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TWO-DIMENSIONAL APPROACH I 

T O  THE MAXIMUM LIFT-TO-DRAG RATIO 

OF A SLENDER, FLAT-TOP, HYPERSONIC WING (") 

by 

("*) ANGEL0 MIELE 

SUMMARY 

An investigation of the lift-to-drag ratio attainable by a slender, flat-top, 

wing at hypersonic speeds is presented under the assumptions that the planform 

shape is given, the pressure distribution is Newtonian, and the skin-friction 

coefficient is constant. The methods of the calculus of variations in two 

independent variables are employed. It is shown that the optimum wing has 

a constant chordwise slope so that the chordwise thickness distribution is a 
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University, Houston, Texas . 



2 AAR-15 1 

linear function of the distance from the leading edge and the trailing edge 

thickness distribution is proportional to  the chord distribution. Also, the 

friction drag  is one-third of the total drag.  The lift-to-drag ratio and the 

thickness ratio of the variational solution are independent of the planform shape 

- 3  and depend on the friction coefficient only. For a friction coefficient C = 10 
f 

the maximum attainable lift-to-drag ratio is E = 5.29 and the corresponding 

thickness ratio is I- = 0.126. 



1.  INTRODUCTION 

3 

In previous reports (Refs. 1 and 2) ,  the lift-to-drag ratios attainable 

by slender, flat-top wings at  hypersonic speeds were determined under the 

assumptions that the pressure  distribution is Newtonian and the skin-friction 

coefficient is constant. The analysis was confined to the class  of affine 

wings, that i s ,  wings such that each chordwise section can be generated from 

the root section by a linear transformation not involving rotation. Because of 

these hypotheses, each of the surface integrals associated with the lift, the 

pressure  drag, and the  skin-friction drag  degenerates into the products of two 

line integrals depending on the chordwise and spanwise contours, respectively. 

These chordwise and spanwise contours were determined so as to  maximize 

the l if t- tn-drag ratio by either direct methods (Ref. 1) o r  the indirect methods 

of the calculus of variation in one independent variable (Ref. 2).  

In this report ,  the  limitations set forth in  Refs. 1 and 2 are removed and the 

indirect methods of the calculus of variations in hvo independent variables (see, 

for instance, Ref. 3 )  are employed in order  to  determine the optimum configuration 
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of a wing not necessarily affine. The hypotheses employed a r e  as follows: 

(a) a plane of symmetry exists between the left-hand and right-hand par t s  of 

the wing; (b) the upper surface of the wing is flat (reference plane); (c) the wing 

is slender in both the chordwise and spanwise senses ,  that is, the squares  of 

both the chordwise and spanwise slopes are small  with respect tn o x ;  (d) the 

f ree-s t ream velocity is parallel t o  the line of intersection of the plane of 

symmetry and the reference plane; (e) the pressure  coefficient is twice the 

cosine squared of the angle formed by the free-s t ream velocity and the normal 

to  each surface element; (f) the skin-friction coefficient is constant; and (g) the 

contribution of the tangential forces to the lift is negligible with respect to  the 

contribution of the normal forces .  
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1 .  
2 .  DRAGANDLIFT 

We consider the class of flat-top wings and define a Cartesian coordinate 

system Oxyz as follows (Fig. 1): the origin 0 is the apex of the wing; the x-axis 
l 

is the intersection of the plane of symmetry and the reference plane, positive 

toward the trail ing edge; the z-axis is contained in the plane of symmetry, 

perpendicular to  the x-axis , and positive downward; and the y-axis is such that 

the xyzsys tem is right-handed. 

We express the geometry of the planform and the thickness distribution on 

t the periphery of the planform in the form 

I Leading edge x = m(y) , z = 0 

with 

0 I y 5 b/2 
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where b is the wing span. 

In the light of hypotheses (a) through (g) of the introduction, the drag  D 

and the lift L per unit f ree-s t ream dynamic pressure q can be written as 

(Ref. 1) 

where p denotes the derivative ; t z /bx .  As a consequence, the lift-to-drag ratio 

E = L/D 

becomes 

(5) 
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3 .  VARIATIONAL PROBLEM 

W e  now assume that the planform shape is given, that is, the functions 

m(y) and n(y) are arbi t rar i ly  prescribed. We also assume that the trailing 

edge thickness distribution t(y) is free.  Then, we formulate the following 

problem: "In the class  of functions z(x, y) which satisfy the boundary condition 

(1-l), find that particular function such that the lift-to-drag ratio (6) is a 

maximum. I' 

The functional (6) is the ratio of two surface integrals and its extremization 

is governed by the theory set forth in Ref. 4. Therefore, the previous problem 

is equivalent t o  that of extremizing the integral 

b/2 rdY) 
I = [  I F( P , E) dxdy 

'0 -'m(y) 

where the fundamental function is defined as 

2 3 
F = p  - E ( p  +Cf )  

and the undetermined constant E is defined by Eq. (6). 
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Since the fundamental function depends on p only, standard 

methods of the calculus of variations in two independent variables show that the 

Euler equation (see, for instance, Chapter 3 of Ref. 3 )  

aFp/ax = 0 

admits the following first integral: 

where A(y) is any function of the spanwise coordinate. Since the trail ing edge 

thickness distribution is free, the solution of the Euler equation (9) must 

satisfy the following natural boundary condition: 

Trailing edge F = O  
P 

with the consequence that 
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In the light of Eq. (12), the first integral (10) can be rewritten as 
I 

F = O  P 

and its explicit form 

p (2-3Ep) = O  

is solved by 

p = O  o r  p -2 /3E 

The next step consists of applying the Legendre condition 

Fpp 0 

and observing that its explicit form is 

p r 1 / 3  E 

This  condition is violated by the solution (15-1) and met by the solution (15-2). 

From the previous discussion, we see  that the extrema1 surface must satisfy 

the differential equation 

(14) I 

(15) I 
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p = 2/3E 

AAR-15 ' 

and, therefore, has a constant chordwise slope. Because of this property, the 

evaluation of the integrals appearing in Eq. (6) is immediate and leads to  t h e  

relation 

E =  [2/3 E? 

(2/3E)3 + Cf 

which in turn yields the following maximum lift-to-drag ratio:  

3- E = 2/3 J2Cf 

A mathematical consequence of Eqs.  (18) and (20) is the relationship 

3- 
P = J 2 C ,  

which, upon integration, leads t o  

3- 
z = ./2Cf x + B(y) 

where B(y) is any function of the spanwise coordinate. After the function B(y) 

is detcrniined from the boundary condition (1-1) as follows: 
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the optimum geometry can be rewritten as 

3 -  z =Jx, [x - m(y)l  

Therefore, the chordwise thickness distribution is a linear function of the 

distance from the leading edge. Furthermore, the trailing edge thickness 

distribution is given by 

and is proportional to the chord distribution; hence, the thickness ratio 

T = t(y)/c(y) is given by 

3 -  
7 =,/2cf 

AAR- 15 

(23 1 

I 
Finally, if S denotes the wing surface and the coefficients of drag and lift are 

defined as 

L 
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the following relationships are readily obtained: 

C D = 6 C f  , C =2(2Cf) 2 /3 
L 

Since the friction drag coefficient is 2C , one concludes f 

of the extrema1 surface is one-third of the total drag. 

AAR-15 . 

that the friction drag  
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4, DISCUSSION AND CONCLUSIONS 

AAR- 15 

In the previous sections, the optimization of the lift-to-drag ratio of 

a slender, flat-top wing at hypersonic speeds is presented under the assumptions 

that the pressure distribution is Newtonian and the skin-friction coefficient is 

constant. It is shown that the optimum wing has a constant chordwise slope so 

that the chordwise thickness distribution is a linear function of the distance from 

the leading edge and the trailing edge thickness distribution is proportional t o  the 

chord distribution. Also, the friction drag is one-third of the total drag. The 

lift-to-drag ratio and the thickness ratio of the variational solution are independent 

of the planform shape and depend on the friction coefficient only. For a friction 

-3 
coefficient Cf = 10 , the maximum attainable lift-to-drag ratio is E = 5.29 and 

the corresponding thickness ratio is T = 0 ,126 .  

I 
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Fig. 1 Coordinate system. 
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