

GPO PRICE $\$ ~$
CFSTI PRICE(S) $\$ \$$ \qquad
\qquad
Hard copy (HC)

OCTOBER 1965
Nicrofiche (MF) \qquad
fi 653 sulv 65

NASA
GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND

NUMERICAL DETERMINATION OF SHORT PERIOD TROJAN ORBITS IN THE RESTRICTED THREE BODY PROBLEA

by
Edson F. Goodrich

Goddard Space Flight Center
Greenbelt, Maryland

Nuinerical Determination of Short Period Trojan Orbits in the Restricted Three Body Problem

Edson F. Goodrich

Abstract

In the plane restricted three body problem, two classes of periodic orbits exist around the equilateral libration points. Rabe developed methods for determining members of the class of long period orbits with Jupiter and the Sun as principal masses. This report demonstrates the use of these methods to examine the class of short period orbits. Power series expansions permit the solution of the relevant equations of motion on an IBM 7094 computer; closed form recurrence formulae allow the computation of the coefficients of the power series. Knowledge of the value for the Jacobi constant gives approximate initial conditions for short period orbits near the libration points. An iteration scheme improves the initial conditions to periodic conditions. For the starting positions used, two types of short period orbits are computed with an accuracy of twelve significant figures. The Jacobi constant decreases as the orbit size increases and deviates farther from the libration point. The periods of all orbits differ by less than one percent from the period of Jupiter's motion around the Sun. Elliptical orbits around the Sun closely represent the short period orbits, and the eccentricities of these elliptical orbits approach unity as the deviations from the libration point increase. A linear stability study indicates instability for all orbits determined.

i. INTRODICTION

The restricted problem of three bodics involves the study of the motion of .m infinitesimal particle moving under the influence of two finite point masses and is one of the classical problems in celestial mechanics. Studies show the esistence of periodic orbits of the inmitesimal mass about the two equilateral Lagrangian libration points. These periodic orbits fall into two general classifications consisting of short period and long period orbits. The short period orbits have periods on the order of the period of the two principal masses about their common center of mass. The periods of long period orbits depend on the mass ratio of the finite masses. With the Sun and Jupiter as predominant masses, these orbital periods are on the order of twelve times the period of Jupiter's motion around the Sun.

Most numerical investigations give results of a few significant figures. Ralse (1961) showed to a high degree of accuracy that orbits exist for the class of long period orbits. To a limited degree of accuracy, Willard (1913) examined the short period orbits. This present work is an effort to characterize, to a high degree of accuracy, the family of short period orbits.

Steffensen (1956) developed a numerical integration scheme for solving the equations of rootion in winch hc introduced two auxiliary variables and expanded the coordinates in powers of the time. He derived recurrence formulae in closed form for the cocfficients of the power series.

For the case considered, the Sun and Jupiter represent the predominant masses and a Trojan asteroid represents the infinitesimal mass. By assumption, the Sun and Jupiter move about their common center of mass in concentric circles
undisturbed by the Trojan's presence and the Trojan remains in the plane of the orbits of the Sun and Jupiter.

The $x-y$ reference system used has its origin at Jupiter and rotates with uniform angular velocity with the Sun fixed in the system on the positive x-axis. The unit of distance is the Jupiter-Sun distance, the unit of mass is the mass of ihn Sun, and the unit of time is such that the gravitational constant is unity. If M, N, and P represent the mass, mean motion, and period of Jupiter respectively, then $N^{2}=1+M$ and $P=2 \pi / N$. For this study, $M=.00095478610$ from Hill's value for the mass ratio of Jupiter and the Sun.

Modification of one of the auxiliary variables of Steffensen's method by the factor M, as suggested by Rabe (1961), speeds convergence of the power series. Steffensen's method is ideally suited for use with a high speed computer. Approximate starting conditions for a periodic orbit of short period used with an iterative procedure yield periodic orbits of high precision. This report considers orbits around libration point L_{5}. Symmetry considerations yield results for orbits around the other equilateral libration point L_{4}.

2. DETERMINATION OF APPROXIMATE INITIAL CONDITIONS

Finding periodic orbits by an iteration procedure requires starting values $\mathbf{x}_{0}, y_{0}, \dot{x}_{0}, \dot{y}_{0}$ which result in a return of the particle to the near vicinity of the starting position with velocity components of the same order of magnitude and algebraic sign as the initial values. To find the initial conditions for the long period orbits, Rabe assumed that, at a point A, the first and second derivatives of the velocity with respect to time were zero. This starting point on the line joining the Sun and L_{5} is such that L_{5} lies between the Sun and the point A as shown in Fig. 1. This assumption enables the derivation of a quadratic

Figure 1-The rotating coordinate system with a typical perindic orbit.
expression for the initial velocity components in terms of position. The smaller of the two rocts to this equation proves satisfactory for the approximate long period orbit starting conditions. The larger root to the quadratic should yield a good approximation for starting the short period orbits, but trial results proved negative. The large first and second derivatives for those orbits invalidate the quadratic expression.

For long period orbits, the velocity at point \mathbf{A} is nearly perpendicular to the line SA comecting the Sun and the point A. This should hold for short period crbits which deviate only slightly from the libration point. The final results verify this. If ρ represents the ratio of velocity components at the starting point such that $\rho=\dot{\mathrm{y}}_{0} / \dot{\mathrm{x}}_{0}$ at $\mathrm{t}=0$, then ρ is approximately .577 for small orbits. Furthermore, for short period orbits, Charlier (1905), shows that the Jacobi integral yields $C<3(1+M)$ where C is the Jacobi constant. This inequality relates the initial position to the initial velocity, $\nu=\left(\dot{x}_{0}^{2}+\dot{\mathbf{y}}_{0}^{2}\right)^{1 / 2}$. These two conditions permit the determination of good approximate initial velocity components for starting positions along the line SA and near to the libration point.

3. If ERATION TO A PERIODIC ORBIT

An IBM 7094 digital computer performs the computations involved in double precision. The approximate starting position components x_{0}, y_{0} and velocity components \dot{x}_{0}, \dot{y}_{0} are read into the computer along with the time interval and tolerance desired for the numerical integration. The step-by-step integration terminates when the trajectory approaches the starting point A and crosses the line SA. The point of crossing is found to a high degree of accuracy, the final time interval adjusts such that, within the tolerance specified, the final point of the orbit coincides with a point on SA. The orbit does not close since the initial conditions approximated periodic conditions. We must now improve the orbit.

Holding the starting position fixed, we must alter the initial velopity such that the orbit is periudic. If the subscript f denotes the final values of the components, then $y_{f}=y\left(x_{f}\right)$ since the end position is forced to lie on SA. From the Jacobi integral, $\mathbf{C}=\mathbf{C}\left(\mathbf{x}_{f}, \dot{\mathbf{y}}_{f}, \ddot{\mathbf{x}}_{f}, \dot{\mathrm{y}}_{\mathrm{f}}\right)$, and for points along SA greater than one unit from the Sun, C is monotone increasing. Therefore, if \dot{x}_{f} and $\dot{\mathbf{y}}_{f}$ are equal to \ddot{x}_{0} and \ddot{y}_{0} respectively, $x_{f}=x_{n}$ and $y_{f}=y_{0}$ since C remains constant. A differential correction procedure proves satisfactory for improving the initial conditions for orbits with small values of λ, where λ is the distance from A to the libraticn point. This method fails for values of λ greater than approximately . 50.

A brute force method used in this difficult region actually works for any value for λ. With this method, the velocity components for a given λ are specified in terms of ρ and ν. A small arbitrary change made in ρ while holding ν fixed permits the computation of the change in the quantity $\Delta \dot{\mathrm{x}}=\dot{x}_{f}-\dot{x}_{0}$ with respect
to ρ. Linear interpolation gives a new value for ρ which forces $\Delta \ddot{x}$ toward zero. $\Delta \dot{x}$ decreases by several orders of magnitude rather than become zero since the system is nonlinear. Repetition of the procedure reduces $\Delta \dot{x}$ to the required tolerance. Now introduce a small arbitrary change in ν. This causes $\Delta \mathbf{x}$ to become large again and ρ must again be adjusted until $\Delta \ddot{\mathrm{x}}$ meets the tolerance. These two sets of starting conditions with $\Delta \ddot{\mathrm{x}}$ arbitrarily small permit the computation of a new value for ν which forces $\Delta \ddot{y}=\ddot{y}_{f}-\dot{y}_{0}$ toward zero. Again, the reduction is by several orders of magnitude. Iteration of this process forces $\Delta \dot{x}$ and $\Delta \dot{y}$ to meet the tolerance. This procedure worksbist, if the arbitrary changes in ρ and ν cause $\Delta \ddot{x}$ and $\Delta \ddot{y}$ to change sign and decrease in absolute value.

Computing the Jacobi constant and noting any resulting hange provides a continuous check on the computational accuracy, Variations in C indicate corresponding errors in the accuracy of tiee results. The converse is not true, however, since Can remain constant though errvors exist in the results. Solviar the equations of motion using a high order Bunge- atta integration scheme trovides a final check on the results. Examinativa of the tinal periodic orbise in this manner shows all orbits correct to at least twelve significant fianc:.

4. FINDINGS ON THE SHORT PERIOD ORBITS

Periodic orbits were fornd for values of λ beginning with $\lambda=.02$ and increasing in equal intervals of .02 up to $\lambda=.50$. When plotted in the rotating frame of reference, the first orbits determined appear to be elliptical in shape as shown in Fig. 2. The shape changes as λ increases beyond a value of about . 24 where the side nearest the Sun flattens out and eventually bends inward toward L_{5} and away from the Sun. As λ increases further, the orbits dip closer

Figure 2-Short period orbits for $\lambda=.12, .24, .36, .48$.
and closer to the x-axis in the vicinity of the libration point L_{3} as illustrated in Fig. 2. rinally, as seen in Fig. 3, the orbits c wss the x -axis.

Figure 3-Shc:i period orbit for $\lambda=.50$ and the branch point \cdots bit.

An attempt to iterate initial conditions for $\lambda=.52$ to a periodic orbit failed. Further examination revealed that two different periodic orbits exist for $\lambda=.514$, no periodic orbit of this type exists for $\lambda=.515$ and indeed two orbits exist for value of λ below some branch point value where the orbits are identically the same orbit. This branch point orbit, shown in Fig. ?. occurs at $\lambda=.514325370$.

As : decreases 1 :or the branch point, the second type of orbit dips further below the x-axis and passes closer and closer to the Sun. Passing near the Sun results in large coefficients of the power series expansions; and for passage too close, the coefficients exceed the computer's capacity. A reduction of the time interval decreases the number of terms required in the expansion; however, the powers of the time interval become too small for the machine. As a result, we show the second type of orbit for values of λ only down to $A=.36$. Figure 4 represents several of these orbits.

Figure 4-Type II short period orbits for $i=.48$, 42, . 36 .

Call the smaller of the two orbits for a given λ Type 1 ; and call the larger Type II. Figure 5 identifies the two orbits for $\lambda=$. 40. All Type II orbits cross the x-axis. Type I orbits for $\lambda=.48$ and iess do not cross the x-axis, but for $\lambda=.50$ and greater they do cross. For $\lambda=.496690858$, the orbit just touches the x-axis in the neighborhood of $x=1.85$.

Figure 5-Type I and Type II short period orbits for $\lambda=.40$.

5. STARTING CONDITIONS AND ORBTT PERIODS

Table I and Table III give initial position and velocity components for Type I and Type II orbits respectively. The x_{0} and y_{0} coordinates depend linezrly on A. Both components of velocity increase for Type I orbits as λ increases to the branch point. For Type II orbits, $a x i d$ decreases from the branch point, \dot{x}_{0} decreases but $\dot{\mathbf{y}}$ increases. The branch point values for quantities in these tables are $x_{0}=.242837315, y_{0}=1.311444240, \dot{x}_{0}=.749352$ 314, $\dot{y}_{6}=.829243523$.

Tables II and IV list the values for the period T and the Jacobi constant C as well as ρ and v for Type I and Type II orbits respectively. Branch point values are $f=1.106613681, \nu=1.117664400, T=6.284760760$, $C=2.367857$ 918. Figure 6 shows a plot of ρ vs λ for short period orbits. ρ increases nearly linearly with λ for Type I orbits until $\lambda=.40$. Figure 7 is a

Figure 6-Variation of with $:$ for periodic orbits.

Figure 7-Variation of \geq with λ for periodic ortits.
similar plot of ν vs λ. Again the behavior is nearly linear until $\lambda=.40$. * reaches a maximum (at least a local maximum) of just over 1.20 in the neighborhosd of $\lambda=.44$ for the Type II orbits.

The period and Jacobi constant decrease with increasing λ for Type I orbits. They continue to decrease as λ decreases from the point for Type II orbits. Notice that in the vicinity of $\lambda=.42$ there exists an orbit for which the period equals the period of Jupiter, $P=6.280187905$.

In a nonrotating irame of reference these short period Trojans move in perturbed elliptical two-body onbits with the sun as the principal body and with Jupiter supplying the disturbing force in a periodic manner. An ellipse will, thereiore, approximate the Trojan motion. Using the initial position and velocity in the fixed reference sysiem, we compute the semi-maior axis, a, and the eccontricily, e, as the approximating elliptical elements for each orbit. Table V and Table VI list a and e for Type I and Type II orbits respectively. For the branch point orbit, $a=1.001076088$ and $e=.730135639$.

6. COMPARISON WITH LONG PERIOD ORBITS

Notice tine siight variations of the periods over the entire range of orbits computed. The period deviates less than one-third of one percent from the period of Jupiter. Contrast this with the long period orbits which range from about six times the orbital period of Jupiter to an orbit of infinite 'period.

For Type I short period orbits, the value of the Jacobi constant approaches the quantity $3(1+\mathrm{M})$ from below as λ approaches zero. For the long period orbits, C tends toward the same value from above as λ goes to zero. A plot of the long period orbit with the short period orbit for $\lambda=.02$ in Fig. 8 shows the relative sizes of the two orbits.

Figure 8-Short and long period arbits for $\lambda=.02$.

As increases. the long prriod orbits take on a norseshoe shape and are g'ite different from the short period orbits which only gradually bend around the Sin. It appears that, as : fecreases the Type II orbits will take on the horseshoe shape, though they will be much thicker than the long period orbits and not symmetrical with respect to the x-axis.
in the short period orbits, the initial velocities exceed those for the corresbrading long period orbits. This accounts for the shorter periods and lower values of the Jacobi constant for the short neriod orbits.

7. LINEAR STABILITY

To examine the stability of the short period orbits, we use Hill's first order equation

$$
\frac{\dot{d}^{2} \eta}{d u^{2}}+\theta(u) \eta=0,
$$

as treated by Message (1959) and Rabe (1961). In this equation, η represents the transversal displacement of a Trojan deviating from a periodic reference orbit in some disturbed trajectory. If $m=\frac{2 \pi}{T}$, then $u=m\left(t-t_{0}\right)$ detines the new independent variable. Knowing a set of special values for points along the orbit, we expand the function $\Theta(u)$ in a Fourier series of the form

$$
\theta(u)=\left(\frac{N}{m}\right)^{2}\left[1=\sum_{k=-\infty}^{\infty} \theta_{k} e^{i k u}\right]
$$

Assume the sulution of Hill's equation has the form

$$
\eta:=\sum_{k=-\infty}^{\infty} \eta_{k} e^{i(k+c) u}
$$

Substitution of the expressions for $\Theta(u)$ and γ into Hill's equation produces a set of identities from which successive approximations for can be made.

From the assumed form of the solution, notice that if \mathbf{c} is real, stability exists since η must be periodic and the transversal displacement is bounded. However, for complex, the orbit is unstable since η then increases without bound either when time increases or decreases to infinity.

The orbits appear unstable since three approximations to call prove complex. In all cases, the second and third estimations for c agree to two significant figures indicating probably convergence of the sequence. This indicated instability for the first order study, especially for the orbits of small values of λ, leads to contradictory conclusions. For infinitesimal orbits, the actual motion of a non-periodic Trojan will never deviate substantially from the equilateral libration point. Therefore, at least for small orbits, the motion should be stable. It appears that for the short period orbits the oscillation of η does not remain infinitestimally small, and large values of η destroy the first order decuracy. A higher order study should clarify this stability problem.

8. CONCLUSION

Several members of this family of short period Trojan orbits closely resemble those found by Willard except for larger values of $\lambda_{\text {; }}$; however, he himself
questions the results for his large orbits. In this present work, sixteen significant digits were carried throughout the computations and a minimum of twelve figures of accuracy were obtained. The Jacobi constant, computed at each step of the integration agrees to at least eleven significant places.

As \therefore decreases from the branch point for Type $I I$ orbits, the general trend of the family is well indicated. The orbits pass closer and closer to the Sun white bending further around it. Still, it is difficult to visualize a natural ending to the family. Collision with the Sun is the most probable. This question is left for further study.

ACKNOWLEDGMENTS

The suthor wishes to thank Dr. Eugene Rabe of the University of Cincinnati for his guidance throughout the progress of this work.

REFERENCES

Charlier, C. V. L., 1905, Mechanik des Himmels, (Verlag Von Veit and Comp). Message, P. J., 1959, Astron. J., 64, 226. Rabe, E., 1961, Astron. J., 66, 500.

Steffensen, J. F., 1956, Kgl Danske Videnskab. Selskab, Mat.-fys. Medd. 30, No. 18.

Willard, H. R., 1913, Monthly Notices of R. A. S., 73, 471.

Table I
Initial Conditions for Type I Short Period Orbits

λ	x_{0}	Y_{0}	\dot{x}_{0}	\dot{y}_{0}
. 02	.490000000	. 883345912	. 034212992	. 020214565
. 04	. 480000000	. 900666420	. 067699676	. 049035041
. 06	. 470000000	. 917986928	. 100497749	. 062143545
. 08	. 460000000	. 935307446	. 132643610	. 083838047
. 10	. 450000000	. 952627944	. 164172472	. 106002435
. 12	. 440000000	. 969948452	. 195118459	.128636650
. 14	. 430000000	. 987268960	. 22551474.7	. 151741902
. 16	. 420000000	1.004589478	. 255393641	. 175323990
. 18	. 410000000	1.021909986	. 284786831	. 199393764
. 20	. 400000000	1.039230485	. 313725469	. 223967746
. 22	. 390000000	1.056550993	. 342240428	. 249063981
. 24	. 380000000	1.073871501	. 370362551	. 274728209
. 26	. 370000000	1.091192009	. 398122977	. 300985453
. 28	. 360000000	1.108512527	. 425553556	. 327892236
. 30	. 350000000	1.125833025	. 452687410	. 355514710
. 32	. 340000000	1.143153533	. 479559700	. 383938172
. 34	. 330000000	1.160474041	. 506208733	. 413273799
. 36	. 320000000	1.177794549	. 532677605	. 443668953
. 38	. 310000000	1.195115057	. 559016792	. 475323993
. 40	. 300000000	1.212435565	. 585288470	. 508520700
. 42	. 290000000	1.229756073	. 611574310	. 543674791
. 44	. 280000000	1.247076581	. 637991023	. 581442614
. 46	. 270000000	1.264397090	. 664726267	. 622971901
. 48	. 260000000	1.281717600	. 692142897	. 670643365
. 50	. 250000000	1.299038106	. 721255887	. 731531835

Table II
Values of $\ldots \forall$, T, C for Type I Orbits

	,	ν	T	C
. 02	. 590844686	. 039738614	6.300603307	3.002469808
. 04	. 604656383	. 079113360	6.300560685	3.001283555
. 06	. 618387438	. 118160867	6.300489448	2.999297572
. 08	. 632054922	. 156917640	6.300389288	2.996498052
. 10	. 645677281	. 195420360	6.300259756	2.992865000
. 12	. 659274632.	. 233706228	6.300100256	2.988371681
. 14	. 672869115	. 271813357	6.299910032	2.982983933
. 16	. 686485339	. 309781235	6.299688156	2.976659259
. 18	. 700150929	. 347651280	6.299433511	2.969345680
. 20	. 713897237	. 385467535	6.299144770	2.960980227
. 22	. 727760256	. 423277530	6.298820369	2.951486985
. 24	. 741781825	. 461133395	6.298458466	2.940774502
. 26	. 756011259	. 499093326	6.298056899	2.928732318
. 28	. 770507569	. 537223555	6.297613110	2.915226242
. 30	. 785342605	. 575601077	6.297124059	2.900091769
. 32	. 800605580	. 614317529	6.296586078	2.883124701
. 34	. 816409835	. 653484894	6.295994677	2.864067354
. 36	. 832903333	. 693244236	6.295344227	2.842587507
. 38	. 850285716	. 733779716	$6.294627459 \cdot$	2.818244797
. 40	. 868837720	. 775342438	6.293834611	2.790433880
. 42	. 888975849	. 818294210	6.292951849	2.758280861
. 44	. 911364883	. 863196419	6.291958085	2.720434612
. 46	. 937185623	. 911018660	6.290817485	2.674581000
. 48	. 968937726	. 963755318	6.289457405	2.616020220
. 50	1.014247299	1.027301748	6.287665797	2.531098829

Table III
Initial Conditions for Type II Short Period Orbits

λ	x_{0}	Y_{0}	\dot{x}_{0}	\dot{y}_{0}
. 51	. 245000000	1.307698360	.750773138	. 875606527
. 50	. 250000000	1.299038106	. 744193944	. 909782831
. 49	. 255000000	1.290377852	. 735677484	. 930854592
. 48	. 260000000	1.281717598	.726306297	. 946762135
. 47	. 265000000	1.273 057344	. 716385031	. 959686855
. 46	..270 000000	1.264397090	. 706053775	. 970609262
. 45	. 275000000	1.255736835	. 695391653	. 980070591
. 44	. 280000000	1.247076581	. 684449000	.988407217
. 43	. 285000000	1.238416327	. 673260456	. 995845229
. 42	. 290000000	1.229756073	. 661851234	1.002545323
. 41	. 295000000	1.221095819	. 650240472	1.008626625
. 40	. 300000000	1.212435565	. 638443171	1.014180390
. 39	. 305000000	1.203775311	. 626471402	1.019278400
. 38	. 310000000	1.195115057	. 614335072	1.023978354
. 37	. 315000.000	1.186454803	. 602042457	1.028327485
. 36	. 320000000	1.177794549	. 589600559	1.032365065

Table IV
Values of $\rho, \nu, \mathbf{T}, \mathbf{C}$ for Type II Orbits

λ	ρ	ν	T	C
.51	1.166273116	1.153406735	6.283419569	2.277381564
.50	1.222507706	1.175384799	6.282467090	2.204918285
.49	1.265302544	1.186470240	6.281900834	2.157773902
.48	1.303530121	1.193264169	6.281486197	2.120965157
.47	1.339624384	1.197583555	6.281158537	2.090320805
.46	1.374695946	1.200247589	6.280888762	2.063941724
.45	1.409379285	1.201710412	6.280660813	2.040765689
.44	1.444091842	1.202255905	6.280464722	2.020123410
.43	1.479138155	1.202076271	6.280293806	2.001558590
.42	1.514759316	1.201309361	6.280143329	1.984742094
.41	1.551159407	1.200058473	6.280009797	1.969426214
.40	1.558521009	1.198403750	6.279890547	1.955418229
.39	1.627015052	1.196409158	6.279783497	1.942564 .151
.38	1.666807577	1.194126982	6.279686988	1.930738219
.37	1.708064726	1.191600830	6.279599668	1.919835830
.36	1.750956726	1.188867717	6.279520427	1.909768630

Table V
Approximate Elliptical Elements for Type I Orbits

. 02	1.001088026	. 018895816
. $04{ }^{3} \mathrm{O}$	1.001215557	.. 038773078
. 06	1.001338042	. 058705611
. 08	1.001455229	. 073723303
. 10	1.001566852	. 098857501
. 12	1.001672630	. 119141244
. 14	1.001772255	.135 609582
. 16	1.001865389	. 160299685
. 18	1.001951656	. 181252776
. 20	1.002030633	. 202511962
. 22	1.002101842	. 224125530
. 24	1.002164741	. 24 ن́ 149665
. 26	1.002218706	. 268641255
. 28	1.002263019	. 291673953
. 30	1.002296844	. 315329050
. 32	1.002319195	. 339704979
. 34	1.002328893	. 364922354
. 36	1.002324502	. 391133226
. 38	1.002304221	. 418535918
. 40	1.002265708	. 447400242
. 42	1.002205770	.478113729
. 44	1.002119722	. 511275355
. 46	1.001999921	. 547915260
. 48	1.001831487	. 590143082
. 50	1.001572690	. 644166981

Table VI
Approximate Elliptical Elements for Type II Orbits
a
1.000817788
1.000623785
1.000504385
1.000415094
1.000343471
1.000283851
1.000233066
1.000189133
1.000150706
1.000116821
1.000086763
1.000059980
1.000036038
1.000014588
.999995343
.999978066
e
.769986921
.798637191
.815877208
.828623875
.838781100
.847205780
.854371430
.860572473
.866003795
.870814967
.875101074 .878944708
.882408323
.885541970
.888386466
.890975601

The rotating coordinite system with a typical periokic orthit. Short periot orbits for $=.12, .24, .34, .45$.

Short jeriod orbit for $:=$. 30 and ine branch point abit.
Tyie Il shorl periox orbits for . $=.44, .42, .3 i$.
Type I and Type 11 short perical orhits for $=.10$.
Variation of . With : for periodic ortits.
Variation of : with : for periodic orbitis.
Short and long period orbits for: $=.02$.

