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ABSTRACT 

This thesis is concerned with nonsupervisory problems which arise in 

the design of numerous types of detection systems. 

is given which differs from approaches taken by other investigators in that 

(a) the solution is formulated to include nonparametric as well a6 pcrcuoetric 

knowledge, (b) the definition of the nonsupervisory problem is extended to 

a class of nonaupervisory problems, and (c) it is recognized that a certain 

minimum amount of a priori knowledge is required for a solution to exiot, 

The approach begins by showing that when samples are not classified, 

A rather general approach 

the probability distribution of the samples is a mixture c.d.f. 

c.d.f. is constructed by utilizing the a priori knowledge available. 

is then possible to determine if a sufficient amount of a priori knowledge 

is available for a solution to exist. 

exists minimizing sample-conditional probability of error (or, more generally, 

sample- conditional risk) and converging to the minimum probability of error 

system. 

A mixture 

It 

By solution is meant that a system 

Histogram and empirical c,d.f. concept6 are defined for nonsupervisory 

problem. 

maximum likelihood estimates, etc. can be applied to nonaupervisory problem. 

RIlTthemre, it is shown that classical results for %yes estimates, 

Computer simulated results verifying the approach are given for several 

examples. 
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cxA€TERI 

INTRODUCTION 

1.1 The Problem 

This thes i s  i s  concerned with the nonsupervisory problem (i .e. adapting 

without a teacher) which a r i ses  i n  the design of numerous types of detection 

systems. 

differs from approaches taken by other investigators i n  tha t  (a) the solution 

i s  formulated t o  include nonparametric as w e l l  as parametric knowledge, (b) 

the def ini t ion of the nonsupervisory problem is  extended t o  a class  of non- 

supervisory problems, and (c)  it is recognized tha t  a cer tain minimum amount 

of a p r i o r i  knowledge i s  required f o r  a solution t o  exist. 

Given here i s  a description o f  a ra ther  general approach which 

The study begins with a treatment of how a p r i o r i  knowledge is  taken 

This a pr io r i  i n to  account when processing a sequence of vector samples. 

knowledge could include knowledge of cumulative dis t r ibut ion functions, 

possible families of cumulative dis t r ibut ion functions, the number of 

pat tern sources, and any constraints on parameters. The system objective 

i s  formulated i n  such a way that it can be an optimum one which minimizes 

conditional r i sk  o r  conditional probability of e r ro r  or  one of a variety 

of suboptimum applications. 

If, as the number of observations becomes large, the system i s  t o  

converge i n  the l i m i t  t o  the system obtained when all s t a t i s t i c s  are known, 

a cera t in  minimum amount of a p r i o r i  knowledge i s  required. This minimum 

amount of a pr io r i  knowledge must guarantee tha t  the system will converge; 

t h i s  i s  equivalent t o  saying tha t  the parameters characterizing the cumulative 

d is t r ibu t ion  f’unction of the observations must be ident i f iable .  If these 

parameters are identifiable,  it is then possible t o  show tha t  a pr io r i  prob- 
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ability laws defined on fixed but unknown parameters are not required. 

It is assumed that a sequence of l, dimensional samples are presented to 

a receiver as 

5)  
where Xs is a 

We 

If 

denoted by 

representative l, dimensional vector sample: 

xs =(xs , x ,"",X 
S 1 2  

assume that a cumulative distribution mction (c.d.f .) F(Xs) exists. 

the form of this distribution function is specified by a vector set of 

parameters B, then we write this functional form F(XsIB) and ca l l  it the 

parameter-conditional distribution function 

class or source acting to produce X where there are M possible pattern 

classes, this is denoted as the event w i i 

mrther, if wi is the pattern 

S 
S S The c.d.f. of Xs, given W and 

S a vector Bi, is F(XS1mi,Bi). 

when it will not cause confusion, and write F(X I w  B ), meaning it is given 

that the ith pattern class is acting to produce Xs . 

For convenience we drop the superscript s 

s i' i 
F(Xs Iwi,Bi) will be 

called the ith class, parameter-conditional c.d.f. In the nonsupervisory 

problems considered in this thesis, the family (F(Xsla, B ) )  will be assumed 

known a priori. 
i' i 

More generally, let X be any sequence of Y samples of the n samples-for 

example x = (X ln 
could be active to cause the v samples. 

nre 
c.d.f.'s. 

nonsupervisory problem to a class of nonsupervisory problems. 

Let W be the number of possible ways that M classes s n-v+l' 
Call the rth way the rth partition, 

Then {F(X(nr,Br)) is the family of rth partition, parameter-conditional 

The definition of this latter ramfly allows the extension of the 

In the 

literature survey which follows we will be concerned only with the former 

i 
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Define the probabili ty of the event t ha t  the i t h  c lass  i s  active on the 

s th  sample by P(wy). 

the sample number, then P(wi) = Pi, an assumption made throughout t h i s  thes i s .  

The set (P ) 

members of the f’amily ( F(Xs Iai,Bi) ) 

part i t ions,  ( P ( S ~ ) } ~  is  the set of mixing parameters corresponding t o  W 

members of the family (F(Xlfir,Br)) 

If the probability of t h i s  event i s  independent of 

M 
i l  i s  called the s e t  of mixing parameters corresponding t o  M 

More generally, when there are W 

W 

If X is indexed, corresponding t o  a 

- Ix IV 
%I- 

set of sequences of v samples-for example x1 = (4,Il, $ = ( x $ ~ , ~ - - , X ~  - V V 

7 ,  
W we assume t h a t  the mixing parameters for each sequence are  [ P ( X ~ ) ) ~ ,  independent 

of the sequence number. 

If the  samples [Xs)q are s t a t i s t i c a l l y  independent given t h e i r  c .d .f ., 
then the samples are parameter-conditionally independent and w e  have 

1.2 Literature Survey 

An optimality c r i te r ion  frequently used i s  as follows: Given a sequence 

of A dimensional samples ( X s ) f l ,  make a decision as  t o  which of M classes 

i s  act ive t o  cause sample X . 
obtained with a system constraint of minimum sample-conditional r i sk .  

word sample is  used here t o  make c lear  that  we are talking about r i s k  conditioned 

on the pas t  samples, 

This decision is made by a decision function n 
The 

It i s  desirable t h a t  t h i s  sample-conditional r i s k  o r  sample-conditional 

probabi l i ty  of e r ro r  become stable  as n becomes la rge .  Even more desirable 

i s  t h a t  the stable point be ident ica l  t o  t h a t  obtained i f  a l l  the vector 

parameters i n  B were known. That is, it i s  desirable tha t  the performance 

of an adaptive system converge uniquely t o  tha t  of a system minimizing r i s k  or 

probabi l i ty  of e r ror .  We therefore make a disUnctLon between a st&ile system ard a 
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stable system which converges, the lat ter implying convergence t o  the unique 

system obtainable had all the parameters characterizing the system been 

known 0 

A suboptimum system is defined as a system which minimizes probabili ty 

of e r ror  when n -. -, but which has a sample-conditional probabili ty of e r ror  

greater than optimum. A suboptimum system possibly could be be t t e r  than an 

optimum system when the system complexity, cost, e t c .  are taken in to  account. 
1 Abramson and Braverman considered an example where it is  known which 

class is active t o  cause sample X 

supervised). 

s = 1,2, e ",ni ( foe . ,  the samples are 
8 ,  

That is, the a p r io r i  knowledge includes knowledge tha t  

F(XsIB) = F(Xsl~i,Bi)9 i known, 13 = 1,2,. e ,,% (1 04) 

f i r t he r ,  it is  known tha t  the family (F(Xslwi,Bi)) is a multidfmensional 

gaussian famfly ,  with only the mean vector mi ( i n  Bi) unknown fo r  each member. 

If M groups of supervised samples are taken corresponding t o  M pat tern classes 

and i f  a l l  samples are  parameter-conditionally independent, then 

1-l. 

= n + n2 +,..+ % e  where n 

of the family and of M, Eq. (1.5) is a known function of B. 

they also assumed tha t  the a p r i o r i  knowledge includes a c o d o f .  F(B). 

Since the a p r i o r i  knowledge includes knowledge 

I n  t h i s  example 

Using 

1 

t h i s  a pr ior i  knowledge, they obtained a system minimizing the sample-conditional 

probabili ty of e r ro r  
15 Keehn extended the work of Ab-on a d  Braverman t o  the case where 

the famfly is multivariate guassim and where the mean vector and Covariance 

matrix a re  unknown. He carenilly defined c .d.f. ss F(Bi) fo r  a l l  f such tha t  

the a poster ior i  c.d.f. of Bi9 for  each i, is reproducing 20  



- 5- 

h l y  3 investigated a nonsupemisory system where the classi f icat ion 

of the samples is unknown. A pr io r i  knowledge includes: knowledge 

t h a t  there are M classes with a single class act ive causing each sample, 

t ha t  the family (F(Xslwi,Bi)) i s  known, the s e t  of mixing parameters (Pi): 

are known, and a c d o f o  F(B) is available. Paly computed the sample- 

conditional r i s k  using t h i s  a p r i o ~ i  knowledge obtainfng, i n  particular,  

the decision function which minimizes the smple-conditional probability 

of e r ror  for decision on sample Xn. 

sample-conditional density functions, f(Xn,wi[ (XsI1 ), i = l , 2 ,  .,M. 

This decision function computes the 
n-1 

 is computation for  fdx wi I [xs~?-l) is a sum of M ‘n-l)terms, thus requiring n’ 
rapidly increasing computer memory. Daly indicated tha t  the system is stable  

as n becomes large; however, he did not show convergence. In general t h i s  

solution does not converge, and additional a p r i o r i  constraints are required 

t o  assure convergence. The approach described i n  t h i s  thes i s  provides for  

using these a&iitionai cuiuLruiii2ii 

Fralick2,l4, looking for an i t e r a t ive  solution t o  W y P s  problem, 

obtained an i t e r a t ive  form assuming that  i f  Bf Characterizes F(XsIwi9Bi) 

Fkalick’s result is i n  general suboptimum sfnce, i n  general, 

F(BiI(XS)Y-’, Bj) f F(BiI(Xs):-l)i j f %. This condition is t rue when B 

is known and Ea = 2, which, with Bi = Bl and B 
j 

= Ba, corresponds t o  the 3 
binary on-off case without supervision. 

Hancock and Patrick showed that  the desired a poster ior i  probabili ty 

n-1 
density f(Bil{Xs}l 

computed by integrating the Joint density f(BIIXs}Y-l) with respect t o  a l l  

vectors except B where f(Bl[Xs}l ) has an i t e r a t ive  form. Their result 

is t h a t  

1 is e i the r  of the growing form, o r  equivalently i s  

n- l  
i ’ 
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Equation (1.6) i s  the &yes solution for  a "mixture" of M class,  

parameter-conditional c .d . f . ' s .  This basic result, obtained by Hancock and 

Patrick, includes P a l i c k ' s  result as a special  case. Equation (1.6) is 

the result fo r  the specif ic  mixture considered, one of a c lass  of mixtures 

considered herein, and is an introduction t o  the  parameter-conditional mixture 

approach t o  nonsupemisory problems considered i n  t h i s  thesis. 
4 Cooper and Cooper considered the binary (M = 2 )  case with the family 

{F(Xs (Wi,Bi)) one dimensional gaussian. "hey obtained moment estimators fo r  

= (mi , Pi ) with CT = a known, and maximum likelihood estimators 

7 fo r  Bi = m with Pi = 1/2  known, i = 1,2. Patrick and Hancock , using 

a a f f e r e n t  approach obtained maxfmum likelihood estimators for the more 

0 0 0 l0 2O 
Bi 

0 C 

general case where B = (mi ,o P ), d l  en t r i e s  i n  Bi being unknown. 
io9 io 0 

Some of the first work on applying a histogram, approxfmating a class- 

conditional c ,d.f F(Xs I.,), t o  adaptive communication systems was done 

by Sebestyen"'. He considered only supervised samples w i t h  er single c lass  

act ive on each sample. 

Patrick and Hancock7j6 applied a histogram, approxfmating a class- 

conditional c .d.f e F(X I.,), t o  the nonsupervfsory problem. 

computer simulated results7 fo r  the r a t e  of convergence of a binary system 

where the a p r i o r i  knowledge includers knowledge tha t  P(X,(wi) is  symmetrical, 

Pi 
noise ra t io .  

They presented s 

= 1/2 and i s  known, and, t ha t  there is an appropriately large signal-to- 
0 

They compared t h i s  rate of convergence with tha t  obtained by 
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two other approaches using moment estimators and maxim likelihood estimators, 

respectively. 

Robbinsl' considered estimators for P with F(Xs /wi,Bi) known, i = 1,2, . e .,Me 
io 

H i s  estimators are approximations t o  maximum likelihood estimators, obtained 

i n  Chapter V of t h i s  thesis,  when F(XSIwi,Bi) i s  gaussian, and perform badly. 

T e i  cher "lo defined a mixture and iden t i f i ab i l i t y  and gave a theorem 

giving suf f ic ien t  conditions for a mixture t o  be ident i f iable .  

A we include and give a simple extension of Teicher's work, and define a 

I n  appendix 

parameter-conditional mixture which is a useful concept fo r  applying %yes 

Theorem t o  mixtures. 

giving sufffcient  conditions fo r  a parameter-conditional mixture t o  be 

ident i f iab le .  One of Teicher's propositions , for  example, s t a t e s  t ha t  

I n  addition we s ta te  a theorem and several  propositions 

10 

a f i n i t e  mixture of one-dimensional gaussian c.d.f. 's i s  ident i f iable  i f  

the  class-conditional c.d.f . 's  can be ordered such tha t  oi > o i .= j, 3' 
o r  i f  u3 = aj, mi < m . An extension of Teicher's proposition i n  Appendix J 
A gives suf f ic ien t  conditions fo r  t h e  multidimensional gaussian case. 

The work by Daly and Fralick, discussed previously, does not consider 

i d e n t i f i a b i l i t y  o r  system constraints assuring a unique SOhtiOn The 

parameter-conditional mixture approach, considered i n  t h i s  thesis, does 

provide f o r  u t i l i z ing  such constraints.  

1.3 Approach and Contributions 

In  t h i s  thesis zhe approach t o  the nonsupervisory problem begins by 

showing tha t ,  when samples are  not classified,  the probabili ty dis t r ibut ion 

of the samples i s  a mixture c.d.f. 'j1' A mixture c.d.f. is constructed 

by u t i l i z i n g  the a p r i o r i  knowledge available. If, fo r  example, the a p r i o r i  

knowledge included the c lass i f ica t ion  of the samples, then the c .d.f of the 
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samples would be a degenerate mixture c .d.f. as i n  (I. .5)  

classif icat ion of the samples i s  a p r io r i  knowledge used i n  constructing the 

In t h i s  sense, 

c.d,f .  of the samples. 

The overall  contribution of t h i s  mixture approach t o  nonsupervisory 

problems i s  that  suff ic ient  amounts of a p r i o r i  knowledge for  a solution t o  

exist can be determined. 

considered by Daly w e  show tha t  i f  the family [F(Xslw B )) i s  one dimensional 

gaussian w i t h  B 

i n  order fo r  a solution t o  exist. 

t ha t  i n  order t o  minimize sample conditional r i s k  i n  general, the jo in t  a 

poster ior i  probability density of a l l  parameters characterizing the mixture 

must be computed. Fralick, 

F(BiI (Xs)l , B j )  = F(Bi) {Xsjl 

As an example, for  the nonsupervisory problem 

i’ i 
= (mi, oi), it is  suf f ic ien t  t ha t  a l l  the means be unequal i 

In addition, the mixture approach demonstrated 

for example, had t o  make the assumption tha t  

) because he did not compute jo in t  densi t ies .  

2,14 

n-1 n-1 

Another contribution of the mixture approach is t h a t  c lass ica l  resu l t s  

on Byes  estimates and maximum-likelihood estimates can be applied. 

shown i n  Chapter V t ha t  a uniqueness requirement, imposed by c lass ica l  methods 

when obtaining the asymptotic variance of a maximum l ikelihood estfaate, 

is  replaced by the iden t i f i ab i l i t y  requirement when the  c.d.f. is a mixture. 

Also i n  Chapter V, the asymptotic variances of parameters characterizing 

a binary, one dimensional, gaussian, non-supervisory problem are obtained. 

Previous investigators 

estimated-an assumption= do not make 

It is  

4 had assumed a l l  parameters known except the one being 

In addition t o  the development of the mixture approach, a c lass  of non- 

supervisory problems is defined (Chapter 2 ) .  This c lass  of nonsupervisory 

problems includes such problems as (a) any number of M pat tern classes are 

possibly active causing each sample Xs, (b) the  samples (Xs):,v+l are not 

parameter conditionally independent, and ( c )  sets of samples a re  from the 
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same pattern class with the pattern class unknown. 

A second contribution is an application of histogram and empirical 

c.d.f. concepts to the nonsupervisory problem. When there is supervision, 

a histogram can always be obtained to approximate a class-conditional c.d.f. 

F(Xslwi). 

a class-conditional c.d.f. F(X I w  ), when the samples are not classified, 

results in a mixture of multinomial distributions. 

case parameters characterizing a multinomial distribution (histogram concept) 

can always be uniquely found, this is not true in the nonsupervisory case. 

is shown in Chapter I11 that such parameters can be uniquely found, for the 

binary nonsupervisory case for example, if at least three samples from the 

same pattern class are taken at once (the class, of course, being unknown). 

Whether the family has members with continuous f'unctional forms or 

"he problem reduces to a 

In Chapter I11 it is shown that the use of a histogram to approximate 

s i  
Whereas in the supervisory 

It 

is multinomial, the mixture approach applies. 

classical problem of computing the a posteriuri pi-~b&Llit>- d f s t r f k t i o z  c? 

B if the objective is to minimize sample-conditional risk, or to finding 

a consistent estimator for B if the objective is suboptimum. In Chapter 

V, a mnsirt.mt. dnimm distance estimator of B is given for a class of non- 

supervisory problems where the classes of mixtures are identifiable. 
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CHAPTER I1 

NONSUPERVISION AND PARAMETER-CONDITIONAL MIXTURES 

2 . 1  Mixtures and Parameter Conditional Mixtures 

In  th i s  chapter a parameter-conditional mixture i s  defined. The 

type of the mixture depends upon the a p r io r i  knowledge used i n  i t s  

construction. 

mixtures, we are  able t o  define precisely different  nonsupervisory problems 

and the a pr ior i  knowledge they u t i l i z e .  

i n  Section 2.4 is  used i n  Chapter I11 t o  apply histogram concepts t o  the 

nonsupervisory problem. 

the nonsupervisory problem discussed i n  the Literature Survey. The mixture 

defined i n  Section 2 .5  a r i s e s  when more than one class  can be active on the 

same sample. 

applies t o  a l l  the nonsupervisory problems discussed i n  t h i s  chapter. 

By approaching nonsupervisory problems through f i r s t  defining 

For example, the mixture defined 

The mixture defined i n  Section 2.2 corresponds t o  

"he minimum conditional r i s k  solution given i n  Chapter IV 

A mixture resu l t s  when a vector X can be parti t ioned W ways, nl,x2,..-,xW. 

If, for  example, x = I X ~ I ~ - ~ + ~  with a single pat tern class  active causing 

each Xs, there are  W = M ways the pat tern classes could be active t o  cause 

X. 

V 

If, a s  another example, X = Xs with a single pat tern class  act ive causing 

there are W = M ways the pat tern classes could be active t o  cause X. 
xS' 

Since the parti t ions 

F(X) = f 
r =1 

where F(X) is called 

are  mutually exclusive and exhaustive, 

F(Xl fir) N n r >  (2  -1) 

the mixture c .d. f., F( XI gr) the r t h  par t i t ion-conat iona l  

c.d.f., and P(nr)  t h e  r t h  mixing parameter. 

When we speak of a family of gaussfan c .d . f . ' s  o r  a family of multinomial 

c.d.f . 's ,  we have i n  mind the nature of the parameters which characterize 

the family. It is  therefore appropriate t o  define a parameter-conditional 
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mixture c.d.f. F(X(B) constructed using the family (F(Xlgr,Br)] of rth 

partition, parameter-conditiod c .d. f. I s .  To do this, define 

B = B U B U....U % U 1 2  

where 

Br, r=l,Z, ..., We: vector characterizing rth partition-conditional c.d.f. 

Thus B is simply the collection of the mixing parameters and all entries 

in B1, . . .,%. 
characterizing the problem. 

exclusive and exhaustive events, 
W 

In other words, B contains all the flxed but unknown parameters 

Since (X, zl), (X, g2 ) , . . . , (X, %) are mutually 

r=l 

dvl ,  n\ D/, ! R I  
r * '**r -' - L x'-'4' '-' - ? 

r=l 
NOW, the rth partition-conditional c.d.f. is characterized by Br, 

and since B contains P(ar), 

%us, (2.4) becomes 

(2 

r=l 
If we are given F(X), W, and the family (F(Xlfir, B,), then when can B 

be uniquely found? 

have a unique solution Bo, whichb the true value of B. 

B 

Or, put another way, given F(X), when does F(X) = F(X1B) 

The answer is that 

can be uniquely found when the class of parameter-conditional mixtures 
0 
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i s  identifiable, suf f ic ien t  conditions for  which are  given i n  Appendix A .  

We now proceed t o  r e l a t e  (2.7) t o  nonsupervisory problems a r i s ing  i n  

pract ice  b 

2.2 X = Xs with Single Class Active 

Let X = Xs with one of M pat tern classes possibly act ive.  Then W = M 

and (2.7) becomes 

i =1 
This parameter-conditional mixture (2 $8) arises when samples %,$, . .,Xn 

are parameter-conditionally independent 

2 .3  v Samples Parameter-Conditionally Dependent 
n Let X=(Xs)n-v+l with a single pat tern c lass  act ive causing each sample 

Then W = MY Equation (2:7) becomes X-. 

r=l 
A mixture o f t h i s  form a r i se s  when making a decision on sample Xn i f  Xn, 

given n and Br, is  s t a t i s t i c a l l y  dependent on the previous (v-1) samples. 

The dis t r ibut ion f'unction of Xn, conditioned on (Xs)n-v+l n-l and B, can be 
r 

expressed a s  

F ( x ~ ~ B , ( x  s ln-l n-v+l = 

V 

r=l 

r =l 
v v-1 

danotes the r t h  pa r t i t i on  fo r  samples Xn - v+l, e .  .,Xn, and fir r where n 

(2 -10) 
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denotes the r t h  pa r t i t i on  for samples Xn - v+l, . . .,Xn-l. 

Thus, when the v samples are  s t a t i s t i c a l l y  dependent, a p r io r i  knowledge 

must include the family (F( {X In  

Parameter-conditional c.d.f.'s, the  dimension of each member increasing as 

v increases. 

v increases. 

1B ,n ) }  of  multidimensional r t h  par t i t ion,  s n-v+l r r 

lbthermore, the number of terms i n  t h i s  mixture grows as 

2.4 X = Xs = ( X  )v with Single Pattern Class Active 
sl. 1 

L e t  X = Xs - - Xsl, Xs , . . .,Xs with class [ui active fo r  a l l  v samples. 
2 V 

The parameter-conditional lcixture c.d.f. F(XsIB) is  
M 

F(XS(B) = 1 F((X q W i , B i )  Pi 
'k i =1 

This mixture does not grow wlth increasing v as d id  the previous mixture 

(2.11) 

because the s t a t i s t i c a l l y  dependent samples are supervised. The a pr ior i  

knowledge used t o  construct t h i s  mixture is  knowledge of M, the family, and 

the fact  t ha t  Xs = {Xs 1; with one pattern class active for  a l l  samples. 
k 

We w i l l  find i n  Chapter I11 tha t  t h i s  type of mixture a r i ses  when 

applying the histogram concept t o  nonsupervisory problems. By taking v 

samples a t  the s t h  observation w i t h  pattern class  'ui active, the class of 

mixtures may be identifiable whereas it  would not be w i t h  only one sample 

taken. 

2.5 X = Xs with Interclass  Interference 

L e t  X = X with any number o f M  classes possibly active causing X a 
6 8' 

s i tua t ion  w e  w i l l  call in te rc lass  interference. 

includes knowledge of M, the family, and t h a t  class wi is  active on the 9th 

sample with probabili t ly Pi. 

M each sample Xs, there are 2 

The a p r io r i  knowledge also 

Since a class Wi i s  e i the r  active o r  not for  

mutually exclusive and exhaustive ways tha t  the 
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sth sample can occur. Thus the parameter-conditional mixture c.d.f. 

(2.12) 
r=l 

2.6 Two Possible Sets of Mixirux Parameter 

Let X = Xs and a single class wi active for Xs. The a priori knowledge 

includes knowledge that M = 2, the family is known, and that there are two 

possible sets of mixing parameters defined as follows: 

It is known that either P1 or (l-P1) is equal to P; P1 = P with probability 

Q, and (l-P1) = P with probability (1-Q), Q = 0 or 1. Since the events 
1 P1 = P and (l-P1) = P are mutually exclusive (assume P f z), the parameter 

conditional mixture c .d.f. is 

(2.14) 

As the problem is formulated, Q is either 1 or 0 since only one of the two 

sets of mixing parameters is active at a given time. 

parameter-condition81 mixture with one mixing parameter of value zero. 

~hus, (2.15) is a 

The 
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suff ic ient  conditions given i n  Appendix A require a l l  mixing parameters 

t o  be greater  than zero but less than one. We therefore cannot conclude 

suff ic ient  conditions for  i den t i f i ab i l i t y  i n  t h i s  present problem. On the 

other hand, the fact  tha t  one of the mixing parameters ha5 value P i s  a 

p r io r i  knowledge and should not impose greater constraints on the class  of 

resul t ing parameter-conditional mixtures for  i den t i f i ab i l i t y .  This shows 

the need fo r  a study of i den t i f i ab i l i t y  when a mixture has one or  more mixing 

parameters of value zero, and corresponds t o  the nonsupervisory problem with 

an unknown number of pat tern classes M.  

2.7 Given a Set of Families 

Consider now a s i tua t ion  where there are  R possible families, 

Fj = ( F h s J  w i ,B i )}, j = 1,2, . . .,R. This might correspond t o  a problem 

where the class-conditional c.d.f. depends upon some parameter, for  example 

phase, which changes from sample t o  sample, and takes on R possible values. 

Or, it might correspond t o  a problem where tne wise statistice ck,a~:rr f r n m  

sample t o  sample, being represented by one of' R possible c .d . f . ' s .  We w i l l  

now assume t ha t  the samples are classified but t ha t  the families are not. 

rm. --I 
LIML is, l e t  X = ?[ with k n w n  active causing X- and the j t h  family active 

with probabili ty Q 0 Q < 1, j = 1,2,. . .,Re Then 
8 -i b 

j k  3 

Thus the probabili ty dis t r ibut ion of Xs is  given by a mixture c.d.f .  even 

though the  samples a re  c lass i f ied .  

the samples are unclassified. 

In  t h i s  case, the families active causing 

It is possible t o  give other examples where mixtures ar ise ,  by carefully 

defining the a pr io r i  knowledge available and using it t o  construct the 

mixture. We now proceed however, t o  Chapter 111, where a construction 
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technique is developed for approximating ith-class, parameter-conditional 

c.d.f.'s with miLtinomial distributions, utilizing available a priori knowledge 

about the c.d.f.'s. "his, put another way, is the application of the histogram 

concept to nonsupervisory problems. 
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CHAPTER 111 

CONSTRUCTING i t h  CLASS, PARAMETER-CONDITIONAL C .D. F. 'S 

3.1 Introduction 

Knowledge of the family o r  possible families of r t h  par t i t ion,  parameter- 

conditional c.d.f . 's  i s  required a pr ior i  knowledge i n  constructing the 

mixtures in Chapter 11. 

concept t o  nonsupemisory problems. 

The purpose o f t h i s  chapter i s  t o  apply the histogram 

To do th i s ,  w e  develope a construction 

method where multinomial. c .d . f . ' s  are used t o  approximate i t h  class, parameter- 

conditional c.d.f. 's,  u t i l i z ing  available a pr io r i  knowledge about the 

c .d.f. ' 8 .  

3.2 The Mxed Bin Model 
n 2 n n n 1 I n  general l e t  % = (k}l , % = ( X  } , . . .,Xn = (X 1, be n sequences 

'k "k 
of samples, the samples i n  sequence X 

it is hnwn t h a t  samples i n  a given sequence are  from the same class, t h i s  

coming from class  uli- Although 
S 

class  i s  unknown. 

and W = M. 

In  terms of the notation i n  the previous chapter, X = Xs 

Consider now the nonsupervisory problem where n = n .=n =v, the 1 2  n 

samples X 

a given vector XB 

, k = l ,Z, . .@,v, a re  parameter-conditionally independent, but for  
'k 

the different  components are i n  general parameter- 
k 

conditionally dependent. 

X is an a dimensional vector. We quantize each of these dimensions 

a 'k 
i n t o  R levels ,  obtaining R , &dimensional "cubes" on "bins". 

dimensional bin has the same volume. Xs can l i e  i n  any of these R bins, 

o r  i n  the  ( R  

space. The bins are  indexed and indicated by B 

Each A 

a 
k a + 1)st  bin representing the remaining par t  of the &dimensional 

5 = 1,2, . . . , (Ra + 1) e 5' 
F(Xs) i s  now approximated using the  vector set - Po of fixed but unknown 
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0 0  0 0 

R 
probabilities, pl, p2, . . . tp a, where p i s  the amount of probabili ty i n  b 
bin B of the sample space. Any probabili ty i n  bin B a , i s  given by s R +1 

In l i k e  manner, the i t h  class-conditional c.d.f., F(XsI(ui), is approximated 

i 

R 

i i  i 
by the vector set E of flxed but unknown probabili t ies,  pl, p2,. .,p a, 

where pi i s  the  amount of probabili ty from F(XsIwi), i n  bin B s of the 9 
sample space. 

I -  

The mixture corresponding t o  the nonsupervisory problem under consideration 

i s  of the same form as the mixture described i n  Section 2.4, since W = M 

and a single class i s  act ive for all v samples i n  a sequence. Therefore, 

i =1 

Under the framework of the approximations described above, (3.3) implies the 

i =1 
A binary (M = 2 )  one dimensional (;I = 1) example of t h i s  flxed bin model 

i s  shown i n  Fig. 1. 

Since X is a sequence of v vector samples, samples fall i n  v of the 
8 

(RL+l) bins of the sample space, not all bins being necessarily d i f fe ren t .  

Let t h i s  re la t ive frequency i n  the bins during the s t h  sequence be denoted 

v =(v , vs ,..., vs 1 
"1 2 na+l 

S ( 3 . 5 )  
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i The distribution of Vs, given the class cp andg , is i 
v 

v! 
P(VS I coi,Pi v !...v ! 

2+l 
= . 5=1 (3.6) 

Approximating F(Xs Ioi) by (3.6), we obtain the following parameter-conditional 

mixture of multinomial distributions : 
M 

(3.7) 
i =1 

where 
i Bi = 

We now turn attention to the problem of estimating the bin probabilities 

corresponding to a single bin, say B,. The M probabilities associated with - ~ A 1 2  M 
bin 5 are pl> P1,oob,pl. 
follows 

For convenience, drop the subscript 1 in what 

Then (1-p ), (1-p ), . . . , (1-p ) are the respective probabilities 1 2 M 

corresponding to all bins except B1. 

if we had originally chosen only two bins for the fixed bin model. The 

What we have done here is the same as 

generating function of both sides of (3.7), which is a mixture of binomial 

c.d.f.'s for this discussion, gives 

i =1 

Pi = 1 
i =1 

V M 
with s = 1, this is equivalent to 

i =1 
M 
F 

P i = l  
i =1 
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or 
M 

i =1 
M 
C P i  = 1  
i =1 

(3.9) 

Proposition A.5 in Appendix A guarantees a unique solution of (3.9) 
1 2  M P1, Pz, . . -,PM, given the right side of (3.9), if v.> 2M-1. for P rP , **,P , - 
The significance of the above result for engineering purposes is that 

a priori knowledge sufficient to solve such a nonsupervisory problem, where 

the form of the statistics is unknown, is provided by the existence of 

sequences of v samples from the same pattern class. 

dimensional (1 = 1) example will help to illustrate (3.9). For this binary 

case it is sufficient that v = 3; i.e., three samples be taken at a time with 

the same class active. Then Vs can occur four ways: 

bin B1, two occurrences in bin B19 one uccureiice Ir; bin Z1, or !! c x ~ ~ r e 1 1 ~ e n  

in bin B1. 

(p0)'(l-p ) 

A binary (M = 2) one 

three occurrences in 

These relative frequencies are consistent estimators of 
o v-j , j = O,l,2,3, respectively, Then (3.9) can be solved for 

1 2  r r r + 4 m c + h n s  G u u I ~ u w I o  ~f 2 , , m d  P- fn terms of these consistent estimators. 
1 

1 2  11 p , and P1 is given by Blischkee, Another way to obtain estimators of p 

who derived moment estimators. Sucn moment eutimtors C&T: 5e scbstituted 

into the decision equation developed in the next chapter, thereby obtaining 

a suboptimum solution of this nonsupervisory problem. 

3.3 Utilizing Additional A Priori Knowledge about the C.D.F.'s 

If it is known, for example, that a c.d.f. is symmetrical, then approsirnsticg 

this codof. by a multinomial c,d.f. does not utilize the symmetrical knowledge. 

For this case we would use an appropriately defined symmetrical multinomial 

distribution to approximate the c.d.f. If, as another example, it is known 
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that the ith class, parameter-conditional c.d.f.'s differ only by trans- 

lational parameters, we would approximate each c .d.f by an appropriately 

defined translated multinomial c.d.f. 

We have not yet said how we propose to count the bin probabilities in 
i i  1 dimensional space, although writing pl, p2, e .,pi indicates we must 

have had some counting procedure in mind. 
RA 

One method of counting is to 

redefine the bin probabilities as 

Then let 
i i  - 
p1 - p1,1,. . .,l 

1 - ja ZR for all a. 

etc e 

It is convenient to define a vector $ 

corresponding to quantum level 

whose entries are the subscripts s 
Then, ( 3.11) becomes 

Define the family of ith class, parameter-conditional multinomial 
i. i 

c.d.f.'s where B = P by yp = (F(X(wi,P 1). This is the family used in 

the construction of the parameter-conditional mixture (3.7). Next define 

the family Tw of multinomial c.d.f.'s differing only by translational 

i -  

vectors, I ed e To accomplish this, define where 8 0 is a vector of 

A indices 
8 = (  7 R+1 -.i-,...,y), R+1 R odd 
0 



The vector eo locatell the center bin i n  the dimensional space with R 4 
i quantumlevels used fo r  representing P 

Characterizing the i t h  class-conditional c,d.f .  i s  expressed a s  

In  terms o f  P , the vector P - 
*O -6 

0 

.t I A - p' = p  -eo-ei9 pR~+l  = 0, i = 1,2, .,M 

Also define e family TsGm of symmetrical multinomial c.d.f . 's  differ ing 

only by t ranslat ional  vectors, {ei], by l e t t i n g  P 

are  symmetrical i n  each of the 1 dimensions. 

be a vector whose en t r ies  
-660 

Returning t o  the nonsupervisory problem under consideration, assume 

it i s  known t h a t  the i t h  class-conditional c.d.f.'s are  a l l  ident ica l  

except for  different  t ranslat ional  permeters.  We approximate these c .d . f . ' s  

by members of the familyTm. The a s t r i b t u i o n  of  Xs i s  then qproxfmated 

mixture c .d . f . ,  by the parameter-conditional 
K 

P(VJB1 = 1 P(Vs 
i -1. 

where 

The a p r io r i  knowledge tha t  the i t h  class-conditional c .d . f . ' s  d i f f e r  

only by t rans la t iona l  vectors reduced the number of en t r ies  i n  the vector 

B, characterizing the mixture, by ( M - 1 )  R -K which may be a considerable L 

reduction. If the family E %Tp, instead of yw, the number of parameters 
.7 

+ l\ -I& characterizing the mixture is further reduced by [ F y ,  -1 I , , -.I 

Another way t o  consider E symmetrical. multinomial c.d.f .  i s  2s follows: 

Let 



be approximated by a symmetrical multinomial c.d.f., where 8 is a translational 

parameter 
i 

If %,%, . , xn are samples from F(x 1 wi, 19~ 1, then samples 

ei - (%-ei), ei - (%-ei),o.e,8i-(~ -8 1 are just as likely to have occurred. n i  
That is, given symmetry, Bi, and n samples, we really have 2n samples as 

far as constructing the c.d,f. is concerned. We might write 

(xslq u c knowledge and of symmetry I = (xs): u(2ei-xS~: 

Or defining a "symmetry operator" 

So, knuwledge 

If ft is also known that the ith class, parameter-conditional ~.d.f.~s differ 

of symmetry and 13~ maps the n received samples to 2n samples. 

only  by translational parameters, and say n samples are received *om each 

of M classes, then there are 2n M samples available for the construction 

of each ith class, parameter-conditional c.d.f. It is obvious that such 

a priori knowledge increases convergence rate if the system converges. 

3.4 Family of Multinomial C.D.F.'s with Spacial Constraints and v = 1 

Let x = xs, a single sample, W = Ea = 2, A = 1, and assume it known a 

priori that F( XI w2 ) = 0 for x 5 el and F(xl wl> = 1 for x 2 e2 where el and 
e2 are translational parameters. 

an approximation that can be made when the "signal-to-noise" ratio is 

This latter constraint corresponds to 

"sufficiently large," and each class-conditional c.d.f. is symmetrical 

about its translation parameter. 

Samples xs, s = 1,2, *,n, which fall < - el, given el, are thus known 

to have been caused by class wl; and samples which fall 2 €leare known to 
have been caused by claas w 2 "  and less than 

e2, given O1 and 8 

Only samples greater than 

are not classified. 2, 
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n n 

4 n 191 
Define {xs 1: a s  those samples 5 el, and Ixs I n  as those 

2 e2 ,  and h s j n  ' as those samples greater than el and less than 
n 2+1 I n, 

samples 

e 2 .  Let 

I and S an operator mapping s 4 1 D1 be an operator mapping ((xs]Y,el) t o  {x 
n- 2n- n 
1 (xs 1, t o  (xs 1, as described by (3.17). S i d l a r l y ,  l e t  S2 D2 and S, D 

8.l ." 2 3  

be the respective operators fo r  the samples n,+l, ..., n2, and the samples 

n 2 +1,. . . ,n3* 

Since a single c lass  i s  act ive causing each sample, the parameter- 

conditional mixture i s  of the  form (2.8) for  any of the samples %+1,. . .,n3, 

but i s  a degnerate mixture for  any of the  samples 1, . .,n,, o r  y+l, e e .,n2: 
f 

F(Vsly,B1),  DlXS 5 el i 

ti =1 
where 

TI i s  the  relative frequency i n  the bins resul t ing 
S 

of the  symmetry operator t o  xs. 

An example where the samples 

reference 7; the system objective 

conditional probabili ty or e r ro r .  

n +1, .,n were 

considered there  
2 3 

I Setting P1 = 
0 

(3.19) 

from the application 

not 

was 

and 

used i s  given i n  

t o  minimize sample- 

known, 8 and e2 
IO 0 

unknown, it i s  shown that  the system converges when the i th-class ,  parameter- 

conditional c .d * f s ' s  were guassian, but not known a pr io r i .  Equation (3.181, 

however, shows how t o  use t h e  samples n + l , - + + , n  i n  constructing the 
2 3 
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mixture. The m i n i m u m  sample-conditional probabili ty of e r ror  solution 

given i n  Chapter IV, u t i l i z ing  the mixture (3.181, gives an optimum 

solution t o  t h i s  problem reported i n  reference 7. 

Rather than using the symmetry o2erator w e  can define the symmetrical 
i vector $. Then, the form of (3.18) becomes 

/ 

I F(VsIy,B1) Dps 5 61 

F(Vs 1 B) = 1 I?( Vs I ujz , Bz 1 D x  2 s  26, 

where 

2 
-s9 B2 = (P 

i f with I I ,  the vector 

actual  relative frequency i n  the bins resul t ing from sample xs. 

with symmetry about i t s  middle entry.  Vs is the  

If it is a lso  known tha t  the i t h  class, parameter-conditional c . d . f . ’ s  

d i f f e r  only by t ranslat ional  parameters, then 

with P 

3.5 -lies of Empirical C.D.F.’s 

the vector common t o  both classes and symmetrical about Bo. 

In  the rest  of t h i s  chapter we consider the problem of applying empirical 

c.d.f. concepts t o  a nonsupervisory problem w i t h  = 1. A single, one 
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dimensional sample xs i s  taken a t  the sth observation. 

of t h i s  chapter, l e t  (x, , . . .,x- ) be the ordered samples of n one dimensional 

For the remainder 

"1 
samples from the c .d.f. F(x) . 

follows : 

n n 

Denote the corresponding empirical c.d.f. by 

constructed from the ordered samples as 

n The parameters characterizing Fn(x) are the n ordered samples (xnSIl, the 

number growing as n increases. 

L e t  a single c lass  be active causing each sample; then there a re  W = M" 

)" ways the  samples could have been caused. 

can be expressed a s  

The dis t r ibut ion of x given ( x  
"s 

1 m 

Although (3.21) may appear t o  be a parameter conditional mixture, t h i s  is not 

the case s i m e  t h e  partmeters characterizing t h i s  c.d.f. a re  random variables, 

which grow i n  number with increasing n. The Adaptive Bin Model i s  now 

introduced t o  provide an engineering solution t o  tinis diffic-ulty . 
3.6 Adaptive Bin Model 

A model i s  next obtained where the R bins are  R coverages13 formed from 

the ordered samples. There are numerous ways tha t  coverages '3j17,18 can be 

n formed given a sequence of ordered samples (xn I1 from a c.d.f. F(x). We 
S 

w i l l  consider one such way t o  be used i n  an adaptive bin model. This model 

involves an approximation which improve8 a s  n increases. 
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i s  the vth 
(Rv-lIv 

Let the number of samples be n = Rv - 1. If x 

smallest sample, then it is w e l l  known 13,17 that  

) the 

The adaptive b i n  model is established 

1 
X ( R V - l ) v  i s  called the 1st sample quantile ( g h  quantile) and F(x (Rv-l)v 

corresponding 1st population quantile.  

by defining the following: 

n = Rv - 1 = number of one dimensional samples 

R = number of coverages (or  adaptive bins)  

v = number of samples i n  a bin 

and the locations of the R adaptive bins are denoted by I 

F(xn 

(xnoJ xnfv ). It is well known 13'17 tha t  

) i s  the mount of probability from the population c.d.f. i n  the in te rva l  
fv 

f = 192,...,R (3.25) ECF(xn 13 = =E, SV f 
5V 

5 The difference U = rF(xn )I - [ ~ ( x ,  ) I  i s  called converage f corres- 

ponding t o  adaptive bin B 
sv ( W V  

5 "  Using (3.25), 

Thus the expected amount of probabili ty is 1/R i n  all R adaptive bins .  

mrthermore, the adaptive bins  (3.24) converge i n  probabili ty t o  the intervals  

~ 



I 
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t o  the 1/Rth quantiles of the population c.d.f .  13,17* The 

thus become s t a t i s t i c a l l y  s table  i n  locat ion as n becomes la rge .  

Let - Yo be the vector of b in  probabi l i t ies  characterizing the  multinomial 

c.d.f. approximating F(x) as i n  the fixed b in  model except t h a t  there i s  no 

( R + l ) s t  . bin.  

be approximations t o  the ac tua l  1/Rth intervals of the c .d.f e F(x) . 
P be the  vector characterizing the c . d . f .  P(xlwi), with p the amount of 

probabili ty f’rom the  i t h  class i n  the  actual  Sth, 1/Rth in te rva l  of the 

c.d.f. F(x).  

P i  - - . . . . = pi  = i, and l e t  the  adaptive bins (3.24) Set p1 = 0 

Let 
i i 

5 - 

Another feature of the adaptive bin model i s  t h a t  coverages a re  used 

t o  approximate the  R equal probability in te rva ls  of F(x), and the fixed bin 

model i s  then applied. 

fo r  the fixed bin model: 

The parameter-conditional mixture looks the same as 

except t h a t  

That i s2  the parameters characterizing F(xl u), ) include the  locations of the 

adaptive bins .  

A 

‘The prac t ica l  advantage of adaptive “uiis li; t h a t  the  bins are  automa+,ically 

placed where there are samples. That is, there a re  few bins where there a re  

few samples and many bins where there are many samples. 
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CHAPTERnr 

MINIMUM CONDITIONAL R I S K  SOLUTION FOR NONSIJPEWISORY PROBLEMS 

4.1 Optimum System Objective 

We are interested in obsendng sample Xn(v=l) and deciding which class 

w is active or in observing the sequence Xn = {X ]3[ of v samples and deciding 
nk i 

which class is active. 

For each wi c C2 it is possible to use any decision function d c D. Let 
n-1 L(d(Xn)lWi), independent Of" B and {Xsjl 

function defined at every point in the product space D X !2a 

and wi E n, the class-conditional risk function r(dlwi) is defined as the 
average of the class-conditional loss function over the sample space: 

, be the class-conditional loss 
For any d c D 

M M For given decision f'unction d,miXing parameters (Pill, and vectors (Bill, 

the parameter-conditional risk averaged over ( 2  is 

r(dlB) = 

i =1 
Let f(BI {Xs):-3 be the 

(Xs15f-1, which will be 

M 

i =l 
sample conditional density of B, given the samples 

computed shortly. Then the sample-conditional risk 

is 

since r(d1B) is completely characterized by B. 
n-1 Since L(d(Xnlxi) is independent of B and (Xs), , (4.3) can be written 

i =1 
Thus to minimize sample-conditional risk against 8 priori knowledge which 

includes a set of loss fUnCtiOnS, the family of ith-class, parameter- 
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conditional c.d.f.'s, M, and f(BI {XS],"-'), solve (4.4) for the decision 

function d. 

If the loss function is a 0,l  loss function, Xn is a discrete random 

vector, and d is chosen to be the following: 

d(Xn): choose w such that J 

then sample-conditional probability of error is minimized. When f ( Xn, Wi 1 ( Xs1:-') 
is continuous in Xn, the decision equation (4.4) with 0,l loss fhction is 

e quivale nt to 

d(Xn) : choose w such that J 

.L 

4.2 Computation of f(BI (Xs]:-') for Mixtures 

In order to minimize sample-conditional risk, f(B1(Xs]y-l) must be computed 

where the following a priori knowledge is available: 

(a) 

and the parameter-conditional mixture c.d.f. F(Xn lIB, (Xs)y-2) thus constructed. 

(b) 

identifiable. 

The family of ith class, parameter-conditional c.d.f. ' 8  and M are known, 

- 
Additional constraints on X or B to insure the class of mixtures is 

(c) F(B) - a t  least an appropriately defined uniform c.d.f., not ruling out 

the true value of B. 

Working with density functions rather than c.d.f.'s, f(BI (Xs):-') is 

given by Byes Theorem as follows: 

The demominator on the right side of (4.7) is a normalization constant which 

assures that f (B)  (Xs);-l) integrates over the B space to unity. 

is the density in the B space at the (n-2) stage. 

is a mction directly utilizing the a priori knowledge above. 

f(B1 (Xslf2) 

f(Xn,l I B, (Xsl:-2) 

If, for 
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example, the samples a re  parameter-conditionally independent, f (Xn-ll B, (Xs)y-2)  

i s  given by (2.8). 

on the last  v samples, the form of f(Xn - lIB,(Xs)l 
the samples are from multinomial dis t r ibut ions with v samples taken a t  the 

s t h  observation with a single class  act ive a s  i n  the fixed bin model, Xn-l 

i s  a sequence of v samples and ( 2 . U )  i s  used. 

If the samples are parameter-conditonally dependent only 

i s  given by (2.10). If n-2 

If the iden t i f i ab i l i t y  requirement (b) assures the existence of an 

estimator for Bo (the t rue  value of B) converging t o  Bo with probabili ty 

one, then f(B1 {Xs);-l) converges t o  a Dfrac delta 

I11 we showed suff ic ient  conditions for the existence of such an estfmator 

for  families of  multinomial c.d.f .’s when using the fixed bin model. 

a t  Bo. I n  Chapter 

We w i l l  

show i n  Chapter V (Theorem 5.1) t ha t  fo r  any parameter-conditional mixture 

c.d.f. F(XIB), the class of which i s  identifiable, continuous i n  X and B, 

such a consistent estimator for  B ex i s t s .  
0 

For convenience we now l i m i t  considerations t o  the vector samples 

being p a r a m e t e r - c o n d i t l l y  independent e F(Xnmll B, (Xs]:-2 ) then has the 

form (2.8) such tha t  (4.7) becomes 

Equation (4.8) is the f’undmental resu l t  for  the a poster ior i  probability 

density of the vector B characterizing 8 parameter-conditional mixture. It 

i s  used i n  the minimum sample-conditional r i s k  equation (4.4).  Sometimes 

it is desirable t o  obtain the a poster ior i  probabili ty of j u s t  one parameter 

i n  B; f-1. example, t h e  b y e s  estimate of such a parameter may be desired. 

Therefore, let y be some parameter i n  so The sample-conditional density 
3 K 
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, 

of yK i s  obtained by integrating (4.8) with respect t o  a l l  parameters i n  

B not equal t o  yK . Integrating (4.8) i n  t h i s  fashion gives 
3 

3 

where 5 i s  defined as the vector not containing parameter yK but containing 

a l l  other parameters of B. 
3 

Continuing w i t h  (4.9) we obtain 

(4.10) 
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n-2 
and since f(Xn - -+pi) = f(Xn-lIBi,wi,~K ,EXs)l 

PKf(Xn-lIBK,wK) = f(Xn-l,wKIE,yK , [Xs)n-2j where 5 is a vector containing 
all entries in E except yK , (4.10) becomes 

and 

J 

j 

(4.11) 

where the expectation is a conditional 

and y , and taken with respect to Fo K, 
J 

J 

expectstion, conditioned on (Xs)l n-2 

That is, 

Define the “weighting coefficients” within { ) (4.11) by Ci(yK ): 
J 

Using these “weighting coefficients, I’ (4.13) becomes 

(4.12) 

(4.14) 

, 

J 

The interpretation of (4.14) is as follows: 
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a )  1 Ci(yK ) i s  the probability, conditioned on y 

class  w was not active t o  produce the sample X K n-1 

and ( X s ) f 2 ,  t ha t  
3 K3 

With probabili ty 
i f K  

- 1 C ( y  ), t he  conditional density of yK a t  the (n-2) stage is  thus retained. 

b )  C (y ) i s  the probability, conditioned on yK and (XSll , t ha t  c lass  
‘ 3  

n-2 
I f K  K3 

K K, 1 

J J 
wK was active t o  produce sample Xn. 

density of yK a t  the (n-2) stage i s  updated i n  a supervisory manner. 

is, if it i s  known Xn-l came from class w 

With probabili ty CK, the conditional 

That 
3 

then (4.14) becomes K’ 

J 

c)  E[f(Xn-l,uKlyKa,(Xs):-2] is involved i n  (4.14) because f(X n-1’ w K IB K ) is  
J 

i n  general a function of parameters other than yK . 
4 .3  Systems Minimizing Sample-Conditional Probability of Error 

3 

In  t h i s  section w e  Consider the aesign of s y r s i e ~ ~  i&&ii2zirig ~ s z ~ l c =  

conditional probabili ty of er ror .  

multinomial c.d.f. using the fixed bin model, Xs i s  a discrete  random vector. 

?k therefere ~ l s e  fiecisinn equation (4.5) with P(X--,w, I (X-Iy-’) computed i n  

terms of  f(BI(Xs]y-l) as follows: 

When F(Xslwi) i s  approximated by a 

ri. J. D I 

w i t h  

i Bi = E, v known (4.17) 

where i n  general X i s  a sequence of v samples as described i n  Chapter 111. 
S 
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Denote the bins t h a t  the v samples on the nth observation f a l l  i n  by 

, K = 1,2,. . .,v. U s i n g  t h i s  notation and (3.6) i n  (4.16), 
E% -- 

where v i s  one. 

It i s  convenient t o  define the sample conditional expectation of 
VK 

(4.18) 

If v = 1, (4.19) reduces t o  

(4.20) 

when pi is  the probabili ty from the i t h  c lass  i n  the single b in  i n  which sample 

Xn fe l l .  

in te res t ing  interpretat ion:  

II 
Equation (4.20) used along with the decision equation (4 .5)  has an 

To minimize the sample-conditional probabi l i ty  

of e r r o r  when v = 1, while making a decision on thc  n t h .  sample, observe 

the b i n  i n t o  which the nth sample f e l l ,  say B 

amount of probabili ty i n  b in  R,, for  a l 1 M  classes  and make decisions as 

Then compute the  expected 
‘I 

follows: ohoose w 3 
j 

(4.21) 

If v > 1, one observes the expected values ( fo r  each i )  as i n  the  r igh t  side 

of (4.19). These expected values do not have the  simple in te rpre ta t ion  

as when v = 1. 

Equation (4 7) requires f(Xn-llWi,Bi) which is  computed from P(Vn-lIBi,~i) 
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I 

i 
Since K is just a normalization constant, substituting (4.22) in (4.8) gives 

K 
[ 1 p(vn-11~i , wi )pi] 

When the family of ith class, parameter-conditional c.d.f.'s has 

members continuous in X and Bi, such as the gaussian family, the decision 

equation is (4.6). f(B/ (Xs);-l) is computed by (4.8) If the family is 

multivariate gaussian with X a single vector sample, 
S 

(4 2 4 )  

where Oi is the ith covariance matrix and Oi the corresponding mean vector. 

Note that 
xx 

The two types of optimum systems are shown in M g .  2. The upper system 

uses the fixed bin model, and the lower system is for cases where the family 

i' has ith class, parameter-conditional c.d.f.'s continuous in X and 13 

4.4 Quantizing the Parameter Space 

The computation of f(BI {Xs]:) is iterative, in terms of f(B1 (Xsl:-l). 

The procedure is that, upon receiving sample Xn, f(BI(Xs,fl) is replaced 

in storage by f(Bj (X&f;t). To store f(BI (Xs], n-1 ), it is necessary that B 

take on a finite number of points in the parameter space. 

where there is supervision, it is not necessary to compute f(B1 {Xs)l n-1 ) *  

Instead, f(Xn,Wil(Xs):-l) can be expressed in terms of a sufficient statistic 

For some cases 
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20 which i s  fixed i n  s ize  . 
n-1 In  general, however, it i s  necessary t o  campute f(BI [XsIl 

th i s ,  denote the number of scalar  entr ies  i n  B by q and write 

>. TO do 
I 
I 

(4.27) 

Quantize &i i n to  N one dimensional levels of length Ai each, i = 1 , 2  . . .,q. 
a 

B can thus be i n  any of TTNi  q-dimensional levels .  
i =1 

by L j  . 

i 

Denote a par t icu lar  l eve l  

. , and denote the t rue probabili ty measure attached t o  t h i s  
l > J 2 >  * >  Jq 

- 
l e v e l  by m . Denote the probability measure attached t o  t h i s  l eve l  

j,,j,, -A, 
a t  the nth stage by (m. . . Then, using t h i s  quantum leve l  model, 

J1,J2’ ” * > j  q n  

where C(L) i s  a normalization constant f o r  the l eve l  considered. Equation 

(4.26) expresses the density of B i n  the l eve l  L . at the nth stage 
j,Jj,, * . * J ~ q  

- 
i n  terms of the probability measure iii thst l e ~ e l  ot the (T1-1)st stege.  

Using the quantum model defined in th is  section, (4 .7)  can be ur i t t en  

If the samples are parameter-conditionally independent, (4.27) reduces t o  
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IL ) might be called a "level-conditional" mixture 

c.d.f. where the vector B characterizing the mixture ha6 been quenLized. 

It is a known f'unction of the quantum levels. 

F(Xn-l j,, j2, . ,jq 

As an example, let the family be multinomial parameter-conditional 

c.d.f.'s c Tw, and let there be sufficient constraints for identifiability. 
Consider a one dimensional ( A = l ) ,  binary (M=2) example such that 

B = (P1' P2'""PR' el, e2, P1) (4.29) 

Here B is an R+3 dimensional vector. 

assuming the samples are parameter-conditionally independent. 

B is then quantized and (4.28) applied, 

As a second example, consider a one dimensional binary example where 

the family (P( Xs I wi, Bi 1 ) is multivariate guassian with 
3 

and uo, el , and e2 being fixed but unknown. Here, 
0 0 

= (e, , e2 , u0), th e true vector 
0 0 

BO 

and a sufficient constraint is 

e > e 1  2 

(4.311) 

(4.32) 

Computer simulated results for this last case were obtained, where 

the average sample-conditional error in making decisions on the nth sample 

was plotted vs . n in Fig. 3. 

this average is sufficiently large, then this average error vs. n is a computer 

If the number of experiments used to obtain 

simulation of the theoretical Sample-conditional probability of error. 
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For clo = 1 and P1 = 1/2 and both known, and the constraint e2 el, 
0 

and 90 quantum leve ls  of length 1/10 i n  each dimension of the  parameter space 

(8100 two4mensional levels,  5040 having zero measure because of the constraint 

O2 > gl), and with el and O2 both unknown, the average e r ror  i s  plotted 

vs. n i n  FIG. 3 for  the following 3 cases: 
0 0 

Case 1: el = 0, Q2 = 2.4, and F(8 8 ) uniform i n  the quantized parameter 1’ 2 0 0 
space. 

Case 2:  8, = 0, 8, = 0.5, and F(8,,8,) uniform i n  the qunatized parameter 
0 A L. 

0 
space. 

A . 6  

Case 3: el = -2, e2 = 2, and F(e1,e2) = 
0 0 

i n  the qunatized parameter space. 

For P1 = 1/2 and the constraint O2 > 

with 45 quantum leve ls  along the el and O2 
0 

el, o0, , and e2 all unknown, 
0 0 

axis and 10 along the o axis, 

all of length 1/10, and wi th  F(01,e2,6) uniform i n  the quantized parameter 

space, tne average e r ro r  i s  piotteci vs. ( G ~  -6 ) i n  ~ 6 .  4 Tci- tvo ccises; 

Case 1: n = 20, 10 experiments, el = 0, O2 variable.  

Case 2: n = 50, 10 experiments, 6 = 0, e2 variable.  

0 lo 

0 0 

IO 0 
In this second examgde w i t h  three unknown, there were a t o t a l  of 20,250 

quantum levels,  with zero measure i n  10,570 leve ls  because of the constraint 
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CHAPTER V 

CONSISTENT ESTIMATORS AND ASYMPTOTIC CONVERGENCE RATES 

5 . 1  A Consistent Minimum Distance Estimator fo r  Bo 

Suboptimum systems which minimize probabili ty of e r ro r  as n - bu t  

not sample-conditional probabili ty of e r r o r  can be designed using estimators.  

Since the family I Ll?(XsIwi,Bi)} i s  assumed known a pr ior i ,  the decision 

equation (4.5) o r  (4.6) can be applied once the Bi a re  known. I n  Chapter 

111, it was shown tha t  a consistent estimator for  Bo can be found for  the 

fixed b in  model when the c lass  of mixtures of multinomial d i s t r ibu t ions  i s  

ident i f iab le .  I n  t h i s  chapter we consider a consistent minimum distance 

estimator for Bo when F(XIB) is continuous i n  X and B; w e  also obtain maximum 

l ikelihood estimators for the en t r i e s  i n  Bo f o r  a gaussian family of i t h  c lass ,  

pmm~te r -cond i t iona l  c . d . f . ' s .  I n  addition, w e  obtain the asymptotic variance 

of  these m a x i m u n  likelihood estimators, equal with probabili ty one, t o  t h a t  

of the corresponding a y e s  estimators.  

Consider t he  nonsupervisory problem where X = Xs = x 

sample (a=1) with a single c lass  ac t ive  on each sample and v=l .  

Theorem 5.1 

i s  a one dimensional 
S 

Let xn , . . .,x be the order s t a t i s t i c s  wi th  xs, s = 1,2,. . .,n, ident ica l ly  
1 "n 

and independently d is t r ibu ted  from the parameter-conditional mixture c.d.f .  

F(xlB) continuous i n  x and B. Given the family (F(xlzr,Br)l, l e t  the  c lass  

of mixtures be identifiable.  Then Bo can be estimated by a minimum distance 
U U P  estimator B such t h a t  B -I Bog 

PROOF: 

(i) Cefine Dn = s ~ l F n ( x )  - F(xlBo)l, Bo being the t rue  value of B 
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Then for any E > 0, Kolmogorm’s Theorem 17’18 asserts that 

lim P(D S e )  = 1 n- n 

That is, Fn(x) converges i n  probability t o  F(xlBo) uniformly i n  x as n -t a, 

where Bo i s  the unique vector characterizing the mixture c .d . f .  F(x) . 
(ii) Obtain an estimator 

fo r  B of 
U 

i n f  sup 
B x  lFn(x) - 

Y 
B fo r  Bo by solution (assuming the solution e x i s t s )  

J 
F(xlB)I = syl Fn(x) - F(xlB)I 

0 
( i i i )  Since B s a t i s f i e s  (5.1), 

(5.1) 

But since Bo i s  the t rue  vector characterizing F(x), we have fo r  any e 7 0, 

or, fo r  any e ,  

“ P  which gives F(x(B) j F(xIB,). 

a t  Bo, and there  i s  a 1:l 

Since F(XiB) i s  continuous i n  B, i n  par t icu lar  - 
mapping of B .I) F because of i den t i f i ab i l i t y ,  

U P  this hiplies B + Bo. This concludes t h e  proof. 
U P  The fac t  t h a t  B + B implies that  given the a p r io r i  knowledge required 

0 

by Theorem 5.1, a system (not using a l l  available a p r io r i  knowledge) can 

be designed which converges t o  t h e  system obtainable had a l l  s t a t i s t i c s  been 

known. 

p rac t i ca l  purposes, optimm i n  t h e  l i m i t  n - 0 0 .  

Such a system i s  not sample-conditionally optimum but is, for  a l l  

This method does not provide 

f o r  taking i n t o  account a l l  the a p r io r i  knowledge t h a t  the minimum conditional 

r i s k  approach provided for .  
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5.2 B y e s  and Maximum Likelihood Estimators f o r  Bn 

where 

and 

If B = (e1, e2,. . . , e  ) and a square law loss 
9 

V 

B~ = (e1 , e2 , . . . , e  1 
0 0 90 

it i s  well  known t h a t  a Bayes estimate 

f’unction L(;(,B) i s  defined, 

(5.2) 

B minimizing average loss i s  given 

= B f(BI { X  In) d B (5.4) 6 1  

On the other hand, given the samples !xs): and the family of r t h  

par t i t ion ,  parameter-conditional c.d.f.’s, the  maxim l ikelihood estimator, 
N 

B, for  Bo i s  given by 

Theorem I1 of  reference (20)  gives ra ther  general conditions under 
- P  - P  which B -3 Bo i f  and only if B _3 Bo. 

implies convergence i n  dis t r ibut ion,  I?(;[ { X s ] f ,  .b F(W (Xs]y) under these 

Since convergence i n  probabi l i ty  

same conditions. 

Thus, finding t h e  asymptotic d i s t r ibu t ion  of B also gives the asymptotic 

d i s t r ibu t ion  of 6 i n  the sense t h a t  IP(il {Xs)q)-F(El (Xs):)l .) 0. 

5.3 Implicit Equations fo r  M a x i m u  Likelihood Estimators 

Consider the nonsupervisory problem where the family F( Xs 1 ui, Bi is 

one dimensional gaussian. Then Bi = (mi, a i )  and 
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If M = 2 (binary case) and 0 i = CT, i = 1,2, 

with the t rue  value of B, 

It is shown i n  Appendix B tha t  the maximum likelihood estimators, 
N N N  "1, %, 0, and fi; are  given implicity as follows: 

s =1 
n 
T- 

s= q s  %,s 
- , i = 1,2 mi - 11 

P 

11. 

s =1 

- 
%,s - *S  

( B-8) 

It can be shown that  for the general case of M pat tern classes where 

0 = 6, i = 1,2, ..., M, the maximum likelihood estimators a re  given implicity i 

as  follows: 

n 
c-. 

i = 1,2,  .. .,M pi = Z % , S ,  
s =1 

( 5 . 9 )  
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where 

n -s L- xs %,s 

c %,s 

- s=l  m z  , i ::: 1,2,. . .,>I 
i n  

s =1 

s=1 i=1 

0 i =1 

and @ i s  the same a s  for  the binary case. 
c - C' 

i ,s  
Returning t o  the binary ccse, even wi th  ml, M and c) replaced by known 2' 

, mz , and tf equation (B-4)  fo r  Pi s t i l l  involves P,- on both 
0' 

values m 

sicks of t h i s  equation: 
l o  0 

.. l0 
(xs-m )2 

p1 exp[-& 0 2 
0 

(x -m )2  ( 5  J3)  
(xs-"l l2  2o ] 

f" 
?1 = L 

s = l  
PI e x p [ - h  (3 2 o ] + ( l - '~~)  exp[-+ 

U 2 
0 0 

It i s  interest ing t o  compare (5.13) with an estimator obtained by 
12 Robbins for  P1 . For the same s i tuat ion,  i . e .  a gaussian family with 

0 

( 5.14) 

known values "1 , % , and CT , Robbins' estimator i s  as follows: 
0 0 0 

0 
-- 

X 
s =1 

0 
L., .1 X 

Although ( 5 . ' '  ) i s  an exp l i c i t  solut ion for  P 

computer simulation shows the variance of p 

9f P1. 

i n  terms of the samples, 
1 
i s  much l a r g e r  than the variance 

X 

1 
Y 

In  a subsequent Section, computer simulated results f o r  the  variance 

I 
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of 5 are presented as a m c t i o n  of n and other important parameters. The 1 
computer simulated results for  the variance of e, w i l l  not be given since 

they 

5.4 

.L 

give no indication of convergence. 

Convergence and Asyzptotic Distribution of 5 
In  t h i s  section we flrst state the suff ic ient  conditions f o r  maximum 

likelihood estimators t o  converge w i t h  a known asymptotic dis t r ibut ion.  We 

then relate these suf f ic ien t  conditions t o  the nonsupervisory problem and, 

i n  par t icular ,  derive the  asymptotic dis t r ibut ion of the estimators given 

by (B-4) through (B-8). 

Let X be an A-dimensional vector with dis t r ibut ion F(XIBo), a paraaeter- 

conditional mixture with Bo given by (5.3). Define’’ the following: 

It i s  saidL7 tha t  F(X1B) i s  regular with respect t o  i t s  first 8 derivative jL-- 
i f  

EITJ(XIB)] = $- s d F(X1B) = STj(XIB) d F(X(B) = 0 
3 

and F(XI B) i s  regular with respect t o  i t s  second 8 .-derivative i f  the a a t r i x  

[CjK(B)] i s  posit ive def in i te  and i f  

J 

J 
We now s t a t e  a theorem’’ giving suff ic ient  conditions fo r  % t o  converge 

a.c. t o  B~ = (e, , e2 ,..., e ). 
0 0 QO 
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n 
s l  Theorem 5.2.  Let ( X  

from the c.d.f .  F(XIBo), where B 

respect t o  its f irst  Let T (XIB),  j = 1,2, ..., q, be 8 

continuous function of B for  a l l  values of X, except possibly a s e t  of zero 

be n independent and ident ica l ly  discributcii -a,.ll;;les 

1 and F(X[B) i s  reqular with = ( e ,  ,..., 0 
90 0 

0 
derivatives.  J 3 

rv 

probabi l i ty .  Then there exists a sequence of solutions [ (zl, . . . , e  }I which 
9 

converge almost cer ta inly t o  (6, , . . ,e_ ) I f  the solution i s  a unique 
'io -L 

0 N N 

vector (e1, . . .,8 ) fo r  n 2 some no, the sequence of vectors converges almost 
9 

cer ta inly t o  (e1 , . . ., 0 ) as n - 0 9 .  

0 90 N 

Theorem 5.2 gives suf f ic ien t  conditions fo r  B t o  converge a .c .  t o  Bo. 

On t h e  other hand, a necessary condition for  there  t o  be a unique solut ion fo r  

, given F(X) and F(XIB),  i s  t h a t  the  c lass  of mixtures be ident i f iab le .  
BO 

This seems t o  imply t h a t  Theorem 5.2 gives a suf f ic ien t  condition fo r  

i den t i f i ab i l i t y .  

statement, "if the solut ion is  a unique vector (e1,. . .,6 ) fo r  n 2 some 

Actually, Theorem 5.2 assumes i d e n t i f i a b i l i t y  by the 
N 

N 

9 
n . . . ' I  
0 

I f ,  i n  addition t o  sa t i s fy ing  the first regular i ty  conditions, F(XIB) 

s a t i s f i e s  the second regular i ty  condition,then B i s  asymptotically normal 

according t o  the following theorem 17 . e 

Theorem 5.3: If (Xs]: i s  a sequence of independent and ident ica l ly  d is t r ibu ted  

samples from F(XIBo), where B has q e n t r i e s  fin,! F(XIL) i s  regular with 
0 

".J 

respect t o  its first and second e derivatives,  and if 

for  n 2 some n 

i s  asymptotically d is t r ibu ted  for  large n, according t o  the q-dimensional 

. .,O ) i s  unique 
N - J 9 

n 
and measurable with respect tosTl F(XSI B),  then (e1, - .,8 

0' 9 

normal d-istribution N((6 1' [n  CjK (B )I-'). 
Jo 1' 

: ,L nL-ri'.ng t o  the binary gaussian nonsupervisory problem i n  Section 5.2, 

we can show tha t  the requirements of Theorem 5.2 and Theorem 5.3 a re  f u l f i l l e d  

. 
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as follows: 

a )  

% 
b)  

C. 

5.5 Theoretical and Computer Simulated Asymptotic Variances 

The mixture i s  ident i f iable ,  according t o  Proposition A-1, i f  we constrain 

> ml , which would involve no loss of generali ty.  

The first and second regular i ty  conditions are shown t o  hold i n  Appendix 
0 0 

L e t  asymptotic variances be the en t r ies  i n  [n C (Bo)]-’ corresponding 
Jk 

N 

t o  the  asymptotic dis t r ibut ion of (Fl,. . . ,e  ) . 
the case where there are  two unknowns, = 5 and e2 = 3 . Performing 

the required matrix inversion and denoting the en t r i e s  i n  [n Cjk (Bo)]-’ by 

E[gj - e j  7 ,  we obtain 

Consider, fo r  convenience, 
Q 

0 0 0 0 

0 

r, X[Ki - 

where 

2 
p, 

De f in ing  

Hi(x) = e 

2 
2 0  2 2 5  

0 + (1-P ) e 0 

p1 0 e l, 

0 
A 

2 

(5.22 ) becomes 

p: OD 
I 

dx 0 V Cii(B0> = 
“Iz;? o5 1 P H (x) + (1-P ) H2(x) 

0 lo lo 

( 5 . 2 3 )  

(5.24) 



-52- 

Also  

(5.25) 
I J 

dx JO 
I Lo Jo 0 

5 s HZ P1 H (XI + (l-P1 ) 
0 

1 
Cij(Bo) = 

0 -a 0 
% c T  

Note tha t  C12 = CZ1 because of symmetry. 

The necessary integrals  (5.24)  and (5 .25)  were evaluated, using a d i g i t a l  

computer, and substi tuted in to  (5 .21) .  The results, n ErKi - m 12, a re  

plotted v s ( 9  

Case 1: u = 1, P1 = &, both known; y = 0, % variable, both unknown. 

Case 2: cf = 0.5, P1 = *, both known; "1 = 0, % variable, both unknown. 

Case 3:  CT = 0 . 2 ,  P = $?, both known; 5 = 0, 5 variable, both unknown. 

io 
- m ) i n  Fig. 5 for  the following cases: 

0 

0 
0 

0 0 

0 0 
0 0 

l 0  0 0 0 

The important aspects of the resu l t s  i n  f ig .  5 are  the following: 

% - 5 ) increases decreases a s  ( 2 
(a)  n[Ki -m 3 

io n 0 0 
L 

(b) n[Ei -mi 3 decreases as a decreases 

( c )  A perturbation occurs i n  each curve, 

with o0 = 1 has the perturbation i n  the region where f (  xl B) changes f'rom a 

0 
0 

The curve corresponding t o  Case 1 

bimodal t o  a mimodal density function. The value of (% - "1 ) for  t h i s  
0 0 

change decreases as cf 

perturbation t o  the l e f t  i n  Fig. 5 as o0 decreases. 

( d )  The value of n E& - m 

t o  zero. 

decreases; t h i s  would explain the moving of the 
0 

2 
] increases indef in i te ly  as  (m2 - "1 1 decreases 

0 0 0 
i 

One way t o  explain (d )  i s  as follows: it i s  assumed17 i n  the proofs 

of Theorem 5.2 and Theorem 5.3 tha t  the components of Bo a re  functionally 

-I assumption i s  violated, and [Cjk] does not exist. If it is known a p r io r i  
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tha t  ml = % , then t h i s  prablem is supervisoryanlthe a p r i o r i  assumption 
0 0 

of two pattern classes i n  incorrect.  Recall, however, m a t  a p r io r i  knowledge 

of M i s  assumed i n  the approach taken i n  t h i s  t hes i s .  

Consider next a special  case of t h i s  binary, one dimensional, gaussian 

nonsupervisory problem, where only one of the four parameters "1 , % , 0 , 
0 0 l0 

and P , is  unknown. 

but one of the 8 's are  known. Instead, the resu l t  is  tha t  

This i s  not a special case of Theorem 5.3 where a l l  
IO 

30 

Equation (5.26) for 8 = P was evaluated using a d i g i t a l  computer. The 

resul ts ,  n EIFl - P1 1 VS(? 

cases ( w i t h  y = 0, % variable, (I = 1, a l l  known): 

Case 1: P1 = 0,5, unknown. 

Case 2 :  P1 = 0.66, unknown. 

Case 3 :  P1 = 0.75, unknown. 

j 1  
2 - "1 ), are plotted i n  Mg. 6 for  the following 

0 0 0 

0 0 l0 

0 

0 

0 
2 Then, for  three values of (mz - 1, EIFl - P1 ] is  plotted vs n i n  Fig. 

-0 0 0 
7, using the results displayed i n  Fig. 6. 

2 N 

TQ check the theoret ical  resul ts  given i n  Fig. 7, the quantity Av. (P; -Pi ) 
0 

was simulated using a d i g i t a l  computer, by evaluating (B-4) a s  a f'unction 
n of n. 

the i t e r a t i o n  was s ta r ted  for the first sample by choosing Fl on the r igh t  

side of  (B-4) from a uniform [O,l]  random number generator. To obtain the 

Given the samples (Xs)l, an i te ra t ive  solution of (B-4) was obtained; 

average, 100 experiments were performed for  each value of n considered. 

These computer simulated results a re  presented i n  Mg. 8 for  comparison wi th  

the corresponding theoret ical  resul ts  of Hg .  7. The essent ia l  conclusion 
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is t h a t  agreement between computer simulation and theory improves as  

(!I$ - II$ ) increases and as n increases. The l a t t e r  is certainly t o  be 
0 0 

expected since the theoret ical  curves i n  Fig. 6 are asymptotic resu l t s .  
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2 

Fig. 5 Theoretical n E[$- mL] v s  ( m g  m,! , 
L -a 

m and m, unknown. 
2, 0 

\ 

um=0.2 

I I I I 
I 2 3 4 b ( m2:ml! 
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CKAPTER VI 

CONCLUS PONS 

6.1 General Conclusions 

Nonsupervisory problems lack the a priori knowledge of sample class- 

ification. For this reason, the probability distribution Arnction for the 

samples is in general more complex than when there is supervision. There 

are nonsupervisory problems where the distribution mction (mixture c .d.f. ) 

for the samples is not uniquely characterized by the mixing parameters and 

the parameters characterizing each ith class-conditional c.d.f. It is 

not possible to estimate these parameters with consistent estimators or to 

optimally converge to a minimum-probability-of-error solution. 

additional a priori knowledge about the ith class-conditional c.d.f.'s, 

the way the samples are taken, spacial constraints, constraints on the 

parameters characterizing tne nixcure c .d .Î . , etc e ,  the Ilurlsup=r.visur-y 

problem may have a solution. 

are one dimensional gaussian, we are not assured of 8 solution without sufficient 

cntlst-rehts c?11 the parameters. These constraints cause no loss of generality 

in this gaussian case, but must be imposed. 

By providing 

Even %hen the ith class-conditional c.d.f.'s 

The importance of sufficient a priori knowledge in nonsupervisory 

problems is exemplified when the rth-partition, parameter-conditional c.d.f.'s 

are empirical c.d.f.'s, corresponding to no a priori knowledge about the 

c.d.f.'s. 

ordered samples, the number of which increases as n increases. 

conditional mixture does not exist for this problem. 

conditional c.d.f.'r; are approximated by multinomial c.d.f.'s, the number 

Here the resulting c.d.f. of the samples is characterized by the 

A parameter- 

If the ith-class 
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of parameters characterizing the mixture is fixed in size; but it is not 

possible to estimate these parameters in general without additional a priori 

knowledge. On the other hand, when the samples are classified, estimating 

parameters characterizing such ith class-multinomial c.d.f. I s  corresponds 

to the histogram concept. 

techniques do not directly apply to nonsupervisory problems. 

It can be concluded that such nonparametric 

The difficulty 

is that such nonparametric techniques do not directly provide for the use 

of additional a priori knowledge. By taking into account additional a priori 

knowledge, such as that mentioned above, a nonsupervisory problem may have 

a solution. We have introduced a construction technique, where additional 

a priori knowledge, such as spacial constraints, symmetry, the number of 

samples taken at the 8th. observation, etc., is utilized. 

6.2 Conclusions on Performance 

Evaluation of the theoretical performance of the optimum systems is in 

general difficult. One approach, given in Sections 5.2, 5.3, 5.4, and 5.5, 

is to find the.asymptotic distribution of Byes estimators or maximum likeli- 

hood estimators for the parameters characterizing the mixture concerned. 

Using classical statistical techniques, it was shown that the joint distribution 

of these estimators is multivariate gaussian (when a solution exists). Using 

this joint distribution, a bound on asymptotic sample-conditional probability 

of error can be obtained. 

An example where the above asymptotic distribution is evaluated was 

given in Section 5.5 for the binary, gaussian case with two unknowns. 

Theoretically, the asymptotic distribution for the M-ary gaussian case with 

any number of unknowns can be obtained. Practfc&ly, however, this requires 

evaluating a large number of integrals using a digital computer. 
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Results giving tight bounds on sample-conditional probabi l i ty  of e r r o r  

for  a l l  values of n would be useful .  Such resu l t s ,  however, should be presented 

with a precise statement of the a pr ior i  knowledge u t i l i z e d  i n  the non- 

supervisory problem concerned. 

6.3 Implementation Dif f icu l t ies  

The general optimwi system, i l l u s t r a t e d  i n  Fig. 2, can be implemented 

using a d i g i t a l  computer by quantizing t h e  parameter space B ( c . f  Section 

4.4). Once the parameter space is quantized, the required storage i n  a d i g i t a l  

computer i s  fixed i n  s ize- - i t  does not grow as n increases.  On the other 

hand, t h i s  fixed amount of storage increases as  the number of  unknowns i n  

B increases.  As t h i s  storage increases, the number of computations a d i g i t a l  

computer must perform, i n  the t i m e  in terval  between receiving two samples, 

increases.  The speed w i t h  t,hich the  computer operates can be held constant, 

however, if the time in te rva l  between samples i L  increased. 

A computer simulation of an optimum nonsupervisory problems having three 

unknowns was given i n  Section 4.4. It is  d i f f i c u l t  i n  general t o  implement 

such a problem when it has more than four unknowns without having more 

storage than t h a t  available i n  an IM 7094 computer. 

There a re  some spec i f ic  nonsupervisory problems with cer ta in  spacial  

a p r i o r i  knowledge (Section 3.4) which have many unknowns, say 100, t ha t  

can be implemented with an IEM 7094 computer. This reemphasizes the need 

fo r  precisely s t a t ing  the a p r i o r i  knowledge assumed used i n  a nonsupervisory 

problem. 

Besides d i g i t a l  implementation, it i s  possible t o  use analog techniques 

t o  implement optimum systems. For example, assume t h a t  it takes T/2 seconds 

t o  obtain sample Xs; and sample Xs+l begins t o  be received T/2 seconds a f t e r  
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X i s  completely received. 

i n  the i te ra t ion  (4.23) must be made. 

nonsupervisory problem increases, t he  computation rate between samples increases.  

In t h e  T/2 seconds between samples, all computations 
S 

As t he  number of unknowns i n  the 

This computation r a t e  determines the bandwidth required i n  a deley l i n e  used 

for  storage i n  t h e  enalog implementation. 

given semple transmission rate ,  the bendwidth required i n  the analog :xIcessing 

equipment increases cs  t he  nuiibcr ot Itn!ino:rl?s i n  the ncxi.;upcr.visory pi-ocie:+? 

increases. 

We can thus conclude t h a t  fo r  8 

I n  summary, d i g i t a l  implementation of optimum nonsupervisory problems 

i r  res t r ic ted  by increasing required storage as the  number of unknowns increases.  

And, analog implementation of optimum nonsupervisory problems i s  r e s t r i c t ed  

by increasing required delay-line bandwidth as the number o f  unknowns increases.  



-63- 

BIBLIOGRAPHY 

1. 

2.  

3. 

4. 

5. 

6 .  

7 -  

n 
0. 

9. 

10. 

ll. 

12. 

13 

14. 

15 - 

Abramson, N., and D. Braverman, "Learning t o  Recognize Patterns i n  a 
Random Environment, IRE International Symposium on Information Theory, 
v01. IT-8, pp. 558-563, JU~Y, 1962. 

F'ralick, S.C., "The Synthesis of Machines Which Learn Without a Teacher," 
Stanfwd Tech. Report No. 61308-9, April, 1964. 

Daly, R.F., "The Adaptive Binary-Detection Problem on the Real Line," 
Stanford Electronics Laboratory Report TR 2003-3, February, 1962. 

Cooper, D.B., end P.W. Cooper, "Nonsupervised Adaptive Signal Detection 
and Pattern RecoGnition," Information and Control, Vol. 7, No. 3, 
September, 1964. 

Sebestyen, G.S., "Pattern Recognition by an Adaptive Process of Sample 
Set Construction, It IRE International Symposium on Information Theory, 
Vole IT-8, pp. 582-591, July, 1962. 

First Semi-Annual Research Summary, School of Electr ical  Engineering, 
Purdue University, July through December, 1964. 

Patrick, E.A., and J . C .  Hancock, "The Nonsupervised Learning of Prob- 
a b i l i t y  Spaces and Recognition of  Patterns," IEEE International Convention, 
Information 11, March, 1965. 

Teicher, Henry, "On the Mixture of Distributions," Annals of Math. 
Sta.b., V O ~ .  31, pp. 55-73, 1960. 

Teicher, H e n r y ,  " Ident i f iabi l i ty  of Finite Mixtures, I' Annals of Math. 
S ta t . ,  Vol. 34, No.  4, December, 1963. 

Blischke, W.R., "Moment Estimators for  the Parameters of Two Binomial 
DLstributions," Annals of ,Math. Stat . ,  Vol. 33, pp. k@-L54, 1962. 

Robbins, Herbert, "The Empirical Bayes Approach t o  S t a t i s t i c a l  Decisions 
Problems," Annals of Math. Stat . ,  Vol. 35, pp. 1-20, 1964. 

F'raser, D.A.S., Nonparametric Methods i n  S ta t i s t i c s ,  John Wiley and 
Sons, New York, 1957. 

Fralick, S .C . , "Learning t o  Recognize Patterns Without a Teacher, 
Stanford Technical Report 6103-10, SEL-65-011, March 1965. 

Keehn, miel G., "A Note on Learning fo r  Gaussian Properties," PGIT, 
pp. 126-132, January, 1965. 



-54- 

16. 

17 

18. 

19 

20. 

21. 

Second Semi-Annual Research Summary, School of Electrical Engineering, 
Purdue University, January through June, 1965. 

Wilks, Samuel S., Mathematical Statistics, John Wiley and Sons, New 
York, 1962. 

Fisz, Probability Theory and Mathematical Statistics, John Wiley and 
Sons, New York, 1963. 

Hancock, J.C., and E.A. Patrick, "Iterative Computation of A Posteriori 
Probability for M-ARY Nonsupervised Adaptation, " submitted to technical 
journal June 1, 1965. 

Spragins, J .D., "Reproducing Distributions for Machine Learning, Stanford 
Electronics Laboratories Technical Report No. 6103-7, November, 1963. 

Mood and Graybill, Introduction to the Theory of Statistics, McGraw- 
Hill Book Co., New York, pp. 192, 1963. 



I 

-65- 

APPENDIX A 

MIXTURES AND ITXENTIFIABILITY 

Following Teicher ' s definition'' of i d e n t i f i a b i l i t y  fo r  one dimensional 

mixture c.d.f . 's ,  w e  give the following def in i t ion  of i d e n t i f i a b i l i t y  for  

a-dinensional mixture c . d .  f e ' s  a 

Iden t i f i ab i l i t y  of  Mixture C.D.F. 's 

k Let ?= (F(X(a:) I a: c R1) consti tute a family of 1-dimensional index- 

conditional c.d.f . 's ,  indexed by a point a i n  a subset of Euclidean 
k k-space R . Then, the k-dimensional mixture c.d.f .  

F(X) = 4 F(Xla) d G(Cr> 

R1 
,e 

i s  the image under the  above mapping, say% of the  k-dimensional c .d.f e 

G(where the measure uG induced by G assigns measure one t o  R ).  k 
1 

The c.d.f .  F(X) is  cal led t mixtun? (or ri-mixture o f 7 )  while G i s  

re fer red  t o  as the  mixing c . d . f .  

G, and '$' the induced c lass  of mixtures P(X> (given a p r i o r i  t h e  family?). 

Then # w i l l  be said t o  ident i f iab le  i f  

L e t 2  aenote kine clasrs UT ail such s.6.f.'~ 

i s  a one-to-one map of& onto#. 

P(X) is called a ei~lit.~ mixture i f  i t s  mixing distribution G, o r  ra ther  

t he  corresponding measure 

only a f i n i t e  number (W) of par t i t ions  i n  5. 
r = 1,2,. . .,W, and the corresponding mass o r  measure be P(x ), r = 1,2,. . .,W. 

prt, is  discrete and doles out posit ive mass t o  
k 

r ' kt these par t i t ions  5e A 

r 
Then (A-1) becomes 

W 
F(X) = 1 F(Xlnr) P(ar) 

r =1 
I d e n t i f i a b i l i t y  of Parameter Conditional Mixture C.D.F.'s 

L e t  y= {F(xI~,,B,> : nr c R:,I;=~ const i tute  a family of s ize  w of 
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A-dimensional r t h  par t i t ion ,  parameter-conditional c .d . f . ' s ,  the  r t h  pa r t i t i on  

indexed by fir; and l e t  B be the vector s e t  of przrxters cheracterizing the r 
r t h  par t i t ion.  Then the .!-dimensional, Farameter-conbitionol mixture c .6 . f .  

r =1 
Y 

i s  the image under the above mapping, say?, of the  vector parameters 
* *  w 

E1,B2, . . .,%, p(fll), . . .,P(flw), where B = (B1,B2, . . .,%, (P(nr))l) 
IT 

L e t  G denote the  c lass  of a l l  such sets of mixing parameters {P(fir))l 

and vector parameters (Er}, , and # the induced class of parameter-con2itiona1 

mixtures F(X1C) (given a 9rior.i the fami lyF)  . 
ident i f iable  if cF is a one-to-one map of B onto hc; 

11 
- 

Then@ w i l l  be said t o  be 

!Rus, for e given c .d . f .  i?(X),  there i s  a unique vector Gc such t h a t  

F(X) = F ( X ~ B ~ ) .  

The following i s  a simple extension of Teicher's Theorem on identifia-Dili ty 

t o  the case of parameter-conditional mixtures. 

Theorem A . l .  

conditional c.d.f.'s with transforms P/,(v1, ..., v IB ) defined for  V = (vl, .. - , V g )  

and S ( the domain of def ini t ion of gr), such t h a t  t h e  mapping AtF * @ is 

l i n e a r  and one-to-one. 

Fsuch  t h a t  F1 < Fz implies ( i )  S 

(V1 being independent of fl2] such tha t  

of all f i n i t e  parameter-conditione1 mixtures o f 'F i s  i den t i f i ab le .  

PROOF: 

L e t  F= (F(Xlnr,Br)) be a family of  r t h  pa r t i t i on  parameter- 

A r  

'r 
Suppose t h a t  there  e x i s t s  a t o t a l  ordering (1) Of 

5 SP/ , ( i i )  the existence of some V1 8 's ,@I 
!J2 (v ) 

= 0. Then the c lass  fl ' '1 i i m  
v-vl 

Suppose there are two f i n i t e  sets of elements of 7, say = (Fi, 
n 

15 i 5 k) and Tz = (Fj, 1 5  j 5 GI, Fi = F(XJni, Bi}, FJ 
such t h a t  
- c  
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i =1 j =l 
A A 

Without l o s s  of generality, index the c .d.f. ' s  so tha t  Fi < Fj, Fi < F 

for  i < j . 
Then, F1 < F 

A 
J' 

A 

If F1 # Fl, suppose a l so  without loss of generali ty t h a t  F1 < Fl. 
A A 

1 < j < k and from the transform (ea) version of (a), it j' = = 
follows tha t  for V e V1 = S : [v: q v )  f 03, 

c1 + 1 c i [ ~ i o / ~ l ~ v ) ]  .I = V 1 6, [~.(v) la;(v)] J 

k k 

i =2 j =1 

Letting V =B V1 through values i n  V1, C1 = 0 contradicting the supposition 

of ( a )  t ha t  C1 > 0. Thus, Fl = F1 and for  any V e VI 
A 

V i =2 j =2 
A 

Again l e t t i n g  V - V, through values i n  VI, C1 = C1 whence - * 

i =2 j =2 

Repeating the p r io r i  argument a f i n i t e  number of times, we conclude tha t  
A 

= io and Ci = C. for i = 1,2,*.*, min (k,;). &rther, i f  k f i, say k > i, Fi 1 
A 

then ) C, F, (X) = 0 implying C, - 0, + 1 < i k i n  contradiction t o  - -  
UA I A. - c -  

A 
i =k+l 

(a) .  Thus, k = i, Ci = C and Pi = gi 1 <, 2 k, implying = and - i - -  
A 

i d e n t i f i a b i l i t y  of e. That is, B = Bo 

Proposition A . l .  The class of one dimensional parameter-conditional mixtures 

of r t h  par t i t ion,  parameter-condltiondqormal c .d . f . ' s ,  with constraint t ha t  

= uJ the  family be ordered lexicographically by Ni < N. i f  ai > CY 
J 

but 8 i s  identifiable.  3' 
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PROOF: 

Let Nr = F(xlBr, or, ar) denote the r t h  par t i t ion,  parameter-conditional 

r normal c.d.f. with mean Qr and variance a2 > 0. Its b i l a t e r a l  Laplace 

transform i s  given by Br(vler, or) = exp {ar t 12 - 6,t). 

lexicographically by Ni < N if ai > u o r  i f  oi = 6 but ei < ej. Then 

Theorem A . 1  applies with S 
pl 

2 2 2  Order the family 

3 3 3 
= (-=, a) and V1 = v1 = $0 

The significance of Proposition A . l  i s  t h a t  if the family of r t h  par t i t ion,  

parameter-conditional c.d.f. ' s  i s  one dimensional gaussian, then, given F(XI B), 

there i s  a unique solution for B1 ... BM, %+1 i f  the a p r i o r i  knowledge 

includes 

(a) ui > oJ, i < j o r  

(b) i f  k i s  the smallest index such tha t  ak = 6k+l, then "k %+l 
(c )  repeat (a )  and (b)  s t a r t i ng  with a > CY e t c  e 

k+l  k+2 ' 
In  other words, (a) . . . (c)  i s  suff ic ient  a p r i o r i  knowledge t o  assure ident i f i -  

ab i l i t y .  It i s  not necessary a p r io r i  knowledge t o  assure iden t i f i ab i l i t y .  

We can veiw (a> . . . (c) a s  a constraint on the domain of def ini t ion of B. 

If t h i s  constraint i s  ut i l ized,  then a unique solution fo r  Bo can be found 

given the sequence of samples { x ~ ) ~  as n - m m  
n 

The following i s  a proposition where we have simply extended Proposition 

A . 1  t o  the multidimensional case. 

Proposition A . 1 :  

parameter conditional- normal c.d.f ' 8 ,  F(xl wl,Ol,u), F(x(w2,B2,6), with 

6, el, and P1 known,is ident i f iab le .  

PROOF: 

I The class of mixtures of two (M = 2)  one dimensional 

2 Suppose there are two f ini te  sets of elements of say Fl = [Filiz1 
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A 

0 < ci, c .  1, 
J (a) f ci f c (XI, 

X j j  
i =1 j =1 

2 
f c . +  1 j = 1  

i =1 j =1 

Taking the b i l a t e r a l  Laplace transform of both sides of (a), we obtain 

2 2  2 2  2 2  u t  
2 

- -  o t  - -  - -  B t  - -  
2 elt e2t A 2 81t A 2 + C2 e Z C  e 

1 t 
+ C2 e e 

A 

Since P i s  known, C1 = C1 1 

c2 = c2 
2 2 .~ o t  2 2  u t  

2 - - Q2t e2t - 2 
- -  

= e  
t 

.. e 

A 

(8 - 9 It. 
1, e2 = e2. 2 2'- i . e .  e 

Proposition A.2.  

t 
L e t  (F(X(nr,Br)) be a f i n i t e  family of A-dimensional normal 

c.d.f. 's with B = (M , B r  ) with  mean vector M =(mr , mr , . .,mr and 1 r 1 2  r r x x  
r 
xx Jk 

3 11 II' 

covariance matrix cy 

so thet N1 e Nz < N <, e I -;< %- if 6,- 1 > o,, 2 . . .20& k > a;rk k+l  , . . ., or  if 

ou = o& but 5 
PROOF: 

= ro: 3 .  If t h e  family i s  ordered leldcographically 

k k+l  %+l,k, then the famfly i s  ident i f iable .  

The b i l a t e r a l  Laplace transform of F(XIar,Br) i s  given by gr = exp 

T T (& V Br V - Mr V ) .  Then, with the family ordered as above, Theorem A . 1  
xx 

appl ies  with S = (-- < v < -, r = 1,2, eo* , .4 )  and V1 = (vl = CQ, vr f in i t e ,  r @r 
r = 2,3 ,..., A ) .  
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Proposition A.3.  The class of all finite mixtures of A-dimensional c.d.f.'s 

which differ only by translational vectors and have bilateral Laplace trans- 

forms is identifiable if the family is ordered lexicographically by F1 < F2 

if y1 < mzlm 

PROOF: 

Let F(XIx,' Br) = Fo(X - Mr> denote the rth partition, parameter-conditional 
c.d.f. with Br = Mr, a mean vector, which differs fYom other partitioned 

parameter-conditional c .d. f . 's only by Mr 
and go(V) is the bilateral Laplace transform of Fo(X), then e@(-V Mr) (do(V) 

is the bilateral Laplace Transform of F(XInr, Br). Order the family lexica- 

< mzl. Then Theorem A . l  applies with S = graphically by F1 < Fz if mll 

If V = ( Jyl + al, e a o ,  Jy, + ah) E sa. 
T 

a. 
A-dimensional complex Euclidean vector space and 

= (JO + QD, J Y ~  + a2, ..., J Y ~  + al; yi, a finite, i = 2,...,1) i 

We have been concerned with a vector X and its c.d.f. and have not related 

X to a specific nonsupervisory problem. 

and identifiability are quite general. 

nonsupervisory problems defined in Chapter I1 and the families of ith class, 

parameter-conditional c.d.f.*s defined in Chapter 111. 

Thus the results so far on mixtures 

They can be applied to the several 

The families of the ith class, parameter-conditional c.d.f.'s defined 

in Chapter I11 have members which are multinomial distributions. 

multinomial distributions arise when a general family of ith class-conditional 

c.d.f.'s are approximated by ith class-conditional multinomial distributions 

under the framework of a "fixed bin" model or "adaptive bin" model. 

mixtures of ith class-conditional multinomial c.d.f.'s are not identifiable 

because they are, in general, used to approximate ith class-conditional 

c.d.f.'s about which little is known a priori. 

These 

In general, 

We then ask what constraints 



mst be imposed on the ith class-conditional c.d.f.'s approximating them, 

to insure identifiability? The following propositions give a partial answer 

to this question. 

lv be a sequence of one dimensional samples where x = 1 
"k xs = 'xsk 0 with probability po and 0 with probability 1 - p , with a single pattern class 

i 
w active for all v samples. Let F ((x ?:iv, p , wi) be the c.d.f. of the 
samples when class w is active. The distribution of (x  Iv is thus a mixture 
c.d.f.; the corresponding parameter-conditional mixture c.d.f. is 

k i S 

i 'k 

(A-3) 

i The quenstion is when can p and Pi, i = 1,2,. . .,M, be uniquely found 

givenF((xs IT)?  The following Proposition A . 4  by Teicher'' gives sufficient 

conditions for a unique solution to exist for a more general problem than 
k 

the one above. Proposition A.5 applies to the specific problem (A-3). 

Propositions A.6 and A . 7  are extensions of Proposition A.5 to the multinomial 

case. 
i '' I 

A - -  Proposition A.4 .  Let Fl= (F(xln,, pi'), 1 5 i 5 k') and 5 = (F(xin", P 1, 
1 < i < k") denote 2 finite families of binomial distributions; let k = number - -  - 
of elements in yl u F2 and 5%'. ..> \ be the distinct integral parameters 
of the members of Fl UT?. 
condition for 

A necessary but, in general, insufficient 
L. 

I I1 
k' 

(a) 1 CTi F(x(n;, pi') _ _  f C; F(x(ni, P i' 'i 
i =1 L =1 i =l i =1 x 

to -Ply 

(b) 
' i' I1 k' = k", (ni, p ) = (n , p ) for some permutation (jl, -..,jk) of 

Ji 
(1,2, ..., k) is that 
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where r = number of occurrences of Ei among the elements of Fl u F2, 
i - -  i < h. 

(d) ni - ni+l 2 ri, 

i 

A sufficient condition that (a> imply (b) is that (c) and - -  - - 
1 < - -  i h-1 hold - - -  

A special case of Proposition A s ) : -  is n -I v, i = 1,2, *, . This corresponds 
i 

to X always consisting of v samples, no maxter what class is active. 

I;'eichcr'sl' Proposition for this case is: 
s 

Proposition A e Z a  Let i i ?= CF(xjv, 7, o < p 1 e 1, i = 1,2, . o o , ~ )  constitute 

a one-parameter famfly of binomial distributions, v being fixed. 

and sufficient condition that the class d.' 
most M elements of 7 be identifiable is that v 2 2M - 1. 

A necessary 

# of all finite mixtures of at 
J = 1  j 

1 2 The significance of Proposition A . 5  is that pl and p1 in Fig"  2 can 

be uniquely found if Xs consists of s.t least three samples from the same 

classo This may be a strong constraint, but there are some adaptive problems 

in Practice where one class or pattern will be active long enough to take 

2M - 1 samples, where M in the number of classes. 
We will now give an extension of Proposition A . 4  and Proposition A . 5  

to a parameter-conditional mixture of rth class-conditional multinomial 

distributions, 

using (A-21, as 

Define a parameter-conditional mixture of dtfnomial c.d.f.'s, 

(A-4) 
r =1 

where the set (pr)R are the R probabilities characterizing the rth class- 

conditional multinomial distribution. We state the following proposition 
5 1  

and proof: 

Proposition A.6.  A sufficient condition for the multinomial family 
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r R  

= (F(XsIn, t o  give an ident i f iable  class of mixtures i s  t h a t  - 
(a) nh 2 rh - 1 and 

PROOF: 

Rf Pi = 1 - p i , i = 1,2,* **,M 

f =2 
Then (a)  and ( b )  are  suff ic ient ,  by Proposition A.4, for  ( ~ 3 ~  and (Pi l l  M t o  

1 
be uniquely found. In  general, repeet the above with 

i i i = 1,2,. . .,M P,, = Pi, 1 P; = 1 - P r  1 = 2,3, ..., R 
5frl 

The following i s  a special  case of Proposition A.6, as Proposition A . 5  

was a special  case of Proposition A . 4 .  

- P r p o a i t i o n  A . 7 .  Let F= {F(XS]v, (pt)!, 0 

a family of r t h  class-conditional multinomial distributions,  v being fixed. 
M 

A suf f ic ien t  condition tha t  the class u- 
most M elements of ?be ident i f iable  i s  tha t  v > 2M - 1. 

p i  < 1, r = 1,2,. . .,M) consti tute 

of a l l  f i n i t e  mixtures of e t  J-1 1 

- 
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APPENDIX B 

IMPLICIT SOLUTIONS FQR MAXIMUM LIKELIHOOD ESTIMATORS 

For f(xSIwi,Bi), B, and Bo given respectively by (5.61, (5.71, and 
N 

(5 .8) ,  maXimum l ikelihood estimators 5, %, z, and P1 are  obtained as 

follows : 

such tha t  the likelihood function is 

1% f((xS);lB) = f log f(xslB) 
s =1 

Differentiating t h i s  l ikelihood function with respect t o  Bi gives 

a log f(x*jB) 
Ti({Xs1;lB) = C sei 

s =1 

For la ter  use, definz 

(a) For Bi = mi, i = 1,2 we obtain 



Thus, 

-7>- 

I 

I 

i =1 N 

m =  , i = 1,2 i n  
r- 

L @i,s 
i =1 

(b) For e3 = a we obtain 

= - 1 c - 1 + - 1 [(xs-m,) 2 g1 + (xs - 
2 P,,,] = 0 2 9 a 

0 s =1 

s =1 
( c )  For El4 = P w e  obtain 1 

(3.2) 
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o r  

o r  

or 

n n 
= o  1 

s =1 s =1 

n 
m 

n - 
(l-pl) z %,s - p1 z @2,s 

s =1 s =1 = o  P, (1-P, ) 

s =1 

such tha t  

N - 
p1 - 

s =1 s =1 

11 
P L %,s 
s =1 
n n 

s =l c %,s + c g2,s 
s =1 s =1 

The raximum likelihood estimators are summarized as follows: 

s =1 
n 

8 =1 N 

1 p =  , i = 1,2 
i n 

s =1 

(B-3) 

03-51 

s =1 



-77- 

I 

where 

and 
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APPENDIX C 

FtEGULARITY CONDITIONS 

First and Second Regularity Condition of F(x(B) for  B = (5, ”2, a, P1) 

I n  t h i s  appendix we show t h a t  the flrst and second regular i ty  conditions 

fo r  F(x1B) are satisfied for  the binary, gaussian nonsupervisory problem. 

The first regularity condition is  ver i f ied  by showing tha t  (5.19) holds 

fo r  j = 1, 2, 3, 4, corresponding t o  5, “2, cr, and P1 respectively; thus, 

four equations must be verified.  

by showing that  (5 .20)  holds for  a l l  combinations of j and k, j ,k  = 1, 2, 3, 4; 

thus, sixteen equations must be ver i f ied.  Because of symmetry, however, 

only three of the former and seven of the l a t te r  need be ver i f ied .  

1) L e t  e4 = pl. Then 

The second regular i ty  condition i s  ve r i f i ed  

2 )  Let ei = mi, i = 1, 2 .  Then 2 - (x-m, 1 
A 

2 ( x-mi 2 a  
pi 2 a e 

, i = 1,2 a Ti(xlB) =-log (xlB) = 
ami K O  f(x1B) 



i 
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and 
2 

and 
00 

The seven equations fo r  the second regularity conditions are  showu iU be 

s a t i s f i e d  as follows: 

1) For O4 = P ( q )  = P we show Cb4(B) + D44(B) = 0: 1' 

L - G 

2 20 - 2  
- 

2 
- 5  20 1 . e  2U 

p, re 
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such that 

On the other hand, 

Thus: D4k(B) + C44(B) = 0 

2)  Fbr ei = mi, i = 1, 2, we show Cii(B) + Dii(B) = 0 

such that 

2 -- 1 2 
d x =  0 - px e 

E a 5  $& a -1 f ( x l B )  

- 1- 
2 

2 -  

e dx U 

On the other hand, 



t 



-82 - 

Thus: D33(B) + C33(B) = 0. 

We now consider the four remaining "cross" regular i ty  conditions. 

4) TO show D .(B) + C (B) = 0, i,j = 1, 2, i f j: i J  1 3  
De f ine  

2 
( x-mi 1 

Pi c x - q  - 2 
e 20 

Then 

On the  other hand, 

m~~ 

Cij(B) = [ - d x  
-m f(xlB) 

Thus: Dij(B) + Cij(B) = 0, i,j = 1, 2, i f j 

5 )  TO show Di4 + Ci4 = 0, i = 1, 2: 

Then 
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such tha t  

On the other hand, 

43 (x-mi) Ji (Ji-J.) 
J d x  

f(xl B) 
Ci4(5) = - pi f 4 J  2% 0 -03 


