
& b_{3}=-\frac{1}{24} \\
& b_{4}=-\frac{19}{720} \\
& b_{5}=-\frac{3}{160} \\
& b_{6}=-\frac{863}{60480}
\end{aligned}
$$

The predictor and corrector each require sepaiate evaluations of the derivatives; after application of the corrector and the calculation of the derivatives at the new time station $t_{\boldsymbol{n}}$, the solution may be obtained at intermediate points t by choice of $\mu=\left(t_{n}-t\right) / h$, where $t_{n}-h<$ $t<t_{n}$:

$$
y_{n-\mu}=y_{n}+b\left(\sum_{j=0}^{m} c_{j} \nabla^{j}\right) \dot{y}_{n}
$$

where the c_{j} are obtained by the convolution of the series

$$
\frac{(1-\nabla)^{\mu}-1}{\nabla}=\sum_{j=0}^{\infty}(-1)^{j+1}\binom{\mu}{j+1} \nabla^{j}
$$

with the series for the corrector

$$
\sum_{j=0}^{\infty} b_{j} \nabla^{j}
$$

The interpolated solution may then be used either for an intermediate time stop or to help find the zero of a dependent variable.

At the return from the execution of a trigger, MARK may be signalrd to change step size by powers of 2 over the nominal value; any other type of step-size change must be effected by restarting the numerical solution.

Each time a double is called for, MARK sets internal time stops to save the necessary information for doubling during the ncxt m steps as measured from the end of the current step; of course, the necessary past information is regenerated at this time and saved to be adjoined to the future information to form a difference table of derivatives with twice the step size. At the completion of first doubling, further doubles may be executed in sequence as called for by the main progrem.

Halving is accomplisned by the subtahulation of the derivatives according to Newton's formula:

$$
\dot{y}_{n-\mu}=(1-\nabla)^{\mu} \dot{y}_{n} \approx\left(\sum_{j=0}^{m}(-1)^{j}\binom{\mu}{j} \nabla^{j}\right) \dot{y}_{n}
$$

for $\mu=1 / 2,1, \ldots, m / 2$.
At this point new differences of the derivatives corresponding to half the step size may be generated, and further halving may be accomplished if called for by the main program.

Step-size changes by doubling or halving are èxecuted only at the end of an Adams-Moulton step and after all time stops and dependent variable stops occurring at times inside the current interval have been executed. While integration is being carried out by the RungeKutta section, the doubling and halving signals are ignored; both signals given simultaneously will result in internal confusion.

MARK has the calling sequence
Call mark
PZE
HBANK,T,EOS
PZE DERI„DER2
(ERROR RETURN)
(FIRST TRIGGER)
(LAST TRIGGER)
HTR
End of calling sequence
Most of the information to be shared by the main program and MARK is organized in the following buffer:

HBANK - 3	PZE	m	Adams-Moulton order
-2	PZE	$N H$	Number of initial halves
-1	PZE	$N D$	Number of initial doubles
+0	DEC	h	Initial RungeKutta step
+1	PZE	N, n	Total and effective variables
+2	DEC	T_{1}	Double precision
+3	DEC	T_{2}	Time
	BSS	n	y, solution of differential equations
	BSS	N-n	Expansion for more equations
	BSS	n	y, derivatives
	BSS	$N-n$	Expansion for more equations
	BSS	$(2 m+5) N$	Working area for MARK

T $\neq 0$ flags time as double precision; otherwise, computation would be with single-precision interpretation. At the end of step, MARK calls the routine EOS; return is via TRA 1,4. For the calculation of the derivatives, MARK calls a routine which may be divided into two parts: DERI for time-dependent derivatives and DER2 for the other derivatives. If time has just changed, MARK calls the first entry, while the second entry is calied if time remains the same as a previous evaluation. The return device is provided by TRA $1,4$.

A generation of a time which is smaller than the current time will cause MARK to give the error return; if the number of active dependent variables exceeds 20 , the error return is likewise given. Normally, the main routine controls the integration by means of the subroutine EOS and by the triggers, but MARK does most of the detail work.

While in the Adams-Moulton mode, the main routine must determine how many times the corrector formula is in be applied; the symbolic location NI in MARK must have in its address the desired number of applications of the corrector.

Each trigger has the structure

$$
\begin{array}{ll}
\text { OP } & \text { A, B } \\
\text { P7E } & \text { C }
\end{array}
$$

The trigger is a tive whenever the sign bit of the first word is plus; otherwise, a minus sign will cause MARK to ignore the trigger. At location A is a subroutine in the main program which MARK calls whenever the condition defined by the trigger has been met. This subroutine retuans via TRA 1,4 ; if the trigger is not disabled by the subroutine at execution time, then the value of the variable must in general be changed, lest MARK attempt to execute the trigger again upon return of control. The tag of the first word of the trigger is used as a flag by MARK in the case of a dependent variable so that many triggers may be worked on in a single interval.

The variable defined by a trigger may be of two typesindepardent (time-stop) or dependent. The former case is flagged by $B=0$ and C is then the location of the desired double-precision time for execution of the trigger. In the latter case, the dependent variable is defined to be the difference between the contents of $B(B \neq 0)$ and the contents of C . In practice, the quantity in C is the desired value of the variable which is computed in the derivative or the end-of-step routine and stored in the location B.

At the end of each step MARK scans the list of triggers and determines the smallest time which will result in a time stop; all the active dependent variable triggers are inspected to determine those variables which have exhibited a sign change over the preceding step. A linear approximation is made to the root of each variable and the variable which apparently has a root at the earliest time in the interval is iterated upon; a new set of linear estimates of the roots for all the pertinent variables is formed at each step of the iterative solution. At convergence, the time stops and the dependent variable stops are executed in proper time sequence.

For purposes of convergence, two times are considered the same whenever agreement is obtained out to approximately the last two bits; the same test is applied to the

- sequence of times formed by the iteration process in finding the zero of a dependent variable. Each new time generated requires the calculation of the derivatives appropriate to the new time solution. After all the triggers in an interval have been cleaned up, the information at the end of step is restored and the derivatives are recalculated.

[^0]: ${ }^{1}$ A description of the standard source tape with origins is given in "Subtabulated Lunar and Planetary Ephemerides," by R. H. Hudson, Technical Release No. 34-239, Jet Propulsion Laboratory, Pasadena, Calif., November 2, 1960.

[^1]: ${ }^{2}$ These subroutines were programmed with minor revisions from the equations described in "Selenographic Coordinates," by B. E. Kalensher, Technical Report No. 32-41, Jet Propulsion Laboratory, Pasadena, Calit., February 24, 1981.

[^2]: ERUATORIAL COORDINATES

[^3]: $\left.\begin{array}{l}\boldsymbol{X}_{0} \\ \mathbf{Y}_{n} \\ \boldsymbol{Z}_{0} \\ \dot{X}_{0} \\ \dot{\mathbf{Y}}_{n} \\ \dot{\mathbf{Z}}_{0}\end{array}\right\}$ vernal equinox Cartesian position, $\mathbf{k m}$
 γ_{c} elevation angle of reference vector for powered flight, deg azimuth angle of reference vector, deg
 t_{0} seconds past midnight of injection time, sec
 $r\left(T_{0}\right)$ Greenwich hour angle of vernal equinox at injection epoch, deg
 $\Gamma\left(T_{\boldsymbol{y}}\right)$ Greenwich hour angle of vernal equinox at previous midnight, deg

[^4]: celestial longitude (or right ascension) of the target. deg distance of the target from the Sun, km speed of the target with respect to the Sun, km/sec Earth-Probe-Sun angle, deg Earth-Sun-Probe angle, deg Sun-Earth-Probe angle, deg

 Earth-Probe-Moon angle, deg Earth-Moon-Probe angle, deg Moon-Earth-Probe angle, deg

 Moon-Probe-Sun angle, deg Moon-Sun-Probe angle, deg Sun-Moor. Probe angle, deg

 Sun-Earth-Moon angle, deg Earth-Moon-Sun angle, deg Earth-Sun-Mioon angle, deg

 Earth-Probe-Target angle, deg
 Target-Earth-Piobe angle, deg Target-Probe-Sun angle, deg Target-Sun-Probe angle, deg Sun-Target-Probe angle, deg

 Earth-Sun-Target angle, deg λ_{t}
 $R_{s t}$ $\angle\left(\mathbf{R}_{R P}, \mathbf{R}_{s P}\right)$
 $\angle\left(\mathbf{R}_{R S}, \mathbf{R}_{P s}\right)$
 $\angle\left(\mathbf{R}_{S B}, \mathbf{R}_{P B}\right)$
 $\angle\left(\mathbf{R}_{g P}, \mathbf{R}_{\mu P}\right)$
 $\left\langle\left(\mathbf{R}_{R,}, \mathbf{R}_{P \mathcal{L}}\right)\right.$
 $\angle\left(\mathbf{R}_{\boldsymbol{M}}, \mathbf{R}_{P E}\right)$ $\angle\left(\mathbf{R}_{\mathcal{P} P}, \mathbf{R}_{s P}\right)$ $\angle\left(\mathbf{R}_{y s}, \mathbf{R}_{P s}\right)$ $\angle\left(\mathbf{R}_{s g}, \mathbf{R}_{\mu \mathrm{E}}\right)$ $\angle\left(\mathbf{R}_{R K}, \mathbf{R}_{B K}\right)$ $1\left(\mathbf{R}_{\mathbf{E} s,} \mathbf{R}_{\boldsymbol{M}}\right)$ $\angle\left(\mathbf{R}_{E P}, \mathbf{R}_{T P}\right)$ $\angle\left(\mathbf{R}_{R r}, \mathbf{R}_{P r}\right)$ $\angle\left(\mathbf{R}_{R}, \mathbf{R}_{s}\right)$ $\angle\left(\mathbf{R}_{T P}, \mathbf{R}_{s p}\right)$
 $\angle\left(\mathbf{R}_{r s}, \mathbf{R}_{P s}\right)$ $\angle\left(\mathbf{R}_{s t}, \mathbf{R}_{p_{T}}\right)$ $\angle\left(\mathbf{R}_{R E}, \mathbf{R}_{T E}\right)$ $\angle\left(\mathbf{i}_{s T}, \mathbf{R}_{s \tau}\right)$ $\angle\left(\mathbf{R}_{g s}, \mathbf{R}_{T s}\right)$
 $\begin{array}{ll}R & \text { Sun-Probe radius, } \mathrm{km} \\ \beta & \text { celestial latitude (or } \Phi \text {, the declination if equatorial), deg }\end{array}$
 $\begin{array}{ll}\boldsymbol{\lambda} & \text { celestial longitud: (or } \theta \text {, the right ascension if equatorial), deg } \\ \boldsymbol{V} & \text { speed, } \mathrm{km} / \mathrm{sec}\end{array}$ speed, $\mathrm{km} / \mathrm{sec}$
 ε azimuth angle, deg
 holiocentric prsition of the Earth, km
 B relestial Jatitude (or declination) of the Earth, deg celestial longitude (; right ascension) of the Earth, deg celestial latitude (or declination) of the target, deg

[^5]: David E. Muller, "A Method for Solving Algebraic Equations Using an Automatic Computer," Mathematical Tables and Other Aids to Computation, 1958, pp. 208-215.

