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FILM BOILING HEAT TRANSFER TO WATER
DROPS ON A FLAT PLATE

by Kenneth J. Baumeister, Thomas D. Hamill,
F. L. Schwartz,*® and Glen J. Schoessow™®**

ABSTRACT j?

The mass evaporation rates and overall heat transfer colfficients are
determined both theoretically and experimentally for water drops which are
supported by their own superheated vapor over a flat hot plate. The -
theoretical and experimental mass evaporation rates are found to agree
within 20 percent for drop volumes from 0.05 to 1 cc and for plate temper-
atures from 600° to 1000° F. In this parameter range, the mass evaporation
rate varies from 0.001 to 0.0l g/sec, the overall heat-transfer coefficient
ranges between 40 and 70 Btu/(hr)(sq ft)(OF), and the theoretical gap thick-
ness beneath the drop ranges between 0.003 and 0.008 in.

The water drops are assumed to have a flat disk geometry with a uniform
vapor gap beneath the drop and a saturated steam vapor cover. The assumptions
are made that the bottom of the drop is at the saturation temperature and that
evaporation takes place uniformly beneath the drop with negligible energy dis-
sipation.

For steady-state laminar incompressible flow, assuming constant properties,
the exact Navier-Stokes equations, the continuity equation, and the energy
equation are solved simultaneously to obtain the evaporation rate in terms of
the drop volume, plate temperature, plate’emissivity, and gravitational potential.

In addition, for the special case where radiation can be neglected, the
heat-transfer coefficient is shown to be equal to

For heat transfer to the drop,

For heat transfer from the plate,
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The difference in the two values of h results from the radial convection of

the superheated vapor. The above equation for h 1is also shown to be u@efu

up to drop volumes of 5 cc. Uibthﬂﬁ’
SYMBOLS

A area, sq It

a constant of proportionality, sec™t

c, specific heat of vapor, Btu/lbm

F axial pressure variable, sq ft

f  transformation variable, ft/sec

g acceleration of gravity, ft/sec2

g, dimensional conversion factor, 32.1739 (ft)(lbm)(lbgl)(sec'z)

h heat transfer coefficient, Btu/(hr)(sq ft)(°F)
k  thermal conductivity, Btu/(hr)(ft)(°F)

Le equivalent geometry factor, cm

1 average calculated drop thickness, cm
M mass, g
N surface tension, dyne/cm

P static pressure, lbf/sq ft gauge

q rate of heat flow, Btu/hr

R radius of curvature, cm
ro maximum radius of water disk,cm
T temperature, °R

AT Tp - Tsat

t time, sec

U overall heat-transfer coefficient, Btu/(hr)(sq ft)(°F)
u radial velocity, ft/sec

v drop volume, cc
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exial velocity, ft/sec

position of drop surface from prescribed reference surface, cm
thermal diffusivity, sq ft/sec

computer proportionality constant, V-1

material constant, (in.)(sec'l)ﬂlbf)(lbm)-1/4(cml/2)(°R_3/4)(cm'3/4)
property .constant, ft3/(lbm)(oR)

steam gap thickness, in.

emissivity for radiation

dimensionless coordinate

property constant, 1lby,/(ft)(sec)(°R)

computer proportionality constant, v-1

sensible heat correction faction

latent heat of evaporation, Btu/lbm

modified latent heat of evaporation, Btﬁ/lhm

absolute viscosity, lbm/(ft)(sec)
kinematic viscosity, sq ft/sec
density, 1bg/ft°

computer proportionality constant, sec'l
computer time, sec

specific volume, fts/lbm

computer transform variable, V
dimensionless transformation variable
computer transform variable, V
dimensionless transformation variable

material constant, (g)(sec'l)(lbm/lbf)l/4(cml/z)(oR_l/4)(cm'9/4)(V'1)



Subscripts:
c convection
D drop
f film
1 index
P plate
r radiation

sat evaluated at saturation condition

& evaluated at lower surface of droplet
00 asymptotic
Superscripts:

! derivative with respect to independent variable

. derivative with respect to =
INTRODUCTION

The most recent and complete works on drop evaporation on a hot surface are
by Gottfried (ref. 1) and Borishansky (ref. 2). Both authors presented dimensional
and semi-empirical correlations for the evaporation of liquid drops in film boiling
on a flat plate.

On the bases of Borishansky's experimental results and the experiments
performed in conjunction with this paper, the general problem of water drop evapora-
tion is broken down into the following states, which are governed by the volume
of the drop: small spheroid, flat disk, and bubbly disk. These states are depicted
in Figure 1.

In this particular study, water drops in the volume range 0.05 to 1 cc are
analyzed. In this volume range, an analytical model based on a flat disk geometry,:
shown in Figure 2, reasonably satisfies the physical situation and yet still has
simple enough boundary conditions to make the problem tractable.




METHOD OF ANALYSIS
General Approach

Consider the flat water drop model shown in Figure 2. Heat transfer to the
drop takes place by convection and radiation through the superheated film. Heat
transfer and evaporation from the upper surface are considered negligible in
comparison to that beneath the drop (ref. 3).

The average drop thickness 1 and radius r, have been determined analyt-
ically as a function of Vi. The analytical results compare favorably to exper-
imental measurements by Borishansky (ref. 2). Physical observations indicate
that the gap thickness 8 1is a function of radial position; however, to make the
problem mathematically tractable, a uniform gap thickness & 1is assumed.

Gottfried (ref. 1) and Kutateladze (ref. 3) pointed out that the flow under
consideration is well within the laminar range; thus, the flow is treated as
incompressible with negligible energy dissipation. In addition, the drop at any
instant is assumed to be in a steady-state condition. Consequently, for this case
of axisymmetrical flow, the governing equations are as follows:

Momentum
du du _ _ 8 P Pu . 1du _ u, du
L B e e A (1)
dw dw _ _ 8 dP 3w . 1 dw , dw
u&:+wsz—-p—gz-+v -ér—z-'"; +S;§ (2)
Continuity
du . u L oW _
= + > + i 0 (3)
Energy:
1“§-T-+WavT-=a,V2T (4)
or oz

TThe equilibrium equation
11 eplefedy

ﬁ Rz_ N

was solved numerically for the drop shape in reference 4.



The boundary conditions for equations (1) to (4) are

2z =0 u=0 w=0 T =T, (5)

T

1]
1]

z =5 u=0 w=w(d T

sat
Static equilibrium (neglecting axial momentum change, see ref. 4): .

rO
P(r,8)2nr ar = Vo, & (7)
C

Interface energy balance:
daM _

The assumptions are made that the bottom of the drop is at the saturation
temperature and that the evaporation takes place uniformly beneath the drop.

In performing the analysis, the following calculational procedure is used.
A gap thickness & is assumed. Then the evaporation rate required to satisfy
the static equilibrium condition (eq. (7)) is found by solution of the momentum
equations. However, for the same assumed gap thickness & the evaporation rate
from the surface of the drop can be determined from energy considerations. In
general, for the first assumed value of the gap thickness &, the mass evapora-
tion rate calculated from momentum considerations will not be equal to the mass
evaporation rate calculated from energy considerations. Therefore, some type
of iteration on the gap thickness © 1is required in order to bring the cal-
culated momentum and energy evaporation rates into balance. In this paper, the
iteration is performed by combining the solutions of the momentum and energy
equations in a graphical manner to determine the unique value of the gap thick-
ness &, which will permit all the governing equations and boundary conditions
to be satisfied concurrently. Further details in the analytical treatment follow.™

In addition, for the special case where radiation is negligible, the heat-
transfer coefficients are derived analytically in closed form.

Momentum Equations

Assuming constant fluid properties, the interaction between the equation of
motion with the energy equation ceases, and the velocity field no longer depends
on temperature. The properties of the flow field are evaluated at the film tem-
perature, defined as,

T+ T
Tf=j_2_ﬂ ‘ (9)




Use of the method of similarity at this time reduced the partisl equa-
tions (1) to (3) into a set of ordinary nonlinear differential equations.
The similarity transforms used in the problems of three-dimensional axi-
symmetric stagnation flow (ref. 5) will suffice. They are

w=-2f(z) (10)
u=rf'(z) (11)
P=%a2-g%[r§ - ré +F(z)] (12)

Performing the transformation results in the ordinary equations

F£12 . 2FF'! = a2 + pf't! (13)
2FF = - % alF' - yf'! (14)

Equations (13) and (14) can be nondimensionalized by using the following

transformations:
£ =Al2 2 (15)
v

£(z) = vav o(t) (18)
F(z) = £ () (27

The governing momentum egquations take on the form

CP'Z-ZQJCP"=1+CP”' (18)
29" = - V' -9 (19)
The boundary conditions (5) and (6) become

£ =

]
- w(d) - _
C=\/§5 CP=‘g‘j;T @' =0 T = Tgat (21)

The method of solution is to first assume many reasonable values of &
and to solve for the flow distribution in each of these cases that satisfy the
static equilibrium condition (eq. (7)).

© =0 @' =0 v =0 T=T (20)



The solution of equations (18) and (19) in this particular situation is
easily performed by means of an analog computer. However, instead of assuming
values of ®, initial values of ¢'' are assumed.

Analog Solution of Momentum Equations
The first step in programing equations (18) and (19) for the analog

computer is to change the variables to computer variables by making the follow-
ing transformations:

t = ot (22)
o(¢) = «ko(7) (23)
V(t) = By(T) (24)

where the symbols ©, K, B are constant scale factors. The symbol T represents
the computer time: +the time for the phenomena to occur in the computer. The
distance from the plate is directly related to the computer time <.

Substituting equations (22) to (24) into equations (18) and (19) results
in the analog momentum equations

e , .. 3
6 = kod’ - 2kodd - i (25)
l‘ K2 . KI'
y=-2X"900 -0 (26)
B Bao
The boundary conditions on gguations (25) and (26) take on the form
T =0 o =0 ® =0 ¥ =0 T =T, (27)
T=£’\155 ¢=_EM ® =0 T=T‘t (28)
s) v Kz_‘/a; sa

Equations (25) and (26) are programed for the analog computer for values
of o=1, K=1, and B = 1, which imply for this first program that ¢ = 7,
® =0, and VvV =y.

Figure 3 represents the solution for ¢'. The set of discrete initial
conditions on ¢@'' is selected over a sufficiently wide range to give a
reasonable topology of the total set of solutions to this particular initial
value problem. The requirement of satisfying the boundary conditions on ¢'
limits the acceptable range of ¢''(0) to

0<g''(0) <1.31 (29)




Trial and error procedure indicates that for the range of interest; scale
factors of o =0.1, K = 0.001, and B = 0.0015 can be used. Rescaling is
necessary to reduce the error in the analog output. The program results are
shown in Figures 4, 5, and 6, which represent ¢, ®, and ¥, respectively.

The results are as expected. The parameter ¢ which for a fixed r 1is
directly related to u, starts at O, goes to a max1mum value near the center
of the gap, and then returns to zero at the surface of the drop. The.
parameter &, which is directly related to w, starts at zero at the plate and
then reaches its maximum value at the bottom of the drop. The parameter ¥,
which is directly related to the static pressure, goes from a maximum value of
zero at the plate to a minimum value in the center of the channel, because the
static pressure head at the plate is partially converted into a velocity head
in the center of the gap. The pressure then returns nearly to its plate value

at the surface of the drop. Therefore, the pressure distribution at the sur-
face of the drop 1s taken to be.of the form B :

1
P(r,8) % 5 af & (v - rf) (30)
Table I lists the important numerical values of the end points of Figures 4
and 5.
Velocities and Mass Flow Rate
The radial and axial velocities and the gap thickness are determined from

the analog parameters listed in Table I. These parameters are directly related
to the axial velocity W by equations (10), (16), and (23) resulting in

w=-2a/ay «b (31)
The value of w at the surface of the drop is given by
w(8) = - 2 +/av kdp (32)

where ¢g 1is the value of @ at the surface of the drop.

In a similar manner, the time required to satisfy the boundary condition
of & = 0 relates dlrectly to the gap thickness & by equations (15) and (22),

resulting in

The parameter a is now determined by substituting equation (30) into equation (7),
noting that for a flat disk geometry,

V = A1 = Trfl (34)



10

results in

1/270p\L/2 1/2
o - T (o) () (3) (39)
The mass loss from the drop is
aM
& - o[w(a) A (36)

For steam the specific volume and absolute viscosity may be expressed as

v = YTy p o= nTp (37)
Substituting equations (32), (35), and (37) into equation (36) results
in
am 1/4 1/2 1/a 3/4
i a(e/e.) 1 Tf/ v / O (38)
where
1/4
2
Q = 64ngch)1/4 K(ﬂ_> (39)
T

Equation (38) is to be evaluated for different values of the gap thickness.
Substituting equations (35) and (37) into equation (33) results in the following
relation for the gap thickness:

5 - FTS(g/gc)-l/4 z-1/2Tf3/4 V1/4 (40)
where
I = _ELInEliZ;_ (41)
(4chpD)l * -

Energy Equation

For the problem under consideration, the‘physical conditions indicate that

oT oT
< 42
Therefore, transforming equation (4) to computer variables, assuming
o
0 =21 (43)
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and integrating result in

T = Cy4 % A’%E erf(’\/—lzg ‘1.') + Cg (44)

where
2PrK0<I>6
B=——— (45)
s
Expanding equation (44) in series form and defining
B2
A=z Ty (46)

neglecting second order terms, and evaluating the constants yield

T -7 2
T=Tp - ((E n A??Z)T - A(’flé) (47)

The heat flux at the drop interface is found from the relation

4T kA fa 4T
= -xa 3L} - _ka jadl
e dz o] v dt (48)
o) o)
Differentiating relation (47) and substituting this result into equation (48)
along with equation (33) yield
Qc = %? (Tp - Tsat)Ap (49)
where
/1 - 3A) -
Ap =-(—-—l — ) ® (1 - 24) (50)

The amount o1 mass transfer from the water drop.is now:calculated 'as
a function of &. The convection energy flux is represented by equation (49),
while the radiative 1t'lux is given approximately by the relation

ar = epAPp(Ty - Tgat) (51)
where

4 o
_ 0o(Tp Tsat)

T = =5 (52)

p - Tsat
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The absorption of some of the radiative energy by the water vapor is
neglected in this problem because of the small path length between the drop
and the plate. In addition, the emissivity of the water drop is assumed to
be approximately unity. Substituting equations (49), (51), and (34) into
equation (8) and solving for the evaporation rate yield

aM _ v (¥ ) .

with all the temperature dependent properties evaluated at the film temper-
ature (eq. (9)).

The overall heat-transfer coefficient U between the plate and the
water drop is defined by
aM
&

= KT, - Tgat) (54)

U

Graphical Determination of Gap Thickness and Evaporation Rate

The evaporation of water vapor from a water drop has been determined from
momentum and energy transfer equations (eq. (38) and (53)) for various values
of gap thickness as found from equation (40). The point of intersection of the
momentum and energy equations in Figure 7 represents the conditions where all the
governing equations and boundary conditions (1) to (8) are satisfied concurrently.

EXPERIMENTAL PROCEDURES

The evaporation rate is determined experimentally from measurements taken
on the total vaporization time, that time required for the entire volume of liquid
which is placed on a heating surface to vaporize completely. Plots of the ex-
perimental data for distilled water near the saturation temperature are shown in
Figures 8 to 10. The slopes of the curves, rate of change of volume with respect
to time, represent the evaporation rate of the drop.

The data shown in Figure 8 indicate quite plainly that the surface condition
has no noticeable effect on the vaporization time. However, at higher plate tem-
peratures & variation due to radiation effects is expected.

A slight problem with the flat heating surface resulted from the movement of
the water drop against the barrier wall during the vaporization process. To
eliminate the effect of contact with the barrier wall on the experimental evapora-
tion rate, the experimental data to be used in comparison with the theoretical
results were taken on a test section with a 1° apex angle. A complete description
of the test section and instrumentation can be found in reference 4. TFigure 9 .
presents a comparison of the total vaporization times as measured on a flat surface
and a conical surface with a 1° apex angle. As seen in this figure, there is no
noticeable difference in the vaporization times.
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EVAPORATION RATES

The mass evaporation rate is determined from the slope of a curve

= f(t) prescrlbed by a set of tabulated values (Vi,t;). The slope
of the 1° apex plate deta is determined by dlfferentlatlng & third-
order polynomial fit of the total vaporization time data. The poly-
nomial is of the form

vV = P(1)t + P(2)t2 + P(3)t3 (55)

where t is the time required to completely vaporize a drop of initial
volume V. The coefficients in equation (55) are listed in Table II as
a function of the plate temperature. They were determined by minimizing
the weighted squares of the residuals. Weights of V-1 were used.

The curves shown in Figure 10 are drawn from equation (65) using the
coefficients listed in Table II. Thus, the experimental evaporation rate
equals

@t = pD[P(l) + 2P(2)t + 5P(3)t2] (56)

The theoretical and experimental results are shown jointly in Figure 11.
The emissivities chosen in the theoretical calculations are based on data
tabulated in reference 6. As seen in Figure 11, agreement exists throughout
the volume and temperature range considered. The deviation of theory and
experiment is less than 20 percent.

Deviation of the model from the actual physical geometry and drop oscil-
lations which occur at temperatures above 800° F could account for scme of the
deviation between theory and experiment.

The calculated gap thickness, as shown in Figure 12, is relatively insensi-
tive to volume changes, but is affected by increased plate temperatures.

OVERALL HEAT-TRANSFER COEFFICIENT

The overall heat-transfer coefficients to the drop, shown in Figure 13,
as defined by equation (54), are evaluated for various drop volumes and plate
temperatures of 600° and lOOOo F.

The amount of thermel radistion is calculated to be 2 Btu/(hr (sq ft)
at 600° F and 4.4 Btu/(hr)(sq ft) at 1000° F. Consequently, radiation heat
transfer at 600° F represents less than 5 percent of the overall heat-transfer
coefficient; while at 1000° F, it represents less than 10 percent. As the
drop volume decreases, the percentage of radiative heat transfer decreases still
further because of the relative increase of conduction heat transfer which results
from the smaller gap thickness at the lower drop volumes.
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Closed Solution for h

Since greater physical insight into the effect of the system parameters
(fluid properties, gravity, geometry, and the temperature gradient) on the rate
of heat transfer is always enhanced by obtaining a closed solution for the heat-
transfer coefficient, an attempt was made to correlate the numerical solutions
in terms of simple analytic expressions. This attempt was successful, leading
ultimately to a simple expression for h. The method of attack is briefly
outlined helow.

The end points of Figure 5 define a solution locus for the hydrodynamic
problem (shown by the dashed line.) This locus is a solution in the sense
that it provides a parametric relation between the velocity at the interface and
the gap thickness. A plot of this locus on log-log paper gives a straight line,
the final equation being

_ 3
05 = 0.086 T3 (57)
Substituting equations (21) to (23) into equation (57) yields
2
- w(®) = 0.172 & &5 (58)
v

In terms of physical variables, this equation states that the interface velocity
is proportional to the cube of the gap thickness. Equation (58) is now combined
with the heat-transfer solution (which also contains 8) with the ultimate aim
of eliminating ©. If radiation is neglected, the heat balance at the interface
becomes
KAp
- () = 5 (Ty - Tg) (59)

For the heat transfer to the drop, the sensible heat factor Ap is found
by combining equetions (50), (46), (45), and (28);

¢ Pow(d)0

Combining equations (59) and (60) produces a simpler expression for Ay
1
by = (61)
1 ++P
3 A
Combining equations (58), (59), and (61) results in the heat-transfer
coefficient to the drop of the form
B¥ 1/4
he = kA kYNjePp P (62)

i = % = 0.68 T
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where
v
I, = = 63)
¢ 1% (
and an expression for a modified latent heat of evaporation
c, AT
)%’:7\AS= A ~ 1-_L) ‘ (64)
lcpM“S ‘}\
1+ = e
3 A

The values of Lg for a given drop volure are found in Figure 14 for
water. The values of Le were determined from the 1 values in reference 4.

The heat-transfer coefficient from the plate can be shown to be similar to
equation (62) with the exception that A and A take on the form

1

Ap === %1+4 (65)
and
0.5 c AT
* 3 7\ ~ .
Ap = M\p = z - M1+ = (686)
1 CB- AT
B

Equation (62) is identical in form to Bromley's equation (ref. 3) with the
exception of the specially defined geometry factor Lo. The difference between
the two expressions for the heat-transfer coefficients (heat transfer to the drop
i = D; heat transfer from the plate i = p) is a result of sensible heating in the
vapor layer.

Vaporization Times

In principle, the evaporation history of a drop can be computed by employing

a quasi-steady-state heat-transfer approach. Mathematically this is expressed by
av /N Am
oph il h{v)A AT (67)

where both h and A vary with time as the dror evaporates. The drop area is
in general s complicated function of volume; however, in the case of large drops,
for example, water drops greater than 1 cc, the thickness of the drop becomes
constant. In this case, equation (67) can be integrated in a simple manner.
Thus, for large drops

A

v/1 (88)

-}

. po= cy-l/4 (89)

Where [ is the asymptotic drop thickness and C 1is a constant for a given
temperature difference. For large water drops at a plate temperature of 600° F,



[
o

equation (67) becomes
av/at = 0.059 v3/4 (70)
Integrating from a drop volume of 1 cc to some larger value gives
(vi/4 _ 1) = 0.00148 (% - t1) (71) -

where (t - t,) is the time taken for a drop to decrease from volume V to
1 cc. This relation is tested in Figure 15 by comparison with experimental
data. The linearity of the plot verifies the present theory although the
slope of the experimental and theoretical lines differ by 27 percent. This
deviation is expected since at large drop volumes some of the vapor escapes
through the drop in the form of bubbles. This added path of vapor escape
should result in smaller evaporation times than those predicted by theory,
which proves true for this example.

CONCLUSIONS

The analytical model developed in this paper can be used to predict the
evaporation rate and overall heat-transfer coefficient for water drops on
a flat plate in the film boiling regime by a graphical method with a reasonable
degree of accuracy over the range of parameters investigated. For the special
case where radiation can be neglected, the heat-transfer coefficient is shown
to be equal to

For heat transfer to the drop

For heat transfer from the plate .-

AT
* _ Sp ©&
AP = %(? + 0.5 N )

The difference between the two values of h results from the radial convection
of the superheated vapor.

Figure 14 can be used to directly determine the overall heat-transfer co-
efficient from the hot plate to the water drop. Also, the equations and the
analog computer results (Figs. 3 to 6) can be applied to any fluid, since the
momentum equations were solved in dimensionless form.

Finally, it is shown by correlation of volume as a function of vaporization
time that the basic equation for the heat-transfer coefficient can also be applied
to large drops for which the steam intermittently breaks through the surface.
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TABLE I. -~ ANALOG COMPUTER RESULTS
1 a
8(0),f 5= E!\/%_S; Oy = '%w d)(%):
v sec Ky/av v
5.0 9.9 82.0 12.25
4.0 7.0 29.5 6.25
3.0 5.3 13.0 3.50
2.0 3.6 4.0 1.50

aThe output of the analog computer is read

in volts; however, the output ¢

is con-

sidered to be volts per unit time when
used in the equations, in order that the
units will be consistent.

TABLE

IT.

- POLYNOMIAL COEFFICIENTS

Temperature
of plate, °p

P(1)

P(2)

P(3)

608

1014

-7.2266.107°

+4.0022.107°

+4.8950.10°6

+1.0295.107°

+4.4080.10-9

+5.4745.10°8
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Figure 7. - Graphical simulta-
neous solution of momentum
and energy equations at a
droplet volume of 0.5 cc, a
plate temperature of 600° F,
and a plate emissivity of 0,5,
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Figure 8. - Total vaporization time for water drops
on a flat plate as a function of their volume for
various surface conditions at a plate tempera-
ture of approximately 600° F.
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Figure 10. - Total vaporization time for water drops as a
function of their volume and temperature of the heat-
ing surface which had a 1° apex angle.
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Figure 9. - Comparison of the total vaporization time for
water drops on a flat plate and a 1° conical surface at
approximately 600° F.
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Figure 11. - Theoretical and experimental mass evaporation
rates of water drops as a function of drop volume, plate
temperatures, and plate emissivity,
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Figure 12. ~ Gap thickness of the water drop as a function
of volume for plate temperatures of 600° and 1000° F and
a plate emissivity of 0.5,

U to the water drop,
Btu/thrNsq ftN°F)

s

Figure 13, - Theoretical heat-transfer coefficient to the
water drop as a function of volume for plate tempera-
tures of 600° and 1000° F and a plate emissivity of 0. 5.
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Figure 14, - Effective geometry factor L, as a function of drop volume
for water for an acceleration of 32.2 ft/sec2.
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Figure 15. - Theoretical and experimental relation between volume of drop
and vaporization time for water for volumes from 1to 5 cc with a plate
temperature of approximately 600° F.




