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THE DOPPLER EQUATION IN RANGE AND 

RANGE RATE MEASUREMENT 

SUMMARY 

The Doppler equation and its use for range and range rate measurements is 
discussed, including special relativistic effects, the meaning of integrated 
Doppler, basic limitations in the electronic measuring equipment and, the de- 
pendence between range and range rate measurements. 

The emphasis is on the two-way Doppler, which is of particular interest for 
range and range rate measurements. It is shown that the classical and relativ- 
istic two-way Doppler equations are identical. All derivations are based on time, 
propagation delay and phase rather than on frequency because the electronic 
equipment is only capable of measuring finite differences in time and phase. 
This approach also unifies the treatment of both classical and relativistic Doppler 
and the integration of Doppler frequency. 

It is also shown, that range and range rate measurements are not independ- 
ent measurements and that range rate measurements can be performed much 
more accurately than range measurements. The contributions of range meas- 
urements to orbit determination a re  therefore rather limited except for near 
earth phases of a mission. 
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THE DOPPLER EQUATION IN RANGE AND 
RANGE RATE MEASUREMENT 

INTRODUCTION 

Many papers have been written about the Doppler frequency shift of electro- 
magnetic waves and the use of this frequency shift for determination of range 
and range rate. Then why write another paper? There are several reasons. 
Not all papers have come to the same conclusions, especially with regard to 
relativistic effects and the significance of higher order terms in the Doppler 
equation. It is the objective of this paper to clarify these matters. Another 
objective is to take into account the limitations in making physical measurements 
and to interpret the measurements correctly. We cannot measure a frequency 
instantaneously, a certain time is needed for the measurement. Of particular 
interest for range and range rate determination is the technique of integrating 
the Doppler frequency over a finite time. The correct interpretation of the inte- 
grated Doppler frequency is therefore as important as the correct derivation of 
the Doppler equation. It is shown in Chapter 4 that the integrated Doppler fre- 
quency is nothing but a measure of propagation delay. This fact is used in Chap- 
ter 5 to discuss the dependence between range and range rate measurements. 

The emphasis in this paper is on time, propagation delay, and phase rather 
than on frequency. The importance of correct "time keeping" is stressed both 
in the derivation of the Doppler equation and in evaluating the integrated Doppler 
frequency. Emphasis is placed on the two-way Doppler as being the most impor- 
tant one for tracking of the Apollo vehicles with the Unified S-Band trackers. 

Some of the derivations included in this paper can be found in the literature. 
Because of the tutorial nature of this paper they have been included in order to 
present a unified treatment of the Doppler frequency and its integration. 

1. "CLASSIC" DERIVATION O F  THE DOPPLER EQUATION . 
An electromagnetic wave of angular frequency at is transmitted from trans- 

mitter Tr in Figure 1 at time t,. The amplitude is assumed to be time independ- 
ent and using complex notations, we can write the time dependence of the wave 
as  exp { j y )  where 

w =- drp 
d t ,  
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Transmitter Tr Ground Receiver Re 

Figure 1-Two Way Doppler Geornetri 

The wave will reach the vehicle Ve in Figure 1 at a later time t , given by 

rl t = t, + -  
C 

where r, = range between transmitter Tr and vehicle Ve 

c = propagation velocity of the wave. 

An observer at the vehicle Ve will observe an angular frequency 0)" 

w = -  drp 
d t  

(1-3) 

The ratio between uV and at is easily obtained from Equations (1-1) and (1-3) 

w d t ,  

wt d t  
- - - -  
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We now choose a frame of reference, in which the transmitter Tr is station- 
ary. In this frame rl is a function of vehicle position only and as the vehicle Ve 
receives the electromagnetic wave at time t , rl has to be considered to be a 
function ofwt. With this in mind, differentiation of Equation (1-2) with respect to 
t yields 

tl 1 =1 - = I - - -  
dt c d t  

and thus 

(1-5) 

which is the one-way Doppler equation for a moving observer. 

The wave wv is now reflected or instantaneously retransmitted from the 
vehicle Ve to a ground receiver Re. It is assumed that the receiver Re is station- 
ary relative to the transmitter Tr. The range r, (see Figure 1) is therefore a 
function of the time of retransmission t . The retransmitted wave will be re- 
ceived by the ground receiver Re at a time t, given by 

rl + r2 
t ,  t -  

t , = t + - =  r2 

C C 

and the received angular frequency wr is 

da, 

and thus 
u d t ,  

w t d t 2  
r -  - _ -  

(1-7) 

(1-9) 

Differentiation of Equation (1-7) yields, observing that rl  and r, are functions 
of t 

(1-10) 
dt2 . 1 dr2 

I + - -  
c d t  
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and with Equation (1-9) we obtain 

, 1 dr1 

1 + - -  1 dr2 
c d t  

The angular Doppler frequency wd is defined as 

w = 0, - at d 

and using Equation (1-11) 

1 drl  1 d'2 -- t-- 
c d t  c d t  .w 

c d t  

w -  
t 

1 dr2 
d - -  

1 + - -  

(1-11) 

(1-12) 

(1-13) 

which is the two-way Doppler equation. 

Note that all derivatives in the Doppler equation reflect the vehicle time t 
rather than the time t2 at the ground receiver. 

Equation (1-13) may also be expressed as a series. 

drl dr2 
a,, = - {: (2 t?) - f ( dt2 t (2r) t . . 1 wt (1-13a) 

Although the series expansion is in common use we prefer to use the exact form, 
as given by Equation (I-13), in this paper. 

Another useful form of Equation (1-13) is obtained by solving for the range 
rate 

d 

t 

w 

w d t  
(1-13b) 

4 



Of special interest is the case where the transmitting antenna coincides 
with the receiving antenna. In this case rl = r2 and the Doppler equation can 
be simplified to 

and 

? 

w d = - 2  c d t  .iL) . 1 d r  
I + - -  

c d t  

1 d r  1 d2r - - - - -  + . . .  
C d t  c2 dt2 

*d 
C -  

dr - *t - -- 
wd d t  

2 +- 

(1-14) 

(1-14a) 

(1-14b) 

The two way Doppler equation can easily be generalized. In some applications 
the vehicle transponder multiplies the received frequency by a factor k before 
retransmission. The retransmitted angular frequency is then kwv and Equation 
(1-11) changes to 

The angular Doppler frequency for this case is defined as 

ud = o  - k w  
t 
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and thus 
1 dr1 1 d'2 

1 dr2 

-- t - -  
. k a t  c d t  c d t  

1 + -  - 
a -  d - -  

c dt 

(1-15) 

So far we have assumed that the propagation velocity is constant and that 
the propagation path is a straight line. The Doppler equation can be derived 
under much more general conditions. Let the delay be 71 for  the propagation 
from the transmitter T r  to the vehicle V e  and 72 fromVe to the receiver Re. 
Equation (1-7) can then be written, see Figure 2. 

t = t  t r 2 = t l  t T 1  t r 2  (1-16) 
2 

where 7, and 72 a r e  functions of t. Equation (1-9) 

w dt ,  
r -  - _ -  

at dt2 

ti 

Vehicle Ve 
time t = t l  + T ~  

me t l  

Transmitter Tr Ground Receiver Re 

Figure 2-Propagation Delays 

6 

(1-9) 

time tp = t + T ~  



holds true for arbitrary transmission media. Differentiating (1-16) we obtain 

Combining Equation (1-9) and (1-17) with (1-12) results in 

dT1 dT2 
+-  - 

d t  d t  
t 

Wd = - w 
1 1 d72 
1 + -  - 

‘ c  d t  

which is the two-way Doppler equation for a general propagation media. 

(1-17) 

(1-18) 

This equation clearly shows that the Doppler frequency is caused by the 
time derivatives of the propagation delay and is independent of whether the 
propagation delay varies because of variation in range o r  variation in the prop- 
agation media. 

For the special case 

rl r2 
l c  = -  r 2 = -  C 

Equation (1-18) reduces to (1-13). The problem in the general case is, of course, 
to establish what functions T~ and r2 are of t. Other generalizations such as 
transponder frequency multiplication and transponder time delay are easily in- 
corporated into Equation (1-18). 

So fa r ,  the Doppler equations have been expressed in space vehicle time t 
and the equations therefore reflect the range rate at time t. If we want to know 
the actual range rate at observation time t 2 ,  a correction has to be ap2lied. The 
range has to be expressed as  a function of t2 .  From 

7 
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we obtain 

. .  

and after expansion into a Taylor series 

In taking the derivative and observing that t, is a function of t given by Equati;.n 
(1-19) we find 

With the aid of Equation (1-20) we can eliminate r,(t), resulting in 

(1-21) 

(1-22) 

In the same way we obtain 

r 2 ( t 2 )  d r 2 ( t 2 )  d 2 r , ( t 2 )  +-  r 2 ( t 2 )  d3r , ( t , )  } + . . .  (1 -23) 
' - C2 { d t 2  (dt,), (dt,I3 
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Substitution of Equations (1-22) and (1-23) into the Doppler equations will 
yield equations which express the Doppler shift as a function af range rate at 
observation time t, . In particular, the two-way Doppler Equation (1-13) will 
transform into 

dr2 + (dr2I2 d2rl t 
-k r2 

C (d t2 )2  

drld2r2 +2dr,d2rl +3dr2d2r, d r 2 2  drl  t d r ,  ‘(q) d t ,  t r: 
(dt,)3 

(1 -24) 

where rl and r, now are functions of t,. For the special case of the coinciding 
receiver and transmitter antenna this equation reduces to 

(1-25) 

It is obvious from the preceeding that the Doppler equations expressed in 
observation time t, are rather lengthy. Also, they are no longer exact and in 
the above derivation terms containing l/c3 and higher orders have been neglected. 
It might be simpler in many applications to use the Doppler equations for time t 
and to use a time correction as given by Equation (1-19). 

2. RELATIVISTIC DERIVATION OF THE DOPPLER EQUATION 

Reviewing the classical derivation of the Doppler equations we find that the 
following assumptions were made: 

a. The propagation velocity c was assumed to be constant both for trans- 
mission from the ground and from the vehicle. 

b. The reflection or retransmission from the vehicle is instantaneous. 
t 

c. Transmission and reception occurs in the same reference frame. 

9 



It therefore seems very likely that no relativistic effects should occur in the 
two-way Doppler. A relativistic derivation is given here in order to verify this 
assumption. The derivation is based on the Lorentz transformation and thus 
takes the effects of special relativity into account. 

We choose two reference frames S and S' so that the transmitter Tr and 
the receiver Re are  stationary in the S frame and the vehicle Ve is stationary 
in the S' frame. Without loss of generality we can orient the frames so that 
their X -  and y-axes are in the same plane and their x-axes are parallel to the 
velocity vector V of the vehicle. In addition to this, we let the x-axes coincide 
as shown in Figure 3. 

Y '  Y 

s 

Tr (transmitter) 

Ve (vehicle) 

a' 7P=)-v 
/ S' 

Figure 3-Reference Frames for the Lorentz Transformation. Transmission from 
the Ground Transmitter Tr. 

From the S frame as electromagnetic wave which we, as  in Chapter 1, write 
e x p  { j 'p) is transmitted at  time t, and reaches the vehicle at time t ,  given by 
Equation (1-2) 

rl 
t = t  + -  

1 c  

From Figure 3 we see that 



and hence 

x cos a t y s i n  a t = t , +  
C 

By means of the Lorentz transformation x, y and t from the S frame can be 
transformed into X I ,  y' and t' in the S' frame, see reference [l I 

V t ' +- X I  

C2 t =  (2-3) 

By applying Equation (2-3) to Equation (2-2) we can solve for the time t, of 
transmission (from the S frame) in terms of time t '  of reception (in the S' 
frame) 

V t' +- X' 

CZ x' -t v t '  t =  c o s  rr + y' s i n  a 1 

- 
C2 

The transmitted angular frequency is 

J 

CZ 
t =  c o s  rr + y' s i n  a 1 (2-4) 

. w =-  dT 
dt, 

11 



and the angular freqiency received by the vehicle is 

and thus 
Q d t ,  

ut d t '  
v -  - _ -  

From Equation (2-4) we obtain 

I -L c o s  a 
w v -  dt ,  C 

But 

rl 

dt 
v cos  a = - 

and thus 

1 - - -  
V c d t  - - _  

. -  (2-5) 

(2-7) 

Comparing Equation (2-7) with Equation (1-6) we see that there is a difference 
between the classic and relativistic one-way Doppler equation. Expapding Equa - 
tion (2-7) into a series we find that the relative difference is 3 2 plus 
higher order terms. 

The direction cosine in the S' frame can be found from Equation (2-4) which 
reads after rearranging terms 

V 

C 
1 - - - - s a  

t =  1 
1 - _  .t ' C 

. -  

c o s  a - - V )-$si.- )} 
Y' C 

x '  t 
V V 

C C 
1 - -  c o s  a - -  cos a 

, 

12 



and the direction cosine in the S' frame is 

V 
cos a - -  

C cosa' = 
V 

C 
P ----cos a 

(2-9) 

Let us now retransmit the electromagnetic wave from the moving frame S' 
to a receiver R e  in the stationary frame S as shown in Figure 4. The wave is 
transmitted from the vehicle at time t' and reaches the receiver R e  at time t i  
as seen from the S' frame. 

(2-10) 1 r; t#  = t  + -  
C 2 

Y 

f 

S s' 

+ V  
Ve (vehicle) 

L - t X '  

X Re (receiver) v 
Figure 4-Reference Frames for the Lorentz Transformation Reception by the Ground Receiver Re 
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The time t, of reception in the s frame is again obtained by means of the 
Lorentz transformation. Observing that the sign of the velocity has changed, 
the Lorentz transformation reads 

Y' = Y  

z ' = z = O  

V 

t ,  -- x 
t '  = C2 2 

With, see Figure 4, 

r; = x' c o s  (n t p ' )  + y'  s i n  (n + p ' )  

we obtain from Equations (2-10) and (2-11) 

V 

C 
1 - - c o s  p' 

t '  = 1 - -  i; C 

( - c o s . .  + -  V 

C 

p - f cos  p' 
x -  

JI - s i n  

V 

C 
1 - -  c o s  p' 

(2-11) 

(2-12) 

(2-13) 

14 



and the received angular frequency wr is thus, 

and the direction cosine in the S frame is 

V 

C 
c o s  p' - -  

1 - -  c o s  p' 
c o s  p =  

V 

C 

o r  

V 

C 
cos  p + - 

1 + -  c o s p  

c o s  p' = 
V 

C 

(2-14) 

(2-15) 

(2-16) 

Equation (2-14) contains the direction cosine of the S' frame. Substituting c o s  ,/3' 
from Equation (2-13) yields 

(2-17) 
w V 

C 
v 1 + - c o s p  

15 



The two-way Doppler equation is obtained by combining Equations (2-6) and (2-17) 

V 1 -- cos  a 

t 1 + - c o s p  

wr - C - _  
w V 

C 

o r  
, 1 d r l  

t . 1 d r ,  w 
1 + - -  

c d t  

since 

v c o s  p d'2 - 
d t  

(2-18) 

(2-19) 

(2-20) 

Equation (2-18) is identical to the "classic" two-way Doppler equation and 
contains no "relativistic terms.'' Note that Equation (2-18) contains only the 
direction cosine of the S frame. This is a logical choice if we want to exliress 
the two-way Doppler equation in terms of range rate referenced to the S frame, 
see Equation (2-19). We could also use the direction cosine in the S' frame 

V 

r C 
1 - -  c o s  p' 

c4) 

(2-21) 

without encountering relativistic terms . I1 However, if  direction cosines a re  
mixed both from the S and S' frame 

r C C ) (1 - z c o s  .) (1 - - c o s  p' V 
w 

(2-22) 

n 

C' 

16 



then the Doppler equation will contain "relativistic terms," but there seems to 
be no reason for  using the Doppler equation in the "mixed" form. 

3. VELOCITY ABERRATION 

An electromagnetic wave, reflected in a corner reflector on the vehicle, will 
not be reflected back to the stationary reference frame at the same angle as it 
was  transmitted. Both a non-relativistic and a relativistic derivation of this 
aberration is given here. 

A. Non-Relativistic Derivation 

The velocity components of the wave in the stationary reference frame are  
c s i n  a and c c o s  a as shown in Figure 5. In the moving reference frame the 
velocity components a re  c s i n  a and c c o s  a - v .  After reflection the absolute 
values of the components are I C  s i n  QI and I C  C O S  a - 2 v 1 .  Thus 

o r  

V 2 - . s i n  a 
C tan  24= 

2v 
1 - c cos a 

where 2 4  is the aberation angle. 

B. Relativistic Derivation 

(3-1) 

The relativistic aberation can be obtained from Equations (2-9) and (2-15) 
For the corner reflector we have Q' = p'. With p = a -+ 2 4  we thus obtain 

V V 

C 
=os ( a  t 24) t - C O S  a - - = -  - 

V V 
l - - c o s a  C l + - c o s ( a + 2 ~ )  C 

17 



Y Y I c sin a 

c sin a 

+ V  

Figure 5-Non-relotivistic Velocity Aberration 

Solving for 24 yields 

V V2 

C C2 
2 - s i n a - - s i n 2 a  

t a n  24 = 
V V2 

C C2 

1 - 2 - c o s  a + - c o s  2 a  

o r  

V 

C 
- s i n  a 

t a n  d = 

(3-2) 

(3 -2a) 
V 

C 
1 - - c o s  a 

The difference in non-relativistic and relativistic aberration is best seen 
if we expand Equations (3-1) and (3-2) into series.  

Non-Relativistic : 

(3-3) 

18 



Relativistic : 

t a n  24 = - 2v s i n  a ( l . r c 0 s a t - t  V2 

C2 
C 

(3-4) 

The difference between the two derivations is in the second order term and the 
relative difference is therefore of the magnitude (v/c )2 .  

If we instead require that the angles of transmission and reception at the 
ground are  identical, i.e., a = p,  then the angle of transmission p' from the 
vehicle has to offset from the angle of reception a' at the vehicle. With the 
offset angle 2$ 

2 4  + a' = p' (3-5) 

we obtain from Equations (2-9) and (2-15) 

2 - s i n  V 

1 + 2 - c o s  V 

a' + - v2 s i n  2a' 
C C 2  

tan 2 $ =  - 
a' + V2 - c o s  2a' 

C C 2  

o r  
V - s i n  a' 

t an  $I = - 
V 

C 
1 .t - c o s  a' 

(3-6) 

(3-7) 

4. INTEGRATION OF DOPPLER FREQUENCY 

In the previous Chapters we derived the Doppler frequency as a function of 
the range rate of a moving vehicle. In performing range and range rate measure- 
ments we are faced with a different problem: If we measure the Doppler fre- 
quency what can we say about the range and range rate? 

Frequency cannot be measured instantaneously. The most commonly used 
methods for measuring the Doppler frequency is to count the number of Doppler 
cycles during a fixed time period or to measure the time required for the recep- 
tion of a fixed number of Doppler cycles. Both methods imply an integration of 
Doppler frequency and the integrated Doppler frequency will be discussed in this 
Chapter. 

19 



Let u s  integrate the two-way angular Doppler frequency at the receiver 
during a time interval T, . We obtain 

by using Equations (1-9) and (1-12). But from Equation (1-18) 

t ,  = t, t 7, - T2 

and thus 

In Figure 6 @ and @ denote the vehicle positions corresponding to the 
beginning and the end of the integration interval T,. With the notations in Fig- 
ure 6, Equation (4-2) may also be written 

Equation (4-3) shows clearly that the integrated Doppler frequency shift is a 
measurement of the difference in propagation delay when the wave travels the 
path T r  -0 - R e  and the path T r  -+ @ - Re. It is seen from Figure 6 that the 
vehicle is in position @ at vehicle time t 

t = t ,  - r 2 1  (4 -4 1 
4 

and in position @ at vehicle time t + T 

(4-5) 

20 



Ve travels from 
a t o @ i n  the 

x 

Integration in terva I : \ \  t 2 t o t 2 + T 2  

Tr (transmitter) Re (receiver) 

Figure 6-Integration of Doppler Frequency 

The above equations a re  general to the extent that no assumptions have been 
made about the index of refraction of the propagation media. 

If we want to interpret the measured difference in propagation delay as a 
difference in range, then assumptions have to be made about the index of refrac- 
tion. Let us assume that the propagation media is vacuum. Then 

- ‘12 etc. - ‘1 1 
rll - 7 ’ r12 -c 

21 



and 

w 
t 

t 2+T2 

=2 

ud d t ,  -5 -- {(r , ,  t r,,) - ( r l l  t r,,)) I C 

where 

r l l  = ‘11 

r21 = r 2  i’ a t  

r21 
2 - 7  

t = t  

With the following use full notations 

r12 - r l l  = Ar, 

= Ar, r 2 2  - r 2 1  

t2+T2 
wd d t ,  = A + =  i n t e g r a t e d D o p p l e r  f r e q u e n c y  I t 2  

Equation (4-6) can be written 

c A 4  Ar, t Ar, = -- 
w 

t 

(4-6) 

. .  

(4-7) 

In other words, the integrated Doppler frequency A4 is proportional to a change 
in range. 

The time T required for the vehicle to travel from @ to @ is according 
to Equations (4-4) and (4-5) 

T = T, -- 
C 

22 
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If we define the average range rate as 

then Equation (4-7) yields 

(4-10) 

At the ground receiver R e  only the time interval T2 is known and not the time 
interval T. From Equations (4-8) and (4-9) we obtain 

T2 T =- 
‘a2 

1 t- 
C 

and thus 

(4-11) 

For the case of the coinciding ground transmitter and receiver antenna, Le. 
A r ,  = A r 2 ,  Equation (4-11) reduces to 

(4-12) 
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Equation (4-11) is the integrated two-way Doppler equation. Observe the formal 
similarity between the integrated Equation (4-1 1) and the non-integrated Equation 
(1-13b). E we define the average angular Doppler frequency wda 

we see that Equation (4-11) contains only averaged quantities o r  finite differences. 
Equation (1-13b) 03 the other hand contains only differentials and has therefore 
an “instantaneous” character. Although the Equations (4-11) and (1-13b) are 
formally similar, they a re  only identical in the limit when T2 -. 0. The difference 
between the average range rate ia and the instantaneous range rate 
considerable, see reference (3). 

may be 

In order to associate a time with the middle of the integration interval 
1 t + - T , expressed in vehicle time, is chosen. This choice is somewhat arbi- 2 

trary but has the advantage of minimizing the difference between ia and i, see 
reference (3). With the aid of Equations (4-4) and (4-5) this time can be expressed 
in ground receiver time 

1 T2 1 t + -T = t + - -- 2 2 2 2 ( 7 2 1  +722’ 

o r  

1 T2 1 
(r21 f r22’ t + - T =  t2 + - - -  

2 2 2c 

(4-13) 

(4-13a) 

where wave propagation through vacuum is assumed in the last equation. 

5. LIMITATIONS O F  RANGE MEASUREMENTS AND DEPENDENCE 
BETWEEN RANGE AND RANGE RATE MEASUREMENTS 

Range measurements consist of the measurement of the two-way propagation 
delay of an electromagnetic wave. The same antenna is used both for transmission 
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and reception. In order to compare range and range rate measurements we there- 
fore consider the two-way Doppler equations for the special case of coinciding 
transmitting and receiving antennas. The Equation (4-3) for the integrated Doppler 
frequency reduces for this case to 

with notations as shown in Figure 7. From this equation we can draw a number 
of interesting conclusions : 

1. The integrated two-way Doppler frequency is proportional to the differ- 
ence between the two-way propagation delays at the beginning and at the end of 
the integration interval. A range measurement consists of the measurement of 
the two-way propagation delay. The integrated two-way Doppler frequency is 
thus proportional to the difference of two range measurements, namely the meas- 
urements of r2 and rl as shown in Figure 7. 

Ve (vehicle) 

Figure 7-Compari son of Integrated Doppler Frequency and Range Measurement 
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2. Only the propagation properties along r l  and r z  are  of importance and 
these propagation properties are  the same for the integrated Doppler frequency 
and for range measurements of r l  and r2. Note that the propagation properties 
of the propagation medium between r l  and r 2  are  of no importance. 

3. If we write the range in the form 

we can consider ro as an integration constant. The integrated Doppler frequency, 
i.e., a range rate measurement, will not give us any information about ro. A 
series of range measurements therefore contains more information than the 
corresponding range rate measurements. 

A very important consequence of the above conclusions is: Range and range 
rate measurements a re  not indeDendent measurements as far as Dropaaation 
properties are concerned. Both a r e  measurements of time delay and a range rate 
measurement is identical to the difference between two range measurements. 
Measuring errors introduced by the ground equipment are ,  on the other hand, to 
a certain extent independent. An example is the oscillator drift, which will effect 
the integrated Doppler frequency o r  range rate during the hole integration interval 
but a range measurement only during the propagation time T. For a complete 
analysis of these e r rors  the particular measuring scheme employed has to be 
known and no general statements can therefore be made. 

The above conclusion 3 states that a series of range measurements contains 
more information than the corresponding range rate measurements. If this is 
so, why a re  range rate measurements used? The answer is that range rate 
measurements can be performed much more precisely than range measurements. 
In order to resolve the ambiguities in range measurements, the electromagnetic 
wave (carrier) has to be modulated (side tones, pseudo random codes). The band- 
width allocated for this modulation determines the capability to resolve the fine 
ambiguities. The range accuracy is limited by the fine ambiguity resolution and 
is thus bandwidth limited. Most of the information is therefore obtained from the 
integrated range-rate o r  Doppler frequency and the range measurements a re  only 
used for determination of the integration constant rO. As long as the integration 
process is not interrupted, only one range measurement is required for  the 
determination of ro. However, several range measurements may be used in order 
to reduce the error  in ro by statistical methods. 
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Another interesting question of great practical importance is: What is the 
contribution of range measurements to orbit determination if both range and 
range rate measurements are available? From the above, one might suspect 
that the contribution is rather limited and this suspicion is verified by recent 
e r ror  analysis studies and actual experience. In reference (4) it has been shown 
by means of e r ror  analysis that range rate and angle measurements are adequate 
for orbit determination of the translunar, lunar and transearth phases of the 
Apollo missions. From reference (5) (table 1, page 7), we learn that only range 
rate and angular measurements were used for the Ranger VI1 orbit determination. 
Except for near earth phases of missions, the contribution of range measure- 
ments to orbit determination is therefore rather limited. 

A rather high price has to be payed in bandwidth and hardware for obtaining 
range measurements. It should therefore be seriously considered if range meas- 
urements a re  really required, especially for deep space and galactic missions 
where bandwidth and weight are at an extra premium. 
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