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ABS TR AC T 

This  r e p o r t  desc r ibes  the r e su l t s  of a continued p rogram of measu remen t  

of the down-coming skywave of Navy VLF stat ion NSS as received a t  Wallpps 

Island, Virginia.  

Illinois and i t s  D-region rocket  experiments ,  have detected the development 

of the C-reg ion  of the ionosphere before ground sunr i se .  

These  measu remen t s ,  in  cooperation with the Universlty of 

t 
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A. INTRODUCTION 

V L F  recordings of the amplitude and re la t ive  phase of the components of 

the down-coming skywave of NSS (21.4 Kc/s)  have been made  a t  Wallops Station, 

Virginia  from June to December of 1965. 

c a r r i e d  out to  complement D-region rocket  experiments  conducted a t  sun r i se  and 

sunse t  by P ro fes so r  S. A. Bowhill of the University of Illinois. 

These measu remen t s  have been 

Typical sun r i se  record ings  of the abnormal  component are presented to 

i l lus t ra te  the variabil i ty of the G region of the ionosphere.  

the mechanisms involved are suggested.  

Interpretat ions of 

A computer  p rogram for full-wave analysis of steep-incidence V L F  propa- 

gation is being prepared  and is briefly descr ibed.  

bugging" s tage,  no numer ica l  r e su l t s  a r e  presented. 
A s  i t  is s t i l l  in  the "de- 

- 1 -  
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! B. EXPERIMENTAL TECHNIQUE 

The wave emitted f r o m  a V L F  t ransmi t te r  ( e ,  g .  , NSS a t  21 .4  kc/s)  with a 

ver t ica l  antenna is polarized with i t s  e lec t r ic  vector para l le l  to the plane of in-  

cidence. After reflection, however, it i s  ell iptically polarized with components 

both para l le l  and perpendicular to the plane of incidence. 

i I 
i ~ 

t 

The electromagnet ic  field a t  a receiver  on the ground is composed of a 
I 

l inear ly  polarized ground wave and the elliptically polarized downcoming sky-  

wave. 

normal  component, like the ground wave, has  the magnetic vector  (H,)  horizontal;  

the abnormal  component has  the e l ec t r i c  vector (E,) horizontal. 

f ield components a r e  shown in F igure  1, where subscr ip ts  a r e  0 for  ground wave, 

1 for  normal  component of the skywave, and 2 for the abnormal  component. 

The skywave may be spl i t  into t w o  l inear ly  polarized components: the i 

j The var ious 

The measurable  quantities a r e  H the total  normal  component, and HA, " 
the abnormal  component, of the horizontal magnetic field expressed  a s :  

" HO t 

The fac tor  2H1 is the normal  component of the skywave, doubled because 

of ref lect ion at the ground; the factor 2Hz cos 0 is the horizontal  component of 

the abnorma l  incident and ground-reflected waves. See F igures  lb .  and I C .  

The amplitudes of the components of the downcoming skywave relative to the 

incident field amplitudes a r e  denoted by the reflection coefficient 

and conversion coefficient l lR l  . These may be calculated f r o m  the equations 
11 Rli 

H1 S 

HO d s i n  8 
llRll = -  . 

HA S 
- 

2d s in  8 cos 8 
l l R l  - - ' 

HO 

where  d/S is the r a t io  of the paths t raversed by the ground wave and one-hop 

s kyw ave . - 3-  
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In o r d e r  to m e a s u r e  the arr,plitude and phase of e i ther  component in the 

presence  of a much s t ronger  ground wave, i t  is necessa ry  to separa te  the two 

fields. To isolate  the abnormal  component, H2, i t  i s  necessa ry  to u s e  a wel l -  
designed loop antenna with i t s  plane perpendicular to the plane of incidence; 

i t  will produce an  emf proportional to HA. 

If i t  is des i red  to observe  the normal  component, HI, a loop antenna i s  

positioned so that i t s  plane is in the plane of incidence and i t  rece ives  an emf 

proport ional  to 

HN = Ho t 2H1. 

A ver t ica l  whip antenna rece ives  a n  emf proportional to 

[Eo + 2E1 sin e] oc [ Ho t 2H1 s in  e ] .  

These two antenna voltages may be added in the appropriate  phase and ampli-  

tude so as to eliminate E 

proport ional  to 

and leave in the combined antenna sys tem ari emf 0 

2H1 .(1 - sin e ) .  

- 5 -  
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C. EXPERIMENTAL RESULTS 

Recordings of the amplitude and relat ive phase of NSS have been made  a t  
Wallops Station continually during the months of June  - July and October - Novem- 

b e r  - December ,  1965. During August - September ,  1965, the r e c e i v e r s  and 

t r ansmi t t e r  were  both down for  maintenance and r e p a i r .  During the periods of 

recording,  the abnormal  component has  been studied extensively. Specifically, 

p re - sunr i se  d e c r e a s e s  in  the abnormal  amplitude have been studied. 

resul ted in  the detection of t h ree  mechanisms which occur  before ground sunr i se .  

This has  

The sunr i se  t ransi t ions have been categorized by s imi l a r i t i e s  i n  onset  t ime 

of a d e c r e a s e  of abnormal  amplitude,as w e l l  as by the r a t e  and amount of d e -  

crease of the amplitude. 

f r o m  each  category is shown in F igures  2 to  6. 
and phase as a function of t ime and a polar d i ag ram are presented.  Dec reases  

in  abnorma l  amplitude begin a t  th ree  separa te  zenith angless  x = 99O to  looo ,  
x= 94O. 

This has resul ted in  five ca tegor ies ;  a typical day 

Both a d i a g r a m  of amplitude 

x = 97O to 98O, and An amplitude d e c r e a s e  may  begin a t  any 

of the above onset t imes  o r  any combination of the above. 

F igure  2 is representa t ive  of those sunr i se  t ransi t ions having a step-like 

and 93O9 0 d e c r e a s e  i n  amplitude occurr ing when the zenith angle is between 95 

with the amplitude then remaining nearly constant until about ground sunr i se  

( x = 90 ). 
stant  phase. 

ceded by a slow d e c r e a s e  beginning either nea r  x = 99O o r  97O. 

0 The d e c r e a s e  in  amplitude occurs  during a period of near ly  con- 

The magnitude of this s t e p  is of the o r d e r  of 4db and may be pre-  

An example  of attenuation showing complete so l a r  control  is shown in  

F i g u r e  3. The amplitude begins to dec rease  a t  x = 97" - 98". It continues 

to  d e c r e a s e  monotonically until x = 90 where the onset of the sun r i se  phase 

advance indicates  that the attenuation is no longer non-deviative. 

tion v a r i e s  f r o m  6 to 12 db. 

0 

This  attenua- 

F i g u r e  4 r e p r e s e n t s  t ransi t ions s imi la r  t o  F igure  3, demonstrat ing complete 

s o l a r  control ;  however, the onset t ime  of the attenuation is delayed beyond 

x = 98O to  as la te  as x= 93O. The onset va r i e s  f r o m  x = 93' to 95'. 

The s u n r i s e  recording of 14 June  1965 has  been chosen to  r ep resen t  the 

next g roup  as this w a s  the da te  of a D-region rocket  experiment  by the University 

of Il l inois (F igu re  5). This  t ransi t ion is charac te r ized  by a slow d e c r e a s e  in  
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FIG. 21 ABNORMAL COMPONENT FOR JULY 2 2 ,  1965 SUNRISE 
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FIG. 3B ABNORMAL COMPONENT FOR JULY 7 ,  1965 SUNRISE 
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F I G .  4 6  ABNORMAL COMPONENT FOR JULY 1 ,  1965 SUNRISE 
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FIG. 5 8  ABNORMAL COMPONENT FOR JUNE 14,  1 9 6 5  SUNRISE 
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FIG, 6 8  ABNORMAL COMPONENT FOR JULY 20 ,  1865 
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~~ 

amplitude beginning slightly before x = 99'. This is followed by a fu r the r  

d e c r e a s e  in amplitude beginning a t  x = 93' - 95O, being of the o r d e r  of 6 db. 

F igu re  6 is a n  ex t r eme  example of the i r r egu la r  behavior of the nighttime 

V L F  skywave. 

other days  this d e c r e a s e  may be about 7 db. The accompanying phase r eco rd  

indicates that a f te r  the amplitude recovered ,  the phase w a s  the s a m e  value as 

before.  

d e c r e a s e  was probably due to  the in te r fe rence  of two re f lec ted  waves.  

wave w a s  ref lected f r o m  the no rma l  nighttime ref lect ion leve l  and the other ,  

a par t ia l  ref lect ion,  was f r o m  a s h a r p  gradient  o r  discontinuity, perhaps f r o m  

above the normal  reflection height. 

On this day the amplitude dec reased  m o r e  than 24 db. On 

This indicates that the reflection level  did not change and the amplitude 

One 

-31 8- 



D. IONIZATION MECHANISMS 

L QR 

Ionization of the normalD-region  is produced by so la r  radiat ion of t h ree  
0 

s p e c t r a l  regions.  

capable of ionizing the alkal i  me ta l s  whose abundance is quite small. 

is wavelengths of the range  1100 to  1300A i n  which Lyman - a,  1215A, falls. 

This is the s t ronges t  emis s ion  line in  the solar spec t rum.  

of ionizing n i t r ic  oxide, NO. Also of importance are X- rays ,  especial ly  

during dis turbed conditions. 

One cons is t s  of wavelengths g r e a t e r  than l900A and is  only 

Second 
0 0 

Lyman - a is capable 

Another important  sou rce  of ionization is cosmic radiat ion of galact ic  origin. 

Cosmic  radiation is independent of so l a r  zenith angle. 

hour s  the e lec t rons  produced w i l l  be  removed by at tachment ,  creat ing a r e s e r v o i r  

of negative ions. 

i n  the D-region from which e lec t rons  are removed during s u n r i s e  by photo de-  

tachment.  

During the nighttime 

Evidence points t o  the existence of negative ions a t  low levels  

These  var ious s o u r c e s  of ionization w i l l  be studied briefly.  

1. Radio Observations 

Many surveys  of the d iurna l  behavior of V L F  and LF radio  waves have 

been published. Each essent ia l ly  points out that about a n  hour before  ground 

s u n r i s e  on shor t  propagation paths the amplitude begins to  d e c r e a s e ,  but the 

phase does  not begin to advance t i l l  near  ground sunr i se .  

amplitude d e c r e a s e s  s imi l a r ly  but the phase begins to advance a t  the same t ime,  

This  has been explained as the r e su l t  of photodetachment of e lec t rons  f r o m  

0, 
g r e a t e r  than 30002.  

at ground sunr i se .  

and the D- layer  forming af te r  ground sunr i se  and blending together of the two 

l aye r s .  The C-layer  is t r ave r sed  by the rad io  waves on shor t  paths,  attenuating 

the ampli tude but not affecting the phase. 

actual ly  ref lected from the C-layer, result ing i n  a p re - sunr i se  phase advance. 

Lately,  the p re - sunr i se  var ia t ions of phase and amplitude have been studied 

m o r e  c lose ly ,  resul t ing in  many inconsistencies.  

On longer paths the 

- 
ions below the nighttime reflection level by visible light of wavelength 

This is followed by ionization of NO by Lyman - a 

The r e su l t  is a lower C-layer  formed before ground sunr i se  

On longer paths the rad io  waves are  

Reid  (1964) has analyzed twilight observat ions of po lar -cap  absorpt ion 

of high-frequency galact ic  noise. 

photo detaching 0,- ions,  the changes in  absorption would co r re l a t e  with the 

If the C-layer  w e r e  formed by visible light 

-19-  



passing of the e a r t h ' s  shadow over the absorbing region, 60  to  90 km. 

the absorption follows the passing of the ozone l a y e r ' s  shadow. 

the presence of a n  unknown negative ion, called X-, whose e lec t ron  affinity is 

about 4 ev  or a t  l eas t  somewhat m o r e  than the . 58 ev  of 02-. 

Instead, 

This indicates 

Analysis of steep-incidence V L F  da ta  has lead to  the conclusion that 

more than one mechanism is responsible  fo r  the p re - sunr i se  var ia t ion of the 

r ece ive r  VLF skywave. 

tion occurs  at  a zenith angle g r e a t e r  than 99O. 

been found to be the onset t ime a t  oblique incidence by Lauter  (1958). 

solid ear th ' s  shadow reaches  90 km a t  

presence  of 0, 

screening layer such  as a dus t  layer  of var iab le  height of the o r d e r  of 10 k m  

could explain var iances  in  this onset t ime.  

There  are t imes  when the onset of the s u n r i s e  t r a n s i -  

A zenith angle of 99' 40' has  

x = 99O 30' (F igu re  7), indicating the 

The 

- 
which is photo detached by visible light. The p resence  of a 

On many days  the onset  t ime of the s u n r i s e  t ransi t ion will  be delayed 

t i l l  about 

shadow a t  90 k m  when 

known negative ion, X-,  which r equ i r e s  s o l a r  ultraviolet  light fo r  photo1 

detachment.  

X = 9 8 O .  As a 30  k m  screening layer  ( a n  ozone layer )  has i t s  

x= 97O 50' ,  this would indicate the p re sence  of the un- 

Also occurr ing quite often is an  effect  which begins at x = 94O. This 

The usua l  explanation effect  has  been seen  before but usually has been ignored. 

for  this effect is the p re sence  of a two-hop skywave, as w e l l  as a one-hop. 

This  will be discussed la te r .  

apparent  but w i l l  be discussed.  

The cauze of th i s  effect  is not immedia te ly  

Very much has  been wri t ten about the cont roversy  of 0,- and X-. I t  

appea r s  evident that both are present .  

day  to day. Our attention will  be on the x = 9 4 O  e f fec t  and i t s  cause.  W e  will  

begin by looking a t  what radiat ion can cause  ionization a t  D-region levels  be fo re  

ground sunrise .  

Which one dominates  seems to  va ry  f r o m  

2. Optical Depth Fac to r  

The determinat ion of the optical  depth of the a tmosphe re  for solar 

zenith angles g r e a t e r  than 90' has been cons idered  by Swider (1964). 

tion attenuated in  a ver t ica l  column, the intensi ty  of the radiat ion I = Io e-7, 

w h e r e 7  is the optical  depth and I is the f lux  where  T $; 0. 

optical  depth for vertically-incident radiat ion is defined by 

F o r  r ad ia -  

The d i f fe ren t ia l  
0 

.-LO- 



d-r = Kn d z  

F (U) for X h / 2  
n 

U0 l o  2 O  3 O  4O so 6' 7 O  8O 

58. 8 71. 6 78. 5 81. 1 81.9 82.0 82. 1 82. 1 n F 

_I 

where K i s  the absorption c r o s s  section of the absorbing medium and K and T 

a r e  dependent on the w a v e l p g t h  of the radiation involved, 

density of the absorbing medium. 

equation 

n is the number 

The object is to  find the integral  of this 

F o r  a constant s ca l e  height a tmosphere 

y = O J  

where y is the r a y  path of i n t e re s t  and w is the point of in te res t .  

l e s s  pa rame te r  F is defined and called the optical depth factor  such  that 

A dimension- 

T = 'n H KF. 
W w w  

0 F o r  zenith angles g rea t e r  than 90 the optical depth factor  mus t  always 

be found in t e r m s  of the point of maximum density along the path y f r o m  the sun 

to P', in  t e r m s  of point Q' (F igure  8). Therefore  

T ( X < I T / ~ )  = Kn H F ( U ) .  v v n  

It is convenient to  define U by 

S w i d e r  a& part nfthese arcgiven here for a sca le  height, H, of 6 km. 

x = rr/2 -k U. Tables of Fn ( U )  a r e  given by 

-21 - 
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of the absorption occurs  in  the region where the optical depth is unity and this 

height can be used like a screening height. Therefore  

T( X = 94O) = 1 = (10-20cm2) \ 6.5  ( l o 5  cm) (81. 1) 

. .  . n (02) = 1 . 9  ( 1 0 ' ~ )  / ~ m ~ ~  
V 

Taking molecular oxygen to  be 21% of the total  density of the atmosphere 

a t  D-region heights and the Cospar  International Reference Atmosphere,  1961, 

we find a concentration of 0, molecules of 1.9(10' 2, /cm3 occur s  a t  a height of 

100 k m  (Figure  9). 
r e a c h  116 km a t  point P' o r  a t  the zenith. 

With this as the screening height, the radiation would only 

At x = 85O, the optical depth factor is 9. 9; therefore ,  unit optical 

depth occur s  fo r  Lyman -a a t  a molecular concentration of 

-3 n = 1. 5 ( ioi3)  cm 
W 

which is only a t  89 km. 

If we consider ionization by X-rays,  the applicable absorption coefficients 
0 0 

a r e  1 .3  x lo- ' '  cm2 a t  1OAand 1. 8 x l O S z 2  a t  1A (Nicolet and Aikin, 1960). 

At x = 94 the Concentration of 0 result ing i n  unit optical  depth is 0 

2 

n ( l o x )  = 1.46 (10") 

n (1g) = l.O5(PO1'). 

V 

V 

0 
F o r  10A radiation this is a screening height of g rea t e r  than 110 km 

0 
and a shadow height g rea t e r  than 126 km. However, fo r  1A radiation, the 

screening  height would be 78 km and a shadow of only 94 km. 

angle of 85O the 1A radiation could reach  65 km. 

At a zenith 
0 

3.  C-Layer  Variabil i ty 

The variabil i ty of the C-layer  has  been seen  f r o m  the V L F  data. T h . s  

var iabi l i ty  has  a l s o  been measured  by Belrose (1962) using the par t ia l  reflection 

technique. 

might  expect  la rge  changes i n  the cosmic r a y  flux. 

Since this layer  supposedly is p'roduced by cosmic  r a y  ionization, one 

This,  however, is not the 
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case .  Similarly,  we cannot c i te  Lyman -a as the cause .  The constancy of 

Lyman -a flux is well  known, even during dis turbed and flare conditions. 

Solar  X-rays have been measu red  by sa te l l i t es  which have shown the ex t r eme  

var iabi l i ty  i n  the flux of X- rays  of wavelength l e s s  than 20A. 
0 

The flux of X- rays  of wavelength l e s s  than 2018 has  been measu red  by 

NRL satell i te SR-1 (Kreplin,  e t  al . ,  1962) and of wavelength less than 14A by 

Injun 1 (Van Allen, 1965). These  measu remen t s  have revealed a high degree  

of variabil i ty of X-ray  flux. 

measu red  to be of the o r d e r  of l o m 3  e rg /cm2  sec i n  the 2 to  828 range.  

0 

F o r  quiet conditions, the so l a r  X- ray  flux was 

This  is 

two or  t h ree  o r d e r s  of magnitude higher than the values used by Nicolet and I 

Aikin. Poppoff and Whitten (1962) have used the new value of the flux to  in-  

vest igate  the ro l e  of X-rays  in  the formation of the D-region. 

shown that at a so la r  zenith angle of 45' and with an est imated so la r  X- ray  

spec t rum i t  is possible to produce 100 e lec t rons  /cm3 a t  a n  alt i tude of 70 km. 

They have 
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E. TWO-HOP SIGNAL 

I t  has  been suggested that the x = 94O effect is m e r e l y  the r e su l t  of a two- 

hop s ignal  being present  as well as a one-hop signal. 

s ignal  has  been studied by Bracewell ,  e t  al. (1952). 

summation of a one- and a two-hop signal w i l l  r e semble  an  epitrochoid, the 

locus of the s u m  of two vec tors  rotating in  the same sense .  With supe r sc r ip t s  

used to indicate the o r d e r  of reflection, a speed fac tor  G(n) gives  the speed of 

of rotation of the n-hop wave relat ive to the one-hop and is defined as 

The effect of a two-hop 

The polar d i ag ram of the 

dh dh 

where 

F o r  the NSS to  Wallops path G(2) is about 2. 5. 

a G(2) of 3 when the two-hop signal i s  1/4 and 1/2 the one-hop. 

amplitude minimums 180 apar t .  

G(2) as 2. 5. 

is the path traveled by the n-hop waveif ref lected f r o m  height h. 

F igu re  10 are epitrochoids for  

They a r e  two 
0 The minimums would be 240° apa r t  with 

360 

G(2) - 1 
The separat ion of the minimums, A+ = degrees .  

To be s u r e  the effects seen  on the abnormal component are the r e su l t  of 

changes in  the ionosphere and not jus t  a coincidence of the propagation conditions, 

polar d i a g r a m s  of the sun r i se  t ransi t ions have been given (F igu res  2 to 6 ) .  
s ~ z ~ e  cases the presence of the two-hop signal is evident, but not a t  the c o r r e c t  

t ime to explain the p re - sunr i se  effelcts. As near ly  all the pre-sunr i se  var ia t ions 

in  amplitude occur before  the phase advance begins, the resul t ing polar d i ag rams  

d o  not d e s c r i b e  a n  epitrochoid during these per iods,  although af te r  ground sun-  

r ise they may.  

In 
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F. SUPPORTING OBSERVATIONS 

1. Radio Measurements  

Be l rose  (1962) pointed out a change in slope of the d iurna l  

phase a t  sunse t  of 80 kc/s t ransmiss ions  over  a path of 1910 km. At this 

frequency and path length the r ad io  waves a r e  ref lected f r o m  the C-region 

r a t h e r  than the D-region. 

approximately the same t ime the sun r i se  advance ceased,  a t  about 

There  is a change in  s lope of the sunse t  recording a t  

p re sen t  a t  s u n r i s e  and af te r  this t ime the phase re ta rda t ion  occur s  at a much 

s lower r a t e  until af ter  layer  sunse t ,  x = 102'. 

On this path the sunse t  phase re ta rda t ion  begins a t  

x.= 90°. 

x = 94' which is not 

Reid (1964) presented cu rves  of measu red  absorpt ion during a PCA as 

a function of zenith angle during the sunse t  twilight period to  point out that  the 

dominant negative ion in  the D-region must  have proper t ies  quite different  f r o m  

02-. One can  a l s o  see (F igure  11) that absorption d e c r e a s e s  somewhat e r r a t i -  
cally until 

the absorpt ion d e c r e a s e s  smoothly until about 
x = 94O a t  which time there  is a change of s lope in  the curve  and 

x = 98O. 

2. Rocket  Profiles 

The  m o s t  convincing evidence that the effect a t  x = 94O is a D-region 

phenomenon and not merely a consequence of the propagation w a s  presented by 

Bowhill, e t  al. (1964). On 15 July 1964 a s e r i e s  of rocke ts  were  f i r ed  a t  sun- 

rise, The r e s u l t  was an  electron density profile a t  x = 95 near ly  identical  

to the nighttime profile. At x = 85O, however, a significant C- layer  w a s  

p re sen t  as wel l  as the v e r y  beginning of the no rma l  D-layer  (F igu re  12).  This 

w a s  cons is ten t  with the V L F  measuremen t s  c a r r i e d  out a t  the same t ime.  The 

abnorma l  amplitude began to d e c r e a s e  about 

to  advance slowly. 

skywave was  watched f o r  a p re - sunr i se  dec rease .  

constant  t i l l  

r ocke t  was  f i red .  

a f t e r  x= 90°. 

s u n r i s e  and sunset .  

ex i s t s  only when the s u n ' s  zenith angle is less than 94  . 

0 

x= 94' and the phase a l so  began 

Simi la r ly  on 14 June, 1965 the amplitude of the abnormal  

The amplitude w a s  near ly  

x = 94O a t  which t ime i t  began to  d e c r e a s e  rapidly and a D-region 

This  was accompanied by v e r y  l i t t le change in  phase until 

A series of similar rockets  were  f i red  in  November 1964 a t  

All  of these experiments  support  the f ac t  that  the C-layer  
0 
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G. SUMMARY 

It has  been suggested that pre-sunrise  ionization of the D-region which f o r m s  

a t  a zenith angle of 98O can  be attr ibuted to the photo detachment  of an  unknown 

negative ion, X-, by solar ultraviolet  light. 

imposed (an  ozone l aye r )  wh ich  has  i t s  shadow a t  90 k m  when 

Also  suggested is the presence  of a negative ion 0 2  

by visible light of wavelength g r e a t e r  than 3000A". 

record ings  that e i ther  o r  both of these mechanisms occur .  

cording has some  evidence of these mechanisms,  although the onset times are 

somewhat  masked by the nighttime variability of the reflected waves. 

evident is a n  effect beginning a t  

i n  onset t ime  and magnitude. 

of wavelength less than log are capable of penetrating below 9 0  km before 

ground sunr i se .  

sa te l l i t es  SR-  1.. Measurements  have shown the X- ray  flux below 10A v a r i e s  by 

an  o r d e r  of magnitude a t  t imes ;  Lyman -a f l u x  r e m a i n s  essent ia l ly  constant 

during these  t imes.  

A screening  layer  of 3 0  k m  is 

x = 9 7 O  50'. 

which is photodetached 

It is evident f r o m  the V L F  

Each  day ' s  re-  

- 

Also 

x = 94' which appea r s  much m o r e  var iab le  

Calculations of the optical  depth show that X - r a y s  

The high variabil i ty of solar  X- rays  has been measu red  by 
0 
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H. FULL-WAVE SOLUTION 

The propagation of a n  electromagnet ic  wave through a n  ionized medium such 

as the ionosphere is governed by Maxwell 's equations and the consti tutive 

relat ions of the ionosphere.  For studying high-frequency propagation,ray-theory 

techniques are normally used with the Appleton-Hartree magneto-ionic waves.  

At low f requencies  and especial ly  at V L F  these techniques are no longer appli- 

cable  as the wavelengths are comparable  with the thickness of the ref lect ing 

region, the D-region. Nor d o  r a y  theories  include effects of pa r t i a l  ref lect ions 

which occur  when discontinuities and s h a r p  gradients  are present  i n  the ioniza- 

tion profile. 

If one is to  adequately study reflection of LF and V L F  rad io  waves from the 

ionosphere,  the equations governing the propagation m u s t  be solved numerical ly  

by what is known as a full-wave solution. 

Budden (1955, 1961) using a digi ta l  computer.  

for calculating wave f ie lds  in  the ionosphere by Pitteway (1965). 

This  solution w a s  f i r s t  outlined by 

A similar technique was used 

Nei ther  of the above techniques account for the dependence of the coll ision 

frequency on e lec t ron  energy as was discovered by Phelps  and P a c k  (1959). 

Sel iga (1 965) developed a method for calculating wavefields of a LF t r ansmi t t e r  

as they propagate  through the ionosphere,which includes the energy  dependence 

of the col l is ion frequency. 

of the V L F  ref lect ion coefficients of the ionosphere.  

This technique has s ince been adapted f o r  calculation 

This  p r o g r a m  has not been completely de-bugged and i t  is not possible to  

This  program is being wri t ten i n  a manner  that p re sen t  r e s u l t s  a t  this time. 

will not restrict i t s  u se  to one computer,  one frequency, or one progagation 

path. 

accept  any  frequency,  angle of incidence, and the wave no rma l  may make any 

angle with the e a r t h ' s  magnetic field. The technique is reviewed br ief ly  here. 

It is wri t ten in  F o r t r a n  11-D for an IBM 1620-1443 Sys tem.  It will 

1. Consti tutive Relations 

It is assumed that the V L F  t ransmi t te r  is situated on the ground and 

r ad ia t e s  a plane wave  incident on the ionosphere. 

s y s t e m  is chosen with the z -ax is  directed ver t ical ly  upward and the x - z  plane 

includes the wave no rma l  of the incident plane wave. 

A Cartesian coordinate 
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The constitutive relations of the ionosphere may be wri t ten a s :  

In the Appleton H a r t r e e  formulation the susceptibil i ty tensor  [ M] is 

found to be 

X 
[MI  = - 

u (u2 - Y2) 

'u2 - Yx" -iUYz - YxYy iUYy - YxYz 
iUYz - yYyx u2 - ~ y "  -iUYx - YyYz 

-iUYy - yZyx iuyx - YZYY u2 - Yz 2 

If the energy dependence of the coll ision frequency is accounted fo r ,  

i t  is found that a new variable  a r i s e s ,  Zno 

collision frequency var iab les ,  g n = 1, 2, 3 where 

Zn is related to th ree  complex 

n' 

and 

where 

= W' 0-w"  " 1 , 2 ,  3 

as shown by Seliga (1965). 

Cy2 (y) and C3 (y) a r e  the Dingle in tegra ls  defined by 
/2 

1 a x e  n -x dx 

n! o f x2 t y2 
Cn(Y) = - 

and have been tabulated by Burke and H a r a  (1963). 
-32 -  



2. Equations of Propagation 

The propagation of a 'plane wave in  the ionosphere is governed by 

Maxwell 's equations and. the constitutive relations of the ionosphere.  

Maxwell 's c u r l  equations 

When 

and the definition of e l ec t r i c  polarization 

P = D - L  E 
0 

are combined with the constitutive relations of the ionosphere,  four  simultaneous 

f i r s t  o rde r  differential  equations resu l t .  

s in  8 
E '  = i k  [ - H  t (sin 8 H t MzxEx + M  E ) ]  Y = Y  Y/ 

Z Z  
1 t M  X 

I 

E = i k H  Y X 

H1 = i k [ M  E t (1 t M ) E 
X YX x YY Y 

Mvz 
c - ( s in  8 H t E t M E ) - sin' BEy] 

Y zx x ZY Y 
z z  1 - M  

I 

H = i k [ - ( 1  t M )E - M E 
Y x x x  XY Y 

Mxz 
t ( s in  8 I3 t MzxEx t MZyEy)] e 

Y 
ZZ 

1 - M  
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Since each element of the susceptibil i ty tensor  [ M] is complex, the above s e t  

of four equations actually make a s e t  of eight simultaneous f i r s t  o r d e r  different ia l  

equations,  four real and fou r  imaginary.  

The other  two f ie ld  quantit ies are  given by 

- 1  
[ M  E t M E t s i n O H ]  

z x  x ZY Y Y 
E =  

z z  1 t M  Z 

H = s i n e E .  
Z Y 

T o  solve the simultaneous different ia l  equations, numer ica l  integrat ion 

is performed simultaneously on the four real and four imaginary  equations using 

a Runge-Kutta process .  

A s tar t ing solution for the Runge-Kutta p r o c e s s  is found by solving 

the Booker Quart ic  high in  the ionosphere.  Above the ref lect ion level,  i t  is 

assumed that the e lec t ron  content and coll ision frequency are constant  with 

height and the only wave p resen t  is upgoing. 

Quart ic  with negative imaginary  pa r t s  correapond to  two upgoing waves and are 

used as initial solutions. The integration is then c a r r i e d  out progress ing  down 

through the ionosphere until f ree  space  below the ionosphere is reached.  

The two solutions of the Booker 

When f r e e  space  below the ionosphere is reached ,  any field quantity 

may  be separated into upgoing and downgoing waves,  i. e. 

and 

and 

E = U  t D x  
X X 

E" = U' t D'  . 
X X X 

(4) 

As the upgoing and downgoing waves U and D v a r y  in  free space  as 

-i k cos 8 z 

i k COS 8 z 

U o c e  

D o c e  
(5) 
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1 

E' = - i k c o s  8 ( ITx - Dx) . 
X 

1 

I 

E and E' r e su l t s  f r o m  the numerical  integration and therefore  
X X 

i 
U X = 1 / 2 [ E  X t E',] k c o s  8 

(7) 

and 

U and D are found f r o m  s imi la r  expressions.  
Y Y 

Since w e  s t a r t ed  with two init ial  solutions above the ionosphere,  w e  

have two solutions i n  free space  below the ionosphere. 

are independent, the total field is made up of a l inear  combination of the two 

solutions.  

Since the two solutions 

The upgoing incident waves a r e  defined by 

E inc  = a U  (2) 
Y Y 

where a. and p a r e  complex constants and the supe r sc r ip t s  (1 )  and (2) denote the 

two independent solutions. 

in terms of E inc and E inc. 
X Y 

These two equations may then be solved for  a and 

At VLF' the upgoing wave normally has i t s  e l ec t r i c  vector  i n  the plane 

of incidence and the ref lect ion coefficient ( 

( 11 R_L ) are des i r ed ;  these are defined as 
llRll ) and conversion coefficient 
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I. DIURNAL VARIATION 

Figure  13 is the d iurna l  phase and amplitude of the abnormal  component 

A D-region rocket w a s  f i red  at approximately noon. fo r  15  December 1965. 

this day the amplitude began to d e c r e a s e  at x =', 94'. 

by very  l i t t le  change of phase. 

by the amplitude minimums a t  8:25, 9.55 and 16:50. 

On 

This w a s  accompanied 

The existence of a two-hop s ignal  is suggested 

F o r  r e fe rence ,  a d i ag ram of the t ime of occurrence  of zenith angles 98O, 

Also is shown the t ime of apparent  noon. 94O and 90° is included (F igure  14). 

This is f o r  the NSS-Wallops Island reflection point located a t  38O 28'N, 

75* 58'W. It is also reasonably accura te  fo r  Wallops Station. 
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I 

J. CONCLUSIONS 

We have examined the sun r i se  transit ion of steep-incidence V L F  skywaves ~ 

Themajor  conclusions of this study a r e  a s  follows: 

1. 

2. 

3.  

4. 

5 .  

6 .  

7.  

Recordings of the amplitude and phase of the down-coming V L F  sky- 

wave have indicated the ex t reme variabil i ty in  the formation of the 

C-layer .  

Three  separa te  mechanisms which produce a p re - sunr i se  increase  in 

the lower D-region electron density exis t .  

zenith angles of 99O 40 ' ,  98O, and 94O. 

They a r e  associated with 

Two spec ies  of negative ion appear to ex is t  in  the D-region before 

sun r i se ,  02- and X-. 

The  effects of X-rays  should be studied m o r e  closely r a the r  than over -  

looked in  the formation of the C-region. 

A two-hop s ignal  does not s e e m  able to explain the x = 94O effect. 

D-region rocket  experiments  have shown conclusively the existence of 

a D-region ionization mechanism which occurs  a t  X = 94'. 

Futu re  study should take two courses :  

a. Detailed analysis  of the variation of the ref lect ion coefficient of 

the ionosphere using full-wave solution of both rocket  and model 

e lectron densi ty  profiles.  

b. A carefu l  analysis  of the sources  of ionization of the D-region 

employing la tes t  measurements  of radiat ion f l u x  and react ion 

rates. 
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