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CURRENT DISTRIBUTION IN A THIN FILM SUPER- 

CONDUCTING STRIP TRANSMISSION LINE* 
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Lewis Research Center  

SUMMARY 

In the long wavelength limit the current distribution in a thin film superconducting 
strip transmission line can be described by an inhomogeneous Fredholm integral equation 
of the second kind. When a fluxoid conservation derivation of this equation is considered, 
physical insight into the structure of the kernel follows naturally. An approximate ana- 
lytic solution to the integral equation is derived for a specified range of geometrical 
parameters commonly encountered in practice. The solution is obtained by making use of 
the Liouville-Neumann method of successive approximations, and by approximating the 
resulting series by a ser ies  involving powers of a defined coupling factor. It is shown 
that the critical current of the thin film superconducting strip transmission line, based on 
the calculations in this report and a critical current density hypothesis, is underestimated 
by less than 10 percent. 

INTRODUCTION 

Several authors have indicated that superconductive computer components, which are 
constructed in the form of thin film strip transmission lines, are advantageous from the 
standpoint of switching speed and miniaturization (refs. 1 to 6). Superconducting strip 
transmission lines are also useful in the transportation of electrical information within a 
superconducting computer due to inherent negligible loss characteristics and high group 
velocity (refs. 2 and 5). 
comparable to, the London penetration depth. It has also been shown that if the film 

The latter is true only if the film thickness is larger than, or 

A condensed version of this report was published in J. Appl. Phys., vol. 36, no. 7, * 
July 1965, pp. 2260-2267. 
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thickness is less than the penetration depth the group velocity is appreciably decreased, 
which makes the strip line useful for delay line memory application (ref. 2). In all 
these devices it would be useful to be able to predict the total current which can be car- 
ried by the strip line before it becomes normally conducting. 

Several microscopic theories have been advanced which indicate that switching in a 
thin fi lm is initiated by a critical current density (ref. 7). 
shown, independently, that the problem of thin film switching is complicated by the fact 
that the current density is not constant over the cross  section of the film (refs. 8 to 10). 
By using a formal Green's function approach and employing the London current-field re- 
lation, Cooper derived the general inhomogeneous Fredholm integral equation of the 
second kind describing the current density distribution in a single film. He also obtained 
a specialized equation for the case in which the film thickness is less than or  equal to the 
penetration depth - the thin film case. Marcus derived an identical equation by combin- 
ing the Biot-Savart law and the London equation, and obtained computer solutions for the 
thin film case. 
rent distribution in a s t r ip  transmission line. Due to the complexity of the kernel, 
analytic solutions to the integral equation have not been found to date for either the single 
film or strip line cases. 

It will be shown that when the integral equation is derived for the superconducting 
strip transmission line, by using the concept of fluxoid conservation and the London 
current-field relation, certain useful properties of the kernel can be readily deduced. 
The integral equation is solved by using the Liouville-Neumann method of successive ap- 
proximations. The properties of the kernel allow the approximate evaluation of the 
Liouville-Neumann ser ies  for a range of geometric parameters of practical interest. 
The analytic solution for the current density distribution in the strip line exhibits the 
same property of current peaking at the film edges that Cooper and Marcus found for the 
single film. The critical current of the system can be calculated from a knowledge of the 
current density in the s t r ip  line and the critical current density obtained from micro- 
scopic theory and/or independent experimentation. 

Cooper and Marcus have 

These methods can be used to derive an integral equation for the cur- 

SYMBOLS 

The rationalized mks system of units is employed throughout the report. 

2 unit vector 
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constant determined by total current 

2 



d 

E 
4 

Eij 

U 

U' 

W 

P- 

h 

PO 

0 

Xm 

thickness of film 

electric field intensity 

magnetic field intensity 

magnetic field intensity at point i due to current element at point j 

total current 

current per unit area 

current per unit width 

kernel of one dimensional Fredholm integral equation 

Q /d 

distance between centers 

field point in x-y plane 

source point in x-y plane 

of two films in a strip-line pair 

position vector denoting surface of conductor 

time 

2 - y dimensionless field point in one-dimensional analysis 

2 
- y' dimensionless source point in one-dimensional analysis 
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W 

width of film 

London penetration depth 

coupling factor = Lt K(u, u')du' 

(m2(w/d)/8R 

permeability of f ree  space, 4~~10-' H/m 

electrical conductivity measured in mho/m 

magnetic susceptibility 
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STATEMENT OF PROBLEM 

It will be interesting to compare some general features of the current distribution in 
a strip transmission line for the cases where (1) the conductors are both normally con- 
ducting, (2) both conductors a re  superconducting, and (3) one conductor is supercon- 
ducting and the other is normally conducting. Consider the line structure in the form of 
two parallel cylindrical conductors shown in figure l(a). For the sake of generality it is 
assumed, at first,  that the cross  section of each conductor is arbitrary. It is further 
assumed that (a) the wavelengths of the fields propagating along the structure are much 
larger than the transverse dimensions of the system so that a quasi-static analysis is 
valid, and (b) the current density is in the z-direction and therefore is only a function of 
x and y. The latter condition is a consequence of charge conservation for the quasi- 
static case (v  . J = 0). 

conducting. Faraday's induction law, expressed in integral form, is 

- 
It is convenient to first discuss the situation in which both cylinders a re  normally 

(a) Parallel cylindrical conductors. 

(b) Enlarged view of conductor showing typical contour of integration. 

Figure 1. - Array of inf in i te ly long cylindrical superconductors. 

where ds' is an element of the contour 
bounding an area S. Since J = oE in 
both conductors and X, << 1 = 10- 
for most ordinary paramagnetic and 
diamagnetic materials, equation (1) 
can be rewritten as 

e - -  
5 

Applying Faraday's law to the dotted 
contour in figure l(b) and letting the 
path in the z-direction be of unit length 
yield 

where r' is the usual position vector 
in the x-y plane, gz is a unit vector in 
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the z-direction, and d?? is a differential vector line element of integration. The mag- 
netic field intensity at the point ?? generated by current elements in both conductors is 
H(r"). For the static case, the right-hand side of equation (3) is zero and therefore the 
current distribution in each conductor is uniform. It is interesting to note that the dis- 
tribution in a normal conductor is uniform even if the neighboring conductor does not 
have a uniform distribution. An example of this point is the situation where the second 
conductor is a superconductor. 

For the case in which both conductors are perfectly conducting (0 = 00)) the right- 
hand side of equation (3) is still zero in the static situation. However, at some time in 
the past a transient existed so that it appears that infinite current densities were gen- 
erated. This unrealistic situation is alleviated by stipulating that during the transient 
and afterwards the current flows in an infinitely thin layer at the perfect conductor sur- 
faces with a distribution such that H' is time independent everywhere inside the body of 
the conductor. Starting from zero field initial conditions it is evident that H' is zero 
everywhere inside of the cylinders. Thus the magnetic flux through any imaginary sur- 
face in the interior of either conductor is zero. It is easy to show that the magnetic field 
at a point r' in a cross section, due to an infinitely long line current I, which intersects 

0 -  

This case will be described later in the report. 

the plane of the cross section at 

If there is to be no component of 

0 

1" is given by 

(4) 

- 4  

H(r) perpendicular to the surfaces, then at every point 
on the surfaces of both cylinders it must be true that 

H'("sl,2) - 9 (Fsl, 2) = 0 

where Fsl and FS2 a r e  the position vectors denoting the surface of conductors 1 and 2, 
respectively, and (+ rsl, ) is the unit vector normal to the surface of the conductors. 

Since E(Tsl, 2) is found by summing over the contribution to the field made by cur- 
rent elements at the surfaces of both cylinders, it follows that 6 vanishes everywhere 
inside of the cylinders if Jw(Fs), the current per unit width at the conductor surface, is 
the solution to the pair of coupled integral equations 
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While these equations will not be solved here, two interesting consequences a re  apparent 
from their form alone. 

sectional shape of conductor 1, conductor 2, and the separation between them. 

conductor 2. 
even if conductor 2 carries zero net current. 

The static case in which u = 03 can be simulated by a dynamic situation in which the 
skin depth is much less  than the transverse dimensions of the conductor. 

Consider the case in which both conductors are superconducting. In this situation it 
is no longer correct to use the expression J'= aE, but instead the phenomenalogical 
equation of F. and H. London should be employed. Thus, 

(1) The surface current distribution in conductor 1 is influenced by the cross- 

(2) The surface current distribution in conductor 1 depends on the distribution in 
The distribution in conductor 1 is altered by the presence of conductor 2 

The parameter p - l  is the London penetration depth, the distance through which the 
magnetic field falls to l/e of its value at the surface of a superconducting half-space. 
It follows from equations (1) and (6) that 
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The quantity within the brackets in equation (7) is the well-known London fluxoid. 
equation (7) expresses the principle of fluxoid conservation. Starting from the London 
zero field initial conditions, it is seen that the fluxoid associated with this or any other 
contour within the superconducting cylinder is zero. This is the exact analog of the zero 
f lux  condition encountered in the case of perfect conductors. Conclusions 1 and 2 which 
were stated for perfect conductors remain the same for superconductors except that the 
word surface must be deleted. This is apparent since the infinite current density situa- 
tion associated with a time rate of change of flux no longer exists in this case. 

over the contributions made by the current elements in both cylinders. 

Thus, 

The magnetic field at a point ?l in either cylinder can readily be found by summing 
Clearly then 

But 

where V operates on the field point variables. Therefore, 

When use is made of the vector identity 

+ + 
v x s? = S(V x V) + vs x v 

it follows that 

Since the integration is being performed over the source points, and V X operates only 
on field points, the curl operator can be taken out from under the integral sign. Hence 
in the cylinders, 
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It should be noted that equation (11) could also have been derived by first determining the 
vector potential for the system. If the vector potential A' satisfies the requirements of 
the Coulomb gauge ( V  - A' = 0), i t  can be shown that p-il is just the expression con- 
tained within the brackets in equation (11). Using the identity 

and the fact that the fluxoid is zero yield 

Equation (13) is equivalent to that derived by Cooper and Marcus. The first two terms on 
the right-hand side a re  independent of .", therefore the current density can be expressed 
as 

where C is an arbitrary constant determined by the total current. 
When the steps in this derivation are reconsidered, the following interesting fact is 

apparent: The nonuniformity of the current density in the film (J(3 # J(O), r'f 0) is due 
to the magnetic flux crossing the area bounded by the dotted contour shown in figure 1(b). 
For certain cross-sectional geometries, such as the strip transmission line which will 
be discussed later, this flux is small if the conductors car ry  equal but oppositely 
directed currents. Thus, in these cases, only small variations of the current density 
a re  expected. 
allows certain properties of the kernel of the integral equation to be deduced so that a 
closed form solution to equation (14) can be demonstrated. 

conducting and conductor 2 is normally conducting. As was shown previously, the cur- 
rent density in the normal conductor is uniform (in the static case) so that if I are 
the net currents in conductors 1 and 2, respectively, equation (13) becomes 

Furthermore, in the case of a strip transmission line, this concept 

Before proceeding to this solution, consider the case in which conductor 1 is super- 
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It is interesting to note that for this case the distribution of the current in conductor 1 
is not influenced by the presence of conductor 2 for I2 = 0. This was not true for the 
case of two perfect conductors or  two superconductors, as was shown previously. 

STRIP TRANSMISSION LINE OF RECTANGULAR CROSS SECTION 

Consider the strip transmission line, shown in figure 2, that consists of two parallel, 
infinitely long, superconducting thin films of rectangular cross  section. Each is of 
width w and thickness d, and the centers of the two are separated by a distance Q .  

t 
'id 

Figure 2. - Strip transmission line. 

The parameters of the system a re  chosen to be in a range of practical interest charac- 
terized by 0,0001 < d/w < 0.01, and (pd) < 1. A current I flows into the top film, and 
an equal but oppositely directed current flows in the bottom film. 
strip transmission line system just described, equation (14) becomes 

- - - 
For the case of the 



Using the change of variables x' - - (x' + Q )  in the last  integral on right-hand side in 
equation (16a) and noting that 

d x ' = G  

= - J(-x-Q,y) ( 16b) I d  - C < X < -  2 2 I-c<x<d. 2 2 
J(X? Y) 

d 
2 
- 

- G  
d 
2 

- -  

yield 

Since (Pd) < - 1 it will be assumed that J does not vary appreciably in the x-direction in 
the film. (This assumption will be examined more closely in the next section. ) 
Therefore, J(x, y) = J(0,y) = J(y). It is convenient in equation (17) to perform the integra- 
tion over x' first.  Let 

Then, 

d e +- 
2 

d 
2 - -  

2 

Thus ? 

J(y) = C + - 4r J(y') dy' dln - + (y - y') -2d + 4(y - y') tan-'*] Y - Y' - [k +$).I (e +:)'+ (y - y')'I p2r2 -w/2 c 
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When the dimensionless variable u = - y is introduced, equation (19) becomes 

J(u) = C + J(u')K(u, u')du' 
87l 

where 

1 
d 

+ -- 

L 

The kernel of the integral equation is an explicit function of the thickness to width 
ratio of the films, as well as the ratio of the separation distance to the width. It was 
mentioned earlier that the nonuniformity of the current density is due to the magnetic 
flux that crosses the area bounded by the dotted contour shown in figure l(b). Certainly 
line currents (henceforth referred to as source points since the analysis is two dimen- 
sional) at all points in the cross section contribute to the total flux. In figure 3 let the 

Figure 3. - Flux contributions from antisymmetric source points, 

currents at P1 and P2 be equal in magnitude but oppositely directed. 
distance between points F and P1, and Q2 be the distance between points P1 and P2. 

11 
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are the magnetic field components at F due to the currents at 
Fp2 

If ‘FP1 and i? 
P1 and Pa, respectively, then if Q1 _>7Q2, 

and 

0.989 < COS e < 1. ooo 

Thus, due to the dimensions of the transmission line that a re  being considered, contri- 
butions from antisymmetric source points (in the two films) at large distances from the 
observation point tend to cancel themselves out. It should be expected, therefore, that 
virtually the entire net flux will be contributed by source points that lie within some 
small distance from the observation point (x, y). This distance should be of the order of 
10 Q, where Q is the separation distance between the two films. Thus the kernel should 
be sharply peaked about u = u* and, based on the preceding discussion, i t  should be ex- 
pected that the magnitude of the kernel will be a monotonically decreasing function of 
Iu - ut I. Since Q > d and -(d/2) < - x,x* < - (d/2), the two-dimensional kernel in equa- 
tion (17) is negative definite. When the process is considered by which equation (20a) is 
derived from equation (17), i t  is apparent that the one-dimensional kernel in equa- 
tion (20b) is also negative definite. 

A plot of the absolute magnitude of the dimensionless kernel against (u - ut), which 

- 
50 Percent of total area . - 
95 Percent of total area 

Figure 4. - Absolute value of kernel of inhomageneous integral equation (not to 
scale). 
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I 

summarizes the conclusions of the previous discussion, is shown in figure 4. This ap- 
proximate sketch is supported by numerical analysis and shows that the kernel drops off 
to =l/e of its maximum value when Iu - ut I is on the order of Q /w, and that the bulk 
of the a rea  under the curve (95 percent) is contained in the interval 0 < - (u - ufI< 10 (g/w). 
Note that approximately 50 percent of the area under the curve is contained in the range 
0 < - Iu - u t ]  5 (Q/w). 

If 

an 

equation (20a) can be rewritten as 

1 
J(U)  = C - X J(u')(K(lu - u'I)Idu' 

Equation (21b) can be solved by the Liouville-Neumann method of successive approxima- 
tions. 
tion (21b) yields 

Let Jo(u) = C .  Carrying through the integration on the right-hand side in equa- 

Repeating the process a second time but now inserting J1(u) in the integrand of the 
right-hand member yields 

Thus, after n repetitions it can be shown that 
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Thus the current density is expressed as 

J(u) = lim Jn(u) 
n-co 

provided the series in equation (22c) converges as n-w. The range of convergence for 
this ser ies  will be discussed later. 

to be uniform over the width of the film. 
is included in J (u) and is computed by considering the sum of the interactions of all the 
so'urce points in the films on a particular observation point. This sum 

It is instructive to note that to zeroth order the current density Jo(u) is assumed 
The first-order correction to this assumption 

1 

where K(U) will be referred to as the coupling factor. The second-order correction, 
contained within J2(u), is determined by considering the effect of all the source points 
on a particular source point before obtaining the coupling factor. The higher-order 
terms in X are further expressions of the interactions of source points with source 
points. 

It is noted that the terms in the kernel are of essentially two types: 

and 

u - ut 1 a(d/w) tan- ~ 

u - u' d/w 

The first term (expression (24a)) is easily integrated with respect to ut. If 
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v = u - u '  

a 2 d + v  2 

then 

d v = v l n  a 

1 

In l a 2 d  + (u - I du' =Iu+' In 

u- 1 

1 u+l la2(d/w)2 + (u + 

u- 1 

lU+' 
a(d/w) l1 = In (az(d/w)' + (u 

When integrating expression (24b) it is important to remember that the inverse tangents 
are restricted to their principal values; therefore, 

+ 6 (ut - u) tan-' [E] du] = {[ (u - ut) [i - tan-' 21 du' 

+f (ut - u) - tan-' z] d u j  = [i K' (u - u') du' -[ (U - u') d j  

- [ (u - u') tan-1 
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Thus 

+ 2A21 +A21 -A21 
a=2k- 1 a=2k+l a= 1 a=2k+l a= 1 

where k = Q/d. 

the absolute magnitude of the kernel plotted against u* for various values of u. The 
It is useful at this point to examine some of the properties of K(u). Figure 5 shows 

-1 1 u' 

Figure 5. - Differential coupling factor (not to scale). 

area under each curve is I K ( U ) ~  . Since the kernel is negative definite, K(U) is also 
negative definite. Due to the narrow effective width of the kernel (approximately 
10 (l/w)), it is seen that K(U) is a weak function of u [(K(u) = ~(0))] in the central region 
of the film. When u is within 10 (Q/w) of the edge of the film, K(U) is a strong function 
of u, and in fact it can be shown that at  the edges 

1 
2 

I."l)l = - ( K ( O ) (  + E 

Where E is a small positive number. These observations are summarized in figure 6. 
Physically this implies that since an observation point is only affected by those source 
points within a range = lo  (.C/w), the observation points which a r e  not within 10 (.C/w) of 
the edges are effectively in an infinitely wide film. 

When a composite of figures 5 and 6 is considered, it is readily seen that 
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Thus, in general 

Figure 6. - Absolute value of coupling factor (not to scale). 

3 7  

I Id 

Figure 7. - Coupling factor magnitude. 

Equations (25a) and (25b) are very 
nearly true in the central portion of 
the film. The er ror  in these approxi- 
mations, when u is within 10 (l/w) of 
the film edges, will be discussed in 
the next section. Combining equations 
(22) and (25) yields 

(26) 

If XIK(O)~ < 1, the series in equa- 
tion (26) ‘converges absolutely, and the 
current density distribution can be ex- 
pressed in closed form as 

Figure 7 indicates the range of values 
for the parameters d, w, and Q over 
which equation (26) converges. For 
example, once a film has been de- 
posited 6, d, and w are  fixed, and 
the range of convergence for equa- 
tion (26) with Q/d is to be determined. 
Clearly, the value of Q/d cannot be 
less than or equal to 1, for .this would 
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Figure 8. - Current distribution (not to scale). 

imply that the two films touch o r  overlap. Since 
X ~ ( 0 )  < 1, the upper limit for Q/d can be 

2 found by setting X ~ ( 0 )  = 1, dividing by (pd) , 
and finding that point on the appropriate d/w 
curve that has this value as its ordinate. The 
projection of this point on the Q/d axis yields 
the upper critical value for Q/d. Therefore 
1 < (Q/d) < (Q/d)cr. Following somewhat similar 
lines, onecanfixany two of d, w, and Q and 
determine the allowable values of the third 
parameter. If h ~ ( 0 )  > 1, the series does not 
converge and the Liouville-Neumann method is 
not applicable. With the help of figure 6 an ap- 
proximate normalized sketch of J(u) against u 
can be drawn (fig. 8). 

I I  I 1  

I I -  

. -  . 
From equation (27) and the relation E = p-2 ( V  X 3, the x-component of the mag- 

netic field can be readily deduced: 

d - -1 4 -1 d -2  d 2cx 
H,(u) = - (V X J)x = - - J(u) = - - J(u) = 

P 2  p2 dY p2w d' 

(28) 

Removing the absolute value signs from the kernel, applying Leibniz's rule, and re- 
me mbering that 

d d 
du du' 
- f(u - u') = - - f(u - u') 

yield 
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I I + ,  
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Figure 9. - Vertical component of magnetic field (not to scale). 

where the plus and minus signs refer 
to the top and bottom films, respec- 
tively. An approximate sketch of 
equation (30) is given in figure 9. 

used to evaluate H (x,u); however, for 
the purposes of the discussion in the 
next section, only the form of H is 
necessary. In the central portion of 
the films it can readily be seen that 
H is maximum at x = -(d/2), -i - (d/2)J and approximately zero at 
x = (d/2), - [Q + (d/2)]. 

In principle, Ampsre's law can be 

Y 

Y 

ERROR ANALYSIS AND CONCLUSIONS 

There a r e  two sources of e r ro r  in the analysis presented in the last section. The 
first e r ror  was introduced when it was assumed that the current density does not vary in 
the x-direction for the case (Pd) < - 1 (one-dimensional approximation). The second e r ro r  
is associated with the approximations in equations (25a) and (25b) (the edge approxima- 
tions). 

One-Dimensional Approxi mat ion 

In order to evaluate this error it is convenient to use a self-consistency argument. 
In other words, the one-dimensional solution (eq. (27)) is resubstituted into the two- 
dimensional integral equation (eq. (17)) in order to find the x-direction variation of J. 
In practice, it is more convenient to use the differential counterpart of equation (17), 
namely V J = P J. The x-direction variation is then used to find an improved 
y-direction variation. For the purposes of this report i t  is not important if J is not 
uniform in the x-direction, as long as the inclusion of this variation does not appreciably 
affect the y-direction variation. It is shown below that this is, in fact, the case. 

that the largest x-direction variation of J occurs in the central portion of the film, 
This then is the worst region as far as an e r ro r  in the one-dimensional approximation is 
concerned. Since both the current and the magnetic field satisfy linear differential 
equations of the same form, i t  follows that in the central portion of the fi lms H (X) must 
be a solution of the equation 

2 2 

From the behavior of the magnetic field in a superconducting film it can be argued 

Y 
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subject to the boundary conditions mentioned in the last section: 

1 H (X = + d/2) 0 Y 

H (X = - d/2) E Jw 
Y 

It is easy then to show that in the central region of the film 

H (x) = -JW sinh P[x - (d/2)1 
y sinh(Pd) 

Consequently, 

It is seen that for (Pd) = 1, J = 1. 5 J - . Thus there can be an appreciable (-4) 6) 
x-direction variation. 

integral equation: 
Substituting equation (32) into equation (17) leads to an improved two-dimensional 

To simplify comparison with the results obtained previously where J was assumed con- 
stant in the x-direction, it is advantageous to set  x equal to zero in the integration over 
xr. 
source points closest to the field points. Thus in this *'worstrf region it is helpful to set 
y = y' in an attempt to establish the upper and lower bounds for  

Furthermore, it is clear that the largest contributions to the kernel come from 
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Since every function can be expressed as the sum of i ts  even and odd parts, expres- 
sion (34) can be rewritten as 

2 X' cosh(Pxt) In - 

Q2 - ( x ' ) ~  -d/2 

Examination of the integrand indicates that the second integral in expression (35) is 
always positive. If 

cbsh - (d/2)] 
c os h (pd /2) 

f(x') = ___ 

and 

2 
X' 

(Q + x') 
g(x') = In 

2 

then the first  integral in expression (35) is just 

gE(xt) are  the even parts of f(xt) and g(xt), respectively. Similarly, fo(xt) and go(x') 
are the odd parts of f(xt) and g(x'). If fE is the average value of fE(xt) in the 

fE(xf)gE(xt)dx', where fE(xt) and 

d 
2 -  - 2  

interval - fi < x' < -, then 

- 
fE(xt) = fE  + mE(xt) 

Thus, expression (35) can be rewritten as 

4; gE(xt)dx' E f (x')g(x')dx' = f mE(xt)gE(x')dx' + positive term L;r - 
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Examining each of the integrands reveals that 

Thus, 

mE(x')gE(xr)dx' > 0 e 

Since 

4: go(x')dx' = 0 

and g(x') is always < 0, expression (38) yields 

In a similar manner the lower bound can be found for 

The result is equal to expression (39) with sinh(Pd/2)/(@d/2)l replaced by unity. Since [ 
g(x/x', y/y')dx' can be identified with the kernel of the integral equation (eq. (19)) , ld;2 

it follows that use of the self -consistency procedure yields an improved u-variation 
integral equation 
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sinh Pd/2 l < a ! <  
Pd/2 

Thus, at  worst, a! = 1.04 (for the case Pd = 1) in the central region of the film. 
h is replaced by ah in the closed form solution, the magnitude of J(u) in the central 
region is less than 2 percent smaller than that predicted by equation (27). 
pointed out previously, this e r ror  is less  near the film edges, 

If 

As  w a s  

Edge Approximation 

It would appear from figure 6 that while the approximation K(U) = ~(0) is a reason- 

Though the closed-form solution might therefore not be 
able one to make in the central region of the film, its validity, as well as its usefulness 
at the edges, is questionable. 
strictly true near u = *l, equation (27) could be used as a reasonable trial function in an 
attempt to obtain a numerical solution for the one-dimensional integral equation. 

computer. 
curred for k e kc, where J(51) was approximately 10 percent smaller than the value 
given by equation (27) for films with the same parameter values. It should be noted 
however that for cases where k < - 0. 65 kc, this discrepancy is reduced to less than 
5 percent. 

state when J at any point in the films exceeds a critical value Jc, it is apparent that 
the switching is initiated at the film edges. From the e r ror  analysis it is clear that if 
the J(u) given in equation (27) is used to calculate a critical current IC (in terms of Jc), 
this value for the critical current will be smaller than the true critical current by less  
than 10 percent. It is noted that in calculating IC the x-direction variation of J in the 
central portion of the film should be taken into account. This is easily done by combin- 
ing equations (27) and (32) as is done in the sample critical current calculation shown in 
the appendix. 
scopic theory (ref. 7) and/or by experimentally determining IC for a particular choice 
of parameters which lie in the range treated in this report. Once Jc is known, IC can 
be determined by using the above calculations for any other set  of parameters which lie 
in the range under consideration in this report. 

Lewis Research Center, 

Numerical solutions were obtained in this manner with the aid of an IBM 7094II 
The results revealed that the greatest error  in the closed form solution OC- 

If it is assumed that the superconducting films switch to the normally conducting 

The critical current density can be determined by making use of a micro- 

National Aeronautics and Space Administration, 
Cleveland, Ohio, December 6, 1965. 
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APPENDIX - SAMPLE CRITICAL CURRENT CALCULATION 

The critical current IC of a superconducting strip transmission line, for the case 
For this case, the current is uniform over a very d/w << 1, can easily be calculated. 

large percentage of the film width so that from equation (32) it can be shown that 

I = J(0) w(P- ') 2 sinh(Pd/2) (Al) 

The dimensionless variable u will not be used in this section. 

making use of the fact that I~(*w/2)1 = - I K ( O ) ~  , it can be seen that for hlK(0) I < 1 

From equation (27), and 
1. 
2 

where the variation of J in the x-direction at the film edges has been neglected in line 
with the discussion in the last section. According to the critical current density hypo- 
thesis, I = IC where J(*w/2) = Jc. Using this hypothesis and combining equations (Al) 
and (A2) yield 

- 
1 
2 

I C  - 
1 + - x I K ( 0 ) 1  

The numerator of the right-hand side of equation (A3) is the critical current IC, calcu- 
lated on the assumption that the current density is uniform in the y-direction. It can be 
seen from equation (24) that 

From figure 8 it is evident that equation (A4) is satisfied for the case d/w < - 0.001. It 
is interesting to note that in this range AK(O) is independent of (d/w). Therefore, 
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For situations in which (d/w) is not much less than unity, equations,(Al) and (A4) a r e  not 
valid. In these cases the general expressions describing the variation of current density 
in the films.can be used to calculate the critical current. 
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