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ABSTRACT 

The conditions for the existence of t ens i le  fracture along a 

bimaterial interface have been determined by an extension of Yoffe's 

method, The velocity of such a fracture is specified by the cambina- 

t ion of elastic properties of the two media. The fracture can m e  

only a t  the specific velocity, without accelasat%on or deceleration, 

maximum possible velocity of a fracture along an interface is the lower 

The 

of the two Rayleigh wave velocities, The relative displacements on 

either side of the fracture surface depend$ on the velocity of the 

fracture as w e l l  as the cambination of e las t ic  properties. Several 

curves are presented showing the relationship between the elastic 

constants of the two media and the corresponding fracture velocity. 

critical relation between the Poisson's ratio and shear moduli of the 

A 

two media has been given. 

fa i lure  cannot occur along the  interface, 

If t h i s  relation is  satisfied,  catastrophic 



infinite homogeneous mdia would be the study of fracture in anho- 

tzopic media. As a first step in this direction, it is p r o p o m e d  to 

investigate the po8sibillty of a fractuze along a pbne barnQxy 

separating two isotropic mdia of differiag elastic Imrpettiw. 

8- a skrdy be of imr88t h 3 M - e  h tbs of f8UIt- 

ing in stratified rods, and in engineeriq, in the stw af failure 
along welded 01 cemented jointa. 

'Ehe corresponding static case of the deterrrriart;ion of cltrrrases 

around a crack at a binaterial interface has been stadied by W I U Z A I S  

c1959) aDd h h  -0 W i l l -  f O W d  that 8 e e S S e O  tbe ldghbout- 

hood of the crack t i p  -&IS-# 

the type r+ s i n e  lag rle Jhete It 18 the distance trrocp the t i p  

b ia a constant. 

has been investigated by wELIR'Fbu19 (1964) 

limiting velocity of a dislocation was the 1-st sound ve-ity (foe. 

the transverse wave velocity) in either media. 

a dharp oscillatory clhaiactet, of 

mion of dishmations a loq  a biauatetial interfats 

He detedlrsd that the 

- -  * A fracture i s  hem defined as the ~c counterpart of a crack. 

A crack is Befiaed as a static cavity w i t h  lorrgitudianl dJarenrrions 

much larger man the lateral one. The 'Yoffe fracture' is a fracture 

which maintains a constant Length during ptopagation. 
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I n  t h i s  paper the method of YOFFE (1951) is used t o  study the 

conditions under w h i c h  a fracture may propagate along a bimaterial 

interface, 

constant length propagating a t  constant velocity, However, one may con- 

s t ruc t  a growing fracture by considering two coincident Yoffe frac- 

t u r e s  propagating in opposite directions w i t h  the same velocity. 

re la t ive stress distribution is the same as that  obtained by unila- 

t e r a l  motion of a Yoffe fracture. Yoffe's method has been considerably 

simplified by the use of standard solutions of dual-integral equations 

(BILBY AND BuLLOUGH, 1954) , 

Yoffe's method was originally applied to fractures of 

The 

The radius of the t i p  of the Yoffe fracture increases w i t h  

velocity (COT!PERELL, 1964). This may or  may not be t r u e  for 

actual fractures, H e n c e  it has been suggested (MANSINHA, i n  press) 

that  the t i p  radius of a fracture is  a constant w h i c h  depends only on 

the properties of the medium, and not on the velocity of propagation. 

I n  the sequel we shall  consider both the Yoffe fracture and the fracture 

of constant shape, 
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2. TWl HOMOGENEOUS CASE 

For completeness we w i l l  briefly recount here the method of solu- 

L e t  a f r ac tu re  of t i o n  of YOFFE (1951) and BIL3Y AND BULLOUGH (1954). 

length 2a move i n  the pos i t ive  x d i rec t ion  w i t h  ve loc i ty  c i n  an iso- 

tropic homogeneous elastic medium under the act ion of a stress k = T  

appl ied a t  m 

f r ac tu re  and l e t  u, v represent  the displacement i n  the x and y 

d i rec t ions  respect ively,  

. L e t  pij be the stresses i n  the v i c i n i t y  of the 

The boundary conditions i n  the half space 

y > o  are 

and on y”0 

7 0  Pc j 

c 

= o  p, Y 
- 

where x = x-ct, 

Let us assume a se t  of surface disturbance of the type 

w h e r e  
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and c1 and c 
2 

respectively, 

are t h e  longi tudinal  and t ransverse wave v e l o c i t i e s  

The above expressions satisfy the third of boundary conditions 

(1). Subs t i tu t ing  (2) and (3) i n t o  the other two boundary condi t ions 

one obtains a set of dual  i n t eg ra l  equations, 

w i l l  give A(s) .  Subst i tut ing t h e  expression for A(s) i n  expressions 

(2)  and (3) one obtains the solut ion for displacement and then the 

Solut ion of these  equations 

- 

stresses. The solution is  considerably simplified by the u s e  of com- 

plex funct ions of the type f (G +i.T y )  and g(z +i y). An a l t e r n a t i v e  

m e t h o d  i s  by the general ised solut ion of W K  (1956). 

For our purpose we need the stresses and the displacements on 

y= 0.  They are 

P =  
'a% 

L L =  

\%\>a 



_. 
where 

and /cL is the shear modulus. 
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3 ,  TflE BIPaATERfAL CASE 

Let us assume that the boundary between the two media M' and M" 

i s  plane and coincides w i t h  y = 0 (Fig, 1). I n  the sequel a single 

prime will refer t o  the elastic constants,  

i n  the medium M', and the double prime w i l l  refer t o  like terms i n  

the l o w e r  medium Mar Terms without prime(s) are general  and refer to 

both media, 

displacements and stresses 

For a f r a c t u r e  to propagate along the plane y = 0 some 

addi t iona l  boundary conditions have to be satisfied, The conditions 

are a) the displacements should be continuous across the i n t e r f ace  and 

b) the stresses acting across t h e  i n t e r f ace  should be continuous, Or, 

o n y = O  

p' = p" 
YY w 

Since a free surface e x i s t s  for \ Z 1. (a the displacements need 

not be continuous for this range of \ 4.  The stresses p also need 
ij 

not be continuous. From boundary conditions (1) it is seen that 

v' = v" = 0 for +)a- Further the stress p'= p" = 0 f o r  a l l  
X Y X Y  - i. Hence the additional boundary conditions t o  be satisfied reduce 

- to 
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8.  

- From (4) one obtains 

I % \  )a 

As the above expression is a function of the applied stress and the 

geometry only, and is not dependent on elastic properties of the medium, 

therefore the following expression always holds true 

The last remaining displacement condition gives us 
2 P' 

Rewriting equation (9) we have 



_. 
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When 8 4 0 the limiting form of the above equation may be seen 

to be 

- This expression may be obtained by noting that as the velocity c 

approaches zero we have 

C= - I - -  T -  2 ,L 

and 
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i 4, FRACTURE OF CONSTANT SHAPE 

The t i p  radius  of the Yoffe f r ac tu re  increases  with increase of 

ve loc i ty  (see Fig, 1 of COTTERELL, 1964). 

ac tua l  fractures. 

This may not be t r u e  for 

Therefore, it is  possible that the t i p  radius  of a 

- f r ac tu re  i n  an isotropic homogeneous elastic medium is a constant 

(MANSINEIA, i n  press), The boundary conditions f o r  such a f r ac tu re  are 

- .  

p = O a t  a 
i j  

and on y = 0 

= o  
pxY 

w h e r e  n is a small a r b i t r a r y  constant, w i t h  the e l l i p t i c i t y  of the 

fracture being given by (1-n) 

L e t  us, as before, discuss the cont inui ty  of displacements and 

stresses a t  the in te r face ,  For t (a, a free surface e x i s t s  

and the stresses and displacements need not be continuous over that  

boundary conditions (12) reduce to (8)- However, the expressions 

f o r  u and p 

MANSINHA 

are d i f f e r e n t  from those for the Yoffe fracture. From 
YY 

( in  prdss) we obtain the expression f o r  the displacement 

u and stresses p on y 0:  w 
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and 

Neglecting the geometrical factors, the two conditions are given by 

or 

and 

If (15) is substituted i n  (17) it is immediately seen that the conditions 

for the propagation of a fracture of constant shape along a bimaterial 

interface are the same as those for a Y o f f e  fracture (expression (9).) 

Expression (16) makes it possible for us to determine the relative shapes 

of the fracture onboth sides of the interface. 

As the velocity c + 0 the limiting form of expression (16) is  

given by 

/ A  
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5. RESULTS 

Equations (9) and (16) have been numerically solved for  various 

values of the e las t ic  properties of media M e  and M" w i t h  the R i c e  

Computer. It should be noted t h a t  the Poisson's ra t io  Ccompletely 

determines the r a t io  of dilatational and transverse wave velocit ies 

i n  a medium, The expression is given by 

r/ 

We assumed values of .:rand (,7" , K and c and determined the ra t io  K 2 f P* 
The r a t io  of the densities can be easily determined from Kpand K 

2 
for  various Figures 2 through 6 give the curves K!, versus c f 

combinations of T&.dr'; and for different values of 5. 
conbination of r a n d  C", R and K there exists a c . Thus the 

velocity of a tensi le  fracture along a bimaterial interface is  

determined by t he  e las t ic  constants of the two media, 

seen tha t  for l o w  values of K 

For every 
J 

2 P f 

It can be 

is almost independent of K , P' Cf 2 

The expressions within the brackets i n  equation (8 )  i n  the 

de#rminators is not?iing b u t  the Rayleigh wave equations for both 

media M' and Hnl (EWING, JARDETZKY AND PRESS, 1957) Hence the 

condition for fracture along an interface is  t ied i n  with the Rayleigh 

- *  wave velocity c i n  either media, For R <l, K as  c j c' R 2' P f R* 

For K > 1 the limiting velocity value of c 
2 f i s  given by 

e; 
c - - 

I f  ci (:ICL 
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for various-% and Figure 8 shows the curv=ss n'/n" versus c 
f 

f " t ( a ,  
0 1  = c ,  0 1 1  = 0.45, The ratio n ' h "  will give a t  any point 

y = 0, the ratio of the normal displacement v'/vtl. F o r  6 = ( j  

and K = 1, the media are essential ly  identical. Therefore, n'/n" = 1 

for all cf.  For c = 0 ,  n'/nsl is independent of K and depends only 
f 2 

on G' and r". 

z4 / 

2 
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6, DISCUSSION 

6 A 'welded' interface merely implies that there is no slippage a t  

the interface, Nothing is said about the 'strength' of the bonding. 

Therefore, one cannot d e f i n i t e l y  s ta te  whether or not a fracture w i l l  

propagate along an interface, The resul ts  so fa r  only permit us t o  

s ta te  that if such a fracture exists it w i l l  move a t  a velocity deter- 

mined by the conibination of e las t ic  constants of the two media. It 

should be noted that  the r e su l t s  do not allow for acceleration or 

deceleration, Hence, the fracture must s t a r t  and stop suddenly, 

I n  Fig, 6 it canbe seen that for K = 0.8 and 1.0 two velocities 
2 

c exist for s m c  values of K The question then arises as to 
f CI' 

a t  which of these two velocities the fracture w i l l  propagate. Since 

both these velocities are luwer thah c the choice w i l l  probably 

depend on energy considerations. 
R 

A somewhat unexpected r e s u l t  is  that  the limiting velocity 

of fractures a t  an interface is the lower of the two Rayleigh wave 

velocities, and not the Stoneley wave velocity. It w i l l  be recalled 

that  Stoneley waves are a type of wave propagating along and near 

a bimaterial interface. 

The limiting value of Kp a t  c -0 depends only on r' 

curves are alrnost horizontal near c -0, 

A 

and &' 

Therefore when 
- *  f 

The KL- c 

K differs  sl ightly from K p  

K2 and r' 

f a$ C L O  
creeping fractures can exis t  for a l l  

f 
@ 

P 
and &', When t w o  media are being joined, catastrophic 
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failure along the interface may be prevented by choosing the 

materials such that  

This  would insure that  only very very slaw fractures may propagate 

along the interface, 

mean that no fracture can propagate along the interface,  

Precise satisfaction af the above relation will 

f .  
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Figure 1, Coordinate s y s t e m .  mz fracture of length 2a moves 

in the positive X direction along the surface separating mediums 

M' and M .  

F i g u r e s  2, 3 and 4, Curves of versus C / C *  for two media 

having the same Poisson's ratio but different transverse 
2 

w a v e  velocities, 

Figures 5 ,  6 and 7, 

having different Poisson's ratio and different transverse 

wave velocities, 

Curves of 5 versus C/C'  for two media 
2 

Figure 8. Curves of n'/n*' versus E/C' for 6' = 0 and 6'' = 

0,451 for various values of K . 2 
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